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A variation potential (VP) is an electrical signal unique to plants that occurs in response to 
wounding or flaming. The propagation mechanism itself, however, is known not to be electrical. 
Here we examine the hypothesis that VP transmission occurs via the transport of a chemical 
agent in the xylem. We assume the electrical signal is generated locally by the activation 
of an ion channel at the plasma membrane of cells adjacent to the xylem. We work on the 
assumption that the ion channels are triggered when the chemical concentration exceeds 
a threshold value. We use numerical computations to demonstrate the combined effect of 
advection and diffusion on chemical transport in a tube flow, and propose shear-enhanced 
Taylor-Aris dispersion as a candidate mechanism to explain VP rates observed in experiments.

Keywords: variation potential, slow-wave potential, Ricca factor, chemical signal, electrical signaling, signal 
propagation, Taylor dispersion

INTRODUCTION
A plant stem which is subjected to wounding or burning emits a slow-moving signal which can 
propagate long distances to remote parts of the plant. The transmission of this signal from the damage 
site is associated with an electrical potential waveform which can be measured experimentally and 
used to determine the location of the signal relative to the wound site, and hence to measure the 
signal’s speed and intensity. The signal itself is known as a variation potential (VP, also known as 
a slow wave potential), a name which refers to the change in the electrical potential on the plant 
surface. It travels at a rate which is on the order of 1 to 2 mm/s and is distinguished by the fact that 
its speed and intensity decreases with increasing distance from the wound site, and also by its ability 
to pass through regions of necrotic tissue (e.g. Stahlberg et al., 2006; Fromm and Lautner, 2007).

The mechanism underpinning VP transmission has been the subject of much debate, although 
there seems to be agreement that it cannot be electrical. To make the distinction clear between 
the transmission and the electrical readout that together form a VP, we refer to the propagating 
signal that triggers the electrical wave as the primary signal and the electrical wave as the secondary 
signal. The prevailing theory is that the VP is initiated by a localized, temporary increase in stem 
or leaf thickness which is itself induced by the passage of a high pressure wave, termed a hydraulic 
wave, departing from the wound site (Malone and Stanković, 1991; Stahlberg and Cosgrove, 1992; 
Mancuso, 1999). However, pressure waves travel relatively quickly, for example, at around 10 cm s-1 
for wheat seedlings (Malone, 1992), and ostensibly too quickly to be the primary signal responsible 
for VP propagation per se.
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Ricca (1916) proposed that the primary signal is a transported 
chemical agent, commonly called a wound substance or Ricca 
factor, which is assumed to initiate an electrical potential locally. 
However, the mechanism underlying this transport is less clear 
and common models are problematic, as reviewed by Blyth and 
Morris (2018). For instance, a chemical transport model based 
on pure diffusion provides a good fit with experimental data but 
only if the diffusivity is taken to be thousands of times larger 
than the diffusion constant in water (Vodeneev et al., 2012). A 
chemical transport model based purely on advection is ruled out 
by the viscous no-slip condition which implies that the chemical 
concentration at the xylem wall is zero downstream of the wound 
site. Evans and Morris (2017) argued that both advection and 
diffusion are important. They constructed an advection-diffusion 
transport model that included wall leakiness to provide a 
reasonable fit with experimental data. Despite its simplifications 
and approximations, this work demonstrated the plausibility of a 
Ricca factor as the primary signal for VP propagation.

In the present work we investigate the physical consequences 
of the assumption that a VP is driven by the movement of a 
chemical agent through the xylem. We do not attempt to describe 
the complex xylem architecture and approximate the xylem 
as a single fluid-carrying tube. We assume the presence of a 
preferential unidirectional fluid motion within the xylem vessels 
away from the wound site. This is consistent with the observation 
that VP signals have been observed to propagate in the opposite 
direction to transpiration-induced flow (root to shoot) and the 
hydraulic hypothesis (Mancuso, 1999) which postulates that 
localized damage raises the hydraulic pressure and that this may 
induce a flow away from the wound site. Here, we do not address 
the driving force for this fluid motion but, assuming fluid flow, 
evaluate whether the transport of a hypothetical chemical agent 
within the flow is consistent with experimental observations 
of VP propagation for the small diffusivities expected in the 
xylem fluid.

Our proposal is based on the theoretical approximation 
introduced by Taylor (1953), and later refined by Aris (1956), 
which shows that the combined action of advection and diffusion 
in a shear flow can very significantly enhance the dispersal of a 
chemical agent. Specifically, the effective diffusivity of the mean 
cross-sectional concentration in a shearing fluid motion is 
substantially larger than that which obtains in a quiescent fluid.

In the experiments of Vodeneev et al. (2012) the electrical 
activity at the stem epidermis was measured using Ag/AgCl 
electrodes. Different mechanisms have been proposed to explain 
the conversion of the propagating primary signal in the xylem 
to an electrical secondary signal and its transmission to the 
epidermis. However, as was pointed out by Evans and Morris 
(2017), the consequence of this transmission away from the 
xylem to the epidermis will be a lag time between the actual 
propagating signal and the electrical potential. This lag time 
in itself is not of central importance for the VP propagation 
mechanism, so in the current work we restrict ourselves to how 
the underlying primary signal is transmitted. We assume that 
a transported chemical agent in the xylem vessels triggers an 
electrical response via the activation of ion channels when the 
chemical binds to a surface receptor in xylem contact cells which 

sit adjacent to the xylem. We approximate the typical Hill-like 
activation of the receptor by introducing a threshold value for the 
concentration of the chemical agent at the surface of the xylem 
conduit. This mirrors ideas put forward by Vodeneev et al. (2012, 
2018). Given that the conversion of the primary signal to the 
measured electrical secondary signal at the epidermis introduces 
only a lag time, this does not alter the speed of signal propagation 
and we can directly compare the propagation of the chemical 
agent with the electrical signal.

The outline of the article is as follows. First we briefly review 
the individual roles of advection and diffusion in chemical 
transport. Next we show the combined action of these two effects 
in a tube flow by solving the full advection-diffusion problem 
numerically. Finally we demonstrate that the mechanism of 
shear-enhanced dispersion is a strong candidate for explaining 
observed VP transmission rates.

SIgNallINg VIA ChEMICal TRaNSPORT
We analyze the transport of a chemical agent through the xylem, 
working on the assumption that the electrical signal of the VP 
is generated locally by the activation of an ion channel at the 
plasma membrane of xylem contact cells. Assuming further 
that these ion channels are triggered by the binding of the 
chemical (characterized by a threshold concentration level), this 
implies that a key variable is the chemical concentration at the 
xylem wall, meaning in the present model the boundary of the 
fluid conduit.

To a first approximation we neglect the geometrical 
complexities of the true xylem architecture and model a section 
as a long fluid-filled tube of circular cross-section and radius a. 
The chemical is transported by a unidirectional Poiseuille flow 
parallel to the tube axis that is driven by a constant axial pressure 
gradient. Working with respect to cylindrical polar coordinates 
(x,r,θ), with the tube wall located at r = a, we write this pressure 
gradient as dp/dx = -G, for constant G > 0, where p is the fluid 
pressure. The axial velocity component is given by [e.g. Blyth and 
Morris (2018)]

 u r G a r( ) ( ),= −
4

2 2

µ
 (1)

where μ is the dynamic viscosity of the fluid. The chemical 
concentration c(x,r,t) satisfies the advection-diffusion equation 
[e.g. Blyth and Morris (2018)]

 c uc D c
rt x xx rr
r+ = + +( c ),c  (2)

where a subscript denotes a partial derivative and D is the 
diffusivity of the chemical in the carrier fluid. Assuming an 
impermeable tube wall we set the boundary condition

 cr ( , , )x a t = 0  (3)
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and we impose the regularity condition at the pipe axis, 
cr  (x, 0, t) = 0. An initial condition is also required to specify 
the distribution of the chemical at t = 0 which is itself determined 
by the release of the chemical into the xylem in response to 
wounding. This advection-diffusion problem for the chemical 
concentration is mathematically challenging and a solution can 
usually only be obtained using approximate analytical methods 
or by numerical computation. Even so considerable insight can 
be gained by studying the effects of advection and diffusion in 
isolation. We present a brief review in the following subsections, 
and in particular we discuss the standalone deficiencies of either 
advection or diffusion in explaining the propagation of a VP. As 
was noted above, a key variable of interest in this respect is the 
concentration of the chemical at the wall, w(x,t) ≡ c(x,a,t).

advection as the Transport Mechanism
In the absence of diffusion the transport is governed by advection 
alone. In this case Equation 2 reduces to the simplified form dc/
dt = 0 (e.g. Blyth and Morris (2018)) so that that the convective 
derivative of the chemical concentration vanishes: this means that 
the concentration identified with an individual fluid particle does 
not change as the particle is carried with the flow. In the circular 
tube flow under consideration the trajectory of a particular fluid 
particle is given by

 
x t G r t( ) ( ) , ( ) ,= − + =

4
2

0
2

0 0µ
a r t x r  (4)

where x(t) and r(t) are the coordinates of the particle at time t 
and x0, r0 are the initial location of the particle at time t = 0. As 
time increases an initially disk-shaped region of chemical distorts 
into a parachute-shaped configuration as is illustrated in Figure 
1. Notably for any time t > 0 there is no chemical in the region 
marked A which is defined by

 
 + − ≤ ≤ +G x Ga t

4 4
2 2

2

µ µ
( ) .a r t  (5)

At the wall the region A extends over the range ℓ ≤ x ≤ 
ℓ+(Ga2/4μ)t meaning that the wall concentration at any point 
in this region satisfies the relation w(x,t) = w(x,0). Accordingly 
the chemical cannot reach any point on the wall downstream of 
the portion occupied by the initial distribution. This is indicated 
graphically by the distortion of the disk-shaped region in Figure 
1. Thus, under the assumption that flow in each xylem vessel is 
unidirectional, advection alone is unlikely to be responsible for 
VP transmission.

Diffusion as the Transport Mechanism
The one-dimensional form of the advection-diffusion equation 
(2) is ct + Ucx = Dcxx, where U is a constant. This equation has 
been used to model chemical transport in the xylem and, thereby, 
to estimate the speed of a VP. Ignoring advection (so that U = 0), 
Vodeneev et al. (2012) solved this equation to track the critical 

point where the concentration is just at the threshold level, σ say, 
required to trigger an electrical signal. Evans and Morris (2017) 
carried out a similar calculation but for U ≠ 0. In the latter case 
the solution takes the form

 
c C

Dt
c xx Ut Dt= =− −

−∞

∞

∫( )
, ,/

( ) /

4 1 2

2

π
e d4 C  (6)

where C is the total mass of chemical which, we note, is 
independent of time. Under pure diffusion (U = 0) this solution 
represents an initial highly localized distribution of chemical 
which spreads out equally in both directions over time. We 
denote by x = γ(t) the location of the critical points at which 
the wall concentration is at the threshold level, that is w = σ. 
According to Equation 6,

 
γ σ π( ) log( / log( Dt) ,

/

t Ut= ± ( ) −






4 1
2

4
1 2

Dt C  (7)

where the ± sign indicates that there are two such critical points. 
The plus sign denotes the leading critical point that determines 
when the threshold level is first exceeded at any given point on the 
tube wall downstream of the deposition region. The minus sign 
indicates the rearward critical point that lags behind, but which 
determines how far upstream the signal can reach along the wall 
(see Numerical Computations). Henceforth we shall use γ and γR 
to refer to the leading and rearward critical points, respectively. 

FIgURE 1 | Advective distortion of an initially disk-shaped region of 
chemical of axial width ℓ in a Poiseuille flow with axial velocity component 
u(r). At any time t  > 0 the region marked A, in which ℓ + u(r)t ≤ x ≤ ℓ + u(0) 
t, is devoid of chemical.

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1393

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Variation Potential TransmissionBlyth and Morris

4

The result (7) indicates that there is a theoretical maximum 
distance that can be travelled by either critical point for any 
combination of σ and C. This maximum distance is attained at 
the time when the term inside the large curved bracket in (7) 
reaches zero. However, for parameter values appropriate for the 
xylem, this time is huge (on the order of years) and so is not a 
practical concern.

Vodeneev et al. (2012) showed that the result (7) with U = 0 
provides a good fit with experimental data but only if the diffusivity 
D is taken to be about 0.045 cm2 s-1, which is approximately 2,000 
times larger than the value expected for small molecules in a 
water solution [according to Levich (1962), p. 53, this is roughly 
10-5–10-6 cm2 s-1]. Nevertheless their prediction does capture 
the well-known phenomenon that VP speed is retarded with 
propagation distance. Vodeneev et al. (2018) recently evaluated 
an extended version of their ‘turbulent diffusion’ model that 
includes the active production of the wounding substance. 
They nicely demonstrate how different parameters settings can 
recapitulate observed VP characteristics, such as propagation 
speed and amplitude changes with distance, for the different 
VP initiation treatments burning, heating and crushing. Using 
an advection speed U = 0.17 cm s-1, and incorporating a degree 
of leakiness at the tube wall, Evans and Morris (2017) obtained 
a reasonable fit with Vodeneev et al. (2012)'s experimental data 
using the more physically plausible value of the diffusivity D = 
10-6 cm2 s-1 (Mastro et al., 1984).

Numerical Computations
As we have noted, under pure advective transport the chemical 
cannot enter the region marked A in Figure 1. In fact whatever the 
initial chemical distribution the wall concentration downstream 
will remain zero for all time, meaning that there is no VP 
transmission. Diffusion acting alone requires an exorbitant value 
of the diffusivity to match observed VP speeds; however, diffusion 
does provide a mechanism to allow chemical to penetrate the 
empty region A and to reach the wall to trigger an electrical signal. 
In this subsection we investigate the combined action of these 
two effects to facilitate VP transmission by chemical transport 
by solving the advection-diffusion problem for the chemical 
concentration numerically using a finite difference alternating 
direction implicit (ADI) method [e.g. Hoffman (1992)].

It is numerically convenient to work in a frame of reference 
travelling in the positive x direction with the cross-sectional 
average of the flow velocity ū = Ga2/(8µ). In this moving reference 
frame the advection-diffusion problem stated in Signalling via 
Chemical Transport takes the form

 
c D c c c

rt z zz rr
r+ − = + +





( ) ,u u c  (8)

where z = x - ū t with boundary conditions cr(z,a,t) = 0 and 
cr(z,0,t) = 0. The problem is solved over a computational domain 
of length L taken to be sufficiently large so that the chemical 
does not reach the ends over the duration of the simulation. For 
definiteness, we impose the zero-flux end conditions

 Dcz = −( )u u c  (9)

at z = 0,L. In the computation to be presented we take L = 25a. 
The initial condition is set as

 
c a z a( , , ) ,z r 0 1 9 10

0
= ≤ ≤





if

otherwise  (10)

This corresponds to an initial state comprising a circular disk-
shaped region filled with chemical at a uniform concentration. 
The finite-difference approximations were computed on a 
uniform grid in this frame of reference with 200 equally-spaced 
points over 0 ≤ r/a ≤ 1 and 800 equally-spaced points over 0 ≤ z/a 
≤ 25. These were deemed via resolution checks to be sufficiently 
large numbers of points to provide accurate results over the 
duration of the simulation. The time step was taken to be (ū/a)
dt = 0.01 in dimensionless time units, and the simulation was 
terminated at (ū/a)t = 0.01. The problem as stated depends on 
two dimensionless parameters: the Péclet number Pe = aū/D, 
which encapsulates the relative effects of advection and diffusion, 
and the threshold concentration σ. Here the Péclet number was 
set to Pe = 30.0. The results are shown in Figure 2.

Evidently the initially sharp distribution is rapidly smeared 
out along the tube. Diffusion carries the chemical both upstream 
and downstream and also toward the wall. Consequently, and 
as anticipated, the region in which the wall concentration is 
nonzero spreads downstream in the moving frame. This is 
indicated by the concentration contours in the bottom left panel 
of Figure 2, which also show that the concentration level at the 
wall lags behind that on the tube centerline. The bottom right 
panel in the figure shows the trajectory of the leading critical 
point, given by γ̂ γ= − ut , at which the wall concentration has 
reached the threshold value σ in the moving z-frame. After an 
initial transient the rate of advance of γ̂  very gradually slows 
down (the speed of the critical point in the stationary x-frame 
therefore also slows down). Note that the value of σ makes 
only a minor difference to the speed of propagation as is seen 
by the solid and broken lines in the bottom right panel which 
correspond to values of σ that differ by a factor of 10.

It is interesting to compare the rates at which the leading and 
rearward critical points progress. These are shown in Figure 
3 for the same conditions as in Figure 2 but with the chemical 
mass initially concentrated in a small disk-shaped region set in 
the middle of a tube of twice the length in order to capture the 
advancing trajectories for a longer time period. The top panel shows 
the distances covered by each critical point in the frame of reference 
moving at the mean fluid velocity ( ˆ ( ) )here γ γR R utt = − . The lower 
panel shows the trajectories γ/a and γR/a in the stationary frame 
of the tube. Counterintuitively, the rearward point initially moves 
backward faster than the leading point moves forward (see the 
upper panel). Eventually, in the tube frame shown in the lower 
panel, the rearward point switches direction and starts to advance 
downstream. For this calculation the farthest point on the wall 
upstream of the deposition region that is reached by the chemical 
is at x = 8.38a, which corresponds to 0.62 tube radii upstream of 
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the deposition region. Figure 4 shows how this farthest upstream 
point varies with the Péclet number while holding σ = 10–4 
constant. For low Péclect numbers diffusion dominates advection 
and so relatively large upstream distances are attained (formally as 

Pe→0 the chemical can reach an unlimited distance upstream as 
it is carried by pure diffusion in this limit). For high Pe advection 
dominates diffusion and the farthest upstream point that can be 
reached is much more restricted. The parameter values quoted 
from the literature in Table 1 suggest some uncertainty over the 

FIgURE 2 | Numerical simulation of the advection-diffusion problem (8)-(10) in a reference frame moving at the average flow speed ū. Top left: surface concentration 
plot at (ū/a)t = 10. Bottom left: concentration contours at (ū/a)t = 10. The Péclet number is Pe = a ū/D = 30.0. Top right: wall concentration c(z,a,t) (solid line) and 
centerline concentration c(z,0,t) (dashed line) at time (ū/a)t = 10 shown against dimensionless distance z/a (the initial condition at t = 0 is indicated by the thick solid 
line). The location of the leading and rearward critical points at (ū/a)t = 10 are shown with filled circles. Bottom right: the trajectory of the downstream-moving critical 
point in the moving frame γ̂  for the threshold concentration σ = 10–4 (solid line) and σ = 10–4 (dashed line).

FIgURE 3 | The leading (solid lines) and rearward (dashed lines) critical 
points for the same conditions as in Figure 2 except that in the initial 
condition (10) c(z,r,0) is non-zero in the region 24a≤z≤25a, and the 
calculation was performed in a tube of length L/a = 50 with Nx = 1,600, 
Nr = 200, and (ū/a)dt = 0.005. Top: distances covered in the moving 
frame, with γ γ∗ = −ˆ / a 25  and γ γR R a∗ = −24 ˆ / . Bottom: Stationary frame 
values γ/a and γR/a.

FIgURE 4 | The dependence of the farthest upstream point reached by 
the rearward critical point, min(γR/a), on the Péclect number Pe = aū/D 
for otherwise the same conditions as in Figure 2 (with σ = 10–4). The initial 
condition is given in (10).
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value of the Péclet number in the xylem, which may be from several 
hundred down to about ten.

advection-Diffusion as the Transport 
Mechanism
The numerical computations of the preceding section have 
shown that, working in unison, the mechanisms of advection and 
diffusion are able to carry a chemical agent to points on the xylem 
wall downstream of the wound sites and thereby to trigger an 
electrical signal at distal locations. However, we have also noted 
that an excessively large diffusivity is needed to match theoretical 
VP transmission rates to experimentally observed values. Evans 
and Morris (2017) provided an explanation for this apparent 
mismatch by proposing a model based on flow within a leaky 
tube and achieved a reasonable fit with experimental data even 
with a realistically small value of the diffusivity. In the Appendix 
we provide a theoretical justification for their leaky tube model.

An alternative explanation is provided by noting that 
chemical transport by both advection and diffusion in a laminar 
flow may be substantially enhanced in the presence of shear. In 
the current model the presence of shear is indicated by the radial 
dependence of the fluid velocity (see Equation 1). Taylor (1953), 
and subsequently Aris (1956), showed that the effect of shear can 
yield an effective diffusivity which is considerably larger than 
that which obtains for the same chemical agent in a stationary 
fluid. Under certain conditions to be stated below, the Taylor-
Aris theory shows that the cross-sectional mean concentration, 
c cr r

a

( , ) ( / ) ,x t a= ∫2 2

0
d  satisfies the approximate equation

 c u c D ct x e xx+ = ,  (11)

where ū is the cross-sectional average of the velocity 
introduced earlier, and De is the effective diffusivity given by

 
D D u a

De = +
2 2

48
 (12)

(see, for example, Blyth and Morris (2018) for details of the 
derivation of this approximation). Bailey and Gogarty (1962) 
showed that in practice the approximation is good for t greater 
than about 0.5tD, where the radial diffusion time tD = a2/D. 
Formally the approximation is valid for a long tube, δ ≪ 1, 

provided that t ≫ tD and δ Pe ≪ 1, where δ = a/L is the tube 
slenderness parameter and Pe = ūa/D is the Péclet number. The 
latter two conditions stipulate that sufficient time has elapsed for 
the initial chemical deposit to have diffused a distance equal to 
one tube radius so that the concentration in a tube cross-section 
is almost everywhere equal to its cross-sectional mean value, and 
that the time taken for this cross-sectional evening-out to occur 
is much shorter than the timescale over which noticeable effects 
due to advection are observed.

To investigate whether these conditions hold in the present 
case, using typical parameter values from the literature (see 
Table 1), we take D = 10-6 cm2 s-1 and a≈30 μm to compute tD = 
9.0 s. With ū≈0.17 cm s-1, we find that the theory should be valid 
after the chemical has been carried a distance of approximately 
0.5 ūtD = 0.77 cm. This is certainly much shorter than the distances 
travelled in the experiments of Vodeneev et al. (2012) which are 
on the order of about 10 cm. Furthermore, the tracheary vessels in 
the xylem are long and thin and so it is reasonable to assume that 
δ is small. Taking L = 10 cm we compute δ = 3 × 10–4 and δPe = 
0.15. We can therefore reasonably expect the aforementioned 
conditions on the theory to be fulfilled.

A central point of fundamental importance to the current 
work is that, according to (12), small values of the diffusivity D 
can lead to substantially larger values of the effective diffusivity 
De. Taking the average of the velocity component (1) over the tube 
cross-section we find u ru r Ga

a

= =∫( / ) / ( )2 82 2

0
a d µ . Since the 

effective advection speed, ū, in (11) is constant, we may invoke 

formula (7) for the location of the leading critical point at which 
the wall concentration w attains the threshold value σ given a total 
chemical mass C (see Equation 6). This gives

 
γ = + −















ut D te e4 1

2
4

1 2

log( / ) log( )
/

C D tσ π  (13)

The rate of propagation of this critical point, namely γt, and hence 
the rate of propagation of the VP is of particular interest. For 
small time γt ≈ (De/2)1/2(–logt)1/2/t1/2 so that, formally, γt→ ∞ as 
t→0. In practice, therefore, we would expect the movement of the 
critical point, and hence the VP, to be very rapid in the very early 
stages. The speed γt decreases monotonically for t > 0 and will 
continue to slow down as time progresses. Therefore, according 
to this model, the VP propagation speed would continually 
decrease in line with the established consensus [e.g. Fromm and 
Lautner (2007)]. Furthermore, if we assume a link between the 
local wall concentration of the chemical and the strength of the 
electrical signal which is triggered (Sukhov et al., 2013), so that a 
stronger concentration implies a stronger signal, then we would 
also expect a reduction in the magnitude of the electrical signal 
which is also in line with prevailing theory.

To demonstrate consistency of the Taylor-Aris theory with 
physical observations, in Figure 5 we show a comparison 
between the prediction (13) and the experimental data of 
Vodeneev et al. (2012). The physical parameters used to compute 
the theoretical prediction (shown as a solid line in the figure) are 
given in the figure caption. They all lie in the respective expected 

TaBlE 1 | Physical parameter values taken from the literature. The xylem radii 
quoted from Zwieniecki et al. (2001) and Malone (1996) are for one-year old ash 
branches and a tomato petiole, respectively.

Parameter Units Value (Reference)

ū cm s-1 0.17 (Choi et al., 2016; Evans and Morris, 2017); 
0.1 (Choi et al., 2016)

D cm2 s-1 10-6 (Levich, 1962; Evans and Morris, 2017); 10-5 
(Levich, 1962)

σ/C cm-1 10–4 (Vodeneev et al., 2012); 10–3 (Evans and 
Morris, 2017)

a μm 30–60 (Zwieniecki et al., 2001); 12 (Malone, 1996)
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physical ranges (see, for example, Table 1) and were chosen to 
provide a best fit with the experimental data. Specifically, the 
solid line corresponds to formula (13) with the parameters set as 
given and t replaced by t = 0.8tD (so that the transport according 
to (11) is taken to effectively start at t = 0.8tD with a total mass 
of chemical equal to that at t = 0). Accordingly the solid line 
in Figure 5 starts at a point in time at which the Taylor-Aris 
approximation is expected to be valid.

It is important to point out that whilst Evans and Morris (2017) 
suggested advection and diffusion as a transport mechanism, 
their approximation excludes the possibility of shear-enhanced 
dispersion. This can be seen by noting that their one-dimensional 
transport equation, namely ct + Ucx = Dcxx includes a constant rate 
of advection which may be removed via a Galilean transformation. 
This effectively reduces it to the diffusion equation in a frame of 
reference travelling at constant speed U. The spatial dependence of 
the advection is crucial to shear-enhanced transport.

DISCUSSION
We have examined the hypothesis that the propagation of a VP is 
made possible by the transport of a chemical agent through the 
xylem. We have discussed the individual roles of advection and 
diffusion for this process and reinforced the shortcomings of each 
as standalone candidate mechanisms for explaining the propagation 
of VPs. We have discussed the enhanced diffusion afforded by the 
combined action of advection and diffusion via Taylor-Aris theory. 
Our discussion has been based on the assumption that an electrical 
signal (secondary signal) is initiated via the activation of ion 
channels at the plasma membrane of xylem contact cells adjacent 
to the xylem. The activation is triggered when the local xylem wall 
concentration of a chemical agent or wound substance (primary 
signal) produced at the site of injury or stimulus exceeds a threshold 

level. For advection alone, the wall concentration of wound 
substance downstream or upstream of the wound site is precisely 
zero, so that the threshold can never be exceeded. Given typical 
diffusivities of small molecules, diffusion alone cannot account 
for the propagation rates observed in experiments. Here we have 
demonstrated that for realistic parameter values the predictions 
based on transport via advection-diffusion are consistent with 
available experimental data.

The nature of the chemical agent remains unknown. 
Reactive oxygen species (ROS) have been suggested as potential 
wounding substances that could propagate VPs (Vodeneev et al., 
2015). ROS responses have been observed for several different 
stresses (Waszczak et al., 2018) and have been linked to electrical 
signaling (Gilroy et al., 2016). Intercellular lifetimes for ROS vary 
from nanoseconds to seconds, depending on the ROS species 
and the availability of ROS scavengers (Waszczak et al., 2018). 
Although these values may vary significantly in the xylem, ROS 
stability will make long-distance diffusion or transport unlikely. 
Yet, ROS are known to be involved in long-distance signaling 
(Gilroy et al., 2016), with ROS-induced ROS release emerging as 
an important propagation mechanism (Zandalinas and Mittler, 
2018), often coupled with calcium waves (Evans et al., 2016) and 
electrical signals (Choi et al., 2016; Gilroy et al., 2016; Sukhov 
et al., 2019). According to these models, ROS propagates by 
an active, self-propagating mechanism. Whilst evidence from 
several treatments that block VP transmission by metabolically 
inhibiting cells argues against self-propagation as the main 
mechanism (Vodeneev et al., 2015), it is possible the active 
release of wound substance may contribute for certain stimuli 
(Vodeneev et al., 2018).

Recent observations for wounding and herbivory provide 
evidence for GLUTAMATE RECEPTOR-LIKE (GLR) genes 
as candidates for the hypothetical ion channel in our model. 
Furthermore, this indicates that the transport of glutamate 
through the vasculature may be responsible for long distance 
signal transmission and the initiation of wound-induced calcium 
waves (Nguyen et al., 2018; Toyota et al., 2018). Associated 
calcium-permeable channels, formed by GLR genes, have been 
localized to the phloem (Toyota et al., 2018) and to xylem and 
phloem (Nguyen et al., 2018). The localization of GLR genes 
with a demonstrated role in VPs suggests that both phloem 
and xylem cells participate in the electrical signal generation 
associated with VPs. Interestingly, this observation coupled with 
experiments using single and double glutamate receptor mutants 
led to the conclusion that a xylem stream transported Ricca 
factor is untenable for leaf to leaf VP transmission in Arabidopsis 
(Nguyen et al., 2018). Further work will be required to determine 
exactly which genes influence primary and secondary signal 
propagation and whether the mechanisms discussed here also 
trigger such wound-induced calcium waves. If so, this would 
suggest glutamate as a prime candidate for the Ricca factor 
(Ricca, 1916).

Although Taylor-Aris dispersion offers an explanation 
for the propagation of VPs, the causation for the underlying 
advection remains unclear. Plausible mechanisms might 
include the mass flow induced by ruptured cells at the wound 
site (Malone, 1993). Consistent with this is the result reported 

FIgURE 5 | Comparison of the Taylor-Aris theory (solid line) with the 
experimental data of Vodeneev et al. (2012) (broken line; data points are 
circles). The physical parameters used for the theory are a = 60 μm, ū = 
0.12 cm s-1, D = 0.25 × 10-5 cm2 s-1,and σ/C = 0.0001 cm-1. In this case the 
effective diffusivity according to (12) is De = 0.0043 cm2 s-1.
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by Vodeneev et al. (2012) that the propagation of radioactive 
sucrose in a leaf tip was substantially increased by wounding, 
although Vodeneev et al. attributed the faster propagation to 
an enhanced diffusion coefficient resulting from turbulent 
flow. We note that whilst Evans and Morris, (2017) suggest 
that turbulent flow seems highly unlikely based on the 
estimated Reynolds number of 5 × 10-2, the enhanced diffusion 
postulated by Vodeneev et al. (2012) may be a consequence of 
Taylor-Aris dispersion as demonstrated here. Although it is 
important to note that Taylor-Aris dispersion is very different 
mechanism. Other possibilities for advection include an 
osmotic pressure difference established in the presence of a 
chemical gradient, or mass flow induced by the passage of 
a pressure wave through the vasculature with its origin at 
the wound site. Further investigations, both experimental 
and theoretical, are required to untangle the details of VP 
transmission. In particular, exciting recent experimental 
evidence (Nguyen et al., 2018; Toyota et al. 2018) suggests a 
link between VPs and potentially self-propagating calcium 
signals via GLRs in both phloem and xylem and motivating 
a more holistic modeling approach that includes signal 
transmission and electrical signal generation (Vodeneev 
et al., 2018). It is possible that quite different characteristics 

of self-propagating VP signals may be observed for different 
stimuli and different tissues, for example, a roughly constant 
self-propagating signal velocity rather than one that decreases 
appreciably with distance (Vodeneev et al., 2018). Vodeneev 
et al. (2018) constructed a mathematical model to explain 
this that includes active production of the wound substance. 
The model presented in the present work can be extended to 
include the effect of active production, and this is left as an 
avenue for future investigation.
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aPPENDIX: lEaKY TUBE MODEl
In this appendix we discuss the condition under which the leaky 
tube calculation carried out by Evans and Morris (2017) is valid. 
Assuming that the Reynolds number in the xylem is small, the 
fluid flow is governed by the Stokes equations, which we write in 
the form [e.g. Blyth and Morris (2018)]
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where ( , ) ( / )( , ) u a G u vv = µ 2  are the scaled velocity components 
in the axial and radial directions respectively, p = ( / )δ 2 LG p  is 
the scaled pressure, and X = x/L and R = r/a. Here L is a suitable 
axial length scale (for example, the length of the xylem), a is the 
xylem radius, δ = a/L, and μ, G are the dynamic viscosity of the 
fluid and the pressure gradient driving the flow, respectively. The 
leakage through the xylem wall is modeled by assuming that the 
radial velocity at the wall is related to the pressure difference 
across the wall via Starling’s law,

 

u( ) ( ),R P p= = −1 2
0δk  (15)

where P p= =( )R 1 , p0 is the (scaled) pressure outside the xylem, 
and k2 is a constant related to the permeability of the wall. We 
note that in this model the local pressure affects the transport of 
the chemical directly via condition (15).

Proceeding on the basis that δ is small, so that there is only 
a weak rate of fluid loss through the wall, we deduce from 

the second equation in (14) that  p p X= ( )  to leading order 
approximation. Ignoring contributions of O(δ2) and integrating 
the first equation in (14) twice with respect to R, we obtain

 


u pX= − −1
4

1 2( ),R
 (16)

where we have assumed no slip at the xylem wall. On integrating 
the third equation in (14) we find that the boundary condition 
(15) is satisfied only if the pressure takes the form

  

p p k u kX(X) ,= + − −
0

1
00

22 e  (17)

where ũ00 = ũ (R = 0, X = 0). Restoring the variable dimensions, 
it follows from (16), (17) that the axial velocity component at the 
tube axis is

 u x a( ) ,/r u= = −0 00
2e β

 (18)

where β = δk and u00 is the axial velocity component on the axis 
at the tube entrance x = 0. Equation (18) is the form adopted by 
Evans and Morris (2017) (for comparison purposes, note that u00 
is twice the cross- sectional average axial velocity at x = 0).

Evans and Morris adopted a one-dimensional viewpoint for 
the chemical transport, working with the advection-diffusion 
equation (2) with u replaced by (18). In this case the solution 
given by these authors (and also given here by equation (6) with 
U replaced by (18) is valid to leading order approximation in β. 
We conclude that the leaky tube calculation performed by Evans 
and Morris is valid as a first approximation provided that β is 
taken to be sufficiently small. In fact Evans and Morris (2017) 
used the small value β = 0.038 to obtain their fit.
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