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Abstract 

Many studies have demonstrated that we can identify a familiar face on an image much 

better than an unfamiliar one, especially when various degradations or changes (e. g. image 

distortions or blurring, new illuminations) have been applied, but few have asked how 

different types of facial information from familiar faces are stored in memory. Here we 

investigated how well we remember personally familiar faces in terms of their identity, 

gender, and race. In three experiments, based on the faces personally familiar to our 

participants, we created sets of face morphs that parametrically varied the faces in terms of 

identity, sex or race, using a 3-dimensional morphable face model. For each familiar face, we 

presented those face morphs together with the original face and asked participants to pick 

the correct “real” face among morph distracters in each set. They were instructed to pick the 

face that most closely resembled their memory of that familiar person. We found that 

participants excelled in retrieving the correct familiar faces among the distracters when the 

faces were manipulated in terms of their idiosyncratic features (their identity information), 

but they were less sensitive to changes that occurred along the gender and race continuum. 

Image similarity analyses indicate that the observed difference cannot be attributed to 

different levels of image similarity between manipulations. These findings demonstrate that 

idiosyncratic and categorical face information is represented differently in memory, even for 

the faces of people we are very familiar with. Implications to current models of face 

recognition are discussed. 
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Introduction 

Many studies have demonstrated that we recognizes familiar and unfamiliar faces 

differently (Armann, Jenkins, & Burton, 2016; Bruce, 1982; Burton, Wilson, Cowan, & Bruce, 

1999; Megreya & Burton, 2006; Ramon & Van Belle, 2016). Recognition of familiar faces is 

very robust. We can easily recognize a familiar face, even after 20 years or despite dramatic 

appearance changes such as added glasses, moustache, or new hair color (Bahrick, Bahrick, 

& Wittlinger, 1975; Russell, Duchaine, & Nakayama, 2009). We can also recognize familiar 

famous faces even when facial images are severely distorted (Harmon, 1973; Sinha, Balas, 

Ostrovsky, & Russell, 2006; Yip & Sinha, 2002). In contrast,  we are usually bad at pairing an 

unfamiliar face to another picture of the same face, even when they are shown under very 

similar viewing conditions (Bruce et al., 1999; Hancock, Bruce, & Burton, 2010; Megreya & 

Burton, 2006; Young & Burton, 2018). This is true even for professionals who have been 

working on recognizing faces for years (e.g., passport officers, White, Kemp, Jenkins, 

Matheson, & Burton, 2014). Recent studies suggest that for unfamiliar faces, machine vision 

systems even perform better than humans do (Dehon, Bredart, & Brédart, 2001; Phillips et 

al., 2007; Schroff, Kalenichenko, & Philbin, 2015; Taigman, Yang, Ranzato, & Wolf, 2014). 

Differences between the processing of familiar and unfamiliar faces not only 

manifest in how well people can recognize them, but also lie in different features that people 

use for encoding and recognizing faces. For instance, it has been shown that people use 

primarily the inner facial features for recognizing familiar faces, whereas for recognizing 

unfamiliar faces they pay additional attention to extra-facial information like hairdo, glasses 

or beards (Ellis, Shepherd, & Davies, 1979; Hancock et al., 2010; Johnston & Edmonds, 2009; 

Osborne & Stevenage, 2008). The reliance of more superficial, pictorial features for 

recognizing unfamiliar than familiar faces sometimes can be an advantage for unfamiliar 



Memory of personally familiar faces 
 

4 
 

face processing.  For example, people are better at remembering specific images of 

unfamiliar faces than familiar faces (Armann, Jenkins, & Burton, 2016; Ramon & Van Belle, 

2016; but see  Dunn, Ritchie, Kemp, & White, 2019). Note that when facial features are 

altered by displacing them or by stretching the face images, people are not always better at 

detecting or correcting these changes in familiar faces than in unfamiliar faces(Burton, 

Schweinberger, Jenkins, & Kaufmann, 2015; Ramon & Van Belle, 2016; Sandford & Burton, 

2014). 

Familiar and unfamiliar faces are also processed differently in the brain (Gobbini & 

Haxby, 2006; Natu & O’Toole, 2011, 2015; Ramon, Vizioli, Liu-Shuang, & Rossion, 2015; 

Visconti Di Oleggio Castello, Halchenko, Guntupalli, Gors, & Gobbini, 2017). Recent studies 

found that core face-selective brain areas—the fusiform face area (FFA) and the occipital face 

area (OFA)—show different patterns of neural responses to familiar and unfamiliar faces, 

both temporally and spatially (Natu & O’Toole, 2015). Subcortical areas, such as the 

amygdala, also respond differently to familiar and unfamiliar faces (Ramon et al., 2015, see 

also Platek & Kemp, 2009). The hippocampus also tends to show stronger neural responses 

to familiar than unfamiliar faces (e.g., (Leveroni et al., 2000; Ramon et al., 2015). These 

results indicate that familiarity with faces changes face representation in both the core and 

the extended brain networks related to face processing.  

Although there is a general consensus that people process familiar and familiar faces 

differently (e.g. Bruce, 1982; Burton et al., 1999; Megreya & Burton, 2006; Young & Burton, 

2018), how familiar faces are represented in memory remains unsettled. For instance, some 

studies have argued that the idiosyncratic features of familiar faces are exaggerated in 

memory (P. P. W. Chang, Levine, & Benson, 2002; Gillian Rhodes, Brennan, & Carey, 1987). 

These studies showed that children and adults tend to select caricaturized face images (i.e., 
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augmenting identity-specific features) as the best likeness of familiar persons’ faces.  In 

contrast, other studies indicated that these identity-diagnostic features are weakened in the 

representation of familiar faces (Allen, Brady, & Tredoux, 2009; Benson & Perrett, 1991, 1994; 

Frowd, Bruce, Ross, McIntyre, & Hancock, 2007; Kaufmann & Schweinberger, 2008).  This 

line of studies often found that people rate the anti-caricatures (i.e., faces with their 

idiosyncratic features transformed toward an average appearance) of familiar faces as their 

best likeness.  Finally, there is also research suggesting that familiar faces are represented in 

a relatively veridical way (Lee & Perrett, 2000; Srismith, Zhao, & Bülthoff, 2016) with  

participants giving the original faces the highest rating in terms of best likeness. Such 

discrepant results about the representation of familiar faces may be partially due to 

methodological differences [e.g., (anti-)caricaturization was applied to line drawings, 2D 

photographs, or 3D facial shapes; different ranges/extents of (anti-)caricaturization, etc.] and 

partially due to different ways of defining familiar faces (e.g., famous faces vs. personally 

familiar faces).  

In contrast to extensive research on how identities of familiar faces are represented in 

memory, little is known about how we represent categorical information of familiar faces 

(i.e., information that is not specific to an identity, such as race, gender, or age). 

Independently of how familiar they are to the observers, faces can be classified into general 

categories based, for example, on their unchanging characteristics (gender and race 

appearance) or their changing characteristic (age, expression). Such categorical facial 

information is often integrated with the identity information (Zhao & Hayward, 2013) and 

can be automatically and incidentally acquired during identity learning. Previous studies 

have suggested that faces are also represented along those categorical characteristics 

(Armann, Jeffery, Calder, & Rhodes, 2011; Jaquet, Rhodes, & Hayward, 2008; Rhodes et al., 
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2011), however, whether the representation of categorical information differs between 

familiar and unfamiliar faces, and, if yes, in which manner, remains unaddressed. 

Recently, Dobs, Isik, Pantazis, and Kanwisher (Dobs, Isik, Pantazis, & Kanwisher, 

2019) have shown that familiarity with faces enhances the representation of gender and 

identity, but not the age of faces. Moreover, they found that the enhanced representation of 

gender and identity even occur at an early stage, that is before gender and identity 

information being extracted. Such a finding may help revealing the mechanism underlying 

faster gender categorization for familiar than unfamiliar faces (e.g., Rossion, 2002) and, 

when searching for a target face, why slower rejection of same-gender than different-gender 

foil faces (Baudouin & Tiberghien, 2002) occurs. Nonetheless, representational similarity 

analysis of Dobs and colleagues (Dobs et al., 2019) on MEG responses to faces cannot tell in 

which way the representation of gender and identity of familiar faces is enhanced (e.g., does 

an enhanced gender representation mean that a male face is represented as more masculine 

than it is really or as a more accurate representation of its gender along the feminine-

masculine continuum?). In addition, it remains unspecified whether familiarity enhances 

similarly the representation of identity and gender.  

In the present study, we investigated how information about familiar faces is kept in 

memory, and, more specifically, how well people store idiosyncratic (e.g., identity) and 

categorical (e.g., gender and race) information of very familiar faces in memory. While 

identity information refers to diagnostic information related to a single specific person, 

gender and race are prominent categories shared by different identities. We concentrated on 

those aspects, as they represent natural characteristics that we use most commonly to 

describe or classify faces. We tested both identity and gender (or race) memory to obtain 

comparable assessments of how a familiar person’s face is represented in memory. 
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Therefore, our findings may not only help reconcile previous discrepant results about 

familiar identity representation, but also address the long overlooked question of whether 

idiosyncratic and categorical information of familiar faces are similarly well represented in 

memory.  

We focused our study on personally familiar faces. While unfamiliar faces can be 

simply defined as faces that people have not seen before, familiar faces often refer to 

different types of faces in the literature (Natu & O’Toole, 2011; see also Gobbini & Haxby, 

2007). In some earlier studies familiarization was based on learning one single image per 

face (e. g. Bülthoff & Newell, 2004), whereas in more recent studies visually familiar faces 

were obtained by asking participants to learn several different pictures of a person (e. g. 

Bonner, Burton, & Bruce, 2003). While the newly acquired visual familiarity with faces can 

be well controlled, it does not resemble well how we usually get familiar with faces in daily 

life (Burton, 2013). Famous faces have been frequently used as familiar faces in the literature 

(Harmon, 1973; Sinha et al., 2006; Yip & Sinha, 2002). These faces often belong to well-known 

actors or politicians, thus participants have, prior to the experiment, already gathered some 

personal and visual information about them in addition to their pictures used in the lab. In 

comparison with famous faces, we have more interactions with personally familiar faces (e.g., 

family members, friends, and colleagues). In this study we used personally familiar faces 

because they represent the highest level of familiarity participants can achieve with other 

persons’ faces (Taylor et al., 2009). Furthermore they are the faces that people remember 

best, which allows us to test very precisely how identity and categorical facial information is 

represented in memory.   

To directly demonstrate how idiosyncratic and categorical information of familiar 

faces are represented in memory, we adopted the classical “line-up” paradigm (e. g. Bruce et 
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al., 1999; Hancock et al., 2000; Megreya & Burton, 2006) with newly created line-up face sets. 

In the classical paradigm, mostly unfamiliar target faces were presented in a line-up in which 

distracters are faces from other identities. Participants’ task was to choose the face with the 

correct identity in the line-up. With this paradigm, these studies demonstrated how difficult 

recognition of unfamiliar faces is.  

In the present study, participants also had to find out the correct face in a line-up, but there 

were three important differences from the classical paradigm. First, our participants were all 

personally familiar with the persons whose faces we used. Second, instead of matching two 

images (a learned image and a different test image of the same person), participants’ task 

was to find one face in the line-up that best matched their memory of a very familiar face. 

Third, each line-up consisted of faces that were variations around one identity, rather than 

faces of completely different identities. More specifically, the distractors in the line-up trials 

were created by parametrically modifying each familiar face along the natural perceptual 

dimensions of gender, race or identity. Therefore, our modified line-up task not only 

required participants to make a binary decision about whether or not a face image depicts a 

familiar person’s face, but also asks for their fine-grained judgment about how well each 

face image in a set represents the familiar face. By looking at how often different face 

variations were chosen as the best match to their memory of familiar faces, we would be able 

to directly demonstrate how a familiar face stored in memory may look like, and how 

precise each dimension of familiar faces—identity, gender and race—is represented in 

memory.   
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General methods 

Stimuli 

Our face stimuli were derived from original faces using the multidimensional face 

space framework (Valentine, 1991). According to this framework, each face is represented as 

a point in a multidimensional space, with dimensions referring to specific characteristics 

along which faces may vary. The average of all faces is situated in the center of the face 

space (Figure 1a), and each face is coded in relation to the average face in this space 

(Leopold, Bondar, & Giese, 2006; Leopold, O’Toole, Vetter, & Blanz, 2001). 

We used two ways to manipulate the idiosyncratic properties of faces: morphing 

between identities and (anti)caricaturizing faces.  Figure 1a depicts a schematic illustration 

of these two manipulations in a simplified 2-dimensional face space.  For morphing identity 

between two faces (here between face B and face C or between face B and face D), we used 

the vectors connecting these faces in face space. Every aspect that differs between B and C or 

B and D (e.g., shape of the nose, color of the skin, distance between the eyes, etc.) changes 

gradually along the vector, so that face morphs approaching one face display increasing 

similarity to that face identity and decreasing similarity to the other face. Similarly, we can 

create (anti)caricaturized face morphs by using the vector connecting the original face (e.g., 

face A in Figure 1a) and the average face (Jiang, Blanz, & O’Toole, 2007; Leopold et al., 2001). 

The more a face morph is located near the average face, the less its idiosyncratic properties 

(all aspects of a face that differ from the average face) are preserved (i.e., anti-

caricaturization). Conversely, the further away a face morph is from the average face, the 

more the idiosyncratic properties of the original are amplified (i.e., caricaturization). 

Figure 1b illustrates how we manipulated the categorical information of faces (e.g., 

gender or race). Here the gender vector connects the average of all male faces and the 
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average of all female faces; such a vector defines how the appearance of a face changes 

when its gender is manipulated. This gender vector can be applied in full or in part to any 

face to modify it (Bülthoff & Newell, 2004). Note that it allows us not only to make a male 

face more feminine, or a female face more masculine, but it can also be used to masculinize 

a male face or to make a female face more feminine. We manipulated the race of a face in the 

same manner, using a race vector connecting the average Asian and Caucasian faces.    

 

Figure 1. Schematic illustration of stimuli creation.  (a) A norm-based face space with 
examples of caricature and identity morphs. Faces are represented as black dots and the  
axes represent two exemplar dimensions of the space. The average of all faces is located at 
the center. The gray dashed line represents the axis of caricaturization for face A, with the 
pointing-up triangle representing an anti-caricature and the pointing-down triangle a 
caricature of face A. The solid lines between faces B, C and D represent axes of identity 
morphs with the 50% morph level located at the middle of each axis. (b) Representation of 
the gender dimension (black arrow) in face space. The vertical dashed line represents the 
gender boundary between female and male faces. The empty dots represent the average of 
all male and all female faces, and the line connecting them defines the gender vector. Stars 
are exemplar gender morphs of the male face C obtained by applying the gender vector. 
They are more male or female looking than the original face. 
 

Our stimuli were generated using three-dimensional laser scans of our colleagues at 

the Max Planck Institute for Biological Cybernetics.  A description of the scanning method 

has been given in previous studies (Blanz & Vetter, 1999; Bülthoff & Newell, 2004; O’Toole, 

Vetter, Volz, & Salter, 1997; Troje & Bülthoff, 1996).  For each of these scanned faces (i.e., 
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target face), we created different sets of face stimuli: identity set, caricature set, gender set, 

and race set (see details and examples below).  Each face set consisted of 11 faces (one target 

and ten morph images as distracters). The target was always in the center of the morph 

sequence (see below). We used the 3D morphable model to generate variations of the target 

faces by gradually manipulating either their identity, gender, or race appearance (Blanz & 

Vetter, 1999; Troje & Bülthoff, 1996; http://faces.kyb.tuebingen.mpg.de; see also O’Toole et 

al., 1997). This model allows to change the identity, gender, or race of faces by modifying 

both shape and texture information simultaneously. We name original or target faces, the 

images derived from the laser scans without any manipulations; there is one original face per 

identity. The others images are all obtained with manipulations along one of the four 

dimensions are called distracters or morphs.  

Identity sets.  Each target was morphed with two unfamiliar faces in 10% increments, 

up to 50%; so that the endpoint faces were a mixture of half target face and half-unfamiliar 

face (i.e., located midway between the target identity and one of the two unfamiliar face 

identities in face space; Figure 1a and Figure 2a). Except for two faces used twice, all other 

unfamiliar faces were used once. Those unfamiliar faces were of the same gender, had a 

similar age, and were visually similar to the target face they were paired with. 
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Figure 2.  Examples of face stimuli used in Experiment 1a. We show only 7 of the 11 face 
morphs of each set. (a) Identity set; 50% morphs are halfway between the target and an 
unfamiliar face. (b) Caricature set; 50% anti-caricatures are halfway between the target and 
the male average face, 50% caricatures are at the same computational distance from the 
original face. (c) Gender set, 50% feminized morphs are halfway between the target and their 
female corresponding faces; 50% masculinized morphs are at the same computational 
distance from the target. The morph percentages refer to how much each morph differs 
computationally from the original face (target) along different dimensions. 
 

Caricatures sets. Each original face was morphed toward the average face to create 

anti-caricature morphs and was morphed away from the average face to create caricatures. 

Specifically, we first calculated the shape and texture differences between the target face and 

the average face. We then reduced these differences in steps of 10%, up to 50%, to create anti-

caricatures and amplified them the same way to create caricatures (see Figure 1a and Figure 

2b). We used the average of male or female faces for male and female target faces, 

respectively.  
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Gender sets. The gender sets were created by varying  the facial masculinity/ 

femininity (Bülthoff & Newell, 2004). We first defined the gender vector as the differences 

between average male and female faces. This vector specifies how the shape and texture 

values at each vertex of a scanned face vary when the gender is modified. We then applied 

this vector to each face (male or female) in steps of 10%, up to 50%, to create increasingly 

more male and female looking face morphs (Figure 1b and Figure 2c).  

Race sets. The race sets were created in the same way as the gender sets. We first 

defined a race vector as the difference between averaged Asian and Caucasian faces. We 

then used the race vector to modify the racial appearance of each original face in 10 percent 

steps up to 50 percent, making five morphs that look more Asian and five more Caucasian 

than the original face (Figure 7d, e, f).  

Test trial.  All target and morph images were presented in color and turned 20 

degrees to allow a better view of the shape of the nose and jaw.  Each trial depicted all 11 

images of one set derived from one target face and varied in only one dimension (e.g., 

identity, race, caricature or gender).  The 11 face images were randomly arranged on a 4 by 3 

numbered grids (Figure 3). The grid number 8 was always used for numbering the trials. 

The alignment of the faces within each grid was jittered to hinder participants in using 

simple heuristics like comparing face sizes. 
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Figure 3 Example of a test trial for an identity set. The target is face 3; faces 6 and 1 differ 
most (i.e., 50%) from the target. The large number 4 refers to trial number. 
 

Design and Procedure 
We ran four experiments over several years with our colleagues at the Max Planck 

Institute for Biological Cybernetics. Participants completed the experiment as a group in a 

lecture hall. Trials in each experiment were blocked by facial manipulations (e.g. gender or 

identity), but participants were not informed about this. The order of blocks and trials were 

fixed as all participants performed the test together. Each trial was shown only once.   

Before the experiment, all participants were given a response sheet to fill in their 

responses. The trial numbers with the corresponding names of the original faces were 

printed on the response sheet. For each trial, participants were required to write down 

which face they believed to be the original face of their colleagues, and to guess if they were 

not sure. They also indicated how familiar they were with the person by ticking one of 
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three possible choices (I know him/her very well; I know who the person is; I don’t know 

him/her). Participants did not need to enter any answer for faces they did not know or their 

answers were excluded from analysis.  

All trials were displayed on the projection screen of a lecture hall using a PowerPoint 

presentation. Participants seated at various distances from the screen ranging between 4 and 

8 m. The width of each face image was about 40 cm. Each trial was shown for 25s followed 

by a blank screen, during which participants entered their answers. Participation was 

voluntary and fun.  

Experiment 1a: Memory of identity and masculinity of familiar male faces  

To investigate how well people represent very familiar faces in memory, we tested 

participants’ recognition performance on identifying personally familiar faces (i.e., faces of 

their colleagues) among finely modified distracter faces. These distracters were created  by 

morphing the target faces along different dimensions1 in a multidimensional face space 

(Valentine, 1991, see Figure 1): identity, caricature, and gender. The identity morphs are also 

called oblique or lateral caricatures (Rhodes & Tremewan, 1994) because, compared to 

morphs created by caricaturing, they are located along a trajectory that does not pass 

through the norm (i.e., the centre of the face space). Both the identity and the caricature 

morphs modifies the idiosyncratic information of a face (Lewis & Johnston, 1998; Rhodes, 

1996; Rhodes, Hickford, & Jeffery, 2000; Rhodes & Tremewan, 1994), whereas 

enhancing/weakening the femininity/masculinity modifies categorical information of facial 

gender (see Armann & Bülthoff, 2009; Bülthoff & Newell, 2004). 

                                                 
1 This is a simplified view, we are aware that gender and race are semantic concepts that are underlined by 
multiple dimensions. 
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In Experiment 1a, we tested memory of identity and masculinity for personally 

familiar male faces.  We created identity set, caricatures set, and gender set based on 3D face 

scans of ten male colleagues, resulting in three test trials for each target face and 30 trials in 

total (see Figure 2 for examples). Thirty-eight colleagues (4 female) volunteered to 

participate in Experiment 1a. They first completed the identity sets, then the caricature sets 

and lastly the gender sets.  

Results 
 
For 1140 trials across all participants and all face sets, there were 105 non-responses (9.2%; 

37, 33, and 35 non-responses for the identity, caricature, and gender sets respectively). For 

each face manipulation, we calculated how often (in percentage) each morph level was 

chosen as the target person and tested whether the response differed from chance level (i.e., 

1/11) using a Bonferroni-corrected one-sample t-test (i.e., α = .005). The results are shown in 

Figure 4 (left column). 

Identity sets 

When target identity was morphed toward unfamiliar face identities, participants chose the 

target faces more often than any face morphs (Figure 4a). The more a morph was close to an 

unfamiliar face, the less it was selected as the target person, resulting in a symmetrical choice 

distribution peaked at the target face. Consistent with this observation, one-sample t-tests 

revealed that the target and its closest neighbours (10%) were chosen significantly more 

often than the chance level (chance level: 1/11; ts(37) > 5.21, ps ≤ .001), whereas the 3 most 

extreme morph levels on each side were chosen significantly under chance level (ts(37) > 

4.91, p < .001). These results indicate that participants form an accurate identity 
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representation of personally familiar faces and are sensitive to identity changes when 

familiar faces are morphed with unfamiliar faces.  

 

 

Figure 4. Results of Experiment 1a and 1b. Mean frequency of choices to male (left column) 
and female (right column) faces plotted as a function of morph level. Top row (a, d) shows 
responses to identity sets, identities C and D refer to two unfamiliar faces used to create the 
morph, which are corresponding to the labels in Figure 1a. Middle row (b, e) shows 
responses to caricature sets. Bottom row (c, f) shows response to gender sets. Asterisks 
indicate that the responses to the specific morph levels differed significantly from chance 
level (dashed line). Curved solid lines represent best Gaussian distribution fit. 
 

 

Caricature sets 

When caricatures and anti-caricatures were placed as distracters alongside the targets, 

participants showed a skewed pattern of response distribution that peaked at the 20% anti-

caricatures. Further, participants were biased to choose more often anti-caricatures than 
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caricatures (Figure 4b). One-sample t-tests revealed that the 20% and 10% anti-caricature 

levels, but not the targets, were chosen significantly more often than chance (ts(37) > 4.33, ps 

< .001).  Responses at the 50% anti-caricature and the three most extreme caricature levels 

were significantly under chance level (ts(37) > 8.45, ps < .001). These results show that the 

representation of familiar face identity is shifted toward the average faces, and that 

participants are similarly sensitive to the changes of identity strength (as suggested by the 

peaked distribution of responses).  

Gender sets 

When the gender of the faces was manipulated, participant showed no significant 

preference to select any face as the target person, though they showed a slight bias to choose 

masculine faces over feminine faces (Figure 4c). One-sample t-tests revealed that response 

choices were not different from chance except for the most feminine level (50%, t(37) = 4.03, p 

< .001).  These results indicate that participants may not form an accurate representation of 

facial gender, and are therefore not very sensitive to the manipulation of face gender, even 

for personally familiar faces.  

Comparison of the response patterns for identity, caricature, and gender sets 

To compare patterns of response across the three face manipulations, we performed 

three tests. Firstly, we tested whether the distribution of responses was uniform or not. 

Secondly, we tested whether there was a robust peak response. A robust peak was defined as 

a morph level that received more choices than both the averaged choices for all the morphs 

on its left and right sides. Lastly, we tested whether responses were skewed toward one side 

of morph continuum over the other. The results are summarized in Table 1.  
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Table 1 Summary of the analyses of all three experiments  

 
 

Experiment 1a: Male faces Experiment 1b: Female faces 
Manipulation Identity Caricature Sex Identity Caricature Sex 

Chi square: 
unequal 

distribution 
Yes  Yes No Yes Yes Yes 

T tests: robust 
peak 

(location) 

Yes  
(target) 

Yes 
 (anti-

caricature) 
No 

Yes  
(both 

flanking 
morphs) 

Yes 
 (anti-

caricature) 

Yes  
(feminine) 

T test: Biased 
choice 

distribution 
No No No No 

Yes,  
toward 

anti-
caricature  

Yes,  
toward 

same sex  

 

 
 

Experiment 
2: Inverted 
faces  

Experiment 3: Identity and race 

Manipulation Identity Identity* 
Race 
male 

Race 
female 

Race Asian 

Chi square: 
unequal 

distribution 
No Yes No Yes No 

T tests: robust 
peak  

(location) 
No 

Yes  
(target) 

No No No 

T test: Biased 
choice 

distribution 
No No 

Yes,  
toward 
same 
race 

Yes,  
toward 
same 
race 

Yes,  
toward same race 

 

* the same results were obtained for male Caucasian, female 
Caucasian and male Asian faces 

 

Responses to the identity sets showed a peaked and symmetrical pattern (Figure 4a). 

A chi-square test revealed a non-uniform distribution of responses (χ2 = 136.9, df = 10, p < 

.001). Participants showed a peaked response at the target face, which was chosen more often 

than the average choices of the morphs on either sides (one-sample t-tests, both ts(4) > 5.19, 

both ps ≤ .004). Moreover, morphs on both sides of the targets were chosen equally often on 

average (t(4) = .82, p = .46). The averaged morph level of all responses (2.2%) was very close 
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to the targets (i.e., 0%, the middle of the morph continuum).  This provides further support 

for a symmetrical pattern of responses.  

Responses to the caricature sets showed a peaked but skewed pattern (Figure 4b).  

Responses were not equally distributed across all morph levels (χ2 = 120.386, df = 10, p < 

.001). Response distribution peaked at the 20% anti-caricature level, which was chosen more 

often than the average of all caricature or anti-caricature choices (both ps ≤ 0.019). The 

average over all chosen morph levels is 8.6% toward anti-caricatures, nonetheless, the bias to 

choose anti-caricatures over caricatures was only marginally significant in a paired t-test (t(4) 

= 2.67, p = .056).  

Responses to the gender sets showed a flat distribution without a clear peak (Figure 

4c). A chi square test revealed a uniformly distributed responses across all morph levels (χ2 = 

7.700, df = 10, p = .66). The average of all chosen morph levels is 4.9% more masculine than 

the target. Again, this preference to choose masculine over feminine morphs did not attain 

statistical significance (t(4) = 1.90, p = .13). 

Discussion 
Experiment 1a shows two main findings. First, participants seemed to form a more 

precise representation for face identity than for facial gender.  Participants were sensitive to 

the amount of manipulations applied to idiosyncratic information, resulting in a peaked 

choice distribution for both the identity and the caricature sets. In contrast, participants 

showed no peak of choices around the targets or at any morph level in the gender sets. This 

flat distribution of the responses across gender morphs indicates that participants did not 

develop a precise representation of the femininity/masculinity of very familiar male faces.  

Second, while participants showed a general agreement about which face best resembles 

their memory of a familiar identity, their memory representation is very accurate when the 
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distractors are created by morphing with other identities  but it is biased toward anti-

caricatures when the distractors vary in identity strength (i.e., we observe a bias in 

caricatures sets).   

Our findings for caricature sets are consistent with previous studies (Allen, Brady, & 

Tredoux, 2009; Benson & Perrett, 1991, 1994; Frowd, Bruce, Ross, McIntyre, & Hancock, 

2007), which also report that participants tend to judge anti-caricatures to be more similar to 

the face in memory than the target or any caricatures. It is worth noting that we manipulated 

both facial shape and texture information in 3D spaces to create (anti)caricatures of target 

faces whereas the earlier study modified shape only. These findings are in contrast to the 

idea that caricatures are better representation of an identity (Benson & Perrett, 1994; Rhodes, 

1996; Rhodes, Byatt, Tremewan, & Kennedy, 1997).  Overall the general consensus is that the 

use of line representations in those older studies might have resulted in this caricature 

advantage as newer studies using photographs which offer more texture and shape 

information report in general an advantage for anti-caricatures (Benson & Perrett, 1991; 

Chang et al., 2002; Lee & Perrett, 2000). We would like to emphasize that we have 

caricaturized the texture (skin appearance) along with the shape. This process has created an 

increasingly unnatural blotchy appearance of the skin with increasing levels of caricaturing 

while anti-caricatures displayed a smoother appearance. This might have pushed 

participants’ choices toward anti-caricatures over choosing the target or any caricatures. This 

hypothesis is substantiated by the results of a follow-up study, (Srismith et al., 2016) in 

which we caricatured only the shape of personally familiar faces, not their texture. 

Participants in a similar task chose mostly the veridical faces over anti-caricatures and 

caricatures.  
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Experiment 1b: Memory of identity and femininity for familiar female faces 

Experiment 1b tested whether different representations of face identity and face 

gender can be generalized to female familiar faces.  We did not include female faces in 

Experiment 1a because we only have very limited number of female colleagues known to 

most colleagues at that time. In Experiment 1b, we conducted the same experiment as 

Experiment 1a, but with stimuli derived from the faces of seven female colleagues2. This 

resulted in 3 test trials for each target face and 21 trials in total. Thirty-eight colleagues (10 

female) participated in the experiment. They saw first the caricature sets, followed by the 

identity sets and last the gender sets.  

                                                 
2 We had only so many female coworkers that were known to most participants 
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Figure 5. Examples of face stimuli used in Experiment 1b. (a) Identity set; (b) Caricature 
set; (c) Gender set. The morph percentages refer to how much each morph differs 
computationally from the original face (target) along the specific dimension. 

Results 

About 20% of 798 trials across participants and face sets received no response (163 

trials, 51 for each of the three face manipulations). The results are similar to those observed 

in Experiment 1a (Figure 4, right column). 

Identity sets 

Responses to identity sets showed a symmetric distribution centred on the targets 

and their nearest neighbours (i.e., 10% morphs, Figure 4d). The targets were chosen more 

often than all morph levels except for their two flanking 10% morph levels. One-sample t-

tests revealed that the targets were not chosen significantly more often than chance (t(37) = 

1.87, p = 0.07), instead, one of the two flanking morph levels was chosen significantly more 
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often than chance (t(37) = 3.14, p < .001)3. Three of the extreme morph levels were 

significantly under chance level (ts(37) > 5.65, ps < .001.  

 

Caricature sets 

Participants were generally biased to choose anti-caricature distracters over the 

targets, with a peak response at the 30% anti-caricature level (Figure 4e). The representation 

of familiar face identities appears to be shifted towards the average face. One-sample t-tests 

revealed that only this 30% anti-caricature level was chosen more often than chance (t(37) = 

2.97, p =.005). Four of the five caricatures were chosen significantly less often than chance 

(ts(37) > 5.78, ps < .001).  

Gender sets 

Participants displayed a preference for more feminine looking face morphs than the 

targets and the choice distribution appeared to peak at the 30% more feminine morph level 

(Figure 4f). Nonetheless, one-sample t-tests revealed that no morph level was chosen 

significantly more often than chance (all ts(37) < 2.19, all ps > .035). The three most masculine 

morph levels were chosen significantly less often than by chance (all ts(37) > 3.06, all ps ≤ 

.004). 

Comparison of the response patterns for identity, caricature, and gender sets 

None of the three response patterns showed a uniform distribution (identity sets, χ2 = 136.9, 

df = 10, p < .001; caricature sets, χ2 = 425.0, df = 10, p < .001; gender sets, χ2 = 29.01, df = 10, p = 

.001). However, they differed in terms of how each morph level was chosen as the target 

face.   

                                                 
3 The other flanking morph level was the only other morph level that differed significantly from chance when 
no Bonferroni correction was applied: p = .02 
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As summarized in Table 1, responses to the identity sets showed a symmetric pattern 

with a peaked plateau around the target face. The morphs next to the target faces on each 

side (i.e., 10% levels on both side) were chosen more often than the average choices of all 

other morphs towards either unfamiliar faces (all ps ≤ .023), though the targets themselves 

were not (both t(4) ≤2.10 , ps ≥ .103). Morphs on both sides of the targets were chosen equally 

often (t(4) = 0.12, p = .91), indicating a symmetrical distribution.  This also concurs with the 

average morph level of 2.2% over all choices—a value very close to the targets (i.e., 0%). 

Responses to the caricatures sets showed a peaked but asymmetrical distribution. The 

choices for the 30% anti-caricature was above the average choices for both sides (both ts ≥ 

5.04, both ps ≤ .038). Participants showed a clear bias to choose anti-caricatures over 

caricatures (t(4) = 3.15, p = .03). This is in line with the finding that the averaged morph level 

of all responses was at the anti-caricature morph level of 18%. 

Responses to the gender sets were also asymmetrical with a peak response at the 30% 

feminine level.  Participants chose the 30% feminine level more often than the average 

choices on both the more masculine and more feminine sides (both ps ≤ .004), though this 

peak performance itself was not significantly different from chance level (see above). 

Participants were significantly biased toward choosing more feminine than more masculine 

morphs (t(4) = 5.22, p = .006).  Correspondingly, the average morph level of all choices is 

12.1% more feminine than the target.  

Discussion 

Responses to familiar female faces are similar to the findings obtained with male 

familiar faces in Experiment 1a. Participants showed again a relative precise representation 

of idiosyncratic information, and their responses were sensitive to the changes in the identity 
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and caricature sets. For identity sets, participants chose female morphs next to the targets 

more often than all other morph levels in the identity sets, resulting in a peaked and 

symmetrical distribution around target faces. Surprisingly, in contrast to the male sets, the 

targets themselves were not the most often chosen morphs.  For caricature sets, response 

distribution peaked around an anti-caricature level (i.e., 30% anti-caricature) a finding 

similar to what we observed for male sets. These peaked distributions suggest that all 

participants were sensitive to the amount of caricaturization applied to both male and female 

faces. In addition, representation of familiar female faces showed a stronger bias toward 

anti-caricatures, as indicated by both a peaked response at an anti-caricature level and an 

overall asymmetrical distribution biased to anti-caricature side (Figure 1, Table 1). 

In the gender sets, in contrast to male faces for which we only observed a trend to 

choose more masculine faces, participants significantly preferred female faces with a more 

feminine appearance than the targets. The distribution of choices peaks at the more feminine 

morph 30% whereas there was no peak with the male faces. Importantly, for both male and 

female faces, the choice distribution for gender sets was more widely distributed across all 

morph levels than for the identity and caricature sets (see Figure 4).  We observed larger 

number of morph levels showing chance level performance for the gender sets (10 and 8 out 

of 11 for male and female faces respectively) than for the identity and caricatures sets 

(identity sets: 2 and 7 out of 11 levels; caricatures sets: 5 and 6 out of 11 levels for male and 

female faces, respectively). Overall, we observed a trend of enhanced gender representation 

for both familiar male and female faces: male faces look more masculine in memory whereas 

female faces look more feminine in memory (Figure 4c and 4f). 
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Experiment 2: Role of low-level information: Familiar faces presented upside down  

Experiment 2 investigated whether the peaked responses observed for identity and 

caricature sets were due to a precise representation of face identity or was caused by low-

level cues in the face images or by some participants’ response strategies. To this end, we 

presented all test faces upside-down. Face inversion has been well documented to disrupt 

face recognition (among others: Hochberg & Galper, 1967; Rossion & Gauthier, 2002; Yin, 

1969), but it does not influence low-level image-based face information. We tested the effect 

of face inversion with identity sets because they show the clearest peaked distribution 

around targets for upright faces in Experiment 1. If the peaked responses had resulted from 

the precise representation of face identity, it should be less visible for inverted faces. 

However, if the peaked response patterns were rooted in certain low-level image features or 

strategies based on those features, they should remain irrespective of face orientation at test.  

We used 7 male and 5 female identity sets from those used in Experiment 1, so that 

all target identity were familiar to most participants at test. A total of 38 colleagues (9 female) 

participated in the study. The procedure was the same as in Experiment 1 except for a longer 

presentation time of 30s for processing inverted faces. The 12 identity sets were blocked by 

gender during test, with male faces being tested before female faces.  

Results 
Sixty of 456 trials received no response (13.16%). The results for all male and female faces 

together are shown in Figure 6. Neither the targets nor any morph levels were chosen 

significantly more or less often than chance for both sexes analysed together or separately. A 

chi square test also revealed a uniform distribution (χ2 = 2.55, df = 10, p = .99).  We performed 

the same analyses as in Experiment 1, none of them yielded any significant findings (Table 
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1). Correspondingly the average morph level of all choices was very close to the middle of 

the morph continuum (1.7 % away from the target).  

 

Figure 6 Results of Experiment 2. Mean frequency of response choices to inverted faces in 
identity sets plotted as a function of morph level. Dashed line represents chance level 
performance. Curved solid lines represent best Gaussian distribution fit. 

Discussion 
Presenting the faces upside down resulted in a completely different distribution of 

responses compared to Experiment 1 where similar identity sets were presented in upright 

position. When the faces were presented upside down, participants distributed their 

responses equally across all morph levels, even though they were given more time to 

answer. This result indicates that the peaked responses obtained in Experiment 1 were 

driven by a precise representation of face identity rather than by low-level image similarity. 

When perception of identity was disrupted by face inversion, participants lost their ability to 

differentiate the targets from their identity variations. They did not rely on low-level 

(inversion-insensitive) cues in the images to perform the identity task more easily or 

precisely than the other tasks in Experiment 1. These findings extend the face inversion effect 

reported in numerous previous studies (e.g. Freire, Lee, & Symons, 2000; Yin, 1969). While 

previous studies have demonstrated that our ability to discriminate different individuals 

based on their faces is dramatically reduced, our study here shows that our ability to finely 
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differentiate two similar faces (e.g., identity morphs, or faces of identical twins) is totally 

wiped out by inversion (see also Robbins & McKone, 2003). 

Experiment 3: Memory of identity and race of familiar faces  

 
Experiment 3 tested whether the difference between representations of face identity 

and a face category (e.g., gender) applies to other categorical facial information (e.g., race).  

Experiment 1 showed that people have a relatively precise representation of familiar face 

identity with a fuzzy representation along the feminine/masculine dimension (i.e., gender).  

If familiarity with faces mainly sharpens the representation of idiosyncratic but not 

categorical facial information, other facial categories (e.g., race) should also exhibit such 

fuzzy categorical representation in face memory.  To test this hypothesis, we manipulated 

personally familiar faces along the dimensions of identity and race (Asian vs. Caucasian), 

and tested whether the race of very familiar faces is also represented differently from face 

identity.  

In Experiment 3, we created identity and race sets for ten Caucasian female, ten 

Caucasian male, and three Asian male colleagues4. All identities used were new except for 

one female face. The illumination and colour rendering of the faces was slightly different 

from the previous experiments. There were 46 test trials in total, two for each identity 

(Figure 7). A total of 35 colleagues (10 female) participated in the study.  The procedure was 

similar to that of Experiment 1. Test trials were blocked by face manipulation (identity sets 

presented before race sets).  For each block, participants saw first the male Caucasian faces 

followed by the female Caucasian faces and last the three Asian male faces.  

                                                 
4 We had only so many Asian colleagues that were known to most participants 
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Figure 7. Examples of face stimuli used in Experiment 3. Identity sets for male Caucasian, 
female Caucasian, and male Asian faces are shown in rows a, b, and c, respectively.  
Corresponding race sets for these faces are shown in rows d, e and f, respectively. The 
morph percentages refer to how much each morph differs computationally from the original 
face (target) along a specific dimension. 

Results 
Overall, 90 out of 1610 trials received no response (5.6%; 42 for identity sets and 48 for race 

sets).  The results are shown in Figure 8. 
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Identity sets 

Responses to the identity sets showed a peaked and symmetrical distribution for both 

Caucasian and Asian faces (Figure 8, left column).  

For male Caucasian faces (Figure 8a), all but both 20% morph levels were chosen 

significantly above or below chance level (all ts(34) > 4.37, ps < .001). For female Caucasian 

faces (Figure 8c), we found similar results except that the 30% morph level also showed 

chance level response (all other ts(34) > 3.98, ps < .001).  For Asian male faces, the targets and 

the four most extreme morphs were chosen significantly above or below chance level (ts(34) 

≥  2.64, ps < .001). Therefore, participants’ choices were well concentrated on the targets for 

all three types of faces tested.  

None of these three distributions were flat (all χ2 ≥ 35.72, df = 10, ps < .001). As 

summarized in Table 1, for both Caucasian and Asian faces, the targets were chosen more 

often than the average choices on both sides (all ts(4) ≥ 4.79, ps ≤ .006). Participants chose 

equally often the distracters on both sides of the targets (all ts(4) < 2.58, all ps ≥ .06). The 

symmetric choice patterns were also suggested by the average morph level of all selected 

faces (0.1%, 1.0% and 0.3% for male Caucasian, female Caucasian, and male Asian faces 

respectively).  
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Figure 8. Results of Experiment 3. Mean frequency of response to male and female 
Caucasian faces and to male Asian faces in identity sets (left column) and race sets (right 
column) plotted as a function of morph level. Identities C and D refer to the unfamiliar faces 

used to create the morph. Asterisks indicate responses to morph levels (calculated across 
participants) that differ significantly from chance level (dashed line). Curved solid lines 
represent best Gaussian distribution fit. 

Race sets 

Responses to the race sets show a less peaked and more asymmetric distribution than 

observed with identity sets (Figure 8, right column). Participants favoured faces that 

displayed amplified own-race information, resulting in an asymmetrical distribution of 

responses. Participants chose most often the 20% and 30% more Caucasian morph levels for 

the male and female Caucasian sets respectively; whereas they chose the 20% more Asian 

morph level for male Asian faces.  
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For male Caucasian faces (Figure 8b), only the three most Asian-looking morphs 

were chosen significantly less often than chance (ts(34) ≥ 2.35, ps ≤ .001), no other values 

diverged significantly from chance. For the female Caucasian faces (Figure 8d), the two most 

Asian-looking morphs were chosen significantly less often than chance (ts(34) ≥ 9.98, ps ≤ 

.001), whereas the 30% more Caucasian morph was chosen significantly more often than 

chance (t(34) = 3.87, p < .001).  For Asian faces (Figure 8f), only the 20% more Asian morph 

received significantly higher-than-chance level response (t(34) = 3.04, p = .005).  

As summarized in Table 1, the distributions of choices for Caucasian and Asian males 

were flat (all χ2 ≤ 15.53, df = 10, p ≥ .114) whereas it was not flat for the Caucasian females (χ2 

=18.79, df = 10, p = .043). Although the peak faces in all groups were chosen significantly 

more often than the average of distracters toward the other-race end (all ps ≤.006), this was 

not the case for the comparison with other distracters displaying more same-race 

characteristics (all ps ≥ .093). As such, these response maxima do not fulfil our criteria to be 

evaluated as robust distribution peaks. Participants showed a consistent response bias 

toward distracters that enhance the original race information for all three race sets (all ps ≤  

.05). For male Caucasian, female Caucasian, and male Asian target faces, the averaged 

morph levels of all choices were 13.1% more Caucasian, 13.4% more Caucasian and 6.5% 

more Asian, respectively.  

Discussion 

Experiment 3 reveals again target-centred patterns of responses to the identity sets as 

in Experiment 1. Note that the identity sets in both experiments differed in terms of the 

rendering techniques, targets identities, and were tested with different groups of 

participants. Experiment 3 revealed a robust response peak for both female and male targets 
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in the identity sets. The peaked distributions centred at the targets indicate that participants 

could identify very well the correct face of their colleagues among slight identity variations 

thereof and they were similarly sensitive to the amount of variation applied.  

Response to the race sets is somewhat similar to the responses to gender sets 

observed in Experiment 1. The weakly peaked patterns of the choice distribution indicate 

that participants’ choices were not centred on the targets but around distracters with 

enhanced own-race information compared to the targets. That is, familiar Caucasian faces 

are represented as more Caucasian-looking in memory, whereas familiar Asian faces are 

stored in memory as more Asian looking than the targets (Figure 8, right column). Again, the 

choice distribution for race sets was more distributed across all morph levels than that for 

the identity sets (see Figure 8). This is suggested by the larger number of morph levels 

showing chance level performance for the race sets (8/8/10 out of 11 for male 

Caucasian/female Caucasian/Asian male faces, respectively) than for the identity sets (2/3/6 

out of 11 for male Caucasian/female Caucasian/Asian male faces, respectively). Furthermore, 

creating morphs along another category dimension than sex allows us to test whether the 

enhanced categorical information stored in memory is specific to the representation of 

gender information or is a more general principle that applies to other categorical facial 

information. The responses to race sets suggest that categorical facial information, but not 

the identity information of familiar faces is exaggerated in memory.    

The results of Experiment 1 and 3 suggest that the representations of face identity 

and face categories differ. Peaks (if any) for the four category sets (male and female sex sets, 

male and female race sets) were less predominant than for identity sets. Furthermore, 

participants tended to choose faces with enhanced own-gender or own-race information. 

Interestingly, this bias occurred in both male and female faces although the participants were 
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predominantly male, and it occurred in both Asian and Caucasian faces although the 

participants were predominantly Caucasian. These observations suggest that such a 

category-enhancement bias in face representation is independent of face expertise (e.g., 

strong expertise of most participants with Caucasian faces).  

Experiments 1-3: Role of image similarity 

One may argue that the different patterns of responses to identity and gender or race 

changes may be due to different levels of image similarity between the targets and the 

morphs. For instance, the non-peaked response pattern that we found for gender sets might 

have resulted from all images (morphs and target) being very similar to each other within 

each set. To address this concern, we performed image-based similarity analyses and then 

examined whether our findings could be explained by different degree of image similarity 

between face manipulations.  

We calculated the physical similarity between two facial images using a Gabor 

similarity analysis method (Lades et al., 1993). Prior studies have shown that Gabor 

similarity between facial images is correlated with perceptual similarity of facial identity 

(Yue, Biederman, Mangini, Malsburg, & Amir, 2012), expression (Xu & Biederman, 2010), 

and facial movements (Dobs et al., 2014). Gabor similarity between two facial images was 

computed with the following steps (see Dobs, Bülthoff, & Schultz, 2016; Yue et al., 2012 for 

more details).  First, all images were converted into grayscale images (256 by 256 pixels). 

Second, we filtered each image using a Gabor jet [5 scales × 8 orientations × 2 phases (sine 

and cosine) = 80 filters or kernels, cantered at each of the intersections of a uniform 10 × 10 

grid covering the whole image], resulting in two high-dimensional feature vectors (one for 

each image). Finally, Gabor similarity between the two images was calculated as the 
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Euclidean distance between the above feature vectors. We performed Gabor similarity 

analyses for faces in each condition and for each experiment reported here. Mean image 

similarity between target faces and different levels of facial morphs in Experiments 1 to 3 are 

shown in Figures 9-11 respectively (the sign of all Gabor similarity values was reversed for 

illustration purpose).   

 

Figure 9. Gabor similarity between the face morphs and the target face used in Experiment 1. 
Black lines (left Y-axis) represent the image similarity and the grey bars (right Y-axis) 
represent participants’ choice frequency. The upper row is based on data and stimuli from 
Experiment 1a (i.e., male faces), the lower row is based on Experiment 1b (i.e., female faces).  
 

The analyses of image similarity revealed three main findings. First, at increasing morph 

level we found a reduced image-based similarity between the morph and the target face. The 

further away a morph level is from the target face, the less similar it is to the target face—in 

terms of physical measures. This is true for all of our identity, caricature, gender, and race 

manipulations (see black lines in Figures 9-11 that show peaked and symmetrical shape of 

image similarity to the target faces). The results also indicate that the “feeling” of image 

similarity by eyeballing does not necessarily correspond to its true image-based similarity. 
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For instance,  the male faces in the identity sets in Figure 2 look more different from each 

other than in the caricature sets, however, the computed similarity between images of the 

caricature sets (M±SEM = -148.38 ± 15.44) is in fact numerically lower than in the identity sets 

(-130.73 ± 15.44; F(1,18)= 0.65, p = .43).   

Second, responses to identity sets, but not gender or race sets, mirrored image-based 

similarity between the targets and different levels of morphs.  Response frequency to 

identity morphs decreases with decreasing image-based similarity with the target faces 

(Figures 9 and 11, left column).  In contrast, responses to gender and race sets showed no 

such patterns anchored to the target faces, and participants’ response distributions were 

either flat across morphs levels or biased toward morphs at one side of the target faces 

(Figures 9 and 11, right column).  

 

Figure 10. Gabor similarity between face morphs and target faces used in Experiments 1 and 
2. The black lines (left Y-axis) represent the image similarity and the grey bars (right Y-axis) 
represent participants’ choice frequency. Note that the inverted faces shared 12 out of 17 
identities used as upright faces in Experiment 1.  
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Figure 11. Gabor similarity between the face morphs and the target face used in Experiment 
3. The black lines (left Y-axis) represent the image similarity and the grey bars (right Y-axis) 
represent participants’ choice frequency. Top, middle, and bottom rows are based on the 
data and stimuli from Caucasian male faces, Caucasian female faces, and Asian Male faces, 
respectively.  
 

Last but not the least, the overall image similarity is higher between gender/race 

morphs than between identity morphs (e.g., Figure 11, black lines in the left vs. in the right 

column), however, image similarity alone cannot account for the different patterns of 

responses to identity and gender/race manipulations. Even for the identity sets (Figure 10), 

the same level of image similarity between upright and inverted faces (137.36 ± 6.40 vs. 

132.06 ± 7.62, F(1,27)= 0.28, p =.60) can produce completely different patterns of response 

(interaction between orientation and morph levels: F(10,1090) = 8.00, p <.001,). To directly test 

whether similarity between images underlies the different responses to identity and 



Memory of personally familiar faces 
 

39 
 

gender/race sets, we performed a further test. To make idiosyncratic and categorical face 

manipulations have comparable image similarity to the target faces, we manually selected 5 

morphs in each of the identity, gender, and race set in Experiment 1 (a and b) and 

Experiment 3 that displayed equivalent level of similarity to their target face, independent of 

their morph level.  As shown in Figure 12, different patterns of responses to identity changes 

(black bars) and to gender/race changes (grey bars) persists—for both male and female 

faces—even though identity and gender/race morphs share almost the same levels of image-

based similarity (as indicated by the overlapping black and dotted lines). For image 

similarity, a 2 (identity vs. gender/race) by 5 (morph level) ANOVAs revealed neither 

significant main effect of face manipulation nor significant interaction (all Fs ≤2.36, all ps ≥ 

.07). For behavioral responses, we found significant interactions between face manipulation 

and morph level across all four sets of data shown in Figure 12 (all Fs ≥3.62, all ps ≤ .007). 
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Figure 12. Response frequency of identity and gender/race manipulation when Gabor 
similarity between the face morphs and the target face is controlled. Black and grey bars (left 
Y-axis) represent participants’ choice frequency for identity and gender/race sets 
respectively. Solid and dashed lines (right Y-axis) represent the image similarity for the 
selected identity and gender/race morphs respectively. Upper and lower rows shows data 
for male and female target faces respectively. For Experiment 1 (left column), the chosen 
identity morph levels were 20% and 30% toward each side for male faces and 20% and 40% 
for female faces. The corresponding gender morph levels were 30% and 50% toward each 
side for both male and female faces. For Experiment 3 (right column), the chosen identity 
morphs were 10% and 20% and the chosen race morphs were 20% and 40% toward each side 
for both male and female faces. 

General discussion 

In the present study, we investigated and directly contrasted how well people 

represent idiosyncratic and categorical facial information of personally familiar persons in 

memory. Our study revealed four major findings. First, participants remembered very 

precisely the idiosyncratic facial features of the people they know well (i.e., colleagues). They 

could, based exclusively on their memory, identify a veridical familiar faces among very 

similar distracters which were generated by morphing the original face with the face of 

another person. Second, participants judged the anti-caricatures of familiar faces (i.e., toward 

the average face and away from the original face) more often as the true target face than the 

targets or their caricatures. This finding concurs with previous studies using caricature and 

anti-caricature morphs created with photographs, although such a bias may partially due to 

the fact that our caricatures had a more blotchy appearance than the target faces and the 

anti-caricatures. Third, in contrast to relative precise memory of idiosyncratic information, 

participants showed less precise memory of categorical facial information such as gender 

and race.  While participants agreed on which face in a caricature or identity set represented 

the familiar target person the best, as indicated by a robust peaked choice distribution, 

response distributions to gender and race manipulations were flatter and thus without a 
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clearly preferred representation. Finally, the categorical information of familiar faces, like 

their gender and race, was enhanced in memory (e.g. participants preferred morphs further 

away from the opposite category than the targets in the gender and race sets). When gender 

or race information of a familiar face was altered in our test sets, participants tended to 

choose more feminine/masculine morphs than the female/male targets, and similarly they 

chose more Caucasian-/Asian-looking morphs than the original Caucasian/ Asian targets. 

These results not only paint a picture of how very familiar faces are stored in memory, but 

also uncover critical differences between the representation of idiosyncratic and categorical 

facial information.  

When the idiosyncratic information of familiar faces was parametrically 

manipulated, participants showed high sensitivity to such change. Compared to the original 

faces, participants’ response frequency often starts to drop when the morphs contain only 

10% idiosyncratic information from a different face (i.e., in identity sets), and further drops 

to chance-level when the morphs consist of 20% idiosyncratic information from a novel 

person (Figures 4 and 8).  Participants also showed similar sensitivity to the change of 

identity strength when faces varied along the caricature and anti-caricature axis (i.e., in 

caricature sets). However, the memorized identity strength for familiar faces appears to be 

reduced, as the peak response frequency occurs at the morphs of 20% or 30% toward the 

average face. This contradicts the early hypothesis that diagnostic features of familiar faces 

are exaggerated in memory (e.g., Benson & Perrett, 1994; Gillian Rhodes et al., 1987, 1997) 

Neurophysiological studies have suggested that the face cells in the primate brain are 

tuned to identity strength – the distance between a specific identity and the norm or average 

of faces in a multidimensional face space (L. Chang & Tsao, 2017; Giese & Leopold, 2005; 

Leopold et al., 2006; Loffler, Yourganov, Wilkinson, & Wilson, 2005). For instance, Leopold 
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and colleagues (Giese & Leopold, 2005; Leopold et al., 2006) have  recorded the firing of face 

cells in the anterior  inferotemporal cortex when macaque monkeys viewed face morphs that 

were very similar to those used in the current study (e.g., similar morphing manipulations of 

identity and caricature with the same face database and morphable model ). They found that 

face cells respond monotonically to gradual changes along the caricature axis. The further 

away a face morph is from the average face, the higher is the elicited firing rate of the 

responding face cells (see Loffler et al., 2005, for analogues findings in a human fMRI study). 

Recently, Chang and Tsao (Chang & Tsao, 2017) showed that face cells respond 

monotonically along specific face axes (e.g., inter-eye distance) across the average face, 

demonstrating a ramp-like tuning (see also Loffler et al., 2005). Despite the difference in the 

shape of face cells’ tuning function, both studies agree, at least for (anti-)caricaturing faces, 

that face cells show the lowest level of neural responses to the average face (i.e., zero identity 

strength) and the highest neural activity to the strongest caricatures (i.e., highest identity 

strength). 

However, our participants here consistently considered the strongest face caricatures 

(i.e., 50% exaggeration of face identity strength) as displaying one of the lowest likeness to 

the original face identity. Similar behavioral responses have also been observed in previous 

studies (e.g., Allen et al., 2009; Benson & Perrett, 1991, 1994; Frowd et al., 2007). These results 

underscore the gap between the neurophysiological coding of faces and the behaviour of 

face processing. How a monotonic neural coding of face identity strength may underlie the 

peaked choice at anti-caricature levels remains to be elucidated. We speculate that at least 

two factors may underlie such a gap between behavioural responses to identity 

manipulation and the neurophysiological coding system for face identity. First, the 

discrepancy might result from the different tasks used. The task for the monkeys during 
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neurophysiological recording was not to find a face representing the learned identity the 

best; they performed either an identification task or no task at all. Second, high familiarity 

with faces might change the tuning of face cells to the identity variation of those faces. The 

tuning function of face cells was based on monkeys’ response to either unfamiliar faces (e.g., 

Chang & Tsao, 2017) or visually familiar faces via training (e.g., Leopold et al., 2006), 

whereas the peaked choices in human behaviour is observed with personally familiar faces.  

Our results with gender and race variations raise a further question about the 

aforementioned neural coding of faces: how is gender, race, and other categorical 

information of faces coded in the brain? Freeman, Rule, Adams, & Ambady (2010) have 

found that neural populations in the lateral fusiform gyrus show linearly increased neural 

activity to faces varying between androgynous to more gendered (either more male or more 

female looking), which is similar to Leopold et al.’s (2006) and Chang & Tsao’s (2017) 

neurophysiological findings for identity manipulations. However, our results are not readily 

predicted by such monotonic tuning to the gender (or race) of faces.  Our participants chose 

neither the original gender/race nor the most gendered face morphs most frequently. 

Instead, the coding of gender and race of faces seems to be slightly enhanced in memory. A 

male (female) familiar face is represented as more masculine (feminine) and a Caucasian 

(Asian) face is represented as more Caucasian (Asian)-looking. Distortions in subjective 

perception of facial gender have been reported for unfamiliar faces (e.g., Campanella, 

Chrysochoos, & Bruyer, 2001; Freeman et al., 2010). Here we show surprisingly that even for 

very familiar faces, people do not know exactly how “male/female” or how 

“Caucasian/Asian” these faces are. Further studies are required to address how a linear 

sensitivity to objective gender information may produce such a biased and enhanced 

gender/race representation for familiar faces (cf. Freeman et al., 2010).   
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The different patterns of response to identity/caricatures sets and to gender/race sets 

indicate that different characteristics of familiar faces are represented differently in memory. 

The results for the caricatures and the identity morphs both show a clearly peaked 

distribution, indicating a strong consensus among participants about the crucial 

idiosyncratic face features denoting a unique familiar identity in memory. The results 

obtained with the gender and race manipulations are often flatter without robust peak 

responses, suggesting that representation of categorical facial information is less precise than 

idiosyncratic information. The consistent bias of choosing faces of exaggerated categorical 

information suggests that categorical representation of familiar faces is not veridical. It is 

also worth noting that we used the term “gender” in this study, as we created morphed faces 

that were mixes of both sexes, whereas the targets were derived from male and female faces 

belonging to biological categories. In contrast, races are considered to be a cultural categories 

(Cosmides, Tooby, & Krurzban, 2003) and mixes of races in any amount occur. The similar 

results for gender (biological categories) and race categories (cultural categories) suggest that 

the bias of gender/race representation is not due to some top-down influence of culture or 

expertise. 

Do different patterns of responses to idiosyncratic and categorical changes of faces 

result from different levels of image similarity in the stimuli sets? If the identity distracters 

differ more from the original faces in terms of image similarity than the gender or race 

distracters, it would be easier to identify the original face among the identity distracters than 

among the gender/race distracters, resulting in a peaked response for the former and less so 

for the latter. Our image similarity analyses indicate that this is not the case. Upright and 

inverted image sets have the same physical similarity but produce completely different 

patterns of responses (Experiment 2, see also Figure 10). Similarly, equivalent image 
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similarity between the race sets yielded opposite bias to Caucasian and Asian target faces 

(Experiment 3, Figure 11 right column). If participants formed accurate representation of 

gender or race of faces and their responses were based only on the image differences 

between target and morphs, we would expect no bias toward one race or gender 

subcategory over the other. Thus, image similarity does not decisively drive participants’ 

responses. Moreover, when image similarity between identity and gender/race morphs is set 

to be identical, the patterns of responses to identity and gender/race sets remain clearly 

different (Figure 12). Therefore, although gender/race morphs have an overall smaller 

variation in terms of image similarity than the identity morphs, such a difference cannot 

account for the different patterns of responses observed here.   

Why do people respond differently to the idiosyncratic and categorical changes 

applied to very familiar faces? One possibility is that identity is a crucial facial characteristic 

that differs from race, gender, and other categorical information in our social life. We 

encounter a huge number of identities that belong to few different races and only two sexes. 

While discriminating between different identities has significant social importance, people 

usually categorize faces as either male or female, or Asian or Caucasian and rarely assess the 

intensity of those characteristics. Consequently, we have developed expertise for fine-

grained sensitivity to identity changes but coarsely defined boundaries for categorical facial 

changes (e.g., Dobs et al., 2019). Remembering detailed levels of categorical information (e.g., 

specific level of masculinity associated with a familiar face) appears to be unnecessary and 

comes at a cost of memory storage. Discarding categorical details will make us less sensitive 

to the categorical than idiosyncratic changes. However, it also minimizes the processing and 

storage of visual information about familiar faces, resulting in an earlier and faster 
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categorization processing, which may facilitate more important identification process (e.g., 

Baudouin & Tiberghien, 2002; Dobs et al., 2019; Zhao & Hayward, 2013).  

Another possibility is that the processes underlying participants’ decision are more 

tuned to identity variations than variations along other dimensions of faces (e.g., gender or 

race). Faces that are equally distant from a target face in image similarity are not always 

perceived as equally distant from the target face in terms of identity similarity (e.g., (Jacques 

& Rossion, 2006; Rotshtein, Henson, Treves, Driver, & Dolan, 2005). Similarly, Chang and 

Tsao (2017) showed that face cells in the primate brain are tuned to face variations along 

single axes of face space, but are blind to variations orthogonal to the tuned axis. It is 

therefore possible that participants were focusing on the perceived identity, not the gender 

or race appearance when choosing the face that best resembles a familiar person, even 

though we varied the target face along different axes in face space than identity  (e.g., gender 

or race). We speculate that our participants might have been processing the gender and race 

manipulations in the same way as they process variations of facial expressions which do not 

induce a change of the perceived identity. Under this scenario, the deformations of faces in 

gender and race morphs, within a certain grade, are perceived as natural variations of the 

target face, making it hard to decide which of them is the original face. 

Our results may help addressing one fundamental question faced by all models of 

face recognition-- how idiosyncratic and categorical face information is stored in memory 

and whether this information contributes to face recognition and identification equally. This 

is of interests for both biological and artificial face recognition systems (Kramer, Young, Day, 

& Burton, 2017; O’Toole, Castillo, Parde, Hill, & Chellappa, 2018). Earlier models of face 

recognition often assume that categorizing faces is an easier task and/or involves separate 

processes from those of face identification (Bruce & Young, 1986; Haxby, Hoffman, & 
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Gobbini, 2000; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976; Ullman, 1996). Recent 

studies promote a view that these invariant aspects of face information are encoded and 

processed in an integrative way (Armann & Bülthoff, 2012; Bülthoff & Newell, 2004; Dahl, 

Rasch, Bülthoff, & Chen, 2016; Dobs et al., 2019; Kramer et al., 2017; Zhao & Hayward, 2013). 

Such integrative processing of race, gender, and identity is also consistent with the notion of 

“holistic” face representation, that is, we may form an appearance (norm) based face 

representation that contains both types of information as a whole (Rossion, 2013; see also ( 

Zhao, Bülthoff, & Bülthoff, 2016; Zhao, Bülthoff, & Bülthoff, 2016). These various aspects of 

identity-related and categorical information may be processed together (Calder & Young, 

2005) or may represent different levels of generalization (Riesenhuber & Poggio, 2000). Here 

we show that these invariant aspects of facial information are not weighted equally in the 

recognition process; even for very familiar faces, we are more sensitive to the idiosyncratic 

than categorical change of faces. Our ability to categorize faces rapidly comes at a cost: losing 

fine-detailed representation of category and being prone to representational bias. Our results 

also suggest that different types of facial information are not equally accessible. Otherwise, 

we should not observe different pattern of responses to identity and gender/race variations.  

Conclusion 

The present study demonstrates that the representation of idiosyncratic information 

(i.e., identity-specific features) of familiar faces is more precise than the representation of 

categorical face information (i.e., gender/race). While people often remember precisely what 

facial features make a familiar face different from other faces, they have no clear memory 

about the non-identity-specific, categorical face information, even for very familiar 

colleagues. Such a difference might be driven by both the social significance of person 
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individualization and an adapted neural coding system that is tuned to idiosyncratic face 

features.  What we remember about a familiar face is what is needed in our real life, not 

more. Our face processing system minimizes the storage of unnecessary categorical 

information and is less tuned to identity-irrelevant facial changes (e.g.,  expressions, 

illumination, viewpoints, and natural or artificial face deformations) to achieve rapid and 

precise identification of familiar individuals—persons that are of the most social significance 

to us.  
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