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ABSTRACT 11 

Aim: China’s Grain for Green Program (GFGP) is the largest reforestation program in the 12 

world and has been operating since 1999. The GFGP has promoted the establishment of tree 13 

plantations over the restoration of diverse native forests. In a previous study, we showed that 14 

native forests support a higher species richness and abundance of birds and bees than do 15 

GFGP plantations and that mixed-species GFGP plantations support a higher level of bird 16 

(but not bee) diversity than do any individual GFGP monocultures (although still below that 17 

of native forests). Here, we use metabarcoding of arthropod diversity to test the generality of 18 

these results.  19 

 20 

Location: Sichuan, China 21 

 22 

Methods: We sampled arthropod communities using pan traps in the land-cover types 23 

concerned under the GFGP. These land-use types include croplands (the land cover being 24 

reforested under the GFGP), native forests (the reference ecosystem as the benchmark for the 25 

GFGP’s biodiversity effects), and the dominant GFGP reforestation outcomes: monoculture 26 

and mixed-species plantations. We used COI-amplicon sequencing (‘metabarcoding’) of the 27 

arthropod samples to quantify and assess the arthropod community profiles associated with 28 

each land-cover type. 29 

 30 

Results: Native forests support the highest overall levels of arthropod species diversity, 31 

followed by mixed-species plantations, followed by bamboo and other monocultures. Also, 32 

the arthropod community in native forests shares more species with mixed-species 33 

plantations than it does with any of the monocultures. Together, these results broadly 34 

corroborate our previous conclusions on birds and bees but show a higher arthropod 35 

biodiversity value of mixed-species plantations than previously indicated by bees alone. 36 

 37 

Main conclusion: In our previous study, we recommended that GFGP should prioritize the 38 

conservation and restoration of native forests. Also, where plantations are to be used, we 39 

recommended that the GFGP should promote mixed-species arrangements over 40 

monocultures. Both these recommendations should result in more effective protection of 41 

terrestrial biodiversity, which is an important objective of China’s land-sustainability 42 

spending. The results of this study strengthen these recommendations because our policy 43 

prescriptions are now also based on a dataset that includes over 500 species-resolution taxa, 44 

ranging across the Arthropoda.  45 

 46 

KEYWORDS: Arthropoda, biodiversity, China, forest management, Grain for Green 47 

Program, metabarcoding, reforestation 48 
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1 INTRODUCTION 49 

 50 

An important challenge for conservation science is to quantify the biodiversity impacts of 51 

major policy initiatives, especially in regions undergoing large shifts in land-use change. 52 

Nowhere is this more true than in China, which combines a high level of native biodiversity 53 

(Tao, Huang, Jin, & Guo, 2010) with a large human population that is increasing its 54 

ecological footprint (Liu & Diamond, 2005; Pyne, 2013; Sayer & Sun, 2003; Xie et al., 55 

2012). Moreover, for decades, China has had the managerial, political, and financial capacity 56 

to implement the largest land-sustainability programs ever seen, from nature-reserve 57 

protection to reforestation to de-desertification (Bryan et al., 2018; Liu et al., 2003; Wu et al., 58 

2019; Xu, Wang, & Xue, 1999). These programs have caused major land-use changes and 59 

successfully slowed land degradation caused by economic activities (Liu, Li, Ouyang, Tam & 60 

Chen, 2008; Ouyang et al., 2016; Ren et al., 2015). For example, China established its first 61 

nature reserve in 1956 and reached 2740 reserves at the end of 2015 (Ma, Shen, Grumbine, & 62 

Corlett, 2017). Nearly two-thirds of the area of those nature reserves have national-level 63 

status, meaning that they receive the highest level of protection and funding, and analysis of 64 

Landsat imagery has shown that national-level reserves successfully deter deforestation (Ren 65 

et al., 2015).  66 

 67 

Two other major land-sustainability programs are the Natural Forest Protection Program 68 

(NFPP, also known as Natural Forest Conservation Program) and the Grain for Green 69 

Program (GFGP, also known as the Sloping Land Conservation Program and the Farm to 70 

Forest Program), which were implemented after widespread flooding in 1998 (Liu et al., 71 

2008; Xu, Yin, Li, & Liu, 2006; Yin, Yin, & Li, 2009). The NFPP aims to reduce soil erosion 72 

and flooding by protecting native forests in the upstream watersheds of the Yangtze and 73 

Yellow Rivers (Liu et al., 2008; Ren et al., 2015). The GFGP complements the NFPP by 74 

controlling soil erosion on sloping land. The government pays cash and grain to farmers in 75 

exchange for tree planting on sloping farmland (Delang &Yuan, 2015; Liu et al., 2008; Ma et 76 

al., 2017; Xu et al., 2006; Zhai, Xu, Dai, Cannon, & Grumbine, 2014). Having reforested 77 

9.06 million ha of cropland over 16 years (~2014) since its inception in 1999, the GFGP is 78 

the world’s largest reforestation program. 79 

 80 

However, relative to their scale and budgets, little is known about the biodiversity 81 

consequences of China’s land-sustainability programs, even though an important and 82 

expected co-benefit is biodiversity conservation (Wu et al., 2019). In a recent, massive 83 

review, Bryan et al. (2018) were able to cite only one study on the consequences of China’s 84 

large-scale reforestation programs for biodiversity, Hua et al. (2016). This paucity of 85 

understanding contrasts starkly with the large volume of information on other consequences 86 

of these programs: water and soil maintenance (Deng, Shangguan, & Li, 2012; Long et al., 87 

2006; Wang, Peng, Zhao, Liu, & Chen, 2017; Wang, Jiao, Rayburg, Wang, & Su, 2016), 88 

carbon storage (Deng, Liu, & Shangguan, 2014; Wei et al., 2014), vegetation cover (Hua et 89 

al., 2018; Zhai et al., 2014; Zhou, Van Rompaey, & Wang, 2009), and socioeconomic 90 
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outcomes (Liu & Lan, 2015; Yin, Liu, Zhao, Yao, & Liu, 2014; Yin et al., 2009). A better 91 

understanding of the biodiversity implications of reforestation programs is needed to guide 92 

these programs for China and the rest of the world (Turner, Lambin, & Reenberg, 2007; 93 

United Nations, 2015).  94 

 95 

Guided by the goal of soil erosion control, and operating under the implicit assumption that 96 

any type of tree cover should achieve this goal, the GFGP has predominantly established tree 97 

plantations (‘plantations’ hereafter) on retired croplands, rather than restoring native forests 98 

(Hua et al., 2016; Hua et al., 2018; Zhai et al., 2014). However, compared with native forest 99 

ecosystems, plantations are known to support lower levels of biodiversity across the world’s 100 

forest biomes and across taxa (Barlow, Overal, Araujo, Gardner, & Peres, 2007; Bremer & 101 

Farley, 2010; Brockerhoff, Jactel, Parrotta, Quine, & Sayer, 2008; Gardner, Hernandez, 102 

Barlow, & Peres, 2008; Lindenmayer & Hobbs, 2004), although certain management 103 

regimes, such as maintaining understory structure and mixed cropping, can somewhat 104 

increase biodiversity (Hartley, 2002). On the other hand, compared with croplands, 105 

plantations are known to support different species assemblages, with potentially higher levels 106 

of biodiversity, although there are indications that croplands in low-intensity agricultural 107 

systems – which the croplands retired under GFGP tend to be (Hu, Fu, Chen, & Gulinck, 108 

2006) – may support considerable biodiversity which potentially exceeds that associated with 109 

plantations (Allan, Harrison, Navarro, Wilgen, & Thompson, 1997; Buscardo et al., 2008; 110 

Elsen, Ramesh, & Wilcove, 2018). Together, these insights suggest that plantations should 111 

have been expected to support low levels of biodiversity and that the GFGP could support 112 

more biodiversity if it restored native forests.  113 

 114 

Indeed, this is what Hua et al. (2016) found. They surveyed bird and bee communities in 115 

GFGP-related tree covers in south-central Sichuan, comparing native-forest remnants to 116 

GFGP-financed tree-cover types, which include monoculture stands of bamboo, Eucalyptus, 117 

and Japanese cedar, as well as ‘mixed plantations,’ which are mostly patchworks 118 

(checkerboards) of two to five different monocultures and, to a lesser extent, bona fide tree-119 

level mixtures (Hua et al., 2018). Most importantly, this study documented that bird and bee 120 

species diversities were higher in native forests than in any of the monocultures. In addition, 121 

they found that in mixed plantations, bird diversity for non-breeding species was higher than 122 

in any of the individual monocultures, albeit lower than in native forests. In contrast, bee 123 

diversity was equally low in mixed plantations and monocultures. The lack of a boost to bee 124 

diversity in mixed plantations was not surprising, since as with monocultures, the understory 125 

vegetation in mixed plantations was notably lacking in flowering plants (Hua et al., 2016).  126 

 127 

The above findings, however, raise the question of why bird diversity was increased just by 128 

planting monocultures of different tree species next to each other. One possibility that could 129 

not be investigated in Hua et al. (2016) is that general arthropod diversity might also have 130 

been boosted in the mixed plantations, since, unlike bees, other arthropods can exploit a 131 

range of food resources available even in plantations, via direct consumption of plants and 132 
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fungi, and via decomposition, parasitism, and predation of other animals, including other 133 

arthropods (Jactel & Brockerhoff, 2007). Increased arthropod diversity might in turn support 134 

more bird diversity. In addition, as a large component of biodiversity, how arthropods 135 

themselves (and subgroups thereof) are affected by the GFGP is an important part of 136 

understanding the GFGP’s biodiversity effects. For instance, Barlow et al. (2007) compared 137 

primary forest and Eucalyptus plantations in Brazil and found that birds achieve highest 138 

diversity in primary forest, while bees have similar levels of species richness in primary 139 

forest and Eucalyptus plantations. They also found that butterflies and dung beetles achieve 140 

low diversity but that fruit flies and moths achieve high diversity in Eucalyptus plantations. 141 

 142 

The purpose of this study is to test the generality of Hua et al.’s (2016) results by 143 

interrogating the ‘rest of the biodiversity’ that was captured in the same sites analyzed by Hua 144 

et al. (2016). We employ the technique of metabarcoding, which combines traditional DNA 145 

barcoding with high-throughput DNA sequencing to characterize the biodiversity of mixed 146 

samples of eukaryotes (Cristescu, 2014; Deiner et al., 2017; Yu et al., 2012), and which has 147 

been shown to be a reliable and efficient method for biodiversity characterization (Ji et al., 148 

2013). Through metabarcoding the non-bee arthropods caught in the same pan traps 149 

previously used to trap bees in Hua et al. 2016, we hope to answer the following questions: 150 

(1) Do native forests support higher levels of arthropod species richness and diversity than all 151 

four GFGP plantations? (2) For all GFGP plantations, do mixed plantations support higher 152 

levels of arthropod species richness and diversity than do the three individual monocultures?  153 

(3) How does community composition compare among these tree covers and what underlies 154 

the potential differences?  155 

 156 

2 METHODS 157 

2.1 Study location 158 

The study region and locations are as in Hua et al. (2016). In short, our study region was a 159 

7,949 km2 area in south-central Sichuan province (Figure 1) spanning 315–1,715 m above sea 160 

level, historically forested and then deforested starting in the 1950s. The GFGP established 161 

~54,800 ha of new tree cover between 1999 and 2014, dominated by short-rotation (6-20 162 

years) monocultures of bamboo (BB), Eucalyptus (EC), and Japanese cedar (JC), and short-163 

rotation mixed plantations (MP) of two to five tree species (including the three monoculture 164 

species). Monocultures are created by households planting the same tree species in 165 

neighboring landholdings. Correspondingly, mixed plantations are, in most cases, created by 166 

planting different species, resulting in a checkerboard, although about a quarter of mixed 167 

plantations consist of tree-level mixtures. In Hua et al. (2016), we used the term ‘mixed 168 

forests’, but in Hua et al. (2018), we switched to ‘mixed plantations.’  169 

 170 

The two other surveyed land covers were croplands (CL) and native forests (NF). Croplands 171 

mostly consist of low-intensity plantings of rice, corn, and vegetables and is the land-cover 172 

type that has been reforested by GFGP. Native forests are broadleaf, subtropical, evergreen 173 

forest that have been subject to decades of selective logging and other forms of extraction. 174 
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Because this region of China has been inhabited for millennia, there are no undisturbed native 175 

forests. Croplands are typically located on flatter land than are the tree covers, since GFGP 176 

reforestation targeted sloped land, and the native forests are concentrated toward the more 177 

hilly, southern end of the study region. For sampling, we chose larger expanses (> 60 ha) of 178 

these six land-cover types: BB, EC, JC, MP, NF, and CL.  179 

 180 

2.2 Sampling design 181 

Each land-cover type was represented by at least two locations set ≥15 km apart. All tree-182 

cover stands sampled had closed canopy. For each land-cover type, we sampled with at least 183 

10 one-ha quadrats, within each of which we operated 40 fluorescent pan traps for 24 hrs 184 

(Bartholomew & Prowell, 2005) (Fig. S1). In total, we sampled 74 quadrats (BB: 10, EC: 10, 185 

JC: 12, MP: 10, NF: 16, CL: 16). Different quadrats were separated by �300 m if placed in 186 

the same tree-cover stand. Samples were stored in 100% ethanol at ambient temperature until 187 

shipment to the lab, where they were stored at -20 � before DNA extraction. The original 188 

reason for using pan traps had been to trap bees, which we individually DNA-barcoded in 189 

Hua et al. (2016). Here we analyze the bycatch.  190 

 191 

2.2 Amplicon preparation 192 

For each of the 74 quadrats, we pooled all 40 pan traps into a single sample. Three quadrats 193 

had very few individuals, and we pooled them with their nearest neighbor of the same land-194 

cover type (EC01+EC02+EC03; NF02+NF03), leaving us with 71 samples. Storage ethanol 195 

was removed by air drying on single-use filter papers. Our samples were dominated by 196 

Diptera and Hymenoptera, as expected. We equalized input DNA across species by using one 197 

leg of every individual larger than a mosquito (~5 mm long) and the whole body if smaller 198 

(e.g. midges). This was to reduce the effect of large-biomass individuals outcompeting small-199 

biomass individuals during PCR, which improves taxon detection (Elbrecht, Peinert, & 200 

Leese, 2017). DNA extraction followed the protocols of Qiagen DNeasy Blood&Tissue Kits 201 

(Hilden, Germany), followed by quantification via Nanodrop 2000 (Thermo Fisher Scientific, 202 

Wilmington, DE).  203 

We amplified a 319-bp fragment of COI using forward primer LCO1490 (5’- 204 

GGTCAACAAATCATAAAGATATTGG-3’) and reverse primer mlCOIintR (5’- 205 

GGNGGRTANANNGTYCANCCNGYNCC-3’) (Leray et al., 2013). All samples were 206 

carried out with two rounds of PCR. In the first round, both forward and reverse primers were 207 

tailed with tags (12-17 bp) for sample identification. In the second round, we added Illumina 208 

adapters to the amplicons from the first PCR, thus avoiding the tag jumping that can arise 209 

during library preparation of amplicon mixtures (Schnell, Bohmann, & Gilbert, 2015). A table 210 

of tags and primers is in Supplementary Information (Table S1). All PCRs were performed on 211 

a Mastercycler Pro (Eppendorf, Germany) in 20-µl reaction volumes, each containing 2 µl 212 

10x buffer (Mg2+ plus), 0.2 mM dNTPs, 0.4 µM of each primer, 1 µl DMSO, 0.4 µl BSA 213 

(bovine serum albumin) (TaKaRa Biotechnology Co. Ltd, Dalian, China), 0.6 U exTaq DNA 214 

polymerase (TaKaRa Biotechnology), and approximately 60 ng genomic DNA. Both rounds 215 

of PCR started with an initial denaturation at 94 ℃ for 4 mins, followed by 35 cycles of 216 
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94 ℃ for 45s, 45 ℃ for 45s, 72 ℃ for 90s, and finishing at 72 ℃ for 10 mins. PCR products 217 

were gel-purified with QIAquick PCR Purification Kit (Qiagen). One sample failed to 218 

amplify. We pooled the 70 PCR products into two libraries and sequenced on the Illumina 219 

MiSeq (Reagent Kit V3, 300PE) at the Southwest Biodiversity Institute Regional Instrument 220 

Center in Kunming. The total number of paired-end reads returned was 13,601,908.  221 

 222 

2.3 Data analyses 223 

The bioinformatic script, including parameters, for the analyses below is in Supplementary 224 

Information and will be archived in datadryad.org, along with sequence data and metadata. 225 

The R scripts and data tables are on https://github.com/dougwyu/Sichuan2014. Below, R 226 

packages are indicated with single quotes, and other software is italicized. 227 

 228 

2.3.1 Bioinformatic processing 229 

Initial processing. – We removed remnant Illumina adapter sequences with AdapterRemoval 230 

2.2.0 (Schubert, Lindgreen, & Orlando, 2016), followed by Schirmer et al.’s (2015) pipeline 231 

to filter, trim, denoise, and merge read pairs. Specifically, we trimmed low-quality ends using 232 

sickle 1.33 (Joshi & Fass, 2011), corrected sequence errors using BayesHammer in SPAdes 233 

3.10.1 (Nikolenko, Korobeynikov, & Alekseyev, 2013), and merged reads using PandaSeq 234 

2.11 (Masella, Bartram, Truszkowski, Brown, & Neufeld, 2012), all with default parameters.  235 

 236 

Demultiplexing and Clustering. – We then used QIIME 1.9.1’s split_libraries.py (Caporaso et 237 

al., 2010) to demultiplex reads by sample and used usearch 9.2.64 (Edgar, 2010) to retain 238 

reads between 300 and 330 bp, inclusive, since our amplicon is 319 bp. We used vsearch 239 

2.4.3 (Rognes, Flouri, Nichols, Quince, & Mahé, 2016) for de-novo chimera removal and 240 

used CROP 1.33 (Hao, Jiang, & Chen, 2011) to cluster the remaining reads at 97%-similarity. 241 

This step produced 3,507 OTUs. We also tried swarm 2.2.2 (Mahé, Rognes, Quince, Vargas, 242 

& Dunthorn, 2015), but it returned huge numbers of OTUs that could not be reduced even 243 

after running through ‘lulu’ (see below).  244 

 245 

OTU filtration and taxonomic assignment. – From the resulting sample X OTU table, we 246 

used ‘lulu’ 0.1.0 (Frøslev et al., 2017) to combine OTUs that were likely from the same 247 

species but which had failed to be clustered by CROP. ‘lulu’ identifies such ‘parent-child’ 248 

sets by calculating pairwise similarities of all OTUs (using vsearch) to identify sets of high-249 

similarity OTUs and then combining OTUs within such sets that show nested sample 250 

distributions. For example, four OTUs might be highly similar, and within this set of four, 251 

one OTU contains the most reads and is observed in ten samples. This OTU is the parent, and 252 

daughters are inferred if they are present in a subset of the parent’s samples. We ended with 253 

1,506 OTUs.  254 

 255 

A common filtering step is to remove OTUs made up of few reads (e.g. 1-read OTUs), as 256 

these are more likely to be artefactual (e.g. Yu et al., 2012, Zepeda-Mendoza et al., 2016). For 257 

instance, PCR errors can generate clusters of sequences that are sufficiently different from the 258 
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parent that they cannot be identified as daughters. Such OTUs are more likely to be small 259 

because novel haplotypes typically arise in a later PCR cycle. However, the definition of 260 

small is subjective and differs with the size of the sequence dataset. We therefore used 261 

‘phyloseq’ 1.19.1 (McMurdie & Holmes, 2013) to plot the number of OTUs that would be 262 

filtered out at different minimum OTU sizes (see http://evomics.org/wp-263 

content/uploads/2016/01/phyloseq-Lab-01-Answers.html, accessed 19 July 2018), and we 264 

chose a minimum OTU size of 44 reads, which was roughly the graph’s inflection point and 265 

thus filtered out the most OTUs for the lowest minimum size. We ended with 594 OTUs.  266 

 267 

We then used PyNAST 1.2.2 to align the 594 OTU sequences to a reference alignment of 268 

Arthropoda COI sequences (Yu et al., 2012) at a minimum similarity of 60%; one sequence 269 

failed to align and was deleted. The remaining sequences were translated to amino acids 270 

using the invertebrate mitochondrial codon table, and we removed 32 OTUs with sequences 271 

that contained stop codons. We carried out taxonomic assignment of the OTUs using a Naïve 272 

Bayesian Classifier (Wang, Garrity, Tiedje, & Cole, 2007) trained on the Midori UNIQUE 273 

COI dataset (Machida, Leray, Ho, & Knowlton, 2017). Sixteen OTUs assigned to non-274 

Arthropoda taxa and two OTUs assigned to Collembola were removed. We ended with 543 275 

OTUs.  276 

 277 

Finally, we inspected the OTU table and set to zero those cells that had <5 reads representing 278 

that OTU in that sample, since these were more likely to be the result of sequencing error (Yu 279 

et al., 2012). In addition, we removed two samples (rows) that contained ≤100 reads total (i.e. 280 

samples with little data) and removed seven samples (rows) with <5 OTUs because these 281 

samples were potentially overly influential in analyses of species richness. These seven 282 

samples included two from native forests and five from monocultures (3 BB, 1 EC, 1 JC), 283 

meaning that we disproportionately removed monocultures, making our species diversity 284 

analyses below more conservative. After these sample removals, seven OTUs were removed 285 

because they were left with few (<20) reads. Because we do not consider OTU size to be 286 

reliable measures of biomass or abundance (Nichols et al., 2018; Piñol, Mir, Gomez-Polo, & 287 

Agustí, 2015; Yu et al., 2012), we converted the OTU table into a presence/absence (0/1) 288 

dataset. Throughout, our bias was to remove false-positive detections even at the expense of 289 

losing true-positive detections, thereby resulting in a dataset with less, but more reliable (and 290 

thus more replicable), data. We ended with 536 OTUs and 61 samples.  291 

 292 

2.3.2 Community analysis 293 

OTU richness and diversities. – All community analyses were performed in R 3.3.3 (R Core 294 

Team, 2017). We estimated species richness and Shannon and Simpson diversities using two 295 

sample-based estimators: function specpool in ‘vegan’ 2.4-5 (Chiu, Wang, Walther, & Chao, 296 

2014) and ‘iNEXT’ 2.0.12 (Hsieh, Ma, & Chao, 2016).  297 

 298 

OTU phylogenetic diversities. – Because we used a combination of CROP+‘lulu’ and 299 

‘phyloseq’ to combine and remove small OTUs that were likely to be artefactual, the 300 
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remaining OTUs were more likely to represent true presences. Nonetheless, it remained 301 

possible that we had over-split some biological species into multiple OTUs, since there is no 302 

single correct similarity threshold for species delimitation, and this oversplitting might have 303 

occurred more often for some taxa in some land-cover types, leading to artifactual differences 304 

in species richness. However, oversplit OTUs should cluster together in a phylogenetic tree 305 

and thus contribute less to estimates of phylogenetic diversity than would OTUs from 306 

different biological species. Phylogenetic diversity should thus be a robust estimator of alpha 307 

diversity (Yu et al., 2012). To estimate sample phylogenetic diversities, we used ‘iNextPD’ 308 

0.3.2 (Hsieh & Chao, 2017). We built a maximum-likelihood (ML) tree in RaxML 8.0.0 309 

(Stamatakis, 2014) with an alignment of the OTU-representative sequences, using a General 310 

Time Reversible (GTR) model of nucleotide substitution and a gamma model of rate 311 

heterogeneity estimating the proportion of invariable sites (-m GTRGAMMAI). The 312 

algorithm used a rapid bootstrap analysis and searched for the best-scoring ML tree (-f a), 313 

with -N 1000 times bootstrap and -p 12345 as the parsimony random seed. Three OTU 314 

sequences produced very long branches in the ML tree, which would skew estimates of 315 

phylogenetic diversity, and we removed them. Two of these OTUs were found in all land-316 

cover types (and thus would not have been informative), and one was only found in some 317 

cropland samples (and thus would not have informed analyses of the tree-cover sites).  318 

 319 

Beta diversity. – To visualize changes in community composition across land-cover types, we 320 

ran a Bayesian ordination with ‘boral’ 1.6.1 (Hui, 2016), which is more statistically robust 321 

than non-metric multidimensional scaling (NMDS) analysis because ‘boral’ is model-based 322 

and thus allows us to apply a suitable error distribution so that fitted-model residuals are 323 

properly distributed. We used a binomial error distribution and no row effect since we were 324 

using presence/absence data (Figure S5). For the same reasons, we used ‘mvabund’ 3.12.3 325 

(Wang, Naumann, Wright, & Warton, 2012) to test the hypotheses that native forests and 326 

mixed plantations differ compositionally from each other and differ from the monocultures 327 

and croplands.  328 

 329 

We also visualized changes in community composition with an ‘UpSetR’ 1.3.3 intersection 330 

diagram, an alternative to Venn diagrams (Conway, Lex, & Gehlenborg, 2017), with a 331 

heatmap using the tabasco function in ‘vegan’, and with a ‘betapart’ 1.4-1 (Baselga & Orme, 332 

2012) analysis, which partitions beta diversity into turnover and nestedness components using 333 

binary Jaccard dissimilarities, which we visualized with NMDS using the metaMDS function 334 

in ‘vegan’. Finally, we used ‘metacoder’ 0.2.0 (Foster, Sharpton, & Grunwald, 2017) to 335 

generate taxonomic ‘heat trees’ to pairwise-compare the six land-cover types and identify the 336 

taxa most strongly driving compositional differences. 337 

 338 
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3 RESULTS 339 

  340 

3.1 Alpha diversity 341 

Species richness and diversity are highest in native forests and croplands, followed by mixed 342 

plantations, which are in turn richer and more diverse than the monoculture plantations, with 343 

the possible exception of bamboo.  344 

 345 

OTU richness and diversities. – The Chao2 estimator indicates that native forests, mixed 346 

plantations, and croplands have the highest estimated species richnesses and do not differ 347 

significantly from each other (Figure 2a). Importantly, all three monocultures (bamboo, 348 

Eucalyptus, and Japanese cedar) exhibit less than half the species richness of native forests 349 

and around half the species richness of mixed plantations (Figure 2a). The pairwise 350 

differences between native forests and monocultures are all statistically significant (Table 351 

S2), and the pairwise differences between mixed plantations and the three monocultures are 352 

marginally or significantly different (Figure 2a, Table S2), all after table-wide correction.  353 

 354 

The iNEXT analysis reveals even clearer contrasts: native forests have the highest estimated 355 

asymptotic species richnesses and Shannon diversities, followed by croplands and mixed 356 

plantations, followed by the three monocultures (Figures 2b, S3). The iNEXT-estimated 357 

richness and diversity of mixed plantations are significantly higher than all the monocultures, 358 

with the possible exception of bamboo, because the MP and BB confidence intervals touch.  359 

 360 

Phylogenetic diversities. – The iNextPD analysis mirrors the iNEXT results (Figures 2b, S4). 361 

Using ‘iNextPD’ to visualize phylogenetic coverage by land-cover type (Figure 3) reveals 362 

that native forests and croplands exhibit almost complete coverage of the OTU tree, whereas 363 

mixed plantations and bamboo exhibit some coverage deficits, followed by larger coverage 364 

deficits in the other two monocultures.  365 

 366 

3.2 Beta diversity 367 

Native forests are compositionally most similar to mixed plantations and most dissimilar to 368 

croplands. The differences in community composition are driven primarily by species 369 

turnover. 370 

 371 

Differences in community compositions. Ordination with ‘boral’ (Figure 4a) shows that the 372 

primary separation is between the tree cover types and croplands, with a significantly positive 373 

correlation between latent variable 1 and elevation (r = -0.457, df = 59, p = 0.0002). The 374 

cropland sites themselves cluster into two groups by elevation. Latent variable 2 largely 375 

separates Eucalyptus monoculture from the other tree-cover types, which might reflect its 376 

distinct phytochemistry. Importantly, the mixed-plantation and (most of) the native-forest 377 

sites overlap and are encircled by the monocultures, indicating that native forests and mixed 378 

plantations are compositionally most similar.  379 

 380 
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The ‘UpSetR’ intersection diagram (Figure 4b) is consistent with the diversity analyses 381 

(Figures 2, S3, S4): native forests (110 OTUs) and croplands (130 OTUs) support more than 382 

2.5 times the number of ‘unique species’ (species detected in only one land-cover type) than 383 

any of the plantations, and secondly, of the plantations, mixed plantations support the highest 384 

number of unique species (44 OTUs). The greater compositional similarity that native forests 385 

have with mixed plantations (Figure 4a) is displayed by native forests uniquely sharing more 386 

OTUs with mixed plantations (22 OTUs) than with any of the monocultures (13, 9, and 5). 387 

However, despite their overlap, ‘mvabund’ analysis shows that the arthropod communities of 388 

mixed plantations and native forests are still significantly distinct from each other, and from 389 

the three monocultures and croplands (Table S3).  390 

 391 

Turnover versus nestedness. – Consistent with the UpSetR result that the mode in each land-392 

cover type is unique species, we found that turnover, not nestedness, dominates 393 

compositional differences (Figure 5; see Figure S7 for a heatmap visualisation). In other 394 

words, the arthropod communities in the monocultures are not simply subsets of native 395 

forests or mixed plantations but contain distinct sets of species.  396 

 397 

Taxonomic compositions of and differences between land-cover types. – The 536 arthropod 398 

species in our metabarcoding dataset represent a wide range of arachnid and insect orders and 399 

thus, represent a wide range of ecological functions (Figure 6), including generalist predators 400 

(Araneae, Formicidae) and more specialized parasites and parasitoids (Tachinidae, Phoridae, 401 

Braconidae) of other arthropods. We also observe taxa that are noted for pollination 402 

(Thysanoptera, Syrphidae), xylophagy (Isoptera), and various modes of detritivory, 403 

fungivory, frugivory, herbivory, and animal parasitism (Lepidoptera, Hemiptera, Diptera, 404 

Orthoptera, Formicidae, Thysanoptera). 405 

 406 

Although the ‘boral’ ordination (Figure 4a) reveals compositional similarity between mixed 407 

plantations and native forests, it does not reveal the taxa that are most responsible for this 408 

similarity, and for the differences with the other tree-cover types. With ‘metacoder’ heat trees 409 

(Figure 6 inset), we can identify the taxa that are driving this similarity and the differences, 410 

and what we see is that mixed plantations and native forests ‘differ in the same ways’ from 411 

the monocultures. (1) Relative to bamboo, mixed plantations and native forests both have 412 

slightly more Lepidoptera OTUs. (2) Relative to Eucalyptus, mixed plantations and native 413 

forests both have more Diptera OTUs and fewer of the three OTUs assigned to genera 414 

Mycetophila, Sonema, and Homaloxestis, which can be taken as Eucalyptus indicator species. 415 

(3) Finally, relative to Japanese cedar, mixed plantations and native forests both have more 416 

Araneae and Lepidoptera OTUs, fewer Hemiptera OTUs, and fewer of the OTU assigned to 417 

Mycetophila. Heat-tree differences at higher taxonomic ranks (e.g. more Araneae-assigned 418 

OTUs) mean that the species which separate the two land-cover types differ across samples 419 

but nonetheless are in the same higher taxon (e.g. Araneae). Finally, when we include 420 

croplands in the heat-tree comparisons (Figure S8), we observe the largest number of heat-421 

tree-tip differences between any two land-cover types. In other words, there are multiple 422 
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species-level indicators of croplands (or in the case of the Mycetophila OTU, an indicator of 423 

Japanese cedar and Eucalyptus). 424 

 425 

4 DISCUSSION 426 

 427 

Improving biodiversity conservation under the GFGP  428 

 429 

Our study found that native forests support the highest levels of arthropod species richness, 430 

Shannon and Simpson diversity, and Faith’s and phylogenetic diversity (Figures 2, 3, S3, S4) 431 

and that most of those species are unique to native forests (Figure 4b), consistent with the 432 

patterns of bird diversity that were reported in Hua et al. (2016) and other biodiversity studies 433 

in plantations (Barlow et al., 2007; Gardner et al., 2008). In addition, our findings pertaining 434 

to the higher level of alpha diversity in mixed plantations over monocultures (Figures 2, S3, 435 

S4), and their greater degree of compositional similarity to native forests relative to 436 

monocultures (Figures 4, 5, 6, S6, S7, S8), corroborate those reported for birds (but not bees) 437 

in Hua et al. (2016) and are consistent with other studies of biodiversity in tree plantations. 438 

Butterfield and Malvido (1992) showed that mixtures of broadleafs and conifers resulted in a 439 

higher species richness of carabid beetles than in conifer monocultures, and Recher et al. 440 

(1987) showed that some bird species are present when in Eucalyptus-pine mixtures but 441 

absent from pine monocultures. In short, mixed plantations not only support a higher 442 

diversity of non-breeding birds but also provide a small but detectable biodiversity boost for 443 

arthropods. Finally, we found that compositional differences amongst tree-cover types are 444 

almost entirely dominated by species turnover, not nestedness, meaning that some species 445 

were only detected in the monocultures. This result is consistent with the pattern of moth 446 

communities in primary, secondary and plantation forests studied by Hawes et al. (2009). In 447 

their findings, all three of their tree-cover types (primary and secondary forest, Eucalyptus 448 

plantation) contained large numbers of unique species in three moth families (Arctiidae, 449 

Saturniidae, Sphingidae). 450 

 451 

Given the balance of evidence, we re-affirm our previous policy recommendations that the 452 

GFGP should prioritize the retention and restoration of native forests, and when restoring 453 

native forests is not possible, we secondarily encourage mixed-species plantings over 454 

extensive monocultures, at least in western China where we conducted this study. The 455 

foundation of these recommendations is now broadened to include 536 species-resolution 456 

taxa ranging across the Arthropoda. Given the growing understanding of the biodiversity 457 

implications of plantations compared with native forests in different forest biomes across the 458 

world (Bremer & Farley, 2010; Fierro, Grez, Vergara, Ramírez-Hernández, & Micó, 2017), 459 

these recommendations likely apply to other regions in China where GFGP is relevant, but 460 

their applicability will benefit from additional field studies and from anticipated technical 461 

advances in DNA-based biodiversity assessment. In the future, it will likely be insightful to 462 

carry out time-series biodiversity surveys, since our dataset represents only a single time 463 

point, but the temporal turnover of forest arthropod communities is high (Barsoum et al., 464 
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2019). It is possible that the differences in biodiversity levels that we have detected are even 465 

stronger when integrated over time. Another important variable that we did not measure is 466 

sample biomass, given recent evidence that insect biomass has been dropping around the 467 

world (e.g. Hallmann et al., 2017). Because we observed high species richness and diversity 468 

in our cropland sampling sites (Figures 2, 3, S3, S4), where agriculture is small-scale in 469 

nature, our a priori expectation is that biomass has probably not declined here as rapidly as 470 

elsewhere, but this clearly needs testing and should of course now be a standard metric in 471 

biodiversity surveys.  472 

 473 

Greater levels of arthropod biodiversity in native forest is not a surprise, given their more 474 

diverse vegetation structures and species compositions, which are well known to be 475 

positively correlated with arthropod diversity (Castagneyrol & Jactel, 2012; Haddad et al., 476 

2009; Stork, Mcbroom, Gely, & Hamilton, 2015; Zhang et al., 2016), but the greater diversity 477 

and similarity of mixed plantations to native forests is somewhat surprising, especially since 478 

they mostly just comprise small-scale monocultures, planted in checkerboard pattern. 479 

However, planting different tree species near each other not only provides more diverse 480 

vegetation per se but also, because the species vary in height and three-dimensional structure, 481 

almost certainly allow greater sunlight penetration to the understory, which in turn should 482 

result in greater availability of food and other resources. This mechanism is consistent with 483 

our finding that bamboo, which does not create closed canopies, exhibits the highest richness 484 

and diversity of the monocultures (Figures 2, S3, S4). We note that 95% confidence-interval 485 

overlap is considered an overly conservative test for statistical significance at the p=0.05 486 

level (MacGregor-Fors & Payton, 2013). A more diverse, and presumably higher-biomass, 487 

arthropod community in turn could also support a richer bird community, at least for the 488 

insectivorous subset of the community. Our results thus point to a plausible mechanism for 489 

why bird diversity is boosted in mixed plantations.  490 

 491 

In this study, we report evidence for a biodiversity benefit of native forests over GFGP 492 

plantations, which we might think trades off against a greater value of timber sales from 493 

plantations. However, even excluding biodiversity, which they did not study, Cao et al. (2019) 494 

have recently shown that plantations in China also return a lower net value of other 495 

ecosystem services relative to native forests, even after counting income from timber sales. 496 

Plantations require a high initial outlay for tree planting, some non-native tree species like 497 

Eucalyptus require more water input than do native tree species, and more management effort 498 

is required to protect plantations from pest attack. In contrast, timber sale values are low. Cao 499 

et al.’s findings complement and strengthen our recommendation (Hua et al., 2016) to 500 

prioritize native forest recovery and expansion over creating plantations.  501 

 502 

Methodological comments on metabarcoding and studies of biodiversity patterns.  503 

 504 

Metabarcoding provides an efficient method for interrogating biodiversity samples, but 505 

because of its reliance on PCR, metabarcoding datasets tend to contain a non-trivial amount 506 
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of noise. This noise manifests as a large number of false-positive OTUs, which are filtered 507 

out heuristically. Such false OTUs especially complicate efforts to estimate alpha diversity. 508 

Here, we applied several filtering steps to remove false OTUs, and we also used ‘iNextPD’ to 509 

generate robust comparisons of alpha diversity by estimating phylogenetic diversity instead 510 

of species richness. This approach has been previously shown to be reliable (Yu et al., 2012). 511 

Another approach, which became available only after we had completed the wet-lab portion 512 

of our study, is to subject each sample to multiple, independently tagged PCRs (typically 513 

three) and to bioinformatically filter out sequences that fail to appear in at least two of the 514 

PCRs above some minimum number of reads; such sequences are more likely to be PCR or 515 

sequencing errors. This is implemented in the DAMe protocol of Zepeda-Mendoza et al. 516 

(2016, also see Alberdi, Aizpurua, Gilbert, & Bohmann, 2018).  517 

 518 

With regard to studies of biodiversity patterns, we follow Magurran et al. (2015; Magurran, 519 

2016) in recommending that we should focus less on explaining change in species richness 520 

and more on explaining change in species composition as a function of natural and 521 

anthropogenic causes. The argument is that anthropogenically disturbed communities can 522 

maintain species richness and even phylogenetic diversity, even as local, or worse still, 523 

endemic, species go extinct and are replaced by cosmopolitan species. In our study, croplands 524 

support an arthropod community similar in richness and diversity to that of mixed plantations 525 

and just below that of native forests (Figures 2, 3, 4b, S3, S4), but the species composition of 526 

croplands is distinct from those in native forests (Figures 4, 5, S6, S7, S8). Croplands 527 

therefore cannot compensate for the loss of the biodiversity dependent on native forests.  528 

 529 
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Figure legends 779 

 780 

Figure 1. Study area in south-central Sichuan province, subdivided into counties and shaded 781 

by elevation. Each cross represents a pan-trap sampling location, color-coded by land-cover 782 

type: BB = bamboo monoculture, blue; EC = Eucalyptus monoculture, light green; CL = 783 

croplands, orange; JC = Japanese cedar monoculture, red; MP = mixed plantations, purple; 784 

NF = native forests, dark green. 785 

 786 

Figure 2. Species richness estimates across land-cover type. (a) Comparisons of Chao2 787 

species richness estimates. Land-cover types sharing the same superscript are not 788 

significantly different at the p=0.05 level (Welch’s t-test) after table-wide correction for 789 

multiple tests (Bonferroni). (b) ‘iNEXT’ estimates of species richness, Shannon diversity, and 790 

‘iNextPD’ estimates of phylogenetic diversity by land-cover type, using sample-based 791 

rarefaction and extrapolation. Native forests (NF) have the highest species richness and 792 

diversities, followed by croplands (CL) and mixed plantations (MP), followed by the three 793 

monoculture plantations (BB, EC, and JC). Codes for land-cover types as in Figure 1. 794 

Symbols on each curve indicate the number of sampled locations per land-cover type, solid 795 

lines represent interpolations, and dashed lines represent extrapolations, with 95% confidence 796 

intervals. Statistically significant pairwise differences are detected visually by non-797 

overlapping confidence intervals and are considered conservative (MacGregor-Fors & 798 

Payton, 2013). Full iNEXT and iNextPD figures are in S3 and S4. 799 

 800 

Figure 3. Phylogenetic distribution of OTUs by land-cover type, created using ‘iNextPD’. 801 

Terminal nodes are black and represent the OTUs. Internal nodes are white. Sizes of the 802 

squares on the right indicate each OTU’s incidence frequency (number of samples in which 803 

the OTU is observed). Phylogenetic coverage is most complete in native forests (NF) and 804 

croplands (CL), followed by mixed plantations (MP), followed by the three monocultures 805 

(BB, EC, JC). Codes for land-cover types as in Figure 1. 806 

 807 

Figure 4. Community composition differences in all land-cover types. (a) ‘Boral’ ordination. 808 

Colors represent land-cover types, and numbers represent individual samples. Cropland (CL) 809 

sites separate into two clusters by elevation. Overlap of native forests (NF) and mixed-810 

plantations (MP) points indicates greater compositional similarity between these two land-811 

cover types. Ovals manually added to visualize community groupings. Residuals of the 812 

‘boral’ fit in Fig. S5. (b) UpSetR intersection map of OTUs unique to and shared between and 813 

among land-cover types. Croplands and native forests support the highest numbers of unique 814 

OTUs (CL=130, NF=110), followed by the four plantations (MP=44, BB=37, EC=31, 815 

JC=27). Native forests uniquely share almost as many OTUs with mixed plantations (22 816 

OTUs) as native forests share with the three monocultures combined (27 OTUs, =13+9+5). 817 

Horizontal bars on the left indicate the total number of OTUs in each land-cover class. Codes 818 

for land-cover types as in Figure 1. For clarity, only pairwise comparisons are shown. A non-819 

truncated version is presented in Fig. S6. 820 
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 821 

Figure 5. NMDS (non-metric multidimensional scaling) ordination of beta diversity by land-822 

cover type (binary Jaccard dissimilarities), partitioned with ‘betapart’. (a) Total beta diversity. 823 

(b) Beta diversity based on species turnover only. (c) Beta diversity based on species 824 

nestedness only. Turnover accounts for most the observed beta diversity across land-cover 825 

types, which is visualized as greater distances between points in the turnover figure (b) and 826 

almost no distances between points in the nestedness figure (c). Codes for land-cover types as 827 

in Figure 1. 828 

 829 

Figure 6. Pairwise taxonomic comparisons of all land-cover types. Upper right triangle:  830 

greener branches indicate taxa that are relatively more abundant (in numbers of OTUs) in the 831 

land-cover types along the right column, and browner branches indicate taxa that are 832 

relatively more abundant in the land-cover types along the top row. Lower left:  taxonomic 833 

identities of the branches. Note that this is a taxonomic tree, not a phylogenetic tree. Legend: 834 

width indicates number of OTUs at a given taxonomic rank, and color indicates relative 835 

differences in log2(number of OTUs). Codes for land-cover types as in Figure 1. A figure 836 

including croplands and a zoomable taxonomic tree is in supplementary information (Figure 837 

S8, S9). 838 

 839 
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Figure 1. 840 

 841 

Figure 1. Study area in south-central Sichuan province, subdivided into counties and shaded 842 

by elevation. Each cross represents a pan-trap sampling location, color-coded by land-cover 843 

type: BB = bamboo monoculture, blue; EC = Eucalyptus monoculture, light green; CL = 844 

croplands, orange; JC = Japanese cedar monoculture, red; MP = mixed plantations, purple; 845 

NF = native forests, dark green. 846 
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Figure 2 847 

 848 

Figure 2. Species richness estimates across land-cover type. (a) Comparisons of Chao2 species richness estimates. Land-cover types sharing the 849 

same superscript are not significantly different at the p=0.05 level (Welch’s t-test) after table-wide correction for multiple tests (Bonferroni). (b) 850 

‘iNEXT’ estimates of species richness, Shannon diversity, and ‘iNextPD’ estimates of phylogenetic diversity by land-cover type, using sample-851 

based rarefaction and extrapolation. Native forests (NF) have the highest species richness and diversities, followed by croplands (CL) and mixed 852 

plantations (MP), followed by the three monoculture plantations (BB, EC, and JC). Codes for land-cover types as in Figure 1. Symbols on each 853 

curve indicate the number of sampled locations per land-cover type, solid lines represent interpolations, and dashed lines represent 854 

extrapolations, with 95% confidence intervals. Statistically significant pairwise differences are detected visually by non-overlapping confidence 855 

intervals and are considered conservative (MacGregor-Fors & Payton, 2013). Full iNEXT and iNextPD figures are in S3 and S4. 856 
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Figure 3 857 

 858 

Figure 3. Phylogenetic distribution of OTUs by land-cover type, created using ‘iNextPD’. 859 

Terminal nodes are black and represent the OTUs. Internal nodes are white. Sizes of the 860 

squares on the right indicate each OTU’s incidence frequency (number of samples in which 861 

the OTU is observed). Phylogenetic coverage is most complete in native forests (NF) and 862 

croplands (CL), followed by mixed plantations (MP), followed by the three monocultures 863 

(BB, EC, JC). Codes for land-cover types as in Figure 1. 864 
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Figure 4 866 
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Figure 4. Community composition differences in all land-cover types. (a) ‘Boral’ ordination. 869 

Colors represent land-cover types, and numbers represent individual samples. Cropland (CL) 870 

sites separate into two clusters by elevation. Overlap of native forests (NF) and mixed-871 

plantations (MP) points indicates greater compositional similarity between these two land-872 

cover types. Ovals manually added to visualize community groupings. Residuals of the 873 

‘boral’ fit in Fig. S5. (b) UpSetR intersection map of OTUs unique to and shared between and 874 

among land-cover types. Croplands and native forests support the highest numbers of unique 875 

OTUs (CL=130, NF=110), followed by the four plantations (MP=44, BB=37, EC=31, 876 

JC=27). Native forests uniquely share almost as many OTUs with mixed plantations (22 877 

OTUs) as native forests share with the three monocultures combined (27 OTUs, =13+9+5). 878 

Horizontal bars on the left indicate the total number of OTUs in each land-cover class. Codes 879 

for land-cover types as in Figure 1. For clarity, only pairwise comparisons are shown. A non-880 

truncated version is presented in Fig. S6. 881 

 882 
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Figure 5 883 

 884 
Figure 5. NMDS (non-metric multidimensional scaling) ordination of beta diversity by land-885 

cover type (binary Jaccard dissimilarities), partitioned with ‘betapart’. (a) Total beta diversity. 886 

(b) Beta diversity based on species turnover only. (c) Beta diversity based on species 887 

nestedness only. Turnover accounts for most the observed beta diversity across land-cover 888 

types, which is visualized as greater distances between points in the turnover figure (b) and 889 

almost no distances between points in the nestedness figure (c). Codes for land-cover types as 890 

in Figure 1. 891 
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Figure 6 893 

 894 

Figure 6. Pairwise taxonomic comparisons of all land-cover types. Upper right triangle:  895 

greener branches indicate taxa that are relatively more abundant (in numbers of OTUs) in the 896 

land-cover types along the right column, and browner branches indicate taxa that are 897 

relatively more abundant in the land-cover types along the top row. Lower left:  taxonomic 898 

identities of the branches. Note that this is a taxonomic tree, not a phylogenetic tree. Legend: 899 

width indicates number of OTUs at a given taxonomic rank, and color indicates relative 900 

differences in log2(number of OTUs). Codes for land-cover types as in Figure 1. A figure 901 

including croplands and a zoomable taxonomic tree is in supplementary information (Figure 902 

S8, S9). 903 
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Figure S1. Spatial arrangement of pan traps in each one-hectare quadrat (= 1 sampling site). 
Each quadrat was subdivided into four subquadrats to balance pan colors. Each dot’s color 
represents that pan-trap’s color (white, yellow, blue, red, purple), which within each 
subquadrat were arranged randomly. 
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Figure S2. Each land-cover type’s observed species richness, visualized using ‘beanplot’ 1.2 
(Kampstra, 2008). White lines are observed values at each sampling site, black lines are the 
mean per land-cover type, and the dashed line is the grand mean. Codes for land-cover types 
as in Figure 1.  
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Figure S3. ‘iNEXT’ estimates of species richness, Shannon diversity, and Simpson diversity 
by land-cover type, using sample-based rarefaction and extrapolation. Native forests (NF) 
have the highest species richness and diversities, followed by croplands (CL) and mixed 
plantations (MP), followed by the three monoculture plantations (BB, EC, and JC). Codes for 
land-cover types as in Figure 1. Symbols on each curve indicate the number of sampled 
locations per land-cover type, solid lines represent ‘iNEXT’ interpolations, and dashed lines 
represent ‘iNEXT’ extrapolations, with 95% confidence intervals. Statistically significant 
pairwise differences are detected visually by non-overlapping confidence intervals and are 
somewhat conservative (MacGregor-Fors & Payton, 2013). 
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Figure S4. ‘iNextPD’ estimates of phylogenetic diversity by land-cover type, using sample-
based rarefaction and extrapolation. Similar to the results in Figure S3, two of the three 
estimators of phylogenetic diversity are higher in native forests (NF), followed by croplands 
(CL) and mixed plantations (MP), followed by the three monocultures (BB, EC, and JC). 
Codes for land-cover types as in Figure 1). Symbols indicate sample sizes per land-cover 
type, solid lines represent ‘iNextPD’ interpolations, and dashed lines represent ‘iNextPD’ 
extrapolations, with 95% confidence intervals. Statistically significant pairwise differences 
are detected visually by non-overlapping confidence intervals and are somewhat conservative 
(MacGregor-Fors & Payton, 2013). 
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Figure S5. Residual plots of the boral model fit in Fig. 4a. 
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Figure S6. UpSetR intersection map of OTU distribution by land-cover type. Number of comparisons not truncated. Horizontal bars on the left bottom 
indicate the number of OTUs in each land-cover type, and vertical bars indicate the number of unique or shared OTUs. Codes for land-cover types as 
in Figure 1. 
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Figure S7. Heat map of OTU distribution by land-cover type, showing that beta diversity is 
dominated by species turnover rather than by nestedness. The vertical line separates two 
compartments of communities, one dominated by croplands and one dominated by forests and 
plantations. Each column is a sample site, and rows are OTUs. Codes for land-cover types as in 
Figure 1. 
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Figure S8. Pairwise taxonomic comparisons of all six land-cover types. Interpretation the same as in 
Figure 6 except that croplands is included in this version of the figure (boxes). Upper right triangle:  
greener branches indicate taxa that are relatively more abundant (in terms of numbers of OTUs) in 
the land-cover types along the right column, and browner branches indicate taxa that are relatively 
more abundant in the land-cover types along the top row. Lower left:  taxonomic identities of the 
branches. Note that this is a taxonomic tree, not a phylogenetic tree. Legend: width indicates 
number of OTUs at a given taxonomic rank, and color indicates relative differences in log2(number 
of OTUs). Codes for land-cover types as in Figure 1. 
 

  
 
 
 
 

root

ArthropodaInsecta Arachnida

Hemiptera

Lepidoptera

Araneae

Diptera

Hymenoptera Thysanoptera
Coleoptera

Isoptera
Orthoptera

Cicadellidae

Aphididae

Linyphiidae

Erebidae

Chironomidae

Syrphidae

Sarcophagidae

Theridiidae

Culicidae

Formicidae

Thripidae Elateridae

Sciaridae

Araneidae

Stratiomyidae

Drosophilidae

Chloropidae

Braconidae

Ephydridae

Nephilidae

Rhinotermitidae

Hesperiidae

Noctuidae

Agromyzidae

Miridae

Simuliidae

Psychodidae

Gryllidae

Pieridae

Salticidae

Lycosidae

Greenideidae

Staphylinidae

Muscidae

Thomisidae

Lecithoceridae

Sepsidae

Tachinidae

Mycetophilidae

Anthomyiidae

Crambidae
Lycaenidae

Tenthredinidae

Tephritidae

Uraniidae
Lymantriidae

Cyclidia

Phoridae

Tetragnathidae

Dolichopodidae

Tortricidae

Coccinellidae

Termessa

Chironomus
Eristalis

Cricotopus

Parasteatoda

Culex

Moundinothrips

Eriophora

Hermetia

Drosophila

Gaurax

Opius

Nostima

Nephila

Reticulitermes
Pheidole

Chorizopes

Aedes

Polypedilum

Prenolepis

Frankliniella

Halpe

Mythimna

Phytomyza

Bradysia

Proboscidocoris

Simulium

Psychoda

Tanytarsus

Loxoblemmus

Scaptomyza

Pieris

Hylyphantes

Ochlerotatus

Nanocladius

Trochosa

Greenidea

Carpelimus

Dichaetomyia

Scatella

Graphomya

Nilodorum

Thrips

Ebelingia

Gasteracantha

Homaloxestis

Dicranosepsis

Megalurothrips

Phlogotettix

Mycetophila

Ctenosciara

Emmesomyia

Taraka

Athalia

Thagria

Delia

Stegana

Urelliosoma

Ablabesmyia

Eversmannia

Aphis

Procladius

Chlorops

Baccha Somena

Cyclosa

Cyclidia

Sphaerophoria

Megaselia

Musca

Leucauge

Tetragnatha

Thinophilus

Takecallis

Chrysso

Bactra

Harmonia

Sarcophaga

Paratalanta

  1.0
 15.9
 60.4
135.0
239.0
373.0
536.0

−3

−2

−1

 0
 1
 2
 3

 

Nu
m

be
r o

f O
TU

s

Nodes

CL EC JC MP NF

BB
CL

EC
JC

M
P

root

ArthropodaInsecta Arachnida

Hemiptera

Lepidoptera

Araneae

Diptera

Hymenoptera Thysanoptera
Coleoptera

Isoptera
Orthoptera

Cicadellidae

Aphididae

Linyphiidae

Erebidae

Chironomidae

Syrphidae

Sarcophagidae

Theridiidae

Culicidae

Formicidae

Thripidae Elateridae

Sciaridae

Araneidae

Stratiomyidae

Drosophilidae

Chloropidae

Braconidae

Ephydridae

Nephilidae

Rhinotermitidae

Hesperiidae

Noctuidae

Agromyzidae

Miridae

Simuliidae

Psychodidae

Gryllidae

Pieridae

Salticidae

Lycosidae

Greenideidae

Staphylinidae

Muscidae

Thomisidae

Lecithoceridae

Sepsidae

Tachinidae

Mycetophilidae

Anthomyiidae

Crambidae
Lycaenidae

Tenthredinidae

Tephritidae

Uraniidae
Lymantriidae

Cyclidia

Phoridae

Tetragnathidae

Dolichopodidae

Tortricidae

Coccinellidae

Termessa

Chironomus
Eristalis

Cricotopus

Parasteatoda

Culex

Moundinothrips

Eriophora

Hermetia

Drosophila

Gaurax

Opius

Nostima

Nephila

Reticulitermes
Pheidole

Chorizopes

Aedes

Polypedilum

Prenolepis

Frankliniella

Halpe

Mythimna

Phytomyza

Bradysia

Proboscidocoris

Simulium

Psychoda

Tanytarsus

Loxoblemmus

Scaptomyza

Pieris

Hylyphantes

Ochlerotatus

Nanocladius

Trochosa

Greenidea

Carpelimus

Dichaetomyia

Scatella

Graphomya

Nilodorum

Thrips

Ebelingia

Gasteracantha

Homaloxestis

Dicranosepsis

Megalurothrips

Phlogotettix

Mycetophila

Ctenosciara

Emmesomyia

Taraka

Athalia

Thagria

Delia

Stegana

Urelliosoma

Ablabesmyia

Eversmannia

Aphis

Procladius

Chlorops

Baccha Somena

Cyclosa

Cyclidia

Sphaerophoria

Megaselia

Musca

Leucauge

Tetragnatha

Thinophilus

Takecallis

Chrysso

Bactra

Harmonia

Sarcophaga

Paratalanta

  1.0
 15.9
 60.4
135.0
239.0
373.0
536.0

−3

−2

−1

 0
 1
 2
 3

 

Nu
m

be
r o

f O
TU

s
Nodes

CL EC JC MP NF

BB
CL

EC
JC

M
P

root

ArthropodaInsecta Arachnida

Hemiptera

Lepidoptera

Araneae

Diptera

Hymenoptera Thysanoptera
Coleoptera

Isoptera
Orthoptera

Cicadellidae

Aphididae

Linyphiidae

Erebidae

Chironomidae

Syrphidae

Sarcophagidae

Theridiidae

Culicidae

Formicidae

Thripidae Elateridae

Sciaridae

Araneidae

Stratiomyidae

Drosophilidae

Chloropidae

Braconidae

Ephydridae

Nephilidae

Rhinotermitidae

Hesperiidae

Noctuidae

Agromyzidae

Miridae

Simuliidae

Psychodidae

Gryllidae

Pieridae

Salticidae

Lycosidae

Greenideidae

Staphylinidae

Muscidae

Thomisidae

Lecithoceridae

Sepsidae

Tachinidae

Mycetophilidae

Anthomyiidae

Crambidae
Lycaenidae

Tenthredinidae

Tephritidae

Uraniidae
Lymantriidae

Cyclidia

Phoridae

Tetragnathidae

Dolichopodidae

Tortricidae

Coccinellidae

Termessa

Chironomus
Eristalis

Cricotopus

Parasteatoda

Culex

Moundinothrips

Eriophora

Hermetia

Drosophila

Gaurax

Opius

Nostima

Nephila

Reticulitermes
Pheidole

Chorizopes

Aedes

Polypedilum

Prenolepis

Frankliniella

Halpe

Mythimna

Phytomyza

Bradysia

Proboscidocoris

Simulium

Psychoda

Tanytarsus

Loxoblemmus

Scaptomyza

Pieris

Hylyphantes

Ochlerotatus

Nanocladius

Trochosa

Greenidea

Carpelimus

Dichaetomyia

Scatella

Graphomya

Nilodorum

Thrips

Ebelingia

Gasteracantha

Homaloxestis

Dicranosepsis

Megalurothrips

Phlogotettix

Mycetophila

Ctenosciara

Emmesomyia

Taraka

Athalia

Thagria

Delia

Stegana

Urelliosoma

Ablabesmyia

Eversmannia

Aphis

Procladius

Chlorops

Baccha Somena

Cyclosa

Cyclidia

Sphaerophoria

Megaselia

Musca

Leucauge

Tetragnatha

Thinophilus

Takecallis

Chrysso

Bactra

Harmonia

Sarcophaga

Paratalanta

  1.0
 15.9
 60.4
135.0
239.0
373.0
536.0

−3

−2

−1

 0
 1
 2
 3

 

Nu
m

be
r o

f O
TU

s

Nodes

CL EC JC MP NF

BB
CL

EC
JC

M
P

L
og

2 
ra

tio
 m

ed
ia

n 
pr

op
or

tio
ns



Figure S9. Taxonomic tree of all OTUs in figure 6. 
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Table S1. Tags and primers used, and a table of tag combinations used for each sample (underlined), spread over two Illumina libraries. Both forward 
and reverse primers were tagged with sample-identifying tags. 

Lib1 Lib2 primer  Tagged_primer Forward 
CL01 JC01 F1-R1  Tag1 CCTAAACTACGGGGTCAACAAATCATAAAGATATTGG 
CL02 JC02 F1-R2  Tag2 GTGGTATGGGAGTGGTCAACAAATCATAAAGATATTGG 
CL03 JC03 F1-R3  Tag3 TGTTGCGTTTCTGTGGTCAACAAATCATAAAGATATTGG 
CL04 JC04 F1-R4  Tag4 ACAGCCACCCATCGAGGTCAACAAATCATAAAGATATTGG 
CL05 JC05 F1-R5  Tag5 GTTACGTGGTTGATGAGGTCAACAAATCATAAAGATATTGG 
CL06 JC06 F1-R6  Tag6 TACCGGCTTGCATGCGAGGTCAACAAATCATAAAGATATTGG 
CL07 JC07 F2-R1    
CL08 JC08 F2-R2  Tagged_primer Reverse 
CL09 JC09 F2-R3  Tag1 CCTAAACTACGGGGNGGRTANANNGTYCANCCNGYNCC 
CL10 JC10 F2-R4  Tag2 GTGGTATGGGAGTGGNGGRTANANNGTYCANCCNGYNCC 
CL11 JC11 F2-R5  Tag3 TGTTGCGTTTCTGTGGNGGRTANANNGTYCANCCNGYNCC 
CL12 JC12 F2-R6  Tag4 ACAGCCACCCATCGAGGNGGRTANANNGTYCANCCNGYNCC 
CL13 EC01-2-3 F3-R1  Tag5 GTTACGTGGTTGATGAGGNGGRTANANNGTYCANCCNGYNCC 
CL14 EC04 F3-R2  Tag6 TACCGGCTTGCATGCGAGGNGGRTANANNGTYCANCCNGYNCC 
CL15 EC05 F3-R3    
CL16 EC06 F3-R4  Adapter_link_tag Forward 
BB01 EC07 F3-R5  Tag1 CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCTAAACTACGG 
BB02 EC08 F3-R6  Tag2 CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTGGTATGGGAG 
BB03 EC09 F4-R1  Tag3 CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGTTGCGTTTCT 
BB04 EC10 F4-R2  Tag4 CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACAGCCACCCAT 
BB05 NF01 F4-R3  Tag5 CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTTACGTGGTTGATGA 
BB06 NF02-3 F4-R4  Tag6 CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTACCGGCTTGCATGCGA 
BB07 NF04 F4-R5    
BB08 NF05 F4-R6  Adapter_link_tag Reverse 
BB09 NF06 F5-R1  Tag1 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCCTAAACTACGG 
BB10 NF07 F5-R2  Tag2 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGTGGTATGGGAG 
MF01 NF08 F5-R3  Tag3 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTGTTGCGTTTCT 
MF02 NF09 F5-R4  Tag4 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTACAGCCACCCAT 
MF03 NF10 F5-R5  Tag5 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGTTACGTGGTTGATGA 
MF04 NF11 F5-R6  Tag6 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTACCGGCTTGCATGCGA 
MF05 NF12 F6-R1    
MF06 NF13 F6-R2    
MF07 NF14 F6-R3    
MF08 NF15 F6-R4    
MF09 NF16 F6-R5    
MF10 - F6-R6    



Table S2. Multiple pairwise Welch’s t tests for Chao2 estimates. P values adjusted by Bonferroni. 
Codes for land-cover types as in Figure 1. 
 
 CL EC JC MP NF 
BB 0.0432 0.1913 0.7236 0.1022 0.006* 
CL  0.00075* 0.0973 0.5307 0.0973 
EC   0.1420 0.0455* 0.00075* 
JC    0.1400 0.0105* 
MP         0.5242 

 
 
 
Table S3. mvabund compositional comparisons. We used mvabund to test whether arthropod 
species compositions in native forests and mixed plantations are significantly different from each 
other and from the other land-cover types in the study region. After Bonferroni correction, all 
comparisons were significantly different at p < 0.01. Codes for land-cover types as in Figure 1. 
  

MP BB CL EC JC 
NF 0.00125 0.00125 0.00125 0.00125 0.003 
MP  0.001 0.001 0.001 0.001 
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