
1 
 

  

 

Investigating the diagnostic potential of circulating tumour DNA 

(ctDNA) as a non-invasive liquid biopsy: from research to clinic. 

 

 

 

Davina Gillian Gale BSc. (Hons) 

 

 

 

 

PhD by Publication 

University of East Anglia 

Faculty of Medicine and Health Sciences  

March 2019 

 

 

 

This copy of the thesis has been supplied on condition that anyone who consults it is understood to 

recognise that its copyright rests with the author and that use of any information derived therefrom 

must be in accordance with current UK Copyright Law. In addition, any quotation or extract must 

include full attribution.  



2 
 

 

 



3 
 

Abstract 

 

Recent advances in oncology have led to the development of targeted therapies, enabling 

patients to be treated based on their tumour molecular profile. Whilst tumour biopsies are 

routinely used for profiling, they can be highly invasive, may not fully reflect the 

heterogeneity present within the tumour mass, or accurately represent the genomic profile 

as the tumour evolves over time. Recent interest has focussed on the use of circulating 

tumour DNA (ctDNA) as a non-invasive ‘liquid biopsy’. Cell-free ctDNA, released from 

cancer cells, is highly fragmented, and carries the same genetic modifications present in the 

originating tumour, so has potential to be an exquisitely specific biomarker.  

This thesis will focus on research I have performed over the last decade to investigate the 

diagnostic potential of ctDNA. I assessed the hypothesis that ctDNA is a clinically useful 

biomarker, able to correlate with disease burden, monitor tumour dynamics, and be used 

to guide treatment.  I developed novel digital PCR and next generation sequencing (NGS) 

assays for the highly sensitive detection of ctDNA, and led the development and analytical 

validation of a clinical diagnostic ctDNA test to ISO15189:2012 regulatory standards, which 

is now being used in the clinic to stratify advanced non-small cell lung cancer patients to 

treatment. This thesis involves critical analysis of 14 publications that I have co-authored 

investigating the use of ctDNA in high-grade serous ovarian, breast and lung cancer, and 

the development of novel methods to improve sensitivity of detection. 

When I started this work in 2009, very little was known about the clinical relevance of 

ctDNA. Since this time, work by myself and others has led to an explosion of interest in this 

area, leading to significant advances in the use of ctDNA for cancer diagnosis, treatment 

selection, patient monitoring and detection of minimal residual disease. 
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Chapter 1: Introduction 

 
1.1: Cancer and tumour heterogeneity 
 

Cancer is the second leading cause of mortality worldwide, responsible for an estimated 9.6 

million deaths in 2018 (15). It is caused by abnormal cell growth and loss of normal control 

mechanisms, which result in uncontrolled cell proliferation and formation of a tissue mass, 

or tumour. A malignant tumour can invade normal adjacent tissue, and spread or 

metastasize to other parts of the body, eventually leading to death. The characteristic 

hallmarks of cancer include the acquisition of multiple biological processes during tumour 

development, including angiogenesis, the growth of new blood vessels that supply 

nutrients to tumour cells, and genome instability (16,17). Cancer is a heterogenous group 

of over 200 different diseases, which may be divided into five broad subtypes - carcinomas, 

lymphomas, leukaemias, brain tumours and sarcomas, depending on cell of origin. To 

assess the advancement of disease, cancer is often classified into different stages, with 

Stage I involving a small, localised tumour, Stage II involving larger tumour growth and 

possible spread to the lymph nodes, Stage III involving spread to additional tissues and 

lymph nodes, and Stage IV where the cancer has metastasized to additional organs or other 

parts of the body. The earlier the cancer is detected and treated, the greater the chance of 

patient survival. In ovarian cancer, the 5-year survival rate is 90% at Stage I, compared to 

just 3.5% if diagnosed at Stage IV (18). 

Cancer is a disease of the genome, caused by germline and somatic mutations in the 

genetic sequence (19). Somatic mutations may occur by substitution of single DNA bases, 

resulting in single nucleotide variants (SNVs) or point mutations, by insertion or deletion of 

bases (indels), or by duplication, deletion, inversion or translocation of large chromosomal 

regions (structural variants, SVs). Alternatively chromosomal regions may be amplified or 

deleted, resulting in somatic copy number alterations (SCNAs). Furthermore, epigenetic 

modifications, such as DNA methylation or histone modifications, can affect chromatin 

structure and  gene expression patterns, which are then replicated during cell division. 

Mutations may arise following exposure to carcinogens such as tobacco smoke, radiation or 

ultraviolet sunlight, or may be acquired as a failure of the DNA repair process during DNA 

replication. The probability of errors occurring are low, but accumulate during the ageing 

process. Many of these mutations are silent, or “passenger” mutations, with no 
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physiological effect, but other “driver” mutations may incur a selective advantage, driving 

cell division and growth, thereby accumulating additional somatic mutations at a higher 

rate. Certain driver mutations are prevalent in specific cancers. For example, BRAF p.V600E 

mutations are common in melanoma (corresponding to a single point mutation in the BRAF 

gene resulting in a valine (V) to glutamic acid (E) amino acid substitution at codon 600), 

whereas mutations in TP53, a tumour-suppressor gene, are more ubiquitous, found in the 

majority of cancers, with mutations occurring throughout the gene, predominantly in exons 

5-8. 

In 1990, Vogelstein proposed that tumourigenesis occurs by an evolutionary process 

resulting from sequential accumulation of mutations in ‘oncogenes’, where mutations lead 

to a gain-of-function which drives the oncogenic process, and in ‘tumour suppressor 

genes’, where mutations lead to loss-of-function (20). Tumour mutation burden (TMB) in 

the exome [corresponding to the number of somatic mutations in expressed exonic regions 

of the genome per megabase (Mb)] has been found to differ in different cancer types 

(Figure 1.1).  The carcinogen-induced cancers melanoma and lung cancer have the highest 

mutational burden, induced by UV irradiation and tobacco respectively. Recent evidence 

suggests that TMB may predict clinical response to immune checkpoint inhibitors across 

different cancers, with patients with higher somatic TMB associated with better overall 

survival (21).   

Different selective pressures can be exerted by the tumour microenvironment, depending 

on the location of tumour cells. As a result, tumours evolve and can be highly 

heterogeneous, composed of different subclones with different genomic profiles within a 

single tumour mass, or in different metastatic deposits. Treatment with different drugs can 

also drive tumour evolution, and may result in the acquisition of additional mutations 

leading to the development of treatment resistance.  

1.2:  Targeted therapies, ‘personalised medicine’ & companion 

diagnostics 

In recent years, knowledge of the tumour molecular profile has led to the development of 

targeted therapies which are effective in patients with specific somatic mutations. 

Appendix 5 shows a list of targeted therapies approved by the US Food and Drug 

Administration (FDA) for solid malignancies, together with their molecular targets (22). 

Vemurafinib, for example, is beneficial in melanoma patients with a BRAF p.V600E 

mutation, and tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, are effective  
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Figure 1.1:  Total frequency of somatic mutations in exome of different cancer types per megabase (Mb). 

Dot: tumour-normal pair. Tumour types ordered by median somatic mutation frequency. Figure and Figure Legend adapted  

from Lawrence et al.(23)
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in non-small cell lung cancer (NSCLC) patients with known activating EGFR exon 19 deletions or 

p.L858R mutations. In 50% of NSCLC patients, TKI resistance is caused by an EGFR p.T790M 

mutation, which affects the ATP binding pocket of the EGFR kinase domain (24).  Third generation 

TKIs, such as osimertinib, have now been developed which are effective in patients with p.T790M 

resistance mutations.  Tailoring treatment has led to the concept of ‘personalised medicine’ or 

‘precision medicine’, which takes into account individual variability to stratify patients to the most 

appropriate treatment based on their tumour molecular profile. Where a drug treatment is available 

for a patient with a specific tumour mutation, the mutation is considered ‘actionable’, with potential 

downstream clinical benefit for that patient. 

In recent years, different ‘companion diagnostics’ (CDx) tests, essential for the safe and effective use 

and prescription of a particular drug, and ‘complementary diagnostics’, which aid the therapeutic 

decision process, have been developed to determine which patients would benefit from a particular 

drug treatment. A list of CDx tests and devices which have been approved by the FDA is given in 

Appendix 6 (25). Diagnostic test methods include PCR (polymerase chain reaction) to amplify and 

sequence specific targeted regions of interest, immuno-histochemistry (IHC), using antibody staining 

to visualise the presence of proteins of interest, and fluorescent in situ hybridisation (FISH), using 

fluorescent probes that bind to complementary chromosomal regions of interest to assess 

chromosomal breakpoints.  

1.3: Clinical diagnostic assay development 
 

The ideal clinical diagnostic assay has high sensitivity and specificity. To calculate these, for example 

when using a test to identify patients with and without a health condition, there are four possible 

outcomes to be taken into consideration (Figure 1.2), involving the identification of: 

a) true positives (TP), where the test correctly identifies a patient has the condition; 

b) false positives (FP), where the patient does not have the condition, but the test is positive; 

c) true negatives (TN), where the patient does not have the condition, and the test is negative; 

d) false negatives (FN), where the patient has the condition, but the test is negative. 

The sensitivity of a clinical test is calculated as TP/(TP + FN). Specificity refers to the ability of the test 

to correctly identify individuals without the condition, calculated as TN/(TN + FP). The Positive 

Predictive Value (PPV) determines how likely it is that a patient has the condition given that the test 

result is positive [TP/(TP + FP)], with the Negative Predictive Value (NPV) calculated as TN/(TN + FN). 

The LoD90 of a test is the limit of detection where the test analyte can be detected 90% of the time. 
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Figure 1.2: 2x2 table for reporting results comparing a test outcome with a reference 

standard. TP: true positive; FP: false positive; TN: true negative; FN: false negative. Table and 

Table Legend adapted from US FDA statistical guidelines (26) 

 

To ensure patient safety, a diagnostic test must be performed to rigorous quality standards to 

ensure results are reliable and can be used for clinical decision-making. Prior to implementation in 

an NHS (UK National Health Service) or clinical diagnostic lab, a research assay must be performed to 

high quality management standards, such as ISO15189:2012, the International Organisation for 

Standardization framework for medical laboratories. ISO requirements include using well-

maintained equipment, ensuring staff are adequately trained, standard operating procedures are 

version-controlled, and assay, computational and data analysis processes are fully validated.  In the 

US, the Centers for Medicare & Medicaid Services (CMS) regulates laboratory testing to CLIA (Clinical 

Laboratory Improvement Amendments) standards, requiring clinical laboratories to be certified 

before human samples can be accepted for diagnostic testing (27). 

Clinical diagnostic test validation involves three stages - analytical validation, clinical validation, and 

the assessment of clinical utility. Analytical validation verifies a test is suitable for its intended use, 

and involves in-depth analysis of the analytical performance of the assay (eg. sensitivity, specificity, 

LoD90 etc.) to ensure the reliability of analytical test results. Clinical validation assesses how 

consistently a test is able to detect or predict diagnostic information in the target patient 

population. Finally, clinical utility assesses whether the test can be used to improve clinical outcomes 

for a patient. 
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Currently the majority of clinical cancer diagnostic tests require tumour biopsy material for analysis. 

Whilst knowledge of a cancer patient’s tumour molecular profile can help select appropriate 

treatment, sampling of a tissue biopsy is highly invasive and expensive. In addition, a single biopsy 

may not fully reflect the heterogeneity present within the tumour mass or metastatic deposits, or 

accurately represent the genomic profile as the tumour evolves over time or in response to 

treatment, representing only a single ‘snapshot’ in time. Recently, much interest has focussed on 

circulating tumour DNA (ctDNA) as a non-invasive ’liquid biopsy’. With its ease of collection, ctDNA 

has potential to enable multiple repeat sampling and more effectively guide treatment decisions as 

the tumour evolves (28). However, there are considerable technical challenges associated with this 

approach, as detailed in the next sections.  

1.4: Overview of ctDNA 

Since 1948, it has been known that fragmented DNA is present in blood (29). Levels were shown to 

be higher in serum from cancer patients compared to healthy controls (30), and to partly originate 

from cancer cells (31). In 1994, circulating tumour DNA carrying tumour-specific mutations in the 

KRAS gene, present as a sub-fraction of the total cell-free DNA (cfDNA), was first identified in plasma 

from pancreatic cancer patients (32). This opened up the possibility to use plasma as a non-invasive 

source of diagnostic information to guide cancer treatment. The precise mechanism of release of 

cfDNA into the bloodstream is relatively unknown, although believed to be largely due to apoptosis 

(programmed cell death), in addition to necrosis (premature cell death) and active secretion from 

cells in the tumour microenvironment, haemopoietic and immune system and other organs (33). 

cfDNA may be free, or associated with nucleosomes or extracellular vesicles, such as exosomes (34). 

Cell-free and tumour-specific DNA has been detected in other bodily fluids, including urine, saliva, 

ascites and cerebrospinal fluid (CSF), and foetal DNA is known to be present in maternal plasma 

(28,35).  ctDNA, originating from a tumour, carries the same genetic and epigenetic modifications 

present in that tumour, as depicted in Figure 1.3 (28). For this reason, ctDNA has potential to be an 

exquisitely-specific biomarker for use in cancer diagnosis, treatment selection, monitoring, and 

detection of minimal residual disease (MRD). 

The half-life of cfDNA in blood is believed to be short, between 16 – 150 minutes, and may be 

cleared from the bloodstream and excreted by the kidneys into urine, or degraded by macrophages 

in the liver and spleen (28,36). Plasma cfDNA is highly fragmented, with a  mode around 167bp in 

length, which corresponds to the length of DNA wrapped around a ‘chromatosome’ - a nucleosome 
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Figure 1.3: Origins and types of alterations in circulating tumour DNA (ctDNA).  Figure and Figure Legend adapted from Wan et al. (28)
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histone core (~147bp), plus a 20bp linker region associated with histone H1 (37). Fragment 

lengths of 167bp are believed to largely result from caspase-dependent endonuclease 

cleavage during apoptosis (38). Fragmentation patterns of cfDNA in blood show a distinct 

10bp periodic ladder, possibly caused by nuclease-cleavage at exposed sites at each turn of 

the DNA helix. In urine, cfDNA has a wide range of fragment sizes including very short 

fragments, possibly due to its harsh nuclease environment (28,39).  

Recent evidence suggests that cfDNA and tumour-specific DNA differ in size, with ctDNA 

being shorter than non-mutant DNA centred around 147bp, corresponding to the length of 

DNA around the protected nucleosome, minus the linker region (12–14,37,38,40). The 

reasons for this shortening are unclear, although may result from modifications in 

chromatin organisation and compaction (41,42).  Evidence suggests that cfDNA 

fragmentation may not be a random process, with specific genomic signatures present at 

fragment ends (43,44). Mice with a DNAse1l3 deletion (a DNase1-like nuclease which 

digests DNA in chromatin) have been shown to have aberrations in the fragmentation 

pattern, with an increase in longer nucleosomal fragments (44). In addition, these mice 

develop antibodies to chromatin and DNA, indicating that the enzyme may be involved in 

autoimmunity. Deletion of both DNAse1 and DNAse1l3 genes result in an increase in 

shorter fragment sizes <120bp.  

1.5:  Development of digital PCR for ctDNA analysis 
 

Early research into ctDNA largely focussed on analysis of key single point mutations in 

driver genes that promote tumourigenesis. The challenge has been that ctDNA may only 

constitute a small fraction of the total cfDNA [down to <0.1% allele fraction (AF)], such that 

we can be searching for a ‘needle in a haystack’. As a result, highly sensitive methods are 

required to detect and quantify mutant alleles. Methods historically  used include 

quantitative PCR (qPCR), allele-specific PCR and ARMS-PCR (amplification-refractory 

mutation system), using fluorescent probes for ‘relative’ quantification using standard 

reference DNA to estimate levels (45,46). Digital PCR (dPCR) was subsequently developed, 

which enables ‘absolute’ quantification of tumour-specific DNA by partitioning DNA 

molecules into multiple wells, microfluidic chambers or water-in-oil droplets, and 

performing qPCR using fluorescent probes to mutant or wild-type sequences. Unlike a 

single-tube qPCR reaction, where rare mutant molecules cannot be detected amongst high 

levels of background wild-type DNA, partitioning reduces background levels, enabling 

sensitive detection (47). BEAMing is a modified dPCR method that combines bead-based 
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emulsion PCR and flow cytometry, using allele-specific fluorescent probes. In 2008, Diehl et 

al. used BEAMing to monitor tumour dynamics in 18 metastatic colorectal cancer (mCRC) 

patients (36), demonstrating for the first time that ctDNA had increased sensitivity 

compared to the protein biomarker CEA (carcinoembryonic antigen), and was detected in 

78% patients compared to 56% for CEA. ctDNA was not detected post-surgery in four 

patients who did not progress over time, but was detected in patients who later progressed 

(Figure 1.4).  

 

       A      

B  

      

Figure 1.4: Difference in recurrence-free survival in colorectal cancer patients with 

detected versus undetected post-operative (A) ctDNA (p=0.006); (B) CEA 

(carcinoembryonic antigen, p=0.03). Mantel-Cox log-rank test; d: days. Figures and Figure 

Legend adapted from Diehl et al. (36) 
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Bettagowda et al. assessed ctDNA levels in 640 patients with different types of cancer, 

using BEAMing or a PCR-ligation reaction involving hybidisation of fluorescent mutant 

probes (48,49). Whilst the numbers of patients with each cancer type was low, ctDNA was 

detected in 75% of patients with advanced bladder, colorectal, gastroesophageal, ovarian, 

pancreatic, breast, melanoma, hepatocellular and head and neck cancer, yet in <10% of 

glioma patients and <50% of patients with thyroid, renal, prostate and medulloblastoma 

cancer (Figure 1.5). The lower levels detected in brain cancer may possibly reflect the 

influence of the blood brain barrier, although in some cases and subtypes this is broken 

down during disease progression. ctDNA levels correlated with disease stage, as expected if 

ctDNA reflects tumour burden.  In patients with localised Stage I-III colorectal, 

gastroesophageal, pancreatic and breast cancer, ctDNA was detected in 49% - 78% of 

patients, compared to 86%-100% patients with Stage IV disease (Figure 1.6A).  In analysis of 

all cancer types, ctDNA was detected in 47% of Stage I patients, compared to 55%, 69% and 

82% of patients with Stage II-IV cancer respectively (Figure 1.6B,C). 

1.6:   Development of next generation sequencing for ctDNA analysis 

Over the years, different sequencing methods have been developed to assess the sequence 

of DNA bases and identify tumour-specific mutations. Original methods include dideoxy, or 

‘Sanger’ sequencing, which incorporates fluorescently-tagged chain-terminating 

dideoxynucleotides during in vitro DNA replication to determine the sequence of bases 

(50,51). More recently, next generation sequencing (NGS) methods have been developed 

which enable high-throughput ‘massively parallel sequencing’ (52,53). The most commonly 

used method is a ‘sequencing-by-synthesis’ method by Illumina, which uses reversible dye-

terminators and clonal amplification to determine the sequence of bases in a library of 

fragmented adaptor-ligated DNA molecules which are clustered on a flow cell (53). 

Different DNA library preparation methods can be used to assess sequences on different 

scales. Whole genome sequencing (WGS, ~30x coverage) can be used to sequence the 

entire genome (10),  although would be prohibitively expensive as a clinical assay. Shallow 

whole genome sequencing (sWGS) is a cost-effective alternative, using low depth 

sequencing (~0.1 – 0.4x coverage) to assess SCNAs on a genome-wide scale (54,55). Whole 

exome sequencing (WES) can be performed to capture and sequence exonic regions which 

make up ~1% of the genome (4), and targeted sequencing can be used for high-depth 

sequencing of specific regions of interest (3). 
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Figure 1.5: ctDNA levels in patients with different advanced cancers (A). Frequency of 

cases where ctDNA was detected (%). (B). Quantification of mutant fragments per 5 mL 

plasma. Error bars: 95% bootstrapped confidence interval of the mean. Figure and Figure 

Legend adapted from Bettegowda et al. (48) 
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Figure 1.6: Levels of ctDNA detected at different stages of disease. Frequency of cases 

with ctDNA detected in (A) localised (Stage I-III) and metastatic (Stage IV) colorectal, 

gastroesophageal, pancreatic and breast cancer. (B) in Stage I-IV (C) Quantification of 

mutant fragments/5 mL plasma in Stage I-IV patients with 16 cancer types. Error bars: 

standard error of mean. Figure and Figure Legend adapted from Bettegowda et al. (48) 
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The identification of the presence of foetal DNA in maternal plasma led to seminal work by 

Professor Dennis Lo to analyse cell-free DNA for non-invasive prenatal testing (NIPT) for the 

detection of trisomy 21 (Down’s syndrome) and other aneuploidies (56). The use of a non-

invasive blood test has distinct advantages, given the fact that amniocentesis and chorionic 

villus sampling, diagnostic methods previously routinely used in the clinic, are invasive and 

may increase the risk of miscarriage by ~1%.  Advances have led to the recent widespread 

implementation of NGS in the clinic to analyse cfDNA for NIPT to assess the foetal fraction  

present in maternal plasma and determine the presence of chromosomal abnormalities 

(57). 

In NIPT, the foetal fraction can be relatively high, with limits for accurate detection of 

aneuploidies at approximately 4% (58). In oncology, the situation is more challenging, given 

the low fraction of ctDNA, particularly in early stage disease. Digital PCR is a sensitive 

method, but is limited to analysis of single or a few loci. If the tumour evolves, resulting in 

loss of the mutation in a minor subclone, this may in theory provide false information to a 

clinician. NGS has the potential to provide more comprehensive profiling of the tumour 

genomic landscape in ctDNA by monitoring multiple mutations in parallel. This is 

challenging, however, given the limited amounts of fragmented DNA in plasma, and high 

levels of background noise. To circumvent this, we developed TAm-Seq (tagged amplicon 

deep sequencing), a novel amplicon-based targeted sequencing method for the 

identification of low frequency mutations in plasma by sequencing large genomic regions 

encompassing key cancer genes. This work, discussed in Chapter 3, demonstrated for the 

first time that NGS can be used to detect and monitor multiple low frequency mutations in 

parallel in ctDNA (3). 

1.7:   Thesis - Aims and objectives 
 

This thesis will focus on research I performed between 2009 and 2019 to investigate the 

diagnostic potential of ctDNA as a non-invasive liquid biopsy, and assess the hypothesis 

that ctDNA is a clinically useful biomarker able to monitor tumour dynamics, correlate with 

disease burden, and be used to guide treatment. It will include research I have performed 

to develop dPCR and NGS methods for the highly sensitive detection of ctDNA (Chapter 2, 

3), the development and analytical validation of clinical diagnostic tests to ISO15189:2012 

regulatory standards for patient benefit (Chapter 4), and research into the ability to use 

ctDNA for molecular stratification, monitoring and the earlier detection of cancer (Chapters 
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2, 5). In the next Chapter, I will discuss work I have published using dPCR to assess levels of 

tumour-specific DNA in the plasma of patients with high-grade serous ovarian cancer. 
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Chapter 2:   Development of digital PCR for ctDNA analysis in 

ovarian cancer 

2.1: High-grade serous ovarian cancer 
 

High-grade serous ovarian carcinoma (HGSOC) is the most common type of ovarian cancer, 

an aggressive disease with poor prognosis, characterised by ubiquitous TP53 mutations and 

a large number of copy number aberrations (59–62). Approximately 13% of HGSOC cases 

are caused by germline mutations in BRCA1 and BRCA2 genes, resulting in deficiencies in 

the homologous recombination DNA repair pathway (60).  Patients are often treated with 

platinum-based chemotherapy, and may initially have a good response, but invariably 

relapse. Women relapsing within 6 months are considered to have ‘platinum-resistant’ 

disease, and those who relapse >12 months after initial treatment are considered 

‘platinum-sensitive’. Poly ADP ribose polymerase (PARP) inhibitors, such as olaparib, have 

recently been developed which are effective in mutant BRCA1/2 patients by preventing 

single-stranded DNA break repair, resulting in the accumulation of double-stranded DNA 

(dsDNA) breaks and tumour cell death. 

Unfortunately, most HGSOC patients present with late-stage disease. Cancer antigen 125 

(CA-125) is a serum glycoprotein routinely used in clinical practice to monitor treatment 

response in HGSOC and assess pelvic masses, but unfortunately has relatively low 

specificity, as it is expressed in normal tissues and other benign conditions. There is a need 

for biomarkers with higher sensitivity and specificity. In the next section I will discuss work I 

published using dPCR to assess: [1] mutant TP53 ctDNA as a treatment response biomarker 

in HGSOC (1); and [2] an NF1 deletion in an HGSOC patient to determine if subclonal 

populations were present prior to treatment (2). 

 
2.2:    Parkinson*, Gale* et al., PLoS Medicine, 2016 (1) 
 
2.2.1: Aims 
 

I co-led this study to test the hypothesis that mutant TP53 ctDNA is a clinically useful 

biomarker in HGSOC by comparison with CA-125 and disease volume, to establish whether 

dPCR can be used to monitor ctDNA dynamics, and assess whether ctDNA can be used as 
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an early response marker and predict time to progression (TTP). An overview of the 

workflow is given in Figure 2.1. As >97% patients have a TP53 mutation, HGSOC is an ideal 

cancer in which to study ctDNA dynamics (59,60).  

2.2.2:   Results 
 

Retrospective analysis was performed on 318 serial plasma samples from 40 HGSOC 

patients undergoing heterogeneous chemotherapy treatment. TP53 mutations were 

identified in formalin-fixed paraffin-embedded (FFPE) tumour DNA. To assess both the 

TP53 mutant allele fraction (TP53MAF) in ctDNA and total cfDNA levels, I designed and 

validated 31 unique patient-specific dPCR assays, using dual-labelled fluorogenic probes to 

wild-type and mutant sequences. The number of amplifiable copies/mL (AC/mL) of plasma 

was calculated, with a limit of detection (LoD) at ≥20 AC/mL. CA-125 levels were assessed 

using a two-site sandwich immunoassay, with ≤30 IU/mL defined as the institutional upper 

limit of normal (ULN). 3D volumetric analysis was performed using CT (computed 

tomography) and positron emission tomography (PET) scans. Tumour responses were 

evaluated using RECIST v1.1 (Response Evaluation Criteria in Solid Tumours) criteria (63), to 

assess whether there was progressive disease (PD), complete response (CR), partial 

response (PR) or stable disease (SD) since previous scans. 

The two most common mutations were TP53 p.R175H and p.R273H, each identified in four 

patients (20% cases). ctDNA was detected in 82% (42/51) of treatment courses (defined as 

the period of a specific treatment) in relapsed patients, and in 86% (6/7) untreated newly 

diagnosed Stage IIIC/IV cases. CA-125 was detected in 100% of relapsed and untreated 

cases. Analysis showed that the median pre-treatment TP53MAF was 8% in 51 relapsed 

treatment courses, 0.7% in newly diagnosed cases, and 0.2% in 4 patients after primary 

surgery. 

2.2.3: Monitoring tumour dynamics using TP53 ctDNA 
 

To address whether dPCR can be used to monitor ctDNA kinetics, TP53MAF was plotted 

over time during the course of treatment, together with CA-125 and imaging response 

data.  In the majority of cases ctDNA tracked the course of disease, but with a more rapid 

decrease in TP53MAF compared to CA-125 (Figure 2.2). The median time to nadir (the 
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Figure 2.1: Schematic workflow for mutant TP53 ctDNA analysis in high-grade serous ovarian cancer (HGSOC) patients  

FFPE: formalin-fixed paraffin-embedded; CT: Computed tomography: PD: Progressive disease; SD: Stable disease. Figure and Figure Legend adapted 

from Parkinson*, Gale* et al. (1)  
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lowest point during a treatment course) was 37 days for TP53MAF (median decrease: 98%), 

compared to 84 days for CA-125 (median decrease: 55%). Two cases showed discrepant 

TP53MAF and CA-125 kinetics, with ctDNA more accurately reflecting clinical data (Figure 

2.2D/E). Ascites fluid can accumulate in HGSOC patients, so drains may be inserted to 

remove excess fluid and improve patient comfort. Ascitic drainage appeared to reduce 

TP53MAF levels (Figure 2.2F). 

2.2.4: Correlation of TP53 ctDNA with tumour volume 
 

To assess if ctDNA levels correlated with tumour volume, volumetric analysis was 

performed on imaging data from 51 relapsed treatment courses from 32 patients, and from 

7 newly diagnosed cases. ctDNA was detected (at >20 AC/mL) in all relapsed courses with 

tumour volume >32cm3, with the exception of one patient with 50cm3 disease detected at 

15 AC/mL (Figure 2.3A). All patients with <20 cm3 tumour had <20 AC/mL ctDNA, with the 

exception of one case with 1cm3 tumour volume, but with large volume ascites. Analysis of 

35 treatment courses from relapsed cases showed that tumour volume positively 

correlated with TP53MAF (Pearson r = 0.59, p < 0.001), and this increased when those with 

ascites were excluded (Pearson r = 0.82, p < 0.001, Figure 2.3B). CA-125 only moderately 

correlated with tumour volume, with and without ascites (Pearson r = 0.52, p = 0.001, and r 

= 0.51, p = 0.016 respectively, Figure 2.3C).  

2.2.5: Assessment of TP53 ctDNA as an early response marker 
 

We next wanted to assess whether a decrease in ctDNA within one cycle of chemotherapy 

could predict time to progression. Analysis of relapsed patients in 32 courses of 

chemotherapy showed a median 74% decrease in TP53MAF from cycle 1 (C1) to pre-cycle 2 

(C2), compared to 18% for CA-125. The median TTP was 189 days. Pre-treatment TP53MAF, 

total cfDNA amplifiable copies, age, platinum sensitivity, number of lines of chemotherapy 

and disease volume were all shown to be significant predictors of TTP in univariate analysis 

(p < 0.05; Cox regression model).  In multivariate analysis, adjusted using Cox regression 

analysis, only pre-treatment TP53MAF [Hazard Ratio (HR) 1.03, 95% CI: 1.01 – 1.06, p = 

0.019] and platinum sensitivity (HR 0.43, 95% CI: 0.19 – 0.99, p = 0.048) remained 

significant.  

A Receiver Operating Characteristic (ROC) curve was plotted, providing a graphical display 

of the proportions of true and false positives at all possible pre-determined values to  
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Figure 2.2: Monitoring ctDNA and CA-125 kinetics during chemotherapy.  

(a) CA-125 (yellow), TP53MAF (blue) ctDNA kinetics, normalised to pre-treatment levels. (b) 

Time to nadir (lowest point during a treatment course) following start of chemotherapy for 

CA-125 and TP53MAF (p<0.01). (c-f) Illustrative cases of TP53MAF and CA-125 kinetics. (c) 

Faster time to nadir of TP53MAF compared to CA-125. (d-e) Discrepant TP53MAF and CA-

125 kinetics on third-line chemotherapy: (d) CA-125 decreased, TP53MAF increased, PD on 

imaging. (e) CA-125 decreased, TP53MAF increased, PD on imaging. (f) Effect of ascitic 

drainage, before start of treatment: TP53MAF fell 7.5% to 3.3% AF; CA-125 decreased 86 

IU/mL to 46 IU/mL. * New brain metastasis; PLD: Pegylated liposomal doxorubicin; PD: 

Progressive disease; SD: Stable disease; PR: Partial response; Figure and Figure Legend 

adapted from Parkinson*, Gale* et al. (1). 
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A 

 

B         C 

r = 0.82, p < 0.001    r = 0.51, p = 0.016 

 

 

Figure 2.3: Comparison of TP53 mutant allele fraction (TP53MAF) and tumour 

volume. (A) Ranked total tumour volume at start of treatment course (episode). 

Filled circles: cases with ≥20 AC/mL TP53MAF; Arrow: 32cm3 tumour volume; ND: 

not detected (B, C) Linear regression analysis of TP53MAF and CA-125 with tumour 

volume in 22 relapsed patients without ascites. R2adj: For log correlation 

calculations, zero values for TP53MAF and total cfDNA amplifiable copies were 

adjusted by addition of 0.001 times the lowest value in the series. Blue line: Best 

line of fit; Grey shading: 95% confidence intervals; Figure and Figure Legend 

adapted from Parkinson*, Gale* et al. (1)  
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determine the optimal cut-point for predicting which patients will relapse within 6 months. 

Six months was selected as a clinically significant endpoint (Figure 2.4).  Multivariate 

analysis was performed on 31 relapsed courses evaluable for response using the following 

covariates: TP53MAF decrease >60% from C1 to C2; CA-125 decrease >50%; age; 

performance status; platinum sensitivity; number of lines of chemotherapy; volume of 

disease and presence of ascites. A decrease in TP53MAF of >60% from C1 to C2 was the 

only independent predictor of TTP (HR 0.22, 95% CI: 0.07 – 0.67, p = 0.008). A decrease of 

≤60% was associated with poor prognosis and progression within 6 months with 71% 

sensitivity (95% CI 42% - 92%) and 88% specificity (95% CI: 64% - 99%). CA-125 did not show 

the same effect. (HR 0.86, 95% CI: 0.28 – 2.71, p = 0.802; 93% sensitivity, 29% specificity). In 

analysis of TP53MAF, specificity was improved further when patients with a recent ascites 

drain were excluded [75% sensitivity (95% CI: 43% - 95%); 100% specificity (95% CI 74% - 

100%)]. 

2.2.6: Discussion 
 

In HGSOC, there is a need for more specific biomarkers that correlate with tumour burden 

and can monitor treatment response. Whilst CA-125 may indicate a trend in response, it 

does not provide an accurate reflection of absolute tumour volume.  ctDNA represents an 

attractive alternative, as it is tumour-derived, highly specific, and has a much shorter half-

life. Swisher et al. analysed blood and peritoneal fluid from ovarian cancer patients with 

known TP53 tumour mutations, and detected mutations in plasma from 30% (21/69) 

patients, and in peritoneal fluid from 28/30 (93%) cases using a ligase-detection reaction 

(64). Otsuka identified TP53 mutations in just 16.7% (2/12) cases in pre-operative plasma 

(65). In Parkinson et al., I used dPCR to detect ctDNA in 82% of treatment courses and in 

86% newly diagnosed Stage IIIC/IV cases. This publication provides an important 

contribution to the literature, being the first to correlate ctDNA with tumour volume in 

HGSOC. ctDNA tracked the course of disease, with a more rapid decrease and dynamic 

range compared to CA-125. Response to chemotherapy was seen earlier with ctDNA, with a 

faster median time to nadir (37 v 84 days). A ≤60% decrease in TP53MAF between cycle 1 

and cycle 2 was associated with shorter TTP, indicating that mutant TP53 has potential as 

an early response marker in HGSOC. 

Tie et al. provided comparable data in analysis of 53 metastatic colorectal cancer patients, 

demonstrating early changes in ctDNA during chemotherapy predicted radiologic response, 

and was superior to CEA (66). A decrease of ≥10 fold in ctDNA pre-cycle 2 was associated  
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Figure 2.4: (A) Receiver Operating Characteristic (ROC) curve and (B) Kaplan-Meier plot 

for TP53MAF decrease after one cycle of chemotherapy, excluding courses with recent 

ascitic drains. HR: hazard ratio; CI: confidence interval. Figure and Figure legend adapted 

from Parkinson*, Gale* et al. (1)  
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with increased progression-free survival (PFS; median 14.7 v 8.1 months; HR = 1.87; p = 

0.266). Newman et al. were able to demonstrate that pre-treatment ctDNA levels from 9 

NSCLC patients significantly correlated with tumour volume, as assessed by CAPP-Seq (a 

sensitive NGS method discussed in Chapter 3),  CT and PET imaging [Linear regression; R2 = 

0.89, p = 0.0002, Figure 2.5 (67)]. ctDNA was detected in patients with 5 – 20 cm3 of 

disease, which is comparable with our data where ctDNA was detected in relapsed HGSOC 

patients with >32 cm3 disease, and in one patient with 1cm3 disease and high volume 

ascites. McEvoy et al. demonstrated that ctDNA correlated with tumour volume in patients 

with metastatic melanoma (68).  

Seminal work by Professor Charlie Swanton has focussed on the study of tumour 

heterogeneity, defining ‘truncal’ mutations carried in all tumour cells, and ‘branch’ 

mutations, not present in all, to explain the phylogenetic evolutionary process. Abbosh, 

Swanton et al. demonstrated that it is possible to track tumour branch mutations in ctDNA 

in patients with early stage lung cancer on the TRACERx trial, using patient-specific 

multiplex panels targeting clonal and subclonal SNVs (69). Tumour volume measured by CT 

correlated with mean clonal variant allele frequency (VAF) [Figure 2.6]. Linear modelling 

predicted a primary NSCLC tumour volume of 10 cm3 would give a 0.1% VAF. In Parkinson 

et al., we were able to demonstrate that the median TP53MAF/volume in patients without 

ascites was 0.08% per cm3 (IQR 0.02%–0.13% per cm3). Taken together, these publications 

provide good agreement with our results, and demonstrate that ctDNA correlates with 

tumour burden in these cancer types.  

The main limitation of the Parkinson et al. study is that it was a retrospective study, 

performed in a non-regulated laboratory, analysing a small cohort of heterogeneously-

treated patients who entered the clinic at different stages of disease. To validate these 

findings, further analysis is required in large prospective clinical trials receiving 

standardised treatment, using clinically validated assays performed to appropriate 

diagnostic regulatory standards.   

One of the key challenges was that analysis of mutant TP53 by dPCR required initial tumour 

sequencing, and bespoke design and validation of 31 unique patient-specific assays to 

assess ctDNA levels in plasma. This is both time consuming and expensive, compared to CA-

125 testing. For clinical implementation, pre-validated assays to commonly mutated 

regions such as TP53 p.R175H and p.R273H are available, but custom assays would need to 

be designed and validated to assay rarer mutations. For this reason, in the clinical setting,  
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Figure 2.5: Concordance between tumor volume and pre-treatment pg/mL ctDNA 

in 9 NSCLC patients. Linear regression analysis performed in non-log space; log-log 

axes and dashed diagonal line for display purposes only. Figures and Figure Legend 

adapted from Newman et al. (67) 
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Figure 2.6: (a) Tumour volume (cm3) correlation with mean clonal plasma VAF 

(n=37). Grey vertical lines: range of clonal VAF, red shading: 95% CI; LUAD = lung 

adenocarcinoma; LUSC = lung squamous cell carcinoma. (b) Model-based 

prediction of mean clonal VAF at hypothetical volumes ranging 1-100 cm3. Figure 

and Figure Legend adapted from Abbosh et al. (69) 

  



52 
 

dPCR is best suited to analysis of single driver mutations. dPCR analysis of multiple 

mutations requires the sample to be sub-divided into different assays, introducing sampling 

bias and limiting sensitivity of detection of low frequency mutant alleles. For clinical 

implementation, the ideal assay would be able to analyse multiple genomic regions in 

parallel without using additional sample material. For this reason, we developed TAm-Seq, 

a novel amplicon-based sequencing method, which can screen large genomic regions in 

parallel in the same assay, as discussed in Chapter 3.1 (3). 

 

2.3:  Schwarz et al., PLoS Medicine, 2015  (2) 
 

2.3.1:  Aims 
 

The aim of this study was to assess whether intra-tumour heterogeneity (ITH) in HGSOC is 

associated with development of disease resistance through clonal evolution and 

emergence of sub-clonal populations, and determine whether quantitative assessment of 

ITH could predict outcomes. Schwarz et al. developed the MEDICC (Minimal Event Distance 

for Intra-tumour Copy Number Comparisons) algorithm to quantitatively assess 

heterogeneity by analysis of copy number profiles generated by array CGH (comparative 

genomic hybridisation) and WGS (70). MEDICC was used to determine estimates of 

evolutionary distances between tumour samples and assess the degree of clonal expansion 

[CE] (2). I designed and validated dPCR assays to assess levels of an NF1 deletion and TP53 

mutation to determine if subclonal populations were present prior to treatment. 

2.3.2:    Results 
 

Copy number data was generated on temporally and spatially separated tumour samples 

(n=138) from 17 HGSOC patients undergoing platinum-based chemotherapy. MEDICC was 

used to reconstruct tumour evolution, demonstrating profiles grouped primarily by patient, 

rather than sensitive or resistant subtypes. Evolutionary distances indicated that in 8/9 

patients with ≥3 samples, tumours originated from different metastatic lesions, rather than 

from the same primary tumour, indicating that heterogeneity in these patients generally 

resulted from ongoing clonal evolution. 

MEDICC was used to assess the degree of clonal expansion, using median CE to divide 

patients into CE-high and CE-low groups. CE-high patients had shorter PFS and overall 

survival (OS) compared to CE-low patients (PFS: median 12.7 v 10.1 months, p = 0.009; OS: 
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42.6 v 23.5 months, p = 0.003). In a CE-high patient, a focal NF1 deletion was identified in a 

relapsed sample, but not detected in pre-chemotherapy and interval debulking surgery 

(IDS) samples by array CGH. NF1 is an inhibitor of RAS signalling, and a potential driver 

gene, commonly mutated or deleted in HGSOC.  

For enhanced sensitivity, I designed patient-specific dPCR assays to the NF1 deletion and 

TP53 p.R175H mutations, to assess whether resistant sub-clonal populations were already 

present prior to treatment. The NF1 assay used forward and reverse primers spanning 

either side of the breakpoint, and EvaGreen® DNA binding dye, which becomes fluorescent 

upon binding dsDNA during amplification. dPCR demonstrated that the NF1 deletion was 

present prior to treatment, detected at 5% and 26% AF in the pre-treatment samples, in 

25% - 100% of IDS samples, at 1.2% AF in a primary invasive carcinoma in the fallopian 

tube, and at 7.9% AF in an adjacent left ovarian metastasis.  

2.3.3:    Discussion 
 

In Schwarz et al., the MEDICC algorithm was shown to be able to quantify heterogeneity in 

HGSOC. CE-high patients were shown to have shorter PFS and OS compared to CE-low 

patients. Unlike array profiling, dPCR analysis showed that an NF1 deletion was present in a 

subclonal population pre-treatment, and in IDS samples and relapsed ascites fluid, with the 

ratio of NF1/TP53 increasing over time. 

Diaz et al. provided further evidence that resistant subclones may be present prior to 

treatment by demonstrating the emergence of KRAS mutations in serum from mCRC 

patients approximately 5-6 months after treatment with panitumumab (an anti-EGFR 

antibody therapy). Mathematical modeling indicated that these mutations were already 

present in subclones prior to the initiation of treatment (71), consistent with our data. 

The main limitation of our study is that it was performed on a small patient cohort, which 

may over-estimate the effect of clonal expansion on survival. Watkins and Schwarz have 

done further work to show that multi-region sampling can help detect clonal expansion and 

provide a quantitative measure of ITH (72). Bashashati et al. have also demonstrated using 

targeted sequencing, copy number analysis, exome sequencing, and gene expression 

profiling that HGSOC patients have a high degree of tumour heterogeneity, which occurs in 

early stages of tumourigenesis (73).  
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In Chapter 3, I will discuss work I have published on the use of next generation sequencing 

to identify low frequency mutations in cfDNA (3–5). 
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Chapter 3: Development of NGS for ctDNA analysis - TAm-Seq 

& exome sequencing 

As discussed in Chapter 2, digital PCR is limited to analysis of single or few loci of interest. 

To address this, we investigated the hypothesis that next generation sequencing could be 

used to detect and monitor multiple mutations in parallel in ctDNA. TAm-Seq was 

developed to analyse rare mutations in plasma (3), and exome sequencing was used to 

study potential mechanisms of treatment resistance (4,5). 

3.1: Forshew*..Gale* et al., Science Translational Medicine, 2012 (3) 
 
3.1.1: Aims 
 

To test whether NGS could be used to detect low frequency mutations in plasma, TAm-Seq, 

a novel amplicon-based sequencing method, was developed using primers designed to 

amplify entire coding regions of TP53 and PTEN genes, and selected regions of EGFR, BRAF, 

KRAS and PIK3CA. I was involved in establishing TAm-Seq for analysis of tumour DNA, and 

generated key dPCR validation data, demonstrating the quantitative accuracy of TAm-Seq 

in analysis of plasma DNA.  

3.1.2:  Results 
 

The TAm-Seq workflow is outlined in Figure 3.1. Primer pairs, incorporating universal 5’ 

adaptors, were designed to tile and amplify regions of interest, spanning 5995 bases in 

total. A limited-cycle multiplex pre-amplification step was initially performed to amplify 

template molecules, and a second amplification performed on pre-amplified material using 

the Fluidigm Access Array 48.48 microfluidic chip. This enabled 48 single-plex amplifications 

to be performed in parallel, each using 48 different primer sets. Finally, sequencing 

adaptors and sample-specific barcodes were incorporated using primers containing 

sequences complementary to the universal adaptors, with forward and reverse sequencing 

adaptors added separately then pooled, to enable sequencing in both directions. Reactions 

were performed in duplicate, with each replicate tagged with a different sample-specific 

barcode.  
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Figure 3.1: Overview of TAm-Seq. (A) Amplicon design using tiled short overlapping 

amplicons. (B) Multiple regions amplified in parallel, using initial pre-amplification, 

followed by single-plex PCR. DNA molecules carrying mutations (red stars) are 

amplified alongside wild-type molecules. Sequencing adapters and sample-specific 

barcodes are attached by PCR. Figure and Figure Legend adapted from Forshew et 

al (3). 
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TAm-Seq was tested by sequencing FFPE tumour DNA samples from HGSOC patients, and 

compared with Sanger sequencing of the TP53 gene to identify mutations. TAm-Seq data 

was obtained for 44 samples, with SNVs detected in 43/44, and 100% concordance 

between TP53 mutations identified by both techniques. Three additional mutations were 

identified by TAm-Seq at low frequency, below the detection threshold of Sanger 

sequencing. In a dilution experiment, using diluted mixtures of 6 FFPE samples with known 

TP53 mutations, all expected mutations were detected by TAm-Seq at >1% AF, with the 

exception of one false positive at 1.9% AF (Figure 3.2). There was a significant correlation 

between the mutant AF and cellularity estimates from histological analysis of the FFPE 

biopsy (t-test; r = 0.422; p = 0.0049). 

The background level of non-reference (mutant) AFs was ~0.1%, although this varied based 

on the particular loci and mutation class of each base substitution. Mutations were called if 

non-reference sequences were above the substitution-specific background distribution at 

high confidence (≥0.9995), and ranked high in the list of non-reference AFs in both 

replicates. 

TAm-Seq was used to analyse plasma DNA from 7 HGSOC patients. In all cases, TP53 

mutations identified were concordant with Sanger sequencing. In one case, a de novo EGFR 

mutation, not previously identified, was also observed at 6% AF in plasma taken at relapse, 

and verified using both dPCR and replicate Sanger sequencing of highly diluted template. 

Analysis of additional specimens from this patient showed this mutation was present in a 

second plasma sample taken 25 months post-diagnosis at 5% AF, at 0.7% AF in two omental 

tissues taken at IDS, but not in left and right ovary samples (Figure 3.3). This indicated that 

the mutation originated in omental tissue. Further TAm-Seq analysis of 62 plasma samples 

from 37 HGSOC patients demonstrated 92.86% concordance with matched dPCR data. 

To assess the hypothesis that TAm-Seq can be used to non-invasively monitor tumour 

dynamics in blood, serial plasma samples collected during the course of treatment were 

analysed from patients with HGSOC and breast cancer. Results demonstrated the 

concordance of TAm-Seq with dPCR data, and the ability to track 10 concomitant mutations 

in plasma to monitor disease burden (Figure 3.4).  

Figure 3.5 shows results of analysis of a patient with synchronous primary ovarian and 

bowel cancer. Retrospective TAm-Seq analysis was performed on primary tumour and 

plasma DNA collected following relapse, showing that a TP53 p.R273H mutation initially  
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A       B 

 

 

Figure 3.2: Identification of mutations in ovarian cancer FFPE samples by TAm-

Seq. (A) Concordance between duplicate measurements of allele frequencies (AFs) 

in mutations identified in a FFPE DNA mixture. Solid line: Equality. Dotted lines: 0.05 

difference in AF (D) Summary of FFPE mutations identified by TAm-Seq. Dotted line: 

2% AF. Figure and Figure Legend adapted from Forshew et al. (3) 

 

detected in the ovarian primary was present in relapsed plasma samples, whilst TP53 

p.R248W, KRAS p.G12V and PIK3CA p.E545K mutations, originally present in the bowel 

primary, could not be detected post-relapse.  

3.1.3:   Discussion 
 

In Forshew et al., we were able to demonstrate for the first time that NGS could be used to 

non-invasively identify de novo mutations from solid tumours directly in plasma cfDNA, and 

monitor concurrent mutations in parallel, providing an important contribution to the field. 

Using TAm-Seq, large genomic regions spanning six genes, including all exonic regions of 

TP53, were screened directly in plasma cfDNA. Using dPCR, this would first require the 

identification of mutations in tumour DNA, the design and validation of bespoke assays 

followed by quantification of each mutation in plasma DNA [as used in Parkinson*,  
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Figure 3.3: Retrospective analysis by TAm-Seq of plasma collected during patient follow-

up and biopsy specimens collected at initial surgery. EGFR p.R832H mutation identified in 

2 plasma samples (dark blue boxes), collected 15 and 25 months after initial surgery, and in 

2 omental specimens from initial surgery, but not identified in 6 ovarian specimens. TP53 

p.R196P mutation identified in all tumour and plasma samples, but not in buffy coat. 

Percentages: mutant AFs. Empty boxes/“ND”: no mutation identified/detected (below 0.8 

confidence margin). Figure and Figure Legend adapted from Forshew et al.(3) 
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Figure 3.4: (A, B) Monitoring mutant DNA in plasma of HGSOC patients over time using TAm-Seq, mutant TP53 by dPCR, compared with serum CA-125. 

(C) Dynamics of 10 concomitant mutations in plasma of a breast cancer patient. Figures and Figure Legend adapted from Forshew et al. (3)
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Figure 3.5: Retrospective analysis of samples from synchronous ovarian (red) and bowel 

(green) primary tumours collected at initial surgery and three plasma samples collected 

at relapse. Percentages: mutant AFs indicated. Empty boxes/ “ND”: no mutation 

identified/detected (below 0.8 confidence margin).Figure and Figure Legend adapted from 

Forshew et al. (3) 
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Gale* et al.(1)]. TAm-Seq can be performed at relatively low-cost, compared to the 

alternatives at the time involving the bespoke design of multiple dPCR assays, or expensive 

WGS (Figure 3.6). It has potential as a clinical assay as it provides an ideal mid-point 

between sensitivity, ease of use, genomic coverage and cost (see Chapter 4). 

Monitoring multiple mutations allows for tracking newly arising resistance mutations 

within the same assay, and opens up the possibility of patients being guided to treatment 

with other targeted therapies, such as osimertinib following the detection of an EGFR 

p.T790M resistance mutation. The ability to concurrently monitor multiple mutations using 

the same assay circumvents the issue of having to subdivide plasma DNA into different 

reactions, avoiding sampling bias. The Qiagen Therascreen EGFR RGQ PCR Kit version 2 is 

an in vitro diagnostic (IVD) assay for NSCLC patients, which assesses 29 different EGFR 

mutations to guide treatment with gefitinib, afatinib and dacomitinib. However, to assay all 

these mutations requires subdividing DNA into 7 different assays. Where levels are low, 

sampling noise may result in a higher proportion of false negatives. 

Using TAm-Seq, ctDNA was detected at >2% AF at a sensitivity and specificity of >97%, with 

detection down to 0.14% AF for SNVs. This was a significant advance on standard practice 

at the time for analysis of mutations in FFPE tumour DNA, which generally involved 

performing Sanger sequencing to detect mutations >5% AF. Since TAm-Seq was published, 

several alternative amplicon-based sequencing methods have been developed including 

Signatera™, a patient-specific multiplex PCR technology developed by Natera™ and used in 

the TRACERx study; FireFly™, a rolling circle amplification method developed by 

Accuragen™; and SiMSen-Seq which uses hairpin-protected barcode primers to increase 

sensitivity (69,74,75). 

At the time of publication, the main limitation of TAm-Seq was its sensitivity, compared to 

single-locus dPCR assays which are able detect down to 1 mutant molecule in 10,000 wild-

type alles (0.01% AF).  Since this time, however, TAm-Seq technology has been transferred 

to Inivata Ltd., leading to the development of enhanced TAm-Seq™ (eTAm-Seq™) 

technology. The InVisionFirst™-Lung assay is able to perform comprehensive genomic 

profiling of SNVs, indels, SVs, fusions and SCNAs in 36 genes, with an LoD90 of 0.25% AF for 

SNV detection, and detection down to 0.02% AF.  The development and validation of these 

clinical diagnostic assays is described in more detail in Chapter 4 (7,8).  
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Figure 3.6: Analysis of cfDNA ranging from the interrogation of individual loci (eg. dPCR), targeted sequencing of multiple loci (eg. TAm-Seq) and 

whole genome analysis (eg. WGS), with increasing coverage and cost. Figure and Figure Legend adapted from Wan et al. (28)
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3.2: Murtaza et al., Nature, 2013  (4) 
 
3.2.1:  Aims 
 

The aim of this study was to use whole exome sequencing to determine if plasma taken 

before and after the development of treatment resistance can be used to assess genomic 

evolution, and identify potential mechanisms of acquired resistance to therapy (Figure 3.7). 

To achieve optimal results, timepoints were selected where the ctDNA allele fraction was 

>10%, based on dPCR and TAm-Seq data. 

3.2.2:  Results 
 

WES was performed on cfDNA extracted from 1 NSCLC, 2 breast cancer and 3 ovarian 

cancer patients undergoing treatment. Libraries were prepared using the ThruPLEX-FD™ kit 

(Rubicon Genomics), optimised for use with fragmented DNA. AFs were compared between 

exome, dPCR and TAm-Seq data and showed good concordance (Pearson’s, exome v dPCR: 

0.79; p < 0.0001; exome v TAm-Seq: 0.83; p < 0.0001).  

For two cases, tumour biopsies were available, collected both at the time of initial 

presentation (9 and 4.5 years earlier) and at the same time as plasma. Genome-wide copy 

number analysis showed similar SCNA profiles in the plasma and metastatic tumour data 

(Figure 3.8A/B), demonstrating that the tumour genome is represented in plasma. In breast 

cancer case 1, of 151 mutations identified in either the plasma or metastatic biopsy, 93 

were identified in both, with AFs generally higher in the plasma. The correlation of AFs was 

high for mutations present in the primary tumour (Pearson’s, 0.71), but did not correlate 

when taking into account all mutations also in the synchronous biopsy (Pearson’s. -0.22, 

Figure 3.8C).  

A modified version of the genome-wide aggregated allelic loss (GAAL) algorithm developed 

by Chan et al. was used to determine the fractional concentrations of tumor-derived DNA 

in plasma (76). A range of 15 – 121 (median:49) non-synonymous mutations were 

identified in each case. Mutations with increased AF following treatment included those in 

known cancer genes, and in genes associated with drug resistance, including an EGFR 

p.T790M mutation in the NSCLC patient following treatment with gefitinib,  and a splicing 

mutation in GAS6, the ligand for AXL, which is a tyrosine kinase receptor (Figure 3.9).   
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   Figure 3.7: Overview of workflow for the identification of treatment-associated    

   mutational changes by exome sequencing of plasma before and after   

   treatment. Figure and Figure Legend adapted from Murtaza et al. (4) 

 

  



66 
 

                                

 

 

 

Figure 3.8: Genome-wide analysis of exome data from plasma DNA and synchronous 

metastatic tumour DNA. Copy number profiles in (a) plasma and (b) tumour biopsy in 

ovarian patient. LogR ratios (LRR) calculated from exome data from (a) plasma and 

germline DNA (b) tumour and germline DNA; (c) AF of mutations identified in plasma or 

tumour in breast cancer patient. Grey dotted line: Equality; Blue dashed line: Median of the 

AF ratio for mutations in both samples (slope: 1.93). Figures and Figure Legend adapted 

from Murtaza et al. (4) 

 

Activation of the AXL pathway is known to cause resistance to TKIs in NSCLC, and lapatinib 

resistance in ER+HER2+ breast cancer cell lines (77,78). 
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Figure 3.9: Mutations showing evidence of genomic tumour evolution. (A, B) Lung cancer case 6 (C, D) Breast cancer case 2. Upper subpanels (A, C): 

Timecourses for allele fractions of ‘anchor mutations’ used to quantify ctDNA, and fractional concentrations using (A) dPCR of EGFR exon 19 deletion & 

p.T790M. (C) TAm-Seq of ATM p.I2948F; Grey dotted line: Tumour burden estimate using a modification of Genome-wide aggregated allelic loss. Exome 

sequencing timepoints indicated by E1, E2 or E3. Lower subpanels (B, D) AF in exome sequencing data of different mutations indicated by different colour 

lines. Figure and Figure Legend adapted from Murtaza et al. (4)
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3.3: Murtaza et al., Nature Communications, 2015  (5) 
 
3.3.1:  Aims 
  
A further study was performed to provide in-depth analysis of plasma and multi-region 

tumour specimens taken from a patient with metastatic ER+HER2+ (oestrogen receptor-

positive, human epidermal growth factor receptor 2-positive) breast cancer treated with 

tamoxifen and trastuzumab, followed by lapatinib (5). The aim was to determine whether 

plasma could be used to identify changes in the tumour genome and non-invasively assess 

clonal evolution. WES and targeted deep sequencing was used to analyse 9 plasma samples 

and 8 tumour biopsies, including specimens taken from different metastases and at 

different timepoints, including at autopsy (Figure 3.10A). 

3.3.2:  Results 
 

Analysis identified stem mutations (present in all tumour biopsies), metastatic-clade 

mutations (present in all metastases) and private mutations (unique for a specific biopsy). 

362 candidate non-synonymous SNVs were identified by WES, and 207 mutations were 

validated by targeted deep sequencing. PyClone was used to cluster the data based on 

clonal architecture (Figure 3.10B, 3.11). Ubiquitous stem mutations (n=23 at >2% AF) 

showed the highest levels in plasma with mean AFs ranging 3.8% - 34.9% AF, followed by 

metastatic-clade mutations (n=26, 2.5% - 19.1% AF) then private muations (n=126, Figure 

3.12A). 13/26 metastatic-clade mutations were also detected in lymph node biopsy P1.2 at 

low frequency, indicating a common ancestor. Plasma abundance was calculated for each 

high-confidence private mutation, relative to timepoint 1 (T1). This demonstrated an 

increase in abundance of mutations present in the chest wall mass following lapatinib 

resistance, which agreed with imaging data (Figure 3.12B). The most abundant private 

mutation at this time was ERBB2 p.H809G, with elevated levels observed in plasma 

following lapatinib resistance (Figure 3.12C). A PIK3CA p.E542K mutation was elevated at 

the time of progression on tamoxifen and trastuzumab, but decreased following treatment 

with lapatinib (Figure 3.12D). This is consistent with data indicating that the PI3K/AKT 

pathway is associated with resistance to trastuzumab and endocrine therapy.               
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Figure 3.10: Inference of clonal structure from multiregional tumour biopsies (A) Tumour 

samples collected. P = Primary; M = Metastasis; 1 = Collected at diagnosis; 2 = Collected at 

time of resection of brain metastasis; 3 = Collected at autopsy. (B) Tumour phylogenetic 

tree. Length of each branch correlates to number of mutations. Figure and Figure Legend 

adapted from Murtaza et al. (5). 
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Figure 3.11: Distribution of validated mutations in tumour and plasma samples. Ordered by clusters inferred using PyClone. Stem: 

observed in all tumour samples; metastatic-clade: in all metastatic tumours; Red rectangles: mutations with AF >2%; Blue rectangles: 

Mutations with AF ≤2% significantly above background; Grey: Not detected. P = Primary; M = Metastasis; 1 = Collected at diagnosis; 2 = 

Collected at time of resection of brain metastasis; 3 = Collected at autopsy. Figure and Figure Legend adapted from Murtaza et al. (5)
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Figure 3.12: (A) Mean allele fractions (AFs) of stem, metastatic-clade and private 

mutations) during treatment (private x 10 to see trend). Shaded areas: Treatment. (B) 

Plasma abundance relative to plasma timepoint 1 (T1) [calculated as product of AF in 

tumour (normalised to mean of stem mutations) and AF in plasma, summed across all 

private mutations for each tumour], normalised to T1 to account for different number of 

private mutations in each tumour  (C) Dynamics of ERBB4 p.H809G mutation, and (D) 

Dynamics of PIK3CA p.E542K mutation over time by deep amplicon sequencing. P = 

Primary; M = Metastasis; 1 = Collected at diagnosis; 2 = Collected at time of resection of 

brain metastasis; 3 = Collected at autopsy. Figure and Figure Legend adapted from Murtaza 

et al. (5)  
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3.4.  Discussion 
 

The Murtaza et al. (Nature) paper demonstrated for the first time that exome sequencing 

using hybrid capture could be used to analyse ctDNA, and investigate tumour 

heterogeneity and mechanisms of acquired resistance to therapy (4). This provided an 

important contribution to the literature. Whilst hybrid capture had previously been used to 

analyse tumour DNA, this was the first time that it had been used to non-invasively analyse 

the tumour genome in plasma.  Exome sequencing of plasma samples, taken before and 

after the development of treatment resistance, identified known resistance mutations, 

providing proof-of-concept data, and demonstrating the value of this approach.  

Hybrid capture involves hybridisation of biotinylated DNA or RNA baits to pull down and 

enrich for sequences of interest (79), which can be performed on a custom or exome-wide 

scale. It has the advantage over amplicon-based sequencing methods, such as TAm-Seq, in 

that it can target larger genomic regions, and is more amenable to analysis of SVs, SCNAs, 

tumour mutation burden and detection of microsatellite instability (MSI). Amplicon 

sequencing is limited to targeting regions incorporated within the PCR primers. This is 

particularly challenging when analysing fragmented DNA, as a few fragments may be lost to 

analysis that do not encompass both priming sites. It may also potentially result in more 

uneven sequencing coverage, although the two-step amplification process employed in 

TAm-Seq, involving multiplex pre-amplification followed by single-plex PCR in a microfluidic 

chip, resulted in much improved evenness of coverage. Hybrid capture has the 

disadvantage that a significant proportion of molecules are lost during library preparation 

due to the inefficiency of adaptor ligation. Attachment of adaptors by PCR is considerably 

more efficient, resulting in less loss of material, which is vital when analysing low frequency 

mutant alleles in patient plasma.  

The main limitation of this study is that it is small cohort, and required analysis of samples 

with allele fraction >10% AF, which had to be pre-determined. However, the study 

demonstrated that plasma can non-invasively represent the tumour genome, and provide a 

summary of different mutations present in different tumour lesions that may be missed in 

a single tumour biopsy.  

In the follow-up Murtaza et al. (Nature Communications) paper, a single patient with 

metastatic ER+HER2+ breast cancer was analysed using exome and targeted deep 

sequencing of plasma and tumour biopsies, including some taken at autopsy (5). This 
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provided valuable information demonstrating that stem mutations had the highest levels in 

plasma, followed by metastatic-clade, then private mutations. This study provided valuable 

insight into the use of ctDNA as an alternative to tissue profiling. However, methods used 

are too expensive for routine clinical testing, requiring high depth exome sequencing, and 

targeted deep sequencing of candidate mutations to get the required sensitivity. 

Since these publications, hybrid capture has been developed with much improved 

sensitivity, now comparable with amplicon-based sequencing. Similar methods are being 

commercially developed by several companies as clinical diagnostic ctDNA assays. This 

includes the Guardant360® test by Guardant Health, covering 73 genes with detection of 

>99.9% mutations at >0.25% AF, and down to 0.04% AF (80,81). Foundation Medicine™ 

have developed a FoundationOne Liquid™ test, covering 70 genes, with 95.8% mutations 

detected at 0.25% - 0.5% AF (82,83). PlasmaSELECT™ 64+MSI has been developed by 

Personal Genome Diagnostics, which assays 64 genes, with 99.4% sensitivity for detection 

of SNVs ≥0.5% AF, and can detect MSI to assess potential response to checkpoint inhibitors 

(84). 

The recent increase in sensitivity of hybrid capture has been afforded by the introduction 

of molecular barcodes into the NGS library preparation process.  In 2011, Kinde et al. 

developed Safe-SeqS, which incorporates unique identifiers (UIDs) to individually tag 

different molecules to suppress error rates. This was applied to the analysis of Pap smear 

tests for endometrial and ovarian cancer (85,86). In 2012, Schmitt et al. developed duplex 

sequencing which independently tags each strand of a DNA duplex with unique identifiers, 

to distinguish true mutations, present at the same place on both strands, from PCR or 

sequencing errors, which occur at random on a single strand (87). Newman et al. developed 

a modified molecular barcoding approach and iDES (integrated digital error suppression) to 

analyse ctDNA using CAPP-Seq (Cancer Personalized Profiling by deep Sequencing) (88). 

CAPP-Seq, first published in 2014, uses a hybrid capture panel, termed a CAPP-Seq selector 

library, specific for patients with NSCLC, based on analysis of WES data from 407 patients 

profiled by The Cancer Genome Atlas (TCGA) (67). Using CAPP-Seq, ctDNA was detected in 

50% patients with Stage I disease, and 100% of Stage II-IV patients, with 96% specificity and 

detection down to 0.02% AF. In their follow-up paper, further enhancements were included 

to suppress error, including the introduction of both single and double-stranded barcoding, 

incorporating single-stranded ‘index’ and double-stranded ‘insert’ UIDs as exogenous 

barcodes, and endogenous barcodes corresponding to the mapped genomic co-ordinates 

of molecules (88). Further error-suppression bioinformatics methods were included, 
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performing ‘background polishing’ to remove position-specific errors. Using iDES-enhanced 

CAPP-Seq, ctDNA could be detected down to 4 in 105 cfDNA molecules. Analytical 

performance showed 92% sensitivity and >99.99% specificity, with 90% clinical sensitivity 

and 96% specificity.  

A further NGS method that has proved valuable in the clinic for analysing ctDNA is the use 

of shallow whole genome sequencing (sWGS, 0.1-0.4x coverage) to identify tumour-

associated copy number changes to screen for tumour-specific aneuploidy in plasma 

samples with high ctDNA levels (54,55). This approach is discussed in more detail in 

Chapter 5.  

In Chapter 4, I will discuss work I performed to develop enhanced TAm-Seq™ to 

ISO15189:2012 regulatory standards for patient benefit, and to assess appropriate blood 

tubes and processing conditions for liquid biopsy studies (6–8). 
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Chapter 4: Clinical diagnostic ctDNA assay development 
 

Prior to clinical implementation, all diagnostic assays must be rigorously tested, and 

developed to appropriate regulatory quality standards to ensure they are fit-for-purpose 

and do not compromise patient safety. In this Chapter, I will discuss work I co-led, 

published by Risberg et al., to assess the effects of different collection and plasma 

processing protocols on the levels of ctDNA (6). In addition, I will discuss work by Gale et al. 

and Plagnol et al. on the development and analytical validation of enhanced TAm-Seq™ 

(eTAm-Seq™) and the InVisionFirst™-Lung assay to ISO15189:2012 standards for the 

detection of low frequency alleles in plasma of advanced NSCLC patients (7,8).  

4.1: Risberg, …, Gale† et al., Journal of Molecular Diagnostics, 2018  
(6) 
 
4.1.1: Aims 
 

Detection of ctDNA is challenging given the potentially low levels present in plasma. Pre-

analytic factors, such as a delay in plasma processing of blood collected into EDTA 

(Ethylenediaminetetraacetic acid) tubes, can result in increased levels of genomic DNA 

(gDNA) due to leukocyte lysis, which may affect the detection of low frequency mutant 

alleles, so it is important to collect samples using optimised protocols. Processing 

recommendations include performing an initial centrifugation step to separate plasma 

within hours of venepuncture to avoid leukocyte lysis, followed by a second higher speed 

centrifugation step to clear cellular material (89). More recently, cell-stabilising blood 

collection tubes, such as Streck Cell-free DNA BCT® tubes (BCT), have been developed 

which stabilise nucleated blood cells, enabling plasma processing to be delayed, thereby 

facilitating processing under more controlled conditions and within centralised 

laboratories. In Risberg et al., five different Modules were performed to assess the effects 

of the following on the levels of ctDNA and cfDNA using dPCR, TAm-Seq or sWGS: [1] 

delayed plasma processing, [2] different storage temperatures, [3] different blood 

collection tubes, [4] different centrifugation protocols and [5] sample shipment. 
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4.1.2:   Results 
 
4.1.3:  Module 1:  Assessment of the effects of delayed processing 
 

In this Module, we assessed the effects of delaying plasma processing of K3EDTA-collected 

blood for 0, 6, 24, 48, 96 hours and 1 week at room temperature (RT, 19°C-25°C) by 

quantifying cfDNA, mutant AF and ctDNA levels using dPCR.  Data was expressed as a ratio 

of the immediately processed EDTA 0 hour sample (denoted E.RT.0h) to enable direct 

comparisons to be made. cfDNA levels significantly increased following a 48, 96 hour and 1-

week delay (p < 0.05, Mann-Whitney Rank Sum test), with a corresponding decrease in 

mutant AF, whilst ctDNA levels remained constant. 

4.1.4:  Module 2:  Assessment of the effects of different storage 
temperatures 
 

In Module 2, K3EDTA-collected blood tubes were stored at RT or 4°C for 24, 48 or 96 hours 

prior to plasma processing to assess the effects of different storage temperatures. cfDNA 

levels significantly increased after 48 hours at RT (p < 0.05, Mann-Whitney Rank Sum test, 

Figure 4.1). Whilst still elevated, levels were lower following 4°C storage. cfDNA levels 

significantly increased after 96 hours at both storage temperatures.  

4.1.5:  Module 3:  Assessment of different blood collection tubes 
 

Prior to implementing cell-preservation tubes in a clinical study, it is important to assess if 

the tubes can reproducibly stabilise cfDNA levels for prolonged periods, and if the 

preservative has any adverse effects on DNA integrity. In Module 3, BCT tubes stabilised 

cfDNA levels up to 1 week at RT prior to plasma processing, unlike K3EDTA tubes where 

levels were significantly elevated (Figure 4.2).  TAm-Seq analysis was performed analysing 

DNA extracted from BCT-collected plasma delayed for 0, 96 hours and 1 week, 

demonstrating no significant effect on background NGS error using either blood tube or 

different processing conditions. 
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Figure 4.1: Effect of storage temperature on K3EDTA-collected blood on (A) cfDNA 

copies/mL; (B) AF following storage at RT and 4°C at 24, 48 and 96 hours prior to 

plasma processing.  Bottom and top of boxplots represent first and third quartiles; 

Line: median. Data expressed as ratio to each patients’ EDTA Room Temperature 

immediately processed sample (E.RT.0h); *p < 0.05 (Mann-Whitney Rank Sum test, 

versus E.RT.0h). Figures and Figure Legend adapted from Risberg et al. (6) 
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Figure 4.2: Effects of using different blood tubes on (A) cfDNA copies/mL and (B) mutant 

allele fraction in K3EDTA tubes delayed for 0 hours, 96 hours and 1 week v BCT tubes 

delayed for 96 hours and 1 week. (C) Background error rates: Distribution of ratio of non-

reference (ie. mutant)/reference alleles according to mutation types using TAm-Seq. 

Bottom and top boxplots represents first and third quartiles; Line: median; (A, B) Data 

expressed as ratio to each patients’ EDTA Room Temperature immediately processed 

sample (E.RT.0h) (C) log10 scale; *p < 0.05 (Mann-Whitney Rank Sum test, versus E.RT.0h). 

Figures and Figure Legend adapted from Risberg et al. (6) 
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4.1.6:  Module 4: Assessment of different centrifugation protocols 
 

Our standard plasma processing protocol involves double centrifugation of whole blood, 

with the initial centrifugation performed in a mega-centrifuge, followed by fast 

centrifugation of plasma in a bench-top microcentrifuge. Unfortunately, many hospitals do 

not have access to a bench-top microcentrifuge.  

In Module 4, three different centrifugation protocols were tested: 

Protocol A:  Centrifugation at 820 x g for 10 minutes (mega-centrifuge), then 14,000 x g for 

10 minutes (bench-top microcentrifuge);  

Protocol B: Centrifugation at 1,600 x g for 10 minutes (mega-centrifuge), then 14,000 x g 

for 10 minutes (bench-top microcentrifuge); 

Protocol C: Centrifugation at 1600 x g for 10 minutes, then 3000 x g for 10 minutes (both 

steps performed in a mega-centrifuge).  

Results showed no statistically significant difference in total cfDNA levels by dPCR, or 

mutant AF by TAm-Seq, between the three centrifugation protocols. 

4.1.7:  Module 5: Assessment of the effects of sample shipment 
 

In Module 5, blood was collected from 13 HGSOC patients into either K3EDTA tubes and 

processed immediately, or BCT tubes and stored at RT or shipped using Royal Mail postage, 

and processed at different times (from 48 hours to 5 days). Analysis of cfDNA levels showed 

no statistical difference in cfDNA levels and TP53 mutant AF between the different 

collection methods.  sWGS data also showed no difference in SCNAs or background noise 

profiles using these different collection protocols. 

4.1.8:  Discussion 

Risberg et al. assessed whether different pre-analytic factors affect plasma quality. Results 

demonstrate a 48 hour delay in processing of K3EDTA-collected blood resulted in 

significantly elevated levels of total cfDNA, and a corresponding decrease in mutant ctDNA 

levels, believed to be due to contaminating gDNA released during leukocyte lysis (90). A 

small but non-significant increase was also observed at 6 and 24 hours. Furthermore, 

results demonstrated storage of K3EDTA blood at 4°C for 48 hours reduced cfDNA levels 

compared to room temperature storage, although levels were significantly elevated by 96 

hours at both temperatures.  Although this would need to be verified in a larger cohort,  
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this provides practical guidance as to an appropriate storage temperature of K3EDTA tubes 

in the event of an unavoidable delay in plasma processing. BCT tubes stabilised cfDNA and 

mutant AF levels for up to 1 week prior to plasma processing, although a slight but non-

significant increase was also observed between 96 hours and 1 week.  

These results show a similar trend to previous studies using K2EDTA tubes (containing spray 

dried di-potassium salt as anti-coagulant, rather than K3EDTA tubes containing tri-

potassium salt in liquid form). Parpart-Li et al. demonstrated significantly elevated gDNA 

levels when processing was delayed 24 hours (p < 0.05), and 48 hours (p < 0.01, Student t 

test) (91). Total genomic equivalents/mL plasma (GE/mL) were not significantly elevated 

following 4°C storage of K2EDTA tubes for 72 hours, but total mutant AF/mL decreased. BCT 

tubes stabilised cfDNA levels up to 1 week, with a 6% increase in total GE/mL compared to 

a 13-fold increase using K2EDTA tubes. Medina Diaz et al. showed cfDNA levels were stable 

in BCT tubes for up to 5 days (92), and Plagnol et al. showed mutant DNA spiked into BCT 

blood was stable for 10 days (8). 

Interestingly, Parpart-Li and Medina Diaz both observed a small decrease in plasma volume 

in both K2EDTA and Streck BCT tubes stored over time. This was most notable in BCT tubes 

stored for 5 days at 4°C and 40°C (91,92), outside the manufacturer’s storage 

recommendations of 6°C - 37°C. Whilst Risberg et al. did not find any differences in SCNAs 

following shipment within the UK, Medina Diaz et al. did find that extremes of temperature 

appeared to visibly affect the interface layer above the buffy coat, affecting 20%-50% of the 

plasma fraction at 4°C following 3 and 5 day storage, and the appearance of haemolysed 

plasma when stored at >40°C. qPCR was used to assess ratios of both long (402bp) and 

short (96bp) fragments to determine the release of long gDNA fragments, demonstrating 

an increased ratio of 402:96bp fragments at extreme temperatures. As a result, the authors 

recommend BCT tubes are shipped using temperature-controlled insulated packaging to 

avoid compromising cfDNA quality. 

Risberg et al. next assessed whether the BCT cell preservative had any adverse effect on 

DNA used in downstream TAm-Seq and sWGS assays, which could potentially result in 

artefacts that may be mis-interpreted as genuine tumour-specific mutations. Fortunately, 

background levels were similar using DNA from both BCT and K3EDTA tubes, in agreement 

with other published data using different NGS assays (91,92). This indicates that BCT tubes 

may provide a practical alternative to K3EDTA tubes for analysis using TAm-Seq and sWGS, 
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although larger studies should be performed to verify this result prior to clinical 

implementation. 

One of the main challenges I have encountered in establishing multi-centre clinical 

collections of plasma for ctDNA studies is that a number of hospitals do not have access to 

a bench-top microcentrifuge required for the second centrifugation step. Risberg et al. 

tested alternative protocols. Similar results were obtained if the second centrifugation was 

performed in a megacentrifuge at 3000 x g, compared to centrifugation at 14,000 x g in a 

bench-top microcentrifuge. This provides valuble data, opening up the possibility to expand 

clinical collections to additional sites that may have previously been limited based on lack 

of centrifuge equipment, particularly where expensive cell-preservation tubes are not an 

option. These studies should be repeated on a larger scale to verify these findings prior to 

clinical implementation. 

The main limitations of the Risberg et al. study are the small number of samples analysed, 

that available blood volumes limited the number of comparisons that could be performed, 

and that the study was conducted in a non-regulated lab. In addition, only two different 

blood collection tubes were assessed. Since our study was initiated, new cfDNA 

preservation tubes have been commercially developed, including PAXgene Blood ccfDNA 

tubes (Qiagen/BD), Cell-free DNA collection tubes (Roche), cf-DNA Preservation tubes 

(Norgen), Blood STASIS 21-ccfDNA tubes (MagBio Genomics) and LBgard Blood tubes 

(Biomatrica). Some have an advantage over the BCT tubes that we used in that they are not 

glass, so less prone to breakage. Further larger studies should be performed to fully assess 

these tubes to ensure they are fit-for-purpose.  Selection of appropriate tube type for 

ctDNA clinical studies comes down to a number of factors, including cost. Cell-preservation 

tubes offer significant advantages over EDTA tubes, that need to be processed promptly 

after venepuncture by an on-site research nurse, but are currently relatively expensive, 

limiting their use in some studies.  

4.2: Gale‡ et al, PLoS ONE, 2018  (7) 
 
4.2.1: Aims 
 

In order to enable patients to access to TAm-Seq for clinical diagnostic testing, Dr. Nitzan 

Rosenfeld, Dr James Brenton, Dr. Tim Forshew and I co-founded Inivata Ltd, a clinical
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cancer genomics company focussed on analysis of ctDNA to improve patient healthcare in 

oncology, funded by £4M Seed and £31.5M Series A venture capital funding. As Head of 

Molecular Diagnostics, I led the technology transfer of TAm-Seq™, and the development 

and analytical validation of enhanced TAm-Seq™ (eTAm-Seq™) for detection of clinically-

relevant mutations in patients from advanced NSCLC patients. 

Gale et al. describes the development and analytical validation of eTAm-Seq™ technology 

(7).  The InVision™ liquid biopsy tumour profiling panel was developed to profile key driver 

point mutations and entire coding regions of 35 genes spanning 10.61kb, including SNVs, 

indels and SCNAs (Figure 4.3). The assay and bioinformatic workflows were fully re-

designed and optimised using a two-step multiplex PCR amplification protocol to enable 

high-throughput library preparation. To assess the sensitivity, specificity and LoD90 of 

eTAm-Seq™, validation studies were performed in two independent laboratories – 

Laboratory 1 to ISO15189:2012 standards, and Laboratory 2 to CLIA (Clinical Laboratory 

Improvement Amendments) regulatory standards.  

eTAm-Seq™ was validated by 6 operators on different days, with one operator performing 

validations in both laboratories. Libraries were prepared from sheared Horizon Tru-Q6 and 

Tru-Q7 DNA reference standards, using different DNA input amounts (Table 4.1), or from 

plasma DNA from presumed healthy volunteers. Tru-Q6 is a mixture of 20 isogenic 

genetically-engineered cell lines, carrying mutations at known allele fractions 

(predominantly ~2%-2.5% AF), with 21 mutations covered by the InVision™ liquid biopsy 

tumour profiling panel. Tru-Q7 is a mix of 40 cell-lines predominantly at ~1%-1.3% AF, with 

38 mutations targeted by the panel. To test the LoD90, a dilution series was prepared using 

Tru-Q0 wild-type DNA as diluent.. 

4.2.2:   Results 
 
4.2.3:   Analytical Performance of eTAm-Seq™: SNVs 
 

Analytical validation studies demonstrated that eTAm-Seq™ has high sensitivity. In 

Laboratory 1, overall sensitivity was 100% (90% CI: 99.01%-100%) using low input samples 

(2000 AC/sample) at 2%-2.5% AF; 99.17% (90% CI: 97.40%-99.85%) using median input 

samples (8000 AC) at 1%-1.3% AF; and 95.45% (90% CI: 93.09%-97.18%) using high input 

samples (16,000 AC) at 0.25%-0.33% AF. To further assess the LoD90, a dilution series was 
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Figure 4.3: InVision™ liquid biopsy tumour profiling panel, including  SNVs and 

comprehensive or full coverage of coding regions. %: Tiling coverage per gene. SCNAs: 

labelled as CNVs (copy number variants). Figure and Figure Legend adapted from Gale et al. 

(7) 

 

 

Table 4.1: eTAm-Seq™ analytical validation experiments, detailing range of DNA input 

amounts (amplifiable copies, AC), range of AF’s tested, and number of operators/laboratory 

and replicates performed. *AF shows indicative ranges for Tru-Q reference matrial. Table 

and Table Legend adapted from Gale et al. (7) 
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performed using median input DNA. Results were comparable across both laboratories 

(Table 4.2). Overall, across the two laboratories, 98.65% mutations were detected at 0.5%-

0.65% AF, and 89.73% were detected at 0.25%-0.33% AF. Using optimal input DNA (16,000 

copies), sensitivity was 94% at 0.25%-0.33% AF. Mutant alleles were detected down to 

0.02% AF, with >30% sensitivity for detection at 0.06% AF. 

Inter- and intra-operator variablilty was assessed by performing replicate eTAm-Seq™ 

experiments on different days in two laboratories, using different operators and NGS 

sequencing runs. Results show consistent results across replicates using different DNA 

input amounts at different AFs (Figure 4.4). To assess the quantitative performance of 

eTAm-Seq™, data was compared with dPCR data analysing Horizon Tru-Q reference DNA, 

supplied by the manufacturer. Results shown in Figure 4.5 demonstrate the quantitative 

accuracy of eTAm-Seq™ and its ability to detect low frequency alleles.  

4.2.4:   Analytical Performance of eTAm-Seq™: Specificity 
 

To assess specificity, plasma from 79 presumed healthy donors were analysed by eTAm-

Seq™. Five mutations were identified at ≤0.5% AF. 3/4 were validated as true positives in 

repeat experiments by re-analysis of samples with sufficient material. This resulted in two 

potential false positives - a GATA T419T mutation with insufficient material to repeat, and a 

TP53 L308L mutation, detected at 0.19% AF, that was not verified in repeat experiments. 

The per-base specificity was 99.9997% (95% CI: 99.9989%-99.99996%). 

4.3: Plagnol et al, PLoS ONE, 2018  (8) 
 
4.3.1: Aims 
 

Approximately 5% of NSCLC patients are known to have gene fusions with ALK and EML4 

genes, and ~1% of patients have ROS1 gene rearrangements. ALK and ROS1 inhibitors, such 

as crizotinib, alectinib and ceretinib, have been shown to be effective in ALK and ROS1-

mutated NSCLC (93). To provide comprehensive genomic profiling of cfDNA, eTAm-Seq™ 

was further developed to enable detection of EML4-ALK, SLC34A2-ROS1, CD74-ROS1,  

EZR-ROS1 and SDC4-ROS1 gene fusions.  Plagnol et al. describes the analytical validation of 

the InVisionFirst™-Lung assay, encompassing 36 genes commonly mutated in NSCLC and  

other cancers, including SNVs, indels, ALK and ROS1 fusions, and SCNAs in ERBB2, FGFR1, 

MET and EGFR (8). An overview of the InVisionFirst™ workflow is detailed in Figure 4.6. 
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Table 4.2: Sensitivity of eTAm-Seq™ using median input DNA at different AFs tested in two independent laboratories.  

*AF shows indicative ranges for Tru-Q reference matrial. CI: confidence interval. Table and Table Legend adapted from Gale et al.(7)
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Figure 4.4: Sensitivity and inter-/intra-operator variability of eTAm-Seq™ using low, medium and high input DNA.  

Laboratory 1: upper; Laboratory 2: lower. Error bars: 90% Confidence Interval; Figure and Figure Legend adapted from Gale et al. (7) 
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Figure 4.5: Allele Fractions determined by analysis with eTAm-Seq™ (blue boxplot) and dPCR (red cross) for analysis of mutations present in both 

the InVision™ liquid biopsy tumour profiling panel and (A) Tru-Q6 (B) Tru-Q7. Figure and Figure Legend adapted from Gale et al. (7)
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4.3.2:   Results 
 

4.3.3:   Analytical Performance of InVisionFirst™-Lung: SNVs & indels 
 
A dilution series was performed to assess the LoD90. Tru-Q7 contains 36 mutations 

covered by the InVisionFirst™ gene panel, including 32 mutations at ~1%-1.3% AF (Range 

1%-30% AF). Replicate samples were analysed in Laboratory 2 by three operators, each 

using two different reagent lots (Figure 4.7). The assay showed high repeatability and 

reproducibility, with 100% SNVs detected at 0.5% AF in all replicates. The LoD90 was 0.25% 

AF, with 99.48% SNVs detected at 0.25%-0.33% AF. There was no noticeable difference in 

inter-and intra-operator variability or lots at 0.25%-0.33% AF. A SeraCare custom reference 

standard was manufactured to assess 18 indels (ranging -24bp-+12bp), using a dilution 

series down to 0.1% AF. 99.7% indels were detected at 0.5% AF, with 92.46% detected at 

0.25% AF.  

4.3.4:   Analytical Performance of InVisionFirst™-Lung: SVs 
 
Due to the scarcity of obtaining specimens from patients with specific ALK and ROS1 gene 

fusions, analytical validation of rearrangements was performed using either fragmented 

Horizon custom cell-line mix DNA, carrying known mutations in EML4-ALK or SLC34A2-

ROS1; synthetic dsDNA fragments carrying published and random fusion breakpoints; and 

analysis of Horizon cell-line fusion reference DNA spiked into donor blood. In analysis of a 

total of 87 samples in a dilution series, 36 fusions present in the cell-line mix were detected 

down to 0.13% AF, with 90% detected at 0.06% AF. Analysis of synthetic fusions detected 

90% rearrangements at 0.5% AF, and 2.5% AF cell-line fusion DNA was detected in all 19 

donors, collected into both BCT or EDTA tubes. Overall, 104 variants were analysed in 54 

unique samples, and fusions were detected in all but 3, resulting in a positive percentage 

agreement (PPA) of 97.1% at ≥0.5% AF.  

4.3.5:  Analytical Performance of InVisionFirst™-Lung: SCNAs 

To validate ERBB2, FGFR1, MET and EGFR amplifications, synthetic dsDNA blocks carrying 

complementary sequences were spiked into sheared wild-type DNA, resulting in copy 

number amplification ratios (CNARs) of 1.25x, 1.5x and 2x. Each amplification was tested at 

each dilution level 22-24 times by the 3 operators. All 4 amplifications were detected at 2x 

CNAR, with a mean of 97.7% detected at 1.5x, and 75% [range 59% (FGFR1) to 90.91%  
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Figure 4.6:  Overview of the InVisionFirst™ workflow for detection of SNVs, indels, ALK and ROS1 gene fusions and SCNAs (labelled as CNVs, copy 

number variants) from patient blood to oncologists report. Figure and Figure Legend adapted from Plagnol et al.(8)



90 
 

(EGFR) at 1.25x CNAR. Further samples were prepared between 2x and 50x CNAR. 51/52 

variants were detected in 49 unique samples at ≥1.5x CNAR, resulting in a PPA of 98.1%.  

4.3.6:   Analytical Performance of InVisionFirst™-Lung: Specificity 
 

To assess specificity, blood from presumed healthy volunteers were collected into K3EDTA 

or BCT tubes. In analysis of up to 109 samples, the per-base specificity was 99.9997%. 

Three coding or splice variants, but no SCNAs  or gene fusions were identified. A TP53 

p.L369X mutation was verified as real by dPCR, but two (at 0.13% and 0.29% AF) were not 

re-confirmed and may be false positives, or true positives that could not be detected at this 

low frequency.  

4.4: Discussion 

In Gale et al., analytical validation studies demonstrated 94% sensitivity for detection of 

SNVs at 0.25%-0.33% AF using optimal input DNA, with mutant alleles detected down to 

0.02% AF. This was a 10-fold enhancement in sensitivity compared to original TAm-Seq (3), 

with the assay expanded from analysis of SNVs in 6 genes spanning <6kb, to an assay 

targeting 35 genes spanning 10.61kb, covering SNVs, indels and SCNAs. In Plagnol et al., 

the assay was further developed to target SNVs and indels in 36 genes, including NTRK1 

and NTRK3 for which newly developed targeted inhibitors have recently been developed 

(94). A major limitation of original TAm-Seq and eTAm-Seq™ was the inability to target 

gene rearrangements. The InVisionFirst™-Lung assay was further developed to enable 

detection of ALK and ROS1 gene fusions. As a result, InVisionFirst™-Lung provides 

comprehensive genomic profiling (CGP) of all four mutation classes in ctDNA for patients 

with advanced NSCLC, with 99.48% sensitivity for detection of SNVs at 0.25%-0.33% AF, 

92.46% sensitivity for indels at 0.25% VAF, a PPA of 97.1% for detection of ALK and ROS1 

fusions at ≥0.5% AF, a PPA of 98.1% for detection of SCNAs at ≥1.5x CNAR, and a per-base 

specificity of 99.9997%.  

4.4.1:  Challenges of analytical validation of an NGS diagnostic assay 
 

The main challenge for both Gale et al. and Plagnol et al. was to design robust analytical 

validation studies appropriate for analysis of NGS data.  As only a few NGS assays had 

entered clinical diagnostic use at the time of performing this study, only limited analytical 

validation studies had been published, meaning that there was no fixed blueprint for how 
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Figure 4.7: Sensitivity of InVisionFirst™ for detection of SNVs (A, C) and indels (B, D). 

(A,B): Each line: Different operator/reagent lot. (C,D): All calls for each dilution/variant 

(vertical) and repeater/operator/lot (horizontal). Blue rectangles: Mutations detected; Grey: 

Not detected. (E): Comparison of AFs generated using InVisionFirst™ (blue) and dPCR (red 

crosses, supplied by manufacturer). Op: Operator; Figures and Figure Legend adapted from 

Plagnol et al. (8) 
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to conduct such studies. Mattocks et al. published a standardized framework for validation 

and verification of clinical molecular genetic tests (95). More recently, further guidelines 

have been published by the Association for Molecular Pathology (AMP) and College of 

American Pathologists (CAP), covering NGS assay validation of oncology panels and 

bioinformatics pipelines respectively (96,97). Since initiating this work, Guardant Health 

and Foundation Medicine have also published analytical validation of their ctDNA assays 

(80,82). 

One of the considerable challenges in analytical validation of an NGS ctDNA assay is 

obtaining appropriate controls for validation of rare mutated sequences that appear in only 

a small proportion of the population. In such circumstances, it is difficult to obtain rare 

tissue or blood specimens to appropriately validate assays targeting these regions. For this 

reason, we used contrived samples, using a custom fragmented cell-line mix containing ALK 

and ROS1 fusions, using synthetic dsDNA fragments designed to published and random 

fusion breakpoints, and Horizon cell-line fusion reference standard spiked into donor 

blood. One issue with using contrived material is that there may be unavoidable differences 

with genuine control material. For example, acoustic shearing of tumour or reference 

standard DNA may introduce artefacts due to 8-oxoguanine lesions, resulting in an increase 

in G>T/C>A transversion errors (98,99). Using an highly sensitive NGS assay, these may be 

identified as mutations, and would need to be verified as true or false positives. Where 

possible, repeat analysis should be performed using an alternative method to exclude 

technical errors. Enzymatic fragmentation could also be used rather than acoustic shearing 

to avoid DNA damage. 

Due to issues with shearing, the most appropriate control is plasma cfDNA as it is naturally 

fragmented. However, when using control plasma from presumed healthy individuals, such 

as for specificity studies, it is important to be aware that some ‘healthy’ individuals who 

have not been diagnosed with cancer may also carry low frequency sequence changes. 

These alterations may be benign, pre-malignant mutations that accumulate prior to cancer 

or during ageing, originate from an undetected tumour, or result from changes occurring 

during clonal hematopoiesis (100,101). As assays become more sensitive, it is becoming 

increasingly important to rule out clonal hematopoiesis of indeterminate potential (CHIP), a 

common age-related process involving clonal expansion of a sub-population of blood cells 

from hematopoietic stem cells or blood cell progenitors, as a confounder by analysis of 

buffy coat germline DNA .  
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A further challenge of reporting NGS ctDNA results was highlighted by Torga et al., who 

compared results from analysing the same plasma specimens from 40 prostate cancer 

patients using two different commercial assays, Guardant360® and PlasmaSELECT™. (102).  

Of concern, data showed poor agreement in mutations reported by both assays, with only 

7.5% (3/40) patients with one or more alterations showing complete congruence, and 15% 

(6/40) showing partial congruence. Unsurprisingly, this caused considerable controversy, 

with both companies disputing findings, raising concerns on study design and analysis, 

sample collection, and the differential effects of germline variants reported by each 

company (103,104). More reassuringly, Thress et al. compared the cobas® EGFR mutation 

test and BEAMing, and showed >90% concordance.  Further comparative studies must be 

expected to ensure patient safety. 

 
4.4.2:  Clinical impact of eTAm-Seq™ and InVisionFirst™-Lung assay 
 

Analytical validation of the InVisionFirst™-Lung assay demonstrated that the test has high 

sensitivity. A prospective multi-centre clinical validation study has now been performed 

analysing plasma from 264 NSCLC patients (178 with tissue available) (105). ctDNA was 

detected in 77.3% of patients, and 53.8% of patients had an actionable alteration, or an 

alteration that is mutually exclusive for actionable changes (eg. KRAS or STK11). Overall 

concordance with matched tissue profiling was 97.8%, with 83.0% PPV, 98.5% NPV, 70.6% 

sensitivity and 99.2% specificity. Analysis of the eight most clinically relevant genes (EGFR, 

ALK, ROS1, ERBB2, MET, BRAF, KRAS, STK11) in patients where ctDNA was detected 

resulted in a sensitivity of 87.3%, specificity of 99.3%, 93.7% PPV and 98.4% NPV. 26% of 

patients had more actionable alterations identified by InVisionFirst™-Lung than by tissue 

testing, and ctDNA genomic profiles were consistent across patients with or without tissue.  

The assay is now commercially available in the United States. Unlike in the UK, where 

healthcare is free to its citizens for validated interventions [following recommendations by 

the National Institute for Health and Care Excellence (NICE)], the US largely operates a 

healthcare system that needs to be paid for by medical insurance. As such, diagnostic tests 

need to be approved by health insurance programs, such as Medicare, in order to get 

reimbursement. Palmetto GBA, a Medicare Administrative Contractor, recently provided a 

final Local Coverage Decision (LCD) for the InVisionFirst™-Lung assay to be used as a 

plasma-based somatic CGP test for patients with Stage IIIB/IV NSCLC (106,107). The 

recommended intended use for the test is: 
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At diagnosis: when test results for EGFR SNVs/indels, ALK/ROS1 rearrangments, and BRAF 

SNVs are not available and tissue-based testing is not possible (medically contraindicated 

or quantity not sufficient [QNS]) 

OR 

At progression: for patients progressing on or after chemotherapy or immunotherapy who 

have never been tested for EGFR SNVs/indels, ALK/ROS1 rearrangments, and BRAF SNVs, 

and for whom tissue-based testing in not possible (QNS from original biopsy). 

OR   

For patients progressing on EGFR TKIs. If no genetic alteration is detected or if ctDNA is 

insufficient/non-detected, tissue-based genotyping should be used. (108) 

 

This is a major milestone in getting the assay reimbursed for all fee-for-service Medicare 

patients with advanced Stage III/IV NSCLC in the US who meet the appropriate clinical 

criteria. It is only the second NGS ctDNA assay, together with Guardant360®, to have 

achieved this status. 

In the next Chapter, I will discuss potential applications of ctDNA in the clinic, including 

work I have performed to assess the clinical utility of eTAm-Seq™, and use of TAm-Seq™ 

and dPCR for monitoring treatment response (9–11). I will also discuss the development of 

size selection to improve the sensitivity of detection of ctDNA (12–14). Improved sensitivity 

is required for earlier diagnosis of cancer and detection of minimal residual disease. 
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Chapter 5: Clinical applications of ctDNA 
 
5.1: Molecular stratification  
 

Following the demonstration by us and others that ctDNA has potential as a non-invasive 

liquid biopsy, work has progressed at a rapid pace to further evaluate its utility and 

implement assays in the clinic. The most immediate impact has been in the molecular 

stratification of NSCLC patients to treatment, since activating EGFR mutations predict 

sensitivity to tyrosine kinase inhibitors, and osimertinib is effective in patients with the 

EGFR p.T790M resistance-conferring mutation. In Remon et al., we used eTAm-Seq™ for 

plasma-based testing to guide treatment with osimertinib in advanced NSCLC patients (9). 

5.1.1:  Remon et al, Annals of Oncology, 2017  (9) 
 
5.1.1.1:  Aims 
 

The aim of this study was to assess the clinical utility of eTAm-Seq™. Analysis was 

performed in a prospective cohort of 48 advanced NSCLC patients with known activating 

EGFR mutations, without an available tissue biopsy, who were progressing on current 

treatments. p.T790M status was assessed in plasma cfDNA using eTAm-Seq™ to guide 

treatment with osimertinib. The aim was to determine treatment response from imaging 

data using RECIST v1.1  criteria (63), assess progression-free survival, and evaluate plasma-

based testing using eTAm-Seq™. In this study, I led the clinical lab team generating data for 

this study, using the assay developed by Gale et al. (7) 

5.1.1.2:    Results 
 

EGFR p.T790M was detected using eTAm-Seq™ in 24/48 patients (50%). 18 patients 

received osimertinib on progression, and 16 were evaluated for response. 10/16 (62.5%) 

patients had a partial response and 6/16 (37.5%) had stable disease. Responses were re-

confirmed in 90% patients, with one patient having progressed (Figure 5.1). Median PFS 

was not achieved (NA) after a median follow-up of 8-months (95% CI: 4-NA), with 6-months 

and 12-months PFS of 66.7% and 52% respectively. Overall survival was not achieved, with 

4 patients having died at the time of study cut-off, with one year OS at 78% (95% CI: 59-97).  
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Figure 5.1: Waterfall plot of p.T790M-positive NSCLC patients treated with osimertinib, 

showing best percentage change in lesion size. Red dotted line: 30% decrease. Figure and 

Figure Legend adapted from Remon et al. (9) 

5.1.1.3:   Discussion 
 
The most immediate clinical impact of ctDNA has been in the stratification of NSCLC 

patients to treatment.  In patients treated with erlotinib or gefitinib, the 5-year survival of 

EGFR-mutant metastatic lung adenocarcinoma patients was shown to be 14.6%, compared 

to 4.5% for unselected patients with distant-stage NSCLC (109,110). The cobas EGFR 

Mutation Test v2 is an FDA-approved real-time PCR test for the qualitative detection of 

EGFR mutations including exon 19 deletions, p.L858R and p.T790M. Importantly, it was the 

first companion diagnostic to be approved for use with either tissue or plasma to guide 

treatment with erlotinib and osimertinib (111). However, the test has an input of just 2mL 

plasma and an LoD of 25-100 copies/mL plasma (dependent on mutation). (112). Recent 

advances in the development of dPCR and NGS ctDNA assays means that it is now possible 

to more sensitively detect low frequency EGFR mutations.   

 

Remon et al. was the first published prospective study in a real-world setting to assess 

p.T790M status and efficacy of osimertinib based on plasma rather than tissue profiling. 

p.T790M was detected in 50% of EGFR-mutant patients using the eTAm-Seq™ assay, which 

is consistent with tumour profiling in other studies (113,114). Results demonstrated good 

response rates, showing 62.5% patients with a partial response, also comparable with 
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tissue-based testing (114,115). This study provides data supporting the clinical utility of 

eTAm-Seq™ for detection of clinically-relevant mutations in plasma of advanced NSCLC 

patients. 

 

Retrospective analysis of plasma samples from the Phase I AURA trial using BEAMing 

demonstrated detection of the EGFR resistance mutation in 31% of p.T790M-negative 

tumours (assessed using the cobas assay), although these may potentially be false positives 

or result from tissue sampling biases (116). Results from the AURA Phase II extension trial 

demonstrate that treatment of p.T790M-positive NSCLC patients with osimertinib showed 

high response rates, encouraging PFS and durable responses (117). Interestingly, our study 

demonstrates that response to osimertinib could be seen in patients with mutant allele 

fractions <0.5% AF. Currently little is known about the optimal time to treat based on the 

detection of low frequency mutant alleles. To fully evaluate the utility of sensitive plasma 

testing, clinical trials need to be performed to determine whether it is best to treat a 

patient immediately following detection of low levels of the p.T790M mutation, or whether 

patients would have better overall survival if treated later. Hypothetically, earlier 

treatment may lead to the early emergence of new resistance mutations, which will require 

new therapies targeting these mutations. Thress et al. have already shown that some 

patients treated with osimertinib acquire an EGFR p.C797S resistance mutation (118).  

 

The Remon et al. study was limited in that it analysed a relatively low number of patients, 

many of whom had undergone multiple lines of heterogenous treatment. To fully assess 

performance, studies should be performed on a larger cohort of patients. This can now 

happen given that plasma-based testing for patients eligible for osimertinib treatment has 

been approved.  

5.2:   Monitoring treatment response 
 

The ability to monitor treatment response is important to avoid over-treatment with an 

ineffective therapy, prevent unnecessary side effects, indicate when new treatments 

should be initiated and provide an opportunity to assess novel drug compounds. We tested 

whether ctDNA can accurately monitor tumour dynamics in breast cancer by comparison 

with other circulating biomarkers and imaging data [Dawson et al., (10)], and whether 

ctDNA can be used to study different resistance mechanisms in NSCLC [Tsui et al.,(11)]. In 
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these studies, I developed optimised protocols for clinical collections and analysis of ctDNA, 

trained the lead co-authors in these techniques and provided scientific guidance.  

5.2.1: Dawson et al., New England Journal of Medicine, 2013  (10) 
 

5.2.1.1:   Aims 
 

The aim of this study was to assess whether ctDNA could be used to monitor tumour 

burden and response to treatment in patients with metastatic breast cancer, by 

comparison with circulating tumour cells (CTCs), cancer antigen 15-3 (CA15-3) and 

radiographic imaging. Serum CA15-3 is a clinically used biomarker, with sensitivity of only 

60%-70% (119,120). CTCs were evaluated using the CellSearch System, with sensitivity of 

~65% for detection of ≥1 cell/7.5mL blood, with levels deemed to be elevated and 

associated with poor prognosis if ≥5 cells/7.5mL blood (119,121). Mutations were first 

identified in FFPE tumour DNA using either TAm-Seq, to identify PIK3CA and TP53 

mutations, or WGS to identify SNVs or SVs.  

5.2.1.2:   Results 
 

PIK3CA or TP53 mutations were identified in tumour DNA from 25/52 patients. WGS 

identified SVs in a further 8 cases, including 5 where no mutations had previously been 

identified. ctDNA levels were subsequently quantified in 141 serial plasma samples from 30 

patients using either dPCR or TAm-Seq. ctDNA was detected in 97% (29/30) cases, and in 

115/141 (82%) plasma specimens. Figure 5.2 shows monitoring of ctDNA levels using either 

SNVs or SVs. Three deletions in an amplified locus show a similar dynamic pattern to a 

PIK3CA mutation but at higher levels, as expected using a quantitative assay (Figure 5.2A). 

Similar dynamics were generally observed in cases with multiple mutations (Figure 5.2B), 

although in some cases there was clonal heterogeneity, with different dominant clones 

observed post-treatment (Figure 5.2C/D).  

In cases where samples were available for comparative analysis, CA15-3 was elevated in 

21/27 women (78%), and in 71/114 samples (62%), compared to detection of ctDNA in 

26/27 patients (96%)  and 94/114 samples (82%). Sensitivity of CA15-3 was 59%, and 85% 

for ctDNA. CTCs were detected at ≥1 cell/7.5mL blood in at least one timepoint in 26/30 

patients (87%), and elevated at ≥5 cells/7.5mL blood in 18/30 women (60%). CTCs were not 

detected in 50/126 samples (40%). By comparison, ctDNA was detected in 29/30 patients 
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(97%), and in 106/126 samples (84%). Sensitivity of CTCs was 67%, and 90% for ctDNA. The 

median number of amplifiable copies of ctDNA was 133 times greater than the number of 

CTCs, with a greater dynamic range. 

In 20 patients with available data, the performance of different circulating biomarkers was 

compared to imaging data by CT. Examples are shown in Figure 5.3. ctDNA was detected in 

19/20 patients (95%), and ctDNA dynamics generally correlated with treatment responses 

seen on imaging. CTC data agreed with imaging data in 10/20 patients with elevated CTCs 

(≥5 CTCs/7.5mL blood), but not in the remaining 50% cases with lower levels. CA15-3 

showed similar profiles in patients with >50 U/mL, but with a smaller dynamic range, and 

these fluctuations were not observed in patients with lower levels. In 10/19 patients (53%), 

ctDNA gave the earliest measure of treatment response, with levels elevated on average 

five months before detection of progressive disease by imaging. In addition, higher levels of 

ctDNA were associated with poorer overall survival (p < 0.001, Cox regression model). CTCs 

were also shown to be prognostic (p = 0.03), but CA15-3 was not. 

 

5.2.2:  Tsui et al., EMBO Molecular Medicine, 2018  (11) 
 
5.2.2.1:  Aims 
 

The aim of this study was to monitor tumour dynamics and investigate co-existent 

resistance mechanisms in 50 NSCLC patients with EGFR-positive tumour DNA undergoing 

treatment with gefitinib and hydroxchloroquine (11). 392 plasma specimens were analysed 

using dPCR and TAm-Seq. sWGS was used to analyse three patients undergoing histological 

transformation to small-cell lung cancer (SCLC).  

5.2.2.2:   Results 
 

Analysis showed that 41/43 (95%) patients had identical EGFR mutations in plasma and the 

tumour biopsy. Additional mutations were identified in plasma, including in TP53, PIK3CA 

and PTEN. Analysis of 19 TKI treatment-naïve cases showed that patients with low pre-

treatment levels of EGFR-activating mutations tended to have better PFS and OS, although 

this did not reach significance (Cox; p = 0.06).  Levels correlated with tumour burden, with 

patients with low mutant AF having lower tumour burden (median: 17 mm), compared to 

those with intermediate (median: 42 mm) and high levels (median: 80 mm). In 
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Figure 5.2: Monitoring multiple SNVs and SVs in cfDNA from breast cancer 

patients. (A) Monitoring 3 SVs and 1 PIK3CA mutation in one patient by dPCR; (B) 

Monitoring 6 SNVs in one patient by dPCR; C) Monitoring PIK3CA and TP53 SNVs by 

dPCR, indicating TP53 mutation was dominant in the circulation; (D) Differences in 

PIK3CA and TP53 levels during paclitaxel treatment using TAm-Seq; Shaded areas: 

Periods of treatment; RECIST v1.1 imaging responses indicated; ND: Not detected; 

Figure and Figure Legend adapted from Dawson et al. (10) 
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Figure 5.3 (A-D): Comparison of ctDNA, CTCs, CA15-3 and imaging data to monitor 

tumour dynamics in 4 patients. ctDNA: copies/mL plasma; CTCs/7.5mL whole blood 

(orange line: 5 CTCs/7.5mL); CA15-3: U/mL (green line: 32.4 U/mL threshold); Shaded areas: 

Periods of treatment; RECIST v1.1 imaging responses: PD: Progressive Disease; SD: Stable 

disease; ND: Not detected; (E) Quantiles of ctDNA copies/mL compared to overall survival. 

Increasing levels associated with poor overall survival (p < 0.001, Cox regression model, 

ctDNA - continuous time-dependent variable). Figure and Figure Legend adapted from 

Dawson et al. (10) 
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addition, patients with both EGFR and TP53 mutations in pre-treatment plasma had worse 

prognosis. 

Three distinct mutational profiles were observed (Figure 5.4). 62% of patients had a 

p.T790M mutation in plasma following treatment, with the resistance mutation detected a 

median of 6.8 months prior to progression. 22% of patients had an activating EGFR 

mutation before and after progression, but no p.T790M mutation. TKI-naïve patients who 

did not have a p.T790M mutation in plasma had worse PFS (log-rank test, p = 0.008). 

Finally, in a third sub-cohort (16%), no EGFR activating or resistance mutations were 

detected in plasma on progression, suggesting resistance in these patients may develop 

through alternative pathways.  

Approximately 2%-3% NSCLC cases develop TKI-resistance through transformation to a 

histological classification of SCLC. In this study, this was observed in three patients by 

analysis of tissue re-biopsies at progression (122). sWGS analysis of plasma from these 

patients showed the presence of SCNAs post-progression, including in genes known to be 

associated with SCLC, and these correlated with tumour burden and radiological response 

(Figure 5.5).   

 

 

Figure 5.4 (on next page) : ctDNA dynamics in 45 NSCLC patients reveals distinct patterns 

of resistance mechanisms. (A) EGFR-activating mutations before and after disease 

progression, and newly arising p.T790M mutation (B) EGFR-activating mutations before and 

after disease progression, but no p.T790M mutation; (C) No EGFR-activating or p.T790M 

mutation. Coloured lines: specific mutations; PD: Progressive Disease; PD*: PD with new 

lesions; PD**: PD defined by presentation of symptoms on brain or bone scan. Figure and 

Figure Legend adapted from Tsui et al. (11)  
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Figure 5.4             
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Figure 5.5: (i) Global SCNA profiles in primary tumour at diagnosis of NSCLC; (ii) 

Plasma SCNA profiles prior to small cell lung cancer (SCLC) transformation; (iii) 

Global SCNA profiles in tumour at SCLC transformation (iv) Plasma SCNA profiles 

after SCLC transformation and progression on cisplatin and irinotecan. Blue: gain; 

Orange: loss. Figure and Figure Legend adapted from Tsui et al. (11) 
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5.2.3: Discussion 
 

Dawson et al. demonstrated for the first time that ctDNA could be used to monitor tumour 

burden, had greater sensitivity compared to CTCs and CA15-3, and often provided the 

earliest measure of response in patients with metastatic breast cancer.  Subsequent 

publications by Parkinson et al. and Tie et al. supported these results, demonstrating that 

ctDNA correlated with tumour burden in ovarian and colorectal cancer, that elevated levels 

of ctDNA could be observed prior to progressive disease on imaging, and that ctDNA was 

superior to CA-125 and CEA (1,66). In Tsui et al., p.T790M was detected in NSCLC patients a 

median of 6.8 months before clinical progression. 

In Dawson et al., SVs in amplified regions were shown to have elevated levels of ctDNA 

compared to a point mutation in the same patient.  SVs can be used to monitor tumour 

burden. As chromosomal rearrangements are not present in germline DNA, this results in a 

highly specific assay with no background noise, unlike SNVs which differ by a single 

nucleotide. Leary et al. demonstrated that patient-specific rearrangements can be detected 

down to 1 molecule in 100,000 wild-type alleles (0.001%) (123). However, some SVs are 

passenger mutations. In Dawson et al., ctDNA analysis showed clonal heterogeneity, with 

different dominant clones observed post-treatment. This highlights that a monitoring assay 

should ideally track driver rather than passenger mutations, which may be in minor 

subclones that are lost during clonal evolution. 

In Tsui et al., ctDNA was used to monitor NSCLC patients treated with gefitinib and 

hydroxchloroquine. Three different sub-cohorts were observed in plasma – patients with 

an EGFR-activating mutation, with or without a p.T790M resistance mutation, and patients 

with no EGFR-activating or p.T790M resistance mutation.  In NSCLC, in addition to 

p.T790M-mediated resistance, there are other mutations, including MET and HER2 

amplifications and PIK3CA mutations that may lead to drug resistance. Additional known 

resistance pathway include transformation to a histological classification of SCLC. In Tsui et 

al., sWGS was used to observe changes in SCNAs in 3 patients undergoing transformation. 

Patients with both EGFR and TP53 mutations in pre-treatment plasma had poor prognosis. 

Parkinson et al. also showed that pre-treatment ctDNA levels were prognostic, and 

associated with time to progression. Tsui et al. demonstrated that TKI-naïve patients who 

were p.T790M-negative had a significantly worse PFS, in agreement with Oxnard et al. who 

observed that p.T790M-negative patients are less likely to benefit from TKI continuation 

(124).  
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Longitudinal monitoring enables clinicians to determine whether a particular treatment is 

working to avoid ineffective treatment and unnecessary side-effects. Should newly arising 

actionable mutations be detected, then patients may become eligible for additional 

treatment options. Detection of SCLC histology, for example, may open up the possibility of 

additional SCLC treatment options (125). 

The ideal monitoring assay would perform comprehensive genomic profiling, and be 

relatively inexpensive to enable repeat sampling. sWGS only detects SCNAs, but has 

potential as a monitoring assay, as is relatively inexpensive yet informative. Heitzer et al. 

first demonstated that sWGS to a depth of ~0.1x coverage is sufficient to detect SCNAs on a 

genome-wide scale (54). Chromosomal aneuploidy has been shown to predict response to 

immunotherapy in melanoma and other cancers (126–128). A limitation, however, is that 

sWGS needs to be performed on samples with sufficiently high AF (>5-10%). Methods to 

enrich for ctDNA could be potentially valuable to increase detection of SCNAs in samples 

with lower tumour fraction. As discussed in the next section, Mouliere et al. investigated 

whether size selection could enrich for tumour-specific DNA and enhance detection of 

clinically-relevant SCNAs. 

5.3: Early detection of cancer and minimal residual disease  
 

Initial ctDNA research largely focussed on patients with advanced cancer, where pre-

treatment ctDNA levels are at their highest. More recently, focus has shifted to analysis of 

ctDNA in the detection of minimal residual disease, and in patients with early stage cancer. 

This is more challenging given the low number of mutant fragments available for analysis. 

Mair et al. and Mouliere et al. used paired-end sWGS to study fragmentation patterns of 

cfDNA (12–14). Mouliere et al. subsequently tested whether size selection could be used to 

enrich for tumour-specific ctDNA fragments to improve assay sensitivity (13,14). 

5.3.1: Mair et al., Cancer Research, 2019  (12) 
 
5.3.1.1:   Aims 
 

The aim of this study was to analyse human ctDNA in a patient-derived rat xenograft model 

of glioblastoma (GBM) (12). sWGS was performed to analyse fragmentation lengths of 

human (tumour) and rat (host) DNA. As GBM is known to have low concentrations of 

ctDNA, tumour mitochondrial DNA (tmtDNA) was also analysed in rat plasma, urine and 
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cerebrospinal fluid (CSF) by dPCR using human and rat-specific assays. tmtDNA may 

potentially be a more sensitive marker than ctDNA as there are 102-105 copies of the 

16.5kb mitochondrial genome in each cancer cell (129). 

5.3.1.2:   Results 
 

sWGS from the xenograft model showed that human tumour-specific and CSF DNA 

fragments centred around 145bp in length, compared to 167bp for rat DNA (Figure 5.6). 

Human and rat mitochondrial DNA showed a peak <100bp. 

Tumour mitochondrial DNA was detected in plasma in 82% of rats, compared to 24% for 

ctDNA, at ~190-fold higher levels, indicating the potential of using tmtDNA to enhance 

detection in GBM. tmtDNA was also detected in CSF and urine. ctDNA levels in CSF were 5-

8-fold higher than in plasma, possibly due to higher background levels of host DNA in 

plasma.  

 
5.3.2: Mouliere et al., bioRxiv, 2017; Mouliere et al., Science 
Translational Medicine, 2018  (13,14) 
 
5.3.2.1:   Aims 
 

Mouliere et al. tested whether size selection of 90bp-150bp fragments could enrich for 

ctDNA. This data, published initially as a bioRxiv pre-print (13), was followed by further 

analysis of fragmentation patterns in 344 plasma samples from 200 patients with 18 

different cancer types, and 65 presumed healthy controls (14). 

5.3.2.2:  Results 
 

In the bioRxiv pre-print, in vitro size selection was performed on plasma from 13 relapsed 

HGSOC patients using a PippinHT 3% agarose cassette, and analysed by TAm-Seq and 

sWGS. Results demonstrated that tumour-specific DNA could be enriched up to 11-fold.   

t-MAD (trimmed Mean Absolute Deviation from copy-number neutrality) was developed to 

analyse sWGS data to measure the median deviation from the copy number neutral state, 

and quantitatively assess SCNAs on a genome-wide scale. Size selection resulted in a 

median 1.5-fold increase in t-MAD score across all samples, and a median 2.9-fold increase  
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,  

Figure 5.6: Fragmentation patterns of plasma DNA in rat xenograft model of 

glioblastoma. (A) sWGS reads aligned to human (tumour) or rat (host) genomic 

reference sequences (B) SCNAs identified in tumour, CSF and plasma by alignment 

to human and rat genome. (C,D) Size distribution of human ctDNA (red) and rat 

DNA (blue) in two rat GBM models. Vertical line: 167bp. (E) Size distribution of CSF 

DNA. (F) Size distribution of mitochondrial DNA (tmtDNA) in plasma from 

xenografted rat. Human tmtDNA (purple); Rat tmtDNA (green). wtDNA: wild-type 

DNA. Figure and Figure Legend adapted from Mair et al. (12) 
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in the majority of samples collected post-treatment where ctDNA levels were low. Two 

samples were highly degraded with no observed 167bp peak, and size selection resulted in 

a decrease in t-MAD score. 

In Mouliere et al. (Science Translational Medicine), sWGS showed different fragmention 

patterns in patients with different cancer types and healthy controls (Figure 5.7). Longer 

fragments were observed in healthy controls and in patients with ‘low ctDNA’ cancers 

(renal, glioblastoma, bladder, pancreatic). ‘High ctDNA’ cancers [melanoma, breast, 

ovarian, lung, colorectal and cholangiocarcinoma (ChC)], showed an increased proportion 

of fragments <150bp, and an enrichment of 250bp-320bp fragments. 

In silico and in vitro size selection was next used to enhance detection of ctDNA. t-MAD 

analysis of 45 pre- and post-treatment plasma samples from 35 HGSOC patients showed a 

mean 2.5-fold increase in 98% samples following in vitro size selection. In addition, SCNAs 

were detected which were not previously observed in pre-treatment samples (Figure 5.8), 

including in clinically-relevant genes, including NF1, TERT and MYC. Comparison of t-MAD 

with dPCR and WES data showed high correlation (Pearson, r = 0.80) between t-MAD and 

mutant AF in samples above the detection threshold  (0.015, based on highest t-MAD score 

in control samples) and AF>0.025. A spike-in dilution series showed linearity of t-MAD and 

mutant fraction down to ~0.01 AF. t-MAD also correlated with tumour volume by RECIST 

v1.1 in analysis of 35 patients (Pearson, r = 0.6). 

Machine learning algorithms were used to classify ‘healthy’ and ‘cancer’ samples by 

analysing cfDNA fragmentation features in sWGS data. Features used included the 

proportion (P) of fragments of specific size ranges, the ratio of fragments in different size 

ranges, and the amplitude of the 10bp periodicity oscillations below 150bp. Random Forest 

(RF) and Logistic Regression (LR) models were trained on 153 samples, and cross-validated 

on 2 independent datasets of [1] 94 samples, and [2] 83 samples from ‘low ctDNA’ cancers. 

The RF model was most predictive, using t-MAD, 10bp amplitude, P(160 to 180), P(180 to 

220) and P(250 to 320) features, with an AUC of 0.994 in analysis of the 94 validation 

cohort, and 0.914 in ‘low ctDNA’ samples. It correctly classified cancer in 94% of samples 

from ‘high ctDNA’ cancers, and 65% of ‘low ctDNA’ cancers. Using just four fragmentation 

features without t-MAD resulted in an AUC of  0.989 (‘high ctDNA’) and 0.891 (‘low 

ctDNA’), indicating that fragmentation patterns of cfDNA are the most predictive indicator. 
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Figure 5.7: Plasma fragmentation patterns on a pan-cancer scale. Proportion of fragments <150bp by cancer type. ChC: Cholangiocarcinoma. ‘Other’: 

Cancer types represented by <4 individuals. Red lines: median proportion for each cancer type. (Kruskal-Wallis, *p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001 versus healthy and ‘low ctDNA’ cancers.. Figure and Figure Legend from Mouliere et al. (14) 

 



111 
 

 

Figure 5.8: Enhancing tumour fraction from plasma sequencing with size selection. (A) Plasma samples from HGSOC patients analysed without size 

selection, or using either in silico or in vitro size selection. (B) Accuracy of 90-150bp in vitro or in silico size selection demonstrated on 20 healthy controls. 

Green: Before size selection; Blue: After in silico size selection; Orange: After in vitro size selection. Vertical lines: 90bp, 150bp. (C) SCNA analysis of pre-

treatment plasma from HGSOC patient (D) SCNA analysis of non-size selected plasma 3 weeks post-treatment (E) SCNA analysis of same plasma in (D) with 

90bp-150bp in vitro size selection; Blue: amplifications; Orange: deletions: Grey: copy number neutral regions. Figures and Figure Legend from Mouliere et 

al. (14)
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5.3.3: Discussion 
 

In Mair et al., a rat xenograft model of glioblastoma was used to study fragmentation 

patterns of human tumour-specific ctDNA, and rat cfDNA, demonstrating that the ctDNA 

had shorter fragments, around 147bp in length. This is in agreement with previous 

observations that tumour-specific DNA has a different size profile (37,38,40). Following 

these findings, Mouliere et al. used size selection to enrich for tumour-specific DNA, 

enabling the detection of clinically-relevant SCNAs that had not previously been observed. 

Analysis of fragment sizes on a pan-cancer scale showed that plasma from ‘high ctDNA’ 

cancers showed an increased proportion of fragments <150bp, compared to healthy 

controls and ‘low ctDNA’ cancers. The ranking order was very similar to that observed by 

Bettegowda et al. who analysed the number of mutant fragment across different cancer 

types (42).  Importantly, unlike the Bettagowda study, no prior knowledge of specific 

mutations was required to generate this data.  

Two novel approaches were developed to analyse sWGS data. t-MAD was used to analyse 

sWGS data to quantitatively assess copy number data and levels of enrichment on a 

genome-wide scale. Results showed that t-MAD correlated with tumour volume and 

mutant allele fraction down to 0.01. Secondly, machine learning was used to build a model 

incorporating t-MAD scores and size fragmentation features to predict the presence of 

ctDNA, with the RF model shown to be the most predictive. These studies should be 

repeated on a larger scale and require further analysis to determine if other biological 

features of cfDNA can be incorporated to enhance detection in early stage disease or MRD. 

The ultimate goal for non-invasive cancer diagnostics is to enable cancer to be detected 

earlier, when patients can be treated with curative intent and improve survival.  Size 

selection and use of machine learning may potentially help in the earlier detection of 

cancer or MRD. Several studies have used sensitive methods to study whether ctDNA can 

be a prognostic biomarker in these cohorts. Garcia-Murillas et al. used dPCR to analyse 

ctDNA to detect MRD in a prospective cohort of early-stage breast cancer patients 

receiving neoadjuvant chemotherapy (130). Analysis of post-surgical plasma specimens 

showed that detection of ctDNA was prognostic, predicting relapse with high accuracy in a 

single post-surgical plasma or in serial follow-up samples (HR: 25.1; CI: 4.08-130.5; HR: 

12.0; CI: 3.36-43.07; log-rank p < 0.0001, respectively). Chaudhuri et al. demonstrated that 

CAPP-Seq could be used to detect MRD in the first post-treatment plasma sample in 94% of 
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Stage I-III NSCLC patients treated with curative intent who went on to relapse (131). Tie et 

al. used Safe-SeqS to detect ctDNA in 7.9% of Stage II colon cancer patients not treated 

with chemotherapy, 79% of whom relapsed within a median of 27 months. In contrast, only 

9.8% of patients with no detectable ctDNA subsequently relapsed (HR 18; 95% CI: 7.9 – 40; 

p < 0.001) (132).  Phallen et al. used TEC-Seq (targeted error correction sequencing), 

involving deep sequencing of a 58-gene panel, to detect ctDNA in 71%, 59%, 59% and 68% 

of patients with Stage I-II colorectal, breast, lung or ovarian cancer, respectively (133).  

More recently, Cohen et al. developed CancerSEEK, a multi-analyte blood test designed to 

detect both ctDNA, using a 61-gene panel, and 8 clinically-used protein biomarkers to 

analyse patients with eight common cancer types (ovarian, liver, stomach, pancreatic, 

oesophageal, colorectal, lung, breast cancer) (134). Analysis of 1005 Stage I-III cancer 

patients showed a median sensitivity of 70% (p < 10−96 one-sided binomial test; range: 33%- 

98% in different cancers types), with a specificity >99%. The unique aspect of this test is the 

use of multiple analytes to enhance detection of cancer. This multi-modal approach shows 

promise, and should be explored further to enable early detection of cancer. 
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Chapter 6:  Summary 

This thesis represents nearly 10 years of research investigating the diagnostic potential of 

circulating tumour DNA, and assessing the hypothesis that ctDNA is a clinically useful 

biomarker able to monitor tumour dynamics, correlate with disease burden, and be used to 

guide treatment. When I initiated this work in 2009, ctDNA was known to be present in the 

plasma of cancer patients, but its clinical relevance had not been fully ascertained.  

In Parkinson et al., I was able to demonstrate for the first time that ctDNA levels correlated 

with tumour burden in high-grade serous ovarian cancer (1). Using patient-specific digital 

PCR assays, mutant TP53 ctDNA levels were monitored over time. Response to 

chemotherapy was seen earlier with ctDNA than CA-125, and pre-treatment TP53MAF was 

shown to be associated with time to progression. These studies demonstrate the potential 

of ctDNA in HGSOC as an early response marker. Additional dPCR analysis of specimens 

from a HGSOC patient with high clonal expansion demonstrated an NF1 deletion was 

already present in subclonal populations prior to treatment (2). 

The development of TAm-Seq, an amplicon-based sequencing assay, demonstrated for the 

first time that next generation sequencing could be used to non-invasively identify low-

frequency mutations in cfDNA, and be used to monitor multiple mutations in parallel (3). 

This opened up the possibility to use NGS for the detection and monitoring of ctDNA. TAm-

Seq was subsequently used to analyse plasma specimens from ovarian, breast and lung 

cancer patients and demonstrate its ability to monitor tumour dynamics (3,10,11). Murtaza 

et al. provided the first demonstration that exome sequencing could be used to identify 

potential mechanisms of resistance in plasma (4). Analysis of multiple specimens from an 

ER+ve, HER2+ve breast cancer patient demonstrated that plasma DNA can non-invasively 

reflect the tumour genome, and be used to study clonal evolution (5). Furthermore, 

Dawson et al. were able to demonstrate that ctDNA had greater correlation with tumour 

burden than CTCs and CA15-3, and often provided the earliest measure of treatment 

response in patients with metastatic breast cancer (10).  

To enable patients to have access to TAm-Seq technology, I , together with my colleagues, 

co-founded Inivata, which analyses ctDNA to improve patient healthcare in oncology. I led 

the development and analytical validation of enhanced TAm-Seq™ technology to 

ISO15189:2012 regulatory standards, demonstrating 94% mutations were detected at 
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0.25%-0.33% AF, with mutant alleles detected down to 0.02% AF (7). Remon et al. 

demonstrated the clinical utility of this assay in the first prospective study of a cohort of 

EGFR-mutant NSCLC patients treated with osimertinib based on plasma profiling alone (9).  

Results showed good response rates, with 62.5% with partial response, comparable with 

tissue-based testing. Further enhancements led to the development of the InVisionFirst-

Lung™ assay, able to perform comprehensive genomic profiling of ctDNA, with detection of 

ALK and ROS1 gene fusions in addition to SNVs, indels and SCNAs (8). This assay has 

received a final Local Coverage Determination by Palmetto GBA to be used as a plasma-

based test for patients with Stage IIIB/IV NSCLC. This is a major milestone in getting the 

assay reimbursed for use in the US, and only the second NGS ctDNA assay to have achieved 

this status. 

Further work evaluated different pre-analytic factors that may affect ctDNA levels in 

plasma collected in different blood tubes and using different processing conditions (6). In 

addition, analysis of cfDNA fragmentation patterns in a pan-cancer study and in a rat 

xenograft model demonstrated that tumour-specific DNA is shorter than cfDNA (12–14). 

Furthermore, size selection and use of machine learning algorithms, incorporating size 

fragmentation features, enhanced detection of ctDNA and identified clinically-relevant 

SCNAs.  

This has been an exciting decade to be involved in ctDNA research. In this time, I have seen 

it advance from academic research to clinical implementation for patient benefit. 

Encouragingly, the first companion diagnostic based on plasma profiling has now been 

approved for use to guide treatment with erlotinib and osimertinib for patients with 

advanced NSCLC. The challenge is now to improve the sensitivity of detection to enable 

early diagnosis of disease, at a stage when patients can be treated with curative intent, 

whilst ensuring assays have high specificity to limit detection of false positives. Studies by 

Cohen et al. demonstrate improved sensitivity of detection by incorporating both ctDNA 

and protein biomarker analysis (134). The use of multi-analyte assays, incorporating a 

combination of ctDNA and methylation, mitochondrial DNA, RNA, CTCs, exosomes, tumour-

educated platelets (135) and/or protein biomarkers for example, may hopefully go some 

way towards achieving the ultimate goal of detecting cancer early and improving survival 

rates. 
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Definitions  

 

  AC/mL   Amplifiable copies per mL  

  AF  Allele fraction 

  AKT pathway  Signal transduction pathway involving Protein kinase B 

  AMP  Association for Molecular Pathology  

  APC HGNC nomenclature for gene that encodes adenomatous polyposis 

coli protein  

  ARMS-PCR  Amplification-refractory mutation system PCR 

  Array CGH  Array comparative genomic hybridisation 

  AXL  HGNC nomenclature for AXL receptor tyrosine kinase 

  AUC  Area under the curve 

  BEAMing Beads, emulsion, amplification and magnetics (36) 

  bp Base pairs of DNA 

  BRAF  HGNC nomenclature for gene that encodes Proto-oncogene B-Raf 

  BRAF p.V600E Specific mutation in BRAF gene at codon 600 resulting in an amino 

acid substitution from valine (V) to glutamic acid (E) 

  BRCA1 HGNC nomenclature for gene that encodes BReast CAncer 1 

protein 

  BRCA2 HGNC nomenclature for gene that encodes BReast CAncer 2 

protein 

  CA-125  Cancer antigen 125  

  CA15-3  Cancer antigen 15-3 

  CAP  College of American Pathologists 

  CAPP-Seq   Cancer personalized profiling by deep sequencing 
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  CDK12 HGNC nomenclature for gene that encodes cyclin-dependent 

kinase 12 

  CDx Companion diagnostic 

  CE  Clonal expansion  

  CEA   Carcinoembryonic antigen  

  cfDNA   Cell-free DNA 

  CFTR HGNC nomenclature gene that encodes cystic fibrosis 

transmembrane conductance regulator 

  ChC    Cholangiocarcinoma 

  CHIP   Clonal hematopoiesis of indeterminate potential 

  CI   Confidence interval 

  CLIA Clinical Laboratory Improvement Amendments (United States 

regulatory standards for clinical laboratory testing) 

  CNAR   Copy number amplification ratio 

  CGP   Comprehensive genomic profiling 

  CMS   Centers for Medicare & Medicaid Services  

  CR  Complete response 

  CRUK-CI  Cancer Research UK Cambridge Institute 

  CSF  Cerebrospinal fluid   

  CT  Computed tomography 

  CTCs  Circulating tumour cells 

  ctDNA   Circulating tumour DNA 

  DNA   Deoxyribonucleic acid 

  dPCR   Digital PCR 

  dsDNA  Double-stranded DNA 
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  EGFR HGNC nomenclature for gene that encodes epidermal growth 

factor receptor 

  EGFR p.L858R  Specific activating mutation in EGFR gene at codon 858 resulting in 

an amino acid substitution from leucine (L) to arginine (R) 

  EGFR p.T790M Specific resistance mutation in EGFR gene at codon 790 resulting in 

an amino acid substitution from threonine (T) to methionine (M) 

  EDTA Ethylenediaminetetraacetic acid 

  ER HGNC nomenclature for gene encoding oestrogen receptor  

  ERBB2  HGNC nomenclature for gene encoding erb-b2 receptor tyrosine 

kinase 2 (also known as HER2) 

  ERBB4 HGNC nomenclature for gene encoding erb-b2 receptor tyrosine 

kinase 4 

  E.RT.0h  EDTA blood tube stored at room temperature and processed 

immediately (at 0 hours) 

  eTAm-Seq™  Enhanced tagged-amplicon deep sequencing 

  FDA  US Food and Drug Administration 

  FFPE  Formalin-fixed paraffin-embedded  

  FISH  Fluorescent in situ hybridisation 

  FN  False negative 

  FP  False positive 

  GAAL   Genome-wide aggregated allelic loss(76) 

  GAS6   HGNC nomenclature for growth arrest specific 6 gene 

  GBM   Glioblastoma  

  GCIG  Gynaecological Cancer InterGroup 

  gDNA   Genomic DNA 

  GE/mL   Haploid genomic equivalents per mL plasma 
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  HER2 HGNC nomenclature for the human epidermal growth factor 

receptor 2 gene, also known as ERBB2 (erb-b2 receptor tyrosine 

kinase 2) 

  HGNC HUGO gene nomenclature committee (136) 

  HGSOC  High-grade serous ovarian carcinoma 

  HR  Hazard ratio 

  HUGO  Human Genome Organisation (137) 

  iDES   Integrated digital error suppression 

  IDS   Interval debulking surgery  

  IHC  Immunohistochemistry 

  Indels   Insertions/deletions 

  IQR   Interquartile range 

  ISO   International Organisation for Standardization 

  ISO15189:2012 International standard specifying quality management system 

requirements for medical laboratories 

  ITH Intra-tumour heterogeneity 

  IVD In vitro diagnostic 

  IU International units 

  K2EDTA EDTA tubes containing dipotassium salt 

  K3EDTA  EDTA tubes containing tripotassium salt 

  KRAS  HGNC nomenclature for the gene that encodes kirsten rat sarcoma 

virus oncogene 

  KW   Kruskal-Wallis test for differences in size distributions 

  LCD   Local Coverage Decision 

  LoD Limit of detection 

  LoD90 Limit of detection where can detect a mutation 90% of the time  
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  LR Logistic regression model 

  LRR LogR ratio 

  LUAD Lung adenocarcinoma 

  LUSC Lung squamous cell carcinoma 

  mCRC Metastatic colorectal cancer 

  Mb Megabase (1 million base pairs of DNA) 

  MEDICC  Minimal Event Distance for Intra-tumour Copy Number 

Comparisons 

  mEGFR   mutant EGFR gene 

  MRD  Minimal residual disease 

  MSI  Microsatellite instability 

  mtDNA  Mitochondrial DNA 

  MYC HGNC nomenclature for gene that encodes MYC proto-oncogene,   

bHLH transcription factor 

  NA Not achieved 

  NEJM  New England Journal of Medicine  

  NF1  HGNC nomenclature for gene that encodes Neurofibromin 1 

  NGS  Next-generation sequencing 

  NHS  National Health Service (UK) 

  NICE  National Institute for Health and Care Excellence 

  NIPT  Non-invasive prenatal testing  

  NPV  Negative predictive value 

  NSCLC  Non-small cell lung cancer 

  OS  Overall survival 

  PARP HGNC nomenclature for gene that encodes Poly (ADP ribose) 

polymerase 
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  PCR   Polymerase chain reaction 

  PD   Progressive disease 

  PET    Positron emission tomography 

  PFS  Progression-free survival  

  PhD  Doctor of Philosophy 

  PI3K pathway Signal transduction pathway involving phosphatidylinositol-4,5-

bisphosphate 3-kinase 

  PIK3CA HGNC nomenclature for gene that encodes phosphatidylinositol-

4,5-bisphosphate 3-kinase catalytic subunit alpha 

  PLD  Pegylated liposomal doxorubicin 

  PPA  Positive percentage agreement 

  PPV  Positive predictive value 

  PTEN HGNC nomenclature for gene that encodes phosphatase and tensin 

homolog protein 

  PR Partial Response 

  QNS   Quantity not sufficient  

  qPCR  Quantitative PCR 

  RAS  ‘Rat Sarcoma’ signalling pathway 

  RB1  HGNC nomenclature for gene that encodes RB transcriptional 

corepressor 1 (also known as retinoblastoma-associated protein) 

  RECIST 1.1  Response Evaluation Criteria in Solid Tumours 

  RF Random forest model 

  RNA  Ribonucleic acid 

  ROC  Receiver operating characteristic 

  RT  Room temperature 

  SCLC   Small-cell lung cancer  
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  SCNA  Somatic copy number aberration/alteration 

  SD  Stable disease 

  SNVs  Single nucleotide variants 

  ssDNA  Single-stranded DNA 

  SVs  Structural variants 

  sWGS  Shallow whole genome sequencing  

  TAm-Seq   Tagged-amplicon deep sequencing 

  TCGA  The Cancer Genome Atlas 

  TEC-Seq   Targeted error correction sequencing  

  TERT HGNC nomenclature for gene encoding telomerase reverse 

transcriptase 

  TKI  Tyrosine kinase inhibitor 

  t-MAD   Trimmed Mean Absolute Deviation from copy-number neutrality 

  TMB  Tumour mutation burden 

  TP53 HGNC nomenclature for gene encoding tumor protein p53  

  TP53MAF  TP53 mutant allele fraction 

  TN  True negative 

  TP  True positive  

  TTP  Time to progression 

  UEA  University of East Anglia 

  UK  United Kingdom 

  ULN   Upper limit of normal  

  VAF  Variant allele frequency 

  WGS  Whole genome sequencing  

  WES  Whole exome sequencing 
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Analysis of TP53 Mutations in Circulating Tumour DNA as Biomarkers of Treatment 

Response for Patients with Relapsed High-Grade Serous Ovarian Carcinoma: A 

Retrospective Study.’  

Summary 

The aim of this study was to investigate circulating tumour DNA (ctDNA) as an early response 

marker in relapsed high-grade serous ovarian cancer (HGSOC). Plasma specimens (n=318) 

from 40 patients were analysed using patient-specific digital PCR assays (n=31) to assess the 

TP53 mutant allele fraction (TP53MAF), compared to serum CA-125 and tumour burden by 

volumetric analysis. ctDNA levels correlated with disease volume, and pre-treatment 

TP53MAF, not CA-125, was associated with poor response and time to progression (TTP). A 

decrease of ≤60% TP53MAF after one cycle of chemotherapy was associated with TTP in <6 

months, demonstrating the potential of ctDNA as an early response marker in ovarian 

carcinoma. 

Author contributions 

I co-led this study and was joint first co-author on this PLoS Medicine publication. I 

established protocols and lab infrastructure for the analysis of ctDNA from start-up of the 

lab, including protocols for the collection of high-quality specimens from the gynaecological 

clinic, extraction protocols and digital PCR (dPCR) analysis of TP53 mutations in cell-free DNA 

(cfDNA). I designed and validated 31 patient-specific digital PCR assays, and used these to 

detect and monitor low frequency mutations in 318 plasma specimens, the largest study at 

the time. I, together with other team members, analysed data and correlated with clinical 
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Summary 
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profiles and WGS data using the MEDICC algorithm. Patients with high clonal expansion (CE-

high) had shorter progression-free and overall survival than CE-low patients. Analysis of an 

NF1 deletion in a CE-high patient pre- and post-relapse indicated that resistant subclonal 

populations were already present prior to treatment. 

 

Author contributions 
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been unable to do. I analysed dPCR data and prepared figures and text for inclusion in the 

manuscript. All author contributions are detailed in Appendix 3. 
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Science Translational Medicine; 2012; 4(136):136ra68; 

‘Noninvasive identification and monitoring of cancer mutations by targeted deep 

sequencing of plasma DNA.’  

Summary 

Our team developed TAm-Seq™ (tagged-amplicon deep sequencing), a novel amplicon-

based next-generation sequencing (NGS) assay to non-invasively identify low-frequency 

mutations in cell-free DNA. Previous studies demonstrated the potential of ctDNA by 

analysis of single hotspot mutations. This study provided the first demonstration of the use 

of NGS to screen large genomic regions to monitor multiple mutations in parallel to detect 

mutations at an allele fraction (AF) of 2%, with >97% sensitivity and specificity. TAm-Seq was 

used to identify a de-novo EGFR mutation in plasma, not previously identified in the initial 

tumour biopsy, and monitor tumour dynamics by tracking 10 concomitant mutations in 

parallel. 

Author contributions 

I designed and validated digital PCR assays to demonstrate the quantitative accuracy of 

TAm-Seq, including developing a dPCR assay to validate a low frequency de novo mutation 

identified by TAm-Seq. I performed the first TAm-Seq experiments in the group to analyse 

FFPE (formalin-fixed paraffin-embedded) tumour DNA. I worked with the team to optimise 

the TAm-Seq protocol for detection of low frequency mutations in ctDNA, and provided 

technical advice and training. I revised and modified the TAm-Seq paper prior to publication. 

I devised and optimised collection and extraction protocols for the collection of high-quality 

ovarian and breast cancer specimens. All author contributions are detailed in Appendix 3. 

  



146 
 

4. Murtaza M*, Dawson SJ*, Tsui DWY*, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin S, 

Kingsbury Z, Wong AS, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton JD†, 

Caldas C†, Rosenfeld N†; Nature; 2013 May 2; 497(7447):108-12 

‘Non-invasive analysis of acquired resistance to cancer therapy by sequencing of  plasma 

DNA.’  

Summary 

Exome sequence analysis was performed on serial plasma samples from patients with 

advanced breast, ovarian and lung cancer to study potential mechanisms of acquired drug 

resistance. This paper provided the first proof-of-principle demonstration of the use of 

exome sequencing to non-invasively assess tumour heterogeneity on an exome-wide scale, 

and study genomic evolution pre- and post-treatment following resistance. Known 

resistance-causing mutations were identified including an EGFR T790M mutation in a patient 

treated with gefitinib, and a GAS6 mutation (ligand for AXL). Activation of the AXL pathway is 

known to cause TKI and lapatinib resistance. 

 

Author contributions 

 

I established lab protocols and infrastructure for the analysis of ctDNA, and trained a PhD 

student, post-doc and clinical fellow that led this study on these methods. I established 

protocols for collection and DNA extraction of clinical specimens from the local ovarian and 

breast cancer oncology clinics used in this study. I advised the lead author on the optimal 

method for exome sequencing from cfDNA which had proved challenging using standard 

protocols. I was involved in generating libraries, the interpretation of data and critically 

reviewing the manuscript ahead of publication. All author contributions are detailed in 

Appendix 3. 
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5. Murtaza M*, Dawson SJ*, Pogrebniak K, Rueda O, Provenzano E, Grant J, Chin SF, Tsui 

DWY, Marass F, Gale D, Ali HR, Shah P, Contente-Cuomo T, Farahani H, Shumansky K, 

Kingsbury Z, Humphray S, Bentley D, Shah S, Wallis M, Rosenfeld N†, Caldas C†; Nature 

Communications; 2015; 6:8760 doi: 10.1038/ncomms9760  

‘Multifocal clonal evolution characterized using circulating tumour DNA in a case of 

metastatic breast cancer’.  

 

Summary 

 

Following on from the Murtaza et al. Nature paper, this study performed exome sequence 

analysis and targeted amplicon deep sequencing of specimens from a patient with 

metastatic ER+ve and HER2+ve breast cancer. Nine plasma samples and 8 tumour biopsies, 

including autopsy specimens, were analysed across 1,193 days of clinical follow-up. This 

study provided a proof-of-principle demonstration of the ability of ctDNA to be able to non-

invasively reflect the genomic architecture and clonal evolution inferred by sequencing of 

the tumours, and study serial changes in stem and private mutations to assess tumour 

dynamics following treatment. 

 

Author contributions 

 

I established lab protocols and infrastructure for the analysis of ctDNA, and trained the PhD 

student and clinical fellow that led this study on these methods. I established protocols for 

collection and DNA extraction of clinical specimens from the local breast cancer oncology 

clinic used in this study. I advised the lead author on the optimal method for exome 

sequencing from cfDNA which had proved challenging using standard protocols. I was 

involved in critically reviewing the manuscript ahead of publication. All author contributions 

are detailed in Appendix 3. 
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6. Risberg B*, Tsui DWY*†, Biggs H, Ruiz-Valdepenas Martin de Almagro A, Dawson SJ, 

Hodgkin C, Jones L, Parkinson C, Piskorz A, Marass F, Chandrananda D, Moore E, Morris J, 

Plagnol V, Rosenfeld N, Caldas C, Brenton JD, Gale D†; The Journal of Molecular 

Diagnostics, 2018; Volume 20 , Issue 6 , 883 - 892. *Senior co-corresponding author; 

‘Effects of collection and processing procedures on plasma circulating cell-free DNA from 

cancer patient’.  

 

Summary 

 

This study analysed different pre-analytical factors that can affect cfDNA levels, including 

delays in plasma processing, storage temperatures, use of different blood tubes (EDTA v 

Streck cell-free DNA BCT cell preservation tubes), centrifugation protocols and sample 

shipment. Analysis was performed using dPCR, TAm-Seq or shallow whole genome 

sequencing (sWGS). BCT tubes stabilised DNA release, whilst EDTA storage at 4°C showed 

less cfDNA variation compared to room temperature storage. Similar cfDNA levels were 

observed using second centrifugation at 3000g v 14,000g, providing protocols for hospitals 

with limited equipment. NGS analysis of DNA from ETDA or BCT tubes showed similar 

mutational profiles, background error and copy number alterations. 

 

Author contributions 

 

I was senior co-corresponding author on this publication. Having initiated studies evaluating 

delayed processing of Streck and EDTA tubes in 2010, I devised and co-led this study with Dr. 

Dana Tsui, a postdoctoral research associate in our group. I worked with Heather Biggs, a 

research assistant in the ovarian and breast cancer clinics at Addenbrooke’s Hospital, 

Cambridge, to train and arrange collection and processing of blood samples for evaluation. I 

oversaw the project with Dr. Tsui, and trained team members in different techniques. In 

addition, I designed and validated digital PCR assays which were used by Bente Risberg, first 

co-author, to assess cfDNA and ctDNA levels. I reviewed data, revised and improved the 

manuscript and figures, and led interactions with the journal editors prior to publication. All 

author contributions are detailed in Appendix 3. 
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7. Gale D‡, Lawson ARJ, Howarth K, Madi M, Durham B, Smalley S, Calaway J, Blais S, Jones G, 

Clark J, Dimitrov P, Pugh M, Woodhouse S, Epstein M, Fernandez-Gonzalez A, Whale AS, 

Huggett JF, Foy CA, Jones GM, Raveh-Amit H, Schmitt K, Devonshire A, Green E, Forshew T, 

Plagnol V, Rosenfeld N†; PLoS ONE; 2018; 13(3): e0194630; ‘Development of a highly 

sensitive liquid biopsy platform utilizing enhanced Tagged-Amplicon deep-Sequencing 

technology to detect clinically-relevant cancer mutations at low allele fractions in cell-free 

DNA.’ 

 

Summary 

 

In this paper, I led the development and analytical validation of the Inivata InVision™ next-

generation sequencing (NGS) assay to detect low frequency mutations in cfDNA. This clinical 

diagnostic assay is based on eTAm-Seq™ technology, designed to identify clinically-relevant 

somatic mutations in a panel of 35 cancer-related genes. Analytical validation was 

performed in two independent clinical laboratories to CLIA and ISO15189:2012 quality 

standards. Analysis of optimal input DNA detected mutant alleles down to 0.02%, with 94% 

mutations at 0.25%-0.33% AF, and per-base specificity of 99.9997%. These studies 

demonstrate that InVision is a highly sensitive assay for the detection of clinically-relevant 

mutations in plasma.  

 

Author contributions 

 

As first and senior co-corresponding author on this publication, I led technology transfer of 

TAm-Seq™ from CRUK-CI to Inivata, led the development of eTAm-Seq™ technology, 

including development to ISO15189:2012 quality standards, and led the team involved in 

processing clinical specimens for several studies and for analytical validation of the assay. I 

was involved in development of the analytical validation plan and data analysis, wrote the 

first draft and subsequent modifications of the manuscript, and was the senior author in 

discussions with journal editors prior to publication. All author contributions are detailed in 

Appendix 3. 
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8. Plagnol V*, Woodhouse S*, Howarth K, Lensing S, Smith M, Epstein M, Madi M, Smalley S, 

Leroy C, Hinton J, De Kievit F, Musgrave-Brown E, Herd C, Neblett K, Brennan W, Dimitrov 

P, Campbell N, Morris C, Rosenfeld N, Clark J, Gale D, Platt J, Calaway J, Jones G, Forshew 

T†; PLoS ONE; 2018; 13(3): e01938022018; ‘Analytical validation of a Next Generation 

Sequencing liquid biopsy assay for high sensitivity broad molecular profiling.’  

 

Summary  

This study performed analytical validation of the InVisionFirst™ assay, based on eTAm-Seq™ 

technology. The assay was developed to profile 36 genes commonly mutated in NSCLC, and 

able to detect SNVs, indels, copy number amplifications, and ALK and ROS1 gene fusions, 

thereby providing comprehensive genomic profiling of low frequency mutations in ctDNA. 

The InVisionFirst™ assay demonstrated 99.48% sensitivity for detection of SNVs at 0.25%-

0.33% AF, 92.46% sensitivity for indels at 0.25% AF, and 99.9997% per-base specificity. 

Comparison with digital PCR showed high concordance. These results demonstrate 

InVisionFirst™ is a highly sensitive and specific assay, suitable for use in clinical applications.  

Author contributions 

Following the development of eTAm-Seq, I was responsible for implementation of assay 

automation, which led to a significant improvements in assay sensitivity and robustness. I 

provided technical advice to the technology development team on development of the 

assay, helped with design of the analytical validation plan to standards required for 

reimbursement and contributed to the dossier for reimbursement, reviewed data and 

helped revise the manuscript prior to publication. All author contributions are detailed in 

Appendix 3. 
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9. Remon J, Caramella C, Jovelet C, Lacroix L, Lawson ARJ, Smalley S, Howarth K, Gale D, 

Green E, Plagnol V, Rosenfeld N, Planchard D, Bluthgen MV, Gazzah A, Pannet C, Nicotra C, 

Auclin E, Soria JC, Besse B†; Annals of Oncology; 2017; 28:784-790; ‘Osimertinib benefit in 

EGFR-mutant NSCLC patients with T790M mutation detected by circulating tumour DNA.’  

Summary  

This was the first prospective study of ctDNA in a cohort of EGFR-mutant non-small cell lung 

cancer (NSCLC) patients treated with osimertinib, a third-generation TKI active against EGFR 

T790M resistance mutations. Analysis was performed on 48 activating mEGFR+ patients with 

acquired resistance to TKIs, who had no available tissue biopsy. T790M status was detected 

in plasma in 50% patients using InVision eTAm-Seq™ technology. 62.5% patients gave a 

partial response following treatment, and 37.5% had stable disease. These studies indicate 

the clinical utility of InVision™ to detect T790M mutations in plasma where no tissue biopsy 

is available, demonstrating good response rates.  

Author contributions 

As Head of Molecular Diagnostics at Inivata, I led the development of eTAm-Seq technology 

(see Gale et al., Chapter 4.2), and its implementation to ISO15189:2012 quality standards for 

clinical use. I also led the team responsible for processing clinical specimens in this study. I 

was involved in data review and quality control, and reviewed and edited the manuscript 

ahead of publication. In my academic role at the Cancer Research UK Cambridge Institute, I 

participated in discussions with clinicians at the Institut Gustave Roussy, the clinical site 

where patients were recruited for this study, which ultimately led to this collaboration. All 

author contributions are detailed in Appendix 3. 
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10. Dawson SJ*, Tsui D.W.Y*, Murtaza M, Biggs H, Rueda O, Chin SF, Dunning M, Gale D, 

Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley D, 

Caldas C†, Rosenfeld N†; New England Journal of Medicine; ‘Analysis of Circulating Tumor 

DNA to Monitor Metastatic Breast Cancer.’  

 

Summary 

 

This study compared ctDNA with CA 15-3, circulating tumour cells (CTCs) and radiographic 

tumour imaging in 30 patients with metastatic breast cancer. ctDNA was detected in 97% 

cases, compared to CA 15-3 (78%) and CTCs (87%) respectively, showing a greater dynamic 

range and correlation with changes in tumour burden than the other circulating biomarkers. 

Importantly, ctDNA provided the earliest measure of treatment response in 53% patients, 

with detection of elevated ctDNA levels on average 5 months earlier than detection of 

progressive disease by imaging. This study provided an important proof-of-concept 

demonstration of the potential of ctDNA in metastatic breast cancer. 

 

Author contributions 

 

For this study, I established novel protocols for the collection, extraction and analysis of 

cfDNA, and provided expertise, training and technical advice to co-authors on this study to 

help establish collections and process samples. I established digital PCR and helped develop 

TAm-Seq which were critical in this study for the analysis of low frequency mutations. I 

provided critical review of the manuscript prior to publication. All author contributions are 

detailed in Appendix 3. 
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11. Tsui DWY*, Murtaza M*, Wong ASC, Rueda OM, Smith CG, Chandrananda D, Soo RA, Lim 

H, Goh B, Caldas C, Forshew T, Gale D, Liu W, Morris J, Marass F, Eisen T, Chin T†, Rosenfeld 

N†; EMBO Molecular Medicine; 2018; e794; DOI 10.15252/ emmm. 201707945; ‘Dynamics 

of multiple resistance mechanisms in plasma DNA during EGFR-targeted therapies in 

NSCLC.’  

 

Summary  

 

In this study, tumour dynamics and resistance mechanisms were assessed in plasma from 50 

EGFR-mutant NSCLC patients treated with gefitinib and hydroxychloroquine, using TAm-Seq 

and dPCR. Three cases who underwent histological transformation to SCLC were analysed by 

sWGS. Plasma EGFR mutations were detected in 95% cases with known tumour EGFR 

mutations. TAm-Seq identified additional mutations including T790M, TP53, PIK3CA and 

PTEN mutations. Patients with both TP53 and EGFR mutations had worse overall survival 

compared to EGFR-mutant patients. Patients who progressed without T790M-mediated 

resistance had worse PFS during TKI continuation, and developed alternative mutations 

including TP53 and SCLC-associated copy number changes. 

 

Author contributions 

 

I established protocols and lab infrastructure for the analysis of ctDNA, and trained the post-

doc who led this study on these protocols, which were subsequently used for the analysis of 

plasma from non-small cell lung cancer patients in this publication. I provided scientific 

guidance throughout the study, and critically reviewed the manuscript ahead of publication. 

All author contributions are detailed in Appendix 3. 
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12. Mair R*, Mouliere F*, Smith CG, Chandrananda D, Gale D, Marass F, Tsui DWY, Massie CE, 

Wright AJ, Watts C, Rosenfeld N†, Brindle KM†; Cancer Research; 2019; 79 (1): 220 LP-230; 

https://doi.org/10.1158/0008-5472.CAN-18-0074; “Measurement of Plasma Cell-Free 

Mitochondrial Tumor DNA Improves Detection of Glioblastoma in Patient-Derived 

Orthotopic Xenograft Models.’  

Summary 

Human-derived ctDNA, tumour mitochondrial DNA (tmtDNA) and rat cfDNA was analysed in 

a patient-derived rat xenograft model of glioblastoma (n=64). Paired-end sWGS (<0.2x 

coverage) demonstrated that tumour-specific plasma and CSF DNA centred around 145bp in 

length, compared to host DNA at 167bp, and tmtDNA <100bp. tmtDNA was detected in 82% 

of plasma samples, and ctDNA in 24%, demonstrating that tmtDNA may be a more sensitive 

marker than ctDNA in GBM. Different mechanisms of ctDNA release were indicated in 

treatment-naïve rats and rats treated with temozolomide and radiotherapy, and levels were 

not affected by disruption of the blood brain barrier. 

Author contributions 

 

I was actively involved in the original concept and design of this study to analyse ctDNA in 

rat xenograft model of glioblastoma. I advised and trained the clinical fellow that led this 

study on ctDNA analysis, including advising on an optimised protocol for the collection of 

plasma from rat tail veins. I designed digital PCR assays for the analysis of the human ctDNA 

from GBM tumours, advised on appropriate rat assays to use to analyse host cfDNA, and 

performed digital PCR experiments and analysed dPCR data to assess levels of both rat and 

human DNA. I also advised on TAm-Seq experiments to further characterise the GBM tissue 

specimens that were implanted.  I was involved in writing and critically reviewing the 

manuscript ahead of publication. All author contributions are detailed in Appendix 3. 
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13. Mouliere F*, Piskorz A*, Chandrananda D*, Moore E*, Morris J, Smith C, Goranova T, 

Heider K, Mair R, Supernat A, Gounaris I, Ros S, Wan J, Jimenez-Linan M, Gale D, Brindle K, 

Massie C, Parkinson C, Brenton JD†, Rosenfeld N†; bioRxiv; 2017; (Pre-print, not peer-

reviewed); ‘Selecting Short DNA Fragments In Plasma Improves Detection Of Circulating 

Tumour DNA.’  

 

Summary 

 

As clinical analysis of ctDNA can be limited by its low concentration, size selection was 

performed to determine whether this would enrich for tumour-specific fragments between 

90-150bp. Plasma samples from 13 patients with recurrent high-grade serous ovarian cancer 

were collected before and during chemotherapy, and analysed by targeted and shallow 

whole genome sequencing following size selection. Size selection enabled detection of 

tumour alterations not previously detected, including a MYC amplification, and an up to 11-

fold enrichment of mutated DNA. These studies provide a potential approach to overcome 

sensitivity limitations of ctDNA for early diagnosis and detection of minimal residual disease.  

 

Author contributions 

 

I established protocols for the collection, DNA extraction and analysis of ctDNA, including 

working with clinical teams to establish unique collections of plasma specimens from 

ovarian, melanoma and phase I trials, and provided optimised SOPs and advice to other 

groups collecting samples. The plasma cohorts provided a unique resource to analyse 

fragmentation patterns of cfDNA in this pan-cancer study. I trained the lead authors on 

ctDNA analysis techniques, and critically reviewed the manuscript ahead of submission to 

bioRxiv. All author contributions are detailed in Appendix 3. 
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14. Mouliere F*, Chandrananda D*, Piskorz A*, Moore E*, Morris J, Barlebo Ahlborn L, Mair R, 

Goranova T, Marass F, Heider K, Wan J, Supernat A, Hudecova I, Gounaris I, Ros S, Jimenez-

Linan M, Garcia-Corbacho J, Patel K, Østrup O, Murphy S, Eldridge M, Gale D, Stewart G, 

Burge J, Cooper W, van der Heijden M, Massie C, Watts C, Corrie P, Pacey S, Brindle K, 

Baird R, Mau-Sørensen M, Parkinson C, Smith C , Brenton JD†, Rosenfeld N†; Science 

Translational Medicine; 2018; Vol. 10, Issue 466, eaat4921; DOI: 

10.1126/scitranslmed.aat4921; ‘Enhanced detection of circulating tumor DNA by fragment 

size analysis’.  

 

Summary 

 

ctDNA fragment sizes were analysed across 344 plasma samples from 200 patients with 18 

different cancer types, and 65 healthy controls. Paired-end sWGS (<0.4x) demonstrated a 

lower proportion of fragments <150bp in healthy controls and in cancer-types known to 

have ‘low ctDNA’ levels (renal, GBM, bladder, pancreatic cancer), compared to those with 

‘high ctDNA’ (melanoma, breast, ovarian, lung, colorectal, cholangiocarcinoma). Size 

selection of 90bp-150bp fragments resulted in a median >2-fold enrichment of tumour-

specific DNA in >95% cases, and >4-fold enrichment in >10% cases. Supervised machine 

learning demonstrated that integration of SCNA data and different fragmentation features 

significantly improved ctDNA detection. 

 

Author contributions 

 

I established protocols for the collection, DNA extraction and analysis of ctDNA, including 

working with clinical teams to establish unique collections of plasma specimens from 

ovarian, melanoma and phase I trials, and provided optimised SOPs and advice to other 

groups collecting samples. The plasma cohorts provided a unique resource to analyse 

fragmentation patterns of cfDNA in this pan-cancer study. I trained the lead authors on 

ctDNA analysis techniques, and critically reviewed the manuscript ahead of publication. All 

author contributions are detailed in Appendix 3. 

 



Appendix 2:    Letters from senior authors detailing my contribution 
to each publication. 

 

The following letters of support by senior authors detail the contributions I made to each co-

authored publication, and the scientific impact of each of these papers. 
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Cancer Research UK Cambridge Institute 
University of Cambridge 

Li Ka Shing Centre 
Robinson Way 

Cambridge 
CB2 0RE 

Tel: 01223 769761 
 

26 February 2019 
 
To Whom It May Concern 
 
Dear Sir/Madam 
 
I am delighted to write in support of Davina Gale’s application for award of PhD by 
Publication at the University of East Anglia, and to confirm Davina’s significant 
involvement in the following publications: 
 
1. ‘Exploratory Analysis of TP53 Mutations in Circulating Tumour DNA as 

Biomarkers of Treatment Response for Patients with Relapsed High-Grade 
Serous Ovarian Carcinoma: A Retrospective Study.’  
Parkinson C*, Gale D*, Piskorz A, Biggs H, Hodgkin C, Addley H, Freeman 
S, Moyle P, Sala E, Sayal K, Hosking K, Gounaris I, Jimenez-Linan M, Earl 
H, Qian W, Rosenfeld N‡, Brenton JD‡; PLoS Medicine; 2016; 13 (12): 
e1002198 doi:10.1371/journal. pmed.1002198.  

2. ‘Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a 
phylogenetic analysis.’  
Schwarz R, Ng C, Cooke S, Newman S, Temple J, Piskorz A, Gale D, Sayal 
K, Murtaza M, Baldwin P, Rosenfeld N, Earl H, Sala E, Jimenez-Linan M, 
Parkinson C, Markowetz F‡, Brenton JD‡; PLoS Medicine; 2015; Feb 
24;12(2): e1001789. 

3. ‘Noninvasive identification and monitoring of cancer mutations by targeted 
deep sequencing of plasma DNA.’ 
Forshew T*, Murtaza M*, Parkinson C*, Gale D*, Tsui DW*, Kaper F, 
Dawson SJ, Piskorz AM, Jimenez-Linan M, Bentley D, Hadfield J, May AP, 
Caldas C, Brenton JD‡, Rosenfeld N‡; Science Translational Medicine; 
2012; 4(136):136ra68. 

4. ‘Development of a highly sensitive liquid biopsy platform utilizing enhanced 
Tagged-Amplicon deep-Sequencing technology to detect clinically-relevant 
cancer mutations at low allele fractions in cell-free DNA.’   
Gale D*, Lawson ARJ, Howarth K, Madi M, Durham B, Smalley S, Calaway 
J, Blais S, Jones G, Clark J, Dimitrov P, Pugh M, Woodhouse S, Epstein M, 
Fernandez-Gonzalez A, Whale AS, Huggett JF, Foy CA, Jones GM, Raveh-
Amit H, Schmitt K, Devonshire A, Green E, Forshew T, Plagnol V, Rosenfeld 
N; PLoS ONE; 2018; 13(3): e0194630. 

5. ‘Non-invasive analysis of acquired resistance to cancer therapy by 
sequencing of plasma DNA.’ 
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Murtaza M*, Dawson S-J*, Tsui DWY*, Gale D, Forshew T, Piskorz AM, 
Parkinson C, Chin S, Kingsbury Z, Wong AS, Marass F, Humphray S, 
Hadfield J, Bentley D, Chin TM, Brenton JD‡, Caldas C‡, Rosenfeld N‡; 
Nature; 2013; 497(7447):108-12. 

6. ‘Effects of collection and processing procedures on plasma circulating cell-
free DNA from cancer patient’ 
Risberg B*, Tsui DWY*‡, Biggs H, Ruiz-Valdepenas Martin de Almagro A, 
Dawson SJ, Hodgkin C, Jones L, Parkinson C, Piskorz A, Marass F, 
Chandrananda D, Moore E, Morris J, Plagnol V, Rosenfeld N, Caldas C, 
Brenton JD, Gale D‡; The Journal of Molecular Diagnostics, 2018; 
Volume 20 , Issue 6 , 883 – 892. 

7. ‘Enhanced detection of circulating tumor DNA by fragment size analysis.’ 
Mouliere F*, Chandrananda D*, Piskorz AM*, Moore E*, Morris J, Barlebo 
Ahlborn L, Mair R, Goranova T, Marass F, Heider K, Wan J, Supernat A, 
Hudecova I, Gounaris I, Ros S, Jimenez-Linan M, Garcia-Corbacho J, Patel 
K, Østrup O, Murphy S, Eldridge M, Gale D, Stewart G, Burge J, Cooper W, 
van der Heijden M, Massie C, Watts C, Corrie P, Pacey S, Brindle K, Baird 
R, Mau-Sørensen M, Parkinson C, Smith C , Brenton JD‡, Rosenfeld N‡; 
Science Translational Medicine; 2018; Vol. 10, Issue 466, eaat4921; DOI: 
10.1126/scitranslmed.aat4921. 

 
I am a Senior Group Leader at the Cancer Research UK Cambridge Institute 
University of Cambridge and lead the Functional Genomics of Ovarian Cancer 
group; I am also an Honorary Consultant in Medical Oncology at Addenbrooke’s 
Hospital. I am a co-founder of Inivata Ltd., a clinical cancer genomics company 
using circulating tumour DNA (ctDNA) to improve personalised healthcare in 
oncology (with Nitzan Rosenfeld, Davina Gale, Tim Forshew). 
 
I have worked closely with Davina for over 9 years dating from 2009, when she 
joined Dr. Nitzan Rosenfeld Molecular and Computational Diagnostics group at the 
Cancer Research UK Cambridge Institute. 
 
Davina’s contributions are as follows: 
 
1. Parkinson, Gale et al., PLoS Medicine, 2016 
Davina established lab infrastructure, including novel protocols for the analysis of 
ctDNA, at a time when very little was known about ctDNA or its clinical relevance as 
a cancer diagnostic. Davina co-led this study with Christine Parkinson from my 
group to investigate mutant TP53 ctDNA as a non-invasive biomarker for high-grade 
serous ovarian carcinoma (HGSOC). Davina initially determined optimal protocols 
for collection and extraction of plasma cell-free DNA from whole blood samples, and 
worked closely with my team in Addenbrooke’s Hospital to establish a unique 
plasma collection from patients attending the gynaecological oncology clinic. Davina 
next established digital PCR protocols using the Fluidigm microfluidic system to 
assess levels of mutant and wild-type TP53 ctDNA in patient plasma. She designed 
and validated 31 unique patient-specific digital PCR assays to assess ctDNA levels 
in 318 plasma specimens from 40 HGSOC patients, in what I believe was the 
largest ctDNA study that had been performed at that time. In 2010, Davina’s 
experiments provided the first evidence that we were able to detect ctDNA in patient 
plasma. Following retrospective analysis, ctDNA levels were compared to serum 
biomarker CA-125 levels, and with volumetric analysis following radiographic 
imaging.  
Davina was joint first co-author on this study and played a key role in the writing, 
editing and reviewing of the manuscript at every stage of it’s development. As senior 
co-author, I worked very closely with Davina during this process. We were able to 
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demonstrate that response to chemotherapy was seen earlier with ctDNA than 
clinical marker CA-125. We also showed that the TP53 mutant allele fraction 
(TP53MAF) correlated with tumour volume, and a decrease of pre-treatment 
TP53MAF of ≤60% after one cycle of chemotherapy was associated with better 
response. This was the first publication correlating ctDNA with volumetric imaging 
data and established the first cut point for early detection of response in HGSOC. 
2. Schwarz et al., PLoS Medicine, 2015 
Davina performed critical studies for this publication to confirm the allelic fraction of 
a subclonal population in a patient with HGSOC and progressive disease. She 
designed and validated digital PCR assays to assess the allelic fraction of a patient-
specific NF1 deletion by using TP53 mutation to estimate tumour-specific 
contributions. This work provided strong evidence from spatially and temporally-
separated tumour and ascites specimens that the clone had emerged over time but 
was present at diagnosis at very low levels. This work demonstrated for the first 
time that in HGSOC resistant subclones may be present prior to treatment and that 
increases in allele fraction during chemotherapy treatment may indicate emergence 
of adverse clonal populations. Davina used her extensive molecular biology 
expertise to design and validate these assays and to analyse the data. Davina was 
responsible for writing and reviewing the appropriate sections describing this work in 
our publication. 
3.  Forshew et al., Science Translational Medicine, 2012 
At the time of this work, ctDNA studies had previously been performed using assays 
designed to analyse single hotspot mutations. Nitzan Rosenfeld’s team developed 
TAm-Seq (tagged amplicon deep sequencing), a novel amplicon-based next-
generation sequencing (NGS) method capable of analysing multiple mutations in 
parallel in ctDNA. Validation studies were performed on clinical plasma specimens 
from patients with HGSOC and metastatic breast cancer. Davina was involved in 
developing TAm-Seq, and also provided critical digital PCR validation data to 
assess its accuracy. This study was published in Science Translational Medicine in 
2012, with Davina as joint first co-author, and myself as joint senior co-
corresponding author, and demonstrated for the first time that NGS could be used to 
detect low frequency mutations in cell-free DNA and monitor multiple mutations in 
parallel. The study has had notable impact on subsequent widespread use of NGS 
for analysis of ctDNA. 
4. Gale et al., PLoS ONE, 2018 
Following the success of TAm-Seq, Dr. Nitzan Rosenfeld, Davina Gale, Tim 
Forshew and I co-founded Inivata Ltd, a spin-out company to make ctDNA assays 
accessible for clinical diagnostic use. Davina, as Head of Molecular Diagnostics, 
was instrumental in leading the development and validation of enhanced TAm-Seq 
(eTAm-Seq), performed to clinical regulatory standards, to analyse low-frequency 
mutations in cfDNA, with >20 increase in sensitivity compared to original TAm-Seq. 
These analytical validation studies, published in PLoS ONE with Davina as both first 
and senior co-corresponding author, demonstrated the sensitivity of the assay to 
detect low frequency mutations.  
5.  Murtaza et al., Nature, 2013 
Davina was involved in the first exome sequencing analysis of ctDNA, published in 
Nature in 2013. This impactful publication demonstrated for the first time that NGS 
could be used to perform exome-wide profiling of plasma taken before and after 
development of treatment resistance to identify potential mechanisms of acquired 
resistance to therapy. Davina trained PhD and post-docs in Nitzan’s and my group 
on relevant protocols and the collection of high quality specimens for ctDNA studies. 
She advised on the most suitable method for preparing exome libraries from low 
input amounts of cell-free DNA, which had been a key challenge for the study. In 
addition, she was involved in critically reviewing the manuscript, published in Nature 
in 2013. 
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6.  Risberg et al., The Journal of Molecular Diagnostics, 2018 
This study investigated pre-analytic factors that may affect the quality of plasma 
collected for cell-free DNA analysis. Different factors were assessed including 
delays in blood processing, storage temperatures, different blood collection tubes, 
centrifugation protocols and the effect of sample shipment. Davina was actively 
involved in the concept and design of this study, together with Dr Dana Tsui, a post-
doc in Dr Nitzan Rosenfeld’s lab, and she collaborated with a research assistant 
working in my clinic to collect appropriate samples for analysis. In addition, Davina 
designed and validated digital PCR and TAm-Seq assays used to assess levels of 
ctDNA and cell-free DNA in this study. Davina was senior co-corresponding author 
on this paper, and she led the writing and review, along with discussions with the 
editors at The Journal of Molecular Diagnostics. This paper will help others working 
in the field to assess appropriate methods for collection of high quality specimens 
for clinical ctDNA research. 
 
7. Mouliere et al., Science Translational Medicine, 2018 
In this paper, ctDNA fragment sizes were assessed in 344 plasma samples from 
200 patients with cancer using low-pass whole-genome sequencing. We developed 
in vitro and in silico size selection methods and machine-learning algorithms to 
enhance sensitivity of detection of ctDNA, which may have important implications in 
early detection of cancer. Davina played an important role in establishing protocols 
for collection of high-quality plasma specimens used in this study, including helping 
establish collections of ovarian, melanoma and breast samples, which enabled this 
study to be performed. In addition, Davina critically reviewed the manuscript ahead 
of publication. 
Our work on ctDNA along with others has catalysed a paradigm shift in the conduct 
of clinical trials and the possibilities of personalised treatment for patients. The vast 
majority of clinical trials in lung, colorectal and ovarian cancer are now incorporating 
ctDNA endpoints. It is not an exaggeration to say that liquid biopsies have 
transformed choices for patients and scientific insights into how patients respond to 
cancer treatments. Davina has been hugely instrumental in initiating and leading 
studies to quantitatively assess levels of ctDNA in patients.  
I strongly support Davina’s application for award of PhD by Publication at the 
University of East Anglia, and confirm here her very significant contributions in these 
publications which have been highly impactful in the field of liquid biopsy research. 
Please do not hesitate to contact me if you require further information. 
 
Yours faithfully 

 
Dr James D. Brenton PhD FRCP 
Senior Group Leader and Honorary Consultant in Medical Oncology 
Functional Genomics of Ovarian Cancer Laboratory 
01223 769761 Assistant 
james.brenton@cruk.cam.ac.uk 
http://www.cruk.cam.ac.uk/research-groups/brenton-group 
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15th March 2019 
 
 
  Dear Sir/Madam, 
 

 
I have worked closely with Davina Gale over a number of years on a number of projects, most closely for the 

following paper published in 2016: 

 

Parkinson CA, Gale D, Piskorz AM, et al. Exploratory Analysis of TP53 Mutations in Circulating 

Tumour DNA as Biomarkers of Treatment Response for Patients with Relapsed High-Grade Serous Ovarian 

Carcinoma: A Retrospective Study. PLoS Med. 2016 Dec 20;13(12): PubMed PMID: 27997533. 

 

Davina is joint first author with myself and I would like to confirm her contribution to this paper published in PLoS 

Med (Impact Factor 11.7).   

 

This work investigates clinical significance of baseline circulating tumour DNA (ctDNA) levels in patients with ovarian 

cancer on chemotherapy treatment and also of changes in ctDNA whilst on treatment. We identify that baseline 

ctDNA are correlated significantly with tumour volume (assessment by the radiologists on volumetric CT). And 

following chemotherapy, we identified a threshold for a fall in ctDNA after 1 and 2 cycles that significantly predicts 

the time to progression. This paper when published was the largest series correlating ctDNA with tumour volume. 

The paper was also one of the very few pioneer papers to describe very early changes in ctDNA after just 1 or 2 

cycles of treatment. The field has rapidly expanded since then with many groups looking at early changes in ctDNA 

as a biomarker of treatment response in cancer.  

 

The project required very close working and discussions between the clinic and the laboratory. Davina played a key 

role at all stages of the study, starting initially with study design all the way through to the writing of the manuscript 

and submission. She coordinated the study and was the main scientist responsible for development of protocols for 

sample collection and blood processing, and for the development of the digital PCR (dPCR) assays. She carried out 

the majority of plasma dPCR assays herself (over 300 samples) and played a key role in the analysis and 

interpretation of the data.  

 

 

 

 

 

Oncology Department  

Box 193 

Addenbrooke’s Hospital    

Cambridge Biomedical Campus 

Hills Road 

Cambridge 

CB2 0QQ 

01223 217074 (Gynae Secretary) 

paola.barbieri@addenbrookes.nhs.uk 
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I fully support her application for a PhD by Publication at the University of East Anglia.  

 

Please do not hesitate to contact me for any further information if needed.  

 

Yours sincerely 

  

 
 
 
Dr Christine Parkinson 
Consultant Medical Oncologist 
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CRUK Cambridge Institute 
University of Cambridge 

Li Ka Shing Centre 
Robinson Way 

Cambridge CB2 0RE 
 

September 21st, 2018 
 
 

Postgraduate Research Office 
University of East Anglia 
Norwich Research Park 
Norwich 
NR4 7TJ 

 
 

Dear Sir/Madam, 
 

I am delighted to write in support of Davina Gale’s application for a PhD by Publication at the University of 
East Anglia. As part of that application I would like to confirm Davina’s contribution to the following paper 
published in PLoS Medicine in 2018: 

 
Parkinson C*, Gale D*, Piskorz A, Biggs H, Hodgkin C, Addley H, Freeman S, Moyle P, Sala E, Sayal 
K, Hosking K, Gounaris I, Jimenez-Linan M, Earl H, Qian W, Rosenfeld N, Brenton J.; ‘Exploratory 
Analysis of TP53 Mutations in Circulating Tumour DNA as Biomarkers of Treatment Response for 
Patients with Relapsed High-Grade Serous Ovarian Carcinoma: A Retrospective Study.’ PLoS 
Medicine; 2016; 13 (12): e1002198 doi:10.1371/journal. pmed.1002198 

 
 

Davina is joint first author, and I am a senior co-corresponding author on this paper. This paper describes 
an extensive project which we carried out over several years, and constitutes an important advance in the 
field. In this study, we assessed the levels of circulating tumour DNA carrying TP53 mutations in the plasma 
samples of patients with relapsed high-grade serous ovarian cancer (HGSOC), and the potential value of 
this measurement as a biomarkers of treatment response in those patients. Davina played a key leading 
role in designing and coordinating the study, and performed the laboratory work to measure circulating 
tumour DNA. In this multi-year project which Davina coordinated and conducted, Davina performed multiple 
stages of laboratory work including development of protocols for collection of plasma samples and 
extraction of DNA; development of multiple digital PCR (dPCR) assays to detect the mutant DNA; 
performing a large number of control experiments to assess the performance of those assays; and finally 
the digital PCR analysis of 318 plasma samples from 40 HGSOC patients. Additional data was obtained by 
our collaborators on levels of CA-125 and tumour burden as assessed by volumetric analysis. Davina played 
a key role in the analysis and interpretation of the data, and in the writing of the manuscript and 
preparation for publication. 

 
When we compared these different metrics of clinical response and outcomes, we found that a rapid 
decrease in the levels of circulating tumour DNA in the plasma of patients as they started treatment by 
chemotherapy was a strong indicator of better prognosis. This paper has had important impact in providing 
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a detailed comparison of circulating tumour DNA and tumour volumetric analysis in patients with high-grade 
serous ovarian cancer. To my knowledge this is the largest study to date describing the dynamics of 
circulating tumour DNA in the plasma of ovarian cancer patients. The paper, published in December 2016 
has been cited 32 times according to Google Scholar, as was cited as one of the Top 50 most downloaded 
articles by PLoS Medicine in 2016. 

 
 

If you require any further information, please do not hesitate to contact me. 

Yours faithfully, 

 
 

Dr. Nitzan Rosenfeld 
Senior Group Leader 
Cancer Research UK Cambridge Institute 
University of Cambridge 
Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE 
Tel: 01223-769769, Fax: 01224-769510 
Email: nitzan.rosenfeld@cruk.cam.ac.uk 
Webpage: www.rosenfeldlab.org 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cancer Research UK Cambridge Institute 
University of Cambridge 

Li Ka Shing Centre, Robinson Way 
Cambridge CB2 0RE 
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7th August 2018 
 
Postgraduate Research Office 
University of East Anglia 
Norwich Research Park 
Norwich 
NR4 7TJ 
 
Dear Sir/Madam, 
 
It is my pleasure to write this reference for Davina Gale’s PhD submission titled 'Investigating the 
diagnostic potential of circulating tumour DNA (ctDNA) as a non-invasive liquid biopsy: from 
research to clinic'.  
 
Davina and I have worked together for approximately 8 years. In this time we have been authors on 
6 papers together, 3 of which I have written separate letters of support for describing the research 
and Davina’s role (Forshew* et al, 2012, Gale et al, 2018 and Plagnol et al, 2018). 
 
I started working with Davina in 2010 as a Post Doc based at the Cancer Research UK Cambridge 
Institute. Our time working together has been without any question, the most exciting and 
productive of my career as we investigated the diagnostic potential of ctDNA. Due to the scale of 
the work it was very much a team effort of which Davina was a key part.  
 
I have outlined in detail in the 3 associated letters Davina’s contributions to, and the impacts of the 
3 published studies for which Davina asked me to provide review.  
 
Davina has made many important scientific contributions described throughout these letters but 
highlights include: leading the setup of both an academic then commercial lab to first explore then 
transition to clinic, methods for analysing cancer DNA in a patients blood stream. Planning then 
executing a large digital PCR study for assessing ctDNA in ovarian cancer patients which was also 
used to assess our NGS method. Planning then leading the development of our method from an 
academic assay to a much improved commercial test. She has also been critical in planning the 
validation of their performance as described in the 3 associated letters.  Our first paper in this field 
has been cited over 600 times and since we first proved you can detect ctDNA through next 
generation sequencing, many different organisations have started developing methods for 
stratification, monitoring, residual disease detection and many other applications besides in many 
different types of cancer.  
 
Davina is logical, highly organised and motivated. She has been critical to the 3 studies I describe 
and the many others which she has been part of.  I strongly believe her contributions are deserving 
of a PhD and I would happy provide more information if helpful.  
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Yours Sincerely, 
 

 
 
 
Dr Tim Forshew 
 
Head of Science and Innovation at, and co-founder of Inivata Ltd. 
Honorary Lecturer - UCL Cancer Institute 
 
Forshew T*, Murtaza M*, Parkinson C*, Gale D*, Tsui DW*, Kaper F, Dawson SJ, Piskorz AM, Jimenez-Linan 
M, Bentley D, Hadfield J, May AP, Caldas C, Brenton JD, Rosenfeld N.  
‘Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma 
DNA.’ Science Translational Medicine; 2012; 4(136):136ra68 (* Joint first author) 
  
Gale D*, Lawson ARJ, Howarth K, Madi M, Durham B, Smalley S, Calaway J, Blais S, Jones G 
Clark J, Dimitrov P, Pugh M, Woodhouse S, Epstein M, Fernandez-Gonzalez A, Whale AS, 
Huggett JF, Foy CA, Jones GM, Raveh-Amit H, Schmitt K, Devonshire A, Green E, Forshew T, Plagnol V, 
Rosenfeld N. ‘Development of a highly sensitive liquid biopsy platform utilizing enhanced Tagged-Amplicon 
deep-Sequencing technology to detect clinically-relevant cancer mutations at low allele fractions in cell-free 
DNA.’  PLOS ONE; 2018; 13(3): e0194630; 
*First and co-corresponding senior author 
  
Plagnol V, Woodhouse S, Howarth K, Lensing S, Smith M, Epstein M, Madi M, Smalley S, Leroy C, Hinton J, De 
Kievit F, Musgrave-Brown E, Herd C, Neblett K, Brennan W, Dimitrov 
P, Campbell N, Morris C, Rosenfeld N, Clark J, Gale D, Platt J, Calaway J, Jones G, Forshew T. ‘Analytical 
validation of a Next Generation Sequencing liquid biopsy assay for high sensitivity broad molecular 
profiling.’ PLoS ONE; 2018; 13(3): e01938022018 
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Inivata Limited 
The Portway 
Granta Park 
Great Abington 
Cambridge 
CB21 6GS 

7th August 2018 

 

Postgraduate Research Office 
University of East Anglia 
Norwich Research Park 
Norwich 
NR4 7TJ 

 

Dear Sir/Madam, 
 

It is my pleasure to write this letter of support for Davina Gale’s PhD submission titled 'Investigating 
the diagnostic potential of circulating tumour DNA (ctDNA) as a non-invasive liquid biopsy: from 
research to clinic'. 

 
In this letter I will outline the key findings of the following study as well as describing Davina’s main 
contributions: 

 
Forshew T*, Murtaza M*, Parkinson C*, Gale D*, Tsui DW* et al. Noninvasive identification and 
monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Science Translational 
Medicine; 2012; 4(136):136ra68 (* Joint first authors) 

 
It had been shown more than 15 years prior to the above study that some cancer mutations can be 
detected non-invasively through analysis of samples including blood plasma, urine, stool and 
sputum. All early studies however were limited to methods that assessed just individual mutations 
and typically with fairly low sensitivity. Whilst the detection of this DNA therefore raised a range of 
potentially powerful clinical applications, from early cancer detection through to monitoring cancer 
evolution, they were initially not practical due to the methods available. 

 
To address this, we initiated the above study looking to apply next generation sequencing methods 
to analysing this cell free DNA (cfDNA). Prior to our work, next generation sequencing (NGS) 
methods typically required large volumes of DNA (>100ng DNA) and also were limited to detecting 
mutations at high allele fractions (>5% mutant). 

 
We developed a PCR based method that amplified 6 genes including TP53, EGFR, BRAF, and KRAS in 
duplicate then enabled deep Illumina sequencing. We also developed a novel mutation calling 
algorithm that took advantage of this method. We first optimised and validated this method using 
dilution experiments and tumour DNA before progressing to analysing cfDNA. In order to analyse 
cell free DNA, we first developed patient specific digital PCR assays for a large series of ovarian 
cancer patients (in whom we had sequenced and found TP53 mutations in their tumours) and used 
these to assess whether we could detect known cancer mutations in the blood of each patient. We 
then used our sequencing method to test our ability to detect the same mutations in an unbiased 

 
 

Registered office: Inivata Limited The Portway, Granta Park, Great Abington, Cambridge CB21 6GS. Registered in England with company number 9144647 
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way in 38 of these ovarian cancer patients. We showed we could detected the mutations we 
expected down to 2% allele fraction with 97% sensitivity. In plasma samples from one patient, we 
also identified a mutation in EGFR that had not previously been detected through tissue sequencing. 

 
Finally we used this tagged-amplicon deep sequencing method (TAm-Seq) to analyse cfDNA in 
plasma samples collected throughout treatment from three women, showing the ability to monitor 
cancer non-invasively. 

 
Due to the scale and complexity of this project, Davina and I were equal joint first authors along 
with 3 other people. Davina played a critical role throughout the project and contributed a number 
of important things. She first established the laboratory where this work was performed (before I 
joined). She then developed the methods and SOPs with which we collected, processed and 
extracted cfDNA along with methods and SOPs for analysis for example by digital PCR. A critical part 
of the success of this study was our ability to compare our NGS method with, what at the time was 
the largest digital PCR study of ctDNA in any tumour type to my knowledge. This was a very large 
piece of work and Davina guided the collection of the ovarian cancer patient samples, designed 
each of their personalised digital PCR assays then planned and performed the experiments 
validating these assays and assessing the patient samples. She then interpreted their results. Before 
this project started, Davina planned and performed early NGS experiments which this method was 
built upon then stayed involved with the NGS throughout. Finally, Davina contributed towards the 
drafting and editing of the manuscript. 

 
The impact of this research has I believe been very significant. It has been cited now well over 600 
times. To my knowledge this study was the first to show we can detect solid tumour mutations de 
novo in blood through NGS. It was also the first to show you could monitor patients cancer by 
sequencing cancer DNA in their blood and the first to show that if you develop patient specific 
assays this can be even more powerful. 

 
This research was disseminated widely at the time including in The Telegraph, Daily Mail and the LA 
Times. Since then we have spun a company out based on this method (Inivata Ltd.) currently 
building tests to improve lung cancer patient care and many other people have entered this space, 
most notably a company called Grail's who have raised more than $1.5 billion since 2016 looking to 
used NGS analysis of ctDNA for early cancer detection. I would be very pleased to see Davina earn a 
PhD for her important contributions to this work. 

 

Yours Sincerely, 
 
 
 
 
 
 

Dr Tim Forshew 
 

Head of Science and Innovation at, and co-founder of Inivata Ltd. 
Honorary Lecturer - UCL Cancer Institute 
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September 28, 2018 

Postgraduate Research Office 
University of East Anglia 
Norwich Research Park 
Norwich 
NR4 7TJ 

 

Re: Contributions by Davina Gale as co-author of 
Forshew et al. Science Translational Medicine 2012 

Forshew et al. described an approach for massively parallel sequencing of fragmented low-molecular 
weight circulating tumor-specific DNA in plasma to identify low-abundance somatic mutations in blood 
of cancer patients. I was co-first author of the manuscript and worked with Davina Gale at the Cancer 
Research UK Cambridge Institute. Davina is co-first author on the paper. 

This was the first study to demonstrate next-generation sequencing could be used to directly identify, 
detect and quantify cancer-specific mutations in plasma DNA from cancer patients. Since it’s 
publication, the study has been cited 684 times in ~6 years. As a result of this observation and 
additional results in the field that followed this work, noninvasive genotyping using plasma DNA 
sequencing is a reality in clinical oncology today. The particular approach we described in Forshew et 
al. has been developed commercially and Davina led that development as member of the founding 
team at Inivata (a liquid biopsy startup copmany). 

Davina played a key role in the design and conduct of this study, in particular by helping identify the 
best time points for clinical sample collection, establishing best practices for sample processing and 
DNA extraction (drawing on her experience in these areas), developing necessary sample quality 
assessment assays, designing and optimizing dozens of digital PCR assays for patient-specific 
mutations, generating mutation quantification data using digital PCR, helping optimize the amplicon 
sequencing approach and implementing the amplicon sequencing approach for tumor and plasma 
samples. She directly contributed to the analysis of digital PCR data (results that served as gold 
standard in this manuscript) and it’s comparison with amplicon sequencing results. She directly 
contributed to the writing and framing of this manuscript during numerous joint writing and revision 
sessions. 

The contributions that Davina made to this paper drew on her unique background and experience and 
we would not have been able to execute this study without her enabling insights and help. 

Please feel free to contact me if there is any further information I may provide. 
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September 28, 2018 

Postgraduate Research Office 
University of East Anglia 
Norwich Research Park 
Norwich 
NR4 7TJ 

 

Re: Contributions by Davina Gale as co-author of Murtaza et al. Nature 2013 
Murtaza et al. described the use of low-input whole-exome sequencing of circulating tumor DNA 
(ctDNA) for non-invasive monitoring of clonal evolution in solid cancers and for identification of novel 
drivers of acquired therapeutic resistance. I led the study as co-first author of the manuscript and 
worked with Davina Gale at the Cancer Research UK Cambridge Institute. 

This was a proof-of-principle study, demonstrating for the first time, that tracking clonal evolution of 
cancer was feasible using plasma DNA sequencing. Since it’s publication, the study has been cited 967 
times in ~5 years, highlighting the key role this paper has played in establishing the role of liquid 
biopsies in tracking cancer evolution and drug resistance. 

Davina played an enabling role in the design of this study, in particular by identifying the most suitable 
patients and samples, based on data she generated using orthogonal technologies such as amplicon 
sequencing and digital PCR. She contributed to the conduct of this study, by guiding the evaluation of 
methods for sequencing library preparation using low amounts of DNA available in plasma samples, a 
key challenge we had to overcome and generating orthogonal data required for interpretation of our 
results. In addition, she developed and implemented pre-analytical processing steps that enabled 
generation of this data and it’s reasonable interpretation. She contributed to the interpretation and 
framing of our results, based on her data and experience with ctDNA analysis in breast and ovarian 
cancer. 

This study relied on longitudinal analysis of plasma samples from multiple cancer patients and the 
interpretation of our results was dependent on appropriate annotation and management of the samples 
involved. Longitudinal studies are logistically more challenging than single time point analyses. 
Davina’s informed management of the study and her role in ensuring that these samples were 
collected, processed and stored in a timely, accessible and organized fashion was critical to the study’s 
success. Without her oversight, it would have not been possible to conduct this study. 

Please feel free to contact me if there is any further information I may provide. 
 
 

Sincerely, 
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Peter MacCallum Cancer Centre 
305 Grattan Street 
Melbourne Victoria 
3000 Australia 

Locations 
Melbourne 
Bendigo 
Box Hill 
Moorabbin 
Sunshine Postal Address 

Locked Bag 1 A’Beckett Street 

Victoria 8006 Australia 

Phone +61 3 8559 5000 
Fax +61 3 8559 7379 
ABN 42 100 504 883 

petermac.org 

 

 
 

Assoc. Prof. Sarah-Jane Dawson 
Peter MacCallum Cancer Centre 

305 Grattan Street 
Melbourne VIC 3000 

Australia 

20th May 2018 

 
To whom it may concern, 

 
 
Dear Sir/Madam, 

I am writing to confirm Davina Gale’s contribution to the following paper published in Nature 
in 2013, in support of her PhD by Publication at the University of East Anglia: 

Murtaza M*, Dawson S-J.*, Tsui D.W.Y*, Gale D, Forshew T, Piskorz AM, Parkinson 
C, Chin SF, Kingsbury Z, Wong AS, Marass F, Humphray S, Hadfield J, Bentley D, 
Chin TM, Brenton JD, Caldas C, Rosenfeld N. ‘Non-invasive analysis of acquired 
resistance to cancer therapy by sequencing of plasma DNA. ’Nature; 2013 May 2; 
497(7447):108-12 

I am joint first co-author of this publication, which was based on pioneering research performed 
at the Cancer Research UK Cambridge Institute between 2010 and 2013 to perform exome 
sequencing analysis of plasma DNA before and after treatment to identify potential 
mechanisms of acquired resistance to therapy in patients with advanced cancer. 

Davina Gale’s input was critical to the successful completion of this research. She played a 
fundamental role in developing the methods used in the analysis including digital PCR and 
TAm-Seq, which were not routinely established techniques in the field at this time. Importantly, 
she was specifically involved in the selection of the Rubicon protocol used for the exome hybrid 
capture which was the major component of the ctDNA analysis employed in this manuscript. 
She also established standardised operating procedures for clinical collection and processing 
of plasma samples, plasma DNA extractions and the downstream analysis of these samples 
which were all integral to the successful completion of this project. She provided critical input 
into the preparation of the final manuscript. 

This publication has had a major impact in the field. It was the first proof-of-concept study to 
demonstrate the use of exome sequencing to study mechanisms of acquired resistance to 
therapy using circulating tumour DNA and helped establish a paradigm for the use of serial 
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3000 Australia 
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Victoria 8006 Australia 

Phone +61 3 8559 5000 
Fax +61 3 8559 7379 
ABN 42 100 504 883 

petermac.org 

 

 
ctDNA analysis to track genomic mechanism of resistance in real-time. The influential nature 
of the manuscript is highlighted by its citation rate of 893 over the past 5 years. 

Yours faithfully, 
 

Associate Professor Sarah-Jane Dawson (MBBS, FRACCP, PhD) 

Consultant Medical Oncologist 
Group Leader & Head of Molecular Biomarkers and Translational Genomics Laboratory 
Peter MacCallum Cancer Centre 
Australia 
Email: sarah-jane.dawson@petermac.org 
Telephone: +61 3 8559 7132 
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September 28, 2018 
 

Postgraduate Research Office 
University of East Anglia 
Norwich Research Park 
Norwich 
NR4 7TJ 

Re: Contributions by Davina Gale as co-author of 
Murtaza et al. Nature Communications 2015 

Murtaza et al. tested the assumption that metastatic tumors at multiple sites in a patient shed DNA into 
the blood and that site-specific mutations can be detected directly in plasma (thereby overcoming tumor 
heterogeneity). We found that mutations shared by all tumor sites (ancestral mutations) were more 
likely to be detected in circulating tumor DNA (ctDNA) and observed at higher circulating levels, 
compared to mutations that were limited to a single tumor site. I was co-first author of the manuscript 
and worked with Davina Gale at the Cancer Research UK Cambridge Institute. 

This study showed extensive comparison of ctDNA samples with a multi-regional analysis of tumors 
and informed the field’s assessment of plasma-tumor concordance. The conclusions of this extensive 
but single patient case report were subsequently validated in larger studies. Since it’s publication, the 
study has been cited 166 times in ~3 years. 

Davina played a significant role in the design and conduct of this study, in particular by identifying the 
most suitable patients and samples, based on data she generated using orthogonal technologies such 
as amplicon sequencing and digital PCR, by guiding the evaluation of methods for sequencing library 
preparation using low amounts of DNA available in plasma samples, a key challenge we had to 
overcome and by generating orthogonal data required for interpretation of our results. In addition, she 
developed and implemented pre-analytical processing steps that enabled generation of this data and 
it’s reasonable interpretation. 

This study relied on longitudinal analysis of plasma samples from multiple cancer patients and the 
interpretation of our results was dependent on appropriate annotation and management of the samples 
involved. Longitudinal studies are logistically more challenging than single time point analyses. 
Davina’s informed role in ensuring that these samples were collected, processed and stored in a timely, 
accessible and organized fashion was critical. Without her oversight, it would have not been possible to 
conduct this study. 

 
 

Please feel free to contact me if there is any further information I may provide. 
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Peter MacCallum Cancer Centre 
305 Grattan Street 
Melbourne Victoria 
3000 Australia 

Locations 
Melbourne 
Bendigo 
Box Hill 
Moorabbin 
Sunshine Postal Address 

Locked Bag 1 A’Beckett Street 

Victoria 8006 Australia 

Phone +61 3 8559 5000 
Fax +61 3 8559 7379 
ABN 42 100 504 883 
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Assoc. Prof. Sarah-Jane Dawson 
Peter MacCallum Cancer Centre 

305 Grattan Street 
Melbourne VIC 3000 

Australia 

20th May 2018 

 
To whom it may concern, 

 
 
Dear Sir/Madam, 

I am writing to confirm Davina Gale’s contribution to the following paper published in Nature 
Communications in 2015, in support of her PhD by Publication at the University of East 
Anglia: 

Murtaza M*, Dawson SJ*, Pogrebniak K, Rueda O, Provenzano E, Grant J, Chin SF, 
Tsui D, Marass F, Gale D, Ali HR, Shah P, Contente-Cuomo T, Farahani H, 
Shumansky K, Kingsbury Z, Humphray S, Bentley D, Shah S, Wallis M, Rosenfeld N, 
Caldas C. ‘Multifocal clonal evolution characterized using circulating tumour DNA in a 
case of metastatic breast cancer’; Nature Communications; 2015; 6:8760 doi: 
10.1038/ncomms9760 

I am joint first co-author of this publication, which was based on comprehensive genomic 
profiling of 8 tissue and 9 plasma samples from a single patient with metastatic breast cancer, 
including analysis of autopsy specimens. This study was a proof-of-principal analysis 
highlighting that ctDNA can be used to reflect multi-focal clonal evolution, and study serial 
changes in stem and sub-clonal private mutations in plasma. 

Davina Gale provided an important original contribution to this work. She played a key role in 
developing the methods used in the analysis including digital PCR, TAm-Seq and exome 
sequencing, and once established provided training and supervision for multiple laboratory 
members to execute this analysis effectively. She established standardised operating 
procedures for clinical collection and processing of plasma samples, plasma DNA extractions 
and the downstream analysis of these samples which were all integral to the successful 
completion of this project. She also provided critical input into the preparation of the final 
manuscript. 

This publication has enabled substantial progress in our understanding of the relationship 
between ctDNA and tumour biopsy testing in clinical practice. It was the first study to 
demonstrate the ability of ctDNA to infer genomic heterogeneity and clonal heirarchy through 
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comprehensive exome and targeted sequencing of longitudinal plasma and tumour samples. 
The influential nature of the manuscript is highlighted by its citation rate of 145 over the past 
3 years. 

 
 
Yours faithfully, 

 

Associate Professor Sarah-Jane Dawson (MBBS, FRACCP, PhD) 

Consultant Medical Oncologist 
Group Leader & Head of Molecular Biomarkers and Translational Genomics Laboratory 
Peter MacCallum Cancer Centre 
Australia 
Email: sarah-jane.dawson@petermac.org 
Telephone: +61 3 8559 7132 
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Inivata Limited 
The Portway 
Granta Park 
Great Abington 
Cambridge 
CB21 6GS 

Registered office: Inivata Limited The Portway, Granta Park, Great Abington, Cambridge CB21 6GS.  Registered in England with company number 9144647 

 
 
 
 
 
 
 
 
 
 
Postgraduate Research Office 
University of East Anglia          
Norwich Research Park 
Norwich 
NR4 7TJ 

 
 

September 21st, 2018 
 
Dear Sir/Madam, 
 
I am delighted to write in support of Davina Gale’s application for a PhD by Publication at the 
University of East Anglia. As part of that application I would like to confirm Davina’s contribution to 
the following paper, published in PLoS ONE in 2018: 
 

Gale D, Lawson ARJ, Howarth K, Madi M, Durham B, Smalley S, Calaway J, Blais S, Jones G, 
Clark J, Dimitrov P, Pugh M, Woodhouse S, Epstein M, Fernandez-Gonzalez A, Whale AS, 
Huggett JF, Foy CA, Jones GM, Raveh-Amit H, Schmitt K, Devonshire A, Green E, Forshew T, 
Plagnol V, Rosenfeld N.; ‘Development of a highly sensitive liquid biopsy platform utilizing 
enhanced Tagged-Amplicon deep-Sequencing technology to detect clinically-relevant cancer 
mutations at low allele fractions in cell-free DNA.’  PLoS ONE; 2018; 13(3): e0194630; 
 

Davina is first author and senior/co-corresponding author, and I am the other co-corresponding 
author on this paper. This paper describes the development of the enhanced Tagged-Amplicon 
deep-Sequencing technology, a novel ultrasensitive amplicon-based technology for next-generation 
sequencing. This technology was used to develop Inivata’s InVisionFirst-Lung™ assay to detect low 
frequency mutations in plasma samples from patients with non-small cell lung cancer.  
 
The enhanced Tagged-Amplicon deep-Sequencing (eTAm-Seq) technology is a development of the 
TAm-Seq technology, originally developed by the Rosenfeld Lab at the Cancer Research UK 
Cambridge Institute. As co-founder and Head of Molecular Diagnostics from start-up at Inivata Ltd, 
Davina played a critical and leading role in the technology transfer of the TAm-Seq technology from 
the academic lab to Inivata, in the design and development of the new enhanced TAm-Seq 
technology and its evaluation as described in this paper. Davina led the writing of this manuscript 
and the correspondence with the journal editorial office. 
 
The assay described in this paper was designed to identify clinically-relevant somatic mutations in a 
panel of 35 cancer-related genes. The study performed by Davina’s team demonstrated that the 
assay could detect mutant alleles down to 0.02% allele frequency (AF), with approximately 90% of 
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mutations detected at 0.25%-0.33% AF, and per-base specificity of 99.9997%. These results 
confirmed that this enhanced TAm-Seq technology had much greater sensitivity than the original 
TAm-Seq assay developed in the Rosenfeld lab. These results provided important data to support 
implementation of assay for clinical diagnostic use.  
 
If you require any further information, please do not hesitate to contact me. 
 
Yours faithfully, 
 
 

 
 
 
 

Dr. Nitzan Rosenfeld 
Chief Scientific Officer 
Inivata Ltd 
The Portway Building 
Granta Park 
Cambridge 
CB21 6GS 
United Kingdom 
Tel: +44 (0)1223 790 880 
Email: nitzan.rosenfeld@inivata.com 
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Inivata Limited 
The Portway 
Granta Park 
Great Abington 
Cambridge 
CB21 6GS 

 
7th August 2018 

 
Postgraduate Research Office 
University of East Anglia 
Norwich Research Park 
Norwich 
NR4 7TJ 

 
 

Dear Sir/Madam, 
 

It is my pleasure to write this letter of support for Davina Gale’s PhD submission titled 'Investigating 
the diagnostic potential of circulating tumour DNA (ctDNA) as a non-invasive liquid biopsy: from 
research to clinic'. 

 
In this letter I will outline the key findings of the following study as well as describing Davina’s main 
contributions: 

 
Gale D, Lawson ARJ, Howarth K, Madi M, Durham B, Smalley S, Calaway J, Blais S, Jones G 
Clark J, Dimitrov P, Pugh M, Woodhouse S, Epstein M, Fernandez-Gonzalez A, Whale AS, 
Huggett JF, Foy CA, Jones GM, Raveh-Amit H, Schmitt K, Devonshire A, Green E, Forshew T, Plagnol 
V, Rosenfeld N. ‘Development of a highly sensitive liquid biopsy platform utilizing enhanced Tagged- 
Amplicon deep-Sequencing technology to detect clinically-relevant cancer mutations at low allele 
fractions in cell-free DNA.’ PLOS ONE; 2018; 13(3) 

 
As outlined in my letter of support describing the Forshew et al study of 2012, to our knowledge we 
were the first to show we could detect solid tumour mutations de novo through sequencing cell 
free DNA and the first to show you could use this to monitor a patient’s cancer. The paper received 
very broad interest (over 600 citations so far) and I am confident it played some part in initiating 
many different efforts to bring cfDNA analysis to clinic. As one such effort, Davina, Nitzan Rosenfeld, 
James Brenton and I, co-founded a company called Inivata. The aim was to take the methods we 
had developed, refine them for clinical use then offer them to patients. Whilst our method 
published in 2012 was cutting edge at the time, an optimal assay for clinical use needed many very 
significant improvements. The assay needed to become more robust, higher throughput, 
significantly more sensitive and specific and it needed to be able to detect many more variants. The 
challenges of running an assay in a clinical as opposed to a research setting are also very significant. 
This paper describes the development of our first assay and validation of the performance of the 
assay. Through this we demonstrated that we have built a method with the highest levels of 
sensitivity for the key clinically actionable point mutations and indels. 

 
 
 

Registered office: Inivata Limited The Portway, Granta Park, Great Abington, Cambridge CB21 6GS. Registered in England with company number 9144647 
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For the first few years of Inivata’s existence I worked for Inivata part time providing specific 
expertise in our NGS method and molecular approaches for optimising the assay. Davina was the 
only one of the co-founders to work full time in establishing Inivata. As a rapidly growing startup 
(we went from just 4 of us to 70 people in just 4 years) Davina and I both had many different hats 
working in various aspects of Inivata from intellectual property through to business development. 
Perhaps Davina’s biggest roles however, and the roles that contributed directly to her being the first 
author on this paper include the following though: 

 
She first led the team that built a clinical lab from scratch in Cambridge UK, then initiated a second 
clinical lab in North Carolina (USA). She also led the same group with my NGS support in planning 
then building our first assay. As described above, the assay changed significantly from the initial 
academic version so this development work was extremely complex. This covered all aspects from 
optimising, designing new primers, changing chemistry and bringing in initial automation through to 
developing extremely detailed SOPs describing how the assay must work. Key to this was building a 
strong team which Davina drove with my support in interviewing. Finally she was an important part 
of this analytical validation and we designed a number of aspects of the validations together. 
Davina wrote this manuscript with some input on specific details from myself and others. 

 
In this study we were able to demonstrate that we had taken our assay from being able to analyse 6 
genes to now being able to analyse 35. We also showed we had increased our sensitivity about 10 
fold from 2% down to ~0.25% allele fraction. 

 
This and the newer version of this assay described in Plagnol et al have now been run on a large 
number of patients. The findings of these blood tests have been both presented at meetings and 
published (e.g. Remon J, et al. Ann Oncol. 2017) further enhancing our collective understanding of 
what ctDNA can be used for. Clearly the most significant thing though is that I am now aware of 
many patients whose lung cancer treatment has been changed and improved based on the results 
of this test (see Remon J, et al as example). I would be very pleased to see Davina being awarded a 
PhD for her role in this and her many other pieces of work in the ctDNA space. 

 
Yours Sincerely, 

 
 
 
 
 

Dr Tim Forshew 
 

Head of Science and Innovation at, and co-founder of Inivata Ltd. 
Honorary Lecturer - UCL Cancer Institute 
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7th August 2018 
 
Postgraduate Research Office 
University of East Anglia 
Norwich Research Park 
Norwich 
NR4 7TJ 
 
Dear Sir/Madam, 
 
It is my pleasure to write this letter of support for Davina Gale’s PhD submission titled 'Investigating 
the diagnostic potential of circulating tumour DNA (ctDNA) as a non-invasive liquid biopsy: from 
research to clinic'.  
 
In this letter I will outline the key findings of the following study as well as describing Davina’s main 
contributions:  
 
Plagnol V, Woodhouse S, Howarth K, Lensing S, Smith M, Epstein M, Madi M, Smalley S, Leroy C, 
Hinton J, De Kievit F, Musgrave-Brown E, Herd C, Neblett K, Brennan W, Dimitrov P, Campbell N, 
Morris C, Rosenfeld N, Clark J, Gale D, Platt J, Calaway J, Jones G, Forshew T. ‘Analytical validation of 
a Next Generation Sequencing liquid biopsy assay for high sensitivity broad molecular profiling.’ 
PLoS ONE; 2018; 13(3) 
 
As outlined in my letters of support describing the Forshew et al study of 2012 and the Gale et al 
study of 2018, we were the first to our knowledge to demonstrate you can detect solid tumour 
mutations through sequencing cell free DNA and we then developed and validated a clinical assay 
to bring this approach to patients.  
 
In this study we performed the complete analytical validation of what is our current assay. 
Following the completion of the assay described in the Gale et al paper, we updated the assay 
adding the ability to detect fusion genes and we enhanced many aspects of the assay such as 
further improvements in how we detect point mutations. We also fully automated the process.  
 
As described in the letter for the Gale et al paper, Davina played central part in the development of 
this assay. She first led the team that built a clinical lab from scratch in Cambridge UK, then initiated 
a second clinical lab in North Carolina (USA). She also led the same group with my NGS support in 
planning then building our first assay. This covered all aspects from optimising and bringing in initial 
automation through to developing extremely detailed SOPs describing how the assay must work. 
Key to this was building a strong team which Davina drove with my support in interviewing. This led 
to this analytical validation.   
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One key aspect of the assay described in this paper was its automation. This enabled us to scale the 
assay and allowed significant improvements in robustness. The automation work was led by a very 
talented scientist whom Davina was line managing. Davina was also important in the planning 
phases of the validation guiding us on critical components of this validation. Finally, Davina helped 
with critically reviewing and editing the manuscript.  
 
The current assay is designed to enable stratification of patients with non small cell lung cancer on 
to the most appropriate therapy. This assay is already improving the care of many patients and I 
believe it would be fitting for Davina’s scientific contribution to be recognised with a PhD. Please do 
let me know if I can provide any further information.  
 
 
Yours Sincerely, 
 

 
 
 
Dr Tim Forshew 
 
Head of Science and Innovation at, and co-founder of Inivata Ltd. 
Honorary Lecturer - UCL Cancer Institute 
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Inivata Limited 
The Portway 
Granta Park 
Great Abington 
Cambridge 
CB21 6GS 

Registered office: Inivata Limited The Portway, Granta Park, Great Abington, Cambridge CB21 6GS.  Registered in England with company number 9144647 

 
 
 
 
 
 
 
 
 
 
Postgraduate Research Office 
University of East Anglia          
Norwich Research Park 
Norwich 
NR4 7TJ 

 
 

September 21st, 2018 
 
Dear Sir/Madam, 
 
I am delighted to write in support of Davina Gale’s application for a PhD by Publication at the 
University of East Anglia. As part of that application I would like to confirm Davina’s contribution to 
the following paper, published in Annals of Oncology in 2017: 
 

Remon J, Caramella C, Jovelet C, Lacroix L, Lawson A, Smalley S, Howarth K, Gale D, Green E, 
Plagnol V, Rosenfeld N, Planchard D, Bluthgen MV, Gazzah A, Pannet C, Nicotra C, Auclin E, 
Soria JC, Besse B; Annals of Oncology; 2017; 28:784-790 ‘Osimertinib benefit in EGFR-mutant 
NSCLC patients with T790M mutation detected by circulating tumour DNA.’ 
 

This pioneering paper demonstrated for the first time the outcomes for patients with non-small cell 
lung cancer, for whom a biopsy sample was not available, who were treated by the 3rd-generation 
EGFR inhibitor osimertinib, based on minimally-invasive detection of the EGFR T790M mutation in 
the plasma of those patients. Similar to prior reports of studies of osimertininb response based on 
tissue analysis, the resistance mutation was detected in 50% patients, and treatment with 
osimertinib in those patients led to ‘partial response’ for 62.5% of patients and to ‘stable disease’ for 
37.5% of patients. This data helped support the implementation of liquid biopsy testing for patients 
with non-small cell lung cancer. 
 
The detection of the EGFR T790M mutation in the plasma samples was achieved by an enhanced 
TAm-Seq assay, developed by Inivata Ltd. As co-founder and Head of Molecular Diagnostics from 
start-up at Inivata Ltd, Davina played a critical and leading role in the technology transfer of the 
TAm-Seq technology from the academic lab to Inivata, in the development of the enhanced TAm-Seq 
(eTAm-Seq) technology, and in its implementation for testing of clinical patient samples for research. 
Davina participated in discussions with the team at Gustave Roussy (as part of her role in the 
academic research lab), led the team processing clinical samples, and was involved in reviewing and 
editing the manuscript for publication. The paper, published in January 2017 has been cited more 
than 50 times according to Google Scholar. 
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If you require any further information, please do not hesitate to contact me. 
 
Yours faithfully, 
 
 

 
 
 
 

Dr. Nitzan Rosenfeld 
Chief Scientific Officer 
Inivata Ltd 
The Portway Building 
Granta Park 
Cambridge 
CB21 6GS 
United Kingdom 
Tel: +44 (0)1223 790 880 
Email: nitzan.rosenfeld@inivata.com 
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Assoc. Prof. Sarah-Jane Dawson 
Peter MacCallum Cancer Centre 

305 Grattan Street 
Melbourne VIC 3000 

Australia 

20th May 2018 

 

To whom it may concern, 

 

Dear Sir/Madam, 

I am writing to confirm Davina Gale’s contribution to the following paper published in the 
New England Journal of Medicine in 2013, in support of her PhD by Publication at the 
University of East Anglia: 

Dawson S-J*, Tsui D.W.Y*, Murtaza M, Biggs H, Rueda O, Chin SF, Dunning M, 
Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, 
Wallis M, Bentley D, Caldas C, Rosenfeld N; ‘Analysis of Circulating Tumor DNA to 
Monitor Metastatic Breast Cancer’; New England Journal of Medicine; 2013; DOI: 
10.1056/NEJMoa121326  

I am first co-author of this publication, which was based on innovative research performed at 
the Cancer Research UK Cambridge Institute between 2010 and 2013 to assess the clinical 
utility of circulating tumour DNA (ctDNA) and compare the performance of ctDNA testing to 
other biomarkers including circulating tumour cells, CA 15-3 and radiographic imaging in 
metastatic breast cancer patients. The paper used tagged amplicon deep sequencing (TAm-
Seq), whole genome sequencing and personalised digital PCR assays to identify somatic 
mutations and quantify ctDNA in serially collected plasma specimens. This publication 
provided the first demonstration that ctDNA revealed the earliest measure of treatment 
response and showed a greater dynamic range and correlation with tumour burden than the 
other circulating biomarkers. 

Davina Gale provided an instrumental contribution to this work.  She played a fundamental 
role in developing the methods used in the analysis including digital PCR and TAm-Seq, which 
were not routinely established techniques in the field at this time.  She established 
standardised operating procedures for clinical collection and processing of plasma samples, 
plasma DNA extractions and the downstream analysis of these samples which were all integral 
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to the successful completion of this project.  She provided critical input into the preparation of 
the final manuscript. 

This publication has been highly influential in the field.  It was the first study to show the 
superiority of circulating tumour DNA to circulating tumour cells for monitoring tumour 
dynamics in breast cancer and provided the first demonstration of the role of ctDNA for 
molecular disease monitoring in this disease.  The influential nature of the manuscript is 
highlighted by its citation rate of 1053 over the past 5 years.  

 

Yours faithfully, 

 

 

 

Associate Professor Sarah-Jane Dawson (MBBS, FRACCP, PhD) 

Consultant Medical Oncologist  
Group Leader & Head of Molecular Biomarkers and Translational Genomics Laboratory 
Peter MacCallum Cancer Centre 
Australia 
Email: sarah-jane.dawson@petermac.org 
Telephone: + 61 3 8559 7132 
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January 21, 2019 
 
 
 
 
Re: Letter of Support   
 
 
Dear Sir/Madam, 

I am delighted to have the opportunity to support and recommend Davina Gale in her PhD by 
Publication. I have known Davina since 2010, when I joined the Cancer Research UK Cambridge 
Institute as a postdoctoral research associate in Dr. Nitzan Rosenfeld’s lab. In her role as Lab 
Manager and first employee of Nitzan’s group, Davina was instrumental in establishing the 
groups protocols and lab infrastructure for the analysis of circulating tumour DNA (ctDNA) as a 
non-invasive liquid biopsy. She trained all members of the group, and provided key scientific 
guidance. Together we have published several key publications, including in Science 
Translational Medicine, Nature, Nature Communications, New England Journal of Medicine, 
The Journal of Molecular Diagnostics, and EMBO Molecular Medicine.  

In this letter, I confirm Davina’s contributions to the following publications: 

Forshew T*, Murtaza M*, Parkinson C*, Gale D*, Tsui DWY* et al.; Science Translational 
Medicine, 2012; ‘Noninvasive identification and monitoring of cancer mutations by 
targeted deep sequencing of plasma DNA.’ 

In this paper, we published for the first time the ability to used next generation sequencing 
(NGS) analysis to analyse cell-free DNA for the detection of tumour-specific mutations in 
plasma from cancer patients. We developed TAm-Seq (tagged amplicon deep sequencing) and 
demonstrated that it could be used to monitor ctDNA during patient treatment to help 
understand tumour dynamics.  We are both joint first co-authors on this publication. Davina 
played an instrumental role, both in establishing critical digital PCR data to quantify mutant 
TP53 ctDNA levels in plasma from ovarian cancer patients to help determine the quantitative 
accuracy of TAm-Seq, and in working to establish and develop TAm-Seq protocols and review 
data. Davina also helped write and critically review the manuscript ahead of publication. This 
publication had critical impact in the field, as it provided the first demonstration of the use of 
NGS to assay multiple mutations. In her role as Head of Molecular Diagnostics and co-founder 
of Inivata, Davina led further development of eTAm-Seq technology to develop ultrasensitive 
assays for clinical use, which is now being used for patient benefit. 

Murtaza M*, Dawson S.-J*., Tsui D.W.Y*, Gale D, Forshew T, Piskorz AM, Parkinson C, 
Chin S, Kingsbury Z, Wong AS, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, 
Brenton JD, Caldas C, Rosenfeld N.; Nature; 2013; ‘Non-invasive analysis of acquired 

203



 

 

 

resistance to cancer therapy by sequencing of plasma DNA.’ 

In this publication, we were able to demonstrate for the first time that exome sequencing could 
be used to non-invasively analyse ctDNA before and after development of acquired resistance to 
cancer therapy. I am a joint first author on this paper. Davina played a critical role in this paper, 
in establishing protocols, sample collections and training lab team members, advising on the 
most appropriate method for exome sequencing of low input amounts of DNA, and critically 
reviewing the manuscript. This publication provided important proof-of-concept of the ability to 
use NGS and hybrid capture to non-invasively assess ctDNA on an exome-wide scale.  A follow-
up publication was published in Nature Communications - Murtaza et al., Nature 
Communications, 2015, ‘Multifocal clonal evolution characterized using 
circulating tumour DNA in a case of metastatic breast cancer’. Davina and I are co-
authors on this paper, which demonstrated the ability to use these methods to analyse ctDNA in 
depth in multiple specimens from the same patient, including at autopsy, to further understand 
tumour heterogeneity and evolution and the representation of ctDNA in plasma.  

Dawson SJ*, Tsui D.W.Y*, Murtaza M, Biggs H, Rueda O, Chin SF, Dunning M, Gale D, 
Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley 
D, Caldas C, Rosenfeld N.; New England Journal of Medicine; 2013; ‘Analysis of 
Circulating Tumor DNA to Monitor Metastatic Breast Cancer.’ 

I am joint first co-author on this publication, which provided the first demonstration of 
comparison of ctDNA with CTCs, CA 15-3 and imaging data, to show that ctDNA has clinical 
value in monitoring patients with metastatic breast cancer. Davina played an important role in 
this paper, developing important protocols, helping to establish high-quality clinical collections 
for analysis, and providing training. She also helped critically review the manuscript ahead of 
publication.  

Risberg B*, Tsui DWY*, Biggs H, Ruiz-Valdepenas Martin de Almagro A, Dawson SJ, 
Hodgkin C, Jones L, Parkinson C, Piskorz A, Marass F, Chandrananda D, Moore E, Morris 
J, Plagnol V, Rosenfeld N, Caldas C, Brenton JD, Gale D&; The Journal of Molecular 
Diagnostics; 2018; The Journal of Molecular Diagnostics, 2018; ‘Effects of collection and 
processing procedures on plasma circulating cell-free DNA from cancer patient’ 

Davina and I are senior co-corresponding authors on this publication. Davina played an 
instrumental role in this paper. In 2010, she initiated studies to assess the performance of 
Streck Cell-Free DNA BCT tubes to enable delayed and centralised processing of plasma for 
liquid biopsy studies, and limit pre-analytic factors which may affect downstream analysis of 
circulating tumour DNA (ctDNA). Streck BCT tubes contain a cell preservative which stablilises 
nucleated blood cells, limiting release of contaminating genomic DNA.  Following these studies, 
we worked together to design and establish this study to collect plasma samples from patients 
with ovarian and metastatic breast cancer, and process specimens in different ways.  We worked 
together to oversee the project, and Davina provided important scientific advice on this study, 
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including digital PCR assays, which she had designed and validated to assess mutant ctDNA 
levels. Davina played a vital role in getting the manuscript published, providing critical review of 
the manuscript and leading discussions with the journal editors to improve the manuscript prior 
to publication.  

Tsui DWT*, Murtaza M*, Wong ASC, Rueda OM, Smith CG, Chandrananda D, Soo RA, Lim 
H, Goh B, Caldas C, Forshew T, Gale D, Liu W, Morris J, Marass F, Eisen T, Chin T, 
Rosenfeld N; EMBO Molecular Medicine; 2018; ‘Dynamics of multiple resistance 
mechanisms in plasma DNA during EGFR-targeted therapies in NSCLC.’ 

I am the first co-author on this publication, which demonstrates the ability to assess multiple 
resistance mechanisms in EGFR-mutant	 non-small	 cell	 lung	 cancer	 (NSCLC)	 patients	 treated	 with	
gefitinib	 and	 hydroxychloroquine. Davina played a critical role in establishing digital PCR and 
TAm-Seq protocols used in this study, and provided important training and scientific guidance 
throughout my time at the Cancer Research UK Cambridge Institute. 

Please feel free to contact me if you require any further information. 

Sincerely,  

 
Dana W. Y. Tsui, Ph.D. 
Assistant Attending	
Faculty, Department of Pathology 
Member, Center for Molecular Oncology 
tsuiw@mskcc.org 
+1-646-888-2079 
 
Memorial Sloan Kettering Cancer Center 
1275 York Avenue, Box 20, New York, NY 10065, USA 
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CRUK Cambridge Institute 

University of Cambridge 

Li Ka Shing Centre 

Robinson Way 

Cambridge CB2 0RE 

 

September 21st, 2018 

 

 

Postgraduate Research Office 

University of East Anglia          

Norwich Research Park 

Norwich 

NR4 7TJ 

 

 

Dear Sir/Madam, 

 

I am delighted to write in support of Davina Gale’s application for a PhD by Publication at the University of 

East Anglia. As part of that application I would like to confirm Davina’s contribution to the following paper 

published in EMBO Molecular Medicine in 2018: 

 

Tsui DWT, Murtaza M, Wong ASC, Rueda OM, Smith CG, Chandrananda D, Soo RA, Lim H, Goh B, 

Caldas C, Forshew T, Gale D, Liu W, Morris J, Marass F, Eisen T, Chin T, Rosenfeld N; EMBO 

Molecular Medicine; 2018; ‘Dynamics of multiple resistance mechanisms in plasma DNA during 

EGFR-targeted therapies in NSCLC.’; EMBO Mol Med; 2018; e794; DOI 

10.15252/emmm.201707945; 

 

 

I am senior co-corresponding author on this paper, which describes the analysis of 50 non-small lung 

cancer patients treated with gefitinib and hydroxychloroquine, using TAm-Seq and digital PCR. Three cases 

who underwent histological transformation to small cell lung cancer were analysed by shallow whole 

genome sequencing. The results demonstrated that EGFR mutations were detected in plasma in 95% of 

cases with known tumour EGFR mutations, indicating that plasma has potential to provide clinically relevant 

information to guide treatment decisions. Pre-treatment levels of EGFR mutations were prognostic and 

correlated with tumour burden. Analysis by TAm-Seq identified additional mutations including EGFR T790M, 

TP53, PIK3CA and PTEN mutations, demonstrating the importance of using a next-generation sequencing 

approach to analyse multiple mutations to study tumour dynamics and evolution. Patients with 

concomitantTP53 and EGFR mutations had worse overall survival compared to EGFR-only mutant patients, 

and patients who progressed with no detectable levels of the EGFR T790M mutation had poorer prognosis.  

 

Davina joined my group as Lab Manager in 2009, and played a critical role in establishing from the outset 

the lab capabilities and infrastructure which was important to enable us to perform such a study. This 

included the development of protocols for analysis of circulating tumour DNA, extraction of DNA from 

plasma, and establishing Pre- and Post-PCR facilities within the Institute. She played a critical role in the 

development of digital PCR and TAm-Seq for analysis of low frequency mutations in plasma. In addition, she 
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trained new lab members and provided technical advice to PhD and post-doctoral students within my group, 

including Dr. Dana Tsui who is lead author of this paper. She also reviewed the data and manuscript in 

preparation for publication. 

 

 

If you require any further information, please do not hesitate to contact me. 

 

Yours faithfully, 

 

 

 

 

 

 

 

Dr. Nitzan Rosenfeld 

Senior Group Leader 

Cancer Research UK Cambridge Institute 

University of Cambridge 

Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE 

Tel: 01223-769769, Fax: 01224-769510 

Email: nitzan.rosenfeld@cruk.cam.ac.uk 

Webpage: www.rosenfeldlab.org 
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       CRUK Cambridge Institute 
       Robinson Way, 
       Cambridge, 
       CB2 0RE 
 
       02nd January 2019 
 
 
To whom it may concern, 
 
 
I am writing in support of Ms Davina Gale’s application for PhD by Publication. I 
have worked with Ms Gale for the past 5 years and she has contributed 
significantly towards a recent publication that I co-first authored entitled 
‘Measurement of Plasma Cell-Free Mitochondrial Tumor DNA Improves 
Detection of Glioblastoma in Patient-Derived Orthotopic Xenograft Models’. 
 
Specifically she was instrumental in the original design of the project whereby 
we used dPCR to identify specific sequences known to denote the human origin 
of ‘circulating’ DNA within patient-derived orthotopic xenografts of glioblastoma. 
She performed several of the early dPCR experiments herself as well as analysing 
the data from those investigations. When preparing the work for publication she 
contributed at every stage of the manuscript’s preparation and provided 
invaluable insight that significantly improved the final document. 
 
Overall I thoroughly support this application. 
 
Yours faithfully 
 

 
 
 
Mr Richard Mair PhD FRCS (Neuro. Surg) 
University Lecturer in Neurosurgical Oncology 
Honorary Consultant Neurosurgeon 
University of Cambridge, UK 
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CRUK Cambridge Institute 

University of Cambridge 

Li Ka Shing Centre 

Robinson Way 

Cambridge CB2 0RE 

 

January 9th, 2019 

 

 

Postgraduate Research Office 

University of East Anglia          

Norwich Research Park 

Norwich 

NR4 7TJ 

 

 

Dear Sir/Madam, 

 

I am delighted to write in support of Davina Gale’s application for a PhD by Publication at the University of 

East Anglia. As part of that I would like to confirm Davina’s contribution to the following manuscripts 

published as a preprint in bioRxiv, and as a research article in Science Translational Medicine:   

   

• Mouliere F, Piskorz A, Chandrananda D, Moore E, Morris J, Smith C, Goranova T, Heider K, Mair R, 

Supernat A, Gounaris I, Ros S, Wan J, Jimenez-Linan M, Gale D, Brindle K, Massie C, Parkinson C, 

Brenton J, Rosenfeld N; bioRxiv; 2017, http://dx.doi.org/10.1101/134437; ‘Selecting Short DNA 

Fragments in Plasma Improves Detection of Circulating Tumour DNA.’  

 

• Mouliere F, Chandrananda D, Piskorz A, Moore E, Morris J, Barlebo Ahlborn L, Mair R, Goranova T, 

Marass F, Heider K, Wan J, Supernat A, Hudecova I, Gounaris I, Ros S, Jimenez-Linan M, Garcia-

Corbacho J, Patel K, Østrup O, Murphy S, Eldridge M, Gale D, Stewart G, Burge J, Cooper W, van 

der Heijden M, Massie C, Watts C, Corrie P, Pacey S, Brindle K, Baird R, Mau-Sørensen M, Parkinson 

C, Smith C , Brenton JD, Rosenfeld N; Science Translational Medicine; 2018; Vol. 10, Issue 

466, eaat4921 DOI: 10.1126/scitranslmed.aat4921; ‘Enhanced detection of circulating tumor DNA 

by fragment size analysis’ 

I am a senior co-corresponding author on both these manuscripts, which investigate the size distribution of 

cell-free DNA fragments. In the Science Translational Medicine paper, ctDNA fragment sizes were analysed 

in 344 plasma samples from 200 patients with 18 different types of cancer, and 65 healthy controls. We 

demonstrated that tumour-specific DNA fragments were shorter than DNA of non-tumour origin, and high 

ctDNA cancers (melanoma, breast, ovarian, lung, colorectal and cholangiocarcinoma) had an increased 

proportion of fragments less than 150bp, compared to healthy controls and low ctDNA cancers (renal, 

glioblastoma, bladder, pancreatic). We were able to demonstrate the ability to use in vitro and in silico size 

selection to enrich for shorter circulating tumour DNA (ctDNA) fragments, and machine learning algorithms 

to enhance detection of ctDNA. In the bioRxiv paper, in vitro size selection resulted in up to 11-fold 

enrichment of ctDNA in patients with high-grade serous ovarian carcinoma, and detection of clinically-

relevant somatic copy number aberrations not previously detected without enrichment. These studies may 

have important implications for early detection of cancer and minimal residual disease. 
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Davina Gale made important contributions to these papers in establishing protocols for collection of high 

quality clinical samples, and working with several clinical teams to help establish important collections in 

different cancers including melanoma, ovarian and breast cancer. In particular, Davina had previously co-led 

a study analysing ctDNA in high-grade serous ovarian cancer, and samples from this study were included in 

both papers, where we were able to demonstrate the effects of size selection to enrich ctDNA and enhance 

detection. Davina also helped train some of the staff that carried out this project. Davina played a key role 

setting up collaborations and plans and designing lab protocols for translational studies (MelResist, 

CALIBRATE) from which samples were collected for this project. In preparation of the manuscripts, Davina 

also provided critical and insightful scientific feedback to help improve the papers. 

 

If you require any further information, please do not hesitate to contact me. 

 

Yours faithfully, 

 

 

 

 

 

Dr. Nitzan Rosenfeld 

Senior Group Leader 

Cancer Research UK Cambridge Institute 

University of Cambridge 

Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE 

Tel: 01223-769769, Fax: 01224-769510 

Email: nitzan.rosenfeld@cruk.cam.ac.uk 

Webpage: www.rosenfeldlab.org 
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Appendix 3:   Full list of all author contributions to each submitted 

publication. 
 

I would like to acknowledge the important contributions of my colleagues in all of the submitted 

publications, reprinted in Appendix 6. Author contributions are reproduced from the relevant 

publications, where available. My contributions are highlighted in bold. The number of times the 

papers have been cited by Google Scholar since publication are listed at the end of each section. 

Parkinson*, Gale * et al.; PLoS Medicine, 2016 
 

Parkinson C*, Gale D*, Piskorz A, Biggs H, Hodgkin C, Addley H, Freeman S, Moyle P, Sala E, Sayal 

K, Hosking K, Gounaris I, Jimenez-Linan M, Earl H, Qian W, Rosenfeld N†, Brenton JD†.  

 CAP and DG contributed equally to this work. 

 Senior authors: NR, JDB. 

 Conceptualization: CAP, DG, NR, JDB.  

 Data curation: CAP, DG, AMP, KS, KH, NR, JDB.  

 Formal analysis: CAP, DG, AMP, HA, SF, PM, ES, WQ, NR, JDB.  

 Funding acquisition: NR, JDB.  

 Investigation: CAP, DG, AMP, HB, CH, HA, SF, PM, ES, KS, KH, MJ-L, HME, IG.  

 Methodology: CAP, DG, NR, JDB.  

 Project administration: DG, AMP, HB, CH, KS.  

 Resources: CAP HB CH IG HME JDB.  

 Software: NR.  

 Supervision: NR, JDB.  

 Validation: CAP, DG, WQ, NR, JDB.  

 Visualization: CAP, DG, NR, JDB.  

 Writing – original draft: CAP, DG, NR, JDB. 

 Writing – review & editing: CAP, DG, AMP, HB, CH, HA, SF, PM, ES, KS, KH, IG, MJ-, LH, ME, 

WQ, NR, JDB. 

 According to Google Scholar, this paper has been cited 53 times since 2016. 

 PLoS Medicine listed it as one of their Top 50 most downloaded articles in 2016. An editorial 

article by Elaine Mardis and Marc Landanyi at the time of publication cite that this 

‘retrospective study is important in laying the foundations to change the standard of care’ 

(Mardis and Ladanyi 2016).  
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Schwarz et al., PLoS Medicine, 2015 
 

Schwarz R, Ng C, Cooke S, Newman S, Temple J, Piskorz A, Gale D, Sayal K, Murtaza M, Baldwin P, 

Rosenfeld N, Earl H, Sala E, Jimenez-Linan M, Parkinson C, Markowetz F†, Brenton JD†. 

 Conceived and designed the experiments: JDB, ES, FM, RFS, CKYN, SLC, AMP, DG. 

 Performed the experiments: SLC, SN, JT, AMP, DG.  

 Analysed the data: RFS, CKYN, SLC, SN, AMP, DG, KS, MM, NR, MJL, CAP, FM, JDB. 

 Contributed reagents/materials/analysis tools: RFS, CKYN, SN, PJB, MM, NR, ES, CAP FM, 

JDB.  

 Enrolled patients: HME, CAP, JDB.  

 Wrote the first draft of the manuscript: RFS, FM, JDB.  

 Wrote the paper: RFS, CKYN, AMP, DG, FM, JDB.  

 Agree with manuscript results and conclusions: RFS, CKYN, SLC, SN, JT, AMP, DG, KS, MM, 

PJB, NR, HME, ES, MJL, CAP, FM, JDB. 

 According to Google Scholar, this paper has been cited 170 times since 2015. 

Forshew*...Gale* et al.; Science Translational Medicine, 2012 
 

Forshew T*, Murtaza M*, Parkinson C*, Gale D*, Tsui DWY*, Kaper F, Dawson SJ, Piskorz AM, 

Jimenez-Linan M, Bentley D, Hadfield J, May AP, Caldas C, Brenton JD†, Rosenfeld N†. 

 TF, MM, CP, DG, DT contributed equally to this work. 

 Senior authors: JDB, NR. 

 Designed the study:TF MM, CP, DG, DWYT, CC, JDB, and NR.  

 Developed methods: TF, MM, DWYT, FK, JH, APM, and NR.  

 Collected the data: TF, DG, DWYT, AMP, SJD.  

 Analysed TAm-Seq data: TF, MM, NR.  

 Designed clinical studies and collected samples and clinical data: CP, SJD, CC, JDB.  

 Performed pathological analysis: MJL.  

 Contributed sequencing data: DB.  

 Interpreted data: TF, MM, CP, DG, DWYT, JH, APM, JDB, NR. 

 Wrote the manuscript: TF, MM, NR with assistance from CP, DG, DWYT, APM, JDB, and other 

authors.  

 All authors approved the final manuscript. 

 According to Google Scholar, the paper has been cited 761 times since 2012. 



215 
 

Murtaza et al., Nature, 2013 

Murtaza M*, Dawson SJ*, Tsui DWY*, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin S, 

Kingsbury Z, Wong AS, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton JD†, Caldas 

C†, Rosenfeld N†. 

 Designed the study: MM, SJD, TF, DWYT, DG, JDB, CC, NR.  

 Developed methods: MM, DWYT, TF.  

 Designed and conducted the prospective clinical studies: SJD, CP, ASCW, TMC, JDB, CC.  

 Generated data: MM, SJD, DWYT, DG, TF, AMP. 

 Contributed sequencing data: ZK, SH, DB. 

 Analysed sequencing data: MM, FM, NR. 

 Contributed to experiments and data analysis: SFC, JH. 

 Interpreted data: MM, SJD, DWYT, TMC, JDB, CC, NR.  

 Wrote the paper: MM, NR with assistance from SJD, DWYT, CC, JDB and other authors. 

 All authors approved the final manuscript. 

 Project co-leaders and joint senior authors: JDB, CC, NR. 

 According to Google Scholar, this paper has been cited 1072 times since 2013. 

Murtaza et al., Nature Communications, 2015 

Murtaza M*, Dawson SJ&, Pogrebniak K, Rueda O, Provenzano E, Grant J, Chin SF, Tsui DWY, 

Marass F, Gale D, Ali HR, Shah P, Contente-Cuomo T, Farahani H, Shumansky K, Kingsbury Z, 

Humphray S, Bentley D, Shah S, Wallis M, Rosenfeld N†, Caldas C†. 

 Joint first co-authors: MM, SJD. 

 Designed the study: MM, SJD, NR, CC. 

 Developed methods: MM, DWYT. 

 Conducted prospective clinical, histopathological and imaging studies: SJD, EP, JG, MW, CC. 

 Generated data: MM, SJD, SFC, DWYT, DG, PS, TC-C. 

 Contributed sequencing data: ZK, SH, DB. 

 Analysed sequencing data: MM, KP, OMR, FM, HF, KS, SPS. 

 Contributed to experiments and data analysis: S-FC HRA.  

 Interpreted data: MM, SJD, NR, CC. 

 Wrote the paper: MM, CC; With assistance from SJD, NR and other authors. 

 All authors approved the final manuscript. 
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 Project co-leaders and joint senior authors: NR, CC. 

 According to Google Scholar, this paper has been cited 193 times since 2015. 

Risberg et al., Journal of Molecular Diagnostics, 2018 

Risberg B*, Tsui DWY*†, Biggs H, Ruiz-Valdepenas Martin de Almagro A, Dawson SJ, Hodgkin C, 

Jones L, Parkinson C, Piskorz A, Marass F, Chandrananda D, Moore E, Morris J, Plagnol V, Rosenfeld 

N, Caldas C, Brenton JD, Gale D†. 

  Conceived and designed the study: DWYT, HB., SJD, CP, AP, NR, CC, JDB, DG. 

  Processed samples, collected clinical data and managed samples: DWYT, HB, SJD,     

 CH, LJ, CP, AP. 

  Performed experiments: BR, DWYT, AR-VMA, SJD, EM, DG. 

  Analyzed NGS data: FM, DC, JM, VP. 

  Wrote the manuscript: BR, DWYT, DC, DG. 

  All authors approved the final manuscript 

 According to Google Scholar, this paper has been cited once since 2018. 

Gale et al., PLoS ONE, 2018 

Gale D‡, Lawson ARJ, Howarth K, Madi M, Durham B, Smalley S, Calaway J, Blais S, Jones G, Clark J, 

Dimitrov P, Pugh M, Woodhouse S, Epstein M, Fernandez-Gonzalez A, Whale AS, Huggett JF, Foy 

CA, Jones GM, Raveh-Amit H, Schmitt K, Devonshire A, Green E, Forshew T, Plagnol V, Rosenfeld 

N†. 

 Conceptualization: DG, ARJL, TF, VP, NR. 

 Data curation: DG, ARJL, ME, TF, VP. 

 Formal analysis: PD, ME, VP. 

 Funding acquisition: CAF, KS, NR. 

 Investigation: DG, ARJL, KH, MM, BD, SS, JCa, SB, SW, AFG, ASW, GMJ, AD. 

 Methodology: DG, ARJL, SS, AFG, ASW, AD, TF, VP, NR. 

 Project administration: DG, KS, AD. 

 Resources: HRA, KS. 

 Software: VP. 

 Supervision: DG, GJ, JCl, JFH, CAF, TF, VP, NR. 

 Validation: DG, ARJL, KH, SS, JC, SB, MP, EG, TF, VP. 

 Visualization: AD. 
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 Writing – original draft: DG. 

 Writing – review & editing: DG, ARJL, KH, MP, SW, CAF, AD, EG, TF, VP, NR. 

 According to Google Scholar, this paper has been cited 10 times since 2018. 

Plagnol et al., PLoS ONE, 2018 

Plagnol V*, Woodhouse S*, Howarth K, Lensing S, Smith M, Epstein M, Madi M, Smalley S, Leroy C, 

Hinton J, De Kievit F, Musgrave-Brown E, Herd C, Neblett K, Brennan W, Dimitrov P, Campbell N, 

Morris C, Rosenfeld N, Clark J, Gale D, Platt J, Calaway J, Jones G, Forshew T†. 

 Conceptualization: VP, SW, KH, SL, MS, ME, PD, CM, NR, JC, GJ, TF. 

 Data curation: VP, KH, FdK, GJ, TF. 

 Formal analysis: VP, SW, FdK, GJ, TF. 

 Investigation: VP, SW, KH, SL, MS, ME, MM, FdK; EM-B, CH, KBN, WB, NC, CM, JCa, TF. 

 Methodology: VP, SW, KH, SL, MS, ME, MM, SS, EMB, CH, WB, PD, DG, JCa, TF 

 Project administration: JCl, JP. 

 Resources: SS, JCl, JP. 

 Software: VP, ME, CL, JH, FdK, PD. 

 Supervision: VP, SW, KH, CL, JH, NC, CM, NR, JCl, DG, JP, JCa, GJ, TF. 

 Validation: VP, SW, KH, MS, DG, JCa, GJ, TF. 

 Visualization: VP, ME. 

 Writing – original draft: VP, TF. 

 Writing – review & editing: VP, SW, KH, SL, MS, ME, MM, SS, CL, JH, FdK, EMB, CH, KB-N, WB, 

PD, NC, CM, NR, JCl, DG, JP, JCa, GJ, TF. 

 According to Google Scholar, this paper has been cited 9 times since 2018. 

Remon et al., Annals of Oncology, 2017 

Remon J, Caramella C, Jovelet C, Lacroix L, Lawson ARJ, Smalley S, Howarth K, Gale D, Green E, 

Plagnol V, Rosenfeld N, Planchard D, Bluthgen MV, Gazzah A, Pannet C, Nicotra C, Auclin E, Soria 

JC, Besse B†. 

 Note: Official details are not listed in the publication, so authorship details are reported to 

the best of my knowledge. 

 Conceptualization: JR, EG, NR, BB. 

 Data curation: JR, ARJL, SS, KH, DG, EG, VP. 

 Collection of clinical specimens: JR, CC, CJ, LL, DP, MVB, AG, CP, CN, EA, JCS, BB. 
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 Formal analysis: JR, VP. 

 Funding acquisition: NR. 

 Investigation: JR, CC, CJ, LL, ARJL, SS, KH, DG, VP. 

 Methodology: DG, ARJL, SS, KH, VP. 

 Project administration: JR, EG. 

 Supervision: JR, DG, EG, NR. 

 Writing – original draft: JR, EG. 

 Writing – review & editing: JR, DG, EG, VP, NR, DG, BB. 

 According to Google Scholar, this paper has been cited 69 times since 2017. 

Dawson et al., New England Journal of Medicine, 2013 

Dawson SJ*, Tsui DWY*, Murtaza M, Biggs H, Rueda O, Chin SF, Dunning M, Gale D, Forshew T, 

Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley D, Caldas C†, Rosenfeld 

N†. 

 Note: Official details are not listed in the publication, so authorship details are reported to 

the best of my knowledge. 

 Conceptualization: SJD, DWYT, MM, DG, CC, NR. 

 Data curation: SJD, DWYT, MM, OR. 

 Collection of clinical specimens: SJD, HB, CC. 

 Formal analysis: SJD, MM, OR, MD. 

 Funding acquisition: CC, NR. 

 Investigation: SJD, DWYT, MM,OR, SFC, MD, DG, TF, BM-A, SR, SH, JB, DH, MW, DB. 

 Methodology: SJD, DWYT, MM, DG, TF, NR. 

 Project administration: SJD. 

 Writing – original draft: SJD, DWYT, CC, NR. 

 Writing – review & editing: SJD, DWYT, MM, DG, CC, NR. 

 According to Google Scholar, this paper has been cited 1258 times since 2013. 

Tsui et al., EMBO Molecular Medicine, 2018 

Tsui DWY*, Murtaza M*, Wong ASC, Rueda OM, Smith CG, Chandrananda D, Soo RA, Lim H, Goh B, 

Caldas C, Forshew T, Gale D, Liu W, Morris J, Marass F, Eisen T, Chin T†, Rosenfeld N†. 

 Initiated and designed the study: DWYT, TE, TMC, NR.  

 Developed methods: DWYT, CGS, DC, TF, MM, FM, DG, NR.  
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 Analysed the data: DWYT, MM, TMC and NR; With assistance from OMR, CC, CGS, DC, FM, 

JM and WL.  

 Treating physicians of the patients included in this study, and collected samples and clinical 

data: ASCW, RAS, HLL, BCG, TMC. 

 Interpreted the data and wrote the manuscript: DWYT, MM, TMC, NR with assistance from 

other authors.  

 All authors approved the final manuscript. 

 According to Google Scholar, this paper has been cited 4 times since 2018. 

Mair et al., Cancer Research, 2019 

Mair R*, Mouliere F*, Smith CG, Chandrananda D, Gale D, Marass F, Tsui DWY, Massie CE, Wright 

AJ, Watts C, Rosenfeld N†, Brindle KM†. 

 Conception and design: RM, FM, CGS, CW 

 Development of methodology: RM, FM, CGS, DG, CW  

 Acquisition of data (provided animals, acquired and managed patients, provided facilities, 

etc.): RM, FM, DG, DWYT, AJW, CW  

 Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational 

analysis): RM, FM, CGS, DC, DG, FM, CEM, AJW, NR  

 Writing, review, and/or revision of the manuscript: RM, FM, CGS, DC, DG, FM, DWYT, AJW, 

CW, NR, KMB. 

 According to Google Scholar, this paper has been cited once since 2018. 

Mouliere et al., bioRxiv, 2017 

Mouliere F*, Piskorz A*, Chandrananda D*, Moore E*, Morris J, Smith C, Goranova T, Heider K, 

Mair R, Supernat A, Gounaris I, Ros S, Wan J, Jimenez-Linan M, Gale D, Brindle K, Massie C, 

Parkinson C, Brenton JD†, Rosenfeld N†. 

 Conceptualised and designed the study: FM, AMP, DC, EM, JDB, NR. 

 Performed experiments and collected data: FM, AMP, EM, KH, CGS, JCMW, DG, RM, TG, AS, 

IG, CAP. 

 Conceptualised and designed the t-MAD index and performed sWGS bioinformatics analysis: 

DC. 

 Performed TAm-Seq bioinformatics analysis: JM. 

 Designed animal model: RM, SR. 



220 
 

 Performed histopathology revision: MJL. 

 Wrote the manuscript: FM, AMP, DC, EM, JDB, NR. 

 All co-authors critically reviewed the manuscript. 

 Supervised the study: FM, AMP, DC, JDB, NR.  

 According to Google Scholar, this paper has been cited 5 times since 2017. 

Mouliere et al., Science Translational Medicine, 2018 

Mouliere F*, Chandrananda D*, Piskorz A*, Moore E*, Morris J, Barlebo Ahlborn L, Mair R, 

Goranova T, Marass F, Heider K, Wan J, Supernat A, Hudecova I, Gounaris I, Ros S, Jimenez-Linan 

M, Garcia-Corbacho J, Patel K, Østrup O, Murphy S, Eldridge M, Gale D, Stewart G, Burge J, Cooper 

W, van der Heijden M, Massie C, Watts C, Corrie P, Pacey S, Brindle K, Baird R, Mau-Sørensen M, 

Parkinson C, Smith C , Brenton JD†, Rosenfeld N†. 

 Conceptualized and designed the study: FM, AMP, DC, EKM, JDB, NR.  

 Performed experiments and collected data: FM, AMP, EKM, LBA, KH, CGS, JCMW, DG, RM, 

TG, AS, IG, OØ, CAP, MM-S, IH, KP, WNC.  

 Conceptualized the size selection approach: FM, AMP, DC, EKM, CGS.  

 Designed and performed in vitro size selection: FM, AMP, EKM.  

 Conceptualized and designed the fragmentation feature analysis: FM, DC, with input from 

FM, NR.  

 Conceptualized and designed the t-MAD index: D.C. with input from FM. 

 Bioinformatics analysis of somatic CNAs from sWGS: FM, DC. 

 Performed bioinformatics analysis of TAm-Seq: JM. 

 Designed the tailored captured sequencing and performed WES: FM, LBA.  

 Performed bioinformatics analysis of the capture sequencing and WES: FM, JM.  

 Developed and optimized mutation calling algorithms: MDE.  

 Designed the animal model: RM, KB, SR.  

 Collected human samples: JGC, SP, RDB, MMS, GDS, JB, SM, PC, CW, RM, MSvdH. 

 Performed histopathology revision: MJL, JB.  

 Wrote the manuscript: FM, DC, AMP, EKM, JDB, NR.  

 All co-authors have critically reviewed the manuscript.  

 Supervised the study: FM, AMP, DC, JDB, NR. 

 Co-ordinated the study: FM  

 According to Google Scholar, this paper has been cited 10 times since 2018. 
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Exploratory Analysis of TP53 Mutations in

Circulating Tumour DNA as Biomarkers of

Treatment Response for Patients with
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Charlotte Hodgkin2,5, Helen Addley4,5, Sue Freeman4,5, Penelope Moyle4,5, Evis Sala4¤,

Karen Sayal1, Karen Hosking2,3,5, Ioannis Gounaris1,5, Mercedes Jimenez-Linan4,5,
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2 Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United

Kingdom, 3 NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom, 4 Cambridge

University Hospitals NHS Foundation Trust, Cambridge, United Kingdom, 5 Cancer Research UK Major
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¤ Current address: Memorial Sloan Kettering Cancer Center, New York, New York, United States of America.

* Nitzan.Rosenfeld@cruk.cam.ac.uk (NR); James.Brenton@cruk.cam.ac.uk (JDB)

Abstract

Background

Circulating tumour DNA (ctDNA) carrying tumour-specific sequence alterations may provide

a minimally invasive means to dynamically assess tumour burden and response to treat-

ment in cancer patients. Somatic TP53 mutations are a defining feature of high-grade

serous ovarian carcinoma (HGSOC). We tested whether these mutations could be used as

personalised markers to monitor tumour burden and early changes as a predictor of

response and time to progression (TTP).

Methods and Findings

We performed a retrospective analysis of serial plasma samples collected during routine clini-

cal visits from 40 patients with HGSOC undergoing heterogeneous standard of care treat-

ment. Patient-specific TP53 assays were developed for 31 unique mutations identified in

formalin-fixed paraffin-embedded tumour DNA from these patients. These assays were used

to quantify ctDNA in 318 plasma samples using microfluidic digital PCR. The TP53 mutant

allele fraction (TP53MAF) was compared to serum CA-125, the current gold-standard

response marker for HGSOC in blood, as well as to disease volume on computed tomography

scans by volumetric analysis. Changes after one cycle of treatment were compared with TTP.

The median TP53MAF prior to treatment in 51 relapsed treatment courses was 8% (inter-

quartile range [IQR] 1.2%–22%) compared to 0.7% (IQR 0.3%–2.0%) for seven untreated
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newly diagnosed stage IIIC/IV patients. TP53MAF correlated with volumetric measurements

(Pearson r = 0.59, p < 0.001), and this correlation improved when patients with ascites were

excluded (r = 0.82). The ratio of TP53MAF to volume of disease was higher in relapsed

patients (0.04% per cm3) than in untreated patients (0.0008% per cm3, p = 0.004). In nearly

all relapsed patients with disease volume > 32 cm3, ctDNA was detected at�20 amplifiable

copies per millilitre of plasma. In 49 treatment courses for relapsed disease, pre-treatment

TP53MAF concentration, but not CA-125, was associated with TTP. Response to chemo-

therapy was seen earlier with ctDNA, with a median time to nadir of 37 d (IQR 28–54) com-

pared with a median time to nadir of 84 d (IQR 42–116) for CA-125. In 32 relapsed treatment

courses evaluable for response after one cycle of chemotherapy, a decrease in TP53MAF of

>60% was an independent predictor of TTP in multivariable analysis (hazard ratio 0.22, 95%

CI 0.07–0.67, p = 0.008). Conversely, a decrease in TP53MAF of�60% was associated with

poor response and identified cases with TTP < 6 mo with 71% sensitivity (95% CI 42%–92%)

and 88% specificity (95% CI 64%–99%). Specificity was improved when patients with recent

drainage of ascites were excluded. Ascites drainage led to a reduction of TP53MAF concen-

tration. The limitations of this study include retrospective design, small sample size, and het-

erogeneity of treatment within the cohort.

Conclusions

In this retrospective study, we demonstrated that ctDNA is correlated with volume of disease

at the start of treatment in women with HGSOC and that a decrease of�60% in TP53MAF

after one cycle of chemotherapy was associated with shorter TTP. These results provide

evidence that ctDNA has the potential to be a highly specific early molecular response

marker in HGSOC and warrants further investigation in larger cohorts receiving uniform

treatment.

Author Summary

Why Was This Study Done?

• The standard clinical blood test for measuring response in women receiving chemo-

therapy for high-grade serous ovarian cancer (HGSOC) is the serum protein cancer

antigen 125 (CA-125).

• CA-125 is sensitive but it lacks specificity for detection of ovarian cancer, and in

response to chemotherapy, CA-125 level does not change rapidly enough to suggest

change in treatment after one or two cycles if chemotherapy treatment is ineffective.

• Better tumour markers are required, and circulating tumour DNA (ctDNA) is a

promising candidate.

• ctDNA is cell-free DNA derived from tumour cells that can be detected in the blood-

stream; ctDNA can be used as a highly specific marker because it carries mutations

unique to the cancer.
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What Did the Researchers Do and Find?

• HGSOC is an ideal cancer to test ctDNA as a biomarker because 99% of patients

have a mutation in the TP53 gene.

• We designed patient-specific TP53 assays for a retrospective study of 40 patients

with HGSOC, and these were used to quantify the amount of ctDNA in 318 plasma

samples collected before, during, and after chemotherapy.

• We asked if ctDNA level was correlated with the amount of disease present before

chemotherapy treatment measured using 3-D volume reconstruction from CT

images taken as part of routine care.

• We also asked if the decrease in TP53 ctDNA after one cycle of chemotherapy treat-

ment could predict which patients would have progression of their cancer within six

months.

• ctDNA level, but not CA-125 level, was strongly correlated with the total volume of

disease.

• Patients whose ctDNA level exhibited a decrease of>60% after one cycle of chemo-

therapy had a significantly longer time to progression than those whose ctDNA level

decreased by 60% or less.

What Do These Findings Mean?

• TP53 ctDNA has the potential to be a clinically useful blood test to assess prognosis

and response to treatment in women with HGSOC.

• The response findings from this retrospective study should be confirmed in larger,

prospective studies with uniform treatment. If these findings are confirmed, TP53
ctDNA could be used in HGSOC clinical trials and routine practice to identify ear-

lier whether treatment is effective.

Introduction

The development of blood biomarkers that can be used for early detection of cancer or to mea-

sure tumour burden and response to treatment is a major goal of translational cancer research

across all cancer types. Both tumour-derived proteins and DNA can be detected in circulating

plasma and serum from cancer patients [1,2]. In epithelial ovarian cancer, particularly high-

grade serous ovarian cancer (HGSOC), cancer antigen 125 (CA-125) is a serum glycoprotein

biomarker used in standard clinical practice for the first assessment of pelvic masses [3] and

for monitoring response to treatment [4,5]. However, CA-125 is limited by specificity, since it

can also be expressed by normal tissues. Two large screening studies using CA-125 and ultra-

sound have failed to show an improvement in mortality on primary analysis [6,7]. CA-125 has

heterogeneous intra- and inter-patient cellular expression and a long biological half-life in

serum, resulting in utility for sequential clinical measurements to indicate the trend of treat-

ment response, but not as a direct reflection of absolute tumour volume [8]. Whilst several
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studies have shown that pre-treatment CA-125 is prognostic and that early changes following

chemotherapy are predictive [9,10], the positive and negative predictive values are not suffi-

cient for use as a surrogate for radiological response or time to progression (TTP), or as the

sole endpoint in registration trials. More recently, attention has turned to DNA-based bio-

markers in blood as potentially superior measurements of response. In contrast to protein bio-

markers, which typically are not specific to cancer cells, circulating tumour DNA (ctDNA)

measures levels of mutations in plasma cell-free DNA and provides highly cancer-specific bio-

markers. ctDNA fragments have a short half-life, and their levels have been shown in other

cancer types to be related to tumour volume and response to treatment [11,12].

Although mutations in cell-free DNA have been studied for more than 20 years [13,14],

recent improvements in assay sensitivity and in the ability to routinely identify patient-specific

mutations have made it practical to accurately measure ctDNA levels in blood samples to mon-

itor tumour response to treatment [12,15–18]. ctDNA may represent ~0.01%–90% of total cir-

culating DNA and potentially offers greater specificity than protein biomarkers [19–21]. In

initial studies performed on small numbers of patients, ctDNA has compared favourably with

different serum tumour markers [16,20]. In a study of 18 metastatic colorectal cancer (CRC)

patients following hepatic metastasectomy, Diehl and colleagues showed, using sensitive

BEAMing assays, that ctDNA outperformed the serum marker carcinoembryonic antigen for

the detection of microscopic disease [12]. Further studies in CRC have now been published

correlating changes in ctDNA with response to chemotherapy [22]. Similarly, ctDNA outper-

formed the serum marker cancer antigen 15-3 for assessing tumour response to treatment in

metastatic breast cancer [16].

HGSOC is an ideal cancer type in which to explore the clinical utility of ctDNA for response

monitoring during treatment in comparison to a clinically accepted biomarker of response, as

>99% of cases show mutations in TP53 [23–25] and>90% of advanced HGSOC cases express

the serum protein tumour marker CA-125 [26,27]. We and others have previously shown that

TP53 mutations can be detected in ctDNA from patients with advanced HGSOC and that, in a

small number of patients studied, changes in ctDNA levels correlated with other clinical

response measurements including CA-125 [21,28–30]. However, in HGSOC the relationship

of ctDNA to tumour volume, dynamic ctDNA changes during chemotherapy, and the rela-

tionship of early changes to outcomes during chemotherapy have not been characterised.

The primary aim of this study was to define the distribution and dynamics of ctDNA in

patients with recurrent HGSOC treated with standard of care chemotherapy, and to correlate

ctDNA with the volume of disease. A secondary aim was to evaluate whether early change in

ctDNA could predict TTP.

Methods

Ethics and Consent

Patients included in this report were enrolled in the prospective CTCR-OV04 clinical study,

which collected blood and tissue samples for exploratory biomarker studies from patients

treated at Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust.

All patients provided written informed consent for participation in the study and for use of

their donated tissue and blood specimens. The CTCR-OV04 study was approved by the Cam-

bridgeshire Research Ethics Committee (reference 08/H0306/61).

Study Design and Patients

In order to quantify ctDNA levels, patient-specific TP53 TaqMan assays were designed to tar-

get mutations identified in formalin-fixed paraffin-embedded (FFPE) tissue. Digital PCR was
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used to measure ctDNA levels in cell-free DNA from plasma samples collected during courses

of chemotherapy, as shown in Fig 1.

This report has been written in accordance with REMARK and STROBE guidelines [31,32].

REMARK diagrams, the STROBE checklist, and a summary of the statistical analysis are found

in S1 Checklist, S1 Text and S1 and S4 Figs. Patient selection criteria for this report were as fol-

lows: histological diagnosis of HGSOC of the ovary, primary peritoneum, or fallopian tube

(hereafter HGSOC);�2 plasma samples from at least one course of chemotherapy including a

pre-treatment sample collected before the start of the course; and TP53 point mutation or

short indel identified by sequencing of FFPE tumour DNA (S2 Fig).

The study was initiated as an exploratory retrospective analysis of samples collected as part

of the CTCR-OV04 study protocol (see above). Further to initial findings, the cohort was

expanded to 40 patients for whom missense mutations or short indels in TP53 were identified

by Sanger sequencing of tumour DNA. All patients were enrolled between 19 August 2009 and

13 June 2011. Patients were followed up during routine clinical practice. Follow-up was cen-

sored on 16 September 2015, with a median duration of 59 mo (range 43–70 mo). TTP for

relapsed patients was defined as the interval from cycle 1 day 1 of chemotherapy to the date of

progression measured by Response Evaluation Criteria in Solid Tumours (RECIST) 1.1 [33].

Patients with non-cancer-related/unknown cause of death were censored at the date of death

and included in the TTP analysis. Clinical details, including CA-125, stage, residual disease

after surgery, chemotherapy, and procedure dates, were abstracted from clinical records by

research staff.

TP53 Mutation Identification

FFPE tissue blocks were cut as 8-μm sections and tumour-enriched regions were recovered by

macrodissection based on regions marked on an adjacent haematoxylin-and-eosin-stained

section by the study pathologist. DNA was extracted using the QIAamp DNA FFPE Tissue Kit

(Qiagen) and quantified using a Qubit 2.0 Fluorometer (Invitrogen). Coding sequences of the

TP53 gene (exons 2–11) were PCR-amplified from FFPE DNA using primers and conditions

Fig 1. Schema of workflow for circulating tumour DNA analysis. ctDNA, circulating tumour DNA; FFPE, formalin-fixed paraffin-embedded; HGSOC,

high-grade serous ovarian carcinoma; PD, progressive disease; SD, stable disease.

doi:10.1371/journal.pmed.1002198.g001
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as described previously [34] and sequenced using an ABI 3730 DNA Analyzer (Applied Biosys-

tems), except that an additional forward instead of reverse primer (50-CAGGTCTCCCCAA

GGCGCAC-30) was used for the sequencing of exon 7. Mutational analysis was performed

using Mutation Surveyor software version 3.97 (SoftGenetics), and sequence data were aligned

to TP53 reference sequence NC_000017.10. In patients 127 and 200, mutations were identified

in FFPE DNA by TAm-Seq (tagged-amplicon deep sequencing) using the 48.48 Access Array

System (Fluidigm) and GAIIx Genome Analyzer (Illumina), as previously described [21].

Plasma, Buffy Coat, and Serum Collection

Serial plasma samples were collected from patients, including at the appointment closest to

the start of their chemotherapy course, which in most cases was on the first day of treatment.

Peripheral blood samples were collected into EDTA tubes (Sarstedt) and centrifuged within

1 h of collection at 820g for 10 min to limit leukocyte lysis and degradation of cell-free DNA.

Plasma aliquots of 1 ml were centrifuged in a benchtop microfuge at 14,000 rpm for 10 min,

and the supernatant was transferred to sterile 1.5-ml tubes and stored at −80˚C prior to extrac-

tion. Buffy coat samples were collected at the time of plasma collection, and stored at −80˚C

prior to DNA extraction using the QIAamp DNA Mini Kit (Qiagen). CA-125 assessments

were carried out as part of routine clinical care in a clinically accredited laboratory. Where

routine clinical CA-125 results were missing, CA-125 results were assessed using research

serum samples taken at the same time point. For serum collections, 7.5-ml peripheral blood

samples were collected into serum collection tubes (Sarstedt), gently inverted 5–10 times, and

left upright at room temperature for 45–60 min to enable clot formation. Tubes were centri-

fuged at 3,000 rpm for 10 min, and 1-ml aliquots of serum were transferred to sterile 1.5-ml

tubes and stored at −80˚C.

Extraction of Circulating DNA from Plasma

Circulating DNA was extracted from 0.85–2.8 ml (median 2.1 ml) of patient plasma using the

QIAamp Circulating Nucleic Acid Kit (Qiagen), and a fraction of the extracted DNA was used

for digital PCR analysis (5% of the extracted DNA for each panel). Carrier RNA was added to

each sample prior to lysis, and eluant was passed twice through the QIAamp column to maxi-

mise yield. Control circulating DNA was extracted from a pool of plasma from five healthy

female individuals (Sera Laboratories International).

Assay Design and Validation

Dual-labelled patient-specific TaqMan assays were designed for mutated and wild-type TP53
sequences, labelled with 6FAM, VIC, or HEX fluorophores (Applied Biosystems; Sigma-Aldrich).

Sequences of all primers and probes are shown in S1 Table. Each assay was validated by digital

PCR using matched FFPE tumour and buffy coat template DNA extracted from the same patient,

and tumour DNA from individuals carrying non-matching TP53 mutations. To test the perfor-

mance of the assays, circulating DNA from a control mix of plasma samples from healthy volun-

teers was extracted 86 independent times, and TP53 alleles (both wild-type and mutant alleles)

measured by digital PCR a total of 141 times, using the 31 assays designed plus an additional sim-

ilar assay designed for a patient who was excluded from this cohort (S1 and S2 Figs). Values of

wild-type TP53 concentrations fit a normal distribution, and 95% of values were within 1.5-fold

of the mean value (S2 Fig). Each measurement included 765 independent real-time PCR amplifi-

cations. Of the 141 measurements (107,865 reactions in total), 19 false-positive amplifications of

mutant alleles in the control samples were observed (0.018%), 13 of which were obtained in two

of the 32 assays (for mutations g.12458G>A [p.R175H] and g.12460T>A [p.C176S]).
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Digital PCR

Digital PCR was performed using the Biomark microfluidic system (Fluidigm), as previously

described [35]. Standard operating procedures were followed, and all assay setup and liquid

handling were performed in a HEPA/UV sterilising PCR workstation (Ultra-Violet Products)

in a PCR-free environment to prevent PCR contamination. Data analysis was performed using

Digital PCR Analysis software version 3.02 (Fluidigm) and Matlab. For each assay, a threshold

for positive amplification was determined by manual inspection of the PCR amplification

curves in the patient and control circulating DNA samples, and this threshold was used to

determine the number of observed amplifications. A Poisson correction was used to convert

the number of observed amplifications to estimated targets assuming independent segregation

of the DNA molecules into the multiple digital PCR reaction chambers. The measurement by

microfluidic digital PCR was corrected for the relative fraction of the extracted DNA loaded

on the microfluidic array (including correction for “dead volume” lost on the array) and was

normalised to units of amplifiable copies per millilitre of plasma (AC/ml). In the procedure,

3.5 μl of the total volume of 70 μl of eluted DNA was loaded for each digital PCR panel, and

with correction for dead volume (~54% lost), the total DNA assayed was equivalent to a

median of 0.05 ml of plasma per sample. Correspondingly, we set a cutoff for ctDNA detection

at 20 AC/ml.

Total circulating cell-free DNA was measured as the TP53 total allele count (TP53TAC), the

sum of estimated targets of mutated and wild-type copies of TP53 amplified by the assay prim-

ers. The level of mutated TP53 ctDNA was quantified in two ways: by the number of mutated

TP53 amplifiable copies (TP53 mutant allele count [TP53MAC]), defined as the number of sin-

gle-stranded fragments of DNA amplified by the assay primers and containing the mutation of

interest, and by the TP53 mutant allele fraction (TP53MAF), defined as TP53MAC divided by

TP53TAC.

CA-125

Serum CA-125 level was routinely monitored using a two-site sandwich immunoassay on a

Siemens Centaur XP auto-analyser (upper limit of normal� 30 IU/ml). CA-125 response was

assessed in accordance with Gynecologic Cancer InterGroup criteria [36].

Computed Tomography Imaging

Patients underwent computed tomography (CT) imaging as part of standard care. A subset of

patients had PET/CT imaging data available. All scans were retrospectively evaluated accord-

ing to RECIST 1.1 by consultant radiologists subspecialised in gynaecological oncology imag-

ing. The measurement of tumour volume was performed by consultant radiologists who were

blinded to the ctDNA variables. CT images were uploaded onto a dedicated workstation and

retrospectively reviewed with syngo.via multi-modality software (Siemens). A region of inter-

est was manually placed around each visible lesion (e.g., peritoneal deposits, subcapsular dis-

ease, omental disease, ovarian masses, nodal disease), and the total volume of disease was

calculated. Cases with ill-defined stranding were assessed as non-measurable disease. The pres-

ence or absence of ascites on CT was recorded.

Statistics

Pre-specified analyses were determined after sample collection but before statistical analysis

was performed. Additional exploratory analyses were carried out based on the results obtained

(S1 Text). Baseline characteristics were summarised using the standard descriptive statistics:
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mean ± standard deviation or median with interquartile range (IQR) for continuous variables

and percentage for categorical variables. Comparisons of the ratio of TP53MAF to volume of

disease and CA-125 at baseline between untreated and relapsed patients were assessed with the

Wilcoxon rank-sum test). Where two pre-treatment ctDNA samples were available, the sample

closest to the date of volumetric CT was chosen for volumetric correlation. For all other analy-

ses, the sample closest to treatment start date was selected.

Correlations between TP53MAF and CA-125 values and tumour volumes were analysed by

Pearson rank correlation using log10 values. For log correlation calculations, TP53MAF and

TP53MAC values of zero were adjusted by the addition of 0.001 times the value of the lowest

value in the series.

The Cox regression model was applied to investigate the value of TP53MAF pre-treatment,

change after cycle 1, and change after cycle 2 in predicting TTP. Multivariable analysis was

adjusted for the following factors: age (continuous), ECOG (Eastern Cooperative Oncology

Group) performance status (PS) (continuous), platinum sensitivity (yes or no), number of previ-

ous lines of chemotherapy (2 versus�3), tumour volume (continuous), ascites (absent or pres-

ent), and TP53TAC. Three courses from three separate patients had missing PS, and PS was

imputed as the mean PS value for all courses in the model. Total cell-free DNA level (TP53TAC)

was included in the multivariable model because it has been reported as a possible independent

prognostic marker in ovarian and other cancers [37,38].

In analyses where treatment courses with recent ascitic or pleural drainage were excluded,

we defined “recent” as within 28 d of the baseline ctDNA sample, or between baseline and the

subsequent cycle of interest (cycle 2 or 3).

We defined ctDNA as being evaluable for analysis of response if baseline TP53MAC was

�40 AC/ml (double the lower limit of detection of�20 AC/ml).

The optimum cut-points for determining 6-mo TTP were identified using receiver operating

characteristic (ROC) curves. The standard log-rank test was applied for the comparisons on

TTP. Statistical analyses were carried out using SAS version 9.4 and R [39]; confidence intervals

for sensitivity and specificity were calculated using MedCalc (http://www.medcalc.org).

Results

Patients, Samples, and Treatments

A total of 318 plasma samples were collected from 40 patients with HGSOC. S1 Fig shows the

REMARK diagram for selection of patients; Table 1 shows the summary clinical features for

the 40 patients (see also S2 Table for demographic information by patient and S3 Table for fur-

ther details of plasma samples). In all, 261 samples were collected during treatment of relapsed

disease, and included 54 courses of chemotherapy for 32 individual patients (including multi-

ple lines of treatment per patient). A further 57 samples were collected during first-line treat-

ment with chemotherapy from 12 patients, including four patients who had samples taken

during first-line treatment and again at relapse. The ECOG PS of patients was 0–2 for all

courses, where known. The median number of courses of treatment per patient with ctDNA

analysis was 2 (IQR 1–2), and the median number of cycles with ctDNA analysis per course of

treatment was 5 (IQR 3–6) (S1 and S2 Data).

TP53 Mutation Identification and Assay Validation

Patient-specific TaqMan assays were designed for the 40 patients, who had in total 31 unique

somatic TP53 mutations (Figs 1 and S1; S1 Table). The most common mutations were g.1245

8G>A (p.R175H) and g.13744G>A (p.R273H), each identified in four different patients.

Dual-labelled assays were designed to measure copies of wild-type and mutated TP53 alleles

Circulating Mutated TP53 DNA as Biomarkers of Treatment Response for Patients with Relapsed HGSOC
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using digital PCR. The length of the amplified regions was limited to effectively amplify frag-

mented cell-free circulating DNA (median 84 base pairs, range 58–177; S1 Table). The false-posi-

tive rates for the ctDNA assays were estimated at one mutated allele per 3,010 wild-type alleles

(<0.033%, at 95% confidence) for 29 assays, and one mutated allele per 621 wild-type alleles

(<0.16%, at 95% confidence) for assays for g.12458G>A (p.R175H) and g.12460T>A (p.C176S).

Mutated TP53 Circulating Tumour DNA Is Frequently Detected Pre-

treatment in Patients with High-Grade Serous Ovarian Carcinoma

For the 54 courses of chemotherapy at relapse, pre-treatment samples were available for 51/54

courses from 32 relapsed patients (S4 Fig). Digital PCR was used to measure both total and

fractional concentration of ctDNA (TP53MAC and TP53MAF; see Methods). Mutated TP53
alleles in plasma were detected at TP53MAC� 20 AC/ml pre-treatment in 42/51 (82%) of

courses from relapsed patients.

Mutated TP53 alleles in plasma were detected at TP53MAC� 20 AC/ml pre-treatment in

6/7 (86%) of newly diagnosed stage IIIC/IV patients. CA-125 was above the institutional upper

limit of normal in 100% of relapsed and untreated patients.

Median TP53MAF pre-treatment was 8.0% in patients with recurrent disease, 0.7% in

patients with newly diagnosed stage IIIC/IV disease, and 0.2% in four patients after primary

surgery (see S4 Table for full description of statistics). TP53MAF correlated with CA-125

(r = 0.49, p< 0.001). (S5 Table shows all correlations.)

Circulating Tumour DNA Detection and Volume of Disease

We performed volumetric analysis of CT imaging performed prior to treatment for 51

relapsed courses (32 individual patients) and for seven newly diagnosed patients with

Table 1. Summary statistics.

Feature Value

Number of patients 40

Age at diagnosis, median (range) (years) 63 (38–85)

Cancer type (number of patients)

Ovarian 32

Primary peritoneal 5

Fallopian tube 3

Stage at diagnosis (number of patients)

I 3

II 0

III 27

IV 10

Newly diagnosed untreated (ncourses = 7)

TP53MAF, median (IQR) 0.7% (0.3%–2.0%)

CA-125, median (IQR) (IU/ml) 964 (488–2,909)

Volume, median (IQR) (cm3) 418 (172–1,770)

Relapsed disease (ncourses = 51)

TP53MAF, median (IQR) 8% (1.2%–22%)

CA-125, median (IQR) (IU/ml) 422 (205–1,108)

Volume, median (IQR) (cm3) 93.5 (37.0–176.0)

IQR, interquartile range; TP53MAF, TP53 mutant allele fraction.

doi:10.1371/journal.pmed.1002198.t001
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stage IIIC/IV HGSOC (Fig 2A). One out of 51 relapsed treatment courses was excluded

because CT imaging had non-measurable disease. Fig 2B shows the distribution of tum-

our volume across 57 treatment courses. All relapsed courses with tumour volume > 32

cm3 had ctDNA detected at TP53MAC � 20 AC/ml except for one patient who had a

TP53MAC of 15 AC/ml and disease volume of 50 cm3. All patients with tumour volume <

20 cm3 had TP53MAC < 20 AC/ml except for one patient with detected ctDNA with 1 cm3

of disease in the presence of large volume ascites (see below).

We next considered the possibility that the presence of ascites or pleural effusions could

impact the accuracy of correlations between ctDNA and measured tumour volume because

volumetric CT measurements were made only for solid disease, and the presence of ascites fre-

quently alters CA-125 levels in clinical practice. We correlated levels of ctDNA with volume of

disease in relapsed courses with and without ascites (S6 Table) in a subset of patients with

closely matched dates of CT scans and ctDNA, and without drainage of ascites between these

two time points. Of 50 relapsed pre-treatment ctDNA samples with matched volumetric CT

data, ten were excluded because of a>14-d interval between CT imaging and ctDNA sample

collection, and five because of a pleural or ascitic drain performed between the CT scan and

plasma collection (S3 Data).

For the 35 remaining courses, TP53MAF showed a positive correlation with volume (Pear-

son r = 0.59, p< 0.001; S6 Table). Of these, 13/35 CT images showed the presence of ascites.

When cases with ascites were excluded from analysis, the correlation of TP53MAF with vol-

ume increased (Pearson r = 0.82, p< 0.001; S6 Table), indicating that ctDNA in ascites may

contribute to blood ctDNA levels. CA-125 was moderately correlated with tumour volume in

all 35 cases and in those without ascites (Pearson r = 0.52, p = 0.001, and r = 0.51, p = 0.016,

respectively; S6 Table). The linear regressions for TP53MAF and CA-125 in cases without asci-

tes are shown in Fig 2C and 2D.

Median TP53MAF/volume in the patients without ascites was 0.08% per cm3 (IQR 0.02%–

0.13% per cm3). TP53MAC showed lower correlation with tumour volume (S6 Table), and the

median value of TP53MAC/volume was 6.0 AC/ml per cm3 (S3 Data).

Relationship of TP53 Mutant Allele Fraction to Volume in Recurrent

Compared with Untreated Disease

The factors determining ctDNA blood levels are not well understood. Comparison of pre-treat-

ment TP53MAF/volume values between relapsed and untreated patients showed a significant

difference (p = 0.004, Wilcoxon rank-sum test; Fig 2E). CA-125/volume was not significantly

different between these groups (p = 0.063; Wilcoxon rank-sum test; Fig 2F). The median

TP53MAF/volume was 0.04% per cm3 in 50 relapsed courses compared with 0.0008% per cm3

in seven newly diagnosed untreated patients.

Pre-treatment TP53 Mutant Allele Fraction Is Associated with Time to

Progression in Relapsed Patients

We next asked whether ctDNA measured prior to chemotherapy was associated with progres-

sion in patients with recurrent disease. We compared TP53MAF, CA-125, and total cell-free

DNA (TP53TAC) to TTP estimates. Of the 50 relapse events with measurable disease, one

treatment course was excluded because ctDNA was measured >14 d before start of treatment

(S4 Fig). The median follow-up was 58 mo (range 43–70 mo), with all patients progressing

during the follow-up period.

In univariable analysis, TP53MAF, CA-125, total cell-free DNA (TP53TAC), age, platinum

sensitivity, the number of lines of chemotherapy, and volume of disease were all significant
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Fig 2. Comparison of TP53 mutant allele fraction to tumour volume. (A) Example of volumetric analysis of high-grade serous ovarian cancer with

relapsed disease in abdominal lymph nodes. Left panel shows cross-sectional view. Right panel shows 3-D reconstruction to show disease volume. Green
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predictors of TTP (Table 2). When adjusted using the Cox proportional hazards model in mul-

tivariable analysis, only TP53MAF (hazard ratio [HR] 1.03, 95% CI 1.01–1.06, p = 0.019) and

platinum sensitivity (HR 0.43, 95% CI 0.19–0.99, p = 0.048) remained significant. TTP was sig-

nificantly longer for treatment courses with pre-treatment levels of TP53MAF below the

median level than for treatment courses with TP53MAF above the median (p = 0.001 by log-

rank test; Fig 2G). Pre-treatment TP53MAC was also tested as a continuous variable and was a

significant predictor of TTP in univariable but not multivariable analysis (S10 Table).

Response Kinetics and Nadir of TP53 Mutant Allele Fraction during

Chemotherapy

We next analysed the kinetics of TP53MAF during treatment by measuring the time to achieve

a nadir value following chemotherapy cycles. Only a subset of chemotherapy courses had con-

secutive plasma samples at each cycle and were assessable for nadir (see S7 Table for nadir

assessment criteria). Of these, 26/27 courses reached a nadir for TP53MAF, compared with 21

for CA-125 (Fig 3A). The only course without a decrease in TP53MAF occurred in a patient

who developed new brain metastases (patient 57). The median time to nadir was 37 d (IQR

28–54) for TP53MAF and 84 d (IQR 42–116) for CA-125. The median decrease at nadir was

98% for TP53MAF and 55% for CA-125 (Fig 3B).

We observed a more rapid decrease and greater dynamic range of TP53MAF measurements

compared with CA-125 (Fig 3C). In most cases, TP53MAF and CA-125 trends with sequential

treatment cycles were similar. In two cases, however, we observed discrepant kinetics, with ris-

ing TP53MAF and decreasing CA-125. In both cases, CT scans confirmed progressive disease,

including in patient 57, who had progressive brain metastases (Fig 3D and 3E). The effect of

ascitic drainage on plasma TP53MAF level is shown in Fig 3F. Drainage of ascites resulted in a

decrease in TP53MAF, demonstrating that drainage may introduce rapid changes in plasma

ctDNA level, potentially confounding comparison to response measures. The TP53MAF and

CA-125 plots for all patients in the study are available in S3 Fig.

Change in TP53 Mutant Allele Fraction after One Cycle of Treatment

Predicts Time to Progression

Early prediction of response or resistance to chemotherapy could have important implications

for the clinical management of relapsed HGSOC patients. We therefore examined whether a

decrease in TP53MAF after one cycle of chemotherapy could predict TTP, and compared this

with CA-125. There were 32 courses of chemotherapy for relapsed patients that had matched

samples at cycle 1 and cycle 2 and were evaluable for response (see S4 Fig for REMARK dia-

gram). Of these, 22 were treated with platinum-based chemotherapy and ten with non-plati-

num chemotherapy. The median number of days from start of chemotherapy (cycle 1) to

collection of plasma sample pre-cycle 2 was 28 d (IQR 21–28). The median TP53MAF decrease

from pre-treatment to the pre-cycle-2 sample was 74% (IQR 55%–89%); median CA-125

decrease was 18% (IQR -46%-12%), and the median TTP was 189 d.

shading indicates regions of interest for volume measurements. Lymph node masses are indicated by arrowheads and labelled as follows: AC, aorto-caval;

CI, common iliac; PA, para-aortic; RC, retro-caval. (B) Ranked total volume of tumour at start of treatment course. Filled circles indicate cases with

TP53MAC� 20 AC/ml. Arrow indicates tumour volume of 32 cm3. (C and D) Linear regression analysis of TP53MAF and CA-125 with tumour volume in 22

relapsed events without ascites. Grey shading shows 95% confidence intervals. (E and F) Comparison of TP53MAF and CA-125 values adjusted for tumour

volume between relapsed and newly diagnosed patients before treatment. (G) Time to progression analysis for relapsed patients with greater or less than the

median pre-treatment TP53MAF. ctDNA, circulating tumour DNA; HR, hazard ratio; ND, not detected; TP53MAF, TP53 mutant allele fraction.

doi:10.1371/journal.pmed.1002198.g002

Circulating Mutated TP53 DNA as Biomarkers of Treatment Response for Patients with Relapsed HGSOC

PLOS Medicine | DOI:10.1371/journal.pmed.1002198 December 20, 2016 12 / 25

234



To determine the optimal cut-point for predicting TTP from a decrease in TP53MAF, a

ROC plot was generated, and 6-mo TTP was selected as a clinically significant endpoint. The

ROC curve identified a 60% decrease in TP53MAF as the optimal cut-point for sensitivity and

specificity (Fig 4A; S8 Table). This threshold was used in subsequent analyses. Median TTP

was 94 d versus 230 d for a decrease of�60% and >60% in TP53MAF, respectively, with an

HR of 0.22 (95% CI 0.09–0.52, p<0.001; Fig 4B).

In univariable analysis, volume of disease and a decrease in TP53MAF of>60% from pre-

treatment to cycle 2 were significant predictors of TTP. In multivariable analysis, a TP53MAF

decrease of>60% remained a significant predictive factor for 6-mo TTP (HR 0.22, 95% CI

0.07–0.67, p = 0.008; Table 3). CA-125 decrease was not significant.

TP53MAF decrease was also significant as a continuous variable in multivariable analysis

(S9 Table). TP53MAC decrease after one cycle was also tested as a continuous variable and

was not a significant predictor of TTP (S10 Table). Together with our observation that pre-

treatment TP53MAC was not a significant predictor of TTP, these results indicate that

TP53MAF was the most informative ctDNA parameter.

As recent ascitic drainage could interfere with response assessment, we carried out the

same analysis excluding patients who had had a recent ascitic or pleural drain. When we

excluded patients with recent ascitic drain, the ROC cut-point remained 60% (Fig 4C; S8

Table). Median TTP was 76 d versus 229 d for a decrease of�60% and >60% in TP53MAF,

respectively, and the HR decreased from 0.22 to 0.08 (95% CI 0.02–0.34, p< 0.001; Fig 4D).

The sensitivity and specificity of a TP53MAF decrease of�60% after one cycle of chemother-

apy for predicting TTP < 6 mo was 71% and 88%, respectively, in the whole population, and

75% and 100% in patients without ascitic drains (Table 4; see also S8 and S12 Tables).

The predictive value of TP53MAF remained significant when we looked at changes from

pre-treatment to pre-cycle 3 of chemotherapy (as compared with changes to pre-cycle 2,

above). The optimal cut-point was selected at a decrease of 80% for this time point (S13–S17

Tables). Using an 80% decrease threshold, the HR for TTP after two cycles in multivariable

analysis was 0.26 (95% CI 0.07–0.92, p = 0.037). Response classification after one cycle of che-

motherapy and after two cycles of chemotherapy was consistent (S6 Fig).

Table 2. Univariable and multivariable analysis of pre-treatment values as a predictor of time to progression.

Variable (Units), ncourses = 49 Univariable Multivariable

HR CI p-Value HR CI p-Value

TP53MAF (percent) 1.04 1.02–1.06 <0.001*** 1.03 1.01–1.06 0.019*

CA-125 (102 IU/ml) 1.02 1.00–1.05 0.078 1.01 0.98–1.04 0.567

TP53TAC (103 copies/ml) 1.03 1.01–1.04 0.009** 1.02 1.00–1.05 0.079

Age (years) 0.96 0.93–1.00 0.030* 0.96 0.92–1.01 0.089

Performance status (0–2) 0.72 0.44–1.18 0.192 0.64 0.36–1.17 0.146

Platinum sensitive (yes/no) 0.35 0.18–0.68 0.002** 0.43 0.19–0.99 0.048*

Number of lines chemotherapy (2 lines/�3 lines) 0.43 0.22–0.83 0.013 0.75 0.35–1.64 0.478

Volume of disease (10 cm3) 1.02 1.01–1.03 0.002** 1.00 0.98–1.02 0.786

Ascites (no/yes) 0.95 0.53–1.71 0.858 0.82 0.42–1.58 0.548

For variables with HR > 1, an increase in the value is associated with a higher risk or number of events, and a decreased TTP. For binary variables, the HR

listed is for the first option, with the second option being HR = 1 (if the HR listed is <1 then the first option is associated with lower risk and longer TTP).

* p < 0.05

** p < 0.01

*** p < 0.001.

CI, confidence interval; HR, hazard ratio; TP53MAF, TP53 mutant allele fraction; TP53TAC, TP53 total allele count; TTP, time to progression.

doi:10.1371/journal.pmed.1002198.t002
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Discussion

We describe here our analysis of patient-specific TP53 mutations in ctDNA in women with

HGSOC. We used sequence-specific assays to detect predefined TP53 mutations and to quan-

tify the TP53MAF by digital PCR with sensitivity down to 0.15%. In plasma samples collected

prior to treatment for relapsed disease, we were able to detect mutated alleles at�20 amplifi-

able copies/ml in 82% of treatment courses, and in 86% of newly diagnosed patients.

We compared ctDNA to tumour volume, using volumetric analysis of CT images. Although

tumour volume appears likely to be an important prognostic factor, this has not been exten-

sively studied [40–44]. In our limited sample set, 3-D tumour volume was significantly associ-

ated with TTP in univariable analysis, but did not emerge as significantly associated with TTP

in multivariable analysis including TP53MAF, TP53MAC, and other data (Tables 2 and S10).

Our data suggest that TP53MAF contains more information on prognosis than CT imaging.

This finding agrees with findings from other studies using CT imaging to track metastatic can-

cer, for example in breast cancer, where a rising level of ctDNA was found to be an earlier indi-

cator of disease relapse than CT imaging [16].

In our study, ctDNA (TP53MAF and TP53MAC) showed significant correlation with dis-

ease volume, particularly in patients without ascites. This is consistent with previous studies

that showed that ctDNA level increases as stage increases across a range of different tumour

types [15]. For example, in recurrent CRC, significant correlations have been demonstrated

between pre-treatment ctDNA levels and both RECIST and carcinoembryonic antigen mea-

surements [22]. In addition, in a study of untreated lung cancer, there was significant concor-

dance between ctDNA level and tumour volume in nine patients [17]. The weaker correlation

between tumour volume and TP53MAF and TP53MAC levels observed when including

patients with ascites, and the rapid change in plasma TP53MAF observed after ascitic drainage

(Fig 3F), suggests that ascites fluid may be a reservoir for cell-free tumour DNA. CA-125 was

abnormal in all patients at baseline. However, CA-125 has low specificity and may be elevated

by any malignant peritoneal process, which may explain its poorer correlation with tumour

volume [45].

We found that the ratio of TP53MAF to disease volume was higher in relapsed patients

than in newly diagnosed patients. Potential explanations for higher TP53MAF in patients with

recurrent disease include disruption of the peritoneum after surgery, differences in tumour

biology, different rates of ctDNA release from different metastatic sites, and differences in

DNA lifetime in circulation as a result of other physiological changes. With a detection cut-off

of 20 AC/ml, ctDNA was detected in all but one relapsed patient with more than 32 cm3 of dis-

ease, and in some patients with lower volume of disease. Previous analysis of tumour volume

in lung cancer showed detection of ctDNA with 5–20 cm3 of disease [17]. These data support

the notion that ctDNA has the potential for use in screening and earlier diagnosis of cancer.

Fig 3. Circulating tumour DNA and CA-125 kinetics during chemotherapy. (A) TP53MAF and CA-125 kinetics from start of treatment, normalised

to the pre-treatment levels. Asterisk denotes one treatment course where the patient developed new brain metastases. Yellow circles and blue boxes

indicate nadir points. (B) Box plots show time to nadir following start of chemotherapy for CA-125 and TP53MAF. (C–F) Illustrative cases of TP53MAF

and CA-125 kinetics. (C) Faster time to nadir and greater dynamic range of TP53MAF compared with CA-125. (D) Discrepant TP53MAF and CA-125

kinetics. This patient commenced on third-line chemotherapy and had a minor response on CT (stable disease by RECIST). CA-125 fell slightly whilst

TP53MAF increased. After cycle 4, the patient developed new headaches, and a CT scan showed new brain metastases (marked by asterisk). (E)

Discrepant TP53MAF and CA-125 kinetics. This patient commenced third-line chemotherapy, and the TP53MAF and CA-125 values diverged. CT scan

showed progressive disease, in keeping with rise of TP53MAF. (F) The effect of ascitic drainage on plasma TP53MAF levels. This patient had an ascitic

drain (at time = 4 d) before starting chemotherapy, with a ctDNA sample taken before (time = 0 d) and after (time = 29 d) the ascitic drain. Following

drainage of 8 l of ascites, and before start of any further treatment, TP53MAF fell from 7.5% to 3.3%. CA-125 decreased from 86 IU/ml to 46 IU/ml. This

patient had small-volume (1 cm3) solid disease and large-volume ascites. CA-125, cancer antigen 125; ctDNA, circulating tumour DNA; PD, progressive

disease; PLD, pegylated liposomal doxorubicin; PR, partial response; SD, stable disease; TP53MAF, TP53 mutant allele fraction.

doi:10.1371/journal.pmed.1002198.g003
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For earlier diagnosis in symptomatic women, it may be advantageous to combine ctDNA and

CA-125 assays to increase specificity as well as sensitivity.

We examined ctDNA (TP53MAF and TP53MAC) levels prior to the start of treatment as a

possible marker for prognosis. Platinum sensitivity, as defined by disease-free or treatment-

free interval, is currently the most clinically useful prognostic factor for TTP in relapsed

patients [46–50]. We compared TP53MAF and TP53MAC to platinum sensitivity and to

established prognostic markers for relapsed ovarian cancer including CA-125 and disease vol-

ume. In multivariable analysis, TP53MAF and platinum sensitivity remained significant pre-

dictive factors. At present, interventional trials in relapsed ovarian cancer stratify by platinum

Fig 4. ROC curves and Kaplan-Meier plots for change in circulating tumour DNA after one cycle of chemotherapy, including and excluding

courses with recent ascitic drains. (A) ROC plot identifies 60% decrease in TP53MAF as the most accurate threshold for predicting 6-mo TTP in all

patients. (B) Kaplan-Meier curve showing TTP for patients with decrease of�60% or >60% after one cycle of chemotherapy. (C) ROC plot identifies a

60% decrease in TP53MAF as the most accurate threshold for predicting 6-mo TTP in patients without ascitic drains. (D) Kaplan-Meier curve for

TP53MAF decrease after one cycle of chemotherapy to predict 6-mo progression-free survival in patients without ascitic drains. ctDNA, circulating

tumour DNA; HR, hazard ratio; ROC, receiver operating characteristic; TP53MAF, TP53 mutant allele fraction; TTP, time to progression.

doi:10.1371/journal.pmed.1002198.g004
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sensitivity. If our results are confirmed in larger studies, then additional stratification by

ctDNA level could increase the accuracy of outcome prediction.

There is also a clinical need for rapid detection of early response to therapy in HGSOC.

CA-125, which has been previously evaluated for this purpose, is not sufficiently predictive to

be used as a primary endpoint in clinical trials. A large retrospective analysis of the CALYPSO

phase III trial in relapsed HGSOC unexpectedly showed that early decline in CA-125 was

more likely in the inferior arm, leading the authors to conclude that early change in CA-125 is

a poor surrogate for progression-free survival [51]. More recently, alternative criteria for CA-

125 response in clinical trials have been explored [52]; however, no reliable model has yet been

identified for biomarker-driven trials.

We therefore analysed the dynamics of TP53 ctDNA during treatment with standard of

care chemotherapy, to explore its potential as an early response marker. We found that the

Table 3. Univariable and multivariable analysis of 60% decrease in TP53 mutant allele fraction after one cycle of chemotherapy as a predictor of

time to progression.

Variable (Units), ncourses = 32 Univariable Multivariable

HR CI p-Value HR CI p-Value

TP53MAF decrease > 60% from C1 to C2 (yes/no) 0.22 0.09–0.52 <0.001*** 0.22 0.07–0.67 0.008**

CA-125 decrease > 50% from C1 to C2 (yes/no) 0.58 0.23–1.43 0.234 0.86 0.28–2.71 0.802

Age (years) 1.00 0.95–1.04 0.841 0.97 0.91–1.03 0.276

Performance status (0–2) 0.78 0.35–1.76 0.549 0.74 0.29–1.87 0.522

Platinum sensitive (yes/no) 0.49 0.23–1.02 0.057 0.65 0.25–1.66 0.365

Number of lines chemotherapy (2 lines/�3 lines) 0.53 0.24–1.16 0.114 0.92 0.30–2.81 0.888

Volume of disease (10 cm3) 1.02 1.00–1.03 0.031* 1.00 0.98–1.02 0.999

Ascites (no/yes) 1.36 0.66–2.82 0.409 1.76 0.75–4.16 0.197

For variables with HR > 1, an increase in the value is associated with a higher risk or number of events, and a decreased TTP. For binary variables, the HR

listed is for the first option, with the second option being HR = 1 (if the HR listed is <1 then the first option is associated with lower risk and longer TTP).

* p < 0.05

** p < 0.01

*** p < 0.001.

C1, cycle 1; C2, cycle 2; CI, confidence interval; HR, hazard ratio; TP53MAF, TP53 mutant allele fraction; TTP, time to progression.

doi:10.1371/journal.pmed.1002198.t003

Table 4. Sensitivity and specificity of a decrease in TP53 mutant allele fraction and CA-125 for predicting 6-mo time to progression following one

cycle of chemotherapy.

Predictor Sensitivity (95%

CI)

Specificity (95%

CI)

Negative Predictive Value (95%

CI)

Positive Predictive Value (95%

CI)

TP53MAF: �60% decrease from cycle

1 to 2

All (ncourses = 31)* 71% (42%–92%) 88% (64%–99%) 79% (54%–94%) 83% (52%–98%)

Excluding drains (ncourses = 24)* 75% (43%–95%) 100% (74%–100%) 80% (52%–96%) 100% (66%–100%)

CA-125:�50% decrease from cycle 1

to 2

All (ncourses = 31)* 93% (66%–100%) 29% (10%–56%) 83% (36%–100%) 52% (31%–72%)

Excluding drains (ncourses = 24)* 92% (62%–100%) 33% (9%–65%) 80% (28%–99%) 58% (34%–80%)

*One course of chemotherapy was excluded from the sensitivity/specificity analysis for 6-mo time to progression since it was censored before 6 mo.

CI, confidence interval; TP53MAF, TP53 mutant allele fraction.

doi:10.1371/journal.pmed.1002198.t004
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mean time to nadir was shorter for TP53MAF than for CA-125 (37 d versus 84 d). This may

be explained by the longer half-life of CA-125 of 10 d [53] compared with 1–2 h for ctDNA

[11,12]. In relapsed treatment courses, a decrease of�60% in TP53MAF after one cycle identi-

fied a group with progression within 6 mo with high specificity (88% overall; 100% of courses

when patients with recent ascitic drains were excluded). In multivariable analysis, TP53MAF

was an independent predictor of 6-mo TTP after one and two cycles of chemotherapy. Impor-

tantly, patients in the group with poorer prognosis after one cycle did not change group after

the second cycle. However, this is a small retrospective study, and variability in the study indi-

viduals and their treatments may account for these effects. Future studies are needed to vali-

date a 60% decrease in TP53MAF after one cycle as the optimum clinically useful threshold

and to validate other findings from this study.

A similar study in metastatic colon cancer with a prospective design analysed the predictive

value of changes in ctDNA after one cycle of chemotherapy in 53 patients [22]. The single

ctDNA response marker for each patient was chosen from a panel of genes that are commonly

mutated in CRC, and an association with increased progression-free survival was observed in

patients with a�90% decrease in ctDNA, although this outcome did not reach significance

(HR = 1.87, p = 0.266). A potential advantage of quantifying TP53 mutations for response in

HGSOC is that TP53 mutation is the earliest known driver event in HGSOC and is detectable

in all metastatic disease [54,55]. By contrast, in other cancers, intratumoural heterogeneity and

clonal diversity may reduce the accuracy of using any single mutation in ctDNA as a quantita-

tive measure of tumour burden and as a predictor of response [56,57]. We observed rapid

increase in TP53MAF in a patient who developed new cerebral metastasis, suggesting that, in

HGSOC, ctDNA changes are not limited to abdominal disease.

These findings need replication but may have a significant impact for patients with

HGSOC, particularly if ctDNA can be developed as an early predictor of treatment efficacy.

The phase III SWOG S0500 trial tested whether circulating tumour cells could be used as an

early predictor of response in metastatic breast cancer, but early switching of therapy did not

show improved overall survival [58]. However, the negative results may reflect a lack of active

drugs for these patients, or methods of insufficient sensitivity, rather than the usefulness of the

predictor. In metastatic breast cancer, ctDNA was shown to have>100-fold higher copy num-

bers in plasma compared to the number of circulating tumour cells detected by the CELL-

SEARCH system, which was the method used in the SWOG S0500 study [16].

The major limitations of this study are its retrospective design, analysis of multiple courses

from the same patient, limited sample size and sampling times, and the heterogeneity of treat-

ment within the cohort. In addition, as this was a proof of concept study, we analysed DNA

from only a small volume of plasma (median of approximately 0.1 ml per sample) to conserve

research material. Even in such a limited volume of plasma, we detected ctDNA at�20 AC/ml

in>80% of pre-treatment plasma samples and were able to show the association of TP53MAF

with TTP. Future studies aiming to validate this approach could further enhance the sensitivity

and accuracy of ctDNA measurements by using larger volumes of plasma. The technology for

assessment of ctDNA that was used in this study is based on fluorescently labelled patient-spe-

cific probes. Such assays can be expensive and time-consuming to design and validate. Since

this study was initiated, we and others have demonstrated that suitably designed next genera-

tion sequencing assays can be used with high sensitivity both for monitoring ctDNA levels and

for direct identification of mutations for genotyping of tumour via plasma sampling [16,21].

The use of such panel assays can obviate the need to design patient-specific assays targeting

individual mutations, simplifying the deployment of such approaches for clinical use, and

allowing multiple mutations to be monitored simultaneously [17,21].

Circulating Mutated TP53 DNA as Biomarkers of Treatment Response for Patients with Relapsed HGSOC

PLOS Medicine | DOI:10.1371/journal.pmed.1002198 December 20, 2016 18 / 25

240



Recent studies have demonstrated the potential of ctDNA as a tool for minimally invasive

real-time molecular profiling, to identify risk of progression based on residual disease, and to

identify disease recurrence earlier. In this study, we showed the potential of ctDNA to identify,

after 1–2 cycles of treatment, ovarian cancer patients with an expected poor response to che-

motherapy. These findings have strong potential for clinical utility owing to the ease of assay-

ing DNA in plasma and the low cost and speed of ctDNA testing. There is therefore a strong

rationale for including ctDNA collection in current clinical trials as exploratory endpoints to

support clinical validation of ctDNA as a potential early marker of response and prognosis.

Having very early information on response would empower patients and physicians to test

alternative treatment options and would have high utility in trials that link biomarkers to tar-

geted therapy [59].
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Abstract

Background

The major clinical challenge in the treatment of high-grade serous ovarian cancer (HGSOC)

is the development of progressive resistance to platinum-based chemotherapy. The objec-

tive of this study was to determine whether intra-tumour genetic heterogeneity resulting

from clonal evolution and the emergence of subclonal tumour populations in HGSOC was

associated with the development of resistant disease.

Methods and Findings

Evolutionary inference and phylogenetic quantification of heterogeneity was performed

using the MEDICC algorithm on high-resolution whole genome copy number profiles and

selected genome-wide sequencing of 135 spatially and temporally separated samples from

14 patients with HGSOC who received platinum-based chemotherapy. Samples were ob-

tained from the clinical CTCR-OV03/04 studies, and patients were enrolled between 20 July

2007 and 22 October 2009. Median follow-up of the cohort was 31 mo (interquartile range

22–46 mo), censored after 26 October 2013. Outcome measures were overall survival (OS)

and progression-free survival (PFS). There were marked differences in the degree of clonal

expansion (CE) between patients (median 0.74, interquartile range 0.66–1.15), and dichoti-

mization by median CE showed worse survival in CE-high cases (PFS 12.7 versus 10.1

mo, p = 0.009; OS 42.6 versus 23.5 mo, p = 0.003). Bootstrap analysis with resampling

showed that the 95% confidence intervals for the hazard ratios for PFS and OS in the CE-

high group were greater than 1.0. These data support a relationship between heterogeneity

and survival but do not precisely determine its effect size. Relapsed tissue was available for
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two patients in the CE-high group, and phylogenetic analysis showed that the prevalent

clonal population at clinical recurrence arose from early divergence events. A subclonal

population marked by a NF1 deletion showed a progressive increase in tumour allele frac-

tion during chemotherapy.

Conclusions

This study demonstrates that quantitative measures of intra-tumour heterogeneity may

have predictive value for survival after chemotherapy treatment in HGSOC. Subclonal tu-

mour populations are present in pre-treatment biopsies in HGSOC and can undergo expan-

sion during chemotherapy, causing clinical relapse.

Introduction
Intra-tumour genetic heterogeneity in cancer has been investigated for almost half a century
[1,2], and recent advances in genomic technology have demonstrated diverse genetic changes
within a single epithelial cancer [3–14]. Multiple sampling of primary and metastatic sites in
breast, pancreas, and renal carcinoma has catalogued genetic divergence and shown that me-
tastases from the same site can show organ-specific phylogenetic branches [5–8,12]. Deep se-
quencing of epithelial tumours has revealed the clonal compositions of individual clinical
samples and has shown how major and minor subclones may co-exist [5,7,8,12,14,15]. These
data extend earlier observations showing that there is significant intra-tumour heterogeneity in
solid tumours, and suggest that tumours with sufficient heterogeneity may be able to explore
the fitness landscape widely enough during selection pressure from chemotherapy to repopu-
late with a resistant subclone [16,17]. Although this phenomenon has been extensively demon-
strated in haematological cancers [18,19], the sequence of clonal expansions (CEs) has not
been comprehensively described in epithelial tumours or correlated with clinical outcome.

High-grade serous ovarian cancer (HGSOC) is genomically characterised by a ubiquitous
TP53mutation, high-frequency somatic copy number alterations (CNAs), and whole genome
duplications [20–22]. Oncogenic mutations are rare, and most nonsynonymous changes are
seen in tumour suppressor genes, including somatic mutations in TP53, BRCA1, BRCA2, RB1,
and NF1 [22]. Loss of NF1, an inhibitor of RAS signalling, may occur by point mutation or
structural rearrangement and may be present in subclonal populations [23–27]. The typical
clinical presentation of HGSOC is with extensive abdominal disease, involving multiple im-
plantation sites throughout the abdomen. Intra-tumour heterogeneity may contribute to ac-
quired resistance in HGSOC [3,4,28–30], but quantitation of the degree of heterogeneity and
its relationship to changes in the course of treatment or the development of resistance
is unknown.

Accurately reconstructing the evolutionary history of cancer cells in an unbiased manner
improves the quantification of tumour heterogeneity. However, inferring phylogenetic trees in
cancers that have highly frequent somatic CNAs is particularly difficult because of the un-
known phasing of parental alleles and the horizontal dependencies between adjacent genomic
loci. Previous work has used ad hoc thresholds or visual analysis [15,31]. We recently devel-
oped the Minimum Event Distance for Intra-tumour Copy Number Comparisons (MEDICC)
algorithm, which provides accurate estimates of evolutionary distances between tumour sam-
ples by determining the optimum phasing of major and minor alleles from copy number or
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whole genome sequencing (WGS) data [32]. A numerical measure of the degree of heterogene-
ity can also be derived by transforming the pairwise minimum event distances [32].

To address the hypothesis that quantitative measures of intra-tumour heterogeneity could
predict outcome in HGSOC, we collected multiple spatially and temporally separated tumour
samples from 14 women undergoing chemotherapy for HGSOC, and used formal methods to
reconstruct the evolutionary history of the disease within each patient from whole genome
copy number profiles.

Materials and Methods

Ethical Consent
Tissue samples were obtained from the prospective CTCR-OV03 and CTCR-OV04 clinical
studies, which were designed to collect imaging, blood, and tissue samples for exploratory bio-
marker studies. All patients provided written, informed consent for participation in these stud-
ies and for the use of their donated tissue, blood specimens, and anonymized data for the
laboratory studies carried out. The CTCR-OV03 and CTCR-OV04 studies were approved by
the Suffolk Local Research Ethics Committee (reference 05/Q0102/160) and Cambridgeshire
Research Ethics Committee (reference 08/H0306/61).

SNP Arrays
DNA extraction was performed using the DNeasy Blood & Tissue Kit (Qiagen) following the
manufacturer’s instructions. In total, 177 samples from 18 patients were profiled for copy num-
ber aberrations using Affymetrix Genome-Wide SNP 6.0 arrays (S1 Table). Hybridisation of
DNA to SNP 6.0 arrays was performed by AROS Applied Biotechnology following the manu-
facturer’s protocol. Array data are available online at the NCBI Gene Expression Omnibus
under accession number GSE40546. The datasets were segmented using PICNIC [33] (using
the “primary” option), which further corrects for cellularity and estimates integer major and
minor copy numbers.

Evolutionary Inference and Tree Robustness
The MEDICC algorithm and methods for copy number reconstruction and quantification of
heterogeneity have been described previously [32]. We determined the CE and temporal het-
erogeneity (TH) indices as described for patients with more than three samples and where
paired biopsy and surgery samples were available.

Paired-End Sequencing and Breakpoint Validation
DNA extracted from tumour samples and from matched normal blood was processed using
the Illumina Paired-End Sample Prep Kit. Paired-end WGS (41 bp; in some cases 50 bp
trimmed to 41 bp) was performed on the Illumina Genome Analyzer IIx, where the median
number of read pairs for each library was 153 million and the median sequencing depth was
×16.7. Sequencing data were processed using analysis pipelines as previously described [34].
Briefly, reads were aligned using BWA [35] and Novoalign (Novocraft Technologies), and dis-
cordantly mapped read pairs were used to identify putative structural variants using a custom
pipeline. PCR primers for validating structural variants were designed using Primer3 [36].

Deletion and insertion breakpoints fromWGS were considered confirmed if there was
>50% reciprocal overlap of copy number decrease or increase in the SNP array data. Addition-
ally, deletion, insertion, inter-chromosomal, and inversion breakpoints were considered
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confirmed if both ends of a breakpoint were within 10 kb of copy number breakpoints in any
of the sequenced samples of the tumour.

Mutation Detection by Resequencing
The coding sequences of TP53, BRCA1, BRCA2, PTEN, PIK3CA, EGFR, and APC were se-
quenced using the TAm-Seq method using the Fluidigm Access Array 48.48 platform as de-
scribed previously [37] with minor modifications: pre-amplification steps were omitted, as
high-molecular-weight DNA was extracted from fresh-frozen tumour specimens, and 50 ng of
sample DNA and multiplexed primers was used in the target-specific amplification step. Prim-
er sequences are available upon request. Sequencing data analysis and variant verification was
performed using an in-house-developed pipeline and IGV software as previously described
[37,38].

Digital PCR
Digital PCR was performed using the Fluidigm Biomark microfluidic system according to the
manufacturer’s instructions. Primers were designed spanning the NF1 deletion (forward:
50-TTTTGTTTACGAGCACAGATAACC-30; reverse: 50-GAAACAGAAGATGACAGCAAA-
GAA-30). Reaction mixes were prepared containing 1× TaqMan Gene Expression Master Mix
(Applied Biosystems), 1× EvaGreen DNA binding dye (Biotium), 1× DNA Binding Dye Sam-
ple Loading Reagent (Fluidigm), and 10 nM primers and template DNA. Prior to loading into
a 12.765 Fluidigm digital chip, reactions were heated to 95°C for 1 min and placed on ice. Reac-
tions were thermocycled at 50°C for 2 min, 95°C for 10 min, followed by 55 cycles of 95°C for
15 s and 56°C or 60°C for 1 min. Digital PCR was also performed on the same samples using
an assay for the p.R175H mutation in TP53 as previously described [39] (forward: 50-CCATC-
TACAAGCAGTCAC-30; reverse: 50-GTCACCATCGCTATCTGAG-30; mutant-specific
probe: [6FAM]-TTGTGAGGCACTGCCCCC-[BHQ1]; wild-type-specific probe: [HEX]-
TTGTGAG-GCGCTGCCCCC-[BHQ1]). The proportion of tumour cells with the NF1 dele-
tion was calculated from the estimated counts of the assays for both the NF1 deletion and mu-
tant TP53 p.R175H.

Study Design
Cases were retrospectively selected from available tumour samples from the CTCR-OV03 and
CTCR-OV04 studies. The CTCR-OV03 study has been previously described [40] and was a
prospective, single-institution, protocol-driven study with eligibility criteria of (a) clinical diag-
nosis of advanced ovarian cancer (International Federation of Gynecology and Obstetrics stage
3 or higher), (b) gynaecology-oncology multidisciplinary team recommendation for neoadju-
vant chemotherapy treatment before interval debulking surgery, (c) measurable disease at stag-
ing based on computed tomography of the abdomen and pelvis, and (d) no contraindications
to MRI [40]. Samples were stored in RNAlater (Life Technologies) immediately after acquisi-
tion and later histologically examined and scored for cellularity by a specialist gynaecological
pathologist (M J.-L.). When selecting cases for analysis, 14/28 CTCR-OV03 patients were ex-
cluded from the planned analysis (six had tumours that were not HGSOC histology, five had
no research tissue available, and three had samples from only one time point or one metastatic
site), leaving 14 for genomic profiling. Four additional “convenience” cases were obtained from
the CTCR-OV04 study and were selected by availability of�3 spatially discrete, fresh-frozen
tumour biopsies. All patients were enrolled between 20 July 2007 and 22 October 2009. The fol-
low-up was censored after 26 October 2013, with median duration of 31 mo (interquartile
range [IQR] 22–46 mo; range 7–53 mo). Progression-free survival (PFS) was defined as the
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interval between the date of the original pathology report confirming ovarian cancer and the
date of progression measured by RECIST 1.1, Gynecologic Cancer Intergroup CA 125 criteria,
or symptomatic progression. Overall survival (OS) was defined as the interval between the date
of the original pathology report confirming ovarian cancer and the date of death from any
cause. Clinical details, including CA 125 measurements, stage, and residual disease after
debulking surgery, were abstracted from clinical records by research staff.

Statistical Analysis Methods
A detailed transcript of all statistical analyses using R and Sweave is provided in S1 Protocol.

Results
We collected 177 temporally and spatially distinct HGSOC samples from 18 patients undergo-
ing platinum-based chemotherapy (Fig. 1A). Copy number profiles were obtained with Affy-
metrix Genome-Wide SNP6.0 arrays (Table 1) and segmented using PICNIC [33]. Of the
18 patients, 17 had neoadjuvant chemotherapy (Table 1). The median number of chemothera-
py cycles prior to interval debulking surgery was three (range 3–7). One patient had primary
surgery followed by adjuvant chemotherapy. Data from 39/177 arrays were excluded after pro-
filing because of tumour cellularity< 50% or high noise, resulting in removal of one patient
from the analysis (6/6 samples excluded), leading to a final total of 17 patients included in the
following analyses. In all, 31/39 excluded arrays were from samples obtained from interval
debulking surgery following pre-operative chemotherapy (S1 Table). Analyses of clonal evolu-
tion were performed using whole genome bi-allelic integer copy number profiles of 135 tumour
samples from 14 patients who had�3 samples. Ten patients had samples both from biopsy
prior to chemotherapy treatment and from interval debulking surgery, allowing for compari-
son of temporal effects. Two patients had relapsed ascites samples (S1 Table).

To exclude potential confounding effects on heterogeneity, we performed a detailed pathol-
ogy review of all paraffin blocks from each patient. No significant differences in morphology or
growth pattern were observed between metastatic sites in any patient (S1 Fig). In addition, we
performed tagged-amplicon resequencing of tumour tissue for genes commonly somatically
mutated in HGSOC. BRCA1 and BRCA2 were also included in the sequencing panel as OS is
significantly improved in women with germ line mutations. In all, 15/17 patients had a muta-
tion in TP53 consistent with HGSOC (Table 2) [20]. Of the two wild-type TP53 cases, patient
12 had strong nuclear p53 protein accumulation consistent with p53 dysfunction, and patient 3
was reclassified as a synchronous HGSOC and high-grade uterine serous papillary carcinoma
(based on simultaneous invasive uterine and ovarian lesions together with positive WT1
immunohistochemistry). No germ line mutations in BRCA1 and BRCA2 were identified. Pa-
tient 14 had a nonsense mutation in BRCA2, and patient 2 showed variants of uncertain signifi-
cance in BRCA1 somatic nonsense mutation in BRCA2, and patient 2 showed variants of
uncertain significance in BRCA1 and BRCA2 (Table 2). We examined the copy number profiles
for evidence of specific mutator phenotypes that would alter the propensity for evolutionary
change, but did not find any patient with features of the tandem duplicator phenotype [34,41].

We recently developed the MEDICC package [32] to reconstruct patient-specific evolution-
ary trees and quantify heterogeneity in tumour samples using methods that employ a mini-
mum evolution criterion to measure the genetic divergence between copy number profiles.
This algorithm estimates evolutionary distances between samples based on the minimum num-
ber of segmental amplifications and deletions needed to transform one genomic profile into an-
other using optimised allele-specific assignment of major and minor copy numbers. Using
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Fig 1. Overview of the analysis and the clinical dataset. (A) Numerical quantification of intra-tumour genetic heterogeneity by evolutionary comparisons.
Copy number profiles from 135 metastatic sites were obtained for 17 patients with HGSOC. The MEDICC algorithm was used to compute minimum event
distances between profiles and to reconstruct the evolutionary history for each sample, enabling numerical quantification of both spatial and TH and CE for
each patient. (B) HGSOC exhibits significant patient-specific intra-tumour genetic heterogeneity. Neighbour-joining tree of all samples based on total copy
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MEDICC we reconstructed evolutionary trees for 14 patients with three or more samples
(Fig. 1A). Circos plots and evolutionary trees for all patients can be found in S3–S16 Figs.

Patient-Specific Copy Number Changes Cluster by Anatomical Site
As expected, CNAs were highly patient-specific. A tree reconstructed from applying MEDICC
to all 135 samples grouped samples by patient (Fig. 1B). However, no clustering into subgroups
with HGSOC resistant or sensitive to a second line of treatment was evident by this analysis
(outer colour bar, Fig. 1B). We next applied MEDICC to each patient individually. Copy num-
ber changes within each patient showed strong divergence overall, with a median of 54.5 (IQR
32.5–65.6) genomic events. Divergence from the hypothetical normal genome was, as expected,
larger, with a median of 104 events (IQR 57.8–112). Three patients showed less marked
changes; reconstruction of events for patients 1 and 8 had limited phylogenetic signal owing to

number. Samples from each patient (coloured inner circular bar) cluster into clades. The outer circular bar indicates HGSOC classified as resistant versus
sensitive to treatment based on survival: red, resistant, PFS< 12 mo; green, sensitive, PFS> 12 mo. No immediate clustering of patients into sensitive and
resistant subgroups is visible.

doi:10.1371/journal.pmed.1001789.g001

Table 1. Summary of samples from the CTCR-OV03/04 clinical studies.

Patient
Number

Patient
Agea

Tumour
Stage

Responseb Treatment CA 125
Reductionc

PFS OS Number of
Samplesd

TH
Index

CE
Index

p-Value for
Star Topologye

1 I IV PR Neo −93 271 511 16/20 4.73 1.26 <0.001

2 IV IV PR Neo −92 363 977 3/5 NA 0.71 0.67

3 V IV SD Neo −92 153 209 18/20 3.74 1.24 <0.001

4 I IIIC PR Neo −91 616 625 1/3 NA NA NA

5 IV IV PR Neo −76 303 547 29/29 3.8 1.47 <0.001

6 III IV SD Neo −80 298 744 8/8 6.59 0.73 0.001

7 IV IV PR Neo −43 358 1,587 7/8 3 0.68 <0.001

8 II IIIC PR Neo −24 373 889 11/14 3.42 2.24 <0.001

9 VI IV SD Neo −100 563 1,278 15/16 4.49 0.65 <0.001

10 III IIIC PR Neo −87 303 1,139 9/11 4.72 0.87 <0.001

11 III IIIC PR Neo −98 382 1,556 7/17 5.7 0.48 0.28

12 III IIIC SD Neo −88 534 1,565 1/4 NA NA NA

13 III IIIC PR Neo −28 776 1,166 3/3 NA 0.62 0.48

14 IV IIIC PR Neo NA 601 1,513 3/4 4.62 0.61 0.74

15 II IV SD Neo NA 332 706 3/5 NA 0.74 0.74

16 III IIIC PR Neo NA 1,380 1,405 1/3 NA NA NA

17 III IIIC SDf PS NA 293 849 3/4 NA 0.86 0.64

The table shows patients identified for study and the number of samples available before and after quality control. Patients with <3 samples could not be

evaluated for TH and CE indices. Patients with CE index but no TH index did not have paired pre-chemotherapy biopsy and interval debulking surgery

samples available.
aPatient age was segmented into brackets as follows: I, 45–50 y; II, 46–55 y; III, 56–60 y; IV, 61–65 y; V, 66–70 y; VI, 71–75 y.
bResponse according to RECIST evaluation: PD, progressive disease; PR, partial response; SD, stable disease.
cCA 125 tumour marker reduction (percentage),
dNumber of samples used for analysis (out of all samples taken in study).
eTest for star topology (BH corrected).
fNot comparable to other SD cases as treatment modalities were different.

NA, not available; Neo, neoadjuvant; PS, primary surgery.

doi:10.1371/journal.pmed.1001789.t001
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low divergence or limited numbers of samples, and in patient 1 we found very high heterogene-
ity and strong CE (discussed below).

Metastasis of HGSOC is thought to occur by physical shedding from the invasive lesions in
the fallopian tube onto pelvic structures and into the abdomen, where physiological recircula-
tion of ascites fluid facilitates widespread seeding of tumour cells. Evolutionary clades in the
patient-specific trees often agreed with the anatomical sites where the sample was taken (see
Fig. 2 and individual trees in S3–S16 Figs.). For example, patient 9 showed clear separation of
omentum and small bowel mesentery samples (Fig. 2D), with right paracolic gutter and perito-
neum as the respective out-groups. Genetic markers of this divergent evolution included Chro-
mosomes 2q and 3p as well as amplifications on Chromosome 10 (Fig. 2C). Higher resolution
analyses with paired-end WGS on samples from six patients confirmed additional divergent
genetic change at higher resolution. For example, in patient 9, there were three deletion break-
points and an insertion breakpoint that were present only in the omentum sample, and three
deletion breakpoints that were only in the peritoneal sample (S18 Fig).

Table 2. Mutations detected in samples from CTCR-OV03 and CTCR-OV04 patients using TAm-Seq.

Patient Number Effect Gene Protein Change cDNA Change RefSeq ID

1 MS TP53 p.Y234C c.A701G NM_000546

2 NS TP53 p.Y234X c.C702A NM_000546

2 MS BRCA1 p.Y179C c.A536G NM_007294

2 MS BRCA1 p.N550H c.A1648C NM_007294

2 MS BRCA1 p.F486L c.T1456C NM_007294

2 MS BRCA2 p.E1110V c.A3329T NM_000059

3 ND TP53

4 MS TP53 p.H214R c.A641G NM_000546

5 MS TP53 p.C141R c.T421C NM_000546

6 FS TP53 p.P153fs c.459_469del11 NM_000546

7 MS TP53 p.R273C c.C817T NM_000546

7 MS APC p.S2596A c.T7786G NM_000038

8 MS TP53 p.R175H c.G524A NM_000546

8 Silent BRCA2 p.G1552G c.T4656C NM_000059

9 FS TP53 p.I195fs c.583_584dupA NM_000546

10 MS TP53 p.S215G c.A643G NM_000546

10 MS APC p.D1714N c.G5140A NM_000038

11 NS TP53 p.R306X c.C916T NM_000546

12 ND TP53

13 MS TP53 p.Y236S c.A707C NM_000546

13 Silent BRCA2 p.V465V c.A1395C NM_000059

14 MS TP53 p.V216L c.G646T NM_000546

14 NS BRCA2 p.L2732X* c.T8195A NM_000059

15 MS TP53 p.C135R c.T403C NM_000546

16 MS TP53 p.C275Y c.G824A NM_000546

17 MS TP53 p.R273H c.G818A NM_000546

Patient 14 had a deleterious somatic nonsense mutation (p.L2732X*) in BRCA2. This mutation was not detected in two independent germ line DNA

samples from patient 14. All other BRCA1/2 mutations were not pathogenic or were of no/unknown clinical importance according to the Breast Cancer

Information Core Database and the LOVD-IARC database.

FS, frameshift; MS, missense; ND, no mutation detected; NS, nonsense; silent, silent mutation.

doi:10.1371/journal.pmed.1001789.t002
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Analysis of Tree Topologies Suggests Metastasis-to-Metastasis Spread
with Changing Evolutionary Rates
We next considered whether the observed spatial heterogeneity arose from metastasis-
to-metastasis spread or by successive metastases from the primary cancer site by examining the
pattern of the evolutionary relationships between metastatic samples within each patient.
Given a fixed number of metastases, two scenarios are possible: if only the primary tumour
gives rise to metastatic clones, the resulting evolutionary tree will have a star topology
(Fig. 3A). By contrast, if cells retain their metastatic potential after metastasis, ongoing spread
and associated genetic change will lead to a fully branched evolutionary tree (Fig. 3B).

We used MEDICC to test the null hypothesis for each patient that the evolutionary dis-
tances were derived from a star topology [32]. To verify and visualise the findings we applied
the neighbour-net method [42], which captures non-tree-like evolutionary signals in distance
data. From nine patients with�3 samples, eight showed significant branching (p< 0.05, chi-
squared test for goodness of fit with Benjamini and Hochberg correction for false discovery
rate), supporting the model of metastasis-to-metastasis spread. Patient 11 showed only a weak
tree structure, and the null hypothesis could not be rejected (p = 0.22; Fig. 3A).

Fig 2. Examples of spatial and temporal heterogeneity in HGSOC. (A and C) Total copy number profiles show strong overall conservation. As examples,
a representative subset of the allele-specific genomic copy number profiles of patients 6 and 9 are shown. Separate alleles are indicated in red and blue.
(B and D) Genomic changes between biopsy and surgery reveal tumour evolution. The black sample names in the trees indicate the samples shown in the
Circos plots. Confidence values for each split are printed in red boxes. The colour-coded bars on the right of the phylogenies indicate different sites (left
column) and different sampling times (right column). Branch lengths indicate number of genetic events as determined by MEDICC (scale bar shows ten
events). Om, omentum; P, peritoneum; RPG, right paracolic gutter; SBM, small bowel mesentery.

doi:10.1371/journal.pmed.1001789.g002
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Next we compared evolutionary distances within each patient to investigate whether evolu-
tionary change occurs at a constant rate (clock-like evolution). After correction for multiple
testing, two out of 14 patients (14.3%) showed significant non-clock-like evolutionary trajecto-
ries (p< 0.05). We conclude that HGSOC shows metastasis-to-metastasis spread and that het-
erogeneity is generated through ongoing clonal evolution with potentially unknown mutator
phenotypes present.

Small Changes in Heterogeneity Occur during Neoadjuvant Therapy
As most metastases are established before onset of treatment, we next investigated the rate of
ongoing clonal evolution by examining samples before and after neoadjuvant chemotherapy.
The average genomic change during treatment (TH index) was quantified using MEDICC. To
ensure that differences were not due to cellularity, we compared histopathology estimates be-
tween the pre-chemotherapy biopsies and surgical specimens and found no significant differ-
ences (t-test, p = 0.7). MEDICC measures TH by mapping genomes into a high-dimensional
space, termed the “mutational landscape” [16,17], in which distances correspond to evolution-
ary distances between genomes. The TH index is then calculated as the distance between the
robust centres of mass of the biopsy and surgery samples [32], leading to a robust estimate of
change during treatment. Visual analysis of Circos plots showed strong overall conservation,
indicating that the main karyotypes for each cancer were established before onset of treatment.
Quantitative analysis with MEDICC detected genomic differences between biopsy and surgery
samples, showing on average 46 (standard deviation 13) new genomic events (Figs. 2A, 2C,
and S3–S16). For example, for patient 6 there was a profound difference between the two

Fig 3. Branching patterns in HGSOC. (A) Radial pattern of metastatic spread leads to a star topology. The schematic shows how the evolutionary
relationships are predicted to have a star-like topology if all metastases (blue) are derived from the primary lesion (red). A neighbour-net representation of the
evolutionary distances from patient 11 shows deviation from a tree structure (right). (B) Branched metastatic spread leads to a tree topology. The schematic
shows that evolutionary history is predicted to be tree-like if metastases create new metastases (including metastasis-to-metastasis spread). A neighbour-
net representation of the distance matrix for patient 1 shows a tree-like structure (right). The number and proportion of patients classified to star or tree
topology are shown. Labels on trees indicate site of metastasis (Om, omentum; Ov, ovary; P, peritoneum). Sample identifiers indicate whether the sample
was collected from pre-chemotherapy biopsy (B) or interval debulking surgery (S).

doi:10.1371/journal.pmed.1001789.g003
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sample subgroups (TH index 0.66), with early and long branching of the pre-treatment omen-
tal biopsy sample away from the remaining omental samples, indicating divergent evolution
(Fig. 2A and 2B). The copy number events responsible for this divergence included deletions
on Chromosomes 1p, 1q, 3p, 7q, 9q, and 11p. In patient 9, one of the three omentum samples
differed in 18.1% of its genome from the omentum samples at surgery (Fig. 2C and 2D). We
concluded that HGSOC shows detectable changes during neoadjuvant chemotherapy (median
75 d), but these are minor compared to the overall changes from the onset of the disease.

HGSOC is Frequently Polygenomic and Shows Variable Clonal
Expansion
It has previously been shown in breast cancer that CEs of minor subpopulations of cells lead to
polygenomic tumours, while other tumours appear monogenomic [6]. These CEs are potential-
ly modulated by selection pressure from chemotherapy (or other factors) and might have prog-
nostic value. Using MEDICC allowed statistical quantification of the degree of CE on a
continuous scale (CE index) by testing for local spatial clustering of genomes in the mutational
landscape [32].

We found the CE index to be variable across the cohort (median 0.73, IQR 0.65–1.24). As
there was no clinically defined cutoff point for CE, the median value was used to divide patents
into two groups (CE-low versus CE-high). Patients with in the CE-low group, for example pa-
tient 11, showed linear emission of samples throughout the tree and had homogenous branch
lengths (S12 Fig). By contrast, patients 5 and 8, in the CE-high group, showed marked CE (CE
index 1.47 and 2.24, respectively), with multiple samples in strongly diverging subclades (Fig. 4).

Patients with Tumours with High Clonal Expansion Show Short Survival
and Resistant Relapse
It has been proposed that for a tumour to overcome the selection pressure applied by chemo-
therapy, it needs to be able to efficiently explore the mutational landscape [17]. Therefore, we
hypothesized that polygenomic tumours that have already undergone CEs are likely to be at an
advantage for acquiring other mutations for survival during treatment.

We used the log-rank test to test for differences in PFS and OS between the CE-low and CE-
high groups (Fig. 5). Survival was shorter in patients in the CE-high group (PFS 12.7 versus
10.1 mo, p = 0.009; OS 42.6 versus 23.5 mo, p = 0.003; Fig. 5). Being in the CE-high group was
an independent predictor of survival in a multivariable Cox hazard regression analysis that in-
cluded patient age, tumour stage, and residual disease after debulking surgery (PFS, p = 0.001;
OS, p = 0.004). Survival differences were not significant between patients with low or high TH
index (S1 Protocol).

We tested CE as a continuous variable in a Cox proportional hazard model, which assumes
a linear relationship between CE and survival. In univariable analysis, the quantitative CE
index had a borderline significant association with OS with hazard ratio (HR) = 2.7 (95% CI
0.96, 7.8; p = 0.06), but no significant association with PFS. In multivariable models that con-
sidered CE, patient age, tumour stage, and residual disease, CE as a quantitative variable was
not significantly associated with OS or PFS (coefficient p = 0.64 and p = 0.76, respectively). We
examined potential nonlinear effects of CE on survival using cubic spline methods. For PFS
and OS, the relationship between CE and relative hazard was nonlinear, showing a step func-
tion effect with marked increase in hazard seen at CE values greater than 0.7–0.8 (Fig. 5B;
S1 Protocol), similar to the median cut point. Given the small size of the patient cohort, we per-
formed tests of robustness using bootstrap analysis with 10,000-fold resampling to test whether
the HR for the CE-high group was likely to be greater than one (deleterious for outcome). The
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differences in PFS and OS remained significant (p< 0.05) in 82% and 92%, respectively, of the
perturbed datasets. The bootstrapped derived median HR values for PFS and OS were HR =
7.1 (95% CI> 1) and HR = 11.4 (95% CI> 1), respectively.

Resistant Subclonal Populations Are Present in Pre-Treatment Disease
The survival analyses suggested that the degree of CE could have effects on PFS and OS consis-
tent with the hypothesis that cancers with high CE may have increased genetic diversity favour-
ing the emergence of drug-resistant clones. We were able to explore this hypothesis in patients
5 and 8, who had additional samples collected at progression. Patient 8 had symptomatic pro-
gressive disease, with the development of ascites at 12 mo after completing chemotherapy. The
phylogenetic reconstruction of her cancer showed early divergence of the ascites sample from
the root (Fig. 4). Examination of the relapsed copy number profile revealed a new focal deletion
at NF1 that was not present in the pre-chemotherapy and interval debulking surgery samples
(Fig. 4). NF1 is recurrently mutated in HGSOC [22,23], which suggests this was unlikely to be a
passenger event. As copy number profiles detect the dominant clone in a sample, we investigat-
ed the population structure of earlier samples using WGS to map the new NF1 deletion, and
digital PCR to accurately estimate the number of cells containing the NF1 deletion in each sam-
ple. To prevent confounding effects from differences in tumour cellularity, the counts for the
NF1 deletion were expressed as a proportion of all mutant TP53 counts. The NF1 deletion was
detected at 5% and 26% in the pre-treatment samples (absolute cellularity 80% and 41%) and
in 25%–100% of the interval debulking samples (median cellularity 49%). Histological analysis
of the left fallopian tube specimen removed at interval debulking confirmed a tubal primary
site (S1 Fig). We therefore extended the digital PCR analysis to DNA from microdissected tis-
sues from formalin-fixed tissue blocks including the left fallopian tube fimbria. The NF1

Fig 4. Relapse is an early diverged clonal expansion of a low-prevalence subclone of pre-treatment disease. Array copy number profiles (left) from
patient 8 detected a focalNF1 deletion in the relapsed ascites sample that was not observed in the pre-chemotherapy or interval debulking samples. The bar
plot shows the results of digital PCR for theNF1 breakpoint from pre-chemotherapy (white bars), interval debulking (grey bars), and relapsed ascites (black)
samples. Phylogenetic trees for patients 8 and 5 are shown. The relapsed clonal population for each case is placed next to the pre-chemotherapy biopsy
sample, indicating early branching events from the diploid. The length of each branch indicates the degree of divergence. Colour coding and sample
identifiers are as for Fig. 3. LOv, left ovary; Om, omentum; SBM, small bowel mesentery; RPG, right paracolic gutter.

doi:10.1371/journal.pmed.1001789.g004
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deletion was present in 1.2% of the primary invasive carcinoma in the fallopian tube and 7.9%
of the biopsy from the adjacent left ovarian metastasis (S2 Table).

In patient 5, inspection of the tree showed that the relapsed ascites sample also diverged
early, with a long branch (Fig. 4) indicating marked divergent evolution. This divergence was
associated with deletions on Chromosomes 1q, 15q, and 18q (S6A Fig). In summary, the NF1
deletion, while part of the dominant subpopulation at relapse, was already present pre-
treatment. As it is highly unlikely that this specific deletion arose twice independently in the
course of tumour evolution, we conclude that the relapse was a CE of a minor subclone of pre-
chemotherapy disease.

Fig 5. Clonal expansion index stratifies patients into prognostic subgroups. (A) Distribution of CE index over all patients and the respective group
sample sizes (n). The red line indicates median CE = 0.73, dichotomizing the cases into equal-sized CE-low and CE-high groups. (B) The relationship
between CE and relative hazard is nonlinear. The fit line is generated from the multivariable model incorporating penalised spline smoothing. Grey shading
indicates the 95% confidence interval for log hazard. Extreme CE values are not shown as the spline smoothing algorithm disregards values outside the 95%
range. The median (red line) separates a region of low hazard from a region of high hazard indicated by non-overlapping confidence intervals. (C and D) The
CE-low and CE-high groups show a statistically significant difference in PFS (log-rank p< 0.01) and OS (log-rank p< 0.01). Numbers at risk are given above
the x-axis for the CE-low (top) and CE-high (bottom) groups.

doi:10.1371/journal.pmed.1001789.g005
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Discussion
In this work, we tested the hypothesis that intra-tumour heterogeneity in HGSOC is correlated
with survival. We also assessed whether certain subclonal populations contribute to treatment
failure. Our experimental design combined two approaches: first, we analysed spatially and
temporally separate tumour samples from 14 women undergoing chemotherapy. This ap-
proach estimates the genetic complexity of the cancer burden in an individual more accurately
than sampling from a single location and time point [5,12,13,25]. Second, we applied formal
methods (MEDICC) to infer the most parsimonious representation of genetic evolution in
each patient’s cancer [32]. Importantly, our methods are fully unsupervised and are derived in-
dependently of the clinical data.

Our analyses showed marked differences in CE between patients and negative effects of high
CE on survival. In two patients with very high CE, we demonstrated that clonal populations de-
tected at relapse arose from early branching events, followed by divergent evolution and CE. In-
deed, digital PCR of a NF1 deletion that marked the predominant clonal population at relapse
conclusively showed that this deletion was present at very low fraction in pre-treatment samples
including the tubal primary site. We further showed that HGSOC generally evolves and spreads
in a branching process with frequently changing rates of evolution. Taken together, these find-
ings are consistent with previous data from cell-based studies and circulating tumour DNA as-
says that suggested that CE occurs between diagnosis and relapse in HGSOC [28,37].

Although the number of HGSOC samples studied here is relatively large compared to those
of other publications, the size of the patient cohort prevents strong conclusions about effect
sizes and clinical impact. We used a median value for CE as an unbiased cut point to avoid
strong assumptions about the relationship between CE and survival, but given the limited sam-
ple size, it is likely that our analyses overestimate the prognostic effect of CE. It is notable that
the majority of the samples that failed quality assurance (and were therefore excluded from esti-
mations of heterogeneity) were taken after chemotherapy treatment, suggesting that these sam-
ples may have had better response to treatment [28]. This implies that the samples from which
our heterogeneity measures were calculated may be enriched for more chemoresistant disease.
We have not defined the minimum number of samples per case that are required for accurate
estimates of CE, and this will require larger patient studies. Collecting these samples remains a
major challenge for heterogeneity research, owing to the difficulties of collecting multiple fresh
tissue samples at different treatment time points and the costs of detailed genomic profiling.
Further technological development to use shallowWGS data from formalin-fixed, paraffin-
embedded samples may be a useful approach to increasing statistical power in future studies.

Comparison of the effects of CE and TH on survival showed that TH was not predictive of
PFS or OS. This was surprising, as we expected strong TH effects to be correlated with re-
sponse, and therefore survival. There are several factors that may explain our finding. First, we
were unable to take samples from the same tumour deposit before and after chemotherapy
treatment. Therefore, apparent differences in TH could be confounded by spatial differences in
tumour heterogeneity, rather than representing intrinsic changes in subclonal populations
caused by chemotherapy treatment. Second, the time window for evolutionary changes to
occur during chemotherapy was short compared to the genetic lifespan of each cancer. Third,
both CE and TH showed moderate correlation with sample size (S1 Protocol). Sample size was
not significant in a multivariable Cox model, but could potentially contribute to the predictive
power of CE (S1 Protocol).

Our results are in disagreement with recent findings where the analysis of nonsynonymous
mutations did not show effects of ongoing evolutionary change in HGSOC [43]. These findings
were based upon exome sequencing of three patients, and the power of this assay for
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evolutionary inference is dependent upon the depth of sequencing achieved. It is also likely
that the majority of nonsynonymous changes detected by exome sequencing are passenger or
private mutations, which may explain why other studies have not found evidence of the strong
evolutionary patterns that we see using CNAs.

Our phylogenetic reconstructions further allowed us to assess the robustness of the evolu-
tionary trees, and thereby the certainty of placement of a sample in the tree. With this we ad-
dressed the question of when in the course of disease the relapse clone evolved. In both patients
5 and 8, we were able to determine an early branching point as the origin of relapse that shared
an immediate ancestor with a pre-treatment sample. In larger datasets these methods could be
applied to the identification of early driver events and may mitigate the difficulties of identify-
ing therapeutically relevant CNAs in heterogeneous patients.

In summary, our approach has been to define the evolutionary trajectories of HGSOC using
robust and accurate methods to reconstruct the phylogenetic trees for individual patients. This
approach has the potential to act as a patient-specific prognostic indicator and may be a power-
ful tool to identify and calibrate surrogate genomic markers of CE.
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Editors’ Summary

Background

Every year, nearly 250,000 women develop ovarian cancer, and about 150,000 die from the
disease. Ovarian cancer occurs when a cell on the surface of the ovaries (two small organs
in the pelvis that produce eggs) or in the Fallopian tubes (which connect the ovaries to the
womb) acquires genetic changes (mutations) that allow it to grow uncontrollably and to
spread around the body (metastasize). For women whose ovarian cancer is diagnosed
when it is confined to its site of origin, the outlook is good. About 90% of these women
survive for at least five years. However, ovarian cancer is rarely diagnosed this early. Usual-
ly, by the time the cancer causes symptoms (often only vague abdominal pains and mild
digestive disturbances), it has spread into the peritoneal cavity (the space around the gut,
stomach, and liver) or has metastasized to distant organs. Patients with advanced ovarian
cancer are treated with a combination of surgery and platinum-based chemotherapy, but
only a quarter of such women are still alive five years after diagnosis, and the overall five-
year survival rate for ovarian cancer is less than 50%.

WhyWas This Study Done?

The major clinical challenge in the treatment of high-grade serous ovarian cancer
(HGSOC; the most common type of ovarian cancer) is the development of resistance to
platinum-based chemotherapy. If we knew how this resistance develops, it might be possi-
ble to improve the treatment of HGSOC. Tumors are thought to arise from a single mutat-
ed cell that accumulates additional mutations as it grows and divides. This process results
in the formation of subpopulations of tumor cells, each with a different set of mutations.
Experts think that this “intra-tumor heterogeneity” gives rise to tumor subclones that pos-
sess an evolutionary advantage over other subclones (they might, for example, grow faster
or be resistant to chemotherapy) and that eventually dominate the tumor (“clonal expan-
sion”). Here, the researchers investigate whether clonal evolution and the emergence of
subclonal tumor populations explains the development of chemotherapy-resistant
HGSOC by undertaking evolutionary inference and phylogenetic quantification of the het-
erogeneity of samples taken from women with HGSOC at different times and from differ-
ent places in their body. Evolutionary inference and phylogenetic quantification are
analytical approaches that can be used to reconstruct the evolutionary history (“family
tree”) of a tumor.

What Did the Researchers Do and Find?

The researchers used an algorithm (a step-by-step procedure for data processing) called
MEDICC to analyze detailed genetic data obtained from 135 spatially and temporally sep-
arated samples taken from 14 patients with HGSOC who had received platinum-based
chemotherapy. The researchers report that there were marked differences in the degree of
clonal expansion among the patients. When they split the patients into two groups based
on the degree of clonal expansion in their tumors (CE-high and CE-low), patients with tu-
mors classified as CE-high had a shorter progression-free survival time than patients with
tumors classified as CE-high (10.1 months compared to 12.7 months) and a shorter overall
survival time (23.5 months compared to 42.6 months). Moreover, a type of statistical anal-
ysis called bootstrap analysis, which tests for the robustness of the result, indicated that

Evolutionary Analysis of High-Grade Serous Ovarian Cancer

PLOSMedicine | DOI:10.1371/journal.pmed.1001789 February 24, 2015 19 / 20

267



having CE-high tumors was likely to increase a patient’s risk of a poor outcome. Finally,
phylogenetic analysis of samples taken from two patients before and after relapse and anal-
ysis of a NF1 deletion (NF1 encodes neurofibromin 1, a tumor suppressor protein that pre-
vents uncontrolled cell growth; NF1 is frequently mutated in HGSOC) indicated that a
resistant subclonal population was already present in the patients’ tumors before
treatment began.

What Do These Findings Mean?

These findings show that clonal expansion occurs between diagnosis and relapse in
HGSOC, that there are marked differences in the degree of clonal expansion among pa-
tients, and that a high degree of clonal expansion may have a negative effect on survival.
The accuracy of these findings is limited by the small number of patients included in the
study, and it is likely that the analyses reported here overestimate the effect of clonal ex-
pansion on patient outcomes. Nevertheless, the researchers suggest that, provided larger
patient studies yield similar results, quantitative measures of intra-tumor heterogeneity
might be useful as patient-specific prognostic markers in HGSOC. That is, measures of
intra-tumor heterogeneity might eventually help clinicians to predict which of their pa-
tients with ovarian cancer are likely to have the best outcomes after platinum-
based chemotherapy.

Additional Information

Please access these websites via the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001789.

• The US National Cancer Institute provides information about cancer and how it devel-
ops (in English and Spanish), including detailed information about ovarian cancer

• Cancer Research UK, a not-for-profit organization, provides general information about
cancer and how it develops, and detailed information about ovarian cancer

• The UK National Health Service Choices website has information and personal stories
about ovarian cancer

• The not-for-profit organization Healthtalk.org provides personal stories about dealing
with ovarian cancer; Eyes on the Prize, an online support group for women who have
had cancers of the female reproductive system, also includes personal stories; the not-
for-profit organization Ovarian Cancer Action also provides information, support, and
personal stories about ovarian cancer

• Wikipedia provides information about clonal evolution in cancer, tumor heterogeneity,
and phylogenetics (note that Wikipedia is a free online encyclopedia that anyone can
edit; available in several languages)

• More information about the MEDICC algorithm is available
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Noninvasive Identification and Monitoring of
Cancer Mutations by Targeted Deep
Sequencing of Plasma DNA
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Dana W. Y. Tsui,1* Fiona Kaper,4† Sarah-Jane Dawson,1,2,3 Anna M. Piskorz,1,2

Mercedes Jimenez-Linan,3,5 David Bentley,6 James Hadfield,1 Andrew P. May,4 Carlos Caldas,1,2,3,7

James D. Brenton,1,2,3,7‡ Nitzan Rosenfeld1,2‡

Plasma of cancer patients contains cell-free tumor DNA that carries information on tumor mutations and tumor
burden. Individual mutations have been probed using allele-specific assays, but sequencing of entire genes to de-
tect cancer mutations in circulating DNA has not been demonstrated. We developed a method for tagged-amplicon
deep sequencing (TAm-Seq) and screened 5995 genomic bases for low-frequency mutations. Using this method, we
identified cancer mutations present in circulating DNA at allele frequencies as low as 2%, with sensitivity and spec-
ificity of >97%. We identified mutations throughout the tumor suppressor gene TP53 in circulating DNA from 46
plasma samples of advanced ovarian cancer patients. We demonstrated use of TAm-Seq to noninvasively identify
the origin of metastatic relapse in a patient with multiple primary tumors. In another case, we identified in plasma
an EGFRmutation not found in an initial ovarian biopsy. We further used TAm-Seq to monitor tumor dynamics, and
tracked 10 concomitant mutations in plasma of a metastatic breast cancer patient over 16 months. This low-cost,
high-throughput method could facilitate analysis of circulating DNA as a noninvasive “liquid biopsy” for person-
alized cancer genomics.

INTRODUCTION

Circulating cell-free DNA extracted from plasma or other body fluids
has potentially transformative applications in cancer management
(1–7). Characterization of tumor mutation profiles is required for in-
formed choice of therapy, given that biological agents target specific
pathways and effectiveness may be modulated by specific mutations
(8–11). Yet, mutation profiles in different metastatic clones can differ
significantly from each other or from the parent primary tumor (12, 13).
Evolutionary changes within the cancer can alter the mutational spec-
trum of the disease and its responsiveness to therapies, which may
necessitate repeat biopsies (14–17). Biopsies are invasive and costly and
only provide a snapshot of mutations present at a given time and lo-
cation. For some applications, mutation detection in plasma DNA as a
“liquid biopsy” could potentially replace invasive biopsies as a means
to assess tumor genetic characteristics (2–7). Sensitive methods for de-
tecting cancer mutations in plasma may find use in early detection
screening (1), prognosis, monitoring tumor dynamics over time, or de-
tection of minimal residual disease (3, 18, 19). In high-grade serous

ovarian carcinomas (HGSOC), mutations in the tumor suppressor
gene TP53 have been observed in 97% of cases (20, 21), but these are
located throughout the gene and are difficult to assay. A cost-effective
method that could detect and measure allele frequency (AF) of TP53
mutations in plasma may be highly applicable as a biomarker for
HGSOC (22).

Circulating DNA is fragmented to an average length of 140 to
170 base pairs (bp) and is present in only a few thousand ampli-
fiable copies per milliliter of blood, of which only a fraction may be
diagnostically relevant (2, 3, 23–25). Recent advances in noninvasive
prenatal diagnostics highlight the clinical potential of circulating
DNA (25–28), but also the challenges involved in analysis of circulating
tumor DNA (ctDNA), where mutated loci and AFs may be more var-
iable. Various methods have been optimized to detect extremely rare
alleles (1, 2, 6, 7, 29–31), and can assay for predefined or hotspot
mutations. These methods, however, interrogate individual or few
loci and have limited ability to identify mutations in genes that lack
mutation hotspots, such as the TP53 and PTEN tumor suppressor
genes (32). In patients with more advanced cancers, ctDNA can com-
prise as much as 1% to 10% or more of circulating DNA (2), presenting
an opportunity for more extensive genomic analysis. Targeted
resequencing has been recently used to identify mutations in selected
genes at AFs as low as 5% (33–35). However, identifying mutations
across sizeable genomic regions spanning entire genes at an AF as
low as 2%, or in few nanograms of fragmented template from circu-
lating DNA, has been more challenging.

In response, we describe a tool for noninvasive mutation analysis
on the basis of tagged-amplicon deep sequencing (TAm-Seq), which
allows amplification and deep sequencing of genomic regions span-
ning thousands of bases from as little as individual copies of fragmented
DNA. We applied this technique for detection of both abundant and
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rare mutations in circulating DNA from blood plasma of ovarian and
breast cancer patients. This sequencing approach allowed us to
monitor changes in tumor burden by sampling only patient plasma
over time. Combined with faster, more accurate sequencing technolo-
gies or rare allele amplification strategies, this approach could poten-
tially be used for personalized medicine at point of care.

RESULTS

Targeted deep sequencing of fragmented DNA by TAm-Seq
To amplify and sequence fragmented DNA, we designed primers to
generate amplicons that tile regions of interest in short segments of
about 150 to 200 bases (Fig. 1A and table S1), incorporating universal
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Fig. 1. Overview of tagged amplicon sequencing (TAm-Seq). (A) Illustration
of amplicon design. Primers were designed to amplify regions of interest in
overlapping short amplicons (table S1). Amplicon design is illustrated for a
region covering exons 5 to 6 of TP53. Colored bars, segmented into forward
and reverse reads, show regions covered by different amplicons (excluding
primer regions). Sequencing adaptors are attached at either end, such that a
single-end read generates separate sets of forward and reverse reads (fig. S1).
Because amplicons are mostly shorter than 200 bp, the forward and reverse
reads also partially overlap. Figure adapted fromUniversity of California, Santa
Cruz, Genome Browser (http://genome.ucsc.edu/). (B) Workflow overview. Mul-
tiple regions were amplified in parallel. An initial preamplification step was

performed for 15 cycles using a pool of the target-specific primer pairs to pre-
serve representationofall alleles in thetemplatematerial. Theschematicdiagram
showsDNAmolecules that carrymutations (red stars) being amplified alongside
wild-typemolecules. Regions of interest in thepreamplifiedmaterialwere then
selectively amplified in individual (single-plex) PCR, thus excluding nonspecific
products. Finally, sequencing adaptors and sample-specific barcodes were
attached to the harvested amplicons in a further PCR. (C) Distribution of ob-
served nonreference read frequencies, averaged over 47 FFPE samples, across
all loci and all nonreference bases. Inset expands the low-frequency range. (D)
Distribution of the observed background nonreference read frequencies aver-
aged over 47 FFPE samples for the 12 different A/C/G/T base substitutions.
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adaptors at 5′ ends (fig. S1). Performing single-plex amplification with
each of these primer pairs would require dispersing the initial sam-
ple into many separate reactions, considerably increasing the prob-
ability of sampling errors and allelic loss. Multiplex amplification
using a large set of primers could result in nonspecific amplification
products and biased coverage. We therefore applied a two-step ampli-
fication process: a limited-cycle preamplification step where all primer
sets were used together to capture the starting molecules present in
the template, followed by individual amplification to purify and select
for intended targets (Fig. 1B) (Supplementary Methods). The final
concentration of each primer in the preamplification reaction was
50 nM, reducing the potential for interprimer interactions, and 15 cy-
cles of long-extension (4 min) polymerase chain reaction (PCR) were
used to remain in the exponential phase of amplification. We used a
microfluidic system (Access Array, Fluidigm) to perform parallel single-
plex amplification from multiple preamplified samples using multiple
primer sets. An additional PCR step attached sequencing adaptors
(fig. S1) and tagged each sample by a unique molecular identifier
or “barcode” (table S2). Sequencing adaptors were separately attached
at either end and the products mixed together, such that single-end
sequencing generated separate sets of forward and reverse reads. We
performed 100-base single-end sequencing (GAIIx sequencer, Illumina),
with an additional 10 cycles using the barcode sequencing primer,
generating ~30 million reads per lane. This produced an average read
depth of 3250 for each of 96 barcoded samples for 48 amplicons read
in two possible orientations.

Validation and sensitivity for mutation identification in
ovarian tumor samples
We designed a set of 48 primer pairs to amplify 5995 bases of genomic
sequence covering coding regions (exons and exon junctions) of TP53
and PTEN, and selected regions in EGFR, BRAF, KRAS, and PIK3CA
(table S1) by overlapping short amplicons (Fig. 1A). The sequenced
regions cover mutations that account for 38% of all point mutations
in the COSMIC database (v55) (32). We used TAm-Seq to sequence
DNA extracted from 47 formalin-fixed, paraffin-embedded (FFPE)
tumor specimens of ovarian cancers (table S3), which were also se-
quenced for TP53 by Sanger sequencing (36) (Supplementary Meth-
ods). DNA extracted from FFPE samples is generally degraded and
fragmented as a result of fixation and long-term ambient storage. We
amplified DNA from each sample in duplicate, tagging each replicate
with a different barcode. Using a single lane of sequencing, we gen-
erated 3.5 gigabases of data passing signal purity filters, producing
mean read depth of 3200 above Q30 for each of the 9024 expected
read groups (48 amplicons × 2 directions × 94 barcoded samples). Back-
ground frequencies of nonreference reads were ~0.1% (median, 0.03%;
mean, 0.2%; in keeping with Q30 quality threshold applied), yet varied
substantially between loci and base substitutions (Fig. 1C) and showed
a clear bias toward purine/pyrimidine conservation (Fig. 1D). Sixty-six
percent of loci had mean background rate of <0.1%, and 96% of loci
had background rate of <0.6%.

The data set interrogated nearly 18,000 possible single-base substi-
tutions for each sample, which introduces a risk of false detection. To
control for sporadic PCR errors and reduce false positives, we called
point mutations in a sample only if nonreference AFs were above the
respective substitution-specific background distribution at a high con-
fidence margin (0.9995 or greater), and ranked high in the list of non-
reference AFs, in both replicates (Supplementary Methods). Duplicate

sequencing data were obtained for 44 samples, and 43 single-base sub-
stitutions were called (table S3). These matched 100% of mutations
identified by Sanger sequencing and included three additional muta-
tions at low AFs that were below detection thresholds of Sanger sequenc-
ing (fig. S2). The upper bound of AFs that may have been missed was
estimated (Supplementary Methods) at <5% for 36 of 44 FFPE sam-
ples (82%) and <10% for 42 of 44 samples (95%), with median value
of 1.3% and mean value of 2.7%. Mutant AFs were highly reproduc-
ible in duplicate samples. For 42 of 43 mutations called, the difference
in measured frequency between duplicates was less than 0.08, and the
relative difference was 25% or less (Fig. 2A). Mutant AFs correlated
significantly with tumor cellularity in the FFPE block (correlation
coefficient = 0.422; P = 0.0049, t test) (Fig. 2B).

In a separate run, we sequenced libraries prepared from six differ-
ent diluted mixtures of six FFPE samples, with a different known point
mutation in TP53 in each, to mean read depth of 5600. Of more than
100,000 possible non-SNP (single-nucleotide polymorphism) substitu-
tions, we identified all 33 expected point mutations present at AF >1%,
including 6 mutations present at AF <2%, with one false-positive called
with AF = 1.9%. Using less stringent parameters (Supplementary Meth-
ods), we identified three additional mutations present at AF = 0.6%
(Fig. 2C), with no additional false positives. Thus, we obtained 100%
sensitivity, identifying mutations at AFs as low as 0.6%. A positive pre-
dictive value (PPV) of 100% was calculated for mutations at AF >2%,
and a PPV of 90% for mutations identified at AF <2% (Fig. 2D).

Quantitative limitations of mutation detection
When applying TAm-Seq to measure a predefined mutation (as op-
posed to screening thousands of possible substitutions), the frequency
of the mutant allele can be read out directly from the data at the
desired locus. False detection is less likely, and criteria for confident
mutation detection for a predefined substitution can be less stringent
than those described above for de novo mutation identification (Sup-
plementary Methods). The minimal nonreference AFs that could be
detected depend on the read depth and background rates of nonrefer-
ence reads, which vary per locus and substitution type. Minimal de-
tectable frequencies increase when higher confidence margins are used
(Supplementary Methods) and had a median value of 0.14% at con-
fidence margin of 0.95 and 0.18% at confidence margin of 0.99 (fig.
S3). The minimal detectable frequency would also be limited if a min-
imal number of reads is applied for confident mutation detection; for
example, a minimum of 10 reads implies that sequencing depth of
5000 would be required to detect mutations at AF as low as 0.2%.
For alleles present at ~10 or fewer copies in the starting template, re-
producibility would also be limited by sampling noise, because these
alleles may be over- or underrepresented in any particular reaction.

To characterize the quantitative accuracy of TAm-Seq as applied to
circulating DNA, we simulated rare circulating tumor mutations by
mixing plasma DNA from two healthy individuals. Using the same
set of primers as used for the FFPE experiment, we identified that
these two individuals differed at five known SNP loci (table S4). Total
amplifiable copies in both plasma DNA samples were determined by
digital PCR and mixed to obtain minor AFs ranging from 0.16% to
40% (Supplementary Methods). We sequenced diluted templates
containing between 250 and <1 expected copy of the minor allele (ta-
ble S5). The coefficient of variation (CV) of the observed AFs was
equal on average to the inverse square root (1/√n) of the expected
number of copies of the rare allele (Fig. 3A), which is the theoretical

R E S EARCH ART I C L E

www.ScienceTranslationalMedicine.org 30 May 2012 Vol 4 Issue 136 136ra68 3

 by guest on A
ugust 15, 2018

http://stm
.sciencem

ag.org/
D

ow
nloaded from

 

271

http://stm.sciencemag.org/


limit of accuracy set by the Poisson distribution for independently
segregating molecules. We compared the observed AF to the expected
AF for cases where more than six copies of the minor allele were
expected. Of 24 such cases, the root mean square (RMS) relative error
between the expected and the observed frequency was 14%, with on-
ly 2 of 24 cases exhibiting more than 20% discrepancy. For samples
with expected minor AF of 0.025, the RMS error was 23% (Fig. 3B).

Noninvasive identification of cancer mutations
in plasma circulating DNA
We applied TAm-Seq to directly identify mutations in plasma of can-
cer patients. We studied a cohort of samples from individuals with
HGSOC. These samples were first analyzed for tumor-specific muta-
tions using digital PCR (Supplementary Methods), a method that is
highly accurate (2, 3, 7, 37) but requires design and validation of
a different assay for every mutation screened and relies on previous
identification of mutations in tumor samples from the same patients
(2, 3). We initially selected for analysis seven cases that had relatively
high levels of circulating mutant TP53DNA in the plasma (as assessed
by digital PCR). Using the equivalent amount of DNA present in 30

to 120 ml of plasma, we performed du-
plicate preamplification reactions for each
sample. For all seven patients, TP53 tu-
mor mutations were identified in the cir-
culating DNA at frequencies of 4% to 44%
(Table 1). In one plasma sample collected
from an ovarian cancer patient at relapse,
we also identified a de novo mutation in the
tyrosine kinase domain of EGFR (exon 21),
at AF of 6% (patient 27, Table 1). We sub-
sequently validated the presence of this
mutation in plasma by performing repli-
cate Sanger sequencing reactions of highly
diluted template (Supplementary Meth-
ods), and 4 of 91 wells that were successful-
ly Sanger-sequenced contained the EGFR
mutation (fig. S4). We further validated
the presence of this mutation by design-
ing a sequence-specific TaqMan probe
targeting this mutation and performing
digital PCR (Table 1). The mutation was
also identified by TAm-Seq in additional
plasma collected from the same individual
(sample 16, Table 2). This mutation in
EGFR was not found in the ovarian mass
removed by interval debulking surgery
15 months before the blood sample was
collected, although the same sample did
contain the concomitant TP53 mutation
found in the same patient’s plasma, at AF
of 85% (patient 27, table S3). We subse-
quently used TAm-Seq to sequence seven
additional samples collected at the time
of initial surgery including deposits in
right and left ovaries and omentum. The
EGFR mutation was detected in the two
omental samples above the 0.99 confi-
dence margin (fig. S3) at AF of 0.7%, but

was not detected in the six ovarian samples (below the 0.8 confidence
margin). Without previous identification in plasma, this mutation
would not have been directly identified on screening those samples
using high-specificity mutation identification criteria owing to its
low AF. In contrast, the TP53 mutation was identifiable in all biopsy
and plasma samples (Fig. 4A). The frequency of mutant alleles in the
relapsed tumor could not be directly assessed because a biopsy at re-
lapse was not available.

We validated the TAm-Seq method on a larger panel of plasma
samples in which levels of tumor-specific mutations were measured
in parallel using patient-specific digital PCR assays. DNA extracted
from 62 additional plasma samples collected at different time points
from 37 patients with advanced HGSOC was amplified in duplicate
(table S6), using DNA present in ~0.15 ml of plasma per reaction
(range, 0.06 to 0.2 ml). Amplicon libraries were tagged and pooled
together for sequencing with libraries prepared from 24 control sam-
ples. This generated an average sequencing depth of 650 for 62 plasma
samples, sufficient to detect mutations present at AFs of 1% to 2%. Of
>1.5 million possible substitutions, 42 mutations were called using
the parameters previously optimized for FFPE analysis (table S6).
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Fig. 2. Identification of mutations in ovarian cancer FFPE samples by TAm-Seq. (A) Concordance be-
tween duplicate measurements of AFs of mutations identified in fragmented DNA extracted from
FFPE samples. The mutation frequency in each library was calculated as the fraction of reads with
the mutant (nonreference) base. Solid line indicates equality. Dotted lines indicate a difference in
AF of 0.05. (B) Correlation of AF with FFPE tumor cellularity. The measured mutant AF (average of
both repeats) correlated significantly with the cellularity, estimated from histology (table S3). (C) Con-
cordance between duplicate measurements of AFs of mutations identified in a mixture of DNA
extracted from different FFPE samples. (D) Summary of mutations called in FFPE using TAm-Seq,
sorted by increasing AF. Dotted line indicates AF of 2%.
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Table 1. Mutations identified by TAm-Seq in plasma samples from seven
ovarian cancer patients. TAm-Seq was used to sequence DNA extracted
from plasma of subjects with HGSOC (stage III/IV at diagnosis). Plasma
was collected when patients presented with relapse disease, before initia-
tion of chemotherapy. For patient 46, DNA from a formalin-fixed, paraffin-

embedded (FFPE) sample was not included in the TAm-Seq set and the
mutation was validated in FFPE by Sanger sequencing. CA125 was
measured at time of plasma collection. Mean depth of coverage at the mu-
tation locus in the TAm-Seq data was averaged over the repeats (RMS
deviation = 850). AF, allele frequency; N, no; Y, yes.

Patient
ID

Age at
diagnosis

Time elapsed
since surgery
(months);
number of
previous
lines of

chemotherapy

CA125
(U/ml)

Plasma per
amplification

reaction
(ml)

Gene

Mutation
and base
change
(genome

build hg19)

Protein
change

Detected
in

FFPE

Mean
depth

(sequencing
reads)

Mean AF
using

TAm-Seq

Mean
AF

using
digital
PCR

8 60 13; 1 2122 50 TP53 17:7577120 C>T p.R273H Y 5000 0.09 0.10

12 62 27; 3 365 50 TP53 17:7577579 G>T p.Y234* Y 5000 0.10 0.08

14 58 50; 3 260 120 TP53 17:7578212 G>A p.R213* Y 5800 0.15 0.12

25 61 9; 1 944 110 TP53 17:7578404 A>T p.C176S Y 4800 0.04 0.08

27† 68 15; 1 1051 90 TP53 17:7578262 C>G p.R196P Y 7700 0.06 0.14

EGFR 7:55259437 G>A p.R832H N 5700 0.06 0.05

31 64 12; 1 313 30 TP53 17:7578406 C>T p.R175H Y 4500 0.44 0.56

46 56 30; 2 1509 30 TP53 17:7578406 C>T p.R175H Y 4200 0.23 0.30

*Indicates stop codon. †Both a TP53 and an EGFR mutation were identified in this sample (Fig. 4A).

Fig. 3. Noninvasive identification and
quantification of cancer mutations in plasma
DNA by TAm-Seq. (A) Sampling noise in
sequencing of sparse DNA using dilutions
of plasma DNA from healthy individuals.
CV of triplicate AF readings was calculated
for each of the five SNPs in each of the
mixes, which had varying numbers of copies
of the minor allele (n) (blue dots). Bin av-
erages (red diamonds) are the mean CVs
calculated for each bin (bin edges denoted
by the dotted vertical lines). A linear fit to
the log2 of the mean CV as a function of
the log2 expected copy number was cal-
culated (black line). Two data points, with
(n = 100, CV = 0.0064) and (n = 32, CV =
0.0185), were omitted from the figure for
enhanced scaling. Three data points with
minor allele copies of <0.8 were omitted
from the analysis (n = 0.51, CV = 0.62; n =
0.41, CV = 0.86; n = 0.20, CV = 0.99). (B)
Expected versus observed frequency of
rare alleles in a dilution series of circulating
DNA. Mean observed frequency was calcu-
lated for each of five SNPs for samples,
where expected initial number of minor
allele copies was greater than 6. Expected
frequencies were calculated on the basis
of quantification by digital PCR. Dotted
lines represent 20% deviation from the ex-
pected frequencies. Inset highlights cases
with expected minor AF <0.025. (C) Muta-
tions identified in 62 plasma samples from patients with advanced HGSOC
using TAm-Seq. AFs are based on digital PCR measurement for con-
firmed mutations (identified or missed by TAm-Seq), and on TAm-Seq
for the false positives called using parameters optimized for analysis

of FFPE samples. The dashed horizontal line indicates AF of 2%. Mu-
tations detected by digital PCR at AF <1% are not shown. (D) AFs
measured by TAm-Seq versus digital PCR for mutations identified in
plasma DNA.
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Table 2. Mutations identified by TAm-Seq in a set of 62 plasma sam-
ples from ovarian cancer patients. Forty mutations were identified by
TAm-Seq using stringent parameters for mutation calling. Plasma sam-

ples described in this table are distinct from those in Table 1, but pa-
tients included overlap. Additional data on patients and mutations are
provided in table S6.

Sample
number

Plasma volume per
amplification reaction (ml)

DNA amount per
amplification reaction (ng)

Gene
Protein
change

Mean depth
(sequencing reads)

Mean AF using
TAm-Seq

Mean AF using
digital PCR

1 70 0.9 TP53 p.R273C 640 0.260 0.167

2 160 4.2 TP53 p.R248Q 340 0.244 0.150

3 160 5.7 TP53 p.R248Q 640 0.507 0.410

4 120 9.9 TP53 p.R213X 810 0.059 0.035

5 120 1.4 TP53 p.C141Y 680 0.021 0.013

6 120 2.1 TP53 p.C141Y 720 0.044 0.038

7 190 17.9 TP53 p.I195N 800 0.091 0.081

8 160 14.8 TP53 p.R175H 510 0.608 0.627

9 160 10.7 TP53 p.R175H 550 0.526 0.604

10 160 6.1 TP53 p.R175H 530 0.651 0.682

11 160 4.9 TP53 p.R175H 490 0.526 0.581

13 160 2.8 TP53 p.C135R 480 0.039 0.045

14 160 2.5 TP53 p.C135R 610 0.046 0.120

15 160 3.0 TP53 p.C135R 470 0.091 0.068

16† 130 3.7 TP53 p.R196P 1070 0.088 0.135

EGFR p.R832H 614 0.048 0.050

17 160 4.2 TP53 p.C176S 580 0.113 0.432

18 160 4.4 TP53 p.C176S 620 0.029 0.108

20 140 5.2 TP53 p.R175H 650 0.201 0.226

21 140 3.6 TP53 p.R175H 650 0.085 0.074

22 140 4.1 TP53 p.R175H 630 0.081 0.125

23 140 3.7 TP53 p.R175H 710 0.074 0.106

24 140 7.1 TP53 p.R175H 760 0.269 0.286

25 130 3.9 TP53 p.R273H 750 0.094 0.099

26 160 5.7 TP53 p.R282W 640 0.048 0.061

27 150 3.6 TP53 p.C141Y 480 0.321 0.364

29 150 9.5 TP53 p.E258K 190 0.548 0.253

31 160 3.6 TP53 p.C135Y 620 0.040 0.034

32 140 2.4 TP53 p.E56X 1480 0.137 0.122

33 160 13.2 TP53 p.K132N 740 0.216 0.206

34 60 5.3 TP53 p.K132N 570 0.151 0.201

36 160 5.8 TP53 p.K132N 620 0.191 0.275

37 160 9.4 TP53 p.K132N 530 0.287 0.362

38 160 10.1 TP53 p.K132N 590 0.275 0.331

39 160 16.4 TP53 p.K132N 700 0.315 0.323

40 160 19.7 TP53 p.K132N 830 0.435 0.482

41 160 15.0 TP53 p.K132N 730 0.452 0.445

42 160 8.5 TP53 p.K132N 560 0.185 0.245

43 150 3.6 TP53 Splicing 680 0.143 0.121

44‡ 170 5.2 TP53 p.C238R 1543 0.071 0.073

†Both a TP53 and an EGFRmutation were identified in this sample, collected from patient 27 (Table 1), 25 months after initial surgery (Fig. 4A). ‡The amplicon containing the mutation failed
amplification in this sample in the initial experiment and was identified successfully in repeat analysis.
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Thirty-nine of these matchedmutations detected by digital PCR in those
samples (Fig. 3C). Three potential false positives were called, at AF
of 3.1%, 1.3%, and 0.7% (the latter in a control sample). Using higher-

stringency parameters for mutation identification (Supplementary
Methods), we retained only the 39 validated mutations called, with
no false positives (Table 2).
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Fig. 4. Clinically relevant applications of plasma DNA sequencing using
TAm-Seq. (A) Retrospective analysis by TAm-Seq of plasma samples col-
lected during patient follow-up and biopsy specimens collected at initial sur-
gery. We identified a mutation in exon 21 of EGFR (dark blue boxes) in two
separate plasma samples, collected 15 and 25 months after initial surgery
from patient 27 (Tables 1 and 2). This mutation was not directly identified
in eight tumor biopsy specimens collected at the time of initial surgery (two
from omental mass, two from left ovary, and four from right ovary). Having
identified the mutation in the plasma samples, we examined this mutation
using the lower-specificity criteria defined for mutation detection (Supple-
mentary Methods) and detected the mutation in the two specimens that
hadbeen collected from the omentumat the timeof surgery (light blue boxes)
but not in the six ovarian specimens. A mutation in TP53 was identified in all
tumor and plasma samples collected from this patient (Tables 1 and 2 and
table S3), but not in white blood cells (buffy coat). Percentages indicate mu-
tant AFs. Empty boxes and “ND” indicate samples where a mutation was not
identified or detected (below 0.8 confidencemargin). (B) Monitoring frequency

of mutant DNA in plasma of an ovarian cancer patient (patient 46) over time
using TAm-Seq and digital PCR. TAm-Seq results are reported as the mean fre-
quency of duplicate analyses. Parallel data are shown for digital PCR and serum
CA125. Shaded regions indicate periods of chemotherapy, and vertical
dashed lines indicate radiological assessment of patient responses: PR, partial
response; SD, stable disease; PD, progressive disease. (C) Monitoring frequency
of mutant DNA in plasma of an ovarian cancer patient (patient 31) over time.
(D) Dynamics of 10 tumor-specificmutations inplasmaof abreast cancerpatient
(not included in theother sets of samples analyzed). (E) Retrospective analysis
of samples from synchronous primary tumors (bowel and ovarian) collected at
the time of initial surgery and three plasma samples collected at relapse. In
primary tumors from this patient (not included in the other sets of samples
analyzed), a TP53mutationwas identified in the ovarian cancer (red box), and
mutations in PIK3CA, KRAS, and TP53 were identified in the bowel cancer
(green box). At relapse, a biopsy was not performed on the pelvic mass. The
TP53mutation that was identified in the ovarian primary tumor (p.R273H) was
detected inplasma,whereas thebowel-associatedmutationswerenotdetected.
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Of 40 point mutations detected at AF >2% by digital PCR, 38
(95%) were identified by TAm-Seq in a single experiment (Fig. 3C).
One additional mutation was located in an amplicon that failed in that
sample and was identified in repeated analysis; the other was likely
missed by TAm-Seq owing to sampling noise, because it was found
in one of the duplicate preamplified libraries but not the other (table
S6). One of three mutations detected by digital PCR at 1% < AF < 2%
was identified by TAm-Seq (Fig. 3C). Eleven additional point mutations
detected by digital PCR at AF <1% were not detected by TAm-Seq at
these settings. TAm-Seq and digital PCR measurements of AF had ex-
cellent agreement, with correlation coefficient of 0.90, increasing to
0.97 when discarding the two strongest outliers (Fig. 3D). Thus, we
screened 62 samples across sizeable genomic stretches, using minute
amounts of plasma DNA (median, 4 ng), and obtained 97.5% sensitivity
with PPV of 100% for identifying mutations at AF >2% in plasma by
TAm-Seq. Using parameters optimized for FFPE samples, one potential
false positive was called at AF >2%, reducing the PPV to 97.5% (Table 3).

Monitoring levels of ctDNA
Various methods have been suggested to monitor changes in muta-
tion load in plasma. These can have enhanced sensitivity compared to
TAm-Seq for tracking individual mutations, but require design of per-
sonalized assays (3, 18, 19). None of these methods have been widely
adopted. We therefore applied TAm-Seq as a generic tool to measure
changes in the frequency of ctDNA over time. We studied serial plasma

samples collected during follow-up and treatment of two patients with
relapsed HGSOC, collected during 104 and 273 days of follow-up and
treatment, respectively. Frequencies of mutant TP53 alleles were mea-
sured by TAm-Seq and in parallel by digital PCR using a mutation-
specific probe. The two methods of quantification had excellent
agreement. Mutant AFs in plasma of ovarian cancer patients re-
flected well the clinical course of the disease compared to the serum
marker CA125, showed marked decrease when systemic treatment
was initiated, and increased in parallel to disease progression. In the
first case (Fig. 4B), a 56-year-old woman with relapsed ovarian cancer
(patient 46) was treated with fourth-line carboplatin + paclitaxel
chemotherapy for six cycles (pink-shaded region). Radiology showed
partial response on mid-treatment computed tomography (CT) scan.
End-of-treatment CT showed stable disease. Twelve weeks from the
end of her fourth-line treatment, the patient developed progressive dis-
ease. The patient then initiated fifth-line chemotherapy with liposomal
doxorubicin (purple-shaded region). In the second case (Fig. 4C), a 64-
year-old woman with relapsed ovarian cancer (patient 31) was treated
with second-line ECX (epirubicin, cisplatin, and capecitabine) chemo-
therapy for six cycles. Radiology showed stable disease on mid- and
end-of-treatment CT scans. The patient then remained off treatment,
until she progressed 3 months later.

TAm-Seq can be flexibly adapted to sequence different genomic
regions by designing primers to amplify regions of interest. We used
this capability to study dynamics of multiple mutations in parallel.

Table 3. Summary of mutations identified in 69 plasma samples of ovarian cancer patients. Samples were analyzed by TAm-Seq and in parallel by digital
PCR. Using parameters optimized for plasma DNA, false-positive calls were lost, whereas all confirmed calls were retained, resulting in specificity and PPV
of 100%.

First set of plasma samples

Plasma samples analyzed 7

Point mutations originally detected by digital PCR, using patient-specific assays targeting mutations identified in tumor samples 7

Point mutations identified directly in plasma by TAm-Seq 8

De novo mutations identified by TAm-Seq only, subsequently confirmed by digital PCR 1

Second set of plasma samples

Plasma samples analyzed 62

Point mutations detected by digital PCR at AF >2% 40

Point mutations with AF >2% (by digital PCR) identified by TAm-Seq 39

Point mutations missed by TAm-Seq due to sampling error 1

Sensitivity of TAm-Seq for identifying mutations at AF >2% 97.5%

PPV of mutations called by TAm-Seq with AF >2% 97.5%*

ctDNA in ovarian cancer

Advanced ovarian cancer patients in both sets† 38

Patients where TAm-Seq identified cancer mutations 20

*One unconfirmed substitution was called at AF >2% using parameters optimized for FFPE material. †The first set included 7 patients (Table 1), and the second set included 37 patients
(table S6), 6 of whom overlap.
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Whole-genome sequencing of tumor material was used to identify tu-
mor mutations in a patient with metastatic breast cancer undergoing
two phases of chemotherapy. Ten mutations were selected, and short
amplicons (<120 bp) were designed to cover the mutation loci (table
S7). Serial plasma samples were collected over the course of 497 days,
both before and after treatment. We performed TAm-Seq in duplicate,
using DNA from 0.08 ml of plasma per amplification, and tracked
dynamics of all mutations in parallel (Fig. 4D). The patient was treated
with single-agent epirubicin (gray-shaded region). After 4 months off
treatment, a CT scan showed progressive disease and the patient com-
menced further treatment with paclitaxel chemotherapy. The 10 mu-
tations followed a common pattern of sharp decline in AF upon onset
of therapy and an increase in AF upon disease progression after ter-
mination of therapy (Fig. 4D).

Finally, we used TAm-Seq to study plasma from a patient who had
a history of two synchronous primary cancers, bowel and ovarian, which
were resected simultaneously. After a 5-year remission, a pelvic mass of
uncertain origin was detected. A biopsy was considered to guide selec-
tion of therapy but was not performed owing to risk of complications
and comorbidities. The patient commenced empirically on an ovarian
cancer chemotherapy regimen, to which she responded. Retrospective
analysis by TAm-Seq of FFPE from the primary tumors collected at
initial surgery, and three plasma samples collected serially at the time
of relapse (5 years and 5 months, 5 years and 7 months, and 6 years
after initial surgery), showed that the patient’s plasma at relapse con-
tained the TP53 (p.R273H) mutation identified in the ovarian primary
tumor (exceeding the 0.98, 0.93, and 0.97 confidence margins, respec-
tively), but not the PIK3CA (p.E545K), KRAS (p.G12V), or TP53
(p.R248W) mutations identified in the primary bowel cancer (below
the 0.8 confidence margin) (Fig. 4E). Had these results been available,
uncertainty and treatment delays may have been avoided, as well as the
risk of prescribing chemotherapy for an inappropriate tumor site. An
alternative possible outcomemay have involved a finding of the PIK3CA
orKRASmutations (present in the primary bowel cancer) in the patient’s
plasma at the time of relapse. Such a finding, if available to clinicians at
the time,may not only have led to alternate chemotherapy being offered
but may have also opened the possibility of enrolment into a trial for
targeted therapy with mammalian target of rapamycin (mTOR), phos-
phatidylinositol 3-kinase (PI3K), ormitogen-activatedprotein kinase ki-
nase (MEK) inhibitors (11).

DISCUSSION

Detection of rare mutations in circulating DNA has long been pursued
owing to its potentially transformative impact on cancer diagnosis and
management. Important progress has been made using sequence-
specific assays that target predefined mutations and that detect ex-
tremely rare alleles. Assays such as PCR (6, 7), ligation (5), and primer
extension/mass spectrometry (27) can identify specific, predefined
mutations in plasma samples. Enhanced detection down to 1 mutant
allele in 10,000 or more wild-type alleles can be obtained using a va-
riety of methods, such as peptide nucleic acid and primer extension
(“PPEM”) (38), ligation followed by quantitative PCR (“LigAmp”) (39),
bead-based digital PCR in emulsions (“BEAMing”) (2, 3), microfluidic-
based (7) or droplet-based digital PCR (40), or microinsertion/deletion/
indel-activated pyrophosphorolysis (“MAP”) (29). Nonetheless, iden-
tification of rare mutations in tumor suppressor genes such as TP53,

which are widely mutated in cancers but lack a well-defined hotspot
region, remains an elusive goal.

In patients with advanced cancers, mutant alleles can reach a size-
able fraction of DNA. For example, Dukes’ D colorectal cancers have
median 8% mutant AF (2). Screening of entire genes for mutations
would therefore be useful for some applications, even if analytical se-
lectivity is limited to a few percent. Advances in massively parallel se-
quencing make new approaches possible. These have largely focused
on large-scale analyses, including whole-genome or whole-exome se-
quencing (41). This generates a large amount of data on genomic re-
gions that do not, at present, inform clinical decisions. Moreover, the
depth of coverage for clinically significant loci is not sufficient to de-
tect changes that occur at low frequency (<5%). Such approaches have
recently been complemented by methods for examination of individ-
ual amplicons at great depth (30).

The intermediate scale of sequencing is most likely to have imme-
diate impact on clinical genomics. Targeted sequencing has been ap-
plied for tumor DNA (34, 35) and cyst fluid (33) to detect mutations
down to 5% AF, but has not been applied for analysis of circulating
tumor nucleic acids. Here, we demonstrate noninvasive identification
of mutant alleles in plasma, at AFs as low as 2%, by targeted deep se-
quencing of circulating DNA. Our TAm-Seq method uses a combina-
tion of short amplicons, two-step amplification, sample barcodes, and
high-throughput PCR. Because the amplicons are short, this method
effectively amplifies even small amounts of fragmented DNA such as
are present in circulating DNA. The two-step amplification permits
extensive primer multiplexing that enables the amplification and se-
quencing of sizeable genomic regions by tiling short amplicons without
loss of fidelity or efficiency. Duplicate sequencing of each sample is used
to avoid false positives stemming from PCR errors. Sample barcodes
and high-throughput PCR reduce the per-sample costs to a range where
this may be widely applicable. Preparing TAm-Seq libraries for se-
quencing from 48 samples takes less than 24 hours and involves only
few hours of hands-on time. New platforms for massively parallel se-
quencing allow for fast turnaround times, which make this approach
practical in a clinical setting.

The sensitivity presently achieved can provide useful diagnostic in-
formation in certain advanced cancers. We studied a cohort of sub-
jects with advanced HGSOC in which the tumor suppressor gene TP53
is a driver mutation (20). Of the 69 plasma samples collected from
38 different individuals with advanced HGSOC, we identified muta-
tions in TP53 in 46 samples (67%) from 20 of the cases (53%). In con-
trast, a previous study using a ligase detection reaction with bespoke
primers found mutated TP53 sequences in plasma for only 30% of
advanced ovarian cancer patients (5), and a study using single-strand
conformation polymorphism found no ctDNA in preoperative plasma
samples from high-grade serous cancer patients (42).

Targeted agents, such as inhibitors of poly(adenosine diphosphate–
ribose) polymerase (PARP), or tyrosine kinase inhibitors targeting
epidermal growth factor receptor (EGFR), may be applicable for sys-
temic treatment of advanced HGSOC (8, 10, 22). In a recent study of
203 HGSOC tumors, EGFR was found to be the most frequently mu-
tated oncogene and was mutated in nearly 10% of cases (10). In one
case, we identified in plasma a de novo mutation in the tyrosine kinase
domain (exon 21) of EGFR, located 26 amino acids upstream of the
L858R activating mutation widely documented for lung cancer. In a
subset of tumor samples collected from the same patient 15 months
earlier, this mutation was detected at AF of 0.7%, but could not have
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been identified by analysis of those samples alone without previous
knowledge of the mutation identified in plasma (Fig. 4A). In a clinical
setting, identification of such a mutation could potentially guide treat-
ment with alternative molecularly targeted therapy (10). Current clinical
recommendations in lung adenocarcinoma suggest mutation assess-
ment in exons 18 to 21 of EGFR (a region of ~560 bp) in the tumor tis-
sue to identify patients eligible for treatment with gefitinib or erlotinib
(9). Using a commercial PCR-based in vitro diagnostic kit (Qiagen),
28 different EGFR variants can be assayed (not including the mutation
we identified), but the sample needs to be subdivided into seven dif-
ferent reactions. When sample is limited or mutant alleles are rare, this
could introduce sampling errors.

Using standard amplification primers tailored to the mutation loci,
we also used TAm-Seq to monitor the dynamics of 10 mutations in
plasma DNA of a single patient with metastatic breast cancer, using
minute amounts of input DNA. Previous studies have followed up to
two mutations in any individual patient (3, 19). Tracking multiple mu-
tations can provide insight into clonal evolution and, at the same time,
increases the robustness for tumor monitoring by compensating for
effects of sampling noise or mutational drift. For example, if a patient
has only five copies of a mutant allele per milliliter of plasma (on av-
erage), there is a 37% probability that this mutation will not be present
in a 0.2-ml sample, and even a perfect assay will fail to detect residual
tumor, whereas a method that measures multiple mutations in parallel
can have a low likelihood of a false-negative result even if the detection
rate for each mutation is less than 50%.

A current limitation of TAm-Seq is the detection limit compared
to assays that target individual loci (2, 3, 7, 40), which have been
shown to detect two to three orders of magnitude lower frequencies.
Our approach may be sufficient for analyzing plasma from patients
with certain advanced cancers, but further improvement may be nec-
essary before this method can be more widely used in the clinic. Higher
read depth or fidelity, additional replicates, or improved algorithms
could allow for enhanced mutation detection without change to proto-
cols. An alternative strategy is through rare allele enrichment, for ex-
ample, by combining TAm-Seq with protocols such as COLD-PCR
(co-amplification at lower denaturation temperature PCR) (31).

Previously proposed methods for personalized monitoring of tu-
mor dynamics relied on expensive custom-designed probes (3) or iden-
tification of rearrangements using whole-genome sequencing (18, 19).
These have better analytical sensitivity than currently achieved by
TAm-Seq, but are difficult to implement on a routine basis. TAm-Seq
strikes a balance between sensitivity and ease of use and could facil-
itate study and application of circulating DNA. Using TAm-Seq, we
identified cancer mutations in the plasma of most advanced ovarian
cancer patients and tracked dynamics of TP53 mutations without re-
quiring any specially designed probes. In summary, TAm-Seq is a flex-
ible and cost-effective platform for applications in noninvasive cancer
genomics and diagnostics. We have shown that this method can be
used for high-throughput sequencing of plasma samples to identify
and monitor levels of multiple cancer mutations in circulating DNA.
This could also be applied to screen for rare mutations in a variety of
heterogeneous sample types such as low-cellularity tumor specimens,
cytological samples, or circulating tumor cells (16). With further de-
velopments, this and derivative methods may be applied in molecular
screening for earlier detection or for differential diagnosis of cancer
from benign masses. For genetic analysis of FFPE or small biopsy sam-
ples, TAm-Seq can be applied as is, as a cost-effective clinical aid.

MATERIALS AND METHODS

Sample collection
FFPE blocks were obtained from the pathology archives at Addenbrooke’s
Hospital (Cambridge, UK). Plasma samples were collected upon dis-
ease relapse, before and during chemotherapy treatment. Sample collec-
tion for this study was approved by Cambridgeshire Research Ethics
Committee (REC 08/H0306/61 and 07/Q0106/63). Peripheral blood
samples were collected into EDTA tubes and centrifuged at 820g for
10 min within 1 hour of collection to limit degradation of cell-free DNA
and leukocyte lysis. Aliquots (1 ml) of plasma were centrifuged in a bench-
top microfuge at 14,000 rpm for 10 min. The supernatant was trans-
ferred to sterile 1.5-ml tubes and stored at −80°C before extraction.

Extraction of DNA from FFPE and blood plasma
Paraffin blocks were cut as 8-mm sections on plain glass slides. Targeted
regions for sampling were marked on adjacent hematoxylin and eosin
sections by the study pathologist and recovered by scrape macrodis-
section. Between 3 and 20 sections were macrodissected depending on
the tissue sample’s size. DNA from FFPE sections was extracted with
QIAamp DNA FFPE Tissue Kit (Qiagen) according to the manufac-
turer’s instructions.

Circulating DNA was extracted from between 0.85 and 2.2 ml of
plasma with the QIAamp Circulating Nucleic Acid kit (Qiagen), fol-
lowing the manufacturer’s instructions, and with the QIAvac 24 Plus
vacuum manifold. Carrier RNA was added to ACL lysis buffer to en-
hance binding of nucleic acids to the QIAamp membrane with the
aim to enhance yields.

SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/4/136/136ra68/DC1
Methods
Fig. S1. PCR strategy and primer design.
Fig. S2. Sanger traces for mutations identified by tagged-amplicon sequencing.
Fig. S3. Background frequencies and detection limits for base substitutions.
Fig. S4. Replicate dilute Sanger sequencing of a mutation identified in plasma.
Table S1. Target-specific primers.
Table S2. Unique sequencing barcodes.
Table S3. Mutations identified in FFPE samples.
Table S4. SNPs identified in circulating DNA from two plasma control samples.
Table S5. Frequency of SNP alleles in dilution series of DNA from control plasma.
Table S6. Additional data for Table 2 for mutations identified in plasma samples.
Table S7. Mutations and amplicons studied in one breast cancer patient.
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inform clinical decision-making on an individual basis.
approach will be amenable to personalized genomics, where the level and type of mutations in ctDNA would
mutations in the plasma of patients with less advanced cancers. Nevertheless, once optimized, this ''liquid biopsy'' 
our blood, TAm-Seq will need to achieve a more sensitive detection limit (<2% allele frequency) to identify
sequencing large regions of ctDNA. Although this provides a new way to noninvasively identify gene mutations in 

Through several experiments, the authors were able to show that TAm-Seq is a viable method for
patients at relapse exhibited a rise in frequency.

for example, stabilized disease was associated with low allelic frequency, whereas−−the disease and its treatment
 mutations in parallel. Forshew and coauthors showed that levels of mutant alleles reflected the clinical course of

 women with ovarian cancer and one woman with breast cancer at different time points, tracking as many as 10
 mass itself. Finally, the TAm-Seq approach was used to sequence ctDNA in plasma samples collected from two

 that had not been detected 15 months prior in the tumor EGFRpatient, they also identified a de novo mutation in 
 at allelic frequencies of 2% to 65%. In plasma samples from oneTP53authors were able to identify mutations in 

. In plasma obtained from 38 patients with high levels of ctDNA, theKRAS, and BRAF, EGFR, TP53including 
. designed primers to amplify 5995 bases that covered select regions of cancer-related genes,et alForshew 

ovarian carcinomas.
regions, the authors were able to identify low-level mutations in the plasma of patients with high-grade serous 
that can amplify and sequence large genomic regions from even single copies of ctDNA. By sequencing such large
and colleagues have risen to the occasion by developing a tagged-amplicon deep sequencing (TAm-Seq) method 
affect cancer outcome. Looking for diagnostic answers in circulating DNA is a challenge, but Forshew, Murtaza,
cancer patients, a small fraction is circulating tumor DNA (ctDNA). An even smaller number harbor mutations that 

Five liters of circulating blood contain millions of copies of the genome, broken into short fragments; in
Deep Sequencing Tumor DNA in Plasma
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Non-invasive analysis of acquired resistance to
cancer therapy by sequencing of plasma DNA
Muhammed Murtaza1*, Sarah-Jane Dawson1,2*, Dana W. Y. Tsui1*, Davina Gale1, Tim Forshew1, Anna M. Piskorz1,
Christine Parkinson1,2, Suet-Feung Chin1, Zoya Kingsbury3, Alvin S. C. Wong4, Francesco Marass1, Sean Humphray3,
James Hadfield1, David Bentley3, Tan Min Chin4,5, James D. Brenton1,2,6, Carlos Caldas1,2,6 & Nitzan Rosenfeld1

Cancers acquire resistance to systemic treatment as a result of clonal
evolution and selection1,2. Repeat biopsies to study genomic evolu-
tion as a result of therapy are difficult, invasive and may be con-
founded by intra-tumour heterogeneity3,4. Recent studies have
shown that genomic alterations in solid cancers can be characterized
by massively parallel sequencing of circulating cell-free tumour
DNA released from cancer cells into plasma, representing a non-
invasive liquid biopsy5–7. Here we report sequencing of cancer
exomes in serial plasma samples to track genomic evolution of meta-
static cancers in response to therapy. Six patients with advanced
breast, ovarian and lung cancers were followed over 1–2 years. For
each case, exome sequencing was performed on 2–5 plasma samples
(19 in total) spanning multiple courses of treatment, at selected time
points when the allele fraction of tumour mutations in plasma was
high, allowing improved sensitivity. For two cases, synchronous
biopsies were also analysed, confirming genome-wide represen-
tation of the tumour genome in plasma. Quantification of allele
fractions in plasma identified increased representation of mutant
alleles in association with emergence of therapy resistance. These
included an activating mutation in PIK3CA (phosphatidylinositol-4,5-
bisphosphate 3-kinase, catalytic subunit alpha) following treatment
with paclitaxel8; a truncating mutation in RB1 (retinoblastoma 1)
following treatment with cisplatin9; a truncating mutation in
MED1 (mediator complex subunit 1) following treatment with
tamoxifen and trastuzumab10,11, and following subsequent treat-
ment with lapatinib12,13, a splicing mutation in GAS6 (growth
arrest-specific 6) in the same patient; and a resistance-conferring
mutation in EGFR (epidermal growth factor receptor; T790M) follow-
ing treatment with gefitinib14. These results establish proof of prin-
ciple that exome-wide analysis of circulating tumour DNA could
complement current invasive biopsy approaches to identify muta-
tions associated with acquired drug resistance in advanced cancers.
Serial analysis of cancer genomes in plasma constitutes a new para-
digm for the study of clonal evolution in human cancers.

Serial sampling of the tumour genome is required to identify the
mutational mechanisms underlying drug resistance2. Serial tumour
biopsies are invasive and often unattainable. Tumours are heterogen-
eous and continuously evolve, and even if several biopsies are obtained,
these are limited both spatially and temporally. Analysis of isolated
circulating tumour cells (CTCs) has been proposed, but circulating
tumour DNA (ctDNA) is more accessible and easier to process15.
Previous studies of tumour mutations in plasma have analysed indi-
vidual loci, genes or structural variants to quantify tumour burden and
to detect previously-characterized resistance-conferring mutations1,6,16–18.
Genome-wide sequencing of plasma samples is used in prenatal dia-
gnostics, demonstrating comprehensive coverage of the genome19.
More recently, genome-wide sequencing of plasma DNA has been

demonstrated as a potential tool for detection of disease or analysis
of tumour burden in patients with advanced cancers5,7. These studies
established that plasma DNA contains representation of the entire
tumour genome7, mixing together variants originating from multiple
independent tumours5. This suggests that deeper sequencing of plasma
DNA, applied to selected samples with high tumour burden in blood,
may allow assessment of clonal heterogeneity and selection. In this
study, we applied exome sequencing of ctDNA as a platform for
non-invasive analysis of tumour evolution during systemic cancer
treatment (Fig. 1).

*These authors contributed equally to this work.

1Cancer Research UK Cambridge Institute and University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK. 2Addenbrooke’s Hospital, Cambridge University Hospital NHS
Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK. 3Illumina, Inc., Chesterford Research Park, Little Chesterford CB10 1XL, UK. 4Department of Haematology-
Oncology, National University Cancer Institute, National University Health System, 5 Lower Kent Ridge Road, Tower block level 7, 119074 Singapore. 5Cancer Science Institute, National University of
Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, 117599 Singapore. 6Cambridge Experimental Cancer Medicine Centre, Cambridge CB2 0RE, UK.
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Figure 1 | Identification of treatment-associated mutational changes from
exome sequencing of serial plasma samples. Overview of the study design:
plasma was collected before treatment and at multiple time-points during
treatment and follow-up of advanced cancer patients. Exome sequencing was
performed on circulating DNA from plasma at selected time-points, separated
by periods of treatment, and germline DNA. Mutations were identified across
the plasma samples, and their abundance (allele fraction) at different time-
points compared, generating lists of mutations that showed a significant
increase in abundance, which may indicate underlying selection pressures
associated with specific treatments. These lists contained mutations known to
promote tumour growth and drug resistance, but also mutations of unknown
significance. Accumulating such data across large cohorts could identify genes
or pathways with recurrent mutations.
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We performed whole exome sequencing of plasma DNA in six
patients with advanced cancers (Supplementary Table 1): two with
breast cancer (cases 1 and 2), three with ovarian cancer (cases 3–5),
and one with non-small-cell lung cancer (NSCLC, case 6). Exome
sequencing was performed on multiple plasma samples from each
patient separated by consecutive lines of therapy, spanning up to
665 days of clinical follow up (range 109–665 days, median 433 days).
The ability to detect genomic events using redundant sequencing is
dependent on the allele fraction (AF) of the mutant alleles in the
samples analysed (ratio of mutant reads to depth of coverage at that
locus), the sequencing depth, and the background noise rates of
sequencing. Levels of ctDNA were previously quantified in these
patients using digital PCR and tagged-amplicon deep sequencing6

(TAm-Seq; Fig. 2, upper subpanels), allowing us to focus on samples
with a high mutant AF in plasma, in which genomic changes related

to the tumour could be identified even at relatively modest depth of
sequencing. Comparison of AF measured using exome sequencing,
digital PCR and TAm-Seq showed a high degree of concordance
(correlation coefficient 0.8, P , 0.0001; Supplementary Fig. 1). Using
as little as 2.3 ng of DNA (4%–20% of the DNA extracted from
2.0–2.2 ml of plasma), and an average of 169 million reads of sequenc-
ing per sample, we analysed the coding exons of all protein-coding
genes at an average unique coverage depth ranging from 31-fold to
160-fold across 19 plasma samples (Supplementary Table 2). Con-
sistent with previous reports5,7, we observed copy number aberrations
(CNAs, both gains and losses) in plasma samples in all patients
across the whole genome (Supplementary Figs 2–7). These were
strongly modulated by the fraction of tumour DNA in plasma and
were particularly prominent in plasma samples in which mutant AF
exceeded 50%.
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Figure 2 | Mutations showing evidence of genomic tumour evolution. All
panels (a–f) are made up of an upper and a lower subpanel. Upper subpanels,
time courses for allele fractions (AF; data points) of ‘anchor’ mutations used for
initial quantification of ctDNA levels, and the fractional concentration of
tumour DNA (tumour burden; grey dashed lines). ‘Anchor’ mutations were
measured using digital PCR or TAm-Seq6 for all available plasma samples, and
using exome sequencing at selected time points indicated by E1, E2, E3 (and E4
and E5 for case 5). Tumour burden was estimated from exome data (an
adaptation of genome-wide aggregated allelic loss7). In a, AF was averaged over
six mutations measured in parallel using digital PCR. In b, a single mutation in

ATM (predicted amino acid change I2948F) was measured by TAm-Seq. In
c, d and e, a single mutation in TP53 was measured by digital PCR for each case
(R175H, K132N and R175H, respectively). In f, digital PCR was used to
measure abundance of a deletion in exon 19 of EGFR (not quantified in exome
sequencing data) and the EGFR T790M mutation. Lower subpanels, AF in
exome data for selected mutations (blue, green and orange datapoints, see key)
for each of the cases. Additional details are listed in Table 1, and a full list of
mutations that showed a significant increase in abundance is included in
Supplementary Tables 2–7. ECX, epirubicin, cisplatin and capecitabine; C-LD,
carboplatin and liposomal doxorubicin; LD, liposomal doxorubicin.
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For two cases, sequencing data were also available from metastatic
tumour biopsies, collected at the same time as plasma samples (case 1
sample E1, and case 4 sample E2), and from tumour samples collected
at the patients’ initial presentation, 9 and 4.5 years earlier. CNAs were
concordant between plasma and metastasis DNA in both patients
(Fig. 3a, b, and Supplementary Fig. 7). Mutations identified in sequencing
data20–23 from the plasma or metastatic biopsy were compared (Sup-
plementary Information). In case 1 with breast cancer, 151 mutations
were identified in either the plasma or the synchronous biopsy. Of
these, 93 mutations were found in both, and mutant AFs for these were
higher in the plasma sample compared to the metastatic biopsy. The
correlation coefficient of mutant AFs was positive (0.71) for mutations
that were also found in the primary tumour, but negative (20.22) for
other mutations (Fig. 3c). In case 4 with ovarian cancer, 895 mutations
were identified in either plasma or the tumour biopsy. For 172 muta-
tions found in both, AFs were positively correlated (0.72) and were
higher in the metastatic biopsy, which also contained 686 ‘private’
mutations with AF , 0.2 that were not found in either the plasma or
the earlier tumour sample (Fig. 3d).

To identify changes in the mutation profiles of the tumours, we
compared the abundance of somatic mutations found in plasma before
and after each course of systemic treatment. For each patient, we
examined a conservative list of mutations, including all mutations that
were called in any of the plasma samples with a Bonferroni-corrected
binomial probability of ,0.05 assuming a background sequencing
error rate of 0.1%. For each mutation and course of treatment
(spanned by a pair of plasma samples), a P-value for a possible change
in mutant AF was calculated as the binomial probability of obtaining
the observed number of mutant reads, given the sequencing depth and
the observed abundance in the paired time-point, normalized by the
fractional concentration of tumour-derived DNA in the plasma (based
on genome-wide aggregated allelic loss5, Supplementary Table 3).
Overall, 364 non-synonymous mutations passed with false discovery

rate of ,10% for significant changes in normalized abundance, rang-
ing from 15 to 121 for each case (median 49). These include mutations
in well-known cancer genes, genes linked to drug resistance and drug
metabolism, and genes not previously associated with carcinogenesis
or therapy resistance (Supplementary Tables 4–9). Selected examples
are shown in Table 1 and Fig. 2.

We highlight here five examples. In case 1 with breast cancer, a
strong increase was observed in the abundance of an activating muta-
tion in PIK3CA following treatment with paclitaxel (Fig. 2a and
Table 1). This mutation has been shown to promote resistance to
paclitaxel in mammary epithelial cells8. In case 2, a patient with an
oestrogen-receptor (ER)-positive, HER2-positive breast cancer, treat-
ment with tamoxifen in combination with trastuzumab led to an in-
crease in abundance of a nonsense mutation near the carboxy terminus
of MED1, an ER co-activator that has been shown to be involved in
tamoxifen resistance10,11. After further treatment of this patient with
lapatinib in combination with capecitabine, we observed an increase
in abundance of a splicing mutation in GAS6, the ligand for the tyro-
sine kinase receptor AXL (Fig. 2b, Table 1). Activation of the AXL
kinase pathway has been shown to cause resistance to tyrosine kinase
inhibitors in NSCLC13 and resistance to lapatinib in ER-positive,
HER2-positive breast cancer cell lines12. In case 4 with ovarian cancer,
following treatment with cisplatin, we observed increase in abundance
of a truncating mutation in the tumour-suppressor RB1 (Fig. 2d,
Table 1), predicted to inactivate the RB1 protein (Supplementary
Fig. 8). In the matched metastasis biopsy obtained after treatment,
the mutation was found in 95% of sequencing reads (59 of 62), with
apparent loss of heterozygosity at 13q containing the RB1 gene (Fig. 3a,
b). Loss of RB1 has been linked with chemotherapy response9. Case 6
was a NSCLC patient with an activating mutation in EGFR who was
treated with gefitinib but progressed on treatment. Analysis by digital
PCR detected the EGFR T790M mutation in plasma at progression,
but not at the start of treatment. This mutation inhibits binding of
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Figure 3 | Genome-wide concordance between plasma DNA and tumour
DNA. a, b, Sequencing data were used to assess CNAs in the plasma sample
(a) and in the synchronous metastatic tumour biopsy (b) from case 4. Panels
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gefitinib to EGFR and has been established as the main driver of
acquired resistance to gefitinib14. Unbiased analysis of plasma DNA
by exome sequencing identified selection for this mutation amongst
genomic changes that occurred following therapy (Fig. 2f, Table 1).

In this proof of principle study, we demonstrate that exome analysis
of plasma ctDNA represents a novel paradigm for non-invasive charac-
terization of tumour evolution. Our data, together with recent reports5,7,
show that CNAs and somatic mutations identified in ctDNA are
widely representative of the tumour genome and provide an alternative
method of tumour sampling that can overcome limitations of repeated
biopsies. Cell-free DNA fragments from multiple lesions in the same
individual all mix together in the peripheral blood5, therefore ctDNA is
likely to contain a wider representation of the genomes from multiple
metastatic sites, whereas mutations present in a single biopsy or minor
sub-clone may be missed. This strengthens the case for the use of
ctDNA as a biomarker for monitoring tumour burden or for the ana-
lysis of hotspot mutation regions1,6,16,17, but also indicates that tracking
different mutations for assessment of tumour heterogeneity and clonal
evolution is now possible. Our data identified a subset of genes that were
positively selected following treatment, many of which have been prev-
iously associated with drug resistance. Other changes may represent
‘passenger’ mutations or false-positives, but some are likely to contri-
bute to resistance to therapy. Accumulating data across a large number of
cases could identify new genes or pathways that are frequently mutated
following specific treatment types, and help refine analysis algorithms.

The approach we describe here may be broadly applicable to a large
fraction of advanced cancers, where the median mutation burden in
plasma (before start of treatment) is 5%–10% (refs 6, 16, 24). Analysis of
acquired drug resistance is of particular utility in advanced or metastatic
cancers, which is the target population for nearly all early phase clinical
trials. Improvements in sequencing and associated technologies may
enable similar analysis in cases with a lower tumour burden in plasma.
At present, this non-invasive approach for characterizing cancer exomes
in plasma is readily applicable to patients with high systemic tumour

burden, enabling detailed and comprehensive evaluation of clonal
genomic evolution associated with treatment response and resistance.

METHODS SUMMARY
Patients and samples. Cases 1–5 were recruited as part of prospective clinical
studies at Addenbrooke’s Hospital, Cambridge, UK, approved by the local
research ethics committee (REC reference nos 07/Q0106/63, 08/H0306/61 and
07/Q0106/63). Case 6 was recruited as part of the ‘Hydroxychloroquine and
gefitinib to treat lung cancer’ study (NCT00809237) at the National University
Health System, Singapore, approved by the National Healthcare Group NHG
IRB—DSRB 2008/00196. Written informed consent was obtained from patients,
and serial blood samples were collected at intervals of $3 weeks.
Extraction and sequencing of plasma DNA. DNA was extracted from plasma
using the QIAamp circulating nucleic acid kit (Qiagen) according to the manu-
facturer’s instructions. Barcoded sequencing libraries were prepared using a com-
mercially available kit (ThruPLEX-FD, Rubicon Genomics). Pooled libraries were
enriched for the exome using hybridization (TruSeq Exome Enrichment Kit,
Illumina), quantified using quantitative PCR and pooled in 1:1 ratio for paired-
end sequencing on a HiSeq2500 (Illumina).
Variant calling and analysis. Sequencing data were demultiplexed and aligned
to the hg19 genome using BWA20. Pileup files for properly paired reads with
mapping quality $60 were generated using samtools22. AFs were calculated
for all Q30 bases. A mutation was called if $4 mutant reads were found in plasma
with $1 read on each strand, and no mutant reads were observed in germline DNA
or in a prior plasma sample with $10-fold coverage. For comparison between
consecutive plasma samples in a patient, we calculated the binomial probability of
obtaining the observed AF (or greater) if the abundance of the mutant allele,
normalized by tumour load in plasma (based on a modified genome-wide aggre-
gated allelic loss method5), had remained constant between the two samples.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Sample collection. Cases 1–5: patients were recruited as part of prospective clin-
ical studies at Addenbrooke’s Hospital, Cambridge, UK, approved by local
research ethics committee (REC reference nos 07/Q0106/63, 08/H0306/61 and
07/Q0106/63). Written informed consent was obtained from the patients. Serial
blood samples were collected in EDTA tubes at intervals of $3 weeks, and cen-
trifuged within 1 h at 820g for 10 min to separate the plasma from the peripheral
blood cells. The plasma was then further centrifuged at 20,000g for 10 min to pellet
any remaining cells. The plasma was then stored at 280uC until DNA extraction.

Case 6: this patient was recruited as part of the ‘Hydroxychloroquine and
gefitinib to treat lung cancer’ study (NCT00809237) at the National University
Health System, Singapore, approved by the National Healthcare Group NHG IRB-
DSRB 2008/00196. Blood was collected in CPT tubes (BD Vacutainer) before
gefitinib was started, and at monthly intervals while the patient was on treatment,
until disease progression. Blood collected was spun within 1 h at 1,500g for 20 min,
and the plasma fraction was frozen at 280 uC. Thawed samples were recentrifuged
at 20,000g for 10 min to further separate any cellular portions.
Extraction of plasma DNA. DNA was extracted from aliquots of plasma using the
QIAamp circulating nucleic acid kit (Qiagen) according to the manufacturer’s instruc-
tions (see Supplementary Table 1 for volumes used). DNA was eluted into buffer
AVE, eluted twice through each column to maximize yield, and stored at 220 uC.
Extraction of normal and tumour DNA. DNA from tumour sections was
extracted using DNeasy tissue or DNA Allprep kits (Qiagen) according to manu-
facturer’s instructions. Matched germline DNA was derived from normal peri-
pheral blood leucocytes. After the collection of plasma from each blood sample, the
remaining layer of normal peripheral blood lymphocytes (‘buffy coat’) was
removed. This layer was either subjected to red cell lysis using a red cell lysis buffer
(155 mM NH4Cl, 10 mM KHCO3 and 0.1 mM EDTA pH 7.4) and DNA extracted
using a standard phenol-chloroform extraction protocol; or frozen at 280 uC
before extraction using QIAamp DNA mini kit (Qiagen).
Sequencing of plasma DNA. Concentration of DNA for each plasma sample was
determined using digital PCR, with an assay targeting RPP30 for case 2, TP53 for
cases 3–5 and EGFR for case 6. For case 1, DNA concentration and ‘anchor’ mutation
AF were calculated by averaging results from six assays targeting PIK3CA, MET,
IQCA1, CD1A, KIAA0406 and ZFYVE21. Libraries were generated using a commer-
cially available kit for fragmented DNA (ThruPLEX-FD, Rubicon Genomics).
2.3–40 ng of DNA (Supplementary Table 2) was used to generate a sequencing
library using manufacturer’s protocols. Separate unique molecular identifiers were
used for each sample. 30ml of the library volume was obtained for each sample. 2–5
plasma DNA libraries from each patient were made and pooled together for exome
capture using hybridization (TruSeq Exome Enrichment Kit, Illumina). Pools were
concentrated using vacuum (Eppendorf Vacuum Concentrator) and prepared to
40ml volume. Exome enrichment was performed following manufacturer’s proto-
cols. Enriched libraries were quantified using quantitative PCR and pooled in 1:1
ratio for paired-end next generation sequencing on HiSeq2500 (Illumina).
Sequencing of normal and tumour DNA. Sequence data for tumour and germ-
line samples for case 1 have been reported previously. In brief, genomic libraries
from tumour and matched normal tissue were prepared using the standard
IIlumina paired-end sample preparation kit according to the manufacturer’s
instructions. DNA fragments of 300 bp in size were sequenced using paired-end
100 bp reads on a HiSeq2000 (Illumina) achieving a depth of .303. Germline
samples for cases 2–6 and tumour sample for case 4 were sheared using Covaris
and exome sequenced as described above.
Digital PCR. The principle of microfluidic digital PCR and its use for quantifica-
tion of tumour DNA has been described previously6,18. Assays were designed based
on TaqMan chemistry. All digital PCR analysis was carried out on the BioMark
system using 12.765 Digital Arrays (Fluidigm) following manufacturer’s instruc-
tions and protocol. Briefly, 3.5ml from the eluted DNA was heated to 95 uC for
1 min and placed on ice, then mixed with TaqMan Universal PCR Master Mix
(Applied Biosystems) and sample loading buffer (Fluidigm) into a final reaction
volume of 10ml and loaded into each panel of the chip. The reaction mix was then
automatically partitioned into 765 reaction chambers. The numbers of starting
template DNA molecules were calculated using Poisson statistics based on the
number of positive amplifications6,18.
Analysis of sequencing data. Sequencing reads were demultiplexed allowing zero
mismatches in barcodes. Paired-end alignment to the hg19 genome was per-
formed using BWA version 0.5.9 for all exome sequencing data including germline
samples, plasma samples and tumour metastasis where generated20. PCR dupli-
cates were marked using Picard. Local realignment was performed using Genome
Analysis Tool Kit (GATK)21. Pileup files were generated for the genomic regions
targeted by exome enrichment using samtools v0.1.1722. For plasma samples,
properly paired reads with mapping quality $60 were used to generate the pileup.
AFs for each single-base locus were calculated for all bases with phred quality $30.

For germline DNA, an additional pileup file was generated (using a mapping
quality cut-off of $1 and without any base quality cut-offs) and was used as
reference for calling somatic variants. A mutation was called if no mutant reads
for an allele were observed in germline DNA at a locus that was covered at least 10
fold, and if at least 4 reads supporting the mutant were found in the plasma data
with at least 1 read on each strand (forward and reverse). At loci with ,10-fold
coverage in normal DNA and no mutant reads, mutations were called in plasma if
a prior plasma sample showed no evidence of a mutation and was covered ade-
quately (10 fold or more). All mutations were annotated for genes and function as
well as repeated genomic regions using ANNOVAR23.

AF was defined as the number of high quality reads supporting a mutation as a
fraction of the total number of high quality reads covering the locus. For each patient,
AF and number of reads for any mutations called with the above parameters were
identified in all plasma samples. A binomial probability of obtaining the observed
number of reads given depth in each plasma sample was calculated. The minimum of
these probability values was corrected using Bonferroni correction for 62 million 3 n
hypotheses tested, where n was the number of plasma samples sequenced (3 samples
for cases 1–4, 5 samples for case 5 and 2 samples for case 6). Mutations with
corrected P-values under 0.05 were retained for further analysis in plasma samples.
Estimation of CNAs. To assess CNAs, plasma DNA and tumour sequencing data
were compared to germline DNA data at single nucleotide polymorphisms (SNPs)
covered within the targeted exome region. The SNPs were identified from the
publicly available 1000 Genomes Project data.

Depth information was normalized by dividing the depth of each SNP by the
median depth across all SNPs. The log R ratio (LRR) was computed as the base-10
logarithm of the sample depth (metastasis or plasma) divided by the depth of the
normal. Each chromosome was segmented by an iterative process that considered
non-overlapping blocks of 1,000 data points. Points lying at least 1.5 standard
deviations away from the median LRR for the block were removed from the mean
LRR computation. If the difference in mean LRR between two consecutive blocks
was less than 0.12, the blocks were merged into a single segment whose mean LRR
was re-computed using points from both blocks.

Segmentation of B allele frequency (BAF) plots was similarly performed, con-
sidering windows of 1,000 data points and starting new segments if the difference
in median frequency was greater than 4%. Blocks whose median frequency was
within 8% of the median chromosome frequency in the normal sample were
considered consistent with the BAF of the normal sample.
Comparison of mutations between plasma and tumour. For tumour/plasma
comparison presented for cases 1 and 4, we identified all mutations called in data
from synchronous plasma and metastatic tumour samples, as described above. We
retained all mutations adequately covered in both samples (minimum 50 reads in
plasma, minimum 10 reads in synchronous tumour whole genome data for case 1,
minimum 50 reads in synchronous tumour exome data for case 4). We further
discarded all mutations with no coverage in archived tumour samples obtained
earlier (9 years earlier for case 1, and 4.5 years earlier for case 4).
Identification of mutations that changed in representation over treatment. To
estimate systemic tumour burden, we calculated fractional concentration of
ctDNA in blood using an adaptation of genome-wide aggregated allelic loss5.
AFs of SNPs from the 1000 Genomes Project were obtained for germline and
plasma data. SNPs with 0 , AF , 1 in germline DNA were identified. SNPs where
the minor AF in the germline data deviated from heterozygosity were identified
using a binomial probability of obtaining the observed number of minor allele
reads given depth in germline DNA and expected AF of 0.5. SNPs with probability
,0.25 were discarded from further analysis.

Of the remaining SNPs, significant deviation from heterozygosity in any of the
sequenced plasma samples, determined by a binomial distribution using sequenc-
ing depth and expected AF of 0.5, was used to identify loss of heterozygosity
(LOH). SNPs with a probability ,0.01 in any of the sequenced plasma samples
were retained for estimation of tumour burden as described previously5. Fractional
ctDNA burden was calculated as follows:
1 – [(sum of reads in the lost alleles)/(sum of reads in the retained alleles)]

AFs for all mutations were normalized by the estimated tumour burden. For any
comparison between two consecutive plasma samples in a patient, we calculated
the binomial probability for the observed difference in AF assuming no difference
in normalized abundance. For a comparison between (for example) E1 and E2, we
calculated the probability of obtaining the observed number of mutant reads or
greater in E2 if normalized abundance in E2 had remained the same as in E1; this
probability was multiplied by the probability of the observed number of mutant
reads or less in E1 if the normalized abundance in E1 was the same as observed in
E2. Where no mutant reads were obtained in the E1, only the reverse direction was
used for this analysis. Changes in representation with a false discovery rate of 10%
or lower, which were exonic non-synonymous or splicing mutations, were retained
and are presented in Supplementary Tables 2–7.
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Circulating tumour DNA analysis can be used to track tumour burden and analyse cancer

genomes non-invasively but the extent to which it represents metastatic heterogeneity is

unknown. Here we follow a patient with metastatic ER-positive and HER2-positive breast

cancer receiving two lines of targeted therapy over 3 years. We characterize genomic

architecture and infer clonal evolution in eight tumour biopsies and nine plasma samples

collected over 1,193 days of clinical follow-up using exome and targeted amplicon sequencing.

Mutation levels in the plasma samples reflect the clonal hierarchy inferred from sequencing of

tumour biopsies. Serial changes in circulating levels of sub-clonal private mutations correlate

with different treatment responses between metastatic sites. This comparison of biopsy and

plasma samples in a single patient with metastatic breast cancer shows that circulating

tumour DNA can allow real-time sampling of multifocal clonal evolution.
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I
ntra-tumour clonal heterogeneity limits efficacy and duration
of response to targeted treatments in metastatic cancer1–3.
Evaluating heterogeneity to guide choice and sequence of

therapy could be achieved by multiregional and repeated
metastatic tumour biopsies but this is impractical due to
associated risk of complications and costs. In contrast, analysis
of circulating tumour DNA in plasma (ctDNA) is a less-invasive
approach that could provide a summary of somatic alterations
contributed by distinct metastases4,5, potentially circumventing
the problem of spatial heterogeneity1. Serial analysis of ctDNA
has been shown to track tumour burden6–8 and to correlate with
treatment-driven clonal evolution3,4,9. Most studies of
concordance between tumour and plasma samples have
compared individual mutations or relied on single tumour
biopsies9. However, direct evidence comparing plasma with
multiregional tumour samples to establish the extent of clonal
heterogeneity captured in ctDNA is extremely limited5,10–13.

Here we present extensive analysis of eight tumour biopsies
and nine plasma samples collected from a patient with oestrogen
receptor-positive (ERþ ) human epidermal growth factor recep-
tor 2-positive (HER2þ ) metastatic breast cancer treated with
sequential targeted therapies (tamoxifen and trastuzumab,
followed by lapatinib) over a 3-year clinical course. We
performed whole-exome followed by deep amplicon sequencing
to validate and quantify several hundred somatic mutations. We
find that ubiquitous stem mutations (common to all tumour
biopsies) have the highest circulating levels in plasma followed by
metastatic-clade and private mutations. In addition, serial
changes during treatment in circulating levels of private somatic
mutations correlate with disease progression in their respective
tumour lesions on imaging. These results, from a single patient
with metastatic breast cancer, suggest that ctDNA reflects clonal
tumour hierarchy and captures sub-clonal dynamics in real time.

Results
Clinical case. A 42-year-old woman presented with a right breast
lump, lower back pain, loss of height, marked kyphosis and
hepatomegaly. Core biopsies from the breast lump showed ductal
carcinoma in situ (sample labelled P1.1; Supplementary Fig. 1 and
Supplementary Table 1). An additional biopsy from an ipsilateral
axillary lymph node (P1.2) revealed metastatic ductal adeno-
carcinoma (ERþ (8/8) and HER2þ (3þ )). Computed tomo-
graphy scan revealed widespread metastatic disease in bones,
pleura and liver (Supplementary Fig. 2 and Supplementary
Table 2). The patient was started on treatment with trastuzumab
and taxane-based chemotherapy, with a significant partial
response (Supplementary Fig. 3). After induction chemotherapy,
she was maintained on tamoxifen and trastuzumab. After 19
months on treatment, she presented with seizures and head
computed tomography revealed a large metastasis in the left
frontal lobe (Supplementary Fig. 4), which was resected (M2.1).
Therapy with tamoxifen and trastuzumab was continued and
collection of plasma samples was initiated (samples T1–T9). Four
months after surgery, she had enlarging liver lesions and a new
metastatic deposit in the left ovary (Supplementary Fig. 5).
Treatment was switched to a combination of lapatinib and
capecitabine, resulting in stable disease for 12 months
(Supplementary Fig. 6). General deterioration then occurred, with
disease progression in the chest (new pulmonary nodules, bilat-
eral pleural effusions and posterior chest wall mass,
Supplementary Fig. 7; Eastern Cooperative Oncology Group
performance status 2–3). Treatment was stopped and the patient
died B4 months later.

Tumour samples were obtained at diagnosis from the primary
breast site (P1.1) and an axillary lymph node (P1.2); after 19

months from the brain metastasis area (M2.1); and at autopsy
after 3 years on treatment (from the primary breast site, and from
metastatic deposits in the chest, liver, ovary and vertebrae,
labelled P3.1 and M3.1–M3.4, respectively). Serial plasma samples
were obtained over the last 500 days of clinical follow-up
(T1–T9). Tumour and plasma samples collected and the clinical
course are summarized in Fig. 1a,b.

Inferring clonal structure from multiregional tumour biopsies.
Exome sequencing of peripheral blood leukocytes (N1), 6/8
tumour samples and 3/9 plasma DNA samples (3 plasma exomes
reported previously4) was performed. Single-nucleotide variants
(SNVs) were further analysed by targeted amplicon deep
sequencing in all samples for orthogonal validation and
accurate measurement of allele fractions (AFs, Supplementary
Table 3). Of the 362 candidate non-synonymous SNVs identified
by exome sequencing in at least one sample, 310 were successfully
tested by deep sequencing (median coverage: 288� –8,248� for
plasma samples; 965� –2,777� for tumour samples). For each
candidate SNV, a mutation was called if AF was at least three
s.d.’s above the mean background error rate obtained by
analysing 12 control samples11.

Deep sequencing validated 207 functional mutations. We
identified 8 major mutation clusters based on variation in their
allele fractions across all tumour samples using Bayesian
clustering with PyClone (Fig. 1c–e), a data-driven method we
have developed and extensively validated for analysing clonal
hierarchies and inferring cellular prevalence in tumour biopsies
and to follow clonal dynamics in serially transplanted tumour
xenografts14–16. We also inferred tumour phylogeny using clonal
ordering of high-confidence mutations (with 42% allele fraction
in a tumour sample). A total of 23 stem mutations were detected
in all tumour samples (tumour cluster 1), 26 metastatic-clade
mutations were detected only in metastatic tumour samples
(tumour cluster 2) and 126 private mutations were detected at AF
42% only in one of the tumour samples (tumour clusters 3–8).
The most parsimonious pathway of evolution in this cancer
together with mutation clustering results is presented in Fig. 1d.
Stem and metastatic-clade mutation clusters inferred using
PyClone were identical to the results from clonal ordering.
Similarly, mutations in clusters 3, 4/5, 6 and 7 correspond to
private mutations in P3.1, M3.1, M2.1 and M3.2, respectively. A
total of 13/26 metastatic-clade mutations were detectable at low
levels in the lymph node biopsy samples (P1.2), consistent with a
common ancestor for metastasis as a minor clone at the axillary
lymph node site. The inferred phylogenetic structure was stable
using 5 and 10% allele fraction cutoffs for high-confidence
mutations (Supplementary Figs 8 and 9) and allele fractions for
stem mutations were highly correlated between all tumour
samples (Supplementary Fig. 10).

Serial plasma analysis and comparison with tumours. In
plasma, stem mutations were highest in abundance, with mean
plasma AFs ranging from 3.8 to 34.9% across the time series.
Metastatic-clade mutations were lower in abundance with mean
AFs ranging from 2.5 to 19.1% (Wilcoxon rank sum test
Po0.001, except T5 P¼ 0.001). The dynamic longitudinal
changes in plasma AFs for both mutation groups reflected the
observed overall tumour response, both clinically and on imaging
(Fig. 2a). Mutation clusters statistically inferred using PyClone
from variation in circulating mutant allele fractions (without
relying on tumour data, referred to as ‘plasma clusters’) over-
lapped significantly with clusters identified from multiregional
tumour sampling. A total of 21/23 stem mutations were assigned
to plasma cluster 1 (with highest cellular prevalence), and 19/26
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Figure 1 | Inference of clonal structure from multiregional tumour biopsies. (a) Tumour samples collected from the patient, labelled P (primary) and M

(metastasis). Numbers preceding dot (1,2 and 3) correspond to time of collection: 1, collected at diagnosis; 2, collected at the time of resection of brain

metastasis; 3, collected at autopsy. (b) Timeline describing clinical course, samples collected, treatments administered and selected imaging assessments.

Plasma DNA samples are labelled 1 through 9. Imaging assessments were performed using computed tomography scans. Histopathological and imaging

findings are summarized in Supplementary Tables 1 and 2 and Supplementary Figs 1–6. (c) Distribution of 207 validated functional mutations in tumour and

plasma samples, ordered by mutation clusters inferred using PyClone from mutant allele fractions in all tumours. Red rectangles indicate high-confidence

mutations with AF 42%. Blue rectangles indicated mutations detected significantly above background but with AF of 2% or lower. Stem mutations

(observed ubiquitously in all tumour samples and comprising tumour cluster 1) and metastatic-clade mutations (high confidence in metastatic tumours and

comprising tumour cluster 2) are readily identifiable/detectable in plasma samples. Detailed values of allele fractions are documented in Supplementary

Data 1–3. (d) Tumour phylogenetic tree, inferred by clonal ordering given distribution of high-confidence mutations in tumour samples shown in a. Length of

each branch of the tree correlates with the number of mutations on the branch as indicated. Exome-sequencing results for samples P1.2 and M3.4 were not

available and therefore private mutations for these branches cannot be identified. Assignment of mutations to each branch is documented in

Supplementary Data 1. (e) Mean predicted cellular frequency of each cluster identified by PyClone across the tumour samples.
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metastatic-clade mutations were assigned to plasma cluster 2
(Fig. 2b and Supplementary Data 1).

To assess whether plasma DNA captured differential response
across distinct metastatic sites during targeted treatment, the
relative plasma abundance of high-confidence private mutations
originating from each tumour site was calculated. During
lapatinib treatment, a rapid increase in the circulating abundance
of several mutations private to the chest mass was observed in
plasma samples T4–T9 (Fig. 2c), coinciding with significant
disease progression seen on imaging at this site. This was also
reflected in plasma-based PyClone mutation clusters; plasma
cluster 5 increased in circulating prevalence with disease
progression on lapatinib treatment and 10/11 mutations in this
cluster are private to M3.1 (and correspond to tumour clusters 4
and 5; Fig. 2b and Supplementary Data 1). At the time of
lapatinib resistance, the most abundant private mutation in
plasma was in the tyrosine kinase domain of ERBB4 (p.H809G;
plasma cluster 5; Fig. 2b,d and Supplementary Fig. 11). This

mutation was private to the chest wall mass (28.2% AF) with its
levels in plasma DNA increasing during lapatinib treatment up to
an AF of 12.2% at the time of disease progression on imaging
(compared with average stem and metastatic-clade AFs of 34.9
and 19.1% in the same plasma sample). The predicted functional
effect of this mutation17,18 and its exclusive molecular detection
in the chest wall mass (the main site of disease progression on
treatment) suggest it was a key determinant of resistance to
lapatinib.

Interestingly, 11 non-synonymous high-confidence SNVs were
identified and validated in plasma but not detectable at 42% AF
in any of the analysed tumour biopsies. Amongst these was an
actionable hotspot mutation in PIK3CA (p.E542K), identified in
plasma with an AF of 3.5% at the time of progression on
trastuzumab and tamoxifen (tumour cluster 8 and plasma cluster
4; Fig. 2e). After lapatinib treatment was started, the plasma levels
dropped to AF of 1.1% and then became undetectable. This
mutation was only marginally detectable (AF o1%) in two
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Figure 2 | Serial plasma analysis during systemic treatment. (a) Circulating levels of stem, metastatic-clade and private mutations during treatment.

Mean allele fractions at each time point are presented. Mean AF for private mutations is multiplied by 10 to highlight trend. Shaded areas represent

treatment lines. (b) Mean predicted cellular frequency of each cluster identified by PyClone across the plasma samples T2–T9. PyClone identified five

mutation clusters from variation of circulating allele fractions (without reliance on tumour data). Clusters 1 and 2 are largely comprised of stem and

metastatic-clade mutations. Cluster 5 is comprised of 11 mutations, 10 of which are private M3.1 mutations. (c) Plasma abundance calculated as the

product of AF in a tumour sample (normalized for mean of stem mutations) and the corresponding AF in a plasma sample, summed across all private

mutations for each tumour. To normalize for different number of private mutations in each tumour (3–70), we calculated plasma abundance relative to T1.

(d) Dynamics of ERBB4 mutation (p.H809G) in deep sequencing data. (e) Allele fractions measured by deep amplicon sequencing for the PIK3CA mutation

(p.E542K) identified in exome sequencing of plasma sample T2. Mutation was significantly detectable (43 s.d.’s above the mean allele fraction in

control samples) on days 727, 762 and 937 (yellow diamonds).
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tumour biopsies (axillary lymph node and vertebral metastasis).
These results suggest this PIK3CA mutation originated from a
minor tumour sub-clone that increased in size during treatment
with tamoxifen and trastuzumab, and then regressed on
treatment with lapatinib. Activation of the PI3K/AKT pathway
has been associated with resistance to both endocrine therapy and
trastuzumab19,20.

Discussion
In this paper, we have presented an extensive comparison of
biopsy and plasma samples collected from a metastatic breast
cancer patient over a 3-year clinical course. Our results show that
circulating tumour DNA provides a dynamic sampling of somatic
alterations reflecting the size and activity of distinct tumour sub-
clones. Analysis of ctDNA reflects the clonal hierarchy deter-
mined from multiregional tumour sequencing and tracks
different treatment responses across metastases. Unlike previous
reports, our results qualify tumour-plasma concordance of each
somatic mutation in context of the tumour phylogeny. Truncal
mutations that represent the majority of tumour lesions in a
patient have higher circulating levels and therefore, are more
likely to be detected in plasma, than clade or private mutations.

These results were obtained from deep analysis of a single
patient and need to be confirmed in a larger cohort of patients
with multiregional biopsies and serial plasma samples. If
confirmed, our observations have important implications for
future ctDNA studies. For monitoring tumour burden using
ctDNA, our results suggest that truncal mutations are the best
candidates, as they are highest in circulating levels and least likely
to drop out during follow-up. For molecular treatment stratifica-
tion, our results suggest that if multiple actionable somatic
mutations, or alterations that are known to confer resistance to
specific therapies, are identified in tumour analysis, their relative
circulating levels in pretreatment plasma samples may inform the
choice of targeted treatments for individual patients. The
potential of using plasma DNA for molecular stratification and
tracking of resistant clones in patients treated with targeted
therapies heralds a new era for precision cancer medicine.

Methods
Sample collection and exome sequencing. Informed consent was obtained and
research autopsy was performed under a study protocol approved by the Cam-
bridgeshire Research Ethics Committee (Cambridgeshire 3 REC 07/Q0106/
63MN.A). Collection, processing, DNA extraction and preparation of exome-
sequencing libraries for plasma samples T1, T2 and T9 have been described pre-
viously4. Exome sequencing of tumour samples and additional sequencing of
germline DNA (N1) was performed using commercially available kits. Tumour and
germline DNA were sheared using sonication to a target fragment size of 200 bp.
Whole-genome libraries were prepared from 32 to 50 ng of fragmented DNA using
ThruPLEX-FD (Rubicon Genomics) as per the manufacturer’s protocols, with
unique sample-specific molecular barcodes. Genomic libraries were quantified
using quantitative PCR and pooled for exome enrichment by hybridization using
the TruSeq Exome Enrichment Kit (Illumina). Enriched libraries were quantified
using quantitative PCR and pooled for sequencing on the HiSeq 2500 (Illumina).

Targeted amplicon sequencing. Targeted sequencing libraries were prepared
using droplet-based PCR amplification following the manufacturer’s protocols for
ThunderBolts Cancer Panel with specific modifications (RainDance Technologies).
Custom target-specific primers were designed using in-house primer design
pipelines (see Supplementary Data 5 for the list of primer sequences). Universal
adapters were added on the 50-end to allow sample-specific barcoding. Target-
specific amplification was performed using primers flanking 350 loci in multiplex
in a 40-ml volume PCR mix. Primer concentration was limited to 3.5 nM per
primer (an estimated 10,000 copies per 5 pl droplet). Droplets were generated on
the RainDrop Source instrument (8,000,000 droplets for a 40-ml volume). An input
of 2–18 ng (mean: 12.1 ng) of plasma DNA (1–10-ml volume of eluted DNA),
corresponding to the DNA extracted from a volume of 40–400 ml (mean: 280 ml) of
plasma, and 6–31 ng (mean: 21.5 ng) of genomic DNA from tumour and germline
samples were used for library preparation. PCR was performed for 55 cycles using
1 �C s� 1 ramp and following conditions: 94 �C for 30 s, 62 �C for 30 s and 68 �C for
1 min followed by a final extension at 68 �C for 10 min. Droplets were destabilized

using manufacturer-supplied reagents. PCR product was purified using magnetic
beads (SPRIworks) in 2:1 volume ratio. PCR product was eluted in 20 ml 1� Tris–
EDTA buffer (pH 8.0). A second 25 ml barcoding PCR was performed using 13 ml of
the eluted product and primers specific to the universal adapter with sample-
specific barcodes. PCR was performed for 10 cycles using 1 �C s� 1 ramp and
following conditions: 94 �C for 30 s, 56 �C for 30 s and 68 �C for 1 min followed by
a final extension at 68 �C for 10 min. An additional purification was performed
using magnetic beads (SPRIworks) in a 1.2:1 volume ratio. Libraries were quan-
tified using KAPA SYBR FAST LightCycler 480 qPCR kit (KAPA Biosystems) and
using DNA High Sensitivity Kit on BioAnalyzer (Agilent Technologies) and pooled
in 1:1 ratio. Paired-end sequencing was performed using MiSeq 150-cycle v3 kit
(Illumina).

Exome-sequencing analysis and mutation calling. Sequencing reads were
demultiplexed allowing zero mismatches in barcodes. Paired-end alignment to the
hg19 genome was performed using BWA version 0.5.9 for all exome-sequencing
data including germline samples, plasma samples and tumour samples21. PCR
duplicates were marked using Picard. Local realignment was performed using
Genome Analysis Tool Kit22. Pileup files were generated for the genomic regions
targeted by exome enrichment using samtools v0.1.1722 (ref. 23). For plasma
samples, properly paired reads with mapping quality Z60 were used to generate
the pileup. AFs for each single-base locus were calculated for all bases with phred
quality Z30. For germline DNA, an additional pileup file was generated (using a
mapping quality cutoff of Z1 and without any base quality cutoffs) and was used
as reference for calling somatic variants. All mutations were annotated for genes
and function as well as repeated genomic regions using ANNOVAR24.

A mutation was identified if (1) no mutant reads for an allele were observed in
germline DNA (N1) at a locus that was covered at least 10-fold, (2) at least five
reads supporting the mutant were observed in any tumour or plasma sample with
at least one read on each strand (forward and reverse) and (3) the binomial
probability of observing the number of mutant reads given total depth at that locus
was o0.001 assuming an error rate of 0.01.

Analysis of targeted sequencing data. Sequencing reads were extracted and
demultiplexed using Picard allowing zero mismatches in barcodes and a base
quality of Z30. Sequencing reads were clipped to remove universal adapter
sequences using ea-utils. Minimum amplicon length in our set was 80 bp. There-
fore, we removed any sequencing reads o70 bp in length following adapter clip-
ping to discard nonspecific amplification and primer dimers. Clipped sequencing
reads were aligned to the human genome hg19 using BWA version 0.7.10.
Unmapped reads, unpaired reads and supplementary alignments were removed. As
described previously, reads were demultiplexed to specific amplicons using known
amplicon start and end positions and expected amplicon length (accounting for
potential indels)11. Pileup files were generated using samtools including any reads
with mapping quality Z30 and base quality Z30. Pileup data were imported into
MATLAB.

For each locus and non-reference allele of interest, we assessed the allele
fraction in eight control plasma samples and four control genomic DNA samples.
We considered a mutation significantly detectable if the AF in a sample was 43
s.d.’s higher than the mean AF in control samples.

Control samples. A volume of 250 ml pooled control plasma sample was pur-
chased from BioreclamationIVT (Baltimore, MD, USA). The sample was prepared
from equal number of male and female volunteers and collected with K2 EDTA
additive. We performed independent cell-free DNA extractions from 1-ml aliquots
of plasma and eight aliquots were used as control plasma samples. Four genomic
DNA control samples were used from the Human Random Control DNA Panel 3
(Sigma-Aldrich).

Calculation of plasma abundance for private mutations. Plasma abundance was
calculated as the product of AF of a private mutation in a tumour sample and the
corresponding AF in a plasma sample, summed across all private mutations for
each tumour. To account for cellularity of each tumour sample, we normalized the
tumour AF of each mutation by mean tumour AF of stem mutations. To normalize
for different number of private mutations in each tumour, we calculated plasma
abundance relative to T1.

Bayesian clustering using PyClone. PyClone (a Bayesian clustering method) was
used to infer the clonal population structures present in the tumour and plasma
samples from the amplicon sequencing data. Given the mutation allele frequencies
for each sample, PyClone clusters mutations that shift together across the samples
and estimates cellular prevalence for each cluster in each sample (adjusting for
copy number changes and normal cell contamination). To infer the clonal popu-
lation structure of each sample (either tumour sample or plasma sample), copy
number and depth of coverage information must be determined for each mutation
under analysis.

Copy number information at each mutation location was generated from the
whole-exome-sequencing data using the CopyWriteR Bioconductor package.
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CopyWriteR uses off-target read information from targeted sequencing data files to
determine copy number. CopyWriteR outputs segmented logarithmic depth of
coverage ratios (logR), which are converted to absolute copy number predictions.
Segments with logR below � 0.25 were assigned a copy number of 1 and those with
logR above 0.25 received a copy number of 3. A bin size of 100 kb was utilized
with hg19 as the reference genome. Whole-exome-sequencing data were available
from four metastatic samples, two primary tumour samples, three plasma
samples and patient’s germline DNA sample (used as the control in copy number
determination). Copy number predictions for other samples were assigned as the
median copy number calculated for all available samples of the same type (either
plasma, primary or metastasis). If the algorithm was unable to deduce copy number
at a given mutation locus, the sequentially nearest valid copy number assignment
was used. Inferred total copy number information for tumour and plasma samples
is presented in Supplementary Data 4.

Depth of coverage (for the normal and variant alleles at each mutation) was
computed using the bam2R function in the deepSNV Bioconductor package. The
amplicon sequencing files for each sample were used as input. Reads with a phred
quality of 30 or greater were included in the recorded read counts.

Depth of coverage and copy number information for each mutation was then
inputted into PyClone (a Bayesian clustering method) to infer the presence of clonal
mutations in both the tumour and plasma samples. Two PyClone analyses were
performed: one for the tumour samples and another for the plasma samples.
For each simulation, the PyClone algorithm was run for 40,000 iterations with a
burn-in of 20,000 iterations using the PyClone beta binomial model with the
‘total_copy_number’ option. A beta binomial value of 500 was utilized. Default
values were used for all other parameters. Cellularity for each sample (including
ctDNA samples) was estimated by computing the mean allele fraction for mutations
classified as ‘stem mutations’—these are reported in Supplementary Table 1. Mean
predicted cellular frequencies (in the case of ctDNA these should be interpreted as
clonal frequencies) for each cluster identified by PyClone are plotted in the Figs 1e
and 2b. Because PyClone corrects for normal cell contamination, the predicted
cellular frequencies shown in the figures represent the proportion of cancer cells
containing each set of clonal mutations (hence stem mutation cluster in plasma being
near 100% frequency). The T1 plasma sample was not included in the PyClone
analyses; data from the T1 sample were uncharacteristically noisy due to the sample’s
low cellularity (3%)—a reflection of low systemic tumour burden mid-treatment. The
PyClone inference results for two mutations (in the tumour sample simulation) were
ambiguous (the 5th–95th percentile credible range from the PyClone post-burn-in
trace data spanned more than 70% of the cellular frequency space), leading to
singleton clusters for each. Two mutations are not shown in Fig. 1e.

References
1. Aparicio, S. & Caldas, C. The implications of clonal genome evolution for

cancer medicine. N. Engl. J. Med. 368, 842–851 (2013).
2. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed

by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).
3. Diaz, Jr L. A. et al. The molecular evolution of acquired resistance to targeted

EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).
4. Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer

therapy by sequencing of plasma DNA. Nature 497, 108–112 (2013).
5. Chan, K. C. et al. Cancer genome scanning in plasma: detection of tumour-

associated copy number aberrations, single-nucleotide variants, and tumoral
heterogeneity by massively parallel sequencing. Clin. Chem. 59, 211–224
(2013).

6. Dawson, S. J. et al. Analysis of circulating tumour DNA to monitor metastatic
breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

7. Diehl, F. et al. Circulating mutant DNA to assess tumour dynamics. Nat. Med.
14, 985–990 (2008).

8. Newman, A. M. et al. An ultrasensitive method for quantitating circulating
tumour DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).

9. Bettegowda, C. et al. Detection of circulating tumour DNA in early- and late-
stage human malignancies. Sci. Transl. Med. 6, 224ra224 (2014).

10. Bashashati, A. et al. Distinct evolutionary trajectories of primary high-grade
serous ovarian cancers revealed through spatial mutational profiling. J. Pathol.
231, 21–34 (2013).

11. Forshew, T. et al. Noninvasive identification and monitoring of cancer
mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4,
136ra168 (2012).

12. Heitzer, E. et al. Tumor-associated copy number changes in the circulation of
patients with prostate cancer identified through whole-genome sequencing.
Genome Med. 5, 30 (2013).

13. De Mattos-Arruda, L. et al. Capturing intra-tumour genetic heterogeneity by de
novo mutation profiling of circulating cell-free tumour DNA: a proof-of-
principle. Ann. Oncol. 25, 1729–1735 (2014).

14. Eirew, P. et al. Dynamics of genomic clones in breast cancer patient xenografts
at single-cell resolution. Nature 518, 422–426 (2015).

15. Roth, A. et al. PyClone: statistical inference of clonal population structure in
cancer. Nat. Methods 11, 396–398 (2014).

16. Shah, S. P. et al. The clonal and mutational evolution spectrum of primary
triple-negative breast cancers. Nature 486, 395–399 (2012).

17. Qiu, C. et al. Mechanism of activation and inhibition of the HER4/ErbB4
kinase. Structure 16, 460–467 (2008).

18. Canfield, K. et al. Receptor tyrosine kinase ERBB4 mediates acquired resistance
to ERBB2 inhibitors in breast cancer cells. Cell Cycle 14, 648–655 (2015).

19. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a
major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12,
395–402 (2007).

20. Chandarlapaty, S. et al. Frequent mutational activation of the PI3K-AKT
pathway in trastuzumab-resistant breast cancer. Clin. Cancer Res. 18,
6784–6791 (2012).

21. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

22. DePristo, M. A. et al. A framework for variation discovery and genotyping
using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

23. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics
25, 2078–2079 (2009).

24. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of
genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38,
e164 (2010).

Acknowledgements
We thank L. Jones, S. Richardson and H. Biggs for recruiting patients into the DETECT
study, all medical and ancillary staff in the breast cancer clinic and the patient for
consenting to participate. We thank the Human Research Tissue Bank at Addenbrooke’s
Hospital, which is supported by the NIHR Cambridge Biomedical Research Centre. We
acknowledge the support of Cancer Research UK, the University of Cambridge, National
Institute for Health Research Cambridge Biomedical Research Centre and Cambridge
Experimental Cancer Medicine Centre. The research leading to these results has received
funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013)/ERC Grant Agreement no 337905. Dr Dawson
was supported by an Australian National Breast Cancer Foundation and Victorian
Cancer Agency Early Career Fellowship. Dr Murtaza was supported by Science Foun-
dation Arizona’s Bisgrove Scholars Early Tenure Track award.

Author contributions
M.M., S.-J.D., N.R. and C.C. designed the study; M.M. and D.W.Y.T. developed methods;
S.-J.D., E.P., J.G., M.W. and C.C. conducted the prospective clinical, histopathological
and imaging studies; M.M., S.-J.D., S.-F.C., D.W.Y.T., D.G., P.S. and T.C.-C. generated
data; Z.K., S.H. and D.B. contributed sequencing data; M.M., K.P., O.M.R., F.M., H.F.,
K.S. and S.P.S. analysed sequencing data; S.-F.C. and H.R.A. contributed to experiments
and data analysis; M.M., S.-J.D., N.R. and C.C. interpreted data; M.M. and C.C. wrote the
paper with assistance from S.-J.D., N.R. and other authors; all authors approved the final
manuscript; N.R. and C.C. are the project co-leaders and joint senior authors.

Additional information
Accession codes: The sequencing data have been deposited at the European Genome-
phenome Archive (EGA), which is hosted by the EBI, under accession code
EGAS00001001466.

Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: N.R., M.M., F.M., D.G., D.T. and C.C. are co-inventors
or contributors on a patent ‘A method for detecting a genetic variant’, GB patent
application no. GB1512626.1 and International patent application no. PCT/GB2015/
052086, and may benefit from commercialization of technologies discussed in the
manuscript. N.R. and D.G. are co-founders of Inivata, a cancer genomics company
focused on ctDNA analysis. D.T. is a consultant for Inivata. Z.K., S.H. and D.B. are full-
time employees of Illumina, Inc., providers of the sequencing technology used in this
study. The remaining authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Murtaza, M. et al. Multifocal clonal evolution characterized
using circulating tumour DNA in a case of metastatic breast cancer. Nat. Commun.
6:8760 doi: 10.1038/ncomms9760 (2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9760

6 NATURE COMMUNICATIONS | 6:8760 | DOI: 10.1038/ncomms9760 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.294

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications


Effects of Collection and Processing Procedures
on Plasma Circulating Cell-Free DNA from Cancer
Patients
Bente Risberg,*yz Dana W.Y. Tsui,*x Heather Biggs,{ Andrea Ruiz-Valdepenas Martin de Almagro,*x Sarah-Jane Dawson,*{k

Charlotte Hodgkin,k Linda Jones,{ Christine Parkinson,k Anna Piskorz,*x Francesco Marass,*x Dineika Chandrananda,*x

Elizabeth Moore,*x James Morris,*x Vincent Plagnol,** Nitzan Rosenfeld,*x Carlos Caldas,*x{k James D. Brenton,*xk and
Davina Gale*x

From theCancer ResearchUKCambridge Institute,* Li Ka ShingCentre, RobinsonWay,University of Cambridge, Cambridge, United Kingdom; theDepartment of Cancer
Genetics,y Institute for Cancer Research, and the Department of Pathology,z Oslo University Hospital, Oslo, Norway; the Cancer Research UKMajor Centre,x Cambridge,
United Kingdom; the Cambridge Breast Unit{ and the Department of Oncology,k Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital,
Cambridge, United Kingdom; and the UCL Genetics Institute,** University College London, London, United Kingdom

Accepted for publication
July 26, 2018.

Address correspondence to
Dana W.Y. Tsui, Ph.D., or
Davina Gale, B.Sc., Cancer
Research UK Cambridge Insti-
tute, Robinson Way, Cambridge
CB2 0RE, United Kingdom. E-
mail: tsuiw@mskcc.org or
davina.gale@cruk.cam.ac.uk.

Circulating tumor DNA (ctDNA) offers new opportunities for noninvasive cancer management. Detecting
ctDNA in plasma is challenging because it constitutes only a minor fraction of the total cell-free DNA (cfDNA).
Pre-analytical factors affect cfDNA levels contributed from leukocyte lysis, hence the ability to detect low-
frequencymutant alleles. This study investigates the effects of the delay in processing, storage temperatures,
different blood collection tubes, centrifugation protocols, and sample shipment on cfDNA levels. Peripheral
blood (nZ 231) from cancer patients (nZ 62) were collected into K3EDTA or Cell-free DNA BCT tubes and
analyzed by digital PCR, targeted amplicon, or shallow whole-genome sequencing. To assess pre-analytic
effects, plasma was processed under different conditions after 0, 6, 24, 48, 96 hours, and 1 week at room
temperature or 4�C, or using different centrifugation protocols. Digital PCR showed that cfDNA levels
increased gradually with time in K3EDTA tubes, but were stable in BCT tubes. K3EDTA samples stored at 4�C
showed less variation than room temperature storage, but levels were elevated compared with BCT. A second
centrifugation at 3000 � g gave similar cfDNA yields compared with higher-speed centrifugation.
Next-generation sequencing showed negligible differences in background error or copy number changes
between K3EDTA and BCT, or following shipment in BCT. This study provides insights into the effects of
sample processing on ctDNA analysis. (J Mol Diagn 2018, 20: 883e892; https://doi.org/10.1016/
j.jmoldx.2018.07.005)

Supported by Cancer Research UK, University of Cambridge
grants A15601 (J.D.B.), A11906 (N.R.), A20240 (N.R.), and
A18072 (J.D.B.), National Institute for Health Research, Cambridge
Biomedical Research Centre and Cambridge Experimental Cancer Medi-
cine Centre (J.D.B.), European Research Council under the European
Union’s Seventh Framework Programme FP/2007-2013/ERC grant 337905
(N.R.), NIHR (C.P.) and Academy of Medical Sciences (C.P.), the Well-
come Trust (C.P.), British Heart Foundation (C.P.), Arthritis Research UK
(C.P.), and an Australian National Breast Cancer Foundation and Victorian
Cancer Agency Early Career Fellowship (S.-J.D.).
B.R., D.W.Y.T., and H.B. contributed equally to this work.
Disclosures: V.P., N.R., J.D.B., and D.G. are cofounders, shareholders,

consultants, and/or employees of Inivata Ltd., a cancer genomics company

focused on ctDNA analysis; D.W.Y.T., F.M., N.R., C.C., J.D.B., and D.G.
are co-inventors or contributors on a patent describing methods for analysis
of rare DNA fragments; N.R. has received research support from
AstraZeneca.

Current address of D.W.Y.T., Department of Pathology, Center
for Molecular Oncology, Memorial Sloan Kettering Cancer
Center, New York, NY; of S.-J.D., Division of Research and Cancer
Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia;
of F.M., Department of Biosystems Science and Engineering, ETH
Zurich, and SIB Swiss Institute of Bioinformatics, Basel, Switzerland;
and of V.P., Inivata Ltd., The Portway Building, Granta Park, Cam-
bridge, UK.

Copyright ª 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

https://doi.org/10.1016/j.jmoldx.2018.07.005

jmd.amjpathol.org

The Journal of Molecular Diagnostics, Vol. 20, No. 6, November 2018

295

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:tsuiw@mskcc.org
mailto:davina.gale@cruk.cam.ac.uk
https://doi.org/10.1016/j.jmoldx.2018.07.005
https://doi.org/10.1016/j.jmoldx.2018.07.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmoldx.2018.07.005&domain=pdf
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1016/j.jmoldx.2018.07.005
http://jmd.amjpathol.org
https://doi.org/10.1016/j.jmoldx.2018.07.005


Circulating tumor DNA (ctDNA) in plasma offers new
opportunities for noninvasive cancer management. Recent
studies have demonstrated its potential for molecular strat-
ification, monitoring tumor response, identifying resistance
mutations, and patients at risk of relapse.1,2 Detecting
ctDNA in plasma is challenging because it constitutes only a
minor fraction of the total cell-free DNA (cfDNA), partic-
ularly in early-stage cancers and in the minimal residual
disease setting.3,4 A proportion of background wild-type
DNA is believed to originate from lysis of white blood
cells.5 Previous studies have highlighted the pre-analytic
effects of different processing and collection protocols on
plasma ctDNA levels from cancer patients and pregnant
women.6e9 On the basis of these results, it is recommended
to process whole-blood samples for retrieval of plasma as
soon as possible after collection, before in vitro cell lysis. At
the same time, a double-centrifugation protocol has been
recommended to obtain cell-free plasma, using an initial
slow centrifugation speed to separate plasma, then fast
centrifugation to clear cellular material.7 However, some of
these procedures may be difficult to perform in a clinical
setting due to lack of appropriate personnel or equipment.
To circumvent this, cell-stabilizing blood collection tubes
have become available to stabilize cfDNA, enabling a delay
in processing, which may be done under more controlled
conditions and within centralized laboratories. This study
performed a systematic comparison of the effects of
different processing protocols and collection tubes on the
levels of cfDNA and ctDNA from cancer patients using
digital PCR (dPCR). With the growing use of next-
generation sequencing (NGS) for the analysis of ctDNA,
the effect of different protocols and collection tubes on the
performance of targeted amplicon and shallow whole-
genome sequencing (sWGS) for quantification of plasma
DNA was also investigated.

Materials and Methods

Analysis Modules

The study was designed to include five different modules:
Module 1 investigated the effects of delayed processing on
the levels of circulating DNA (cfDNA and ctDNA) in
plasma collected in K3EDTA tubes (9 mL S-Monovette;
Sarstedt, Nümbrecht, Germany). The separation of plasma
was delayed for different durations: 0, 6, 24, 48, and 96
hours, and 1 week at room temperature (19�C to 25�C).
Module 2 investigated the effects of storage temperature on
the levels of circulating DNA in plasma collected in
K3EDTA tubes. Samples were stored at room temperature
or at 4�C before processing at the following hours post-
collection: 0, 24, 48, and 96 hours. Module 3 investigated
the effects of collection devices on the levels of circulating
DNA. Blood samples from each patient were collected at the
same time point into K3EDTA tubes and cell-stabilization
blood collection tubes (10 mL Cell-Free DNA BCT;

Streck, La Vista, NE), respectively. BCTs contain a
proprietary formaldehyde-free preservative that stabilizes
nucleated blood cells preventing the release of genomic
DNA.10,11 The samples were processed at the following
times post-collection: 0, 96 hours, and 1 week. Module 4
investigated the effects of different centrifugation protocols
on the levels of circulating DNA. Module 5 investigated the
effects of shipment on samples collected in BCT tubes at
ambient temperature. For modules 1, 2, 3, and 5, plasma
was separated from blood using a double-centrifugation
protocol (protocol A): a first centrifugation at 820 � g for
10 minutes in a mega-centrifuge (Thermo Sorvall Legend
RT; Thermo Fisher Scientific, Waltham, MA), then
subjected to a second centrifugation step of the plasma
supernatant at 14,000 � g for 10 minutes in a benchtop
micro-centrifuge (Heraeus Fresco 21; Thermo Fisher
Scientific). For module 4, blood aliquots from the same
patients were processed with three different protocols:
protocol A as above, protocol B with the first centrifugation
performed at 1600 � g and the second centrifugation at
14,000 � g for 10 minutes in a bench top micro-centrifuge,
and protocol C with both first and second centrifugations
performed in the same mega-centrifuge, initially at
1600 � g for 10 minutes, then at 3000 � g for 10 minutes.

Patient Samples and DNA Extractions

Peripheral whole blood was collected from 62 patients in
total: 47 patients with high-grade serous ovarian cancer and
15 patients with metastatic breast cancer. Informed consent
was obtained from each patient with protocols approved by
an institutional ethics committee. Fifteen to 30 mL blood
from each patient was processed according to each analysis
module. DNA from all samples, except module 5, was
extracted from an average 1.4 mL (range, 0.3 to 2.76 mL)
plasma using the QIAamp Circulating Nucleic Acid Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s
protocol, except that 6.2 mg of carrier RNA was added per
sample. DNA was eluted twice through the column to
maximize yield. A nonhuman spike-in PCR product was
added to each sample as an internal quality control to assess
extraction efficiency.12 In module 5, DNA was extracted
from plasma on a QIAsymphony robot (Qiagen) using a
2-mL extraction protocol. Eluted DNA was stored at �20�C
until analysis.
A total of 231 blood samples aliquots were analyzed in

this study. Table 1 summarizes the number of plasma
samples collected for each module. Note that the collection
was designed in such a way that each sample from every
processing condition (temperature, collection tube, delayed
processing duration) had a matched sample that was
collected in K3EDTA and processed immediately (denoted
E.RT.0h) using centrifugation protocol A, and was assigned
as the reference sample for each condition. The levels of
circulating DNA (either cfDNA or ctDNA), were expressed
as a ratio of the respective data with the reference sample
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(E.RT.0h). Therefore, data collected under the same pro-
cessing conditions could be grouped together to evaluate the
effect of the processing even though they were collected
from different patients. A more detailed summary of the
distribution of samples involved in each module is given in
Supplemental Table S1.

Quantification of Circulating Plasma DNA by dPCR and
Targeted Amplicon Sequencing

Plasma samples from ovarian and breast cancer patients
were first quantified by dPCR (using the Biomark micro-
fluidic system (Fluidigm, South San Francisco, CA) as
previously described,13 using an assay that targets a 65-bp
amplicon in RPP30, a nonamplified region in the genome,
to estimate cfDNA levels.12,14 ctDNA levels were then
determined by dPCR using dual-labelled patient-specific
TaqMan assays designed to mutant and wild-type sequences
in TP53 or PIK3CA, or deletions in chromosome 8, 11, or
17. A summary of the samples analyzed is provided in
Supplemental Table S1, and sequences of primers and
fluorescent probes, amplicon sizes, and amplification con-
ditions used in dPCR are detailed in Supplemental Table S2.

The levels of cfDNA and ctDNA were calculated from
the number of observed amplifications above a set
threshold, and Poisson statistics were used to convert the
number of observed amplifications to estimated targets,
assuming independent segregation of DNA molecules into
the microfluidic reaction chambers. The total number of
amplifiable copies of DNA molecules per mL of plasma
(copies/mL) were calculated, taking into account the relative
fraction of the extracted DNA loaded and the proportion of
sample lost during the loading process through the micro-
fluidic channels. The levels of ctDNA were calculated as
mutant allele fraction (ie, the fraction of mutant DNA copies
divided by the total cfDNA copies) expressed as a
percentage or as mutant copies/mL plasma. For the purpose
of comparing different protocols in the modules, the data are
expressed at each processing condition as a ratio from the

E.RT.0h reference sample that was collected in K3EDTA
and immediately processed according to protocol A, unless
otherwise specified.

To investigate the effects of different collection devices
and processing protocols on the performance of NGS,
plasma samples from all modules were analyzed by Tagged
Amplicon deep sequencing (TAm-Seq), as previously
described.13 TAm-Seq is a targeted amplicon sequencing
method that allows identification and quantification of low-
frequency mutant alleles in plasma across sizable genomic
regions. Sequencing was performed using an Illumina
HiSeq 2500 sequencer (Illumina, San Diego, CA) to an
average of greater than 1000� sequencing depth. Mutations
were identified and quantified as previously described.13 To
assess the effect of collection and processing procedures on
the background error rates during NGS, the allelic read ratio
(reference/alternative) was generated at each position within
R software version 3.1.215 from the BAM files, using the
Bioconductor 3.2 software packages Rsamtools version
1.22.0 and Biostrings version 2.38.4.16 All positions flagged
as polymorphic by the 1000 Genomes Project (http://www.
internationalgenome.org, last accessed) or the COSMIC
database (https://cancer.sanger.ac.uk/cosmic, last
accessed), were filtered out.

To investigate the effects of shipping on global somatic
copy number alterations, samples in module 5 were also
subjected to sWGS.17 Briefly, a DNA library was prepared
from 2 to 10 ng of cfDNA from each sample using the
ThruPLEX DNA-seq Kit (Takara Bio, Inc., Shiga, Japan)
and sequenced on an Illumina HiSeq 4000 to 0.1� average
depth using single-end sequencing. Sequence data were
analyzed using a pipeline that involved the following:
single-end sequence reads were aligned to the human
reference genome (GRCh37) using BWA-mem software
version 0.7.1718 after removing any contaminant adapter
sequences. SAMtools software version 1.7 (http://samtools.
sourceforge.net)19,20 was used to convert files to BAM
format. PCR and optical duplicates were marked using
Picard-Tools’ MarkDuplicates software feature version

Table 1 Summary of Data Available for Different Modules

Module Collection devices Temperature

Delay before sample processing

0 hours 6 hours 24 hours 48 hours 96 hours 1 week

Module 1 EDTA Room temperature 26 21 20 10 5 5
Module 2 EDTA Room temperature/4�C 26 21 20/11 10/10 5/5 5
Module 3 EDTA/BCT Room temperature 10/5 - - - 5/10 5/15
Module 4 EDTA Room temperature 13 - - - - -
Module 5 EDTA/BCT Room temperature 13/- - - -/10 -/2 -/1*

Module 1: The effects of delayed processing.
Module 2: The effects of storage temperature. Samples were stored both in room temperature and at 4�C. 20/11 indicates that 20 tubes were stored at room

temperature and 11 at 4�C, and so on.
Module 3: The effects of collection devices (EDTA versus BCT).
Module 4: The effects of different centrifugation speeds.
Module 5: The effects of shipment in BCT.
Dashes indicate no data available.
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2.17.6 (https://broadinstitute.github.io/picard), and these
were excluded from downstream analysis along with reads
of low mapping quality and supplementary alignments.
Reads in each sample were down-sampled to approxi-
mately 3 million reads to have similar coverage between
patients and conditions. Subsequently, copy number anal-
ysis was performed in R15 using the R package CNAclinic
version 1.0 (https://github.com/sdchandra/CNAclinic, last
accessed December 21, 2017), a software suite that allows
for robust copy number analysis of sWGS data. Briefly,
sequence reads were allocated into equally sized (100 Mb)
nonoverlapping bins throughout the length of the genome.
Read counts in each bin were corrected to account for
sequence GC content and mappability, and regions
corresponding to artifacts and probable germline changes
were excluded from downstream analysis utilizing a
cohort of 45 healthy controls. After median normalization,
binned counts were segmented using both the Circular
Binary Segmentatione and Hidden-Markov Modelebased

algorithms, and an averaged log2 R value per bin was
calculated.

Statistical Analysis

The difference in circulating DNA levels between different
subgroups in each module was analyzed using nonpara-
metric ManneWhitney rank sum test unless specified, and
P < 0.05 was considered statistically significant. To assess
the noise of sWGS data, values corresponding to the median
of the absolute values of all pairwise differences were
calculated between log2 R copy numbers. This metric
provides a measure of the noise of the sample that is less
dependent on true biological copy number variation and
more on technical variation.21 To compare the three
collection methods in all patients, pairwise Spearman
correlations were calculated between the binned copy
number segments of the three collection methods. Further-
more, a nonparametric Wilcoxon signed rank test was

Figure 1 The effects of delayed processing on
the levels of circulating DNA in plasma collected in
K3EDTA tubes. Blood samples were collected into
K3EDTA tubes and stored at room temperature for
0, 6, 24, 48, and 96 hours, and 1 week before
plasma separation. Cell-free DNA (cfDNA) copies/
mL plasma (A), mutant allele fraction (B). C:
Circulating tumor DNA (ctDNA) copies/mL plasma
in samples processed at different time of delay.
The bottom and top of the box represent the first
and third quartiles, respectively, and the band
inside the box represents the median. Data are
expressed as the ratio from E.RT.0h of each pa-
tient’s immediately processed K3EDTA sample.
*P < 0.05 versus E.RT.0h (ManneWhitney rank
sum test).
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applied on these values to test the similarity of the copy
number profiles between all pairwise samples.

Results

Module 1: The Effects of Delayed Processing on the
Levels of Circulating DNA in Plasma Collected in EDTA
Tubes

In this module, all samples (n Z 26) were collected in
K3EDTA tubes. One tube from each collection was pro-
cessed immediately. The other tubes were stored at room
temperature and processed at different prolonged time
points: 6, 24, 48, 96 hours, and 1 week. Analysis by dPCR
showed that the levels of cfDNA in the plasma samples
increased gradually with increasing delay in the processing
(Figure 1A), whereas the fraction of ctDNA decreased
(Figure 1B). In particular, the levels of cfDNA increased
significantly after 48, 96 hours, and 1 week of delay,
whereas the mutant allele fraction of ctDNA decreased
significantly after 96 hours and 1 week of delay
(ManneWhitney rank sum test, P < 0.05). Previous re-
ports have indicated that in analysis of circulating cell-free
DNA from maternal plasma, despite changes in total
cfDNA, the levels of fetal DNA are relatively stable in

different storage and processing conditions.8,22 Indeed, our
results confirm that the numbers of mutant molecules,
expressed as copies/mL of plasma, were relatively stable
across the different processing time points with no
statistically significant difference observed compared to
samples that were processed immediately (Figure 1C and
Supplemental Figure S1).

Module 2: The Effects of Storage Temperature on the
Levels of Circulating DNA in Plasma Collected in
K3EDTA Tubes

In this module, all samples (n Z 26) were collected in
K3EDTA tubes and either processed to plasma immediately
or after 24, 48, and 96 hours. The individual tubes were
stored in two conditions: at room temperature (19�C to
25�C) or at 4�C. If kept at room temperature, dPCR showed
that the levels of cfDNA significantly increased after
48 hours. If kept at 4�C, the levels increased after 48 hours
but were significantly lower than those observed at room
temperature (Figure 2A). If delayed for 96 hours, samples
kept at room temperature and 4�C all increased significantly.
The changes in mutant allele fraction showed an inverted

Figure 2 The effects of storage temperature on
the levels of circulating DNA in plasma collected in
K3EDTA tubes. Blood samples collected into
K3EDTA tubes were stored at room temperature and
at 4�C for 24, 48, and 96 hours, and 1 week before
plasma was separated. Cell-free DNA (cfDNA)
copies/mL plasma (A) and mutant allele (B) frac-
tion. The bottom and top of the box represent the
first and third quartiles, respectively, and the band
inside the box represents the median. Data are
expressed as the ratio from E.RT.0h of each pa-
tient’s immediately processed K3EDTA sample.
*P < 0.05 versus E.RT.0h (ManneWhitney rank
sum test).
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similar trend, although the amount of available data were
too low for statistical analysis (Figure 2B).

Module 3: The Effects of Collection Devices (K3EDTA
versus Cell-Free DNA BCT) on the Levels of Circulating
DNA

In this module, one K3EDTA tube for each collection was
processed immediately (E.RT.0h) and served as a refer-
ence sample (n Z 20). The other K3EDTA tubes were
stored for 96 hours (n Z 5) and 1 week (n Z 5) at room
temperature. Cell-free DNA BCT’s were stored at room
temperature and processed immediately (n Z 5) or
delayed for 96 hours (n Z 10) and 1 week (n Z 15). The
cfDNA levels increased significantly after 1 week if kept
in K3EDTA tubes, but remained at similar levels if kept in
BCT (Figure 3A). The changes in the mutant allele
fraction showed an inverted similar trend, but the amount
of data available were too low for statistical analysis

(Figure 3B). The mutant allele fraction from six patients
that were collected in K3EDTA and processed immedi-
ately, versus the matched samples that were collected in
BCT was compared and processed after 1 week’s
delay. The levels of ctDNA were similar for four patients
but decreased twofold for two patient samples
(Supplemental Figure S2). There was no statistically
significant difference in the numbers of mutant copies/mL
plasma between storage in the two tube types
(Supplemental Figure S1).
The effects of collection and processing procedures on

the background error rates during NGS analysis were next
assessed using targeted amplicon sequencing. As previously
described, different A/C/G/T base substitutions are associ-
ated with different error rates.13 The distribution of the ratio
of nonreference/reference alleles was plotted as box plots,
shown according to mutation types. No difference was
observed using different collection devices and processing
conditions (Figure 3C).

Figure 3 The effects of collection device
(K3EDTA versus BCT) on the levels of circulating
DNA. Blood samples collected into K3EDTA tubes
were processed immediately, after 96 hours or 1
week at room temperature. Blood samples in BCT
were stored at room temperature for 96 hours
and 1 week before plasma separation. Cell-free
DNA (cfDNA) copies/mL plasma (A) and mutant
allele (B) fraction. C: The distributions of the
ratio of nonreference/reference alleles as
generated by targeted amplicon sequencing
shown in boxplots. The bottom and top of the
box represent the first and third quartiles,
respectively, and the band inside the box rep-
resents the median. Data are expressed as the
ratio from E.RT.0h of each patient’s immediately
processed K3EDTA sample (A and B) or log10 scale
(C). *P < 0.05 versus E.RT.0h (ManneWhitney
rank sum test).
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Module 4: The Effects of Different Centrifugation
Speeds on the Levels of Circulating DNA

In this module, all samples (n Z 13) were collected in
K3EDTA tubes and processed immediately. Aliquots
from the same patients were processed using three different
centrifugation protocols (A to C) as defined in Materials
and Methods. There were no statistically significant
differences across the three protocols on the total circulating
DNA levels as measured by dPCR (Figure 4, A and B), or in
mutant allele fraction as measured by targeted amplicon
sequencing (Figure 4, C and D).

Module 5: The Effects of Shipment of cfDNA BCT on
Mutant Allele Fraction and Global Copy Number
Changes

In this module, three tubes of blood were drawn from each
patient (n Z 13). K3EDTA tubes were processed immedi-
ately (E.RT.0h), one cell-free DNA BCT was collected and
stored at room temperature within the same centralized
processing laboratory, whereas the other BCT was packaged
and shipped back to the same laboratory. All shipped
samples, apart from three, were received and processed
within 48 hours from the time of collection. Of these, two
BCTs were processed after 96 hours and one was processed
after 5 days. The stored BCTs were processed at the same
time as the matched shipped sample. There was no

statistically significant difference in cfDNA levels between
the three collection methods (Figure 5, A and B). TP53
mutations were identified by TAm-Seq in four patients, and
there were no statistically significant differences in mutant
allele fraction using the different collection methods
(Figure 5, C and D).

To further investigate the effects of collection methods on
global copy number changes, sWGS analysis was performed
on four patients with detectable TP53 mutations (P161, P227,
P479, P488) and four without (P615, P489, P464, P450). Data
from one patient (P464) were excluded from further analysis
because the total read count generated for one of the collection
methods was below 1 million. This is below the threshold
recommended for inference when analyzing shallow
coverage.23 The segmental copy number profiles among the
three collection methods were highly similar, showing an
average Spearman correlation of 0.76, range 0.44 to 0.98
(Supplemental Figure S3 and Supplemental Table S3). The
paired Wilcoxon test P values indicated no significant differ-
ences in all 21 copy number distributions comparisons
(P> 0.001). Supplemental Figure S4 shows an example of the
copy number alterations in plasma samples processed with and
without shipping. The same gains and losses in chromosomal
arms were identified in all three protocols. Supplemental
Figure S5 depicts the estimation of noise in the sWGS data
using values that were the median of the absolute values of all
pairwise differences. All patients showed very similar noise
levels between the different tubes and protocols.

Figure 4 The effects of different centrifuga-
tion speeds on the levels of circulating DNA. Blood
samples were collected into K3EDTA tubes and
processed to plasma with three different protocols.
All protocols included two 10-minute centrifuga-
tion steps, the first on whole blood, and the sec-
ond on plasma aliquots. Protocol A (820 and
14,000 � g), protocol B (1600 and 14,000 � g),
Protocol C (1600 and 3000 � g). Cell-free DNA
(cfDNA) copies/mL plasma (A and B) and mutant
allele (C and D) fractions (%) in samples processed
by different protocols. The bottom and top of the
box represent the first and third quartiles,
respectively, and the band inside the box repre-
sents the median.
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Discussion

Multiple research studies have demonstrated the potential of
using plasma as a tool for noninvasive cancer management.
There is increasing interest in incorporating ctDNA as a
liquid biopsy in both clinical and research settings. Because
the frequency of mutant alleles in plasma may be low,
particularly in early-stage disease, it is crucial to optimize
and standardize pre-analytic sample processing procedures
to maintain the quality of samples for accurate quantification
of rare mutant molecules. In this study, the pre-analytic
effects of blood sample processing procedures, including the
use of different blood collection tubes, storage conditions,
and centrifugation speeds, were examined on downstream
analysis of cfDNA using different molecular technologies
including dPCR, targeted amplicon, and genome-wide
sequencing. Our results show that levels of cfDNA are
stable in K3EDTA tubes at room temperature for up to 24
hours. If delayed beyond 24 hours, storage of K3EDTA
blood at 4�C appeared to delay the increase in background
cfDNA. It is worth noting that a recent study demonstrated
that storing the samples in K2EDTA tubes at 4�C kept the
cfDNA levels stable for a course of 3 days.24 This agrees
with the observations that storing K3EDTA tubes at 4�C
improved the stability of cfDNA compared with room
temperature storage. Alternatively, collection into cell-free
DNA BCT tubes at room temperature maintained stable
cfDNA levels for at least a week. These tubes can facilitate

delayed and centralized blood processing, circumventing
issues arising with delayed plasma processing. Other re-
searchers have evaluated alternative cell-stabilization tubes
such as CellSave (CellSearch system; Menarini Silicon
Biosystems, Huntington Valley, PA) and PAXgene Blood
ccfDNA tubes (Qiagen) and demonstrated similar stability
when sample processing was delayed.9,25 New cell-free
stabilization tubes have recently become available [eg,
Cell-free DNA Collection tube (Roche, Basel, Switzerland),
cf-DNA Preservation tube (Norgen Biotek, Thorold, ON,
Canada), Blood STASIS 21-ccfDNA, (MagBio Genomics,
Gaithersburg, MD), and LBgard Blood tubes, Biomatrica,
San Diego, CA)], and it will be important to test these
thoroughly to assess their performance for optimal sample
processing procedures before next-generation sequencing
and dPCR analysis of ctDNA.
These findings have addressed a few of the practical

challenges in the blood-to-plasma sample processing
workflow in a hospital setting. For example, in the clinic,
processing may be delayed due to shortage of staff to
enable immediate processing, or collection outside office
hours. In some scenarios, when conducting multicenter
clinical trials, many individual centers do not have access
to the full spectrum of centrifuges with the higher second
centrifugation speeds required to perform the recom-
mended double-centrifugation procedures. The ability to
delay processing by collecting into cell-stabilization tubes,
or the flexibility to perform the centrifugation in a range of
different types of centrifuges, or storing at 4�C after
collection for a short period, will greatly improve the
feasibility of collecting high-quality specimens. For sam-
ples collected across a wide geographical area, shipment
may be necessary before central processing to standardize
pre-analytic factors and maximize cost-effectiveness. This
study showed no statistically significant difference in NGS
background noise with or without shipment. However,
other studies have shown that the shipping temperature of
cell-free DNA BCT was deemed to be a critical factor to
ensure delivery of high-quality specimens for downstream
ctDNA analysis.26 In these studies, variable results were
observed at extreme temperatures, at �10�C and 40�C,
which affected the cellular interface, resulted in an elevated
ratio of long/short genomic DNA fragments, and a
decrease in plasma volume. These studies indicate that
shipment temperature should be carefully controlled by the
use of insulated packages, gel blocks, or temperature log-
ging devices to maintain stability.
Previous studies have mainly focused on locus-specific

analysis using quantitative PCR or dPCR that examined one
locus at a time. With technology advances, an increasing
number of molecular profiling strategies have been devel-
oped using NGS,27 which provides a higher resolution and
larger genomic coverage than a locus-specific approach. It is
therefore important to also understand the effects of cfDNA
sample processing on the analytical performance of NGS-
based analysis. It is particularly important to test whether

Figure 5 The effects of shipping using cell-free DNA BCT on the levels
of circulating DNA. Blood samples were collected in K3EDTA and cell-free
DNA BCT tubes, and processed immediately except for one cell-free DNA
BCT from each collection that was shipped by mail back to the same
collection center [BCT (posted)]. Cell-free DNA (cfDNA) levels (copies/mL)
(A and B) and mutant allele (C and D) fractions. The bottom and top of the
box represent the first and third quartiles, respectively, and the band inside
represents the median.
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using a collection tube containing a preservative has the
potential to introduce DNA sequence modifications, which
may be misinterpreted as true patient-specific genomic
alterations. A recent study examined the influence of sample
collection in CellSave tubes on the analysis of global copy
number variations using NGS technology, and did not find
differences in allele frequencies compared with EDTA
blood.9 In this study with BCT and K3EDTA tubes, the
effects of processing on the background error rates during
targeted amplicon sequencing and sWGS were evaluated.
As expected, different error rates were observed in different
base substitutions, but there was no difference in back-
ground error rate regardless of the type of collection device
and sample processing schedule. The sWGS analysis results
agreed with previous findings in that copy number data were
consistent across conditions.28

All of these findings provide important insights for the
potential incorporation of routine NGS technology in
plasma-based molecular diagnostics. Beyond the analysis of
ctDNA, it is crucial to also understand the impact of pre-
analytical factors on other nucleic acids or genomic variants,
such as tumor-specific RNA (ctRNA), microRNA, or DNA
methylation, some of which have been studied,29 but more
evidence is required. Their quantification would likely be
affected by the levels of total RNA or methylated DNA that
is derived from the blood cells. It is important to understand
whether the effects of sample processing procedures could
be addressed in a similar manner to the effects on circulating
DNA.

With the increasing understanding of genomic alterations
and matched targeted treatment options, the demand for a
non-invasive molecular profiling tool is growing. Analyzing
cell-free nucleic acids presents a unique opportunity for
longitudinal follow-up during treatment of cancer patients.
Initiatives have begun to pursue the standardization of
methods for cell-free DNA analysis. Understanding the
impact of different pre-analytic factors will help accelerate
the process and drive large-scale cross-center validation
studies to provide robust evidence for clinical utility of
circulating tumor DNA and its integration into routine
clinical practice.
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Abstract

Introduction

Detection and monitoring of circulating tumor DNA (ctDNA) is rapidly becoming a diagnostic,

prognostic and predictive tool in cancer patient care. A growing number of gene targets

have been identified as diagnostic or actionable, requiring the development of reliable tech-

nology that provides analysis of multiple genes in parallel. We have developed the InVi-

sion™ liquid biopsy platform which utilizes enhanced TAm-Seq™ (eTAm-Seq™)

technology, an amplicon-based next generation sequencing method for the identification of

clinically-relevant somatic alterations at low frequency in ctDNA across a panel of 35 can-

cer-related genes.

Materials and methods

We present analytical validation of the eTAm-Seq technology across two laboratories to

determine the reproducibility of mutation identification. We assess the quantitative perfor-

mance of eTAm-Seq technology for analysis of single nucleotide variants in clinically-rele-

vant genes as compared to digital PCR (dPCR), using both established DNA standards and

novel full-process control material.

Results

The assay detected mutant alleles down to 0.02% AF, with high per-base specificity of

99.9997%. Across two laboratories, analysis of samples with optimal amount of DNA
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detected 94% mutations at 0.25%-0.33% allele fraction (AF), with 90% of mutations

detected for samples with lower amounts of input DNA.

Conclusions

These studies demonstrate that eTAm-Seq technology is a robust and reproducible technol-

ogy for the identification and quantification of somatic mutations in circulating tumor DNA,

and support its use in clinical applications for precision medicine.

Introduction

Circulating cell-free DNA (cfDNA) from cancer cells, commonly referred to as circulating

tumor DNA (ctDNA), is known to be present in the plasma of cancer patients. Since the first

report of identical DNA mutations in plasma compared to a patient’s tumor, ctDNA has been

investigated as a tool for cancer diagnosis, detection, prognostication, treatment selection and

monitoring [1–3]. Over the past decade, increasing evidence demonstrates the utility of

ctDNA as a ‘liquid biopsy’ to supplement conventional biopsies for molecular characterization

and monitoring of solid cancers [4–7]. Circulating tumor DNA can be readily accessed from a

non-invasive blood draw, allowing easier access to genomic information from a patient’s

tumor or metastases as the cancer evolves, without the associated expense, complications or

risk to patients during surgery or biopsy. Moreover, tissue testing may not be a viable option

in many patients. In the Iressa Pan-Asia Study (IPASS), a phase III randomized study of gefiti-

nib vs. carboplatin/paclitaxel in patients with pulmonary adenocarcinoma, EGFR mutation

status could only be evaluated in 437/1038 (42%) patients that gave their consent for bio-

marker analyses [8]. The high failure rate may be due to a number of reasons, including insuf-

ficient biopsy material available, because the biopsy was of too poor quality for adequate

analysis, or because surgery was not possible for medical reasons. In such cases, ctDNA can

provide a valuable alternative for molecular stratification to select appropriate therapy. With

the development of targeted therapies, the molecular profile of the cancer has been established

to be informative to select therapies that are more likely to be effective in given patient groups.

For example, tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, have been

shown to be effective in non-small cell lung cancer (NSCLC) patients carrying activating

EGFR exon 19 deletions or L858R mutations, and vemurafenib is known to be beneficial to

patients with BRAF V600E mutations [9–11]. It has also been shown that it is possible to detect

tumor evolution in plasma ctDNA [6, 12, 13]. EGFR-mutant NSCLC patients can now be

tested and monitored to identify the emergence of newly arising EGFR T790M resistance

mutations, and be effectively treated with osimertinib, a third generation TKI [14–15].

Studies have shown that ctDNA levels often correlate with tumor burden, and provide an

earlier and potentially more reliable measure of treatment response than other clinical bio-

markers, such as CA-15-3 in metastatic breast cancer, and CA-125 in advanced high-grade

serous ovarian cancer [5, 7]. Recent exciting developments have shown that it is possible to use

ctDNA as a tool to assess minimal residual disease [16], and be used to identify mutant DNA

in early stage cancer, although this is much more challenging given the lower number of

mutant molecules present in the bloodstream [17,18]. With such diversity in potential clinical

applications, it is important to use a ctDNA assay that has high sensitivity and specificity, and

can interrogate multiple mutations in parallel to detect, track and monitor clinically-relevant

genomic changes as the cancer evolves. Several techniques are available for the analysis of
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ctDNA. Many of the earlier studies focused on analyzing single mutated regions. Digital PCR

(dPCR) and BEAMing have both been established as sensitive techniques for the detection and

quantification of specific ‘hotspot’ mutant alleles [19, 4]. The cobas EGFR Mutation Test v2 is a

real-time PCR test for the qualitative detection of EGFR exon 19 deletions, L858R and T790M

mutations, and is used to determine which NSCLC patients are eligible for treatment with

erlotinib or osimertinib. The test has gained FDA-approval for testing on both plasma and tis-

sue, making it the first companion diagnostic that allows the use of ctDNA analysis to guide

treatment [20]. The FDA-approved assays, however, are less sensitive than digital PCR, with a

limit of detection (LOD) at>25 copies/mL of plasma [21]. Analysis of single genomic loci is

restricted to a limited number of pre-defined hotspots. To analyse multiple mutations, cfDNA

must first be sub-divided for each assay, reducing the sensitivity of the test and introducing

potential sampling bias for detection of low frequency alleles.

The development of next generation sequencing (NGS) has allowed for a broader applica-

tion of ctDNA analysis. In 2012, Forshew et al. developed TAm-Seq technology, or tagged-

amplicon deep sequencing which, for the first time, enabled interrogation of 6 genes across a

large genomic region spanning 5995 bases to detect low frequency mutations in cell-free DNA

[22]. The assay was evaluated in plasma from patients with high-grade serous ovarian cancer,

and shown to have 97% sensitivity and specificity for detection of mutations at 2% allele frac-

tion (AF), and was able to identify mutations down to 0.14% AF. Analysis of clinical samples

showed that it is possible to use TAm-Seq technology to assay multiple mutations in parallel to

monitor tumor dynamics, identify de novo mutations direct from patient cfDNA, and identify

the origin of metastatic relapse. Since this time, other NGS technologies have been imple-

mented for analysis of ctDNA, including the use of hybrid capture and the introduction of

panel assays that use molecular barcodes to enable error suppression [6, 23, 24]. The ideal

ctDNA assay needs to have high sensitivity and specificity, have good turnaround times and

target clinically-relevant and clinically actionable genes. This will enable oncologists to make

clear treatment decisions based on molecular profiling information, according to cancer care

guidelines and used in conjunction with other clinical observations.

Here we describe the development of the InVision liquid biopsy platform which utilizes

enhanced TAm-Seq (eTAm-SeqTM) technology for the identification of low frequency muta-

tions in ctDNA. The assay has been expanded to target hotspots and entire coding regions

from 35 cancer-related genes, utilizing a primer design strategy that allows for amplification of

highly fragmented DNA, typical of ctDNA. The calling algorithm has been revised, and in

addition to improved detection of single nucleotide variants (SNVs) and short insertions/dele-

tions (indels), it also identifies copy number variants (CNVs). The library preparation process

has been adapted to remove the use of microfluidics and to reduce the background error rate.

We present analytical validation of the InVision liquid biopsy platform across two laboratories

to demonstrate its reproducibility and to support the use of this platform in clinical applica-

tions. We compare the performance of eTAm-Seq technology and digital PCR by analysis of

sheared cell-line reference standard DNA and novel full-process control material developed by

LGC and Horizon Discovery.

Materials and methods

Analytical validation of eTAm-Seq technology

To assess the performance of the eTAm-Seq technology, analytical validation studies were per-

formed in two laboratories within the scope of CLIA (Laboratory 2) and ISO 15189:2012 qual-

ity standards (Laboratory 1). Next-generation sequencing libraries were prepared using

eTAm-Seq technology, analysing sheared reference standard DNA and cfDNA extracted from
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control plasma from presumed healthy controls. Healthy control samples used in this study

were obtained on a commercial basis, from BioreclamationIVT (US) and Seralab (UK). Cell-

free DNA (cfDNA) was extracted from 5 mL plasma using a QIAamp Circulating Nucleic

Acid kit (Qiagen) as previously described [22], incorporating an internal control to monitor

extraction efficiency. cfDNA and the internal control were both quantified by dPCR, using

either the Fluidigm Biomark or Biorad QX200, with a 108 bp assay targeting a region of ribo-

nuclease P/MRP subunit p30 (RPP30) gene (Forward = 5’-GGAGGTGGAGGAGGAGGATA-
3’; Reverse = 5’-ACGGAATACAGAACCCATGACT-3’; Probe = 5’-FAM/AGCCTTGAG/
ZEN/ AGACGAGAACCTGT/IABkF Q-3’) and an assay targeting the internal control, as

previously described [22]. Yields were expressed as amplifiable copies (AC) per 10 mL blood.

Preparation of sheared cell-line reference standard DNA for analytical validation stud-

ies. Horizon Tru-Q 6 (2.5% Tier) and Tru-Q 7 (1.3% Tier) reference cell-line DNA samples

(Horizon Discovery), carrying cancer-related mutations at known allele fractions, were

sheared to ~200 bp by acoustic shearing (Covaris) to mimic fragmented cfDNA. Tru-Q 6 con-

tains a mix of 20 isogenic genetically-engineered cell lines with known engineered and endoge-

nous mutations predominantly at ~2%-2.5% AF (range: <2%-30% AF), and Tru-Q 7 contains

a mix of 40 cell lines with known mutations predominantly at ~1%-1.3% AF (range: <1%-30%

AF). Dilutions were prepared using sheared Horizon Tru-Q 0 wild-type DNA as diluent.

InVision liquid biopsy tumor profiling panel. The InVision liquid biopsy platform uti-

lizes an enhanced version of TAm-Seq technology to identify and quantify low frequency

tumor-derived SNVs and indels in cfDNA. The technology is also able to identify CNVs in

EGFR, ERBB2 (also known as HER2), FGFR1 and MET [25]. Full analytical validation of CNVs

is not included in this study. The assay targets 35 cancer-related genes spanning 10.61kb, using

primers designed to hotspots and entire coding regions of interest. Covered regions were cho-

sen to maximise the mutation yield for common cancer types primarily NSCLC, focusing on

clinically actionable mutations. We therefore included oncogenes EGFR, BRAF, KRAS, ERBB2,

MET (exon 14), U2AF1, CTNNB1, EGFR/MET amplifications as well as tumour suppressor

genes TP53, STK11, PTEN. We further included key regions of ESR1/GATA3, as well as

ERBB2/FGFR1 amplifications, and the most common mutation hotspots in common carcino-

mas as defined by COSMIC frequencies. The panel was designed optimizing primers for

amplification of fragmented DNA with amplicon sizes ranging from 72bp-154bp. The primers

were selected based on factors including GC content, similar Tm (target 60˚C), avoidance of

primer dimer, avoidance of off-target products and avoidance of SNPs. Fig 1 shows an over-

view of the InVision liquid biopsy tumor profiling panel, and S1 Table provides detail of the

exonic regions covered.

Library preparation using eTAm-Seq technology. eTAm-Seq technology is based on

methods previously described [22, 25,26], with an optimized assay workflow utilizing multi-

plex PCR to enable high-throughput library preparation without the use of microfluidics. Next

generation sequencing libraries were prepared using a two-step multiplex PCR amplification

process incorporating replicate and patient-specific barcodes and Illumina sequencing adap-

tors. Different input amounts of DNA were used to assess the performance of the assay, using

either 2,000 AC (low), 8,000 AC (medium) or 16,000 AC (high) input (~6.6ng to 53ng of

amplifiable DNA). All regions were analysed multiple times using a fixed DNA input range for

all samples to enable error correction [26]. As each sample is analysed multiple times, false

positive and true positive calls can be readily identified, providing a robust analytical pipeline

[22, 26]. After target enrichment, amplified regions were purified using SPRISelect beads

(Beckman Coulter) following the manufacturer’s protocol. Samples were quantified using the

LabChip GX touch and DNA high sensitivity assay. Quantified samples were then pooled to

generate a normalized library of 12 nM. This library was quantified using the Kapa Library

Development of a highly sensitive liquid biopsy platform utilizing enhanced TAm-Seq technology
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Quantification Kit, and 1.8 pM libraries analysed on an Illumina NextSeq 500 (300 cycle PE)

with 5% PhiX to monitor sequencing performance.

Data analysis. Sequencing files were analysed using the Inivata Somatic Mutation Analy-

sis (ISoMA) pipeline to identify SNVs, CNVs and indels. A minimum Phred quality score of

30 for each base was required for inclusion in the analytics. The pipeline clipped primers and

merged paired-end reads into synthetic reads (using Flash v1.2.11). A minimum Phred quality

score of 2 was assigned to discordant positions at the merging step. Default settings were used

for Flash and a Phred quality score of 2 was assigned to mismatched base pairs. These synthetic

reads were subsequently aligned to the reference genome using BWA (v0.7.12). Samples pass-

ing sequencing QC were kept for further analysis.

To enable variant calling, the background noise for each potential SNV was compared to

the variability observed from a set of control samples [22]. The same statistical principle was

used for indels using samples from the same batch of samples in order to enable appropriate

background calibration. In addition, each run was assessed using positive and negative

Fig 1. InVision liquid biopsy tumor profiling panel. The coverage per gene is indicated, including hotspots, comprehensive or full coverage of coding

regions (70%–100% tiling coverage) and CNVs. SNVs = Single Nucleotide Variants; Indels = short insertions or deletions; CNVs = Copy Number

Variants.

https://doi.org/10.1371/journal.pone.0194630.g001
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controls. Common single nucleotide polymorphisms (SNPs) were used to identify potential

cross sample contamination, as well as rule out potential swaps for longitudinal studies involv-

ing multiple samples from the same patient. The final determination of a call integrated the

data across replicates for the sample within a maximum likelihood framework. Variants were

annotated using the variant effect predictor [27] based on the canonical transcript for each

gene. SNVs and indels that resulted in coding and splice-site mutations were reported. For

CNVs, a normalized measure of read depth that corrects for sample and amplicon effects was

used to infer the number of DNA copies. A mutation calling report was generated providing a

comprehensive summary of somatic alterations identified.

Comparison of performance of eTAm-Seq technology and digital PCR by

analysis of novel full-process control material

Preparation of pooled plasma. Sixteen human plasma samples of ~20 mL each from 6

male and 10 female donors were obtained from Seralab (UK). All plasma samples had under-

gone a second centrifugation step of 1,000 x g for 10 minutes at 4˚C, following initial centrifu-

gation from whole blood. Samples were stored at -80˚C upon receipt. Samples were pooled

and homogenized using a roller mixer for 30 minutes at 4˚C followed by preparation of 5.0

mL aliquots which were frozen at -80˚C.

cfDNA reference standards. Multiplex I cfDNA Reference Standards (Horizon Discov-

ery) were generated from genomic DNA isolated from isogenic cell-lines, and fragmented to

~160 bp by acoustic shearing (Covaris). The standards, containing 8 known mutations in

EGFR (L858R, Δ746–750, T790M, V769-D770insASV), KRAS (G12D), NRAS (A59T, Q61K)

and PIK3CA (E545K), were diluted to 8 ng/μL for spiking into plasma.

cfDNA extraction. Following thawing of plasma aliquots, 50 μL (400 ng) of Multiplex I

cfDNA Reference Standard containing target mutations at ~5%, ~1%, ~0.1% AF or 100%

wild-type DNA was added to 5 mL pooled plasma and mixed by vortexing for 10 seconds.

DNA was extracted from plasma samples using the QIAamp Circulating Nucleic Acid Kit

(Qiagen) and eluted in 50 μL AVE buffer. Replicate extractions (n = 6) were performed for all

four levels of Reference Standard (5%, 1%, 0.1% and 100% wild-type) and plasma only controls

over 3 days (2 extractions per day). Extracts were divided into two aliquots (25 μL) and frozen,

with one aliquot analysed by the eTAm-Seq technology and one aliquot analysed by digital

PCR.

Mutational analysis. Samples were analysed using the eTAm-Seq technology in Labora-

tory 1 using an average of 12,450 AC per reaction. Digital PCR analysis was performed using a

QX200 droplet dPCR system (Bio-Rad) with a C1000 Touch Thermal Cycler (Bio-Rad) at

LGC. KRAS G12/WT and EGFR L858R/WT mutations were assessed using PrimePCR assays

(Bio-Rad) and custom designed assays were used targeting NRAS A59T/WT and PI3KCA
E545K/WT (S2A–S2C Table). Primers and BHQplus probes for custom assays were supplied

by BioSearch and diluted in 1 x TE pH 8.0 (Sigma). Reactions (20 μL) were prepared (with

10% excess) and contained ddPCR Supermix for Probes with no dUTP (Bio-Rad), 20x primer/

probe mix, 4 μL cfDNA extract (n = 1 per target mutation) with the remaining volume nucle-

ase-free water (Ambion). Non-spiked Multiplex I cfDNA Reference Standards (32 ng/reac-

tion) were analysed alongside the spiked extracts as controls (n = 3). Data was analysed using

QuantaLife (Bio-Rad, version 1.6.6.0320) with classification of single positive, double positive

and negative droplets as shown in S1A–S1E Fig. Copy number concentration was calculated

based on a partition volume of 0.85 nL.

Calculation of LOD for dPCR assays. The LOD of dPCR assays were calculated using the

approach described in Whale et al. based on modelling two binomial distributions, combining
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a 5% probability of a false positive (α = 0.05) with a 5% probability of a false negative (β = 0.05)

[28]. The false positive rate (FPR) for each assay was calculated from analysis of the 100% WT

Multiplex I cfDNA Reference Standard (n = 6 reactions, 80 ng per reaction). The ‘critical level’

is the 95th percentile for a binomial distribution with n trials and probability given by the false

positive rate per droplet (λ), where n is the mean number of droplets from the data. The LOD

expressed as mutant copies per reaction is given by n ×–ln(1-p) where p is the probability of

success for the binomial distribution with n trials and where the 5th percentile equals the criti-

cal level. The LOD expressed as AF% is the previous value relative to the total number of target

copies (i.e. n times the mean concentration per droplet (λ) of the wild-type target, plus the

mutant value) (S3 Table).

Results

Analytical validation of the eTAm-Seq technology

Analytical validation studies were performed to assess sensitivity of the eTAm-Seq technology

for detection of SNVs and indels. Horizon Tru-Q 6 Tier 2.5% and Tru-Q 7 Tier 1.3% cell-line

reference standard DNA, carrying mutations at known AF were sheared to ~200bp to approxi-

mate cfDNA. There are 21 mutations present in Tru-Q6, and 38 mutations in Tru-Q7 targeted

by the InVision liquid biopsy tumor profiling panel. Dilutions were prepared using Horizon

Tru-Q 0 wild-type DNA as diluent. Data previously published showed that concentrations of

cfDNA in plasma of cancer patients was >1.65 ng/mL in 99% of patients, >6.6 ng/mL in 80%

of patients, and>13.2 ng/mL in nearly 50% of patients [29]. This is consistent with cfDNA

amounts in 10 mL blood samples (approximately 4~4.5 mL of plasma) from NSCLC patients

which were previously shown to contain >2,000 AC (~6.6 ng) in >95% of samples, >8,000

AC (~26.4 ng) in>69% of samples and>16,000 AC (~52.8 ng) in>40% of samples [25]. Dilu-

tions were therefore performed to prepare low (2,000 AC), medium (8,000 AC) and high

(16,000 AC) input amounts. Limit of Detection (LOD), inter-operator and inter-laboratory

variability were assessed by performing the assay across two laboratories by 6 operators on dif-

ferent days and sequenced on different NGS runs. Each operator independently performed the

entire process, and one of the operators performed the assay at each of the two laboratories.

Multiple assays were performed in each laboratory at different dilution levels, as shown in

Table 1.

Analysis using eTAm-Seq technology showed that the assay had high sensitivity (Fig 2). In

Laboratory 1, sensitivity was 100% (90% confidence interval (CI): 99.01%-100%) in low input

samples at 2%-2.5% AF, 99.17% (90% CI: 97.40%-99.85%) in medium input samples at 1%-

Table 1. Details of analytical validation experiments performed to assess sensitivity of the eTAm-Seq technology,

including range of input DNA (AC), AF (%), number of sample repeats per operator, and number of operators

per laboratory.

Input DNA (AC) AF (%)� Number of repeats/operator Number of operators/laboratory

16,000 0.25%-0.33% 4 3

8,000 1%-1.3% 3 3

2,000 2%-2.5% 7 3

8,000 0.5%-0.65% 3 3

8,000 0.25%-0.33% 3 3

8,000 0.13%-0.16% 3 3

8,000 0.06%-0.08% 3 3

� AF shows indicative ranges for Tru-Q reference material, full list of values presented in S4 Table.

https://doi.org/10.1371/journal.pone.0194630.t001
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Fig 2. Plot showing sensitivity and inter-operator variability of eTAm-Seq technology using low, medium and high input DNA. Experiments were performed in

two laboratories (Laboratory 1 –upper; Laboratory 2 –lower) by different operators, performed on separate days and different NGS runs.

https://doi.org/10.1371/journal.pone.0194630.g002

Table 2. Sensitivity of the eTAm-Seq technology with 8000 amplifiable copies of DNA input per sample.

Laboratory 1 Laboratory 2

AF (%)� Sensitivity (%) 90% CI (Lower) 90% CI (Upper) Sensitivity (%) 90% CI (Lower) 90% CI (Upper)

1%-1.3% 99.17 97.40 99.85 100.00 98.96 100.00

0.5%-0.65% 99.63 98.26 99.98 97.66 95.43 98.97

0.25%-0.33% 89.17 85.29 92.30 90.28 86.91 93.00

0.13%-0.16% 69.26 64.31 73.89 67.71 62.88 72.26

0.06%-0.08% 37.41 32.50 42.52 30.86 26.10 35.95

� AF shows indicative ranges for Tru-Q reference material, full list of values presented in S4, S5 and S6 Tables.

https://doi.org/10.1371/journal.pone.0194630.t002
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1.3% AF, and 95.45% (90% CI: 93.09%-97.18%) in high input samples at 0.25%-0.33% AF.

Comparable results were seen in the second laboratory, with a sensitivity of 99.7% (90% CI:

98.6%-99.98%) in low input samples, 100% (90% CI: 98.97%-100%) in medium input samples,

and 92.71% (90% CI: 90.14%-94.77%) in high input samples.

To further assess the limit of detection (LOD) using medium input of 8000 amplifiable cop-

ies of DNA, a dilution series was created by spiking sheared Horizon Tru-Q 7 into Tru-Q 0 ref-

erence standard to approximate an AF range of 0.06%-1.25% AF. In Laboratory 1, 99.17%

mutations were detected at 1%-1.3% AF, 99.63% at 0.5%-0.65% AF, 89.17% at 0.25%-0.33%

AF, 69.26% at 0.13%-0.16% AF and 37.41% at 0.06%-0.08% AF. Comparable results were seen

in Laboratory 2 (Table 2, S2 Fig, S4 Table, S5 Table) and for all samples (S6 Table).

Across the two laboratories using 8000 amplifiable copies of input DNA, 98.65% of muta-

tions were detected at 0.5%-0.65% AF. For the 0.25%-0.33% dilution range, the sensitivity was

89.73%. The lowest frequency mutation identified was an EGFR indel (ΔE746-A750) detected

at 0.02% AF.

Assessment of quantitative performance of eTAm-Seq technology by

comparison with digital PCR analysis of reference cell-line DNA carrying

mutations at known allele fraction

In order to determine the quantitative performance of the eTAm-Seq technology, data was

compared with allele fractions generated by digital PCR analysis of Horizon Tru-Q 6 and Tru-

Q 7, supplied by the manufacturer. As can be seen in Fig 3A and Fig 3B, there is good concor-

dance between AFs determined by the eTAm-Seq technology and digital PCR analysis of 21

mutations present in both the InVision liquid biopsy tumor profiling panel and Tru-Q 6, and

analysis of 38 common mutations in Tru-Q 7. This demonstrates the quantitative accuracy of

eTAm-Seq technology for reliable detection of mutations at low allele frequency.

Assessment of specificity of the eTAm-Seq technology by analysis of

plasma from presumed healthy donors

Tru-Q6 or Tru-Q7 reference DNA contains additional mutations outside of the validated

mutations listed in these cell-line mixes, and is therefore not suitable for assessing specificity.

Plasma samples from 79 presumed healthy donors were therefore analysed using eTAm-Seq

technology to assess specificity. This analysis identified five low frequency coding mutations,

all at�0.5% AF: three located in TP53 [L308L at 0.19% AF (Laboratory 1); Y220C at 0.5% AF

and P27L at 0.5% AF (Laboratory 2)] and two in GATA3 [T323T at 0.1% AF and T419T at

0.317% AF (Laboratory 2)]. Sufficient material was available to enable re-extraction of plasma

cfDNA from the same blood draw in four out of five cases (all but GATA3 T419T). Analysis by

eTAm-Seq technology was repeated for these 4 samples. Re-analysis confirmed the initial call

for three of the four samples, failing only to detect the TP53 L308L change originally identified

at 0.19% AF. This resulted in two potential false positives, one is unconfirmed, and the other

may be a false-negative of the replicate assay at�0.19% AF. The identification of 2 potential

false positives in 79 healthy samples amounts to a per-base specificity of at least 99.9997%

(95% confidence interval, 99.9989% to 99.99996% per-base specificity).

Analysis of novel full-process control material using eTAm-Seq technology

and digital PCR

To explore the performance of a novel full-process control with spiked DNA reference stan-

dards and assess the ability of the eTAm-Seq technology to identify low frequency mutations,
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5 mL aliquots of pooled plasma from 6 male and 10 female presumed healthy donors were

spiked with 400ng Multiplex I cfDNA Reference Standard. This reference standard, acousti-

cally sheared to 160bp to mimic cfDNA, is derived from well-characterized isogenic cell-lines

and contains 8 target mutations at ~5%, ~1% or ~0.1% AF. 100% wild-type DNA from non-

modified cell-lines containing 100% wild-type DNA was used as a control. By spiking into

plasma containing background DNA, the resulting mix would be expected to contain lower

AFs than the original standards. For each of the four levels, replicate cfDNA extractions

(n = 6) were performed over 3 days, together with replicate plasma-only controls. The cfDNA

was sub-divided into two for analysis by both eTAm-Seq technology (Laboratory 1) and dPCR

(LGC). dPCR analysis was performed targeting hotspot mutations in EGFR L858R, KRAS
G12D, NRAS A59T and PIK3CA E545K. The observed extraction efficiency was highly repro-

ducible between replicates, with ~50% recovery of the spike-in (S3 Fig). More variability was

observed in the 0.1% AF-spiked sample, likely due to sampling noise when quantifying small

numbers of mutant molecules. The extraction efficiency was slightly lower than has previously

been reported (60%-80% recovery) for measurement of a spike-in control [30]. Quantification

of the<5% AF and<1% AF samples using the eTAm-Seq technology and dPCR spiked

Fig 3. Plot showing allele fractions determined by analysis with eTAm-Seq technology (blue boxplot) and digital PCR (red cross) for analysis of mutations present in

both the InVision liquid biopsy tumor profiling panel and (A) Tru-Q 6 and (B) Tru-Q 7.

https://doi.org/10.1371/journal.pone.0194630.g003
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plasma showed good concordance (Fig 4). The small deviation in AF observed in the contrived

control samples may be related to differences in DNA fragment sizes between the sheared

mutant DNA and the wild-type donor plasma, which may differentially affect the results of the

two methods. Both methods showed good precision with low %CV for all 4 mutations in anal-

ysis of plasma spiked with 5% and 1% AF reference standard (S4 Fig).

100% of mutations known to be present in the<5% and<1% AF pool were detected by

both eTAm-Seq technology and dPCR (S5 Fig, S7 Table). An additional 5 coding mutations in

BRAF V600E (20.07% AF), CTNNB1 S33Y (14.72% AF), PIK3CA H1047R (13.98% AF), STK11
Q123Q (13.37% AF) and EGFR G719S (13.31% AF) were detected using the eTAm-Seq tech-

nology. These mutations were all confirmed to be present by exome sequence analysis of the

original isogenic cell-lines that the reference standards were derived from. In the<0.1% spiked

sample, across the 4 overlapping mutations analysed by both methods in the 6 replicate extrac-

tions, amplicon sequencing detected 11/24 mutations whilst dPCR detected 16/24. Overall, 25/

48 (53%) mutations in the <0.1% AF sample were detected using eTAm-Seq technology, as

expected given the limit of detection for the assay and stochastic sampling effects. Two poten-

tial false positives were identified: TP53 F113V (GRCh38 chr17:7676032 A>C) at 0.15% AF

and GNA11 R214M (chr19:3118959 G>T) at 0.1% AF. The GNA11 mutation was possibly

caused by 8-oxoguanine (8-oxoG) lesions created during the shearing process used to create

the original reference standard DNA. Many of the samples with spiked fragmented DNA had

high background at this position and at other G bases, whilst non-sheared plasma did not

show an aberrant base both in this run and in previous experiments. The TP53 mutation was

observed significantly above normal background, and may be a false positive or a true low fre-

quency variant.

Discussion

It has long been known that genomic alterations in cancer can be detected in the plasma of

cancer patients in the form of circulating tumor DNA. Increasing evidence indicates clinical

utility of ctDNA as a diagnostic, prognostic and predictive tool with potential application

Fig 4. Quantitative agreement of 5% AF and 1% AF reference standard spiked into plasma, and measured by eTAm-Seq technology and dPCR. Mean mutant AF

(%) ± SD are displayed for each technology (n = 5� (5% AF standard); n = 6 (1% AF standard)). By spiking into plasma containing background wild-type DNA, the

resulting mix was confirmed to contain lower AFs than the original reference standards (original mutant AF values 5% standard: 5% (EGFR); 6.3% (KRAS, NRAS,

PIK3CA); 1% standard: 1% (EGFR), 1.3% (KRAS, NRAS, PIK3CA). (�1 data point omitted due to anomalous extraction efficiency).

https://doi.org/10.1371/journal.pone.0194630.g004
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throughout the continuum of cancer care. FDA approval of the first companion diagnostic

permitting ctDNA-based mutation detection, and the emergence of several ctDNA-guided

clinical trials [31–33] signals growing acceptance of its utility. ctDNA analysis offers important

advantages over profiling single biopsies taken during invasive surgery, often many months or

years before clinical progression. ctDNA enables repeat sampling and molecular assessment of

tumor evolution during patient treatment, which may help guide subsequent therapy [5, 15].

Advances in NGS have shown it is possible to monitor tumor dynamics and assess evolution

in plasma by analysis of multiple mutations in parallel across serially-collected samples, rather

than focusing on single hotspot mutations. Digital PCR analysis of multiple mutations is possi-

ble to a limited degree but requires sub-dividing DNA into different assays. When large

amounts of DNA are available, this can be achieved but where DNA is limited, such as in the

analysis of cfDNA, this results in sampling noise and loss of sensitivity as rare mutant mole-

cules are missed. NGS analysis, with a sensitive and appropriately validated platform, circum-

vents these issues, providing substantially more information on somatic alterations present in

the bloodstream, which can be used to guide subsequent cancer therapy.

Currently, there is a limited but growing number of clinically actionable gene targets. The

hope is that future advances will result in the development of new immunotherapies and tar-

geted treatments effective against additional somatic alterations known to be present. One

important factor in the development of a clinically useful ctDNA assay is to strike the right bal-

ance in the size of the genomic region analysed to enable optimal test sensitivity and specific-

ity. By increasing the size of the genomic region covered, the correction for false positives

needs to be more stringent. Hybrid capture-based enrichment methods have enabled analysis

of focused genomic regions up to whole exomes [6, 23, 24]. However, analysis of larger regions

either requires expensive high depth sequencing to identify low frequency mutations, or a

compromise on depth and associated reduction in sensitivity. Hybrid capture can be used to

target more focused regions but this leads to a high proportion of off-target sequencing reads.

Like the sampling noise challenge for dPCR described above, a key limit for all NGS methods

developed for cfDNA analysis is the fraction of DNA molecules successfully analysed. Through

PCR enrichment, with suitably short amplicons, amplicon-based sequencing can achieve sen-

sitivity comparable to dPCR by amplifying and thereby sampling the majority of cfDNA mole-

cules accessible to PCR amplification. Since samples need not be split into multiple assays, the

effective sensitivity of amplicon-based sequencing may even exceed that of dPCR [20, 34, 35].

Hybrid capture library preparation methods are not restricted to amplifying regions contain-

ing both priming sites. However, they require considerable pre-processing prior to enrichment

or PCR-based amplification and therefore may lose a significant proportion of molecules dur-

ing library preparation stages, particularly during adaptor ligation [36]. This is important for

analysis of ctDNA given the low frequency of tumor-derived DNA molecules present in

patient plasma, particularly in earlier stage cancer.

Here, we have described the InVision liquid biopsy platform which utilizes enhanced

TAm-Seq technology for the identification of low frequency mutations in cell-free DNA. This

amplicon-based method has been carefully optimized for efficient amplification from limited

amounts of fragmented plasma DNA. The focused gene panel targets 35 clinically actionable

and clinically-relevant genes, providing coverage of critical regions in 31 genes and near com-

plete coverage of 4 genes of clinical significance. Analytical validation of the assay demon-

strates high sensitivity and specificity for detection of low frequency mutations with 94.08% of

mutations detected at 0.25% - 0.33% allele fraction (AF) with optimal DNA input, with a per-

base specificity of 99.9997%. Validation across two laboratories demonstrates its reproducibil-

ity and supports its use in clinical applications. In addition, the assay is highly quantitative,

demonstrating excellent concordance with digital PCR analysis of commercial cell-line
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reference standard DNA, and novel full-process control material developed by LGC and Hori-

zon Discovery, that carry cancer-related mutations at known allele fractions.

Using this assay, mutant alleles were detected down to 0.02% AF, with>30% sensitivity for

detection at 0.06% AF (1 mutant DNA copy in 1600 molecules). This study identifies two chal-

lenges when assessing assay specificity using either individual donors or acoustically-sheared

commercial reference standards for analysis of low frequency mutations in ctDNA using an

ultra-sensitive test. During analysis, five mutations at�0.5% AF were identified in presumed

healthy donors, yet when 4 samples with sufficient material were re-analysed, the same muta-

tions were repeatedly identified in 3, indicating these were true positives; the 4th change was

originally detected at a low allele fraction of 0.19% so possibly missed on repeat due to its low

allele fraction. Somatic mutations have previously been detected in presumed healthy individ-

uals, and may represent pre-malignant mutations that accumulate prior to cancer or during

the aging process [37], or changes that have arisen during clonal hematopoiesis [37, 38] or

could originate from undetected tumors. More studies are needed using orthogonal assays

with similarly high sensitivity to determine if changes are truly present. Using the commercial

reference standard, a GNA11 R214M G>T mutation was identified along with a signature of

high background G>T/C>A errors at other bases. This is consistent with 8-oxoguanine

(8-oxoG) lesions created during the acoustic shearing process or potentially evolution and het-

erogeneity of the cell lines. The phenomenon of G>T/C>A transversion artifacts was first

identified by Costello et al. [39, 40], and highlights the potential risk of using acoustically-

sheared DNA to validate specificity of sensitive ctDNA NGS-based assays capable of detecting

low frequency sequence aberrations. One solution may be to limit the use of sheared material

to the assessment of assay sensitivity, since this material performed well at the loci that were

defined and tested for this purpose, and use donor (healthy volunteer) DNA for broader speci-

ficity assessment (given the caveats previously mentioned and repeat or orthogonal analysis

for confirmation). Alternatively, different mechanisms could be investigated to fragment com-

mercial reference standard DNA, such as enzymatic fragmentation, which may potentially

introduce less DNA damage.

Given the restrictive requirement to immediately process EDTA-collected blood to plasma

to prevent leukocyte lysis, it is important to validate the eTAm-Seq technology using blood col-

lected into Streck Cell-free DNA BCT tubes. These tubes contain a proprietary cell preservative

which stabilizes nucleated blood cells preventing contamination with background wild-type

DNA. Analysis of the eTAm-Seq technology in EDTA and Streck tubes collected at the same

time from patients has previously been presented [40], and showed high technical reproduc-

ibility between two independently processed blood tube types, indicating use of either tube

type is suitable for clinical blood collection using this technology. The Streck Cell-free DNA

BCT tubes provide a robust alternative to enable delayed and centralized processing which will

help standardize pre-analytic factors during blood collection, and provides improved feasibil-

ity for introduction into routine ctDNA testing in the clinic.

In support of the use of the InVision liquid biopsy platform in clinical applications, data

has previously been reported demonstrating a high level of concordance between this platform

and dPCR in mutations detected in 35 patients with advanced breast cancer [41]. With 100%

and 96% agreement for mutation detection in ESR1 and PIK3CA respectively, amplicon

sequencing identified additional mutations not covered by dPCR analysis and therefore sub-

stantially more mutations per patient which have possible clinical relevance. There was 100%

concordance in the detection of HER2 amplifications when compared to IHC and/or FISH of

metastatic tumors [42]. Furthermore, Fribbens et al. demonstrated good concordance of

eTAm-Seq technology with dPCR, with high levels of genetic heterogeneity and frequent sub-

clonal mutations in advanced breast cancer patients progressing on first-line aromatase
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inhibitor therapy [42]. In this study, ESR1 mutations were detectable in plasma median of 6.7

months before clinical progression. Another study compared the detection of mutations in

EGFR between plasma and tissue and across platforms, and found amplicon-based plasma

NGS to have exquisite sensitivity and specificity, with excellent quantitative concordance with

an optimized dPCR assay [43]. Remon et al. have previously demonstrated the use of eTAm-

Seq technology to aid in selection of targeted treatment in a prospective cohort of 48 EGFR-

mutant advanced NSCLC patients with acquired resistance to EGFR TKIs, and without an

available tissue biopsy [15]. cfDNA analysis identified resistance mutations in EGFR T790M at

frequencies as low as 0.1% AF, and the study was able to demonstrate the benefit of osimertinib

treatment in these patients. Strikingly, of the seven cases in that study with best response

(decrease of 50% or more in size), three cases had T790M detected at<0.25% AF. Use of a less

sensitive assay would miss such low frequency alleles.

Taken together, these studies demonstrate that the InVision liquid biopsy platform is a

highly sensitive, quantitative and reproducible platform for detection of low frequency clini-

cally-relevant cancer mutations in cell-free DNA. Additional larger cohorts are currently being

analyzed to support clinical validation and clinical utility of the test and provide evidence to

support introduction into routine testing for patient management.

Supporting information

S1 Fig. A-E dPCR data plots for analysis of full-process control samples. (A-D) dPCR 2D

data plots for A. EGFR L858R/WT, B. KRAS G12D/WT, C. NRAS A59T/WT and D. PIK3CA
E545K/WT assays showing negative controls (plasma only, NTCs), positive controls (non-

spiked Multiplex I cfDNA Reference Standards) and analysis of full-process controls (plasma

spiked with Multiplex I cfDNA Reference Standards). Data was analysed using QuantaLife

(Bio-Rad, version 1.6.6.0320) with classification of single positive (mutant (blue), wild-type

(green)), double positive (orange) and negative (black) droplets by manual crosshair setting

(A, B, D) or lasso (C; lassos not shown by software post-analysis). E. Accepted droplet number

for all four dPCR assays.

(EPS)

S2 Fig. Sensitivity of the eTAm-Seq technology.

(AI)

S3 Fig. Evaluation of extraction efficiency using full-process control samples. Copy number

concentrations of each target in spiked extracts were quantified by dPCR and extraction effi-

ciency calculated by comparison with the values assigned by dPCR using the same assay.

(AI)

S4 Fig. Precision of eTAm-Seq technology and dPCR measurements of full-process control
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Abstract

Circulating tumor DNA (ctDNA) analysis is being incorporated into cancer care; notably in

profiling patients to guide treatment decisions. Responses to targeted therapies have been

observed in patients with actionable mutations detected in plasma DNA at variant allele frac-

tions (VAFs) below 0.5%. Highly sensitive methods are therefore required for optimal clinical

use. To enable objective assessment of assay performance, detailed analytical validation is

required. We developed the InVisionFirst™ assay, an assay based on enhanced tagged

amplicon sequencing (eTAm-Seq™) technology to profile 36 genes commonly mutated in

non-small cell lung cancer (NSCLC) and other cancer types for actionable genomic alter-

ations in cell-free DNA. The assay has been developed to detect point mutations, indels,

amplifications and gene fusions that commonly occur in NSCLC. For analytical validation,

two 10mL blood tubes were collected from NSCLC patients and healthy volunteer donors. In

addition, contrived samples were used to represent a wide spectrum of genetic aberrations

and VAFs. Samples were analyzed by multiple operators, at different times and using differ-

ent reagent Lots. Results were compared with digital PCR (dPCR). The InVisionFirst assay

demonstrated an excellent limit of detection, with 99.48% sensitivity for SNVs present at

VAF range 0.25%-0.33%, 92.46% sensitivity for indels at 0.25% VAF and a high rate of

detection at lower frequencies while retaining high specificity (99.9997% per base). The

assay also detected ALK and ROS1 gene fusions, and DNA amplifications in ERBB2,

FGFR1, MET and EGFR with high sensitivity and specificity. Comparison between the InVi-

sionFirst assay and dPCR in a series of cancer patients showed high concordance. This

analytical validation demonstrated that the InVisionFirst assay is highly sensitive, specific

and robust, and meets analytical requirements for clinical applications.
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Introduction

It has been shown more than 20 years ago that some cancer mutations can be detected non-

invasively through analysis of samples including blood plasma, urine, stool and sputum [1–6].

Circulating tumor DNA (ctDNA) is believed to enter a patient’s blood plasma largely through

turnover of cancer cells and subsequent release of the resultant fragmented DNA into circula-

tion. Early attempts to analyze this ctDNA were restricted to methods that focused on a small

number of genomic changes with relatively limited sensitivity. It is now known that a signifi-

cant fraction of mutations, especially in earlier stage cancer are present at extremely low vari-

ant allele fractions (VAF) in the blood.

The development of methods including digital PCR (dPCR) and its derivatives such as

droplet-based digital PCR (ddPCR) subsequently enabled the sensitive and quantitative analy-

sis of ‘hotspot’ mutations or individual mutant alleles [7–9]. These more sensitive methods

demonstrated the potential of using ctDNA for a range of applications including cancer prog-

nostication, treatment selection, monitoring and even early detection [9–11]. They were still

however limited to assessing just a small number of changes.

We demonstrated for the first time in 2012 the ability to use next generation sequencing

(NGS) of gene panels to detect solid tumor mutations through sequencing a patient’s cell free

DNA (cfDNA) and to monitor the VAF of multiple mutations in serially collected plasma sam-

ples over time [12]. The initial version of our assay using TAm-Seq1 technology covered 6

genes and had 97% sensitivity and specificity for detecting single nucleotide variants (SNVs)

and indels at 2% VAF and above and reported mutations down to 0.14% VAF. This demon-

stration was rapidly followed by examples of a range of different NGS approaches including

hybrid capture and molecular barcoding that could be applied to broadly analyze ctDNA with

varying performance characteristics [13–15].

The area where ctDNA analysis is most rapidly entering clinical use is in the molecular

stratification of patients for treatment where tissue is limited, unavailable or of insufficient

quality; most notably for non-small cell lung cancer (NSCLC) patients. This is due to the com-

plexity of a lung biopsy, the risk and associated costs and the availability of appropriate effec-

tive targeted agents for treatment of NSCLC patients. The first assays to gain regulatory

approval for testing in this setting were the therascreen1 EGFR RGQ PCR kit and cobas1

EGFR Mutation Test v2 assays which use real-time PCR for the qualitative detection of EGFR
exon 19 deletions, L858R, T790M and other mutations in EGFR. Positive ctDNA results can be

used to determine which NSCLC patients are eligible for treatment with 1st- or 3rd-generation

EGFR inhibitors [16]. Due to the technology used however, these assays are less sensitive than

dPCR and can only assess a limited number of mutations, reducing the number of patients

these assays will successfully stratify to treatment.

To enable broad and highly sensitive ctDNA analysis we have developed eTAm-Seq tech-

nology, a significantly enhanced version of our original TAm-Seq technology (Fig 1). We pre-

viously described the development of an earlier version of this enhanced assay, which covered

35 genes and could detect SNVs, indels and copy number variations (CNVs) [17]. Here we

describe the analytical validation of the InVisionFirst assay which utilizes this technology and

has been updated to cover 36 genes for a range of SNVs, indels, CNVs and gene fusion events

including the key mutations in EGFR and ALK and ROS1 fusions (S1 Table). InVisionFirst is

an NGS assay designed to detect the key actionable somatic NSCLC mutations in ctDNA,

released into the blood stream of NSCLC patients which, when combined with standard clini-

cal observations, can be used by the clinician to guide a patient to therapy. Based on the previ-

ously published NSCLC mutation spectrum, 94% of patients contain at least one mutation

within the 36 genes targeted [18].
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There are a growing number of ctDNA assays being developed based on different technolo-

gies, with different performance characteristics and differing levels of concordance with tissue

[15,19]. It is therefore critical that analytical validation studies are executed and performance

testing schemes developed to determine the functional characteristics of each assay to enable

clinicians to select the most suitable assay for their patient. In the current study, we first

describe the assessment of the InVisionFirst assay’s ability to call SNVs, indels, amplifications

and gene fusions using contrived material and blood from donors not known to have cancer.

We then compare our ability to call changes in NSCLC patients’ blood with that of digital

PCR. Finally, we demonstrate that the InVisionFirst assay gives concordant results whether

blood is drawn in Streck Cell-Free DNA Blood collection tubes (Streck BCT) or EDTA tubes

and we show, concordant with previously published results, that when DNA containing muta-

tions was spiked into blood drawn into Streck BCT then the mutant allele fraction stayed stable

for at least 10 days.

Results

SNV detection sensitivity, repeatability and reproducibility

To determine the ability of the InVisionFirst assay to call mutations at different allele fractions

and thus its limit of detection (LoD) which we have defined as the point where we would detect

a mutation�90% of the time (LoD90), a dilution series was created of sheared Tru-Q7 refer-

ence DNA in Tru-Q0 (both obtained from Horizon Discovery). Details of this and subsequent

contrived materials are described in detail in the Materials and Methods section. Tru-Q7 con-

tains 39 validated mutations that are covered in our targeted sequencing region, and 32 of

these are SNVs present at low VAF, predominantly between 1%-1.3% (S2 Table). The dilution

series created 5 different samples, containing respectively the majority of mutations at the fol-

lowing VAF levels: 1%-1.3%, 0.5%-0.65%, 0.25%-0.33%, 0.13%-0.16% and 0.06%-0.08%. Sam-

ples from this dilution series was analyzed multiple times by three operators, each using two

different Lots of reagents. Full details of this and subsequent designs are available in S3 Table.

Fig 1. Overview of the InVisionFirst workflow.

https://doi.org/10.1371/journal.pone.0193802.g001
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100% of SNVs with an expected VAF of 0.5% and above were detected across all runs, all

operators and all reagent Lots. For SNVs at VAF in the range 0.25%-0.33%, 99.48% were

detected. 88.93% of SNVs were detected at the VAF range of 0.13%-0.16%, and 56.25% were

detected at the VAF range 0.06%-0.08% (Fig 2A, S4 Table). This confirmed the LoD of our

assay to be 0.25% VAF. A complete table describing all expected calls and whether they were

Fig 2. Sensitivity for SNVs (A, C) and indels (B, D). A and B show the sensitivity as a function of the allele fraction of

the reference mutations. Each line represents a different operator/Lot combination. C and D show the full set of calls

for all combinations of dilution/variant (vertical) and repeat/operator/lot (horizontal). Blue rectangles represent

mutations that were detected and grey represents those missed. Panel E shows for SNVs the estimated allele fraction

compared between InVisionFirst (blue box-plots) and the reference as estimated by Horizon using ddPCR (red

crosses).

https://doi.org/10.1371/journal.pone.0193802.g002
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made, along with depth of coverage is available (S5 Table). In total, there were 3,498 mutation

calls made at low VAF (�1.3%) in this SNV section of the study. The median depth of

sequencing for all the detected mutations was 69,061x and the lowest depth at which any of the

3,498 mutation calls were made was 10,223x. Coverage was extremely even, with 95% of calls

having a depth no less than half the median and 99.9% of calls having a depth no less than 0.2x

of the median.

Mutation calls between replicates, operators and reagent Lots showed high repeatability

and reproducibility with all 32 mutations detected in all replicates at 0.5% VAF and above and

no noticeable difference within or between operators or Lots at 0.25%-0.33% VAF (Fig 2C). To

extend our analysis across a broader set of mutations we assessed a total of 43 unique samples

containing a total of 605 unique variants at or above the LoD (S6 Table). We detected all SNVs

giving a Positive percentage agreement (PPA) of 100.0% at�0.25% VAF.

Combining the replicates of the InVisionFirst assay, the average estimated VAF for the 36

validated SNVs closely correlated with the expected frequencies as stated by Horizon for the

undiluted Tru-Q7 DNA (Pearson squared correlation coefficient R2 = 0.9987) (Fig 2E).

Indel detection sensitivity, repeatability and reproducibility

To assess the InVisionFirst assay’s ability to call indels, a custom reference material was created

by SeraCare containing eighteen indels targeted by our panel ranging from -24bp to +12bp (S7

Table). Five separate samples were produced by SeraCare with all eighteen indels present at

one of five different levels; 2%, 1%, 0.5%, 0.25% or 0.1% VAF. All five of these samples were

analyzed multiple times by three operators each using two different Lots of reagents (S3 and S7

Tables).

For the 2%, 1% and 0.5% VAF all but 3 of the 1188 expected indels were detected (99.7%).

At a VAF of 0.25%, 92.46% of indels were detected, whilst at 0.1% VAF, 234 out of an expected

324 indels (72.22%) were detected (Fig 2B and S8 Table). A complete table of all expected

indels and whether they were detected are available in S9 Table.

As with the SNV calling, the sensitivity of the assay did not vary within runs, between oper-

ators or between reagent Lots demonstrating high assay sensitivity, repeatability and reproduc-

ibility (Fig 2D).

To extend indel analysis across a broader set of unique samples and mutations we assessed

a total of 31 unique samples containing a total of 115 variants at or above our LoD (�0.25%

VAF) demonstrating a PPA of 97.4% (S6 Table).

Fusion gene detection sensitivity, repeatability and reproducibility

The InVisionFirst assay detects the DNA breakpoints that create the common EML4-ALK and

ROS1 gene fusions. Due to the scarcity of DNA samples with such breaks, three separate

approaches were used to assess our sensitivity to detect these fusions. Fragmented cell line

DNA was created (Horizon Discovery) with one EML4-ALK and one SLC34A2-ROS1 fusion.

Dilutions with these fusions at five different levels were created (VAF of 1%, 0.5%, 0.25%,

0.13% and 0.06%) and a similar replication strategy as used for SNVs and indels was under-

taken (S3 Table).

For each dilution level, other than the lowest, 36 fusions were tested. At all levels, down to

0.13% VAF, all 36 fusions were detected (Fig 3A). At the lowest level of 0.06% VAF, 90% (27/

30) were detected.

To test the assay performance across a broader spectrum of fusions an additional 44

breakpoints were synthesized then spiked into fragmented genomic DNA. 18 of these were

designed according to breakpoints previously reported in NSCLC cases [20]. A further 26 were
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generated through random joining of fusion partners (S10 Table). The 18 published break-

points where diluted to 1% and 0.5% in fragmented DNA and analyzed across multiple opera-

tors whilst the random breakpoints were diluted to 1% VAF and analyzed a single time.

Of the 44 unique synthetic fusions analyzed, 43 were detected in all repeats at 1% VAF (the

remaining fusion was detected in 1 of 4 repeats) (Fig 3B, 3C & 3D). With the inclusion of Hori-

zon cell line DNA, 97.8% (45/46) of the gene fusions were detected in all repeats at 1% VAF.

At 0.5% VAF just one additional fusion was not detected in 2 of 4 repeats. All other fusions

were called in all repeats at this level (Fig 3A, 3B & 3C) resulting in a total of 90% (18/20) of

gene fusions that were detected at 0.5% VAF.

To extend the assessment of fusion detection sensitivity, the 2.5% VAF Horizon cell line

fusion DNA was spiked into blood from 19 different donors (collected into both Streck BCT

and EDTA tubes) at levels close to our LoD as described below. All fusions were detected in

these samples (S11 Table). Collectively 54 unique samples with fusions and 104 variants at or

above our LoD were analyzed. All but 3 were detected giving a PPA of 97.1% (�0.5% VAF).

Amplification detection sensitivity, repeatability and reproducibility

To determine the sensitivity of the InVisionFirst assay to EGFR, FGFR1, ERBB2 and MET
amplifications, double stranded DNA matching the parts of these genes targeted by the assay

was manufactured, quantified by dPCR, then spiked into a background of sheared wild type

DNA creating samples with copy number amplification ratios (CNAR) of 1.25x, 1.5x and 2x.

Fig 3. Fusion sensitivity analysis. Blue rectangles represent fusions that were detected and grey represents those missed. (A) Dilution of Horizon

reference material containing 2 fusions (ALK and ROS1) across dilution levels (vertical) and operator/lot (horizontal), (B) Set 1 of contrived material

based on published DNA breakpoints (AF 1% and 0.5%, 2 operators), (C) Set 2 of contrived material based on published DNA breakpoints (AF 1% and

0.5%, 2 operators, 2 reagent lots) and (D) Contrived material based on randomly generated fusion breakpoints. Different operators performed different

parts of this fusion study.

https://doi.org/10.1371/journal.pone.0193802.g003
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Each synthetic amplification was analyzed multiple times by three operators using two differ-

ent Lots of reagents (S3 Table).

In total, each gene amplification was assessed at each dilution level between 22 and 24 times

across the 3 operators. All amplifications for all four genes were detected at 2x CNAR, while 86

out of 88 amplifications were detected at 1.5x (97.7%). Detection at 1.25x CNAR ranged from

59% for FGFR1 to 90.91% for EGFR (Table 1).

An additional series of samples were created with amplifications of all four genes between

2x and 50x to assess our reportable range and extend our assessment of PPA. A total of 49

unique samples were analyzed with 52 variants at or above our LoD of 1.5x CNAR and 51 vari-

ants were detected giving a PPA of 98.1% (S6 Table).

Specificity of the InVisionFirst assay

To determine assay specificity, blood was drawn into Streck BCT or EDTA tubes from donors

not known to have cancer. 95 samples were analyzed for gene fusions and no calls were made.

109 samples (70 in Streck BCT and 39 in EDTA tubes) were analyzed for SNVs, indels and

amplifications. No CNVs were detected in these 109 individuals. A total of 3 coding or splice

altering variants were called at a VAF of between 0.13% and 1.57% (TP53 L369X, a TP53 splice

alteration at chr17:7673838 and EGFR T790M, S12 Table). Digital PCR analysis was per-

formed targeting all changes. The TP53 mutation (g.chr17:7673838 C>A) at 1.57% was con-

firmed by dPCR. The mutations at 0.13% and 0.29% were not detected by dPCR. To

determine the frequency with which we call these changes, we analyzed the presence of these

changes in a further 92 samples from donors not known to have cancer and 242 samples from

untreated NSCLC patients. None of these alterations were detected in this extended cohort.

Comparison of the InVisionFirst assay with dPCR

To compare InVisionFirst with an orthogonal method, blood from 20 NSCLC patients was

assessed with both the InVisionFirst assay and dPCR. Twenty patients were first identified

with either a KRAS (p.G12C or p.G12D) or EGFR (p.L858R or p.E745_A750del/K) mutation

above 0.25% VAF by the InVisionFirst assay (0.27%-65.55% VAF). In this cohort 40% of

patients had a VAF <0.75% (S13 Table). cfDNA from a second tube of blood was then

extracted from all 20 donors and shipped to an independent site (LGC, Teddington, UK) for

blinded analysis. LGC analyzed all samples for all 4 mutations. Using dPCR they detected 19 of

the 20 expected changes while not identifying any unexpected changes giving a PPA of 100%

and a Positive Predictive Value (PPV) of 95% (Fig 4). The one change not detected by dPCR

was a change identified at 0.3% by the InVisionFirst assay and was in a sample with compara-

tively low DNA input levels (an estimated 646 molecules were read by dPCR, implying 1–2

mutant molecules were to be expected in the sample). Comparison of VAF between dPCR and

InVisionFirst showed excellent concordance (R-squared = 0.965) (Fig 4).

Table 1. Amplification sensitivity analysis for FGFR1, EGFR, ERBB2 and MET.

Gene 1.25X (%) 1.5X (%) 2X (%)

MET 81.82 95.45 100

FGFR1 59.09 100 100

ERBB2 68.18 100 100

EGFR 90.91 95.45 100

Combined 75 97.73 100

https://doi.org/10.1371/journal.pone.0193802.t001
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Streck BCT and EDTA tube comparison

To demonstrate that the InVisionFirst assay can be used to analyze blood collected in either

Streck BCT or EDTA tubes, reference DNA with SNVs, indels and fusions were spiked into

the blood of donors not known to have cancer. 16,000 amplifiable copies of either sheared

Tru-Q2, Tru-Q3 or the custom 2.5% VAF fusion cell line DNA (Horizon Discovery) were

spiked into either blood tube type. Following extraction and successful sequencing of 36 spiked

samples, all expected mutations were detected in both tube types (S11 Table).

Effect of delayed processing on mutant allele fraction

To assess the impact of delayed processing on mutant VAF for blood drawn into Streck BCT,

Horizon 5% Multiplex I cfDNA Reference Standard DNA was spiked into whole blood from 4

donors then processed at 2, 3, 5, 7 or 10 days post blood draw. Variant allele fractions were

assessed by the InVisionFirst assay and were shown to be stable following room temperature

storage for up to 10 days (Fig 5).

Discussion

A number of assays with varying performance characteristics are available for molecular strati-

fication of patients with NSCLC. In a recent study of patients treated with osimertinib follow-

ing detection of an EGFR T790M mutation through ctDNA sequencing, 3 of the 7 best

responders had the T790M mutation detected at VAF<0.25%, highlighting the potential bene-

fit to patients of more sensitive assays [21].

Most assays have either high sensitivity for one or a limited number of mutations, such as

assays based on dPCR, or a low sensitivity for a broader spectrum of changes. Recently, a lim-

ited number of assays that aim for both broad coverage and high sensitivity were introduced

such as the InVisionFirst assay. In order for clinicians to differentiate assays and determine the

one most suitable for their patient, detailed analytical validation, clinical validation and clinical

utility studies will be needed in combination with factors such as turnaround time, cost and

reproducibility.

Here we have demonstrated that the InVisionFirst assay has exceptionally high sensitivity

for detecting SNVs, indels, amplifications and gene fusions. We have also shown high SNV

and indel detection concordance between the InVisionFirst assay and dPCR in blood samples

from NSCLC patients. Out of 80 possible changes assessed by both methods, 79 were

Fig 4. Comparison between InVisionFirst assay and orthogonal dPCR generated by an independent laboratory. Four common cancer mutations

were tested by dPCR in 20 samples selected to have one of these four mutations based on the InVisionFirst assay. The allele fraction of the mutation not

detected by the orthogonal method is estimated by the InVisionFirst assay at 0.3%.

https://doi.org/10.1371/journal.pone.0193802.g004
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concordant. A single KRAS p.G12C change that was detected by the InVisionFirst assay at

VAF of 0.3% was not observed by dPCR. Multiplexing by dPCR is typically not practical and

therefore all samples in this study had to be split 4 ways to analyse the 4 mutations by dPCR.

The discordant KRAS change was found in a sample with low concentration of DNA and due

to both this splitting of material and to sample loss (dead volume) common in dPCR (~39%);

we therefore only expected to see ~ 1 to 2 mutant molecules in dPCR analysis, and the proba-

bility of allelic loss (zero representative molecules in the assay) was substantial (estimated

probability of at least 14.4% to have no mutant copies present according to Poisson statistics).

Separately a blinded study comparing InVsionFirst with both dPCR analysis of cfDNA and

sequencing of tissue has shown high concordance [22].

In the analysis of donors not known to have cancer, no fusion or CNV calls were made.

Three unexpected protein coding alterations were called in analysis of 109 samples (per base

specificity 99.9997%). Through dPCR analysis, one of these alterations was confirmed whilst

the other two were not detected. These calls were made at low VAF (0.13% and 0.29%) and

could represent either false positives or true changes that could not be replicated at such low

levels. We reviewed available data from a further 344 individuals that were either not known to

have cancer or were newly diagnosed, untreated NSCLC patients, and neither change was

detected in these samples, so each was detected only once in>450 samples. These data confirm

the specificity of the assay. While false-positive calls in cfDNA at low VAF can occur, results

from clinical studies have demonstrated that patients treated with osimertinib following detec-

tion of EGFR T790M mutation in plasma down to 0.06% VAF have achieved high rates of clin-

ical response, demonstrating the importance of detecting mutations at low VAF [21].

Fig 5. Stability of AF over time using Streck blood tubes spiked with Horizon reference material.

https://doi.org/10.1371/journal.pone.0193802.g005
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Additional data is required to confirm that preliminary observation in larger populations.

Based on the data presented here, the clinical specificity would appear to be greater than 99%.

Measures such as setting a hard threshold based on a minimal allele fraction may thus result in

the loss of clinically relevant true positive calls.

In order to attain high sensitivity and specificity in NGS analysis of ctDNA a number of fac-

tors are important. Key amongst these are conversion of sufficient DNA into a sequencing

library and sequencing to sufficient depth to read mutant molecules multiple times and to

have a low chance of missing mutant molecules in the sequencing step. Through the use of an

amplicon based strategy, we previously showed that any molecule spanned by the amplifica-

tion primers should be read [12]. The use of short amplicons results in a high fraction of DNA

being analyzed. Other methods for targeted NGS analysis typically incorporate ligation steps

and cleanup steps prior to amplification which may result in lost mutant molecules before

analysis starts.

A second challenge is sequencing depth. By focusing on a panel of 36 key genes we can

sequence more deeply than is routinely achieved for many larger panels. In this study using

our routine process, the median depth at which an SNV was called was ~69,000x and 95% of

calls had a depth greater than half this (S5 Table). By contrast, the current target depth for

Foundation ACT is>5000x unique median coverage [23] and the target depth for Guardant

360 v2.10 is 15,000x [24]. We have a reportable range down to 0.0125% VAF for indels and

SNVs, and with our high sequencing depth even a mutation at this level would typically result

in 9 mutant reads.

The InVisionFirst assay has been developed to analyze blood drawn into either Streck BCT

or EDTA tubes. Here we have demonstrated that when mutant DNA was spiked into both

tube types at close to our LoD, neither inhibited mutation detection. As we assessed our speci-

ficity using blood drawn into both tube types, we have shown there is not a significant impact

on specificity. The performance of Streck BCT for preventing white blood cell lysis and subse-

quent reduction in mutant allele fraction has already been demonstrated by others both in

pregnant donors and cancer patients [25,26]. Our results support this showing that the mutant

allele fractions of spiked DNA detected by the InVisionFirst assay stayed stable when blood

processing was delayed for up to 10 days.

This study demonstrates that the InVisionFirst assay has high analytical sensitivity, specific-

ity and reproducibility which are appropriate for clinical applications. Separate studies are

ongoing to test clinical validity and utility in a range of settings.

Materials and methods

Healthy donor and cancer patient blood collection

For analysis of assay specificity, blood was collected from donors not known to have cancer.

Blood was collected by a trained phlebotomist into both Streck BCTs and EDTA tubes by Bior-

eclamationIVT (NY, USA). A minimum of two 10mL tubes were collected from each donor.

For orthogonal assessment comparing the InVisionFirst assay to dPCR, blood was collected

into Streck BCT from a series of NSCLC patients. All were analyzed using the InVisionFirst

assay and the first 20 of those identified as having KRAS (p.G12C or p.G12D) or EGFR
(p.L858R or p.E745_A750del/K) mutations at or above our LoD (0.25% VAF) with a second

tube of blood available were selected for dPCR orthogonal testing. For extended assessment of

2 locations with potential false positives (chr7:55181378 C>T and chr17:7669684 C> -), an

additional group of 242 untreated NSCLC patients from the same series as above and a further

92 individuals not known to have cancer were analysed.
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Institutional Review Board (IRB) approval was obtained from the six centers collecting

samples (Levine Cancer Institute, University of Colorado Lung Cancer Research Center, Holy

Cross Hospital, Mid-Florida Hematology and Oncology, Christiana Care and North Shore

Hematology Oncology). All patients provided written informed consent and data was de-iden-

tified so no patients could be identified by study personnel outside of the clinical trial site

including the study authors.

Upon collection, the Streck BCTs were gently inverted 8–10 times before being shipped

immediately to Inivata Inc (North Carolina) where they were processed within 7 days of collec-

tion. Here they were centrifuged at 1600 x g for 10 minutes at room temperature, plasma was

removed, transferred to a new tube and a 2nd centrifugation step was performed at 20,000 x g

for 10 minutes to pellet any remaining cellular debris before transferring the plasma to a new

tube.

EDTA samples collected by BioreclamationIVT were processed immediately following col-

lection before shipping to Inivata. The one significant modification from the Streck SOP was

that the second spin was performed at 6500 x g as a faster centrifuge was not available. Upon

completion of processing all cfDNA samples were frozen at -80 ˚C until ready for analysis.

Contrived ctDNA samples

SNVs. To assess SNV detection performance the Horizon Tru-Q reference material was

used. Tru-Q7 and Tru-Q0 DNA were both sheared to ~200bp (Covaris) and quantified by

Horizon Discovery. Tru-Q7 contains 39 validated mutations targeted by the InVisonFirst

assay. 32 of these are at low allele fractions with the majority between ~1%-1.3% VAF (range:

<1%-30% VAF). A full list of all mutations is available in S2 Table. All genomic changes

described in this and subsequent tables use the hg38 human genome build. Two-fold dilutions

were performed four times using Horizon Tru-Q 0 wild-type DNA as diluent to create the fol-

lowing mixes: 1%-1.3%, 0.5%-0.65%, 0.25%-0.33%, 0.13%-0.16% and 0.06%-0.08% VAF.

Indels. The Horizon Tru-Q7 reference DNA contains just a single indel (EGFR del746-

A750). To assess the InVisionFirst assay’s indel calling performance, SeraCare manufactured a

custom indel reference material. 9 common insertions (+1 to +12bp) and 9 common deletions

(-1 to -24bp) targeted by the InVisionFirst assay were synthesized by SeraCare. An additional

2 indels not currently covered by the InVisionFirst assay were also created in the mix. These

mutations were mixed against “Genome in a Bottle” (GM24385) wild-type genomic DNA to

produce mixes where the 18 targeted indels were present at approximately 2%, 1%, 0.5%,

0.25% or 0.1% VAF. The DNA was then sheared to ~150bp (Covaris) and the top three dilu-

tion levels were assessed by dPCR by SeraCare in order to confirm each indels VAF as com-

pared to wild type background DNA (S7 Table). The lowest two dilutions were not tested by

dPCR due to the expected low VAF of the indels.

Fusions. The InVisionFirst assay identifies ALK and ROS1 gene fusions by detecting the

genomic breakpoint junctions that bring the relevant genes together. As relatively few fusion-

associated DNA breakpoints have been published to date and as there are only a small number

of reference materials and cell lines with published ALK and ROS1 DNA breakpoints, three dif-

ferent contrived materials were used.

A custom cell line mix was generated by Horizon Discovery. The resultant mix contained 1

ROS1 and 1 ALK fusion (S10 Table). Following shearing by Horizon Discovery, they demon-

strated with dPCR that the two fusions were present at ~2.5% VAF. These were subsequently

diluted to 1%, 0.5%, 0.25%, 0.12% and 0.06% VAF.

To further assess the performance of the assay over a broad spectrum of breakpoints, the

DNA junctions from 8 published ROS1 gene fusions and 10 published EML4-ALK gene fusions
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were identified [20]. A further 26 synthetic fusions were then designed by computationally

joining a 5’ and 3’ partner anywhere randomly within the common introns and exons targeted

by the InVisionFirst assay (S10 Table).

A 500 bp sequence was designed for all fusions with the DNA breakpoint in the center. Syn-

thetic fusions were manufactured as double stranded DNA fragments (IDT) then diluted and

sheared (Covaris) to ~160 bp before dPCR quantification. Genomic DNA (Bioline) was also

sheared to 160 bp and quantified using dPCR targeting a 108 bp region of the RPP30 gene. The

patient specific fusion DNA fragments were then spiked into genomic DNA at two different

levels (1% VAF and at 0.5% VAF). Eight samples were created with both an ALK and a ROS1
fusion and a further two were created with just a single ALK fusion. Thirteen samples were cre-

ated containing one of the randomly generated ALK fusion sequences and one of the ROS1
fusion sequences. All were present at 1% VAF (S10 Table).

CNVs. In order to assess the InVisionFirst assay’s performance for CNV detection, a simi-

lar approach was taken to our analysis of fusions. Firstly, the amplicons we use for targeting

the 4 genes currently assessed for amplification by the InVisionFirst assay were identified

(EGFR, FGFR1, ERBB2 and MET). 160 bp fragments of DNA were then selected encompassing

these regions. These were synthesized as double stranded DNA fragments (IDT) then quanti-

fied by dPCR. Genomic DNA (Bioline) was then sheared and quantified as above to use for

dilutions.

Each quantified double stranded DNA fragment was pooled by gene such that each targeted

region was equally represented (for example EGFR had 11 targeted regions synthesized).

Sheared background DNA and CNV pools were then combined to give the relevant amplified

amounts.

Extended assessment of PPA and PPV. To further assess the InVisionFirst assay’s ability

to call a broad spectrum of SNVs, indels, fusions and CNVs across a large range of allele frac-

tions above our LoD, an additional series of undiluted and diluted samples were created using

DNA from the Horizon Tru-Q reference material series and SeraCare reference DNA (Sera-

CareTriLevel and SeraSeq). An extended set of CNV samples were created with CNAR of

between 2-50x using the same method outlined above and mutant DNA was also spiked into a

range of healthy donor samples as described below. Each of these samples was run just once. A

full table of the different samples and their detected mutations is available in S6 Table.

Library preparation and analysis with the InVisionFirst assay

An earlier version of this assay based on eTAm-Seq has previously been described [17]. The

InVisionFirst assay is based on the same approach but with the addition of the ability to call

gene fusions. The updated assay also has an updated primer panel adding coverage to key ALK
and ROS1 inhibitor resistance mutations, and an amplicon size distribution of 73bp-155bp

(median = 112bp). The targeted exons and introns targeted for fusion detection are described

in S1 Table. cfDNA was first extracted from plasma using the QIAamp Circulating Nucleic

Acid kit (Qiagen) followed by quantification by dPCR using the BioRad QX200 and an assay

targeting a 108 bp region of the ribonuclease P/MRP subunit p30 (RPP30) gene. Contrived

samples were quantified using the same assay. Yields were expressed as amplifiable copies

(AC) of DNA. Two separate libraries were then setup in parallel from two blood tubes or from

the contrived DNA. Where libraries were prepared using contrived samples, 16,000 amplifi-

able copies of the genome were used except in the amplification study where a mix of 16,000

and 2000 amplifiable copies (minimum input) were used. Both libraries were setup using a

two-step amplification process that first targeted the desired regions then incorporated repli-

cate and patient-specific barcodes and Illumina sequencing adaptors (See Fig 1). The first
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library targets SNVs, indels and CNVs whilst the second library has been designed to target all

introns and exons brought together to create the three major EML4-ALK variants which col-

lectively account for 93% of ALK fusions found in the COSMIC database (COSMIC Version

83). It also targets 92% (COSMIC V83) of the intronic and exonic bases brought together to

create CD74-ROS1, SLC34A2-ROS1, SDC4-ROS1 and EZR-ROS1 fusions in lung carcinomas

(S1 Table).

For both library types up to 48 samples were pooled together including positive and nega-

tive controls before sequencing on the Illumina NextSeq 500 (300 cycle PE) with 5% PhiX to

monitor sequencing performance. Sequencing files were analyzed using the Inivata Somatic

Mutation Analysis (ISoMA) pipeline to identify SNVs, CNVs and indels and the FUSP pipe-

line to call fusions. For the ISoMA pipeline a minimum Phred quality score of 30 for each base

was required for inclusion in the analytics. In each run, in addition to the controls, we used the

non reference allele fraction at common single nucleotide polymorphisms (SNPs) to detect

potential contamination events. In addition, the overall sequencing depth at these common

polymorphisms was used as part of quality control to confirm that sufficient sequencing depth

had been generated.

For SNV and indel analysis, a background model was first established using samples from

presumed healthy donors for each position/base pair change covered by our panel. The final

determination of an SNV call integrated the data across multiple replicates for each sample in

comparison with this background within a maximum likelihood framework. The same statisti-

cal principle was used for indels using samples from the same analytical batch in order to

enable appropriate background calibration. The minimum depth at which any SNV or indel

would be called was 1000x. In order to identify CNVs, a normalized measure of read depth

was generated correcting for sample and amplicon effects in order to infer the copy number

ratio between the 4 assessed genes (ERBB2, FGFR1, MET and EGFR) and the remainder of the

genome.

Fusions were called by identifying the breakpoint sequences created when fusion partners

joined. Patients with sequence reads matching to a 3’ and 5’ fusion partner were identified as

fusion positive (e.g. EML4 intron 13 and ALK intron 19). When the same breakpoint is

detected twice, a fusion call is made. All variants were annotated using the canonical transcript

for each gene. All SNVs and indels that resulted in coding and splice-site mutations were

reported. Finally, a mutation calling report was generated providing a comprehensive sum-

mary of somatic alterations identified.

Orthogonal dPCR analysis

20 patients with NSCLC in whom a KRAS (p.G12C or p.G12D) or EGFR (p.L858R or p.

E745_A750del/K) mutation was detected by the InVisionFirst assay above our LoD (0.25%

VAF), were selected for dPCR orthogonal testing as described above. DNA was extracted from

a second tube of blood from all 20 patients, assessed by dPCR using the RPP30 assay then

shipped on dry ice, anonymized, to LGC.

LGC had previously determined the suitability of the dPCR assays targeting the four muta-

tions on the BioRad QX200 using both commercially available cfDNA standards (Horizon

Diagnostics) and a set of in-house materials (KRAS G12C). The LoD for each assay was calcu-

lated at the start of the study using the false positive rate determined from�4 dPCR reaction

per assay using ~116ng wild type gDNA per reaction. (S14 Table). Importantly although this

LOD is achievable in samples with 116ng of DNA or greater, in samples with lower DNA

inputs, sensitivity will be reduced in a predictable fashion based on the stochasticity of small

numbers of mutant molecules.
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LGC then performed a single dPCR with the KRAS G12C assay to determine the DNA con-

centration and whether the DNA could be run undiluted or needed to be diluted to be within

the dynamic range of the BioRad QX200 dPCR platform. Finally, DNA from all twenty

patients was assessed in triplicate (7μl per reaction) using the four assays and samples were

called mutant or wild type depending on whether they were above or below the assays LoD

(S13 and S14 Tables).

dPCR assays designed for assessment of unexpected calls (potential false

positives)

In order to validate possible false positive calls made during the analysis of healthy donors, two

digital PCR assays were ordered from BioRad and one was kindly donated by Dr Dana Tsui

(Cancer Research UK Cambridge Institute, University of Cambridge, UK). The assays that

were sourced from BioRad were designed using their online tool (https://www.bio-rad.com/

digital-assays/#/). Synthetic mutant sequence for each assay was also designed using the online

tool, and were ordered as double stranded DNA (IDT) and delivered pre-diluted (to 2000 cop-

ies per ul in 10mM Tris pH 8, 0.1mM EDTA and 0.1mg/mL Poly A). A mix of wild type DNA

(BioLine) and ~5% synthetic mutant DNA was first tested with all 3 assays using a temperature

gradient to determine optimal annealing temperatures. A dilution series of mutant to wild

type DNA was then created then run in duplicate at two different concentrations along with

wild type DNA to determine the background and limit of detection of each dPCR assay.

Finally, each sample was run at least 4 times using 5μl of DNA.

Robustness of the InVisionFirst assay to Streck BCT and EDTA blood tube

collection

To test that the InVisionFirst assay gives comparable results whether blood is collected in

Streck BCT or EDTA blood tubes, blood from multiple donors was drawn into each tube type

then this was processed to plasma as described above.

Both Streck and EDTA plasma was spiked with 16,000 amplifiable copies of either the Hori-

zon fusion cell line reference material at 2.5% VAF or sheared Horizon reference material

Tru-Q2 or Tru-Q3 which contain up to 14 variants (SNVs and indels) at 4 to 30% VAF. All

samples were then mixed, extracted, then analyzed using the InVisionFirst assay.

Effect on mutant allele fraction of delayed Streck BCT processing

Whole blood was collected into five 10mL Streck BCTs from four individual donors as

described above by BioreclamationIVT. This was shipped to Inivata and upon receipt of the

tubes, 4000 copies of sheared (200bp) Horizon 5% Multiplex I cfDNA Reference Standard

(Horizon Discovery) DNA was spiked into each sample. The five tubes from each donor were

then randomized and kept for 2, 3, 5, 7 or 10 days at room temperature (~26˚C) before routine

processing and analysis by the InVisionFirst assay. The allele fraction of each of the detected

mutations from the Horizon reference standard was then compared to the matched sample

from day 2 as a baseline to determine reduction in mutant VAF induced by delayed

processing.

Supporting information

S1 Table. Details of the 36 genes targeted by InVisionFirst and which variant types are

assessed for each gene. All exons covered for SNV, indel and CNV analysis are described. All
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introns and exons covered for fusion gene detection are described.

(XLSX)

S2 Table. Tru-Q7 (Horizon) reference DNA mutations. A full list of validated mutations

covered by the InVisionFirst panel are listed along with Horizon’s validated variant allele frac-

tion. All 39 variants are grouped by type.

(XLSX)

S3 Table. Overview of each study used to assess the four different variant types limit of

detection.

(XLSX)

S4 Table. SNV sensitivity at different dilution levels of Horizon Tru-Q7 DNA.

(XLSX)

S5 Table. Full list of all SNVs in the Tru-Q7 dilution study and whether they were detected.

DNA input (as assessed by dPCR), detected variant allele fraction (VAF) and total sequencing

depth are all described.

(XLSX)

S6 Table. Details of samples used in CNV sensitivity analysis and the extended analysis of

PPA for the four variant types. Section A describes the calculations used to determine PPA

for all 4 variant types. Section B details the cell line mixes created and calls made in the

extended assessment of PPA. Section C describes all contrived CNV samples and whether a

call was made. This includes both the samples used to assess the assays LoD and those used for

the extended assessment of PPA.

(XLSX)

S7 Table. List of all targeted indels in the custom SeraCare indel control material and com-

parison of SeraCare dPCR VAFs with average VAFs determined by InVisionFirst.

(XLSX)

S8 Table. Indel sensitivity at different dilution levels in the custom SeraCare indel control

material.

(XLSX)

S9 Table. Full list of all indels in the custom SeraCare indel control material dilution study

and whether they were detected. DNA input (as assessed by dPCR) and detected variant allele

fraction (VAF) are both described.

(XLSX)

S10 Table. Details of all fusion reference materials. Part A describes the Horizon cell line

mix. Section B describes the full sequence of the published patient specific fusions and section

C describes all the randomly generated fusions.

(XLSX)

S11 Table. List of samples spiked with mutation positive DNA (Tru-Q2, Tru-Q3 or the cus-

tom 2.5% VAF fusion cell line DNA) and whether each mutation was detected. For SNVs

and the one indel a detected VAF is reported.

(XLSX)

S12 Table. List of variants detected in donors not know to have cancer.

(XLSX)
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S13 Table. List of variants detected by both InVisionFirst and blinded dPCR in an orthog-

onal analysis study.

(XLSX)

S14 Table. LoD for the 4 digital PCR assays analyzed by LGC in samples with optimal

DNA input amounts.

(XLSX)
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Osimertinib benefit in EGFR-mutant NSCLC patients
with T790M-mutation detected by circulating tumour
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Background: Approximately 50% of epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC)
patients treated with EGFR tyrosine kinase inhibitors (TKIs) will acquire resistance by the T790M mutation. Osimertinib is the
standard of care in this situation. The present study assesses the efficacy of osimertinib when T790M status is determined in
circulating cell-free tumour DNA (ctDNA) from blood samples in progressing advanced EGFR-mutant NSCLC patients.

Material and methods: ctDNA T790M mutational status was assessed by Inivata InVisionTM (eTAm-SeqTM) assay in 48 EGFR-
mutant advanced NSCLC patients with acquired resistance to EGFR TKIs without a tissue biopsy between April 2015 and April
2016. Progressing T790M-positive NSCLC patients received osimertinib (80 mg daily). The objectives were to assess the
response rate to osimertinib according to Response Evaluation Criteria in Solid Tumours (RECIST) 1.1, the progression-free sur-
vival (PFS) on osimertinib, and the percentage of T790M positive in ctDNA.

Results: The ctDNA T790M mutation was detected in 50% of NSCLC patients. Among assessable patients, osimertinib gave a
partial response rate of 62.5% and a stable disease rate of 37.5%. All responses were confirmed responses. After median follow
up of 8 months, median PFS by RECIST criteria was not achieved (95% CI: 4–NA), with 6- and 12-months PFS of 66.7% and 52%,
respectively.

Conclusion(s): ctDNA from liquid biopsy can be used as a surrogate marker for T790M in tumour tissue.

Key words: EGFR mutation, T790M, osimertinib, lung cancer, ctDNA liquid biopsies

Introduction

The activated epidermal growth factor receptor (EGFR) mutation

is present in almost 50% of patients with advanced non-small cell

lung cancer (NSCLC) who are of Asian ethnicity compared with

only 12% in the Caucasian population [1].

These mutations predict sensitivity to first- and second-

generation EGFR tyrosine kinase inhibitors (TKIs) such as erloti-

nib, gefitinib or afatinib. Response rate and progression-free

survival (PFS) with EGFR TKIs are superior to standard first-line

platinum doublet chemotherapy, making them the standard of

care [2]. However, tumours invariably develop acquired resist-

ance 9–13 months after treatment initiation. The substitution of

threonine to methionine at amino acid position 790 (T790M) in

exon 20 of the EGFR gene reduces first-generation EGFR TKIs

binding, and accounts for over half of acquired resistance mech-

anisms [3, 4].

Knowledge of acquired resistance mechanisms to EGFR TKIs

was one of the triggers behind the development of personalised

therapies, with the introduction of the third-generation EGFR-

TKIs, which are active against sensitive, as well as resistant

T790M EGFR mutations, such as osimertinib [5]. Both the FDA

VC The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
All rights reserved. For Permissions, please email: journals.permissions@oup.com.

Annals of Oncology 28: 784–790, 2017

doi:10.1093/annonc/mdx017

Published online 19 January 2017

341

Deleted Text:  to 
http://www.oxfordjournals.org/


and the EMA recently approved osimertinib in patients with

acquired EGFR T790M mutations tested in a tumour-tissue bi-

opsy or in plasma [6, 7], but noted that osimertinib efficacy has

not been prospectively established in patients where T790M mu-

tation was determined in plasma with unknown status in the tis-

sue. Lack of available tissue for performing molecular profile

(such as when bone metastases are present, as reported in almost

50% of cases [8], requiring decalcification of the samples impair-

ing DNA quality), the location or size of the tumour at progres-

sion, and the risk of complications, are serious limitations to

re-biopsy NSCLC tumours. Moreover, single site biopsies may

not provide a representative profile of the overall predominant

resistance mechanisms for a given patient [9].

Liquid biopsies based on circulating cell-free tumour DNA

(ctDNA) analysis have been described as surrogate samples for

molecular analysis replacing solid tumours [10], and may allow

real-time sampling of multifocal clonal evolution [11]. Here we

assessed the feasibility of identifying T790M mutations in ctDNA

isolated from blood samples in a cohort of EGFR-mutant NSCLC

patients with progression under first- or second-generation

EGFR TKIs without a tissue biopsy at progression, in order to de-

tect acquired resistance. The efficacy of osimertinib in the ctDNA

T790M-positive NSCLC patients was also assessed.

Patients and methods

Patients

Eligible patients treated at the Gustave Roussy (Villejuif, France) between
April 2015 and April 2016 were included in this study. Patients had to
have advanced NSCLC, the presence of a common activating EGFR-mu-
tation in the initial biopsy (Del19, L858R), clinical or radiological pro-
gression to at least one first- or second-generation EGFR TKI [12], and
ineligibility for a new tissue biopsy (due to lack of available tissue, local-
isation and/or patient’s refusal) for testing T790M status at the time of
progression. There was no upper limit for the number of prior EGFR-
inhibitor or systemic therapies. All patients provided written informed
consent for biomedical research (CEC-CTC IDRcb2008-AOO585-50)
and the institutional ethics committee approved the protocol.
Osimertinib at 80 mg daily was prescribed as a part of the French
Expanded Access Program in France, which allow its prescription when
T790M was present in tumour-tissue biopsy or in a liquid biopsy.

Outcomes

The primary endpoint was to determine the overall response rate with
osimertinib in patients treated on the basis of a positive T790M muta-
tional status from a liquid biopsy results. Secondary endpoints included:
the percentage of T790M mutation-positive patients identified by ctDNA
analysis from pretreated EGFR-mutant patients with progression to sys-
temic treatment, PFS by radiological criteria and investigator’s criteria
and overall survival on osimertinib.

As an exploratory objective, correlation between RECIST radiological
responses with osimertinib and three ctDNA predictors was evaluated: (i)
T790M allele fraction (AF), (ii) EGFR activating mutation AF and (iii)
ratio of T790M and EGFR activating mutation AF.

PFS was calculated from the initiation of osimertinib treatment until
the date of progression by RECIST 1.1 or death (whichever came first),
with censoring at the date of last follow-up if the patient had not pro-
gressed. PFS by investigator (time to off-osimertinib progression if osi-
mertinib therapy was extended beyond progression at investigator

discretion) was also assessed. Overall survival (OS) was calculated from
the initiation of osimertinib treatment until the date of death.

InVisionTM (eTAm-seqTM) analysis

Ten millilitres of blood were collected in K2-EDTA tubes and processed
at the time of disease progression (clinical or radiological). DNA was ex-
tracted from<5 ml of plasma and analysed by the InVision assay, using
enhanced Tagged Amplicon-Sequencing; eTAmSeqTM [13], which was
developed from TAm-Seq

VR

assay [14] (Supplementary Appendix S1).

Radiologic assessments

Before prescribing osimertinib, all patients underwent tumour imaging,
including computed tomography of the chest and abdomen and/or PET-
scan. Brain imaging was performed in cases of symptoms. Restaging scans
were obtained at least 4-weeks after treatment initiation and then every
6–8 weeks. Senior radiologist (CC) centrally reviewed the response rate
and determined best response to osimertinib according to RECIST v1.1
[15]. The objective response rate was defined as the percentage of patients
with response (complete or partial) at first restaging after osimertinib ini-
tiation. Confirmed responses were defined as persistent responses (partial
or complete) at second radiological assessment. Only assessable patients
who received osimertinib based on positivity for the T790M mutation
from ctDNA liquid biopsies were evaluated for the response rate.

Results

Patient characteristics

Forty-eight advanced EGFR-mutant NSCLC patients with radio-

logical or clinical progression on systemic treatment were eval-

uated for T790M status in a liquid biopsy. Median age was 65

years (range 37–83); 36 (75%) patients were women and 58%

were never-smoker. EGFR mutation status was Del19 in 33 (69%)

and L858R in 15 (31%) NSCLC patients.

T790M status in a liquid biopsy

The T790M positivity in ctDNA was reported in 24 out of 48

(50%) NSCLC patients (supplementary Figure S1, available at

Annals of Oncology online).

Activating EGFR mutational status in ctDNA analysis con-

firmed that the original mutation was maintained in 23 out of 24

T790M-positive samples. The T790M mutation positivity was

more frequent among patients with the EGFR Del19 mutation

(20 out of 33 patients, 61%) compared with the EGFR L858R mu-

tation (4 out of 15, 27%). Concomitant mutations to T790M mu-

tation were reported in three patients (Table 1).

For 9 of the 24 patients with ctDNA T790M-positivity, the

T790M AF was lower than 0.5% in the liquid biopsy (supplemen

tary Table S1, available at Annals of Oncology online).

Osimertinib response rate

Of the 24 NSCLC patients with a T790M mutation in the ctDNA,

18 received osimertinib at progression and were evaluated for re-

sponse (supplementary Figure S1, available at Annals of Oncology

online).

Table 1 summarizes baseline demographic characteristics of

NSCLC patients who were T790M positive by ctDNA and treated

with osimertinib. Median age was 63 years, and a total of 78% of

Annals of Oncology Original article

Volume 28 | Issue 4 | 2017 doi:10.1093/annonc/mdx017 | 785

342

Deleted Text: progression 
Deleted Text: free survival
Deleted Text: A
Deleted Text: B
Deleted Text: allele fraction,
Deleted Text: C
Deleted Text: allele fraction
Deleted Text: Progression free survival (
Deleted Text: )
Deleted Text: &trade;
Deleted Text: S
Deleted Text: &trade;
Deleted Text: 10&thinsp;ml 
Deleted Text: &thinsp;
Deleted Text: &trade;,
http://annonc.oxfordjournals.org/lookup/suppl/doi:10.1093/annonc/mdx017/-/DC1
Deleted Text: Prior to
Deleted Text:  to 
Deleted Text: .
Deleted Text: .
Deleted Text: evaluable
Deleted Text: -
Deleted Text: .
http://annonc.oxfordjournals.org/lookup/suppl/doi:10.1093/annonc/mdx017/-/DC1
Deleted Text: to 
Deleted Text: allele fraction (AF)
http://annonc.oxfordjournals.org/lookup/suppl/doi:10.1093/annonc/mdx017/-/DC1
http://annonc.oxfordjournals.org/lookup/suppl/doi:10.1093/annonc/mdx017/-/DC1
http://annonc.oxfordjournals.org/lookup/suppl/doi:10.1093/annonc/mdx017/-/DC1


patients (14 of 18) were female. All the patients had received at least

one prior EGFR TKI. Three or more previous systemic treatment

lines were reported in up to 65% of patients and in 70% of cases an

EGFR TKI was the last treatment before starting osimertinib.

Two patients were not evaluated for response: one having only

bone metastases and the other died due to a treatment-unrelated

cerebral haemorrhage. Of the 16 assessable patients, 10 had a par-

tial response (62.5%), and 6 had stable disease (37.5%). No pa-

tients had complete response or disease progression as best

response (Table 1 and Figure 1).

Among those patients with partial response (n¼ 10), all had

second radiological assessment to confirm response, and the

Table 1. Patients’ characteristics with T790M mutation positive in a liquid biopsy who received osimertinib

Patient Gender Age
(years)

Pack-
years

EGFR
mutation

T790M
AF (%)

Previous
systemic
treatments

Previous
EGFR TKI

Other mutationsa Last treatment
before
osimertinib

RECIST
osimertinib

1 M 51 0 Del19 0.41 3 1 TP53 (P151X, R273H) Erlotinib NE

2 F 56 0 Del19 15.96 3 2 TP53 (Q331*, V225A) Erlotinib SD (�10%)

3 M 54 6 Del19 0.86 3 1 TP53 (R337C) Erlotinib -BVZ PR (�50%)

STK11 (P179L)

4 F 37 0 Del19 1.06 3 2 TP53 (Q165*) Erlotinib PR (�84%)

5 M 67 6 Del19 1.60 4 2 CTNBB1 (S37S) Pem/Cis PR (�50%)

6 F 83 10 Del19 6.96 2 2 CTNNB1 (S33C) Erlotinib SD (0%)

7 F 67 0 Del19 19.60 1 1 CDKN2A (frameshift) Erlotinib PR (�50%)

TP53 (frameshift)

8 F 70 0 L858R 0.25 2 1 NRAS (A59G) Pem SD (�26%)

9 F 66 5 L858R 0.07 10 3b – Erlotinib PR (�65%)

10 F 81 0 L858R 5.38 4 3 TP53 (P60X, splice) Pem PR (�33%)

PIK3CA (E545K)

11 F 70 0 Del19 0.31 3 1 TP53 (R282W) Pem NE

12 F 58 0 Del19 0.24 6 2 – Erlotinib PR (�68%)

13 F 54 0 Del19 2.24 3 2 – Pem/Cb SD (9%)

14 F 59 10 Del19 0.14 2 1 TP53 (I232S) Gefitinib PR (�50%)

15 F 67 2 L858R 0.30 3 1 EGFR (K860I) Erlotinib SD (�20%)

16 M 61 20 Del19 0.70 5 3c TP53 (E343*, C238Y, C135X) Afatinib SD (�18%)

17 F 54 3 Del19 3.95 2 1 TP53 (R249S) Gefitinib PR (�32%)

18 F 65 0 Del19 0.68 1 1 CTNNB1 (S37C) Gefitinib PR (�32%)

M, male; F, female; AF, allelic fraction; BVZ, bevacizumab; Pem/Cis, pemetrexed/cisplatin; Pem/Cb, pemetrexed/carboplatin; NE, not evaluable; SD, stable

disease; PR, partial response.
aOther mutation at the moment of T790M positive in the liquid biopsy (all patients had the common EGFR mutation at the time of T790M mutation

positive, except patient number 15 whom original EGFR Del19 mutation was not found at acquired resistance).
bThis patient had already received rociletinib.
cThis patient has already been treated with osimertinib.
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Figure 1. Best percentage change in target-lesion size (waterfall plot of T790M positive NSLC patients in a liquid biopsy treated with osimertinib).
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response was confirmed in 90% of patients (1 patient progressed

at the second radiological assessment). Of note, one patient pre-

viously treated with rociletinib, received osimertinib as tenth line

treatment achieving a partial response.

The median time between the blood draw in which ctDNA

T790M positivity was detected and start of osimertinib treatment

was 6 weeks.

Correlation between RECIST and ctDNA predictors

Correlations between RECIST radiological responses with osi-

mertinib and three ctDNA predictors: (i) T790M AF, (ii) EGFR

activating mutation AF and (iii) ratio of T790M and EGFR acti-

vating mutation AF were evaluated, however, none showed sig-

nificance (Figure 2), but a trend (P-value 0.09–0.15) was

observed for larger decrease in tumour size for smaller mutant

AFs of T790M or EGFR activating mutations. Of the seven cases

with best response (decrease of 50% or more in size), three cases

had T790M detected at<0.25%.

Progression free survival and overall survival

After a median follow up of 8.5 months, median PFS on osimerti-

nib by RECIST 1.1 criteria was not achieved (95% CI: 4–NA), with

a 6- and 12-months PFS of 66.7% and 52%, respectively (Figure

3). By investigator, median PFS was 13 months (95% CI: 8–NA),

with 6- and 12-months PFS of 79% and 70%, respectively (supple

mentary Figure S3, available at Annals of Oncology online). At the

time of cut-off 4 patients had died; hence overall survival (OS) was

not achieved. One-year OS was 78% (95% CI: 59–97) (supplemen

tary Figure S2, available at Annals of Oncology online).

Discussion

Osimertinib is a third-generation oral EGFR TKI developed to

treat tumours bearing sensitizing EGFR and acquired resistant

T790M-mutations, that spares the wild type form of the receptor

[16]. To the best of our knowledge, our analysis is the first to pro-

spectively test in a real-world setting the efficacy of osimertinib

according to ctDNA results. In this study, osimertinib achieved a

62.5% response rate and 12-months PFS of 52% among NSCLC

patients who were T790M-mutation positive, based on ctDNA

analysis by a multiplexed deep sequencing [13] assay. These re-

sults are comparable to the efficacy reported with osimertinib in

patients with T790M mutation detected in a tumour tissue biopsy

[5, 16]. In the phase 3 AURA3 study, osimertinib provided a 71%

of response rate and 12-months PFS of 44% in pre-treated and

tissue T790M-mutation positive NSCLC patients [16]. However,

in the phase I AURA trial, some patients with T790M-mutation

negative also responded to osimertinib [5] reflecting the inad-

equacy of tissue-biopsy for catching tumour heterogeneity. In the

post hoc exploratory analysis of the samples from the phase I

AURA trial, which included 216 patients (73% were T790M-posi-

tive in the tumour) osimertinib gave a response rate of 63%
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among patients who were T790M-mutation positive according to

central blood-test genotyping by the BEAMing method (allelic

fraction for positive results for T790M mutation�0.06%) [17].

Liquid biopsies based on ctDNA analysis are described as sur-

rogate samples for tumour molecular analysis [10], and also as

potential dynamic markers for monitoring the efficacy of EGFR

TKI [18, 19] and early detection of resistance mutations [20].

Liquid biopsy assays have been developed for analysis of hot-spot

mutations and gene panels. Hot-spot assays can offer lower com-

plexity and some PCR-based assays for detection of mutations in

EGFR (including activating mutations and the T790M mutation)

have received CE-mark [21] and approval by the FDA for in-vitro

use [22]. Several commercial laboratories now offer sensitive

assays for ctDNA using targeted deep sequencing of gene panels

that include EGFR. In our study, the rate of T790M mutation

positivity in a liquid biopsy among EGFR-mutant patients pro-

gressing on systemic treatment was 50%, which is consistent with

previous biopsy series [3, 4] and clinical trials [5, 23]. In a recent

prospective exploratory analysis, the resistance-associated muta-

tion in ctDNA (tested by cobas EGFR Mutation Testv2) among

EGFR-mutant NSCLC patients was detected in 50% of patients,

and concordance with tumour biopsy-derived genotyping was

61% [24]. Among patients with sufficient material for concurrent

ctDNA and tumour-derived genotyping, ctDNA identified the

T790M mutation in 5 of 25 (20%) in whom the concurrent study

biopsy was negative. Similarly, in the phase I AURA trial, T790M

was detected in plasma of 30% of patients with T790M-negative

tumours [17]. Discrepancies between tumour biopsy and ctDNA

genotyping may result from technological differences, or sam-

pling of different tumour cell populations in a heterogeneous set-

ting [24]. Studies focusing on the discrepancy of T790M

mutation between tissue and plasma samples are underway using

amplification-refractory mutation system (ARMS) and droplet

digital PCR methods (NCT02418234). Moreover, recent data

suggest that ctDNA T790M mutation derived from NSCLC tu-

mours can be detected with high sensitivity in urine as well as in

plasma, enabling complementary modes of tissue and liquid

biopsies in EGFR TKI resistant NSCLC [25]. Although sensitivity

and specificity of ctDNA varies across different technology plat-

forms [26], the establishment of robust and standardised proto-

cols for blood sampling, processing, storage, DNA extraction and

analysis will support liquid biopsies as new standard tests in the

near future for tumour genotyping as well as predictive bio-

markers [26].

In this setting, the relatively low number of patients, the heavy

degree of pre-treatment population included in our analysis (me-

dian of four previous treatment lines, 33% with at least two EGFR

TKIs before osimertinib initiation and two patients previously

pre-treated with T790M-inhibitors), the lack of corresponding

tumour sample for all patients, and the heterogeneity in terms of

lines of treatment are all considered as potential limitations.

Moreover, ctDNA cut-off points to define the clinical relevance

of the findings specifically based on functional consequences,

namely their ability to predict therapeutic responsiveness, are

required before ctDNA can be routinely implemented in clinical

practice. Interestingly, the observation in our cohort that the

T790M AF was not significantly correlated with clinical response

suggests that any level of T790M positivity may be clinically rele-

vant, independent of the AF threshold. However, the relatively

long time delay between establishment of ctDNA T790M positiv-

ity and osimertinib initiation may mean that the AF at the mo-

ment of treatment initiation may be higher than the reported

results. Our data suggest a possible importance for detection of

T790M at low AFs, but additional studies are needed to confirm

the minimum biological threshold with clinical relevance.

Testing tumour tissue is so far the recommended method for

detecting the presence of the resistant T790M mutation among

EGFR-mutant NSCLC patients and tailoring treatment [6, 7],

Prior biopsy-based studies have reported multiple acquired re-

sistance mechanisms in �5%–15% of NSCLC patients with

EGFR TKIs [3, 4]. However, up to 23% of tumour tissue speci-

mens available at the time of acquired resistance have been
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reported as providing limited, low quality material for tumour

genotyping [4, 24], and may not be representative of the entire

genomic landscape of the tumour [9, 27]. In addition, not all pa-

tients are suitable for new tissue biopsy at progression, which can

thereby delay treatment initiation [28]. Recently, mechanisms of

acquired resistance after first-line EGFR TKI were analysed in

ctDNA by CAPP-Seq in 41 EGFR-mutant NSCLC patients. At

least 46% of these tumours had developed another mechanism of

acquired resistance in addition to T790M mutation, and these

multiple resistance mechanisms were associated with poorer out-

come to third generation EGFR TKIs [29]. In our analysis, blood

samples from three patients reported concomitant mutations

with no clear correlation with outcome: one PIK3CA mutation,

previously reported as mechanism of acquired resistance [3]; and

two other mutations, STK11 and NRAS mutation, not previously

described as acquired resistance mechanisms to first- or second-

generation EGFR TKI. However, NRAS mutation has been re-

cently reported as an acquired mechanism of resistance to osi-

mertinib in preclinical models [30]. ctDNA analysis may allow

the development of rational trials for personalised selection of

combined therapies to address intra-tumoural heterogeneity;

however, a risk-benefit assessment should be performed to avoid

substantial increases in toxicity.

Conclusion

In this analysis of liquid biopsies in a small cohort of EGFR-mu-

tant NSCLC patients with acquired resistance to systemic treat-

ment, our results provide relevant clinical data about the efficacy

of osimertinib in a real-world setting among patients

whereT790M-positivity was detected in ctDNA, supporting the

use of such liquid biopsies for personalising treatment in lung

cancer patients. Our results suggest a possible clinical importance

for detection of T790M at low levels in plasma samples.

Funding

None declared.

Disclosure

Authors affiliated with Inivata Ltd (AL, SS, KH, DG, NR, EG and

VP) are employees, officers and/or share-holders of Inivata Ltd.

Inivata Ltd commercialises assays based on the technology described

in this paper. All remaining authors have declared no conflicts of

interest.

References

1. Midha A, Dearden S, McCormack R. EGFR mutation incidence in non-

small-cell lung cancer of adenocarcinoma histology: a systematic review

and global map by ethnicity (mutMapII). Am J Cancer Res 2015; 5(9):

2892–2911.

2. Reguart N, Remon J. Common EGFR-mutated subgroups (Del19/

L858R) in advanced non-small-cell lung cancer: chasing better outcomes

with tyrosine-kinase inhibitors. Future Oncol 2015; 1–13.

3. Sequist LV, Waltman BA, Dias-Santagata D et al. Genotypic and histolo-

gical evolution of lung cancers acquiring resistance to EGFR inhibitors.

Sci Transl Med 2011; 3(75): 75ra26.

4. Yu HA, Arcila ME, Rekhtman N et al. Analysis of tumor specimens at the

time of acquired resistance to EGFR-TKI therapy in 155 patients with

EGFR-mutant lung cancers. Clin Cancer Res 2013; 19(8): 2240–2247.

5. J€anne PA, Yang JC-H, Kim D-W et al. AZD9291 in EGFR inhibitor-

resistant non-small-cell lung cancer. N Engl J Med 2015; 372(18):

1689–1699.

6. http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/

InVitroDiagnostics/ucm301431.htm (30 December 2016, date last

accessed).

7. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_

Product_Information/human/004124/WC500202022.pdf (30 December

2016, date last accessed).

8. Remon J, Faivre L, Facchinetti F et al. Radiogenomics in 332 metastatic

non-small cell lung cancer (NSCLC) patients. ASCO Meeting Abstracts

2016; 34(15 Suppl): 11563.

9. Piotrowska Z, Nierdest MJ, Mino-Kenudson M et al. Variation in mech-

anisms of acquired reistantce among EGFR-mutant NSCLC patients

with more than 1 postresistance biopsy. Int J Radiat Oncol 2014; 90:

S6–S7.

10. Jovelet C, Ileana E, Le Deley M-C et al. Circulating cell-free tumor DNA

analysis of 50 genes by next-generation sequencing in the Prospective

MOSCATO Trial. Clin Cancer Res 2016; 22(12): 2960–2968.

11. Murtaza M, Dawson S-J, Pogrebniak K et al. Multifocal clonal evolution

characterized using circulating tumour DNA in a case of metastatic

breast cancer. Nat Commun 2015; 6: 8760.

12. Jackman D, Pao W, Riely GJ et al. Clinical definition of acquired resist-

ance to epidermal growth factor receptor tyrosine kinase inhibitors in

non-small-cell lung cancer. J Clin Oncol 2010; 28(2): 357–360.

13. Gale D, Plagnol V, Lawson A et al. Analytical performance and valid-

ation of an enhanced TAm-Seq circulating tumor DNA sequencing

assay. AACR 2016, New Orleans. Cancer Res 2016; 76 (Suppl 14):

3639.

14. Forshew T, Murtaza M, Parkinson C et al. Noninvasive identification

and monitoring of cancer mutations by targeted deep sequencing of

plasma DNA. Sci Transl Med 2012; 4(136): 136ra68.

15. Therasse P, Arbuck SG, Eisenhauer EA et al. New guidelines to evaluate

the response to treatment in solid tumors. European Organization for

Research and Treatment Of Cancer, National Cancer Institute of the

United States, National Cancer Institute of Canada. J Natl Cancer Inst

2000; 92(3): 205–216.

16. Mok TS, Wu Y-L, Ahn M-J et al. Osimertinib or platinum-pemetrexed

in EGFR T790M-positive lung cancer. N Engl J Med 2016. doi:10.1056/

NEJMoa1612674.

17. Oxnard GR, Thress KS, Alden RS et al. Association between plasma gen-

otyping and outcomes of treatment with osimertinib (AZD9291) in

advanced non-small-cell lung cancer. J Clin Oncol 2016; 34(28):

3375–3382.

18. Marchetti A, Palma JF, Felicioni L et al. Early prediction of response to

tyrosine kinase inhibitors by quantification of EGFR mutations in plasma

of NSCLC patients. J Thorac Oncol 2015; 10(10): 1437–1443.

19. Mok T, Wu Y-L, Lee JS et al. Detection and dynamic changes of EGFR

mutations from circulating tumor DNA as a predictor of survival out-

comes in NSCLC patients treated with first-line Intercalated erlotinib

and chemotherapy. Clin Cancer Res 2015; 21(14): 3196–3203.

20. Sorensen BS, Wu L, Wei W et al. Monitoring of epidermal growth fac-

tor receptor tyrosine kinase inhibitor-sensitizing and resistance muta-

tions in the plasma DNA of patients with advanced non-small cell lung

cancer during treatment with erlotinib. Cancer 2014; 120(24):

3896–3901.

21. https://www.qiagen.com/gb/shop/detection-solutions/personalized-

healthcare/therascreen-egfr-plasma-rgq-pcr-kit-emea/ (30 December 2016,

date last accessed).

Annals of Oncology Original article

Volume 28 | Issue 4 | 2017 doi:10.1093/annonc/mdx017 | 789

346

Deleted Text: , 
Deleted Text: No funding to report
Deleted Text: Conflicts of interests
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm301431.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm301431.htm
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/004124/WC500202022.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/004124/WC500202022.pdf
https://www.qiagen.com/gb/shop/detection-solutions/personalized-healthcare/therascreen-egfr-plasma-rgq-pcr-kit-emea/
https://www.qiagen.com/gb/shop/detection-solutions/personalized-healthcare/therascreen-egfr-plasma-rgq-pcr-kit-emea/


22. http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/

ucm504540.htm (30 December 2016, date last accessed).

23. Sequist LV, Soria J-C, Goldman JW et al. Rociletinib in EGFR-mutated

non-small-cell lung cancer. N Engl J Med 2015; 372(18): 1700–1709.

24. Sundaresan TK, Sequist LV, Heymach JV et al. Detection of T790M, the

acquired resistance EGFR mutation, by tumor biopsy versus noninvasive

blood-based analyses. Clin Cancer Res 2016; 22(5): 1103–1110.

25. Reckamp KL, Melnikova VO, Karlovich C et al. A highly sensitive and

quantitative test platform for detection of NSCLC EGFR mutations in

urine and plasma. J Thorac Oncol 2016; 11(10): 1690–1700.

26. Thress KS, Brant R, Carr TH et al. EGFR mutation detection in ctDNA

from NSCLC patient plasma: a cross-platform comparison of leading

technologies to support the clinical development of AZD9291. Lung

Cancer 2015; 90(3): 509–515.

27. Hata A, Katakami N, Yoshioka H et al. Spatiotemporal T790M hetero-

geneity in individual patients with EGFR-mutant non-small-cell lung

cancer after acquired resistance to EGFR-TKI. J Thorac Oncol 2015;

10(11): 1553–1559.

28. Lim C, Sung M, Shepherd FA et al. Patients with advanced non-small cell

lung cancer: are research biopsies a barrier to participation in clinical tri-

als? J Thorac Oncol 2016; 11(1): 79–84.

29. Chabon JJ, Simmons A, Newman AM et al. Inter- and intra-patient het-

erogeneity of resistance mechanisms to the mutant EGFR selective in-

hibitor rociletinib. ASCO Meeting Abstracts 2016; 34(15 suppl): 9000.

Original article Annals of Oncology

790 | Remon et al. Volume 28 | Issue 4 | 2017

347

http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm504540.htm
http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm504540.htm


348



T h e  n e w  e ng l a nd  j o u r na l  o f  m e dic i n e

n engl j med 368;13 nejm.org march 28, 2013 1199

original article

Analysis of Circulating Tumor DNA 
to Monitor Metastatic Breast Cancer

Sarah-Jane Dawson, F.R.A.C.P., Ph.D., Dana W.Y. Tsui, Ph.D., 
Muhammed Murtaza, M.B., B.S., Heather Biggs, M.A., 

Oscar M. Rueda, Ph.D., Suet-Feung Chin, Ph.D., Mark J. Dunning, Ph.D., 
Davina Gale, B.Sc., Tim Forshew, Ph.D., Betania Mahler-Araujo, M.D., 

Sabrina Rajan, M.D., Sean Humphray, B.Sc., Jennifer Becq, Ph.D., 
David Halsall, M.R.C.Path., Ph.D., Matthew Wallis, M.B., Ch.B., 

David Bentley, D.Phil., Carlos Caldas, M.D., F.Med.Sci., 
and Nitzan Rosenfeld, Ph.D.

From the Department of Oncology, Univer-
sity of Cambridge and Cancer Research 
UK Cambridge Institute, Li Ka Shing Cen-
tre (S.-J.D., D.W.Y.T., M.M., O.M.R., S.-F.C., 
M.J.D., D.G., T.F., C.C., N.R.), the Depart-
ments of Histopathology (B.M.-A.), Radi-
ology (S.R., M.W.), and Clinical Biochem-
istry and Immunology (D.H.) and the 
Cambridge Breast Unit (S.-J.D., H.B., 
B.M.-A., S.R., M.W., C.C.), Addenbrooke’s 
Hospital, Cambridge University Hospital 
National Health Service Foundation 
Trust and National Institute for Health 
Research Cambridge Biomedical Research 
Centre, and the Cambridge Experimental 
Cancer Medicine Centre (C.C.), Cambridge; 
and Illumina, Little Chesterford (S.H., J.B., 
D.B.) — all in the United Kingdom; and 
the Peter MacCallum Cancer Centre, East 
Melbourne, VIC, Australia (S.-J.D.). Ad-
dress reprint requests to Dr. Rosenfeld or 
Dr. Caldas at Cancer Research UK Cam-
bridge Institute, University of Cambridge, 
Li Ka Shing Centre, Robinson Way, Cam-
bridge, CB2 0RE, United Kingdom, or at 
carlos.caldas@cruk.cam.ac.uk.

Drs. Dawson and Tsui and Drs. Caldas 
and Rosenfeld contributed equally to this 
article.

This article was published on March 13, 
2013, at NEJM.org.

N Engl J Med 2013;368:1199-209.
DOI: 10.1056/NEJMoa1213261
Copyright © 2013 Massachusetts Medical Society. 

A bs tr ac t

Background
The management of metastatic breast cancer requires monitoring of the tumor 
burden to determine the response to treatment, and improved biomarkers are needed. 
Biomarkers such as cancer antigen 15-3 (CA 15-3) and circulating tumor cells have 
been widely studied. However, circulating cell-free DNA carrying tumor-specific 
alterations (circulating tumor DNA) has not been extensively investigated or com-
pared with other circulating biomarkers in breast cancer.

Methods
We compared the radiographic imaging of tumors with the assay of circulating tumor 
DNA, CA 15-3, and circulating tumor cells in 30 women with metastatic breast 
cancer who were receiving systemic therapy. We used targeted or whole-genome 
sequencing to identify somatic genomic alterations and designed personalized assays 
to quantify circulating tumor DNA in serially collected plasma specimens. CA 15-3 
levels and numbers of circulating tumor cells were measured at identical time 
points.

Results
Circulating tumor DNA was successfully detected in 29 of the 30 women (97%) in 
whom somatic genomic alterations were identified; CA 15-3 and circulating tumor 
cells were detected in 21 of 27 women (78%) and 26 of 30 women (87%), respec-
tively. Circulating tumor DNA levels showed a greater dynamic range, and greater 
correlation with changes in tumor burden, than did CA 15-3 or circulating tumor cells. 
Among the measures tested, circulating tumor DNA provided the earliest measure 
of treatment response in 10 of 19 women (53%).

Conclusions
This proof-of-concept analysis showed that circulating tumor DNA is an informa-
tive, inherently specific, and highly sensitive biomarker of metastatic breast cancer. 
(Funded by Cancer Research UK and others.)
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Breast cancer is the most common 
cancer and the leading cause of cancer-
related death in women worldwide.1 Meta-

static breast cancer remains an incurable disease 
but is treatable by means of serial administration 
of endocrine, cytotoxic, or biologic therapies. The 
monitoring of treatment response is essential to 
avoid continuing ineffective therapies, to prevent 
unnecessary side effects, and to determine the 
benefit of new therapeutics. Treatment response is 
generally assessed with the use of serial imaging, 
but radiographic measurements often fail to de-
tect changes in tumor burden. Therefore, there is 
an urgent need for biomarkers that measure tu-
mor burden with high sensitivity and specificity.

Cancer antigen 15-3 (CA 15-3) is a serum bio-
marker that is clinically useful in some patients 
with metastatic breast cancer but has a sensitivity 
of only 60 to 70%.2-4 The enumeration of circu-
lating tumor cells has emerged as a promising 
biomarker. Although there are numerous meth-
ods to detect circulating tumor cells in the re-
search setting,5-7 the CellSearch System is the 
only test approved by the Food and Drug Admin-
istration. The system has a sensitivity of ap-
proximately 65% for detecting circulating tumor 
cells (≥1 cell per 7.5 ml of blood) in patients with 
metastatic breast cancer.8,9 Elevated levels of 
circulating tumor cells (defined as ≥5 cells per 
7.5 ml of blood) have been associated with a 
worse prognosis.8,10

Circulating DNA fragments carrying tumor-
specific sequence alterations (circulating tumor 
DNA) are found in the cell-free fraction of blood, 
representing a variable and generally small frac-
tion of the total circulating DNA.11,12 Advances in 
sequencing technologies have enabled the rapid 
identification of somatic genomic alterations in 
individual tumors, and these can be used to 
design personalized assays for the monitoring of 
circulating tumor DNA. Studies have shown the 
feasibility of using circulating tumor DNA to 
monitor tumor dynamics in a limited number of 
patients with various solid cancers, but few cases 
of breast cancer have been analyzed.13-20 Here, 
we provide a direct comparison between circu-
lating tumor DNA and other circulating bio-
markers (CA 15-3 and circulating tumor cells) 
and medical imaging, the current standard of 
care, for the noninvasive monitoring of meta-
static breast cancer.

Me thods

Patients and Sample Collection
We carried out a prospective, single-center study 
to compare the sensitivity of measuring circulat-
ing tumor DNA, CA 15-3, and circulating tumor 
cells for monitoring tumor burden in patients with 
metastatic breast cancer (see the Supplementary 
Appendix, available with the full text of this ar-
ticle at NEJM.org). The study was approved by the 
local institutional research ethics committee.

Eligible patients were women with metastatic 
breast cancer currently undergoing active treat-
ment. A total of 52 women were recruited, and 
30 had genomic alterations suitable for monitor-
ing. All women provided written informed con-
sent. Serial blood samples (30 ml each) were 
collected between April 2010 and April 2012 at 
intervals of 3 or more weeks. Computed tomog-
raphy (CT) was performed and reviewed in a 
blinded fashion to document response to treat-
ment according to the Response Evaluation Cri-
teria in Solid Tumors (RECIST), version 1.1.21 All 
reagents and equipment used in the study were 
purchased.

Identification of Somatic Genomic 
Alterations

Sequencing was performed on DNA from breast-
cancer specimens and matched normal tissue 
specimens, with the use of one or both of two 
methods: tagged-amplicon deep sequencing22 
for PIK3CA (encoding the phosphatidylinositol-
4,5-bisphosphate 3-kinase, catalytic subunit alpha 
protein) and TP53 (encoding tumor protein p53) 
or paired-end whole-genome sequencing (see the 
Supplementary Appendix). Tagged-amplicon deep 
sequencing was done by means of the Fluidigm 
Access Array and sequencing on the Illumina 
GAIIx or HiSeq instruments. Paired-end se-
quencing was done with the use of the Illumina 
HiSeq2000 instrument. Candidate mutations and 
structural variants were validated and confirmed 
to be somatic with the use of Sanger sequencing.

Isolation and Quantification of Circulating 
Tumor DNA

Blood samples that were collected in EDTA tubes 
were processed within 1 hour after collection and 
were centrifuged to separate the plasma from the 
peripheral-blood cells. DNA was extracted from 
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aliquots (2 ml) of plasma with the use of the 
QIAamp circulating nucleic acid kit (Qiagen). To 
measure the DNA carrying specific somatic ge-
nomic alterations in plasma, we carried out a mi-
crofluidic digital polymerase-chain-reaction (PCR) 
assay17,23-25 (using the Fluidigm BioMark system) 
or direct plasma sequencing by means of tagged-
amplicon deep sequencing22 (using the Fluidigm 
Access Array and sequencing on the Illumina 
HiSeq2500 instrument) (see the Supplementary 
Appendix).

Assay of CA 15-3 and Circulating Tumor Cells
We measured levels of CA 15-3 in aliquots (50 µl) 
of plasma by means of the ADVIA Centaur im-
munoassay system (Siemens Healthcare). Blood 
samples were collected in CellSave Preservative 
Tubes (Veridex) and were processed within 96 
hours for the enumeration of circulating tumor 
cells with the use of the CellSearch System (Veri-
dex). The counting of circulating tumor cells was 
performed in a manner blinded to the results of 
CT and assessments of CA 15-3 or circulating 
tumor DNA.

Statistical Analysis
To estimate the sensitivity of each of the circulat-
ing biomarkers, we used a modified bootstrap-
ping method.26 We randomly sampled the com-
plete data set to obtain a new data set containing 
only one time point for each patient. This ran-
dom sampling was repeated 1000 times to obtain 
1000 data sets, each containing independent ob-
servations. For each data set, we calculated the 
sensitivity of each biomarker. The median sensi-
tivity for each biomarker and the median differ-
ence in sensitivity between two biomarkers — 
circulating tumor DNA versus either CA 15-3 or 
circulating tumor cells — was then calculated 
across the 1000 data sets. The percentile method 
was used to obtain 95% confidence intervals.

Survival analysis was performed by fitting a 
different Cox regression model for each of the 
three variables of interest: circulating tumor 
DNA, circulating tumor cells, and CA 15-3. Each 
model was constructed with the use of the count-
ing process notation (start, end, event),27 such 
that for each time period, the date of the visit 
was taken as the start, and the date before the 
next visit (or the date of last follow-up) was con-
sidered the end. The predictors were modeled as 

time-dependent covariates that use splines to 
account for nonlinear relationships. Estimated 
survival curves were produced for different val-
ues of the covariates at the first visit. Wald sta-
tistic P values were reported for each model, and 
relative hazard plots were computed for each co-
variate, showing the linear predictor relative to 
the mean value of the covariate (for details, see 
the Supplementary Appendix).

R esult s

Identification of Somatic Genomic 
Alterations

Clinical details, results of CT imaging, and serial 
whole-blood samples were collected prospective-
ly from 52 women undergoing therapy for meta-
static breast cancer (Fig. 1, and Table S1 in the 
Supplementary Appendix). DNA extracted from 
archival-tumor tissue samples was analyzed to 
identify somatic genomic alterations, with the 
use of two approaches. First, we used targeted 
deep sequencing to screen for point mutations in 
PIK3CA and TP53,28 which we identified in 25 of 
the 52 patients (Table S2 in the Supplementary 
Appendix). Second, we used whole-genome 
paired-end sequencing of tumor-tissue specimens 
and matched normal-tissue specimens in 9 of the 
52 patients. We identified somatic structural 
variants29 in 8 patients (Table S3 in the Supple-
mentary Appendix), including 5 in whom no mu-
tations were previously identified in PIK3CA or 
TP53, bringing the total number of patients with 
identified genomic alterations to 30 of 52 women 
(Fig. 1, and Fig. S1 in the Supplementary Appen-
dix). In 3 patients, both mutations and structural 
variants were identified, enabling us to compare 
and contrast the use of point mutations13 and 
structural variants14,15 for serial monitoring of 
circulating tumor DNA. For 1 patient, we used 
whole-genome paired-end sequencing to identify 
multiple somatic mutations, enabling us to mon-
itor multiple mutations in parallel in circulating 
tumor DNA (Table S2 in the Supplementary Ap-
pendix).

Quantification of Circulating Tumor DNA 
in Plasma

In the 30 women with somatic mutations or 
structural variants, circulating tumor DNA was 
quantified in a total of 141 serial plasma samples 
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by means of either digital PCR assay or tagged-
amplicon deep sequencing.

Digital PCR assay was performed in 97 plasma 
samples from 19 of the 30 patients to track both 
somatic mutations and structural variants. The 
sensitivity of digital PCR assay allowed for the 
detection of a mutant allele fraction of 0.1% or 
more (one mutant molecule in a background of 
1000 wild-type molecules) (Fig. S2 in the Supple-
mentary Appendix).17 Circulating tumor DNA was 
detected in 18 of the 19 women and in 80 of the 
97 plasma samples (82%) analyzed.

As a high-throughput alternative to digital 
PCR assay, the remaining 44 plasma samples 
from the remaining 11 patients were analyzed 
with the use of tagged-amplicon deep sequenc-
ing.22 The sensitivity of tagged-amplicon deep 
sequencing allowed for the detection of a mutant 

allele fraction of 0.14% or more with a confidence 
margin of 0.95.22 Using this approach, circulating 
tumor DNA was identified in all 11 patients and 
in 35 of the 44 plasma samples (80%) analyzed.

In a subset of plasma samples in which circu-
lating tumor DNA was analyzed by both tech-
niques, quantification of mutant allele fraction 
by means of either tagged-amplicon deep se-
quencing or digital PCR assay showed excellent 
agreement (Fig. S3 in the Supplementary Appen-
dix).22 Taken together, circulating tumor DNA 
was detected in 29 of the 30 women (97%) and 
in 115 of the 141 plasma samples (82%). The 
median quantity of circulating tumor DNA across 
all samples was 150 amplifiable copies per milli-
liter of plasma (interquartile range, 9 to 720) 
(Table S4 in the Supplementary Appendix). The 
median mutant allele fraction was 4% (interquar-

52 Women with metastatic breast cancer

Tumor tissue

Identification of somatic
genomic alterations

Whole-genome sequencing
to identify mutations, SVs,
or both in 9 of 52 women

Targeted sequencing of
PIK3CA or TP53 mutations

in all 52 women

Serial blood samples
collected

Serial blood samples
analyzed

Serial computed
tomography

114 Samples from
27 women underwent

quantification
of CA 15-3

141 Samples from
30 women underwent

quantification of
circulating tumor

DNA

126 Samples from
30 women underwent

enumeration of
circulating tumor cells

114 Samples underwent
comparison of circulating
tumor DNA vs. CA 15-3

126 Samples underwent
comparison of circulating

tumor DNA vs. circu-
lating tumor cells

9 Had mutations or SVs25 Had mutations

30 Had mutations or SVs
22 Had mutations only
3 Had both mutations

and SVs
5 Had SVs only

Figure 1. Enrollment of Patients and Collection of Clinical Samples.

In the 30 women who were found to have somatic mutations, structural variants (SVs), or both, the genomic altera-
tions were determined through targeted deep sequencing or whole-genome paired-end sequencing of tumor-tissue 
specimens and matched normal-tissue specimens. CA 15-3 denotes cancer antigen 15-3.

3daws_oa1213261.indd   12023daws_oa1213261.indd   1202 3/26/13   1:10 PM3/26/13   1:10 PM

The New England Journal of Medicine 
Downloaded from nejm.org at CAMBRIDGE UNIVERSITY LIBRARY on March 16, 2018. For personal use only. No other uses without permission. 

 Copyright © 2013 Massachusetts Medical Society. All rights reserved. 352



Circulating Tumor DNA in Metastatic Breast Cancer

n engl j med 368;13 nejm.org march 28, 2013 1203

tile range, 1 to 14). The 1 patient in whom circu-
lating tumor DNA was not detected (Patient 12) 
had a low burden of metastatic disease (small-
volume mediastinal lymphadenopathy) and no 
evidence of disease progression during the study. 
Overall, levels of total plasma DNA were mea-
sured in parallel and had limited informative 
content (Fig. S4 in the Supplementary Appendix).

Concurrent Monitoring of Multiple Somatic 
genomic Alterations in plasma

Plasma levels of either mutations or structural 
variants identified in the tumor tissue of the same 
patient (Fig. S1C in the Supplementary Appendix) 
showed a similar dynamic pattern (Fig. 2A, and 
Table S4 in the Supplementary Appendix). This 
confirmed the utility and comparability of both 
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Figure 2. Monitoring Multiple Point Mutations and Structural Variants in Circulating DNA.

Panels A, B, and C show plasma levels of circulating tumor DNA (ctDNA) for three patients (one per panel), quantified in parallel by 
means of a digital polymerase-chain-reaction (PCR) assay across multiple time points. In Panels B, C, and D, the use of endocrine or 
cytotoxic therapy is indicated by colored shading, and disease status at various times (as ascertained on computed tomography) is shown. 
Panel A shows three structural variants (deletions) and a point mutation in PIK3CA. The three deletions occurred in the setting of a 
complex rearrangement associated with amplification. Panel B shows six point mutations, all of which showed similar dynamic patterns. 
Panel C shows point mutations in PIK3CA and TP53; the TP53 mutation was dominant in the circulation as compared with the PIK3CA 
mutation. Panel D shows plasma levels of ctDNA for a fourth patient, with point mutations in PIK3CA and TP53 quantified by means of 
tagged-amplicon deep sequencing. The TP53 mutation was identified in plasma only, and levels remained elevated after paclitaxel chemo-
therapy despite a fall in the PIK3CA mutation level in the presence of stable disease. ND denotes not detected.
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approaches. In women with tumors in which the 
genomic location of the structural variants over-
lapped with an amplified locus, such alterations 
were detected in the plasma at higher concentra-
tions, confirming that the assay of circulating 
tumor DNA is quantitative (Fig. 2A, and Fig. S1B 
and Table S5 in the Supplementary Appendix).

When multiple mutations were identified in 
tumor-tissue samples (Fig. S1C in the Supplemen-
tary Appendix), they generally showed similar 
dynamic patterns in plasma (Fig. 2B, and Table 
S4 in the Supplementary Appendix). However, in 
some cases, we also observed evidence of clonal 
heterogeneity, whereby certain mutations domi-
nated in the plasma (Fig. 2C, and Table S4 in the 
Supplementary Appendix). Tagged-amplicon deep 
sequencing also identified mutations in plasma 
that were not detected in archival-tumor DNA 
(Fig. S1C in the Supplementary Appendix).22 In 
these cases, the archival primary tissue had been 
collected more than 10 years previously, and the 
discordance may have reflected tumor evolu-
tion.30,31 These mutations showed diverging pat-
terns over the course of disease progression and 
treatment (Fig. 2D, and Table S4 in the Supple-
mentary Appendix), as compared with the muta-
tions identified in the tumor, suggesting that 
they originated from different subclones.

Sensitivity of Circulating Tumor DNa, CA 15-3, 
and Circulating Tumor Cells

Data comparing CA 15-3 values and circulating 
tumor DNA levels were available across 114 serial 
time points for 27 patients (Fig. 3A, and Table S4 
in the Supplementary Appendix). CA 15-3 levels 
were elevated (>32.4 U per milliliter) at one or 
more time points in 21 of the 27 women (78%) 
and in 71 of the 114 samples (62%). In contrast, 
circulating tumor DNA was detected in 26 of 27 
women (96%) and in 94 of 114 samples (82%). Of 
the 43 samples without elevated CA 15-3 levels, 
27 (63%) had measurable levels of circulating tu-
mor DNA. Using a modified bootstrapping 
method, we showed improved sensitivity of cir-
culating tumor DNA as compared with CA 15-3 
(85% vs. 59%), with a median difference in sensi-
tivity of 26% (95% confidence interval [CI], 11 to 
37; P<0.002).

Circulating tumor cells were quantified by 
means of the CellSearch System at 126 time points 
for all 30 women (Fig. 3B, and Table S4 in the 
Supplementary Appendix). Circulating tumor cells 

(≥1 cell per 7.5 ml of blood) were detected at one 
or more time points in 26 of the 30 women (87%), 
and elevated circulating tumor cells (≥5 cells per 
7.5 ml of blood) were identified in 18 of the 30 
women (60%). Of the 126 samples, 50 (40%) had 
no detected circulating tumor cells, and 76 (60%) 
had 1 or more cells per 7.5 ml, of which 46 (37% 
of all 126 samples) had 5 or more cells per 7.5 ml. 
In contrast, circulating tumor DNA was detected in 
29 of the 30 women (97%) and at 106 of 126 time 
points (84%). In the 50 samples in which no cir-
culating tumor cells were detected, 33 (66%) had 
measurable levels of circulating tumor DNA. Ac-
cording to the modified bootstrapping method, 
circulating tumor DNA had sensitivity superior to 
that of circulating tumor cells (90% vs. 67%), with 
a median difference in sensitivity of 27% (95% CI, 
13 to 37; P<0.002). At the median, the number of 
amplifiable copies of circulating tumor DNA was 
133 times the number of circulating tumor cells 
and had a greater dynamic range (Fig. 3B).

CT and Circulating Biomarkers for Tumor 
Monitoring

We compared the performance of circulating bio-
markers with the performance of CT in 20 pa-
tients with measurable disease (as defined by 
RECIST21) and for whom circulating biomarker 
data were available at 3 or more time points over 
a period of more than 100 days of follow-up (Fig. 
S5 in the Supplementary Appendix). Circulating 
tumor DNA was detected and showed serial 
changes in 19 of 20 women (95%) with fluctua-
tions in circulating tumor DNA generally corre-
lating with treatment responses seen on imaging 
(Fig. 4A, and Fig. S5 in the Supplementary Ap-
pendix). Similar findings were noted for women 
with 5 or more circulating tumor cells per 7.5 ml 
of blood (10 of 20 patients [50%]) in which serial 
changes in circulating tumor cell counts were 
evident and corresponded with responses ascer-
tained on CT (Fig. 4A). However, in the remain-
ing 10 women with a maximal count of circulat-
ing tumor cells of fewer than 5 cells per 7.5 ml of 
blood, the number of circulating tumor cells was 
uninformative (Fig. 4B and 4C, and Fig. S5 in the 
Supplementary Appendix).

Similar to the findings regarding circulating 
tumor cells was the finding that women with 
high levels of CA 15-3 had fluctuations corre-
sponding to responses on imaging but with a 
smaller dynamic range (Fig. 4A and 4B, and Fig. 
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S5 in the Supplementary Appendix). In patients 
with levels of CA 15-3 of 50 U or less per milli-
liter (8 of 19 patients [42%]), no consistent se-
rial changes in CA 15-3 levels were seen (Fig. 4C, 
and Fig. S5 in the Supplementary Appendix).

Progressive disease was documented on CT 
(as defined by RECIST) in 19 of 20 women during 
the follow-up period; CA 15-3 data were avail-

able for 18 of these women (95%) (Fig. S5 in the 
Supplementary Appendix). Increases in circulat-
ing tumor DNA levels reflected progressive dis-
ease in 17 of the 19 women (89%). In these 
women, on average, circulating tumor DNA levels 
increased by a factor of 505 (range, 2 to 4457) 
from the nadir before the establishment of pro-
gressive disease. The numbers of circulating tu-
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Figure 3. Comparison of Circulating Tumor DNA, CA 15-3, and Circulating Tumor Cells as Blood-Based Biomarkers.

Panel A shows comparisons of CA 15-3 levels (U per milliliter of plasma) and circulating tumor DNA (ctDNA) levels 
(amplifiable copies per milliliter of plasma) across the maximal value analyzed for individual patients and across all 
samples analyzed for all patients. The green horizontal dashed line indicates the CA 15-3 threshold of 32.4 U per 
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mor cells increased in 7 of the 19 women (37%), 
and CA 15-3 levels increased in 9 of 18 women 
(50%) (Fig. S5 in the Supplementary Appendix). In 
10 of the 19 patients (53%), levels of circulating 
tumor DNA increased at one or more consecutive 
time points, on average 5 months (range, 2 to 9) 

before the establishment of progressive disease 
by means of imaging (Fig. 4D, and Fig. S5 in the 
Supplementary Appendix). In 2 women (Patients 
9 and 22), increasing levels of circulating tumor 
DNA did not reflect the presence of progressive 
disease as assessed on CT (a detailed description 
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of these patients is provided in Fig. S5 in the 
Supplementary Appendix).

Prognostic Use of Circulating Biomarkers
Finally, we compared the circulating biomarkers 
with respect to prognostic use. Using a Cox pro-
portional-hazards model in which circulating 
tumor DNA was treated as a continuous time-
dependent variable, we found that increasing lev-
els of circulating tumor DNA were associated 
with inferior overall survival (P<0.001) (Fig. 4E). 
Circulating tumor cells were also found to have 
prognostic significance (P = 0.03) (Fig. S6A in the 
Supplementary Appendix). In contrast, CA 15-3 
was not found to be prognostic in this series of 
patients (Fig. S6B in the Supplementary Appen-
dix). Increasing numbers of circulating tumor 
cells and increasing levels of circulating tumor 
DNA were associated with an increased hazard 
(Fig. 4F), indicating that absolute levels of each is 
informative in guiding prognosis.

Discussion

In the detection of metastatic breast cancer, cir-
culating tumor DNA shows superior sensitivity 
to that of other circulating biomarkers and has a 
greater dynamic range that correlates with 
changes in tumor burden. Circulating tumor 
DNA often provides the earliest measure of treat-
ment response, as has been supported by recent 
analyses of circulating tumor DNA in other solid 
cancers.20,32

The monitoring of circulating tumor DNA 
levels requires the identification of somatic al-
terations in individual patients. Future develop-
ments will reduce the cost of whole-genome 
paired-end sequencing, and targeted sequencing 
can be readily expanded to include other genes, 
in addition to PIK3CA and TP53, known to be 
recurrently mutated in breast cancer.33-35 Here 
we have demonstrated the use of two strategies 
to quantify circulating tumor DNA: digital PCR 
assay and targeted deep sequencing. Digital PCR 
assay provides high accuracy and sensitivity but 
requires the design of personalized assays, an 
expensive and rate-limiting step. Targeted deep 
sequencing of plasma DNA provides a cost-effec-
tive alternative for high-throughput analysis and 
may overcome limitations of initial tumor-tissue 
assessment by virtue of allowing for the direct 
identification of mutations in plasma.22 However, 
our findings on circulating tumor DNA are not 
limited to these molecular platforms. Other meth-
ods for the identification of somatic mutations 
(such as exome sequencing33) or for the quanti-
fication of circulating tumor DNA (e.g., BEAMing 
[beads, emulsions, amplification, and magnetics] 
technology13 or Safe-SeqS [Safe-Sequencing Sys-
tem]36) may be applied with even greater sensi-
tivity. Recent studies have also shown the feasi-
bility of performing genomewide analysis of 
tumor-associated copy-number changes and mu-
tations in plasma.37-39

Our expanding knowledge of the genetic mech-
anisms underpinning breast cancer now provides 
a framework to better stratify patients.30,33-35,40,41 
The analysis of circulating tumor DNA repre-
sents a unique opportunity to integrate this 
knowledge into the clinical arena. Although 
the acquisition of tumor-tissue specimens will 
continue to be important, the use of biopsy 
specimens is limited, since such material may 

Figure 4 (facing page). Comparison of Circulating 
Biomarkers to Monitor Tumor Dynamics and Predict 
Survival.

Panels A, B, C, and D show serial circulating tumor 
DNA (ctDNA) levels (number of copies per milliliter 
of plasma), circulating tumor cell (CTC) numbers (per 
7.5 ml of whole blood), CA 15-3 levels (U per milliliter), 
and disease status as ascertained on computed tomog-
raphy (vertical dashed lines) for four patients (one in 
each panel). Details of endocrine or cytotoxic therapy 
are indicated by colored shading. The orange dashed line 
indicates the threshold of 5 CTCs per 7.5 ml of whole 
blood. The green dashed line indicates the CA 15-3 
threshold of 32.4 U per milliliter. ND denotes not de-
tected, PD progressive disease, PR partial response, 
and SD stable disease. Panel E shows the results of a 
Cox regression model, which identified an inverse rela-
tionship between quantiles (quant.) of ctDNA (indicated 
in copies per milliliter of plasma) and overall survival, 
with increasing levels significantly associated with poor 
overall survival (P<0.001). At 200, 400, and 600 days, a 
total of 23, 8, and 3 patients were at risk, respectively. 
Panel F shows that increasing ctDNA levels (copies per 
milliliter), as indicated on the bottom x axis, and increas-
ing numbers of CTCs (per 7.5 ml of whole blood), as 
indicated on the top x axis, were associated with an in-
creased loge relative hazard. The prognostic discrimina-
tion power of circulating tumor DNA level was greatest 
with levels up to 2000 copies per milliliter. Patients with 
levels of more than 2000 copies per milliliter were uni-
formly found to have the worst prognosis. The prognos-
tic power of CTCs increased according to the number of 
cells. Dashed lines represent 95% confidence intervals.
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not capture tumor heterogeneity; in addition, 
repeated biopsy is impractical. Circulating tu-
mor DNA represents a “liquid biopsy” alterna-
tive, allowing for sensitive and specific serial 
sampling to be performed during the course of 
treatment.

Supported by grants from Cancer Research UK, and the Ex-
perimental Cancer Medicine Centre and National Institute for 
Health Research Cambridge Biomedical Research Centre, and by 
an Australian National Health and Medical Research Council–
R.G. Menzies Early Career Fellowship (to Dr. Dawson).

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.

We thank Linda Jones and Susan Richardson for recruiting 
patients into the study; all the medical and ancillary staff in the 
breast-cancer clinic and the patients for consenting to partici-
pate; Sonia Bradbury from the Department of Clinical Biochem-
istry and Immunology, Addenbrooke’s Hospital, for assistance 
with the CA 15-3 analysis; the Genomics, Histopathology, Bio-
informatic, and Biorepository Core Facilities at the Cancer 
Research UK Cambridge Institute; the Addenbrooke’s Human 
Research Tissue Bank (supported by the National Institute for 
Health Research Cambridge Biomedical Research Centre); and 
Sarah Dawson and Sarah Vowler for their contribution to the 
statistical analysis.

References

1. Ferlay J, Shin HR, Bray F, Forman D, 
Mathers C, Parkin DM. Estimates of 
worldwide burden of cancer in 2008: 
GLOBOCAN 2008. Int J Cancer 2010;
127:2893-917.
2. Lauro S, Trasatti L, Bordin F, et al. 
Comparison of CEA, MCA, CA 15-3 and 
CA 27-29 in follow-up and monitoring 
therapeutic response in breast cancer pa-
tients. Anticancer Res 1999;19:3511-5.
3. Harris L, Fritsche H, Mennel R, et al. 
American Society of Clinical Oncology 
2007 update of recommendations for the 
use of tumor markers in breast cancer. 
J Clin Oncol 2007;25:5287-312.
4. Duffy MJ, Evoy D, McDermott EW. CA 
15-3: uses and limitation as a biomarker 
for breast cancer. Clin Chim Acta 2010;
411:1869-74.
5. Lianidou ES, Markou A. Circulating 
tumor cells in breast cancer: detection 
systems, molecular characterization, and 
future challenges. Clin Chem 2011;57:
1242-55.
6. Nagrath S, Sequist LV, Maheswaran S, 
et al. Isolation of rare circulating tumour 
cells in cancer patients by microchip tech-
nology. Nature 2007;450:1235-9.
7. Pantel K, Brakenhoff RH, Brandt B. 
Detection, clinical relevance and specific 
biological properties of disseminating 
tumour cells. Nat Rev Cancer 2008;8:329-
40.
8. Cristofanilli M, Budd GT, Ellis MJ, et 
al. Circulating tumor cells, disease pro-
gression, and survival in metastatic breast 
cancer. N Engl J Med 2004;351:781-91.
9. Mego M, De Giorgi U, Dawood S, et al. 
Characterization of metastatic breast 
cancer patients with nondetectable cir-
culating tumor cells. Int J Cancer 2011;129:
417-23.
10. Pierga JY, Hajage D, Bachelot T, et al. 
High independent prognostic and predic-
tive value of circulating tumor cells com-
pared with serum tumor markers in a 
large prospective trial in first-line chemo-
therapy for metastatic breast cancer pa-
tients. Ann Oncol 2012;23:618-24.
11. Schwarzenbach H, Hoon DS, Pantel 
K. Cell-free nucleic acids as biomarkers in 
cancer patients. Nat Rev Cancer 2011;11:
426-37.

12. Gormally E, Caboux E, Vineis P, Hain-
aut P. Circulating free DNA in plasma or 
serum as biomarker of carcinogenesis: 
practical aspects and biological signifi-
cance. Mutat Res 2007;635:105-17.
13. Diehl F, Schmidt K, Choti MA, et al. 
Circulating mutant DNA to assess tumor 
dynamics. Nat Med 2008;14:985-90.
14. Leary RJ, Kinde I, Diehl F, et al. Devel-
opment of personalized tumor biomark-
ers using massively parallel sequencing. 
Sci Transl Med 2010;2:20ra14.
15. McBride DJ, Orpana AK, Sotiriou C, 
et al. Use of cancer-specific genomic re-
arrangements to quantify disease burden 
in plasma from patients with solid tumors. 
Genes Chromosomes Cancer 2010;49:
1062-9.
16. Chen X, Bonnefoi H, Diebold-Berger 
S, et al. Detecting tumor-related altera-
tions in plasma or serum DNA of patients 
diagnosed with breast cancer. Clin Can-
cer Res 1999;5:2297-303.
17. Yung TK, Chan KC, Mok TS, Tong J, 
To KF, Lo YM. Single-molecule detection 
of epidermal growth factor receptor mu-
tations in plasma by microfluidics digital 
PCR in non-small cell lung cancer pa-
tients. Clin Cancer Res 2009;15:2076-84.
18. Nakamura T, Sueoka-Aragane N, 
Iwanaga K, et al. A noninvasive system 
for monitoring resistance to epidermal 
growth factor receptor tyrosine kinase in-
hibitors with plasma DNA. J Thorac Oncol 
2011;6:1639-48.
19. Otsuka J, Okuda T, Sekizawa A, et al. 
Detection of p53 mutations in the plasma 
DNA of patients with ovarian cancer. Int 
J Gynecol Cancer 2004;14:459-64.
20. Diaz LA Jr, Williams RT, Wu J, et al. 
The molecular evolution of acquired resis-
tance to targeted EGFR blockade in colo-
rectal cancers. Nature 2012;486:537-40.
21. Eisenhauer EA, Therasse P, Bogaerts J, 
et al. New Response Evaluation Criteria in 
Solid Tumours: revised RECIST guideline 
(version 1.1). Eur J Cancer 2009;45:228-47.
22. Forshew T, Murtaza M, Parkinson C, 
et al. Noninvasive identification and mon-
itoring of cancer mutations by targeted 
deep sequencing of plasma DNA. Sci 
Transl Med 2012;4:136ra68.
23. Vogelstein B, Kinzler KW. Digital 

PCR. Proc Natl Acad Sci U S A 1999;96:
9236-41.
24. Wang J, Ramakrishnan R, Tang Z, et 
al. Quantifying EGFR alterations in the 
lung cancer genome with nanofluidic 
digital PCR arrays. Clin Chem 2010;56:
623-32.
25. Lo YM, Lun FM, Chan KC, et al. Digi-
tal PCR for the molecular detection of 
fetal chromosomal aneuploidy. Proc Natl 
Acad Sci U S A 2007;104:13116-21.
26. Efron B, Tibshirani R. An introduc-
tion to the bootstrap. London: Chapman 
& Hall/CRC, 1993.
27. Andersen PK, Gill RD. Cox’s regres-
sion model for counting processes: a large 
sample study. Ann Stat 1982;10:1100-20.
28. Forbes SA, Bindal N, Bamford S, et al. 
COSMIC: mining complete cancer ge-
nomes in the Catalogue of Somatic Muta-
tions in Cancer. Nucleic Acids Res 2011;
39:D945-D950.
29. Stephens PJ, McBride DJ, Lin ML, et 
al. Complex landscapes of somatic re-
arrangement in human breast cancer ge-
nomes. Nature 2009;462:1005-10.
30. Shah SP, Roth A, Goya R, et al. The 
clonal and mutational evolution spectrum 
of primary triple-negative breast cancers. 
Nature 2012;486:395-9.
31. Higgins MJ, Jelovac D, Barnathan E, 
et al. Detection of tumor PIK3CA status in 
metastatic breast cancer using peripheral 
blood. Clin Cancer Res 2012;18:3462-9.
32. Misale S, Yaeger R, Hobor S, et al. 
Emergence of KRAS mutations and ac-
quired resistance to anti-EGFR therapy in 
colorectal cancer. Nature 2012;486:532-6.
33. Stephens PJ, Tarpey PS, Davies H, et 
al. The landscape of cancer genes and 
mutational processes in breast cancer. 
Nature 2012;486:400-4.
34. Banerji S, Cibulskis K, Rangel-Escareno 
C, et al. Sequence analysis of mutations 
and translocations across breast cancer 
subtypes. Nature 2012;486:405-9.
35. The Cancer Genome Atlas Network. 
Comprehensive molecular portraits of hu-
man breast tumours. Nature 2012;490:
61-70.
36. Kinde I, Wu J, Papadopoulos N, 
Kinzler KW, Vogelstein B. Detection and 
quantification of rare mutations with 

3daws_oa1213261.indd   12083daws_oa1213261.indd   1208 3/26/13   1:10 PM3/26/13   1:10 PM

The New England Journal of Medicine 
Downloaded from nejm.org at CAMBRIDGE UNIVERSITY LIBRARY on March 16, 2018. For personal use only. No other uses without permission. 

 Copyright © 2013 Massachusetts Medical Society. All rights reserved. 358



Circulating Tumor DNA in Metastatic Breast Cancer

n engl j med 368;13 nejm.org march 28, 2013 1209

massively parallel sequencing. Proc Natl 
Acad Sci U S A 2011;108:9530-5.
37. Chan KC, Jiang P, Zheng YW, et al. 
Cancer genome scanning in plasma: detec-
tion of tumor-associated copy number 
aberrations, single-nucleotide variants, 
and tumoral heterogeneity by massively 
parallel sequencing. Clin Chem 2013;59:
211-24.

38. Shaw JA, Page K, Blighe K, et al. Ge-
nomic analysis of circulating cell-free DNA 
infers breast cancer dormancy. Genome 
Res 2012;22:220-31.
39. Leary RJ, Sausen M, Kinde I, et al. De-
tection of chromosomal alterations in the 
circulation of cancer patients with whole-
genome sequencing. Sci Transl Med 2012;
4:162ra154.

40. Ellis MJ, Ding L, Shen D, et al. Whole-
genome analysis informs breast cancer 
response to aromatase inhibition. Nature 
2012;486:353-60.
41. Curtis C, Shah SP, Chin SF, et al. The 
genomic and transcriptomic architecture 
of 2,000 breast tumours reveals novel 
subgroups. Nature 2012;486:346-52.
Copyright © 2013 Massachusetts Medical Society.

3daws_oa1213261.indd   12093daws_oa1213261.indd   1209 3/26/13   1:10 PM3/26/13   1:10 PM

The New England Journal of Medicine 
Downloaded from nejm.org at CAMBRIDGE UNIVERSITY LIBRARY on March 16, 2018. For personal use only. No other uses without permission. 

 Copyright © 2013 Massachusetts Medical Society. All rights reserved. 359



360



Research Article

Dynamics of multiple resistance mechanisms in
plasma DNA during EGFR-targeted therapies
in non-small cell lung cancer
Dana Wai Yi Tsui1,2,§,† , Muhammed Murtaza1,2,3,†,¶,††, Alvin Seng Cheong Wong4, Oscar M Rueda1,2,

Christopher G Smith1,2, Dineika Chandrananda1,2, Ross A Soo4,5, Hong Liang Lim6, Boon Cher Goh4,5,

Carlos Caldas1,2,3,7, Tim Forshew1,2,‡‡, Davina Gale1,2, Wei Liu1,2,§§, James Morris1,2,

Francesco Marass1,2,¶¶,†††, Tim Eisen3,7,8, Tan Min Chin4,5,9,‡,* & Nitzan Rosenfeld1,2,‡,**

Abstract

Tumour heterogeneity leads to the development of multiple
resistance mechanisms during targeted therapies. Identifying
the dominant driver(s) is critical for treatment decision. We stud-
ied the relative dynamics of multiple oncogenic drivers in
longitudinal plasma of 50 EGFR-mutant non-small-cell lung
cancer patients receiving gefitinib and hydroxychloroquine. We
performed digital PCR and targeted sequencing on samples from
all patients and shallow whole-genome sequencing on samples
from three patients who underwent histological transformation
to small-cell lung cancer. In 43 patients with known EGFR muta-
tions from tumour, we identified them accurately in plasma of
41 patients (95%, 41/43). We also found additional mutations,
including EGFR T790M (31/50, 62%), TP53 (23/50, 46%), PIK3CA (7/
50, 14%) and PTEN (4/50, 8%). Patients with both TP53 and EGFR
mutations before treatment had worse overall survival than
those with only EGFR. Patients who progressed without T790M
had worse PFS during TKI continuation and developed alterna-
tive alterations, including small-cell lung cancer-associated copy
number changes and TP53 mutations, that tracked subsequent
treatment responses. Longitudinal plasma analysis can help

identify dominant resistance mechanisms, including non-drug-
gable genetic information that may guide clinical management.

Keywords circulating tumour DNA; liquid biopsy; lung cancer; resistance

mechanisms; targeted therapy
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Introduction

Molecularly targeted therapies offer substantial clinical benefit in a

subset of patients whose tumours harbour specific oncogenic

drivers. Unfortunately, treatment resistance inevitably develops,

partly driven by the evolving genetic landscape of cancer cells. For

example, though non-small-cell lung cancer (NSCLC) patients carry-

ing activating mutations in EGFR (epidermal growth factor receptor)

initially respond to EGFR-targeted tyrosine kinase inhibitors (EGFR-

TKIs; Lynch et al, 2004; Paez et al, 2004), the emergence of
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mutations that confer resistance to these TKIs or activate alternative

drivers (such as EGFR T790M, MET/HER2 amplifications, PIK3CA

mutation) leads to eventual drug resistance (Yu et al, 2013; Camidge

et al, 2014). Some of these resistance mechanisms are targetable,

such as T790M (Janne et al, 2015; Sequist et al, 2015) and MET

amplification (Sierra & Tsao, 2011). Apart from such individual

genetic changes, a small subset of EGFR-mutant NSCLC patients

develop resistance to EGFR-TKI therapy by undergoing histological

transformation to small-cell lung cancer (SCLC) and become sensi-

tive to standard SCLC treatment (Sequist et al, 2011; Niederst et al,

2015). Therefore, longitudinal monitoring of the dynamic genetic

changes during the course of a patient’s treatment has become

increasingly important to guide treatment at progression or when

resistance occurs. Plasma circulating tumour DNA (ctDNA) is a non-

invasive method that has been used to identify EGFR mutations and

other genetic drivers in NSCLC and in response to treatment of

NSCLC patients with EGFR-TKIs (Yung et al, 2009; Couraud et al,

2014; Douillard et al, 2014; Newman et al, 2014, 2016; Weber et al,

2014; Paweletz et al, 2015; Wan et al, 2017). During treatment of

NSCLC patients with first-generation EGFR-TKIs, serial assessment of

EGFR mutations in plasma ctDNA has proved successful in allowing

early detection of T790M-driven resistance prior to radiographic

progression (Oxnard et al, 2014; Mok et al, 2015). However, a subset

of the patients develop resistance that is independent of the EGFR

pathway, and multiple resistance mechanisms may co-exist because

of tumour heterogeneity (Sequist et al, 2015; Abbosh et al, 2017).

Here, we performed longitudinal analysis of plasma ctDNA to study

the dynamics of co-existing multiple resistance mechanisms during

sequential therapy in NSCLC patients.

In this study, we analysed a cohort of 392 plasma samples

collected longitudinally from 50 Stage IV NSCLC patients. All were

treated with the first-generation TKI gefitinib in combination with

hydroxychloroquine as part of the “Hydroxychloroquine and Gefitinib

to Treat Lung Cancer” trial (NCT00809237). Thirty-four patients were

TKI-naı̈ve (i.e. not previously treated with EGFR-TKI), and 16 were

TKI-treated (i.e. previously treated with TKI with a 2-week washout

period). Eligibility for the trial and patient characteristics are summa-

rized in the Appendix Supplementary Methods. This is a phase II

study with a phase I lead in that studies the tolerability, safety profile

and efficacy of hydroxychloroquine and gefitinib in advanced non-

small-cell lung cancer. Appendix Fig S1 summarizes the number of

patients in each arm (Appendix Fig S1). We performed tagged-

amplicon deep sequencing (TAm-Seq; Forshew et al, 2012) for de

novo identification and quantification of mutations in EGFR exons 18–

21, coding regions of TP53 and PTEN, and selected hotspot regions of

PIK3CA, KRAS and BRAF; and digital PCR for detection and quan-

tification of hotspot mutations in EGFR. For a subset of patients, we

also performed shallow whole-genome sequencing to analyse global

copy number changes during treatment (Heitzer et al, 2013).

Results

Mutational profiling by plasma DNA

To determine whether plasma was a good surrogate of EGFR muta-

tion status in the tumour, we compared the EGFR mutation status in

plasma samples (as determined by our assays) with the tumour

status reported in hospital records. The EGFR status was known in

the tumour of 43 of the 50 patients, and we detected the same EGFR

mutation in any follow-up plasma samples of 41 of 43 (95%)

patients (Fig 1A and Appendix Table S1). In the remaining seven

patients, two were found to be EGFR wild-type in both tumour and

plasma, and the remaining five have EGFR mutations detected in

plasma. In 24 patients who responded to the treatment within the

initial 70 days, 19 of them showed a drop in EGFR cfDNA levels

within that period (Appendix Fig S2 and Appendix Table S2). In

addition to EGFR, somatic mutations in other cancer genes, such as

in TP53 or the PI3K/AKT/mTOR pathway (PIK3CA and PTEN), were

also identified in the plasma of 29 patients (Fig 1B). Of the identified

mutations, 25–43% are likely oncogenic (TP53, 10/23, 43%;

PIK3CA, 3/7, 43%; PTEN, 1/4, 25%) according to OncoKB annota-

tion (Chakravarty et al, 2017). To further compare molecular pro-

files between tumour and plasma, we studied paired tumour and

plasma samples in four patients, where tumour samples were avail-

able before and after disease progression. The types of EGFR muta-

tions identified in plasma and tumour (EGFR activating, resistance-

conferring mutations in EGFR and other mutations) were identical

for 11 of 12 (92%) mutations before treatment, and for 9

of 12 (75%) mutations after treatment (Appendix Fig S3 and

Appendix Table S3). Plasma captured the same or more mutations

than tumour in 23 of 24 cases (96%). These results confirmed that

plasma analysis is informative for mutation profiling in NSCLC

patients using our assays. Initial changes in EGFR ctDNA levels after

start of treatment mirrored in most cases the radiographic assess-

ment of clinical response.

Prognostic value of baseline plasma DNA

We studied the relationship between pre-treatment EGFR ctDNA

levels and prognosis in 19 TKI-naı̈ve patients (Appendix Table S4),

for which at least one plasma sample was collected before initiation

of treatment. Patients with low levels of EGFR-activating mutations

pre-treatment tended to have better progression-free survival (PFS)

and overall survival (OS; Fig 2A and B), though this did not reach

statistical significance level of 0.05 (their corresponding Cox

P-values were 0.06 for both PFS and OS). Of note, patients with low

levels of EGFR-activating mutation allele fractions had reduced

tumour burden (median 17 mm) by RECIST measurements, as

compared to those with intermediate (median 42 mm) and

high (median 80 mm) levels of EGFR-activating mutation

(Appendix Table S4). These findings suggest that baseline mutation

concentrations in the plasma correlate with tumour burden. In addi-

tion, patients with both EGFR and TP53 detected in pre-treatment

plasma tended to have worse prognosis (Fig 2C and D, Cox P-value

0.109 for PFS and 0.035 for OS). We repeated the analysis with

copies/ml instead of mutant allele fractions, and the conclusions

were the same. These data suggest that both the molecular profile of

genomic alterations, and the quantification of ctDNA levels in base-

line plasma, can have prognostic implications.

Mutation dynamics in plasma DNA reveals heterogeneous
resistance mechanisms

For 45 of 50 patients, EGFR mutations were detected before treat-

ment in tumour and/or plasma and more than one plasma sample
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was available from clinical follow-up. Longitudinal analysis of

ctDNA in plasma revealed heterogeneity of resistance mechanisms

(Fig 3A). During longitudinal follow-up, a large subset of patients

retained the sensitizing mutation and developed resistance-confer-

ring EGFR T790M mutation (n = 28/45, 62%, Fig 3B). To estimate

the detection lead time (i.e. the interval between detection of the

resistance-conferring mutation in plasma and radiographic evidence

of disease progression), we focus on 28 patients where T790M was

detected in plasma at any time during EGFR-TKI, including detection

before disease progression became evident. In patients treated with

first-line EGFR-TKI, we found that the median time-to-appearance of

T790M in plasma was 4 months from the start of TKI treatment,

with a lead time between T790M detection and clinical progression

of 6.8 months. Patients with EGFR T790M can now be treated with

third-generation, irreversible EGFR-TKIs (Janne et al, 2015;

Piotrowska et al, 2015). One patient (220) had a biopsy of the lung

tumour after progression, in which both activating EGFR exon 19

and T790M mutations were detected. The same mutations were

detected in plasma at the time of progression. This patient was then

treated with a third-generation EGFR-TKI (EGF-816, Novartis

(NCT02108964)) and demonstrated partial radiological response.

Subsequent plasma samples showed no further EGFR mutations

(data shown in Dataset EV1).

In a second group of patients (n = 10/45, 22%), the activating

EGFR mutation was detected in plasma before and after progres-

sion, with an average mutant allele fraction (AF, i.e. the fractional

concentration of mutant allele over total DNA) of 7.9%, but not

T790M (Fig 3C). The continued presence of activating mutations

in plasma suggests possible positive selection of the mutations in

the EGFR pathway in the corresponding cancers. In these patients,

mutations in other pathways also emerged in plasma, such as

TP53 and PIK3CA (Dataset EV1). One possible hypothesis is that

tumours of patients in this group may retain partial sensitivity to

EGFR-TKI treatment, and may respond clinically if EGFR-TKI is

used in combination with treatments targeting additional resistance

pathway.

The third group of patients (n = 7/45, 15%) did not have EGFR-

activating nor known resistance-conferring mutations in EGFR

detected in plasma when they progressed. These patients initially

had exon 19 deletion detected in the tumour (7/7) and their first

plasma sample (6/7). Interestingly, comparing to the other two

groups, this group of patients had EGFR-activating mutations

A

B  Summary of mutations detected in longitudinal plasma of the 50 patients

EGFR

EGFR T790M

TP53

PIK3CA

PTEN

BRAF

KRAS

85%

65%

47%

15%

9%

6%

3%

88%

50%

44%

13%

7%

TKI-naive (n=34) TKI-treated (n=16)

86%

60%

46%

14%

8%

4%

2%

Total Ex19del L858R Other EGFR Not detected

Ex19del 23 21 2* 2 
L858R 15 15 0 

Other EGFR 3 3 0
Not detected 2 2

EGFR status in tumour vs plasma (including EGFR negative patients): 41/43 (95%)

Plasma

Tu
m

ou
r

Overall (n=50)

*Two patients had both EGFR Ex19Del and L858R mutations detected in plasma

Figure 1. Summary of somatic mutations identified in the 50 NSCLC patients.

A Detection of tumour EGFR mutations in plasma. EGFR mutation status in tumour samples was documented in the clinical record for 43 patients (Appendix Table S1),
of which 38 had verified hotspot activating mutations (deletion in exon 19 for 23 patients and the L858R mutation for 15 patients), three patients had other
mutations in EGFR (one of these patients had two different mutations detected in the tumour sample), and two patients were wild-type for EGFR according to tumour
analysis and confirmed by plasma analysis.

B Summary of the mutations identified in any of the plasma samples during longitudinal follow-up in the 50 patients. TKI-naïve (n = 34) and TKI-treated (n = 16)
patients are presented separately.
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present at relatively lower allele fractions in their first plasma

samples [groups 1 and 2: median EGFR mutations mutant allele

fractions was 3% (range: 0.07–65.7%) versus group 3: median

0.23% (range: 0.06–2.11%)]. We do not rule out the possibility that

the tumours of these patients might release less tumour-derived

DNA into the circulation. In some of these patients, we detected

alternative cancer mutations such as TP53 and PIK3CA in plasma

before treatment was initiated, and the levels of these mutations

then increased to present the highest allele fractions in ctDNA when

disease progressed (Fig 3D). We speculate that one possible

explanation for the absence of EGFR mutations in cfDNA at disease

progression could be that, EGFR mutations were subclonal in those

patients initially, and under the selective pressure of the EGFR-

targeting therapy, the EGFR-driven clones shrank below detection

limit of the assay, while clones that were driven by alterative

drivers (such as TP53 and PIK3CA) and did not carry the EGFR-

sensitizing mutations, expanded. Based on our data from cfDNA,

these alternative drivers pre-existed even before treatment initia-

tion, but were present in parts of the tumour that were not anal-

ysed, or alternatively were present at very low cellularity such that
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Figure 2. Prognostic value of qualitative and quantitative assessments of pre-treatment ctDNA.

A, B The relationship of pre-treatment EGFR-activating mutation levels (allele fractions) with progression-free survival (PFS) and overall survival (OS) of 19 first-line
TKI-treated patients where baseline plasma samples (collected before the start of treatment) were available. Patients were grouped into three groups according to
their pre-treatment ctDNA levels, as measured by EGFR-activating mutation allele fractions: low (< 25% quartile), intermediate (25–75% quartile) and high (> 75%
quartile) ctDNA levels. Kaplan–Meier survival curves indicated that patients with high baseline pre-treatment EGFR-activating mutant allele fractions were non-
significantly associated with unfavourable (A) PFS (log-rank P-value = 0.11) and (B) OS (log-rank P-value = 0.16), Cox P-value of 0.06 for either PFS or OS.

C, D The prognostic value of concurrent TP53 and EGFR mutations in pre-treatment plasma samples before EGFR-TKI therapy. This analysis was performed in 30 first-
line EGFR-TKI patients where plasma samples were available within 2 months of start of treatment. The presence of both TP53 and EGFR mutations in plasma was
associated with a trend of worse PFS (log-rank P-value = 0.109, hazard ratio and 95% confidence interval: 0.53 [0.24–1.17]) and significantly worse OS (log-rank
P-value = 0.035, hazard ratio and 95% confidence interval: 0.43 [0.20–0.97]).
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their allele fractions in those samples were below the detection

limit by standard clinical tumour sequencing assay. Recent data

from tumour sequencing suggested EGFR may be subclonal in a

small subset of EGFR-mutant NSCLC tumour (McGranahan et al,

2015), which agrees with our hypothesis. A recent plasma-based

study also reported 4 out of 24 NSCLC patients had EGFR-sensi-

tizing mutations detected in plasma at T0 but absent when the

patients progressed, which agreed with our findings (Pecuchet

et al, 2016). The fact that EGFR T790M was not detected in the

third group suggested that the cancers have developed resistance

mechanisms that are alterative to the EGFR pathway, which agreed

with the observations of alternative drivers in plasma in some

patients. For the patients whom we did not detect T790M nor other

drivers were detected, they may have progressed due to other resis-

tance mechanisms that were not covered by our targeted sequenc-

ing assay.

Of note, overall, TKI-naı̈ve patients who progressed without

T790M detection (13 patients selected from the second and the third

groups) had a significantly worse PFS (Appendix Fig S4A and

Appendix Table S5, P-value = 0.008), and a trend towards worse OS
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Figure 3. Longitudinal analysis of ctDNA dynamics reveals distinct patterns of resistance mechanisms.

A Longitudinal analysis of ctDNA dynamics in 45 NSCLC patients revealed three main groups of concurrent heterogeneous resistance mechanisms.
B In the first group (n = 28/45, 62%), patients retained EGFR-sensitizing mutations before and after disease progression, with the development of T790M in their

plasma samples, indicating that at least some of the progressing clones developed resistance to TKI by acquiring T790M.
C In the second group (n = 10/45, 22%), patients retained EGFR-sensitizing mutations but progressed without developing T790M in their plasma samples, suggesting

that resistance arose due to other mechanisms which were not analysed in this dataset.
D In the third group (n = 7/45, 15%), patients progressed without EGFR-sensitizing nor resistance-conferring T790M mutations detected in their plasma samples.

Resistance possibly develops through dependence on alternative cancer driver pathways.

Data information: For patients where multiple EGFR-activating mutations were identified in plasma, only the most abundant one is shown here (complete data for all
patients are shown in Dataset EV1). Clinical progression and CT imaging times are indicated with a dotted line, with RECIST classification: SD, stable disease; PR, partial
response; PD, progressive disease. Progressive disease defined by presentation of symptoms on brain or bone scan is indicated by PD**.
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(Appendix Fig S4B, P-value = 0.22), as compared to T790M-positive

patients. These observations confirm results from a re-biopsy study

(Oxnard et al, 2011), suggesting that patients that progress without

T790M are less likely to benefit from TKI continuation, possibly due

to the more aggressive nature of their disease or reduced depen-

dency on the EGFR pathway.

Dynamics of EGFR mutations in plasma across multiple lines
of treatment

To explore the utility of monitoring both activating and resis-

tance-conferring mutations, we investigated their relative repre-

sentation in plasma in relation to radiographic assessment in one

patient for whom samples were available spanning sequential

lines of first-generation EGFR-TKI and chemotherapy (Fig 4).

Three lesions were tracked by imaging (Fig 4B): in the lung (L1),

left liver lobe (L2) and right liver lobe (L3). During treatment with

TKI, all three lesions initially shrank, before a small incremental

increase in the size of L3 from day 49, although this did not

amount to RECIST progression. The mutant AF of EGFR-activating

mutation (exon 19 deletion) decreased initially but increased

from day 134 (Fig 4A). The T790M mutation was detected from

day 189.

On day 297, L3 showed a substantial growth. The T790M muta-

tion at that timepoint reached AF of 3.6%. Treatment was changed

to platinum-based doublet chemotherapy at which point L3 showed

a reduction on serial CT imaging, which coincided with a drop of

the T790M mutation AF to 0.7% (Fig 4A). At day 679, despite the

shrinkage of L3, L1 and L2 grew, coinciding with an increase in the

AF of the activating mutation from 8.6% (when responding to initial

TKI) to 43%. The patient was given a first-generation EGFR-TKI re-

challenge (newer TKIs were not yet approved at the time this patient

was treated), and activating mutation sharply dropped back to

6.4%, corresponding to a reduction in L1 and L2.

From day 217 to 244, both EGFR mutations exhibited a sharp

drop in AF in plasma, for reasons we do not understand, and may

be related to metabolic effects or technical artefacts. The increased

AFs from days 244 to 272 may be a related transient effect. Simi-

larly, the sample collected on day 300 from patient 103 presented an

unexpectedly low total cfDNA level (> 10-fold different from the

timepoint immediately before and after), which could potentially

influence the interpretation of mutant allele fractions at that time-

point. Such variations could be contributed by effects of processing,

collection or other technical reasons. We have therefore excluded

that timepoint from the analysis. To normalize for these kinds of

pre-analytic effects, and to explore the relative representation of the

alleles, we calculated the ratio of AFs of the resistance-conferring/

activating EGFR mutations (Fig 4A). The ratio was zero before the

start of TKI. It reached a maximal value of 0.43 during first-line TKI

(when L3 grew substantially), dropped to 0.02 after chemotherapy

(corresponding to a reduction in L3), then rapidly increased upon

TKI re-challenge to 0.67.
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Figure 4. Analysis of relative representation of activating and resistance-conferring mutations in EGFR during sequential therapy.

A (i) Sizes of three different lesions in patient 103 over time, measured from the start of first-line TKI treatment. Shading indicates duration of treatment with TKI (days
0–297), chemotherapy (days 297–679), and TKI re-challenge (days 679–783). From day 783, the patient was treated with supportive care. Dotted lines indicate the CT
imaging assessment at select timepoints. (ii) Levels of activating EGFR mutations (exon 19 deletion) and resistance-conferring EGFR T790M mutations for patient 103
(Dataset EV1). (iii) Ratio of resistance-conferring/activating mutations, calculated from data shown in Appendix Table S1 (excluding the data at T = 300 days).

B CT imaging scans performed at the start of TKI treatment (day 0), at the change of treatment to chemotherapy (day 297), at the end of chemotherapy and start of TKI
re-challenge (day 679), and after initiating TKI re-challenge (day 741). Sizes are assessed from CT imaging scans, and indicated by blue (i, lung), green (ii, left lobe
liver) and orange (iii, right lobe liver) lines. Lesions identified in the lung (blue arrow), left lobe liver (green arrow) and right lobe liver (orange arrow) are indicated. PR,
partial responses; PD, progressive disease.
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Although a liver biopsy was not performed, which may have

been able to confirm the presence of T790M in L3, the clinical and

radiological evidence in conjunction with the dynamics of EGFR

mutations in plasma strongly suggests that the T790M was present

in L3 but not in L1/L2. This suggests that the ratio of resistance-

conferring/activating mutations in plasma can help identify domi-

nant drivers of disease and progression in real time (Oxnard et al,

2016).
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Figure 5. Plasma analysis reveals global copy number changes and ctDNA dynamics in patients who have undergone histological transformation to SCLC
(patient 223).

A CT liver scans are shown: At day 63, the patient had progressed on platinum-based chemotherapy, and CT of the liver showed appearance of new liver lesions. Liver
biopsy at that point confirmed small-cell lung cancer in new lesions in the liver. CT of the liver at day 354 shows marked growth in the liver lesions, after a period of
transient response to cisplatin and irinotecan.

B The timeline of the patient’s treatment is charted, alongside the timepoints where plasma and tumour samples are available for molecular analyses. Per diagram
timeline, tumour samples were available from diagnosis (3 years prior to recruitment for study) (i) and at day 63 (iii). Plasma samples were available at day 0 (ii) and
day 354 (iv). The mutations allele fractions for TP53 and PIK3CA are shown.

C Global copy number profiles in plasma samples collected prior to small-cell transformation (ii) and after SCLC transformation and progression on cisplatin and
irinotecan (iv). Global copy number profiles in tumour samples collected at diagnosis of NSCLC (i) and at small-cell transformation (iii). CNA events that were
significantly identified and coincide with literature-reported SCLC events are denoted in colours: blue for gain and orange for loss.
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Copy number changes and mutations detected in plasma after
SCLC transformation

Recent findings have shown that around 2–3% of NSCLC patients

develop resistance to EGFR-targeted therapies by undergoing histo-

logical transformation to small-cell lung cancer (SCLC; Sequist et al,

2011). In our cohort, three patients (patients 122, 223, 218) were

confirmed to present SCLC histology based on re-biopsy examina-

tion at progression. We used targeted deep sequencing and shallow

whole-genome sequencing of plasma DNA to track and study the

dynamics of somatic point mutations and global copy number alter-

ations (CNAs) in samples collected before and after SCLC transfor-

mation in those patients.

T790M mutations were not detected in plasma at disease progres-

sion for any of the three SCLC-transformed patients, and two of

them (patients 122 and 218) retained the EGFR-activating mutations

in plasma after SCLC transformation. TP53 mutations were detected

before EGFR-TKI initiation in all three patients’ baseline plasma

samples, at low levels (< 1%) compared to the EGFR-activating

mutations, and their levels in plasma increased with disease

progression (patient 122, 223) or decreased when patient demon-

strated clinical response (patient 218) during small-cell lung cancer-

directed chemotherapy (Figs 5 and 6, and Appendix Fig S5). Analy-

sis of the plasma samples collected after transformation in all three

patients revealed the emergence of CNAs that have been previously

reported to be associated with SCLC, including MYCL1, SOX2 and

SOX4 (George et al, 2015; Figs 5 and 6, and Appendix Fig S5). In

each patient, we also identified gain or loss of cancer genes as

part of larger chromosomal events (> 5 Mb; Figs 5 and 6, and

Appendix Fig S5). These may have contributed to the biological

change or may represent passenger events as a result of greater

genomic instability of the TP53-mutant clones. We observed focal

copy number changes at key oncogenic drivers that may play a role

in driving disease progression, for example, amplification of KRAS

in patient 223 (Fig 5) and amplification of EGFR in patients 122 and

218 (Appendix Fig S5 and Fig 6).

Patient 223 (Fig 5A) initially harboured an exon 19 activating

EGFR mutation, had indolent disease and remained clinically and

radiologically responsive to first-line EGFR-TKI for 2 years. Subse-

quently, there was development of PET FDG-avid, but subcentime-

tre, liver lesions that were not clearly appreciated on CT imaging. At

this point, even though progression was only obvious in two new

small spots on PET imaging (stable disease by CT and RECIST crite-

ria), ctDNA showed multiple copy number changes (Fig 5B and C,

plasma 1). There was subsequent rapid growth of the liver lesions,

despite two lines of chemotherapy. A liver biopsy was performed at

that point, and showed only small-cell carcinoma, with no further

activating nor T790M EGFR mutations found in the small-cell

cancer. Figure 5C demonstrates that a few months prior to the con-

firmation of small-cell transformation, plasma analysis already

showed marked copy number changes, this time of focal amplifi-

cation of MYCL1 and KRAS, known oncogenic drivers in the KRAS

pathway. These focal genomic changes were also observed in the

subsequent liver biopsy, showing parallel changes in both tumour

and plasma, suggesting that plasma is a good surrogate for study of

genomic copy number alterations and evolution. In this particular

case, the copy number changes were more markedly observed in

the plasma, compared to the tumour, likely due to scarcity of

tumour cells in the repeat biopsy.

Another patient with SCLC transformation (patient 218, Fig 6A)

harboured an EGFR L858R-activating mutation at diagnosis, and

again demonstrated a good clinical and radiological response, with

progression-free survival of 14 months on first-line EGFR-TKI

(Fig 6B). Upon clinical progression while on treatment with EGFR-

TKI (day 78), the plasma analysis (Fig 6B plasma 1) showed

increased levels of EGFR L858R as well as a TP53 R175H mutation,

one of the most frequently observed mutations in TP53. On treat-

ment with platinum-based doublet chemotherapy with pemetrexed,

the patient achieved stability of disease. There was however early

progression on maintenance pemetrexed and despite a switch to

carboplatin and docetaxel, the patient’s lung mass progressed, and a

biopsy confirmed SCLC, harbouring the original activating EGFR

L858R mutation. At this point, the patient was switched to treatment

for SCLC with carboplatin and etoposide, with a radiological

response and corresponding reduction in TP53 R175H mutation

(Fig 6B, plasma 3). Unfortunately, the treatment response was tran-

sient, and there was development of widespread symptomatic

metastases in both the brain and spine, necessitating radiotherapy

to those areas. At the completion of radiotherapy, the patient had

developed liver metastases with rapid progression. At this point, we

observed marked copy number change in plasma 4 and 5 analyses

(Fig 6C and Appendix Fig S6). This example illustrates that dynam-

ics of genomic copy number changes in plasma reflect the muta-

tional burden and radiologic responses.

The losses of TP53 and RB1 are common in SCLC (George et al,

2015), and we therefore attempted to look for RB1 somatic copy

number alterations but did not find any significant signal by sWGS.

In patient 218, RB1 did appear to have a reduced copy number, but

this event could be part of a much larger chromosomal aberration,

and thus, we cannot rule this out as being a passenger event. RB1

▸Figure 6. Plasma analysis reveals global copy number changes and ctDNA dynamics in patients who have undergone histological transformation to SCLC
(patient 218).

A CT images of the left lung tumour at baseline (day �730), and upon progression on EGFR-TKI (day 78). The patient was treated for non-small-cell lung cancer from
days 78 to 329 with two lines of chemotherapy: initially carboplatin and pemetrexed, followed by docetaxel. The CT image corresponding to plasma 2 and re-biopsy of
the tumour at day 329 was upon progression on the above two lines of chemotherapy. CT image corresponding to plasma 3 at day 379 was upon response to small-
cell lung cancer chemotherapy. CT corresponding to days 500 and 524 are upon progression on cisplatin and etoposide. Marked growth of the lung and liver lesions
are demonstrated, and this corresponds to marked CNA changes on plasma drawn on those respective days.

B The timeline of the patient’s treatment is shown, alongside timepoints where tumour and plasma samples were available for analyses. The bottom chart shows the
respective mutations that were found, and the changes to the mutation allele fractions in a longitudinal timeline.

C Global copy number profiles in tumour and plasma samples are shown: Tumour samples at baseline diagnosis of non-small-cell lung cancer (day �730) and at
transformation to small-cell lung cancer (day 329). For plasma samples, the following were available: days 78 (upon progression on EGFR-TKI); 329 (at transformation
to small-cell lung cancer); 379 (at response to small-cell lung cancer); 500 and 534 (progression on small-cell lung cancer treatment).
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alterations are important driver in SCLC, but it is not necessarily the

only driver (Karachaliou et al, 2016). All three SCLC-transformed

patients have evidence of TP53 mutations in their SCLC re-biopsies,

and pre- and post-transformation plasma suggest that TP53 is an

important driver in these particular patients.

In all three patients, CNAs were more evident in plasma as

compared to tumour DNA analysis, likely due to scarcity of tumour

cells at repeat biopsy. The data also illustrate that the global CNA

profile in plasma can act as an indicator of disease burden and can

be used to track clinical progression, as previously suggested in

other cancer types (Heitzer et al, 2013). Subtype-specific mutational

and CNA signatures can be identified in plasma in association with

histological transformation that warrants different treatment strat-

egy, and their increasing levels in plasma can pre-date radiological

progression (by CT imaging). These observations suggest that

plasma genomic changes could be indicative of early progression,

and may complement current imaging modalities in monitoring

response.

Discussion

We studied the dynamics of concurrent somatic point mutations

and copy number alterations in plasma DNA during treatment of

NSCLC patients with EGFR inhibitor. Several observations may

provide information for the design of future plasma DNA studies of

patients treated with targeted therapies:

First, we found a strong concordance between EGFR status in

tumour and plasma samples, and showed that mutations in multiple

cancer-related genes can be identified directly in plasma by targeted

sequencing. These results confirm findings from a previous valida-

tion study (Douillard et al, 2014; Weber et al, 2014; Huang et al,

2017), and lend further credibility to the application of circulating

DNA in plasma for non-invasive molecular profiling and treatment

stratification (Jamal-Hanjani et al, 2017; Remon et al, 2017).

Second, high pre-treatment levels of ctDNA, and specifically of EGFR

mutations in plasma prior to treatment with EGFR-TKI, correlated

with increased tumour burden and were associated with poor prog-

nosis, echoing previous findings (Mok et al, 2015). We also showed

that early changes in levels of ctDNA (in our case, of EGFR muta-

tions) may predict initial response (Parkinson et al, 2016). Both of

these findings lend support to the analysis of baseline and subse-

quent plasma samples for EGFR mutations to track treatment

responses. Third, we detected the emergence of the T790M mutation

in approximately 50% of patients who progressed on TKI, at a

median of 6.8 months before clinical progression. Early identifi-

cation of emerging resistance highlights the potential to use ctDNA

to guide clinical interventions such as therapies that target T790M-

mutant cells (Janne et al, 2015; Sequist et al, 2015; Chabon et al,

2016; Remon et al, 2017).

In addition, we showed that profiling TP53 in plasma before

EGFR-targeted therapy can provide prognostic value. Cancers

harbouring both TP53 and EGFR mutations in baseline plasma were

associated with inferior overall survival in patients treated with

EGFR-targeted TKI. This confirmed observations from a tumour

sequencing study (Labbe et al, 2017), and because plasma DNA

captures the mutations coming from different parts of the tumour,

we found that in some patients, these TP53 mutations pre-existed at

AF < 1% in plasma prior to treatment and later became the domi-

nant mutations in plasma when patients progressed or exhibited

histological transformation to SCLC. This echoes one of the recent

findings that EGFR-TKI-resistant SCLCs can branch out from early

events that pre-existed in NSCLC prior to transformation based on

tumour biopsy analysis (Lee et al, 2017).

These data highlight the potential value for clinical management

of analysing mutations which may not be perceived as “actionable”,

such as mutations in the tumour suppressor TP53, and suggests that

the genetic context of an EGFR-mutant tumour may determine its

dependence on the EGFR and/or other pathways and predict sensi-

tivity or resistance to EGFR-directed treatment. Tracking the dynam-

ics of multiple mutations showed that different resistance

mechanisms co-existed, and are likely to be the result of tumour

heterogeneity (Piotrowska et al, 2015). As illustrated by the above

clinical cases, the response and progression of different lesions coin-

cided with the changing levels of distinct mutations in plasma. As

treatment selection pressure is dynamic, analysing the relative

proportions of different oncogenic drivers in plasma at any one

point may provide insight on a particular dominant oncogenic path-

way dependence and guide decisions on subsequent treatment by

targeting the current dominant clone.

Finally, we showed that tracking the dynamics of plasma EGFR

mutations alone may not provide the most accurate estimate of

tumour responses, as seen in the 14% of patients who progressed

with decreasing levels of EGFR mutations in plasma. We speculate

that this observation may be explained by the recent finding of

subclonal EGFR driver mutations in 3 of 21 (14%) NSCLC cases

(McGranahan et al, 2015), and suggest that monitoring EGFR-

targeted therapies by ctDNA would require tracking mutations

beyond EGFR. These findings will need to be confirmed by further

studies in larger cohorts. Nonetheless, using a multi-gene assay, our

data revealed the presence of concurrent oncogenic drivers before

treatment. Parallel analysis of somatic point mutations and global

CNA events (by shallow WGS) could more accurately track disease

burden and detect subtype-specific events (e.g. marked copy

number changes associated with histological transformation). In

particular, we identified multiple genomic changes in the plasma of

three patients who underwent transformation to SCLC (patients 122,

223 and 218), which correlated closely with burden of disease. All

three patients presented increasing fractions of TP53 mutations that

pre-existed at < 1% levels in plasma before treatment, together with

recurrent SCLC CNA events in ctDNA at the time of transformation.

These changes correlated closely with burden of disease, and CNA

signals in plasma reduced accordingly when computerized tomogra-

phy imaging showed radiological response to chemotherapy. In

these cases, it was interesting to note that all cases exhibited dif-

ferent drivers, TP53 in the first case, MYCL-1 and KRAS in the

second, and two TP53 mutations in the third. It may be that each

patient has a unique signature of genomic copy number change that

may reflect disease burden, and this can be used to determine

responding or progressive disease at various timepoints, with rela-

tion to each line of treatment received. However, the complex and

varied genomic landscape in these transformed small-cell lung

cancers underscores the difficulty in targeting any one of these

genomic signatures (even if actionable), and providing support for

the use of chemotherapy, which is currently the most appropriate

treatment for targeting these multiple genomic instabilities. Our
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findings suggest that an observation of multiple genomic copy

number changes in the plasma of a patient with rapid progression of

disease on EGFR-TKI should prompt the need to re-biopsy to exclude

the possibility of small-cell transformation. To date, EGFR T790M

remains the main actionable resistance mechanisms in the context of

EGFR-TKI. However, the ability to reveal TP53 mutations or other

possible SCLC-associated genomic signatures in plasma would

provide additional insight into possible resistance mechanisms that

are particularly important in individuals that show no evidence of

T790M or other known resistance mechanisms, and may justify the

need for a re-biopsy to confirm the histological transformation.

Our study, spanning 392 clinical samples analysed by a combina-

tion of genomic techniques, describes multiple genomic changes in

EGFR-mutant patients with acquired resistance to first-generation

EGFR-TKIs, and may explain the heterogeneity of treatment

response to EGFR-TKIs in EGFR-mutant patients with similar activat-

ing mutations. We studied key genomic driver events of lung

cancer, and evaluated their significance in a temporal and dynamic

way with respect to disease response and progression in patients

with analyses of longitudinal plasma studies. As the majority of

patients were treated when second- and third-generation EGFR-TKIs

were not readily available, most patients with acquired EGFR

T790M mutation were not routinely re-biopsied and were treated

with chemotherapy. Analyses of changes in ctDNA in response to

treatment with second- and third-generation EGFR-TKIs are not

within the scope of this study. Nonetheless, some of the acquired

resistance mechanisms described here may also apply to acquired

resistance to a wide range of EGFR-TKIs. Importantly, our study

represents the first report on ctDNA changes in EGFR-mutant

cancers before and after histological transformation to SCLC and

provides important insight into the management of this alterative

form of resistance mechanism to EGFR-TKI.

In summary, our data show that in the NSCLC EGFR-targeted

therapy setting, analysing the presence and dynamics of both

actionable oncogenic drivers (such as EGFR mutations) and

other, potentially “non-actionable” alterations (such as TP53

mutations and global copy number changes), before and during

treatment, can offer clinically relevant information to potentially

guide subsequent clinical management.

Materials and Methods

Sample collection and processing

Patients with metastatic NSCLC treated by gefitinib in combination

with hydroxychloroquine therapy attending the University Hospital

of Singapore, Singapore, during January 2009 to May 2014 were

recruited as part of the “Hydroxychloroquine and Gefitinib to Treat

Lung Cancer” study (NCT00809237). This was a single-arm phase II

study that recruited two groups of patients. In the first group, EGFR-

TKI-naive patients who were known to have activating EGFR muta-

tions were recruited to determine whether hydroxychloroquine

improved the efficacy of gefitinib. The second group included

patients who had previously responded to EGFR-TKIs for at least

12 weeks (per Jackman criteria for acquired resistance to EGFR-

TKI) and aimed to determine whether the addition of hydroxy-

chloroquine to gefitinib would reverse acquired resistance in these

patients. Please see consort diagram (Appendix Fig S1) for further

details including number of patients in each arm included for the

purpose of this cDNA study (note that this represents a subset of the

original clinical study—as this was subject to availability of plasma

samples). Blood was collected from patients in a CPT sodium citrate

tube (BD) every 4 weeks and stored at �80°C. CT imaging of rele-

vant measurable sites of disease was performed every 8 weeks. This

study was approved by the Singapore National Healthcare Group

(Singapore National Healthcare Group Domain Specific Review

Board NHG DSRB Reference: 2008/00196). Blood and tumor collec-

tion were also collected and approved by NHG DSRB 2014/00131.

Informed consent has been obtained from all patients involved in

this study. DNA was extracted from 0.8 to 2 ml of plasma using the

Qiagen QIAamp Circulating Nucleic Acid Kit (Qiagen) and eluted

into 50 ll buffer AVE. More details of sample processing are given

in Appendix Supplementary Methods. A spike-in control, non-

human DNA PCR product was added to the lysis buffer during DNA

extraction to control for extraction efficiency.

Mutation identification and quantification by TAm-Seq and
digital PCR

Analysis by tagged-amplicon deep sequencing (TAm-Seq) was

performed using the panel described previously (Forshew et al,

2012), with the addition of an amplicon that covers exon 18 of EGFR

(additional details in Appendix Supplementary Methods). All

samples were analysed by at least two replicates to control for errors

arising during PCR. The purified libraries were sequenced using

paired-end 100 bp read length of a HiSeq 2000 or HiSeq 2500 System

(Illumina, USA). Somatic mutations were identified based on filtering

against the matched normal control (white blood cells) of the same

patient. For quantification of known hotspot mutations in EGFR,

namely exon 19 deletion, T790M and L858R, digital PCR analysis

was developed and optimized: sensitivity and specificity and limit of

detection was determined using samples with known mutations and

samples from healthy volunteer controls (Appendix Fig S7 and

Appendix Table S6). Assays were performed using the BioMark

system using 12.765 Digital Arrays (Fluidigm, USA) following manu-

facturer’s instructions and protocol. Total DNA levels (amplifiable

copies per ml) were also quantified in every plasma sample by digital

PCR using a 65-bp assay targeting a region on the RPP30 gene

(Appendix Table S7), a region in the genome that is not amplified in

lung cancer (Wang et al, 2010). Two samples were excluded from

analysis due to an unexplained sharp drop in total circulating DNA

levels extracted from plasma, with >10-fold drop in those levels

compared to samples collected few weeks prior and no evident asso-

ciation with any clinical or treatment parameters. This is suspected

to be related to technical fault either at collection or processing of

samples. Evaluation of the specificity and sensitivity of the assays

was described in Appendix Supplementary Methods. The primer and

probe sequences of all the digital PCR assays are summarized in

Appendix Table S7. The mutant allele fractions measured by TAM-

Seq and ddPCR strongly correlate with each other (Appendix Fig S8).

Shallow whole-genome sequencing (sWGS)

Libraries were prepared from either plasma DNA (5–10 ng), sheared

tumour DNA, or sheared buffy coat DNA using the Plasma-Seq
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protocol (Rubicon, USA). Briefly, end repair and “A-tailing” of frag-

ment ends preceded the ligation of truncated Illumina sequencer-

compatible adapters to fragment ends. Thermocycling of libraries

completed the adapters through the addition of sample-specific index

sequences, and was performed as described in the Plasma-Seq proto-

col (Heitzer et al, 2013), using 10 (plasma) or 8 (tumour and buffy

coat) amplification cycles. Upon amplification libraries were cleaned

using Agencourt AMPure XP beads (Beckman Coulter, USA) at a 1:1

(v/v) ratio and eluted in 30 ll nuclease-free water. Successful library

preparation was confirmed by running 1 ll of library on a High-

Sensitivity Bioanalyser gel, and libraries were quantified using SYBR-

green-based qPCR (Kapa Biosystems, USA). Libraries were pooled in

an equimolar fashion, and 125-bp paired-end sequencing was

performed on Illumina sequencers (Illumina, USA).

Paired-end sequence reads were aligned to the human reference

genome (GRCh37) using BWA, SAMtools was used to convert files to

BAM format, to which mate pair information was added. PCR dupli-

cates were marked using Picard-Tools’ “MarkDuplicates” feature and

were excluded from downstream analysis. Fragment lengths were

analysed using Picard-Tools’ “CollectInsertSizeMetrics”. CNA calling

was performed in R using the program QDNAseq (Scheinin et al,

2014). Briefly, sequence reads were allocated into equally sized (here

1 Mb and 50-kb bins) non-overlapping bins throughout the length of

the genome. Read counts in each bin were corrected to account for

sequence GC content and mappability, and regions corresponding to

previously “blacklisted” regions (ENCODE) were excluded from

downstream analysis. Within the QDNAseq package, bins were

segmented using the “Circular Binary Segmentation” algorithm

(Venkatraman & Olshen, 2007) and significantly “amplified” or “lost”

regions were called using CGHcall (van de Wiel et al, 2007).

Data deposition

Sequence data have been deposited at the European Genome-

phenome Archive (EGA), which is hosted by the EBI and the CRG,

under Accession no. EGAS00001002908.

Survival analysis

Kaplan–Meier curves were computed for prognostic groups defined

by their mutation fractions, and log-rank tests were computed for

testing differences in survival. We measured pre-treatment ctDNA

levels using allele fractions of the EGFR-activating mutations and

computed Kaplan–Meier survival curves to evaluate the effects of

different levels of pre-treatment ctDNA: We divided patients into

three groups: low pre-treatment ctDNA levels (less than the lower

quartile), intermediate (second and third quartiles) or high (upper

quartile). All survival analyses were performed using the R package

survival (Therneau, 2012). It should be noted that only the EGFR-

TKI-naı̈ve group of patients with available pre-treatment plasma

samples (n = 19) were used for progression-free and overall

survival analyses, and correlative prognostic study. This is to ensure

analyses of a homogeneous population. The survival analyses of

both groups of patients will be reported in a separate clinical paper

that would include response rates and other clinical parameters.

The experiments conformed to the principles set out in the WMA

Declaration of Helsinki and the Department of Health and Human

Services Belmont Report.

Expanded View for this article is available online.
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The paper explained

Problem
The cancer genome evolves under the selective pressure of targeted
therapies. One of the key challenges is to identify resistance mecha-
nisms and the most dominant drivers as early as possible. Analysis of
plasma cell-free DNA allows one to track molecular dynamics non-
invasively.

Results
This study found that cell-free DNA analysis reveals clinically impor-
tant information during EGFR-targeted therapy in non-small-cell lung
cancer (NSCLC): At baseline, quantitative tumour-derived cell-free DNA
levels in plasma provided prognostic information and correlated with
tumour burden. During treatment, multiple potential indications of
resistance such as EGFR T790M or TP53 can be detected in plasma
months before disease progression became clinically evident. Longitu-
dinal analysis of tumour-derived cell-free DNA levels tracks tumour
responses and reveals heterogeneous resistance mechanisms: The
majority depend on the EGFR pathway while a small subset devel-
oped alterative drivers that could be identified by tracking multiple
mutations in plasma DNA. In patients who developed resistance by
transforming to small-cell lung cancer (SCLC), we identified TP53
mutations, one of the key drivers of SCLC, and SCLC-specific copy
number events in plasma before the transformation.

Impact
Parallel analysis of multiple mutations and copy number alterations
in plasma allows identification of dominant drivers at any given time
during treatment. Tracking EGFR mutations alone in plasma during
EGFR-targeted therapy may not accurately reflect tumour burden due
to underlying tumour heterogeneity. The results of this study provide
important insight about the implication of cell-free DNA analysis for
management of targeted therapies.
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Measurement of Plasma Cell-Free Mitochondrial
Tumor DNA Improves Detection of Glioblastoma
in Patient-Derived Orthotopic Xenograft Models
Richard Mair1,2,3, Florent Mouliere1,3,4, Christopher G. Smith1,3, Dineika Chandrananda1,3,
Davina Gale1,3, Francesco Marass1,3, DanaW.Y.Tsui1,5, Charles E. Massie1,3, Alan J.Wright1,3,
Colin Watts6, Nitzan Rosenfeld1,3, and Kevin M. Brindle1,3,7

Abstract

The factors responsible for the low detection rate of cell-
free tumor DNA (ctDNA) in the plasma of patients with
glioblastoma (GBM) are currently unknown. In this study,
we measured circulating nucleic acids in patient-derived
orthotopically implanted xenograft (PDOX) models of
GBM (n ¼ 64) and show that tumor size and cell prolifer-
ation, but not the integrity of the blood–brain barrier or cell
death, affect the release of ctDNA in treatment-na€�ve GBM
PDOX. Analysis of fragment length profiles by shallow
genome-wide sequencing (<0.2� coverage) of host (rat)
and tumor (human) circulating DNA identified a peak at
145 bp in the human DNA fragments, indicating a differ-
ence in the origin or processing of the ctDNA. The concen-
tration of ctDNA correlated with cell death only after treat-
ment with temozolomide and radiotherapy. Digital PCR
detection of plasma tumor mitochondrial DNA (tmtDNA),

an alternative to detection of nuclear ctDNA, improved
plasma DNA detection rate (82% vs. 24%) and allowed
detection in cerebrospinal fluid and urine. Mitochondrial
mutations are prevalent across all cancers and can be
detected with high sensitivity, at low cost, and without prior
knowledge of tumor mutations via capture-panel sequenc-
ing. Coupled with the observation that mitochondrial copy
number increases in glioma, these data suggest analyzing
tmtDNA as a more sensitive method to detect and monitor
tumor burden in cancer, specifically in GBM, where current
methods have largely failed.

Significance: These findings show that detection of tumor
mitochondrial DNA is more sensitive than circulating tumor
DNA analysis to detect and monitor tumor burden in patient-
derived orthotopic xenografts of glioblastoma.

Introduction
Release of DNA fragments from solid tumors, which can be

collected in body fluids and used to identify and quantify tumor
mutations, has created new possibilities for minimally invasive
diagnosis and therapy monitoring (1, 2). The concentration of

cell-free tumor DNA (ctDNA) varies with cancer type, with some,
such as glioblastoma (GBM), showing extremely low plasma
concentrations (3), which has hindered clinical translation.

Although ctDNA levels have been correlated with tumor bur-
den (2, 4), an understanding of the relationship between tumor
biology and the release of ctDNA into the circulation is lacking,
most notably for GBM. Detection and measurement of ctDNA
may be affected by both technical and biological factors (1, 5).
Recentworkhas relatednecrosis, tumor volume, andproliferation
to detection of ctDNA in patients with non–small cell lung cancer
(2). However, no investigation of the effect of tumor biology on
ctDNA release in GBM has been performed.

Using a large cohort of patient-derived orthotopically
implanted xenografts (PDOX; n¼ 64), we investigated combined
detection of circulating tumor mitochondrial DNA (tmtDNA)
and ctDNA. Custom digital PCR (dPCR) was used to differentiate
humanmitochondrial DNA, originating from grafted tumor cells,
from the host rat mitochondrial DNA. We demonstrated a higher
frequency ofdetection andhigher copynumber for tmtDNAwhen
compared with ctDNA in the plasma, cerebrospinal fluid (CSF),
and urine of the xenografted rats. We used this improved yield to
analyze the factors affecting tumor DNA release.

Release of ctDNA and tmtDNA in treatment-na€�ve GBM was
associated with tumor volume and cell proliferation but not
cell death. However, following treatment with temozolomide
and radiotherapy (6), plasma tmtDNA was correlated with the
levels of tumor cell death. Finally, bypassing blood–brain
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barrier (BBB) integrity did not significantly affect the yield of
ctDNA or tmtDNA.

Materials and Methods
Cell culture

Cells were obtained either locally or from the American Type
Culture Collection (ATCC) and mycoplasma tested using RNA-
capture ELISA. Cell line authentication was performed using short
tandem repeat genotyping contemporaneously with the experi-
ments. U87 cells (ATCC) were cultured in DMEM, 2 mmol/L
L-glutamine (Gibco), and 10% FBS (Gibco). Patient-derived cell
lines were derived using protocols compliant with the UKHuman
Tissue Act 2004 (HTA licence ref. 12315), approved by the Local
Regional Ethics Committee (LREC ref. 04/Q0108/60), and in
accordance with the Declaration of Helsinki. GBM tissue was
minced, and cells were filtered (40 mm; Falcon) and washed with
red blood cell lysis buffer. Live cells were seeded at 1.5� 104 cm2

and grown as monolayer cultures on extracellular matrix–coated
flasks (Engelbreth-Holm-Swarm murine sarcoma—1:10 dilution,
Sigma) in Neurobasal A (Gibco), 2 mmol/L L-glutamine (Sigma),
1% streptomycin/penicillin/amphotericin B (Invitrogen), 20ng/mL
hEGF (Sigma), 20 ng/mL hFGF (R&D Systems), 2% B27 (Invitro-
gen), and 1% N2 (Invitrogen) at 37.5�C in 5% CO2.

Orthotopic tumor model
Procedures were performed in compliance with project and

personal licenses issued under the United Kingdom Animals
(Scientific Procedures) Act, 1986, and approved by the local
Animal Welfare and Ethical Review body. Patient-derived cells,
below passage 20, were resuspended at 2 � 105 cells mL�1, and
5 mL were implanted stereotactically (2 mm anterior and 3 mm
lateral to the bregma, right side) in 6 week-old female rnu/rnu
athymic nude rats (Charles River; Harlan; n ¼ 64).

Subcutaneous tumor model
Patient-derived cells (GBM4) were resuspended at 2.5 � 104

cells mL�1, and 200 mLwere injected subcutaneously into the right
flank of 6 athymic nude rats.

Sample collection
Whole blood was taken via tail vein cannulation or peri-

mortem via cardiac puncture and exsanguination. Coagulation
was inhibited by adding 4.5 mmol/L EDTA to a maximum of
6mL of blood. CSF was collected peri-mortem via cisternamagna
puncture (7) and urine by direct bladder cannulation. Samples
were centrifuged (4�C, 1,500 � g for 10 minutes then 20,000� g
for 10 minutes) before freezing (–80�C).

DNA extraction
DNA from plasma (�1 mL), CSF (�100 mL), and urine

(�100 mL) was extracted with the QIAamp Circulating Nucleic
Acids Kit (QIAGEN) and elution volume of 50 mL. Fragments of
the Xenopus Tropicalis genome were spiked into the samples
to estimate DNA extraction efficiency (Forward PCR primer:
50-GTGATCATGGGATTTGTAGCTGTT 30; Reverse PCR primer:
50 AAACCAACCTGAAAACCATGGA-30).

Western blot
Cell or tissue samples were lysed in RIPA buffer with 1%

protease inhibitor (Thermo Fisher), run on BIS-TRIS gels

(Thermo Fisher) transferred onto nitrocellulose membranes,
and incubated with nestin (Atlas, 1:100) and b-actin (Abcam;
1:5,000) antibodies in LI-COR-Odyssey blocking buffer
(LI-COR Biotechnology) overnight at 4�C. Primary antibodies
were visualized using fluorescently-labeled anti-mouse or anti-
rabbit LI-COR secondary antibodies and a LI-COR Odyssey CLx
imaging system (LI-COR biotechnology).

Chemoradiation
Rats were anesthetized with 1% to 2% isoflurane (Isoflo,

Abbotts Laboratories Ltd.), and tumors were irradiated via a lead
collimator [15 Gy; Cs-137 irradiator (IBL 637; CIS Bio Inter-
national)]. Temozolomide (100 mg kg�1) was given by oral
gavage 1 hour prior to radiotherapy.

Histopathology and immunohistochemistry
Brains were placed in 10% formalin (Sigma-Aldrich) for

24 hours, and then sectioned. Hematoxylin and eosin staining
(ST020 Multistainer; Leica Microsystems) was performed on
5 mm sections. TUNEL staining and IHC were performed on
10 mm sections. TUNEL staining used Leica's Polymer Kit
(Leica Microsystems) and Promega's DeadEnd Colorimetric
TUNEL System (Promega). IHC was performed using Leica's
Polymer Refine Kit and human-specific antibodies: Ki67
(1:200 dilution; M7240; Dako), cleaved caspase 3 (CC3;
1:200 dilution; 9664; Cell Signaling Technology), Glial
Fibrillary Acid Protein (GFAP; 1:10,000 dilution; Z0334;
Dako), and Carbonic Anhydrase 9 (CAIX; 1:1,000 dilution;
AB1001; BioScience, Slovakia).

In situ hybridization
Pecam1 (CD31) mRNA was detected on 5 mm formalin-fixed

paraffin-embedded tissue sections with a probe for rat Pecam1
(NM_031591.1, region861–1766; RNAscope2.5 LS reddetection
kit, 322150, AdvancedCellDiagnostics) on a Leica BondRx (Leica
Biosystems). Hybridization was detected using the Bond Polymer
Refine Red detection Kit (Leica Biosystems, DS9390) followed by
counterstaining with hematoxylin. Probes targeting peptidylprolyl
isomerase B (PPIB) (NM_022536.2, region 95–830) and Dabp
(EF191515, region 414–86) were used as positive and negative
controls, respectively.

Image analysis
Images were annotated manually and analyzed using in-house

algorithms (Aperio, Leica)

Digital PCR
dPCR was performed using Fluidigm 12.765 and 37k dPCR

chips (Fluidigm). For targeting human nuclear DNA, 5 mL of
TaqMan Gene Expression Master Mix, 0.5 mL of buffer, 0.5 mL
of EVAGREEN (Biotium), and 1 mL of 10 mmol/L forward
primer (50-TCACTCAAAGCCGCTCAACTAC-30; Invitrogen) and
10 mmol/L reverse primer (50-TCTGCCTTCATTTCGTTATGTACC-
30; Invitrogen) were mixed with 3.5 mL of DNA. Primers for
identifying human mitochondrial DNA were forward 50-ATACC-
CATGGCCAACCTCCT-30, reverse 50-GGGCCTTTGCGTAGTTG-
TAT-30. Primers for identifying rat DNA were forward 50-
CCACCCCCTGGGCTCTGTT-30, reverse 50-CCCGGATCCCCTG-
CGTGAGA-30. Assays for human DNA (ctDNA) and rat DNA
[nontumor cell-freeDNA(nt cfDNA)] targeted thehuman (RPP30
gene) and rat (RPP30 gene) sequences, respectively, in copy-
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number–neutral regions where there was no homology with the
reciprocal rat and human genomes.

Shallow whole-genome sequencing
Libraries were prepared using anNEBultra v2 kit (NewEngland

Biolabs). Tenng of tumor issueDNAwas sheared to 150 to 200bp
with an ultra-sonicator (Covaris). For plasma and CSF samples,
we selected rats with concentrations of ctDNA greater than
1,000 copies/mL, as determined by dPCR. Libraries were pooled
in equimolar amounts and sequenced on a HiSeq 2500
(Illumina) generating 125 bp paired-end reads. Reads were
aligned, and localization of somatic copy-number aberrations
was estimated by QDNAseq (8).

Magnetic resonance imaging
We used a 7T spectrometer (Agilent) and a 72 mm inner-

diameter 1Hquadrature birdcage coil (Rapid Biomedical GMBH).
Animals were anesthetized with 1% to 2% isoflurane in O2. Axial
T2-weighted imageswere acquired using a fast spin-echo sequence
[TR, 1.5 seconds; TE, 40 ms; 256 � 256 data points over a 40 �
40 mm field-of-view (FOV), 4–8 averages] from 15 2-mm-thick
slices. A T1-weighted spoiled gradient echo sequence (27� flip
angle, TR 43ms, TE 4.6ms, FOV 40mmx 40mm, 256� 128 data
points) was used to acquire images before and 30, 60, and 90
seconds after injection of contrast agent (100 mmol/kg Dotarem;
Guebert). Five axial slices, 1.5 mm thick and with a 0.3 mm gap
between them,were acquired. Imageswere transferred toMATLAB
(Mathworks), anddifferencemaps calculated, on a voxel-by-voxel
basis, as the postcontrast image minus the precontrast image
divided by the precontrast image.

Disruption of the BBB
Mannitol (2.5 mL of a 25% solution in 0.9% saline) was

administered via a tail vein cannula. Rats immediately underwent
diuresis, evident from urinary incontinence under anesthesia.

Demonstration of BBB opening using dynamic contrast–
enhanced magnetic resonance imaging

Images were acquired using the 72 mm diameter 1H transmit
coil and a 2-channel rat-head 1H receiver coil placed over the
brain. A fast spin-echo sequence (TR 2 seconds, TE 48 ms, FOV
4 cm � 4 cm, 2 mm thick slice, 256 � 256 data points) was used
to acquire 4 axial brain slices from the same region where tumors
were implanted in the other animals. Baseline T1 measurements
used an inversion recovery-spoiled gradient echo sequence
(adiabatic inversion pulse, 8 inversion times between 0.05 and
10 seconds, scan repeat time 12 seconds, TR 2.08 ms, TE 0.92 ms,
flip angle 10�, 4� 1.8mm thick slices with a 0.2mmgap between
slices). Dynamic contrast–enhanced (DCE) images were acquired
using a gradient echo sequence (TR 25 ms, TE 2.85 ms, flip angle
30�). A series of 100 images (2 averages, 6.4 seconds per set of
4 images) were acquired. Dotarem (0.2mmol/kg; Gadoteric acid,
Guerbet)was injected via a tail vein after the 10th image.Mannitol
was administered immediately prior to the start of DCE image
acquisition. Signals from the DCE time course were converted, on
a pixel-by-pixel basis, to a contrast-agent concentration by assum-
ing an R1 relaxivity for Dotarem of 3.1 s�1 mmol/L�1 (9). An
elliptical region of interest was drawn in each of the four slices,
covering the thalamus to the prefrontal cortex, and an average
DCE profile was calculated (10) using the same population-
derived double-exponential arterial-input-function for each data-

set (11). The calculated extravascular and extracellular spaces per
unit volume of tissue (Ve) accessible to the contrast agent were
used as an indicator of BBB permeability.

Statistical analysis
Statistics were performed using GraphPad Prism (GraphPad

Software Inc.) and R (www.r-project.org). Principal Compo-
nent Analysis (PCA) was performed with R using the factoextra
package.

Results
tmtDNA is a more sensitive marker of systemic tumor nucleic
acids than ctDNA and is detected in multiple body fluids

There are 102 to 105 copies of the 16.5 kb mitochondrial
genome per human cancer cell (12), and therefore, tmtDNA
released into the circulation may be a more sensitive marker of
tumor burden than ctDNA (13). We used dPCR to investigate
the levels of tmtDNA and ctDNA in different rat PDOX models
of GBM, which were derived from tumor material taken from
different patients with GBM. The selected dPCR assays were
chosen from among 9 dPCR assays. Specificity for human (in
the PDOX models, this represents tumor DNA) and rat (host)
DNA was determined using plasma DNA from 4 healthy
human individuals and 4 nongrafted rat controls (Fig. 1A).
Human nuclear DNA levels averaged 7,469 copies/mL, and
human mitochondrial DNA averaged 38,091 copies/mL in the
human plasma samples, where copies/mL represents the num-
ber of amplifiable copies in the dPCR reaction. Rat nuclear
DNA was not detected in the human plasma, and human
nuclear DNA was not detected in rat plasma, despite a high
concentration of rat nuclear DNA (15,610 copies/mL). Only
very low amounts of human mitochondrial DNA (mean 3
copies/mL, <0.02%) were detected in rat plasma.

The sensitivity of our selected ctDNA and tmtDNA assays was
determined with a duplicate dilution series of human DNA in
rat plasma DNA. The tmtDNA assay could detect the presence
of human DNA at dilution levels 100x greater than the ctDNA
assay, and could detect the presence of human mitochondrial
DNA even when human nuclear DNA could no longer be
detected (Fig. 1B).

Six representativePDOXmodelsofGBM(GBM1,8 rats;GBM2,8
rats; GBM3, 3 rats; GBM4, 36 rats; GBM5, 6 rats; and GBM6, 3 rats)
were studied. In total, 64 animals were analyzed using the dPCR
assay. As shown previously (14), these models showed much
slower growth rates than tumors arising from implantation of a
GBM cell line (U87; Supplementary Fig. S1A and Supplementary
Table S1) and much higher levels of expression of glial fibrillary
acidic protein in vivo (Supplementary Fig. S1B; ref. 15) and nestin, a
neural stem cell marker, in vitro (16), which were largely absent
fromU87 tumors and cells, respectively (Supplementary Fig. S1C).
All showed histologic features of GBM (Supplementary Fig. S1D).

Plasma ctDNAwas detected in all but one cohort (GBM1), with
a detection rate of 24% across all animals (15/64) and at an
average concentration of 27 tumor haploid genome equivalents
per mL (copies/mL of the targeted human sequence; Fig. 2A and
B). Plasma tmtDNAwas identified in all the PDOX cohorts with a
detection rate of 82% (52/64) and an average concentration of
5,081 copies/mL (�190-fold higher than the mean value for
ctDNA; Fig. 2A and B). Nontumor (rat host) cell-free nuclear
DNA was detected in all the animals at considerably higher
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Validation of the specificity and sensitivity of the ctDNA and tmtDNA dPCR assays. A, dPCR assays designed to detect ctDNA, tmtDNA, and nt cfDNA were
tested with human and rat plasma DNA. Samples were tested in quadruplicate for each assay. ND, nondetectable. B, Dilution series of human
(tumor) DNA in rat (nontumor) DNA, which was used to evaluate the sensitivity of tmtDNA detection in comparison with detection of ctDNA. tmtDNA was
detected at 100� greater dilution than ctDNA. Each sample was measured in duplicate.
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tmtDNA was detected more
frequently in plasma than ctDNA.
A, Detection rates for plasma
circulating ctDNA, tmtDNA, and nt
cfDNA in 64 animals implanted
orthotopicallywith cells derived from
tumors from 6 different patients. B,
Concentration (copies/mL) of
circulating nucleic acids in the
samples where these were detected.
ctDNA (C) and tmtDNA
concentrations (D) in CSF, plasma,
and urine from the tumor-bearing
animals. In the ratios shown below
the plots in C and D, the numerator
represents the number of samples
containing the indicatedDNAand the
denominator the number of samples.
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concentrations than ctDNA (t test, P < 0.001) with a mean
concentration of 6,989 copies/mL (Fig. 2A and B). Variable
detection rates were observed between the different PDOX
models, with tmtDNA detected in 66% of some models (GBM1;
n ¼ 8) and 100% in others (GBM5; n ¼ 6; Supplementary Fig.
S2A). ctDNA and tmtDNA were not detected in plasma from
nongrafted animals (n ¼ 4; Supplementary Fig. S2B).

ctDNA has been detected at low concentrations in urine from
patients with nonbrain tumors (17). Urine samples from 11
tumor-bearing animals (10 GBM4 and 1 GBM5) had undetect-
able levels of ctDNA. However, tmtDNA was identified in 60% of
samples with a median concentration of 606 copies/mL (Fig. 2C
and D). The CSF presents another possible source of cell-free
tumor DNA. We collected an average of 97 mL of CSF (7) from 12
PDOXs (10GBM4, 1GBM1, and 1GBM2). ctDNAwas detected in
4 of 12 samples (median concentration of 222 copies/mL), and
tmtDNA was detected in all samples (median concentration of
760 copies/mL; Fig. 2C and D). Rat host cell-free nuclear DNA
was detected in all samples with a median concentration of
215 copies/mL.

ctDNA and tmtDNA levels correlate with tumor size and cell
proliferation in treatment-na€�ve PDOXs

We performed PCA on 8 tumor-related variables in treatment-
na€�ve GBM4 models (n ¼ 36). The first component included
plasma ctDNA and tmtDNA concentrations, tumor volume, and
Ki67 staining, a marker of cell proliferation, and the second
component the plasma concentration of host nontumor cell-free
nuclear DNA, staining for TUNEL and CC3, which are cell death
markers, and carbonic anhydrase 9 (CAIX), a marker of hypoxia
(Fig. 3). Correlations (Pearson analysis) were observed between
tmtDNA and ctDNA (R2 ¼ 0.83, P < 0.001), tumor-derived
DNA and tumor volume (tmtDNA R2 ¼ 0.86, P < 0.001; ctDNA
R2 ¼ 0.83, P < 0.001), and tmtDNA and ctDNA and the number
of proliferating cells (Ki67-positive cells; tmtDNA R2 ¼ 0.54,

P < 0.001; ctDNA R2 ¼ 0.54, P < 0.001). We also observed
a correlation between nt cfDNA and cell death (TUNEL R2 ¼
0.62, P < 0.001 and CC3 R2¼ 0.47, P < 0.01). Tumor microvessel
densitywasnot significantly different between thedifferent PDOX
models (P ¼ 0.27; Supplementary Fig. S3).

ctDNA and tmtDNA levels correlate with cell death following
treatment with temozolomide and radiotherapy

In GBM4 (n¼ 36), tmtDNA and ctDNA were highly correlated
with tumor volume (R2 ¼ 0.8; P � 0.0001; Fig. 4A), suggesting
that tmtDNA, like ctDNA, could be used to track tumor burden
and monitor treatment response.

We analyzed plasma from GBM4 PDOX models 72 hours
after treatment with temozolomide plus radiotherapy (15 Gy,
n ¼ 7). ctDNA detection frequency and concentration increased
(from 40%, 7 copies/mL to 75%, 54 copies/mL, P ¼ 0.051;
Fig. 4B). tmtDNA concentration also increased (from a median
121 copies/mL to 256 copies/mL, P ¼ 0.094; Fig. 4B), but
detection frequency remained unchanged (6/7 cases). These
increases in ctDNA and tmtDNA concentrations were associated
with an increase in tumor cell death, as assessed by TUNEL
(P ¼ 0.039; Fig. 4C) and CC3 staining (P ¼ 0.037) of tumor
sections (n ¼ 7; Fig. 4D), with a correlation being observed
between ctDNA and CC3 staining (R2¼ 0.58, P¼ 0.074, Pearson
analysis), which is a marker of early apoptosis (18).

These data indicate that in treatment-na€�vemodels, tumorDNA
release was related to tumor burden and cell proliferation, where-
as following treatment, tumor DNA was released primarily
through tumor cell death.

Genome-wide sequencing showed a different fragmentation
pattern for ctDNA and host DNA in treatment-na€�ve PDOXs

We used genome-wide sequencing at low coverage (<0.2�) to
determine copy-number profiles of host rat and human (tumor)
nuclear genomes in plasma, CSF, and tumor tissue. Paired-end
sequencing reads were aligned to rat (RGSC 6.0/rn6) and human
(hg19) genomes, and assigned to the appropriate species
(Fig. 5A). Similar copy-number profiles were found in tumor
DNA from the different fluid compartments and from tumor
tissue (Fig. 5B), even though the plasma compartment exhibited a
lower tumor DNA fraction, relative to host DNA, when compared
with tumor tissue and CSF. We also determined the size distri-
bution of human (tumor) and rat (host) circulating nuclear
DNA fragments (Fig. 5C–E) in the plasma of animals grafted
with GBM6 (Fig. 5C) and with GBM4 (Fig. 5D). We also deter-
mined, for one animal implanted with GBM4, the size distribu-
tion of the DNA fragments from CSF (Fig. 5E). The fragment size
distribution in plasma and CSF showed a peak at 133–145 bp for
human (tumor) DNA, and a different fragmentation pattern for
host rat DNA, with a peak at 167 bp (Fig. 5C and D). Mitochon-
drial DNA showed a peak below 100 bp for both human (tumor)
and rat circulating mitochondrial DNA (Fig. 5F), in agreement
with previous work (19).

The BBB has a limited effect on plasma ctDNA and tmtDNA
concentrations

Despite extensive disruption of the BBB during gliomagenesis
(20), the low levels of ctDNA observed in the plasma of patients
with GBM and the apparent enrichment of tumorDNA in the CSF
have been attributed to the impermeability of the BBB (3). This
was supported by sequencing, where tumor mutations in DNA
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Factors affecting the levels of ctDNA and tmtDNA in the plasma of
treatment-na€�ve tumor-bearing rats. PCA of variables associated with tumor
histology and circulating nucleic acids in the plasma of rats with GBM4 tumors
(n ¼ 36). The vectors represent ctDNA, tmtDNA, and nontumor cfDNA
concentrations, tumor volume, tumor proliferation (Ki67), hypoxia (CAIX),
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indicate the % variance accounted for by the two principal components.
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from the CSF of patients withGBMwere detectedmore frequently
than in plasma and at higher mutant allele fractions (21, 22).
However, the absolute concentrations of tumor and nontumor
DNA in CSF and in plasma of patients with GBM have not been
reported previously. The data shown in Fig. 2 show that the higher
detection rate of tumor DNA in CSF is due to a higher concen-
tration of ctDNA relative to host nt cfDNA in CSF (222 copies/mL
ctDNA vs. 215 copies/mLnt cfDNA)when comparedwith plasma
(27 copies/mL ctDNA vs. 6,989 copies/mL nt cfDNA). We inves-
tigated this further by using dPCR to quantify the concentrations
of tmtDNA in plasma and CSF samples collected from 12 of the
tumor models [GBM1 (n ¼ 1), GBM2 (n ¼ 1), GBM4 (n ¼ 10)].
tmtDNA concentration was higher in CSF as compared with
plasma in each of the tumor models (Fig. 6A), with a median
of 476 copies/mL in CSF and 93 copies/mL in plasma. However,
CSF volume in the rat is approximately 90 mL and the plasma
volume is approximately 6 mL (23), and therefore, the total
amount of tmtDNA in the plasma (558 copies) is approximately

13 times higher than in the CSF (43 copies), showing therefore
that the BBB does not prevent significant amounts of tumor DNA,
at least tmtDNA, from reaching the circulation. Whereas the
concentration of tumor-derived cfDNA was 5 to 8 times higher
in CSF compared with plasma, the concentration of nt cfDNAwas
nearly 25 times higher in plasma compared with CSF. Therefore,
lower detection rates of tumor-derived DNA in plasma are due, at
least in part, to the presence of higher levels of background host
DNA in plasma.

To investigate more directly the effect of the BBB on plasma
tmtDNA and ctDNA concentrations, we used subcutaneous
implantation of GBM4 cells to generate a GBM model that was
outside the BBB. We also disrupted the BBB by intravenous
administration of mannitol (24). Following mannitol injection,
60minutes were allowed for ctDNA to escape into the circulation
before plasma collection. If the BBB blocks release of tumor DNA
into the circulation, then 60 minutes after mannitol injection,
there shouldbe an increase in tumorDNA levels in the circulation,
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Factors affecting the levels of ctDNA and tmtDNA in the plasma of tumor-bearing rats following concomitant temozolomide and radiotherapy treatment.
A, Correlation between tumor volume and the concentrations of ctDNA, tmtDNA, and nt cfDNA in the plasma of animals with GBM4 tumors (n ¼ 36)
determined by dPCR. B, ctDNA and tmtDNA levels in a subset of 7 rats with GBM4 tumors that received 15 Gy with concurrent temozolomide and 5 rats
with untreated GBM4 tumors that were analyzed as controls (no_RT). C and D show levels of cell death in the tumors of these GBM4 models determined by
TUNEL and CC3 staining.
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given that maximal BBB opening occurs 5 minutes following
mannitol infusion (24), and the circulating DNA half-life is 16
minutes (25). Gadolinium-based contrast agents do not cross the
intact BBB and are used commonly for MR imaging of BBB
breakdown in GBM (26). We confirmed in 3 control rats that
mannitol infusion caused BBB disruption using DCE MRI mea-
surements. Within 10 minutes of mannitol administration, there
was an increase in the fraction of tissue accessible to the contrast
agent (P < 0.02) and in the contrast agent concentration
[untreated, 6.3 � 4.0 mmol/L (SD); post mannitol, 14.8 �
1.8 mmol/L (SD), P < 0.025 (one sided Welch t test; Supplemen-
tary Fig. S4A andS4B)]. Therewereno significant differences in the
concentrations of ctDNA or tmtDNA between the three groups,
after normalization to tumor volume, which was determined
using T2-weighted MRI (orthotopic model) and caliper measure-
ments (subcutaneous model; one-way ANOVA P ¼ 0.57 and
individual t tests; n ¼ 16; Fig. 6B). Moreover, the tumor vol-
ume–corrected concentrations of ctDNA detected in animals with
subcutaneous GBM tumors were much lower than those reported
for animals implanted subcutaneously with other tumor types

(27, 28). Analysis of CD31 expression (an endothelial cell mark-
er) showed increased microvessel density in subcutaneous versus
orthotopic tumors (P ¼ 0.0173; Fig. 6C); however, there was no
significant difference in the ctDNA or tmtDNA levels (Fig. 6B),
suggesting that release from the subcutaneous tumors was not
affected by vascular density. Comparison of ctDNA and tmtDNA
concentrations in contrast agent enhancing (GBM4, GBM3) and
nonenhancing (GBM1, GBM5) tumors showed no differences in
ctDNA (P¼ 0.65) or tmtDNA concentrations (P¼ 0.49) between
these groups (Fig. 6D).

Discussion
Detection of ctDNA in patients with GBM is challenging

because of low plasma concentrations (3). Sampling of CSF has
been proposed as a method for detecting ctDNA in GBM (21, 22,
29); however, lumbar puncture is contraindicated in patientswith
intracerebral space occupying lesions, and thus routine use of this
technique is not clinically feasible (30, 31). Nevertheless, the
requirement for minimally invasive techniques that avoid
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The integrity of the BBB has little effect on ctDNA and tmtDNA levels in plasma. A, Pairwise comparison of tmtDNA in plasma and CSF collected at the
same time from 10 GBM4 tumor–bearing animals and two U87 tumor–bearing animals. Concentrations determined in the CSF are plotted relative to the
concentration detected in plasma samples. B, Concentrations of ctDNA and tmtDNA, normalized to tumor volume, in the plasma of GBM4 tumor–bearing rats,
where the tumors were implanted orthotopically (n ¼ 5), with or without disruption of the BBB by mannitol injection (n ¼ 6), or where the tumors were
implanted subcutaneously (n ¼ 5). There were no significant differences in the concentrations of ctDNA or tmtDNA between these groups [ANOVA (P ¼ 0.57)
and individual paired t tests (P > 0.2); n¼ 16]. C,Microvessel density in each tumor model (n¼ 3 per cohort), as analyzed by in situ hybridization with a CD31 mRNA
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repeated biopsies in patients with GBM remains due to current
inadequacies in identifying treatment response/escape (32) and
the evolving nature of the disease during treatment (33–35). We
therefore pursued methods to improve detection of circulating
tumor-derived nucleic acids through the use of PDOX models of
GBM and used these methods to identify factors affecting DNA
release.

dPCR was used to estimate plasma tmtDNA and ctDNA con-
centrations in a large number of PDOX models of GBM. The
detection rate for tmtDNA was 82% in plasma samples (n ¼ 64),
at an average concentration of 5,081 copies/mL, versus a detection
rate for ctDNA of 24%, at an average concentration of 27 copies/
mL. Host cell-free nuclear DNA concentrations have a broad
range, and the values we report are within the range reported
previously for animalmodels (27, 28). tmtDNAwas also detected
in 60% of urine samples in which ctDNA was undetectable.
Because tmtDNA is highly fragmented in plasma (Fig. 5F),
in vitro or in silico size selection of fragments below 100 bp could
be used to sieve tmtDNA from nuclear ctDNA, enriching the
sample for tmtDNA and further enhancing the sensitivity of
detection (36). The potential for tmtDNA to be used to detect
smaller tumors, either at diagnosis or at recurrence, would be
important clinically.

Using both ctDNA and tmtDNA, we investigated the factors
influencing release of tumor-derived nucleic acids into the circu-
lation. The levels of both were correlated with tumor size, in
agreement with previous preclinical (27, 28) and clinical (3, 25)
studies. Previous analyses of cfDNA fragment sizes in plasma
showed these to be mostly distributed around 167 bp, and
multiples thereof, characteristic of caspase-dependent cleavage
and suggesting that the majority of cfDNA originates from apo-
ptosis (37, 38). In patients with cancer, a shortening of cfDNAwas
observed (39, 40),which could reflectmodifications in chromatin
organization (41, 42). Recent work on fetal cfDNA suggested that
methylation-related chromatin reorganization can result in short-
ening of fragment length (38, 43). The first comprehensive
analysis of the relationship between tumor physiology and ctDNA
in patients indicated that cell proliferation and tumor volume
are more strongly correlated with ctDNA concentration than cell
death (2). Here, we have shown, in treatment-na€�ve PDOX
models, that there is a correlation between nontumor (host)
cfDNA levels and cell death. Fragmentation analysis showed a
distribution centered around 167 bp, consistent with release from
apoptotic host cells. We observed a correlation between ctDNA
levels and tumor volume, and to a lesser extent with cell prolif-
eration, but not with cell death, as was observed previously (2).
Analysis of ctDNA fragment sizes revealed a shift toward shorter
fragment sizes, with a distribution centered around 145 bp,
corresponding to the core nucleosome. These findings suggest
that size selection could potentially be used to improve the yield
of ctDNA fragments (36).

The concentrations of plasma ctDNA and tmtDNA were
increased following temozolomide and radiotherapy treatment
and, in this instance, were related to an increase in tumor cell
death. However, CC3 and TUNEL staining only inform upon a
proportion of dying cells and not those affected by mitotic
catastrophe or senescence for example. In these treated animals,
there was no longer any correlation between plasma levels of
ctDNA and tmtDNA and cell proliferation. Therefore, it appears
that release of tumor DNA before and after treatment occurs via
different processes. DNA release via cell death after treatmentmay

be explained by the requirement for tumor cells to be in close
proximity to viable blood vessels, which provide the oxygen
necessary for radiotherapy-induced tumor cell kill (44). Thus,
when these cells die, they do so in a vessel-richmicroenvironment,
and are distinct from dying tumor cells in treatment-na€�ve GBM,
where cell death may occur predominantly in cells with a poor
blood supply.

The BBB has been proposed as the main reason for reduced
ctDNA detection in GBM (21). Our experiments, in which we
circumvented the BBB via heterotopic tumor engraftment or
opened the BBB using mannitol, suggest that the effect of the
BBB on release of tumor-derivedDNA into the plasmamay be less
significant than previously thought. Recent studies have shown
higher relative levels of mutant DNA in CSF compared with
plasmaof patientswithGBM(21, 22), which has been interpreted
as being due to enrichment of tumorDNA in theCSF. Using dPCR
to measure absolute concentrations of tumor and host DNA, we
found that higher relative levels of tumor DNA in CSF resulted
primarily from lower concentrations of nontumor host
DNA together with more modest increases in the quantity of
tumor-derived DNA.

Although we used single-copy human mitochondrial
sequences to identify tmtDNA in the PDOX models, this strategy
is not directly applicable to a human patient. However, mito-
chondrial mutations are present in the majority of cancers, with
frequencies depending upon the tumor of origin, andmutational
"hotspot" regions have been identified (45), suggesting that
mutated mitochondrial sequences could be used to detect
tmtDNA in the clinic (12). Whole-genome sequencing (WGS)
has enabled detection of mitochondrial DNA variant-allele frac-
tions down to 1%(46);moreover, studies have shown that certain
tumors positively select for nonsynonymousmitochondrial DNA
mutations (47). Although WGS is expensive, the small size of the
mitochondrial genome means that targeted and/or capture-
sequencing-based methods could provide a more affordable
alternative and may enable improved sequencing depth (48).
Genome-wide or targeted sequencing of the tumor tissue DNA
obtained at surgery may also permit strategies whereby dPCR
probes or focused sequencing assays may be employed to track
tmtDNA mutations in plasma.

Several cancers have higher mitochondrial copy numbers,
thus further increasing the probability of detecting tmtDNA
(49). Detection of ctDNA in IDH1-mutant glioma, for exam-
ple, has demonstrated limited clinical efficacy (3); however,
the high tmtDNA copy number in these tumors may make
circulating tmtDNA analysis achievable (49). Recent studies
have identified certain cancers with functional tmtDNA
mutations that affect metabolism (46). This could be used to
target metabolic therapies to tumors with known metabolic
weaknesses (46). tmtDNA mutations have also been described
that confer specific chemoresistant properties (50). Thus,
their monitoring via serial liquid biopsy may enable therapy
modulation, as has been demonstrated with the use of
ctDNA (4).

In conclusion, release of tmtDNA and ctDNA is correlated with
tumor volume and tumor cell proliferation in treatment-na€�ve
tumors and with tumor cell death following treatment. The BBB
appears to play only a minor role in preventing release of glioma-
derived ctDNA into plasma. Analysis of circulating tmtDNA can
improve the sensitivity of detection of tumor DNA in multiple
body fluids and may make plasma liquid biopsy possible for
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patients with gliomas, where detection rates for ctDNAhave so far
been very low.
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Introductory	paragraph:	

Non-invasive	 analysis	 of	 cancer	 genomes	 using	 cell-free	 circulating	 tumour	 DNA	 (ctDNA)	 is	 being	
widely	implemented	for	clinical	indications.	The	sensitivity	for	detecting	the	presence	of	ctDNA	and	
genomic	 changes	 in	 ctDNA	 is	 limited	 by	 its	 low	 concentration	 compared	 to	 cell-free	 DNA	 of	 non-
tumour	 origin.	 We	 studied	 the	 feasibility	 for	 enrichment	 of	 ctDNA	 by	 size	 selection,	 in	 plasma	
samples	 collected	 before	 and	 during	 chemotherapy	 treatment	 in	 13	 patients	with	 recurrent	 high-
grade	 serous	 ovarian	 cancer.	 We	 evaluated	 the	 effects	 using	 targeted	 and	 whole	 genome	
sequencing.	 Selecting	 DNA	 fragments	 between	 90-150	 bp	 before	 analysis	 yielded	 enrichment	 of	
mutated	 DNA	 fraction	 of	 up	 to	 11-fold.	 This	 allowed	 identification	 of	 adverse	 copy	 number	
alterations,	 including	MYC	amplification,	otherwise	not	observed.	Size	selection	allows	detection	of	
tumour	 alterations	 masked	 by	 non-tumour	 DNA	 in	 plasma	 and	 could	 help	 overcome	 sensitivity	
limitations	of	liquid	biopsy	for	applications	in	early	diagnosis,	detection	of	minimal	residual	disease,	
and	genomic	profiling.	
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Text:	

Analysis	of	circulating	tumour	DNA	(ctDNA)	by	non-invasive	sampling	of	cell-free	DNA	from	plasma	is	
now	becoming	an	important	tool	in	oncology	for	molecular	stratification,	monitoring	tumour	burden	
and	analysis	of	genomic	evolution	during	treatment1–3.	Analysis	of	ctDNA	is	technically	challenging,	
as	ctDNA	is	often	present	in	low	concentrations	in	plasma	and	is	mixed	with	cell-free	DNA	(cfDNA)	of	
non-cancerous	 origin,	 which	 is	 generally	 present	 at	 much	 higher	 concentrations.	 In	 patients	 with	
advanced	cancers,	 the	median	concentration	of	ctDNA	can	reach	10%	or	more	of	 the	 total	cfDNA,	
but	 this	 fraction	 is	much	 lower	 in	 earlier	 stage	 cancer,	 and	 ctDNA	may	 rapidly	 decrease	 following	
initiation	of	systemic	treatment	or	surgery1,2,4,5.	Various	strategies	have	been	proposed	to	 improve	
the	sensitivity	of	ctDNA	analysis2.	Such	methods	generally	 focus	on	a	 small	 subset	of	 the	genome,	
such	 as	 hot-spot	 PCR-based	 assays	 or	 ultra-deep	 sequencing	 across	 gene	 panels2,6–9.	 Recent	
observations	 that	 ctDNA	 fragments	may	 be	 shorter	 than	 non-tumour	 cfDNA	 in	 plasma	 has	 led	 to	
suggestions	 that	 these	 differences	 may	 be	 exploited	 to	 enrich	 for	 the	 tumour-specific	 signal	 in	
plasma	DNA10–14.	In-silico	analysis	of	ctDNA	size	differences	has	been	used	to	enhance	the	signal	for	
chromosomal	 changes13.	 However,	 physical	 size	 selection	 to	 filter	 out	 non-tumour	 DNA	 prior	 to	
large-scale	genomic	sequencing	has	not	been	demonstrated.	 	Therefore,	we	tested	 the	hypothesis	
that	 selecting	 DNA	 fragments	 of	 specific	 sizes	 could	 improve	 the	 sensitivity	 of	 detecting	 genomic	
alterations	in	cfDNA	from	plasma	of	cancer	patients,	enabling	the	detection	of	point	mutations	and	
copy	number	alterations	that	are	previously	undetectable11.		

Previous	reports	using	paired-end	sequencing	reads	revealed	that	cell-free	DNA	is	mostly	distributed	
around	 a	mode	 at	 167	bp,	 a	 length	 that	 could	 correspond	 to	 the	 chromatosome	 (core	histones	 +	
linker)15,16.	This	size	distribution	pattern	is	characteristic	of	a	caspase-dependant	cleavage,	therefore	
it	 was	 hypothesized	 that	 apoptosis	 releases	 a	 large	 fraction	 of	 cfDNA	 into	 the	 bloodstream14,15,17.	
Previous	 studies	 in	 non-invasive	 prenatal	 testing	 have	 explored	 the	 potential	 of	 size	 selection	 for	
enriching	the	fetal	DNA	fraction	in	maternal	plasma	with	both	physical	and	 in-silico	methods14,18–20.	
However,	 this	 analysis	 of	 the	 size	 distribution	 cannot	 be	 easily	 generalised	 to	 tumour-derived	
fragments	 as	 the	 characterisation	 of	 ctDNA-specific	 patterns	 requires	 analysing	 fragment	 sizes	 of	
DNA	 with	 tumour-derived	 alterations13.	 Plasma	 samples	 from	 xenografted	 animal	 models	 have	
shown	ctDNA	to	be	highly	fragmented	below	167	bp10	and	this	distribution	with	a	mode	at	145	bp	
has	 been	 then	 confirmed	 with	 PCR,	 atomic	 force	 microscopy	 and	 recently	 with	 whole-genome	
sequencing12,21.	 If	 the	 distribution	 differs	 between	 tumour-derived	 and	 non-tumour	 derived	
fragments,	 sieving	 fragments	by	 their	 size	 could	 reduce	 the	 (often	overwhelming)	 fraction	of	non-
tumour	cfDNA	and	improve	the	signal	to	noise	ratio	in	downstream	analysis.	

We	first	analysed	paired-end	reads	from	shallow	whole	genome	sequencing	(sWGS)	of	plasma	DNA	
from	 animal	 models	 xenografted	 with	 a	 human	 ovarian	 cancer	 cells,	 and	 confirmed	 that	 the	
distribution	of	ctDNA	differed	in	this	model	from	non-tumour	cfDNA	(Fig.	1a,	b).	ctDNA	in	this	model	
was	enriched	in	the	size	range	between	90	and	150	bp,	while	non-tumour	cfDNA	was	dominant	at	
sizes	greater	than	150	bp,	and	peaked	at	~166	bp,	similar	to	previous	observations	in	animal	models	
and	in	human	samples12,15,21,22.	Based	on	these	observations	we	used	an	automated	electrophoresis	
agarose	 gel	 selection	method	 to	 isolate	 DNA	 fragments	 between	 90	 and	 150	 bp	 for	 downstream	
analysis.	We	sequenced	size-selected	DNA	using	both	sWGS	and	tagged-amplicon	deep	sequencing	
(TAm-Seq23),	 in	 26	 samples	 collected	 from	 13	 patients	 with	 high-grade	 serous	 ovarian	 cancer	
(HGSOC),	and	compared	the	results	 to	 those	of	 the	same	samples	without	size	selection.	For	each	
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patient,	 two	 plasma	 samples	 were	 collected:	 one	 pre-treatment,	 when	 levels	 of	 ctDNA	 were	
generally	high,	and	another	several	weeks	after	the	start	of	treatment,	when	levels	of	ctDNA	were	
often	much	lower	due	to	treatment24.	Analysis	of	the	distribution	of	fragment	lengths	after	 in-vitro	
size	selection	and	sWGS	 indicated	that	96%	of	resulting	reads	were	 in	the	selected	range	(Fig.	1c).	
For	two	of	the	patients,	the	distribution	of	fragment	sizes	obtained	by	sWGS	without	size-selection	
exhibited	a	degraded	pattern	of	cfDNA,	without	a	prominent	peak	at	166	bp	or	the	10-bp	increment	
peaks,	which	has	been	observed	previously12,13,15,	and	 is	present	 in	all	 the	other	cases	 in	this	study	
(Suppl.	Fig.	1).	

Analysis	 of	 somatic	 copy	 number	 aberrations	 (SCNAs)	 was	 carried	 out	 with	 sWGS	 on	 all	 plasma	
samples	before	and	after	size	selection	of	DNA	fragments	between	90	and	150	bp	(Fig.	2a).	One	case	
is	exemplified	in	Fig.	2b	and	2c	(see	further	data	in	Supplementary	Fig.	2).	Without	size	selection,	a	
small	number	of	SCNAs	were	detected	with	sWGS	 in	DNA	 isolated	 from	plasma	collected	3	weeks	
after	 initiation	of	 treatment	 from	patient	OV04-83	 (Fig.	2b).	 These	 included	 focal	 amplifications	 in	
chromosomes	 8p,	 14p,	 17,	 and	 19q	 that	 were	 observed	 in	 this	 sample	 at	 very	 low	 levels	 (Suppl.	
Table	2).	Analysis	of	the	same	DNA	sample	following	size-selection	for	short	DNA	fragments	revealed	
an	increase	in	the	level	of	these	detected	SCNAs,	in	addition	to	multiples	other	SCNAs	that	were	not	
observed	without	 size	 selection	 (Fig.	 2c).	 The	 same	pattern	of	 SCNAs	and	 focal	 amplifications	was	
observed	 in	DNA	 from	plasma	collected	 from	 the	 same	patient	 before	 initiation	of	 the	 treatment,	
when	the	fraction	of	tumour	DNA	in	the	plasma	was	higher	(Suppl.	Fig.	2).		

The	 relative	 copy	 number	 signals	 in	 plasma	DNA,	 across	 a	 list	 of	 29	 genes	 frequently	mutated	 in	
HGSOC,	 were	 compared	 with	 and	 without	 size	 selection	 of	 DNA	 from	 plasma	 samples	 collected	
during	treatment	across	the	cohort	of	13	patients.	This	showed	that	a	 large	number	of	SCNAs	that	
were	 not	 observed	without	 size	 selection,	 could	 be	 detected	 after	 size	 selection	 for	 shorter	 DNA	
fragments,	notably	as	amplifications	 in	key	genes	such	as	NF1,	PARP2	and	MYC	 (Fig.	2d	and	Suppl.	
Fig.	3).	More	SCNAs	could	be	detected	after	size	selection	in	11/13	patients,	and	the	absolute	level	
of	the	log2ratio	was	significantly	increased	after	size	selection	(t-test,	p=7.72.10-9).	The	2	patients	for	
whom	the	SCNA	signal	did	not	increase	exhibited	a	degraded	pattern	of	cfDNA,	which	could	explain	
why	the	size	selection	had	not	enriched	for	ctDNA	(Fig.	2d	and	Suppl.	Fig.	2).		

We	next	assessed	the	detection	of	SCNAs	and	point	mutations,	in	plasma	samples	of	the	13	patients	
collected	 at	 baseline	 (before	 treatment	 initiation)	 and	 3	 weeks	 after	 initiation	 of	 chemotherapy	
treatments,	with	and	without	size	selection	of	the	plasma	DNA	(Fig.	3a	and	Suppl.	Table	1).	The	data	
from	 the	 baseline	 samples,	 where	 ctDNA	 levels	 are	 generally	 higher24,	 was	 used	 to	 identify	 and	
confirm	genomic	changes,	which	were	then	studied	in	the	samples	after	initiation	of	treatment,	with	
generally,	 lower	 levels	 of	 ctDNA.	 The	 amplitudes	 of	 the	 absolute	 log2ratio	 for	 the	 SCNAs	 were	
higher,	and	the	concordance	of	the	alterations	detected	between	the	baseline	and	post-treatment	
samples	were	improved,	with	size	selection	of	the	plasma	DNA	(Fig.	3b	and	Suppl.	Fig.	3).		

Using	sWGS	data,	we	converted	the	amplitude	of	the	CNAs	into	a	quantitative	metric	called	t-MAD	
(trimmed	Mean	 Absolute	 Deviation	 from	 copy-number	 neutrality,	 see	Methods).	 Size	 selection	 of	
plasma	DNA	resulted	in	a	median	of	1.5	fold	(n=26)	increase	in	the	t-MAD	score	(figure	3c	and	3d).	
However,	 in	 the	samples	collected	after	 the	 initiation	of	 treatment,	when	ctDNA	content	was	 low,	
the	genome	wide	enrichment	was	higher	(Fig.	3d),	with	a	median	increase	of	the	t-MAD	score	of	2.9	
fold	(range:	0.6	-	4.5	fold),	except	for	two	samples.	For	those	two	samples	we	observed	a	decrease	in	
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the	t-MAD	score,	and	an	analysis	of	the	size	profile	before	selection	for	these	samples	revealed	that	
the	DNA	had	been	heavily	fragmented,	which	could	explain	why	the	size	selection	did	not	result	 in	
enrichment	for	these	cases	(Suppl.	Fig.	1).	In	this	dataset,	we	did	not	identify	a	differential	effect	of	
size	 selection	 on	 the	 recovery	 of	 specific	 alterations,	 suggesting	 that	 there	 is	 a	 global	 genome	
enrichment	post	size	selection.	Additionally,	size	selection	notably	 led	to	an	 increased	detection	of	
deletions	(Suppl.	Fig.	2).	Analysis	with	greater	sequencing	depth,	integration	of	samples	from	other	
cancer	types	and	different	stages	of	the	disease	would	help	to	extend	our	observations	and	expand	
further	our	understanding	of	ctDNA	biology	and	fragmentation.	

In	 order	 to	 confirm	 that	 enrichment	 for	 tumour	 DNA	 could	 be	 observed	 irrespective	 of	 the	
sequencing	approach,	we	further	analysed	the	mutant	allele	fractions	in	the	samples	using	Tagged-
Amplicon	 Sequencing	 (TAm-Seq).	 We	 detected	 a	 relative	 enrichment	 in	 the	 ctDNA	 fraction	 in	 all	
samples	exhibiting	a	typical	pattern	of	cfDNA	fragmentation,	with	a	mode	of	fragment	distribution	at	
166bp,	 before	 size	 selection	 (Suppl.	 Fig.	 2).	 The	 enrichment	 effect	 was	 below	 2-fold	 in	 samples	
collected	pre-treatment,	when	the	ctDNA	fractions	were	high	in	plasma	(20%-50%	allele	fractions	for	
TP53	mutations	as	detected	by	TAm-Seq)	(Fig.	3e	and	3f).	Enrichment	of	the	tumour	fraction	by	size	
selection	 was	 much	 greater,	 between	 5-fold	 and	 11-fold	 for	 most	 samples,	 in	 samples	 collected	
approximately	3	weeks	after	 initiation	of	 treatment,	when	 levels	of	 ctDNA	 (without	 size	 selection)	
were	low	(ranging	from	<1%	to	5%	allele	fraction	for	TP53	mutations	as	previously	detected	by	TAm-
Seq)	(Fig.	3e).	For	8	of	the	26	plasma	samples	(31%)	we	noted	a	decrease	 in	the	allele	fractions	of	
mutant	TP53	following	size	selection;	this	may	be	related	to	loss	of	rare	mutant	fragments	during	the	
size	selection	process,	or	by	limitations	of	this	assay	for	analysis	of	very	short	fragments.	Increasing	
the	starting	amount	of	material	used	 for	 size	 selection,	and	optimisation	of	assays	 for	 recovery	of	
short	fragment,	could	overcome	such	limitations.	

Methods	 such	 as	 exome-wide	 sequencing	 of	 plasma	 DNA	 at	 multiple	 time-points	 of	 cancer	
treatment	 could	 be	 effective	 for	 the	 study	 of	 cancer	 evolution	 and	 for	 identification	 of	 possible	
resistance	mechanisms	 to	 treatment3,25.	However,	 analysis	with	broads-spectrum	approaches	 such	
as	whole-exome	 sequencing	 or	 sWGS	 are	most	 effective	when	 the	 ctDNA	 content	 is	 greater	 than	
approximately	5%3,26,27.	In	this	study,	we	found	that	4	out	of	13	cases	(31%)	where	ctDNA	levels	<5%	
may	have	made	such	analysis	uninformative,	have	been	“rescued”	by	size	selection	that	resulted	in	
>5%	mutant	allele	fractions	(Fig.	3e).	

These	 results	 demonstrate	 a	 proof-of-principle	 that	 by	 a	 simple	 step	 of	 filtering	 of	 cfDNA	 and	
selection	of	shorter	fragments,	it	is	possible	to	increase	the	tumour	DNA	fraction	in	plasma	cell-free	
DNA	samples.	A	better	understanding	of	the	biology	of	ctDNA,	and	their	mechanism	of	release	in	the	
circulation,	 could	 help	 select	 specific	 fragment	 ranges	 depending	 on	 their	 expected	origin28,29.	 For	
example,	necrotic	cells	may	release	long	mutant	fragments14,17,	and	thus	size	selection	for	fragments	
of	 hundreds	 to	 thousands	 of	 bp	 may	 be	 appropriate	 for	 certain	 samples.	 Alternatively,	 a	 size	
selection	 of	 ultra-short	 fragments	might	 help	 for	 enriching	 a	 sample	 for	mitochondrial	 circulating	
DNA	 or	 bacterial	 DNA,	 as	 their	 DNA	 is	 further	 fragmented	 below	 100bp13,30.	 Other	 selection	 or	
filtration	methods	 can	 selectively	 enrich	 DNA	 fragments	 that	 are	 bound	 to	 specific	molecules	 for	
example	modified	 nucleosomes31	 Determining	 and	 accounting	 for	 inherent	 size-biases	 induced	 by	
DNA	 isolation	 method	 that	 are	 currently	 employed	 for	 recovery	 of	 cfDNA	 in	 practice	 will	 be	
important	to	standardise	and	optimise	methods	for	liquid	biopsy,	as	large	fractions	of	short	or	long	
DNA	could	be	lost	at	this	step.	In	addition,	recent	reports	have	highlighted	that	different	methods	of	
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library	preparation	for	sequencing	may	enable	more	effective	recovery	of	short	DNA	fragments	from	
plasma	 samples,	 which	 have	 led	 to	 new	 observations	 on	 cfDNA	 size	 distributions28,30,32.	 Such	
methods	should	be	further	investigated	to	determine	if	these	could	help	recover	more	ctDNA.	

The	 size	 selection	process	we	demonstrated	here	 is	based	on	 inherent	 characteristics	of	 ctDNA	 in	
comparison	 to	 cfDNA	 and	 does	 not	 require	 alteration	 of	 these	 fragments.	 The	 enrichment	 we	
observed	 is	 therefore	 compatible	 with	 any	 downstream	 genomic	 analysis,	 from	 locus-specific	 to	
wider	 genomic	 sequencing.	 This	 work	 shows	 that	 sWGS	 (and	 by	 extension,	 whole	 exome	
sequencing)	can	be	performed	on	plasma	DNA	samples	with	 low	ctDNA	content,	and	that	 this	can	
facilitate	the	characterisation	of	mutations	present	in	plasma	at	lower	allele	fractions	and	with	lower	
sequencing	 depth.	 The	 compatibility	 of	 the	 cfDNA	 fragment	 size	 selection	 with	 wide-scale	 and	
sensitive	genomic	analysis	could	unlock	the	potential	of	liquid	biopsies	for	the	diagnosis	of	cancer	at	
an	earlier	stage,	and	for	the	detection	of	minimal	residual	disease.		

	

Methods:	

Patients	and	sample	preparation.	13	patients	were	recruited	as	part	of	prospective	clinical	studies	
at	Addenbrooke’s	Hospital,	Cambridge,	UK,	 approved	by	 the	 local	 research	ethics	 committee	 (REC	
reference	numbers	07/Q0106/63,	08/H0306/61	and	07/Q0106/63).	Written	 informed	consent	was	
obtained	from	all	patients	and	blood	samples	were	collected	before	and	after	initiation	of	treatment	
with	 chemotherapeutic	 agents.	 DNA	 was	 extracted	 from	 2	 mL	 of	 plasma	 using	 the	 QIAamp	
circulating	nucleic	acid	kit	(Qiagen)	according	to	the	manufacturer’s	instructions.	

Size	 selection.	 Between	 8-10	 ng	 of	 DNA	were	 loaded	 into	 a	 3%	 agarose	 cassette	 (HTC3010,	 Sage	
Bioscience)	 and	 size	 selection	 was	 performed	 on	 a	 PippinHT	 (Sage	 Bioscience)	 according	 to	 the	
manufacturer’s	protocol.	

TAm-Seq.	 Tagged-Amplicon	 Sequencing	 libraries	 were	 prepared	 as	 previously	 described23,	 using	
primers	designed	to	assess	single	nucleotide	variants	(SNV)	and	small	indels	across	selected	hotspots	
and	the	entire	coding	regions	of	TP53.	Libraries	were	sequenced	using	an	HiSeq	4000	(Illumina).	

sWGS.	 Indexed	 sequencing	 libraries	 were	 prepared	 using	 a	 commercially	 available	 kit	 (ThruPLEX-
Plasma	Seq,	Rubicon	Genomics).	Libraries	were	pooled	 in	equimolar	amounts	and	sequenced	on	a	
HiSeq	4000	(Illumina)	generating	150-bp	paired-end	reads.	Sequence	data	was	analysed	using	an	in-
house	pipeline	that	consists	of	the	following;	Paired	end	sequence	reads	were	aligned	to	the	human	
reference	 genome	 (GRCh37)	 using	 BWA-mem	 following	 the	 removal	 of	 contaminating	 adapter	
sequences33.	 PCR	 and	optical	 duplicates	were	marked	using	MarkDuplicates	 (Picard	 Tools)	 feature	
and	 these	were	excluded	 from	downstream	analysis	 along	with	 reads	of	 low	mapping	quality	 and	
supplementary	alignments.	

SCNA	 analysis:	 Copy	 number	 analysis	 was	 performed	 in	 R	 using	 a	 modification	 of	 the	 QDNAseq	
pipeline34,	as	follow:	sequence	reads	were	allocated	into	equally	sized	(50	kbp)	non-overlapping	bins	
throughout	 the	 length	 of	 the	 genome.	 Read	 counts	 in	 each	 bin	 were	 corrected	 to	 account	 for	
sequence	GC	content	and	mappability,	and	bins	overlapping	 ‘blacklisted’	regions	 (ENCODE	project)	
were	 excluded	 from	 downstream	 analysis.	 After	 median	 normalisation	 of	 the	 counts,	 bins	 were	
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segmented	using	both	Circular	Binary	Segmentation	and	Locus-aware	Circular	Binary	Segmentation	
algorithms,	and	an	averaged	log2R	value	per	bin	was	calculated.	The	t-MAD	score	is	calculated	as	the	
averaged	absolute	deviation	from	log2R	=	0	after	first	trimming	bin	counts	greater	than	4	standard	
deviations	from	the	mean	count	across	all	genomic	regions.	
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Figure	1:	

	

	

Figure	1:	Plasma	DNA	originating	from	tumour	and	non-tumour	cells	have	different	sizes,	enabling	
specific	 enrichment	 for	 ctDNA.	 	 a.	 Using	 an	 animal	 model	 with	 xenografted	 cells	 enabled	 the	
discrimination	 of	 DNA	 fragments	 released	 by	 the	 cancer	 cells	 (corresponding	 to	 the	 human	DNA)	
from	 the	 DNA	 fragments	 released	 by	 the	 wild-type	 cells	 (corresponding	 to	 the	 rat	 DNA).	 b.	 Size	
distribution,	assessed	by	sWGS,	of	DNA	fragments	from	a	plasma	sample	of	a	rat	xenografted	with	a	
human	glioblastoma	tumour.	c.	Size	distribution	of	DNA	fragments	from	26	plasma	samples	included	
in	 this	 study,	 assessed	 by	 sWGS.	 In	 green	 are	 the	 DNA	 fragments	 of	 the	 samples	 without	 size-
selection,	and	in	orange	after	size-selection.	The	two	dotted	vertical	lines	indicate	the	size	selection	
range	between	90	bp	and	150	bp.		
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Figure	2:	

	

	

Figure	 2:	 Recovery	 of	 short	 cfDNA	 fragments	 enriches	 for	 the	 representation	 of	 the	 cancer	
genome.	a.	Samples	collected	 from	13	patients	with	HGSOC	were	analysed	either	with	or	without	
filtering	by	size	selection.	b.	SCNA	analysis	based	on	the	log2	ratios	of	regions	along	the	genome	of	
DNA	extracted	from	a	plasma	sample	collected	during	treatment	for	patient	OV04-83.	c.	The	same	
analysis	of	 the	 same	sample	with	 size	 selection	of	 fragments	between	90	bp	and	150	bp.	 Inferred	
amplifications	are	shown	in	blue	and	deletions	in	orange.	d.	SCNA	analysis	of	the	segmental	log2ratio	
across	 a	 list	 of	 29	 genes	 frequently	 mutated	 in	 recurrent	 ovarian	 cancer,	 measured	 in	 plasma	
samples	 collected	 during	 treatment	 for	 all	 13	 patients,	 without	 size	 selection	 (left)	 and	 with	 size	
selection	(right).	The	two	samples	which	exhibited	a	degraded	pattern	of	cfDNA	fragmentation	were	
OV04-292	and	OV04-300	 (both	 labelled	by	“#”).	e.	A	comparison	of	 the	absolute	 level	of	 log2ratio	
across	the	29	genes	of	interest	indicated	a	significant	difference	between	the	same	samples	without	
and	 with	 size	 selection	 (p	 =	 7.72.10-9).	 The	 2	 samples	 with	 the	 degraded	 pattern	 of	 cfDNA	
fragmentation	have	been	excluded	from	this	analysis.	
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Figure	3:	

	

	

	

Figure	 3:	Analysis	 of	 the	 enrichment	 after	 size	 selection	 in	 26	 samples	 sequenced	by	 sWGS	 and	
Tagged	Amplicon	 Sequencing	 (TAm-Seq)	 revealed	 relative	 enrichment	 in	 tumour	 content.	 a.	 For	
each	 of	 13	 patients,	 we	 compared	 cfDNA	 from	 plasma	 samples	 collected	 before	 initiation	 of	
chemotherapy	and	3	weeks	or	more	after	initiation	of	chemotherapy.	Each	of	the	26	plasma	samples	
was	analysed	with	and	without	size	selection.	b.	Comparison	of	the	absolute	value	of	the	segmented	
log2ratio	of	the	SCNAs	called	for	the	plasma	samples	of	patient	OV04-83	collected	before	and	after	
initiation	of	the	treatment.	Data	from	the	samples	without	size-selection	is	shown	in	green,	and	with	
size	selection	in	orange.	c.	The	t-MAD	score	determined	from	the	sWGS	with	size	selection	(vertical)	
was	higher	than	without	size	selection	(horizontal)	for	most	samples,	including	the	samples	collected	
at	 baseline	 (red	 circles)	 and	 after	 initiation	 of	 treatment	 (blue	 triangles).	 The	 2	 samples	 with	 no	
observed	 enrichment	 are	 OV04-292	 and	 OV04-300.	 d.	 The	 enrichment	 factor	 with	 size	 selection,	
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determined	by	t-MAD,	varied	per	sample	but	was	 lower	for	was	samples	collected	at	baseline	(red	
circles),	which	 had	 high	 initial	 t-MAD	 score,	 compared	 to	 samples	 collected	 after	 treatment	 (blue	
triangle).	e.	The	mutant	allele	fraction	(MAF)	determined	by	targeted	sequencing	with	size	selection	
(vertical)	 was	 higher	 than	without	 size	 selection	 (horizontal)	 for	most	 samples,	 including	 samples	
collected	at	baseline	(red	circles)	and	after	 initiation	of	treatment	(blue	triangles).	The	dotted	area	
highlights	 samples	 with	 low	 MAF	 (<5%),	 where	 methods	 such	 as	 whole-exome	 sequencing	 (at	
sequencing	 depth	 of	 ~100x)	 would	 not	 be	 effective,	 where	 size	 selection	 enriched	 the	 mutant	
fraction	to	>5%	and	therefore	accessible	for	wide-scale	analysis.	f.	Comparison	of	the	MAF	detected	
by	TAm-Seq	before	treatment	and	after	initiation	of	treatment,	as	assessed	by	targeted	sequencing,	
with	size	selection	(yellow	triangles)	and	without	size	selection	(green	circles).	
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Enhanced detection of circulating tumor DNA by 
fragment size analysis
Florent Mouliere1,2*†, Dineika Chandrananda1,2*, Anna M. Piskorz1,2*, Elizabeth K. Moore1,2,3*, 
James Morris1,2, Lise Barlebo Ahlborn4,5, Richard Mair1,2,6, Teodora Goranova1,2, Francesco Marass1,2,7,8, 
Katrin Heider1,2, Jonathan C. M. Wan1,2, Anna Supernat1,2,9, Irena Hudecova1,2, Ioannis Gounaris1,2,3, 
Susana Ros1,2, Mercedes Jimenez-Linan2,3, Javier Garcia-Corbacho10, Keval Patel1,2, Olga Østrup5, 
Suzanne Murphy1,2, Matthew D. Eldridge1,2, Davina Gale1,2, Grant D. Stewart2,3,11, Johanna Burge2,11, 
Wendy N. Cooper1,2, Michiel S. van der Heijden12,13, Charles E. Massie1,2,14, Colin Watts15, Pippa Corrie3, 
Simon Pacey3,14, Kevin M. Brindle1,2,16, Richard D. Baird17, Morten Mau-Sørensen4,  
Christine A. Parkinson1,2,3,18,19, Christopher G. Smith1,2, James D. Brenton1,2,3,18,19‡§, Nitzan Rosenfeld1,2‡§

Existing methods to improve detection of circulating tumor DNA (ctDNA) have focused on genomic alterations 
but have rarely considered the biological properties of plasma cell-free DNA (cfDNA). We hypothesized that differ-
ences in fragment lengths of circulating DNA could be exploited to enhance sensitivity for detecting the presence 
of ctDNA and for noninvasive genomic analysis of cancer. We surveyed ctDNA fragment sizes in 344 plasma samples 
from 200 patients with cancer using low-pass whole-genome sequencing (0.4×). To establish the size distribution 
of mutant ctDNA, tumor-guided personalized deep sequencing was performed in 19 patients. We detected 
enrichment of ctDNA in fragment sizes between 90 and 150 bp and developed methods for in vitro and in silico 
size selection of these fragments. Selecting fragments between 90 and 150 bp improved detection of tumor DNA, 
with more than twofold median enrichment in >95% of cases and more than fourfold enrichment in >10% of cases. 
Analysis of size-selected cfDNA identified clinically actionable mutations and copy number alterations that were 
otherwise not detected. Identification of plasma samples from patients with advanced cancer was improved by 
predictive models integrating fragment length and copy number analysis of cfDNA, with area under the curve 
(AUC) >0.99 compared to AUC <0.80 without fragmentation features. Increased identification of cfDNA from pa-
tients with glioma, renal, and pancreatic cancer was achieved with AUC > 0.91 compared to AUC < 0.5 without 
fragmentation features. Fragment size analysis and selective sequencing of specific fragment sizes can boost ctDNA 
detection and could complement or provide an alternative to deeper sequencing of cfDNA.

INTRODUCTION
Blood plasma of patients with cancer contains circulating tumor 
DNA (ctDNA), but this valuable source of information is diluted by 
much larger quantities of DNA of noncancerous origins, such that 
ctDNA usually represents only a small fraction of the total cell-free 
DNA (cfDNA) (1, 2). High-depth targeted sequencing of selected 
genomic regions can be used to detect low amounts of ctDNA, but 
broader analysis with methods such as whole-exome sequencing 
(WES) and shallow whole-genome sequencing (sWGS) is only gen-
erally informative when ctDNA content is ~10% or greater (3–5). 
The concentration of ctDNA can exceed 10% of the total cfDNA in 
patients with advanced-stage cancers (6–8), but is much lower in 
patients with low tumor burden (9–12) and in patients with some 
cancer types such as gliomas and renal cancers (6). Current strategies 
to improve ctDNA detection rely on increasing depth of sequencing 
coupled with various error correction methods (2, 13, 14). However, 
approaches that focus only on genomic alterations do not take ad-
vantage of the potential differences in chromatin organization or 
fragment sizes of ctDNA (15–17). Results of ever-deeper sequencing 
are also confounded by the likelihood of false-positive results from 
detection of mutations from noncancerous cells, clonal expansions 
in normal epithelia, or clonal hematopoiesis of indeterminate po-
tential (CHIP) (13, 18, 19).

The cell of origin and the mechanism of cfDNA release into blood 
can mark cfDNA with specific fragmentation signatures, potentially 
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providing precise information about cell type, gene expression, cell 
physiology or pathology, or action of treatment (15, 16, 20). cfDNA 
fragments commonly show a prominent mode at 167 bp, suggesting 
release from apoptotic caspase-dependent cleavage (Fig. 1A) (21–24). 
Circulating fetal DNA has been shown to be shorter than maternal 
DNA in plasma, and these size differences have been used to im-
prove sensitivity of noninvasive prenatal diagnosis (22, 25–27). The 
size distribution of tumor-derived cfDNA has only been investigated 
in a few studies, encompassing a small number of cancer types and 
patients, and showed conflicting results (28–33). A limitation of pre-
vious studies is that determining the specific sizes of tumor-derived 
DNA fragments requires detailed characterization of matched tumor- 
derived alterations (30, 33), and the broader understanding and im-
plications of potential biological differences have not previously been 
explored.

We hypothesized that we could improve the sensitivity for non-
invasive cancer genomics by selective sequencing of ctDNA frag-
ments and by leveraging differences in the biology that determine 
DNA fragmentation. To test this, we established a pan-cancer catalog 
of cfDNA fragmentation features in plasma samples from patients 
with different cancer types and healthy individuals to identify bio-
logical features enriched in tumor-derived DNA. We developed 
methods for selecting specific sizes of cfDNA fragments before 
sequencing and investigated the impact of combining cfDNA size 
selection with genome-wide sequencing to improve the detection 
of ctDNA and the identification of clinically actionable genomic 
alterations.

RESULTS
Surveying the fragmentation features of tumor cfDNA
We generated a catalog of cfDNA fragmentation features (Fig. 1A) 
in 344 plasma samples from 200 patients with 18 different cancer 
types and additional 65 plasma samples from healthy controls (Fig. 1B, 
fig. S1, and tables S1 and S2). The size distribution of cfDNA frag-
ments in patients with cancer differed in the size ranges of 90 to 
150 bp, 180 to 220 bp, and 250 to 320 bp compared to healthy indi-
viduals (Fig. 1B and fig. S2). cfDNA fragment sizes in plasma of 
healthy individuals and in plasma of patients with late-stage glioma, 
renal, pancreatic, and bladder cancers were significantly longer than 
in other late-stage cancer types including breast, ovarian, lung, mel-
anoma, colorectal, and cholangiocarcinoma (Kruskal-Wallis, P < 0.001; 
Fig. 1C). Sorting the 18 cancer types according to the proportion of 
cfDNA fragments in the size range of 20 to 150 bp resulted in an 
order very similar to that obtained by Bettegowda et al. (6) based on 
the concentrations of ctDNA measured by individual mutation 
assays (Fig. 1D). In contrast to previous reports (6, 34), this sorting 
was performed without any analysis or prior knowledge of the pres-
ence of mutations or somatic copy number alterations (SCNAs) yet al-
lowed the investigation of ctDNA content in different cancers.

Sizing up mutant ctDNA
We determined the size profile of mutant ctDNA in plasma using 
two high-specificity approaches. First, we inferred the specific size 
profile of ctDNA and nontumor cfDNA with sWGS from the plasma 
of mice bearing human ovarian cancer xenografts (Fig. 2A). We ob-
served a shift in ctDNA fragment sizes to less than 167 bp (Fig. 2B). 
Second, the size profile of mutant ctDNA was determined in plasma 
from 19 patients with cancer, using deep sequencing with patient- 

specific hybrid-capture panels developed from whole-exome pro-
filing of matched tumor samples (Fig. 2C). By sequencing hundreds 
of mutations at a depth of >300× in cfDNA, we obtained allele- 
specific reads from mutant and normal DNA. Enrichment of DNA 
fragments carrying tumor-mutated alleles was observed in frag-
ments between ~20 and 40 bp shorter than nucleosomal DNA sizes 
(multiples of 167 bp; Fig. 2D). We determined that mutant ctDNA 
is generally more fragmented than nonmutant cfDNA, with a 
maximum enrichment of ctDNA in fragments between 90 and 
150 bp (fig. S3), as well as enrichment in the size range of 250 to 
320 bp. These data also indicated that mutant DNA in plasma of 
patients with advanced cancer (before treatment) is consistently shorter 
than predicted mononuclesomal and dinucleosomal DNA frag-
ment lengths (Fig. 2D).

Selecting tumor-derived DNA fragments
We evaluated whether the shorter cfDNA fragments in plasma can 
be harnessed to improve ctDNA detection. We determined the fea-
sibility of selective sequencing of shorter fragments using in vitro size 
selection with a bench-top microfluidic device followed by sWGS in 
48 plasma samples from 35 patients with high-grade serous ovarian 
cancer (HGSOC; Fig. 3A and figs. S4 and S5). We assessed the ac-
curacy and quality of the size selection with the plasma from 20 
healthy individuals (Fig. 3B and fig. S6). We also explored the utility 
of in silico size selection of fragmented DNA using read-pair posi-
tioning from unprocessed sWGS data (Fig. 3A). In silico size selec-
tion was performed once reads were aligned to the genome reference, 
by selecting the paired-end reads that corresponded to the fragment 
lengths in a 90- to 150-bp size range. Figure 3 (C to E) shows the 
effect of in vitro size selection for one HGSOC case (see all five sam-
ples in figs. S7 and S8). First, we identified SCNAs in plasma cfDNA 
before treatment, when the concentration of ctDNA was high (Fig. 3C). 
Only a small number of focal SCNAs were observed in the subse-
quent plasma sample collected 3 weeks after initiation of chemo-
therapy (without size selection; Fig. 3D). In vitro size selection of 
the same posttreatment plasma sample showed a median increase 
of 6.4× in the amplitude of detectable SCNAs without size selec-
tion. Selective sequencing of shorter fragments in this sample resulted 
in the detection of multiple other SCNAs that were not observed 
without size selection (Fig. 3E) and a genome-wide copy number 
profile that was similar to that obtained before treatment when ctDNA 
concentrations were four times higher, with additional copy number 
alterations identified in this sample despite the lower initial concentra-
tion of ctDNA (Fig. 3C). In silico size selection also enriched ctDNA 
but to a lower extent than using in vitro size selection (fig. S7). We 
concluded that selecting short DNA fragments in plasma can enrich 
tumor content on a genome-wide scale.

Quantifying the impact of size selection
To quantitatively assess the enrichment after size selection on a 
genome-wide scale, we developed a metric from sWGS data (<0.4× 
coverage) called t-MAD (trimmed median absolute deviation from 
copy number neutrality; see Fig. 4A). All sWGS data were down 
sampled to 10 million sequencing reads for comparison. To define 
the detection threshold, we measured the t-MAD score for sWGS 
data from 65 plasma samples from 46 healthy individuals and took 
the maximal value (median, 0.01; range, 0.004 to 0.015). We com-
pared t-MAD to the mutant allele fraction (MAF) in high ctDNA 
cancer types as assessed by digital polymerase chain reaction (dPCR) 
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or WES in 97 samples. We observed a high correlation (Pearson 
correlation, r = 0.80) between t-MAD and MAF (Fig. 4B) for sam-
ples with t-MAD greater than the detection threshold (0.015) or 

with MAF > 0.025. Figure S9 shows that the slope of t-MAD versus 
MAF fit lines differed between cancer types (range, 0.17 to 1.12), likely 
reflecting differences in the extent of SCNAs. We estimated the 
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Fig. 1. Survey of plasma DNA fragmentation with genome-wide sequencing on a pan-cancer scale. (A) The size profile of cfDNA can be determined by paired-end 
sequencing of plasma samples and reflects its organization around the nucleosome. cfDNA is released into the blood circulation by various means, each of which leaves a 
signature on the DNA fragment sizes. We inferred the size profile of cfDNA by analyzing with sWGS (n = 344 plasma samples from 65 healthy controls and 200 patients with 
cancer) and the size profile of mutant ctDNA by personalized capture sequencing (n = 19 plasma samples). (B) Fragment size distributions of 344 plasma samples from 200 
patients with cancer. Samples are split into two groups based on the previous literature (6), with orange representing samples from patients with cancer types previously 
observed to have low amounts of ctDNA (renal, bladder, pancreatic, and glioma) and blue representing samples from patients with cancer types previously observed to have 
higher amounts of ctDNA (breast, melanoma, ovarian, lung, colorectal, cholangiocarcinoma, and others; see table S1). (C) Proportion of cfDNA fragments below 150 bp in 
those samples, grouped into cancer types as defined in (B). The Kruskal-Wallis (KW) test for difference in size distributions indicated a significant difference between the group 
of samples from cancer types releasing high amounts of ctDNA and the group of samples from cancer types releasing low amounts, as well as the group of samples from 
healthy individuals). (D) Proportion of cfDNA fragments below 150 bp by cancer type (all samples). Cancer types represented by fewer than four individuals are grouped in 
the “other” category. Red lines indicate the median proportion for each cancer type. ChC, cholangiocarcinoma. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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sensitivity of t-MAD for detecting low amounts of ctDNA using a 
spike-in dilution of DNA from a patient with a TP53 mutation into 
DNA from a pool of seven healthy individuals (fig. S10), which con-
firmed that the t-MAD score was linear with ctDNA fraction down 
to MAF of ~0.01. In addition, t-MAD scores greater than the detec-
tion threshold (0.015) for samples were present even in samples 
with MAF as low as 0.004. t-MAD was also strongly correlated with 
tumor volume determined by RECIST1.1 (Pearson correlation, r = 0.6; 
P < 0.0001; n = 35; fig. S11).

Using t-MAD, we detected ctDNA from 69% (130 of 189) of the 
samples from cancer types where ctDNA concentrations were shown 
to be high (Fig. 4C). From cancer types for which ctDNA concentra-
tions are suspected to be low (glioma, renal, bladder, and pancreatic), we 
detected ctDNA in 17% (10 of 57) of the cases (Fig. 4C). We used in 
silico size selection of the DNA fragments between 90 and 150 bp 
from the high ctDNA cancers (n = 189) and healthy controls (n = 65) 
to improve the sensitivity for detecting t-MAD (Fig. 4D). Receiver 
operating characteristic (ROC) analysis comparing the t-MAD 
score for the samples revealed an area under the curve (AUC) of 
0.90 after in silico size selection, against an AUC of 0.69 without size 
selection (Fig. 4D).

We explored whether size-selected sequencing could improve 
the detection of response or disease progression. We used sWGS of 
longitudinal plasma samples from six patients with cancer (Fig. 4, E 
and F) and in silico size selection of the cfDNA fragments between 
90 and 150 bp. In two patients, size-selected samples indicated tumor 
progression 60 and 87 days before detection by imaging or unselected 
t-MAD analysis (Fig. 4, E and F). Other longitudinal samples ex-
hibited improvements in the detection of ctDNA with t-MAD and 
size selection (Fig. 4F).

Identifying more clinically relevant genomic alterations with 
size selection
We next tested whether size selection could increase the sensitivity 
for detecting cancer genomic alterations in cfDNA. To test effects 
on copy number aberrations, we studied 35 patients with HGSOC 
as the archetypal copy number–driven cancer (35). t-MAD was used 
to quantify the enrichment of ctDNA with in vitro size selection in 
48 plasma samples, including samples collected before and after ini-
tiation of chemotherapy treatment. In vitro size selection resulted 

in an increase in the calculated t-MAD score from the sWGS data 
for 47 of 48 of the plasma samples (98%; t test, P = 0.06) with a mean 
of 2.5 and median of 2.1-fold increase (Fig. 5A and table S3). We 
compared the t-MAD scores against those obtained by sWGS for 
the plasma samples from healthy individuals. Thirty-nine of the 
48 size-selected HGSOC plasma samples (82%) had a t-MAD score 
greater than the highest t-MAD value determined in the in vitro 
size-selected healthy plasma samples (Fig. 5A and figs. S6 and S12), 
compared to 24 of 48 without size selection (50%). ROC analysis 
comparing the t-MAD score for the samples from patients with 
cancer (pre- and posttreatment initiation, n = 48) and healthy con-
trols (n = 46) revealed an AUC of 0.97 after in vitro size selection, 
with maximal sensitivity and specificity of 90 and 98%, respectively. 
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Fig. 2. Determining the size profile of mutant ctDNA with animal models and 
personalized capture sequencing. (A) A mouse model with xenografted human 
tumor cells enabled the discrimination of DNA fragments released by cancer cells 
(reads aligning to the human genome) from the DNA released by healthy cells (reads 
aligning to the mouse genome), with the use of sWGS. (B) Fragment size distribution 
from the plasma extracted from a mouse xenografted with a human ovarian tumor, 
showing ctDNA originating from tumor cells (red) and cfDNA from noncancerous 
cells (blue). Two vertical dashed lines indicate 145 and 167 bp. The fraction of reads 
shorter than 150 bp is indicated. (C) Design of personalized hybrid-capture sequencing 
panels developed to specifically determine the size profiles of mutant DNA and non-
mutant DNA in plasma from 19 patients with late-stage cancers. Capture panels 
included somatic mutations identified in tumor tissue by WES. A mean of 165 muta-
tions per patient was then analyzed from matched plasma samples. Reads were 
aligned and separated into fragments carrying either the reference or the mutant 
sequence. Fragment sizes for paired-end reads were calculated. (D) Size profiles 
of mutant DNA and nonmutant DNA in plasma from 19 patients with late-stage 
cancers were determined by tumor-guided capture sequencing. The fraction of reads 
shorter than 150 bp is indicated.
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This was superior to detection by sWGS without size selection 
(AUC, 0.64; Fig. 5B).

We then determined whether this improved sensitivity resulted 
in the detection of SCNAs with potential clinical value. Across the 
genome, t-MAD scores evaluating SCNAs were higher after size 
selection in 33 of 35 (94%) patients with HGSOC, and the mag-
nitude of copy number (log2 ratio) values significantly increased after 
in vitro size selection (t test for the means, P = 0.003; Fig. 5C). We 
compared the relative copy number values for 15 genes frequently 
altered in HGSOC (table S4). Analysis of plasma cfDNA after size 
selection revealed a large number of SCNAs that were not observed 
in the same samples without size selection (Fig. 5D), including 
amplifications in key genes such as NF1, TERT, and MYC (fig. S13).

We also tested whether similar enrichment was seen for substitu-
tions to exclude the possibility that size selection might only increase 
the sensitivity for sWGS analysis. We performed WES of plasma 
cfDNA from 23 patients with seven cancer types (fig. S1). We used 
the WES data to compare the size distributions of fragments carrying 

mutant or nonmutant alleles (Fig. 6A) and to test whether size 
selection could identify additional mutations. We first selected six 
patients with HGSOC and performed WES of plasma DNA with 
and without in vitro size selection in the range of 90 to 150 bp, ana-
lyzing time points before and after initiation of treatment (36). In 
addition, in silico size selection for the same range of fragment sizes 
was performed (Fig. 6A). Analysis of the MAF of SNVs revealed 
statistically significant enrichment of the tumor fraction with both 
in vitro size selection (mean, 4.19-fold; median, 4.27-fold increase; 
t test, P < 0.001) and in silico size selection (mean, 2.20-fold; medi-
an, 2.25-fold increase; t test, P < 0.001; Fig. 6A and fig. S14). Three 
weeks after initiation of treatment, ctDNA fractions are often lower 
(36), and therefore, we further analyzed posttreatment plasma sam-
ples using TAm-Seq (37). We observed enrichment of MAFs by 
in vitro size selection between 0.9 and 11 times (mean, 2.1 times; 
median, 1.5 times), with one outlier sample exhibiting a relative 
enrichment of 118 times compared to the same samples without size 
selection (fig. S15).
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Fig. 3. Enhancing the tumor fraction from plasma sequencing with size selection. (A) Plasma samples collected from patients with ovarian cancer were analyzed in 
parallel without size selection or using either in silico or in vitro size selection. (B) Accuracy of the in vitro and in silico size selection determined on a cohort of 20 healthy 
controls. The size distribution before size selection is shown in green, after in silico size selection (with sharp cutoff at 90 and 150 bp) in blue and after in vitro size selection 
in orange. Vertical lines indicate 90 and 150 bp. (C) SCNA analysis with sWGS from plasma DNA of a patient with ovarian cancer collected before initiation of treatment, 
when ctDNA MAF was 0.271 for a TP53 mutation as determined by tagged-amplicon deep sequencing (TAm-Seq). Inferred amplifications are shown in blue and deletions 
in orange. Copy number neutral regions are shown in gray. (D) SCNA analysis of a plasma sample from the same patient as in (C), collected 3 weeks after treatment start. 
The MAF for the TP53 mutation at this time point was 0.068, and sWGS revealed only limited evidence of copy number alterations (before size selection). (E) Analysis of 
the same plasma sample as in (D) after in vitro size selection of fragments between 90 and 150 bp in length. The MAF for the TP53 mutation increased to 0.402 after in 
vitro size selection, and SCNAs were apparent by sWGS. More SCNAs were detected in comparison to (C) and (D) (for example, in chr2, chr9, and chr10). SCNAs were also 
detected in this sample after in silico size selection (fig. S7).
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Size selection with both in vitro and 
in silico methods increased the number 
of mutations detected by WES by an 
average of 53% compared to no size se-
lection (Fig. 6B). We identified a total of 
1023 mutations in the samples without size 
selection. An additional 260 mutations 
were detected by in vitro size selection, 
and an additional 310 mutations were 
called after in silico size selection (Fig. 6B 
and table S5). To exclude the possibility 
that the improved sensitivity for muta-
tion detection was a result of sequenc-
ing artifacts, we validated whether new 
mutations were also detectable in tumor 
specimens. We used in silico size selec-
tion in an independent cohort of 16 pa-
tients for whom matched tumor tissue 
DNA was available (table S6). In silico 
size selection enriched the MAF for nearly 
all mutations (2061 of 2133, 97%), with 
an average increase of MAF of 1.7× 
(Fig. 6C). For 13 of 16 patients (81%), 
we identified additional mutations in 
plasma after in silico size selection. Of 
these 82 additional mutations, 23 (28%) 
were confirmed to be present in the 
matched tumor tissue DNA (Fig. 6D). 
This included mutations in key cancer 
genes including BRAF, ARID1A, and 
NF1 (fig. S16).

Detecting cancer by supervised 
machine learning combining cfDNA 
fragmentation and somatic 
alteration analysis
Although in vitro and in silico size se-
lection increase the sensitivity of detec-
tion, they also result in a loss of cfDNA 
for analysis. In analysis of ctDNA based 
on genomic signals, potentially informa-
tive data are lost because regions of the 
cancer genome that are not mutated or 
altered do not contribute to detection 
(fig. S17). We hypothesized that lever-
aging other biological properties of the 
cfDNA fragmentation profile could en-
hance the detection of ctDNA.

We defined other cfDNA fragmenta-
tion features from sWGS data including 
(i) the proportion of fragments in mul-
tiple size ranges, (ii) the ratios of pro-
portions of fragments in different sizes, 
and (iii) the amplitude of oscillations in 
fragment size density with 10-bp peri-
odicity (see Materials and Methods and 
Fig. 7A). These fragmentation features 
were compared between patients with 
cancer and healthy individuals (fig. S18), 
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Fig. 4. Quantifying the ctDNA enrichment by sWGS with in silico size selection and t-MAD. (A) Workflow to quantify 
tumor fraction from SCNA as a genome-wide score named t-MAD. (B) Correlation between the MAF of single- nucleotide 
variants (SNVs) determined by dPCR or hybrid-capture sequencing and t-MAD score determined by sWGS. Data included 
97 samples from patients with multiple cancer types with matched MAF measurements and t-MAD scores. Pearson cor-
relation (coefficient r) between MAF and t-MAD scores was calculated for all cases with MAF > 0.025 and t-MAD > 0.015. 
Linear regression indicated a fit with a slope of 0.44 (purple solid line). (C) Comparison of t-MAD scores determined from 
sWGS between healthy samples and samples collected from patients with cancer types that exhibit low amounts of ctDNA 
and from patients with cancer types that exhibit high amounts of ctDNA (as in Fig. 1). All samples for which t-MAD could 
be calculated have been included. (D) ROC analysis comparing the classification of these plasma samples from high ctDNA 
cancer samples (n = 189) and plasma samples from healthy controls (n = 65) using t-MAD had an AUC of 0.69 without size 
selection (black solid curve). After applying in silico size selection to the samples from patients with cancer, we observed 
an AUC of 0.90 (black dashed curve). (E) Determination of t-MAD from longitudinal plasma samples of a patient with col-
orectal cancer. t-MAD was analyzed before and after in silico size selection of the DNA fragments between 90 and 150 bp 
and then compared to the RECIST status for this patient. PR, partial response; SD, stable disease; PD, progressive disease. 
(F) Application of in silico size selection to six patients with long-term follow-up. t-MAD score was determined before and 
after in silico size selection of the short DNA fragments. Dark blue circles indicate samples in which ctDNA was detected 
both with and without in silico size selection. Light blue circles indicate samples where ctDNA was detected only after in 
silico size selection. Open circles indicate samples where ctDNA was not detected by either analysis. Times when RECIST 
status was assessed are indicated by a red bar for progression or an orange bar for regression or stable disease. PC, prostate 
cancer; CRC, colorectal cancer; ChC, cholangiocarcinoma; BC, breast cancer. The numbers correspond to the patients.
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and the feature representing the proportion (P) of fragments between 
20 and 150 bp exhibited the highest AUC (0.819). Principal compo-
nents analysis (PCA) of the samples represented by t-MAD and frag-
mentation features showed a separation between healthy samples 
and samples from patients with cancer and identified fragment fea-
tures that were aligned (in PCA) with t-MAD scores (Fig. 7B).

We next explored the potential of fragmentation features to en-
hance the detection of tumor DNA in plasma samples. A predictive 
analysis was performed using the t-MAD score and nine fragmen-
tation features across 304 samples (239 from patients with cancer 
and 65 from healthy controls; Fig. 7C, fig. S19, and table S2). The 
nine fragmentation features determined from sWGS included five 
features based on the proportion (P) of fragments in defined size 
ranges: P(20 to 150), P(100 to 150), P(160 to 180), P(180 to 220), 

and P(250 to 320); three features based 
on ratios of those proportions: P(20 to 
150)/P(160 to 180), P(100 to 150)/P(163 
to 169), and P(20 to 150)/P(180 to 220); 
and a further feature based on the amp-
litude of the oscillations having 10-bp 
periodicity observed below 150 bp.

Variable selection and the classification 
of samples as “healthy” or “cancer” were 
performed using logistic regression (LR) 
and random forest (RF) models trained 
on 153 samples and validated on two 
datasets of 94 and 83 independent sam-
ples (Fig. 7C). The best feature set for 
the LR model included t-MAD, 10-bp 
amplitude, P(160 to 180), P(180 to 220), 
and P(250 to 320). The same five vari-
ables were independently identified 
using the RF model (with some dif-
ferences in their ranking). Figure S20 
shows performance metrics for the dif-
ferent algorithms on training set data 
using cross-validation. Using t-MAD 
alone in the validation pan-cancer data-
set (Fig. 7D and fig. S19), we could dis-
tinguish cancer samples from healthy 
individuals with an AUC of 0.764. Us-
ing the LR model improved the classifi-
cation of the samples to an AUC of 
0.908. The RF model (trained on the 
153-sample training set) could distinguish 
cancer from healthy individuals even 
more accurately in the validation data-
set (n = 94) with an AUC of 0.994. On 
the second validation dataset contain-
ing low-ctDNA cancer samples (n = 83; 
Fig. 7E), t-MAD alone or the LR per-
formed less well, with AUC values of 
0.421 and 0.532, respectively. However, 
the RF model was still able to distin-
guish low-ctDNA cancer samples from 
healthy controls with an AUC of 0.914. 
At a specificity of 95%, the RF model 
correctly classified as cancer in 64 of 68 
(94%) of the samples from high-ctDNA 

cancers (colorectal, cholangiocarcinoma, ovarian, breast, and mel-
anoma) and 37 of 57 (65%) of the samples from low-ctDNA cancers 
(pancreatic, renal, and glioma; Fig. 7F). In a second iteration of 
model training, we omitted t-MAD using only the four fragmenta-
tion features (fig. S21). The RF model could still distinguish cancer 
from healthy controls, albeit with slightly reduced AUCs (0.989 
for cancer types with high amounts of ctDNA and 0.891 for cancer 
types with low amounts of ctDNA), suggesting that the cfDNA frag-
mentation pattern is the most important predictive component.

DISCUSSION
Our results indicate that exploiting fundamental properties of cfDNA 
with fragment-specific analyses can allow more sensitive evaluation 
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of ctDNA. We based the fragment size selection criteria on a biological 
observation that ctDNA fragment size distribution is shifted from 
noncancerous cfDNA. Our work builds on a comprehensive survey 
of plasma cfDNA fragmentation patterns across 200 patients with 
multiple cancer types and 65 healthy individuals. We identified fea-
tures that could determine the presence and amount of ctDNA in 
plasma samples, without a priori knowledge of somatic aberrations. 
We caution that this catalog is limited to double-stranded DNA from 
plasma samples and is subject to potential biases incurred by the 
DNA extraction and sequencing methods we used. Additional bio-
logical effects could contribute to further selective analysis of 
cfDNA. Other bodily fluids (urine, cerebrospinal fluid, and saliva), 
different nucleic acids and structures, altered mechanisms of 

release into circulation, or sample pro-
cessing methods could exhibit varying 
fragment size signatures and could offer 
additional exploitable bio logical patterns 
for selective sequencing.

Previous work has reported the size 
distributions of mutant ctDNA but only 
considered limited genomic loci, cancer 
types, or cases (30, 32, 33). We identi-
fied the size differences between mutant 
and nonmutant DNA on a genome-wide 
and pan-cancer scale. We developed a 
method to size mutant ctDNA without 
using high-depth WGS. By sequencing 
>150 mutations per patient at high depth, 
we obtained large numbers of reads that 
could be unequivocally identified as 
tumor derived and thus determined the 
size distribution of mutant ctDNA and 
nonmutant cfDNA in patients with can-
cer. A potential limitation of our ap-
proach is that capture-based sequencing 
is biased by probe capture efficiency and, 
therefore, our data may not accurately 
reflect ctDNA fragments of <100 or 
>300 bp.

Our work provides strong evidence 
that the modal size of ctDNA for many 
cancer types is less than 167 bp, which 
is the length of DNA wrapped around 
the chromatosome. In addition, our work 
also shows that there is enrichment of 
mutant DNA fragments at sizes greater 
than 167 bp, notably in the range of 250 
to 320 bp. These longer fragments may 
explain previous observations that lon-
ger ctDNA can be detected in the plas-
ma of patients with cancer (29, 32). The 
origin of these long fragments is still 
unknown, and their observation could 
be linked to technical factors. However, 
it is likely that mechanisms of compac-
tion and release of cfDNA into circula-
tion, which may differ depending on its 
origin, will be reflected by different frag-
ment sizes (38). Improving the charac-

terization of these fragments will be important, especially for future 
work combining analysis of ctDNA with that of other entities in 
blood such as microvesicles and tumor-educated platelets (39, 40). 
Fragment-specific analyses not only increase the sensitivity for de-
tection of rare mutations but could also be used to track modifica-
tions in the size distribution of ctDNA. Future work should address 
whether this approach could be used to elucidate mechanistic ef-
fects of treatment on tumor cells, for example, by distinguishing 
between necrosis and apoptosis based on fragment size (41).

Genome-wide and exome sequencing of plasma DNA at multiple 
time points during cancer treatment have been proposed as noninvasive 
means to study cancer evolution and for the identification of possible 
mechanisms of resistance to treatment (3). However, WGS and WES 
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without size selection.
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approaches are costly and have thus far been applicable only in 
samples for which the tumor DNA fraction was >5 to 10% (3–5, 42). 
We demonstrated that we could exploit the differences in fragment 
lengths using in vitro and in silico size selection to enrich for tumor 
content in plasma samples, which improved mutation and SCNA de-
tection in sWGS and WES data. We demonstrated that size selection 
improved the detection of mutations that are present in plasma at 
low allelic fractions while maintaining low sequencing depth by sWGS 
and WES. Size selection can be achieved with simple means and at 
low cost and is compatible with a wide range of downstream genome- 
wide and targeted genomic analyses, greatly increasing the potential 
value and utility of liquid biopsies as well as the cost-effectiveness of 
cfDNA sequencing.

Size selection can be applied in silico, which incurs no added costs, 
or in vitro, which adds a simple and low-cost intermediate step that 
can be applied to either the extracted DNA or the libraries created 
from it. This approach, applied prospectively to new studies, could 
boost the clinical utility of ctDNA detection and analysis and cre-
ates an opportunity for reanalysis of large volumes of existing data 
(4, 34, 43). The limitation of this technique is a potential loss of 
material and information, because some of the informative frag-
ments may be found in size ranges that are filtered out or deprioritized 
in the analysis. This may be particularly problematic if only a few 
copies of the fragments of interest are present in the plasma. Despite 
potential loss of material, we demonstrated that classification algo-
rithms can learn from cfDNA fragmentation features and SCNA 
analysis and improve the detection of ctDNA with a cheap sequenc-
ing approach. Moreover, the cfDNA fragmentation features alone 
can be leveraged to classify cancer and healthy samples with a high 
accuracy [AUC, 0.989 (high ctDNA cancers) and 0.891 (low ctDNA 
cancers)].

Analysis of fragment sizes could provide improvements in other 
applications. Introducing fragment size information on each read 
could enhance mutation-calling algorithms from high-depth sequenc-
ing to distinguish tumor-derived mutations from other sources 
such as somatic variants or background sequencing noise. In addi-
tion, cfDNA from patients analyzed with CHIP is likely to be struc-
turally different from ctDNA released during tumor cell proliferation 
(18, 19). Thus, fragmentation analysis or selective sequencing strategies 
could be applied to distinguish clinically relevant tumor mutations 
from those present in clonal expansions of normal cells. This will be 
critical for the development of cfDNA-based methods for identifica-
tion of patients with early-stage cancer.

Size selection could also have an impact on the detection of other 
types of DNA in body fluids or enrichment of signals from circulat-
ing bacterial or pathogen DNA and mitochondrial DNA. These DNA 
fragments are not associated with nucleosomes and are often highly 
fragmented below 100 bp. Filtering or selection of such fragments 
may prove to be important in light of the recently established link 
between the microbiome and treatment efficiency (17, 44). Moreover, 
recent work highlights a stronger correlation of ctDNA detection 
with cellular proliferation than with cell death (45). We hypothesize 
that the mode of the distribution of ctDNA fragment sizes at 145 bp 
could reflect cfDNA released during cell proliferation, and the frag-
ments at 167 bp may reflect cfDNA released by apoptosis or maturation/
turnover of blood cells. The effect of other cancer hallmarks (46) on 
ctDNA biology, structure, concentration, and release is yet unknown.

In summary, ctDNA fragment size analysis, via size selection and 
machine learning approaches, boosts noninvasive genomic analysis 

of tumor DNA. Size selection of shorter plasma DNA fragments en-
riches ctDNA and assists in the identification of a greater number of 
genomic alterations with both targeted and untargeted sequencing 
at minimal additional cost. Combining cfDNA fragment size analysis 
and the detection of SCNAs with a nonlinear classification algorithm 
improved the discrimination between samples from patients with 
cancer and those from healthy individuals. Because the analysis of 
fragment sizes is based on the structural properties of ctDNA, size 
selection could be used with any downstream sequencing applica-
tions. Our work could help overcome current limitations of sen-
sitivity for liquid biopsy, supporting expanded clinical and research 
applications. Our results indicate that exploiting the endogenous 
biological properties of cfDNA provides an alternative paradigm to 
deeper sequencing of ctDNA.

MATERIALS AND METHODS
Study design
Three hundred forty-four plasma samples from 200 patients with mul-
tiple cancer types were collected along with plasma from 65 healthy con-
trols. Among the patients, 172 individuals, and notably the OV04 samples, 
were recruited through prospective clinical studies at Addenbrooke’s 
Hospital, Cambridge, UK, approved by the local research ethics com-
mittee (REC reference number: 07/Q0106/63; and National Research 
Ethics Service Committee East of England–Cambridge Central 03/018). 
Written informed consent was obtained from all patients, and blood 
samples were collected before and after initiation of treatment with 
surgery or chemotherapeutic agents. DNA was extracted from 2 ml of 
plasma using the QIAamp Circulating Nucleic Acid Kit (QIAGEN) or 
QIAsymphony (QIAGEN) according to the manufacturer’s instruc-
tions. In addition, 28 patients were recruited as part of the Copenhagen 
Prospective Personalized Oncology (CoPPO) program (PMID refer-
ence number: 25046202) at Rigshospitalet, Copenhagen, Denmark, 
approved by the local research ethics committee. Baseline tumor tissue 
biopsies were available from all 28 patients, together with rebiopsies col-
lected at relapse from two patients, and matched plasma samples. Brain 
tumor patients were recruited at Addenbrooke’s Hospital, Cambridge, 
UK as part of the BLING (bopsies of liquids in new gliomas) study 
(REC reference number: 15/EE/0094). Patients with bladder cancer 
were recruited at the Netherlands Cancer Institute, Amsterdam, The 
Netherlands, and approval according to national guidelines was ob-
tained (N13KCM/CFMPB250) (47). Sixty-five plasma samples were 
obtained from healthy control individuals using a similar collection 
protocol (Seralab). Plasma samples have not been freeze thawed more 
than two times to reduce artifactual fragmentation of cfDNA. A flow-
chart of the study is presented in fig. S1.

SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/10/466/eaat4921/DC1
Materials and Methods
Fig. S1. Flowchart summarizing the experiments performed in this study and the sample 
numbers used at each step.
Fig. S2. Size distribution of cfDNA determined by sWGS for different cancer types.
Fig. S3. Insert size distribution of mutant cfDNA determined with hybrid-capture sequencing 
for 19 patients.
Fig. S4. DNA fragment size distribution for plasma samples from patients with ovarian cancer.
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Appendix 5: List of FDA-approved targeted therapies for solid malignancies and their molecular 
targets (22) 

 

Agent Target(s) FDA-approved indication(s)
Ado-trastuzumab emtansine (Kadcyla) HER2 (ERBB2/neu) Breast cancer (HER2+)

Afatinib (Gilotrif) EGFR (HER1/ERBB1), HER2 (ERBB2/neu)
Non-small cell lung cancer (with EGFR exon 19 deletions or exon 21 substitution 
(L858R) mutations)

Aldesleukin (Proleukin) Renal cell carcinoma
Melanoma

Alectinib (Alecensa) ALK Non-small cell lung cancer (with ALK fusion)
Alemtuzumab (Campath) CD52 B-cell chronic lymphocytic leukemia
Atezolizumab (Tecentriq) PD-L1 Urothelial carcinoma

Non-small cell lung cancer
Avelumab (Bavencio) PD-L1 Merkel cell carcinoma

Urothelial cancer
Axitinib (Inlyta) KIT, PDGFRβ, VEGFR1/2/3 Renal cell carcinoma
Belimumab (Benlysta) BAFF Lupus erythematosus
Belinostat (Beleodaq) HDAC Peripheral T-cell lymphoma
Bevacizumab (Avastin) VEGF ligand Cervical cancer

Colorectal cancer
Fallopian tube cancer
Glioblastoma
Non-small cell lung cancer
Ovarian cancer
Peritoneal cancer
Renal cell carcinoma

Blinatumomab (Blincyto) CD19/CD3 Acute lymphoblastic leukemia (precursor B-cell)
Bortezomib (Velcade) Proteasome Multiple myeloma

Mantle cell lymphoma
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Agent Target(s) FDA-approved indication(s)
Bosutinib (Bosulif) ABL Chronic myelogenous leukemia (Philadelphia chromosomepositive)
Brentuximab vedotin (Adcetris) CD30 Hodgkin lymphoma

Anaplastic large cell lymphoma
Brigatinib (Alunbrig) ALK Non-small cell lung cancer (ALK+)
Cabozantinib (Cabometyx [tablet], 
Cometriq [capsule]) FLT3, KIT, MET, RET, VEGFR2 Medullary thyroid cancer

Renal cell carcinoma
Canakinumab (Ilaris) IL-1β Juvenile idiopathic arthritis

Cryopyrin-associated periodic syndromes
Carfilzomib (Kyprolis) Proteasome Multiple myeloma
Ceritinib (Zykadia) ALK Non-small cell lung cancer (with ALK fusion)
Cetuximab (Erbitux) EGFR (HER1/ERBB1) Colorectal cancer (KRAS wild type)

Squamous cell cancer of the head and neck
Cobimetinib (Cotellic) MEK Melanoma (with BRAF V600E or V600K mutation)
Crizotinib (Xalkori) ALK, MET, ROS1 Non-small cell lung cancer (with ALK fusion or ROS1 genealteration)
Dabrafenib (Tafinlar) BRAF Melanoma (with BRAF V600 mutation)

Non-small cell lung cancer (with BRAF V600E mutation)
Daratumumab (Darzalex) CD38 Multiple myeloma
Dasatinib (Sprycel) ABL Chronic myelogenous leukemia (Philadelphia chromosomepositive)

Acute lymphoblastic leukemia (Philadelphia chromosomepositive)
Denosumab (Xgeva) RANKL Giant cell tumor of the bone
Dinutuximab (Unituxin) B4GALNT1 (GD2) Pediatric neuroblastoma
Durvalumab (Imfinzi) PD-L1 Urothelial carcinoma

Non-small cell lung cancer
Elotuzumab (Empliciti) SLAMF7 (CS1/CD319/CRACC) Multiple myeloma
Enasidenib (Idhifa) IDH2 Acute myeloid leukemia (with IDH2 mutation)
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Agent Target(s) FDA-approved indication(s)

Erlotinib (Tarceva) EGFR (HER1/ERBB1)
Non-small cell lung cancer (with EGFR exon 19 deletions or exon 21 substitution 
(L858R) mutations)
Pancreatic cancer

Everolimus (Afinitor) mTOR Pancreatic, gastrointestinal, or lung origin neuroendocrine tumor
Renal cell carcinoma
Nonresectable subependymal giant cell astrocytoma associated with tuberous 
sclerosis
Breast cancer (HR+, HER2-)

Gefitinib (Iressa) EGFR (HER1/ERBB1)
Non-small cell lung cancer (with EGFR exon 19 deletions or exon 21 substitution 
(L858R) mutations)

Ibritumomab tiuxetan (Zevalin) CD20 Non-Hodgkin's lymphoma
Ibrutinib (Imbruvica) BTK Mantle cell lymphoma

Chronic lymphocytic leukemia
Waldenstrom's macroglobulinemia

Idelalisib (Zydelig) PI3Kδ Chronic lymphocytic leukemia
Follicular B-cell non-Hodgkin lymphoma
Small lymphocytic lymphoma

Imatinib (Gleevec) KIT, PDGFR, ABL GI stromal tumor (KIT+)
Dermatofibrosarcoma protuberans
Multiple hematologic malignancies including Philadelphia chromosome-positive 
ALL and CML

Ipilimumab (Yervoy) CTLA-4 Melanoma
Renal cell carcinoma

Ixazomib (Ninlaro) Proteasome Multiple Myeloma
Lapatinib (Tykerb) HER2 (ERBB2/neu), EGFR (HER1/ERBB1) Breast cancer (HER2+)
Lenvatinib (Lenvima) VEGFR2 Renal cell carcinoma

Thyroid cancer
Midostaurin (Rydapt) FLT3 acute myeloid leukemia (FLT3+)
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Agent Target(s) FDA-approved indication(s)
Necitumumab (Portrazza) EGFR (HER1/ERBB1) Squamous non-small cell lung cancer
Neratinib (Nerlynx) HER2 (ERBB2/neu) Breast cancer (HER2 overexpressed/amplified)
Nilotinib (Tasigna) ABL Chronic myelogenous leukemia (Philadelphia chromosomepositive)
Niraparib (Zejula) PARP Ovarian cancer 

Fallopian tube cancer 
Peritoneal cancer 

Nivolumab (Opdivo) PD-1 Colorectal cancer (dMMR and MSI-H)
Head and neck squamous cell carcinoma
Hepatocellular carcinoma
Hodgkin lymphoma
Melanoma
Non-small cell lung cancer
Renal cell carcinoma
Urothelial carcinoma

Obinutuzumab (Gazyva) CD20 Chronic lymphocytic leukemia
Follicular lymphoma

Ofatumumab (Arzerra, HuMax-CD20) CD20 Chronic lymphocytic leukemia
Olaparib (Lynparza) PARP Ovarian cancer (with BRCA mutation)
Olaratumab (Lartruvo) PDGFRα Soft tissue sarcoma
Osimertinib (Tagrisso) EGFR Non-small cell lung cancer (with EGFR T790M mutation)
Palbociclib (Ibrance) CDK4, CDK6 Breast cancer (HR+, HER2-)
Panitumumab (Vectibix) EGFR (HER1/ERBB1) Colorectal cancer (KRAS wild type)
Panobinostat (Farydak) HDAC Multiple myeloma
Pazopanib (Votrient) VEGFR, PDGFR, KIT Renal cell carcinoma
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Agent Target(s) FDA-approved indication(s)
Pembrolizumab (Keytruda) PD-1 Classical Hodgkin lymphoma

Colorectal cancer (MSI-H/dMMR)
Gastric cancer
Melanoma
Non-small cell lung cancer (PD-L1+)
Head and neck squamous cell carcinoma
Urothelial cancer
Solid tumors (MSI-H/dMMR)

Pertuzumab (Perjeta) HER2 (ERBB2/neu) Breast cancer (HER2+)
Ponatinib (Iclusig) ABL, FGFR1-3, FLT3, VEGFR2 Chronic myelogenous leukemia

Acute lymphoblastic leukemia (Philadelphia chromosomepositive)
Ramucirumab (Cyramza) VEGFR2 Colorectal cancer

Gastric cancer or Gastroesophageal junction (GEJ) adenocarcinoma
Non-small cell lung cancer

Regorafenib (Stivarga) KIT, PDGFRβ, RAF, RET, VEGFR1/2/3 Colorectal cancer
Gastrointestinal stromal tumors
Hepatocellular carcinoma

Ribociclib (Kisqali) CDK4, CDK6 Breast cancer (HR+, HER2-)
Rituximab (Rituxan, Mabthera) CD20 Non-Hodgkin’s lymphoma

Chronic lymphocytic leukemia
Rheumatoid arthritis
Granulomatosis with polyangiitis

Rituximab/hyaluronidase human 
(Rituxan Hycela) CD20 Chronic lymphocytic leukemia

Diffuse large B-cell lymphoma
Follicular lymphoma
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Agent Target(s) FDA-approved indication(s)
Romidepsin (Istodax) HDAC Cutaneous T-cell lymphoma

Peripheral T-cell lymphoma
Rucaparib (Rubraca) PARP Ovarian cancer (with BRCA mutation)
Ruxolitinib (Jakafi) JAK1/2  Myelofibrosis
Siltuximab (Sylvant) IL-6 Multicentric Castleman's disease
Sipuleucel-T (Provenge) Prostate cancer
Sonidegib (Odomzo) Smoothened Basal cell carcinoma
Sorafenib (Nexavar) VEGFR, PDGFR, KIT, RAF Hepatocellular carcinoma

Renal cell carcinoma
Thyroid carcinoma

Temsirolimus (Torisel) mTOR Renal cell carcinoma
Tocilizumab (Actemra) IL-6R Rheumatoid arthritis

Juvenile idiopathic arthritis
Tofacitinib (Xeljanz) JAK3 Rheumatoid arthritis
Tositumomab (Bexxar) CD20 Non-Hodgkin's lymphoma
Trametinib (Mekinist) MEK Melanoma (with BRAF V600 mutation)

Non-small cell lung cancer (with BRAF V600E mutation)
Trastuzumab (Herceptin) HER2 (ERBB2/neu) Breast cancer (HER2+)

Gastric cancer (HER2+)
Vandetanib (Caprelsa) EGFR (HER1/ERBB1), RET, VEGFR2 Medullary thyroid cancer
Vemurafenib (Zelboraf) BRAF Melanoma (with BRAF V600 mutation)
Venetoclax (Venclexta) BCL2 Chronic lymphocytic leukemia (with 17p deletion)
Vismodegib (Erivedge) PTCH, Smoothened Basal cell carcinoma
Vorinostat (Zolinza) HDAC Cutaneous T-cell lymphoma
Ziv-aflibercept (Zaltrap) PIGF, VEGFA/B Colorectal cancer
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Appendix 6:   List of FDA-cleared or approved companion diagnostic tests or devices (In Vitro 
and Imaging Tools)  (25) 

PMA – Pre-market approval; 510(k) – Pre-market notification; HDE – Humanitarian Device Extension 
NDA – New drug application; BLA – Biologics Licence application 

Diagnostic Name PMA/ 510(k)/ HDE Diagnostic Manufacturer Trade Name (Generic) - NDA/BLA
Breast Cancer

Lynparza (olaparib) - NDA 208558
Talzenna (talazoparib) – NDA 211651

Ovarian Cancer

Lynparza (olaparib) - NDA 208558
Rubraca (rucaparib) – NDA 209115
Non-small cell lung cancer

Iressa (gefitinib) - NDA 206995
Gilotrif (afatinib)- NDA 201292
Vizimpro (dacomitinib)- NDA 211288
Non-small cell lung cancer (tissue and plasma)

Tarceva (erlotinib) - NDA 021743
Tagrisso (osimertinib) - NDA 208065
Iressa (gefitinib) - NDA 206995
Non-small cell lung cancer, gastric or gastroesophageal junction adenocarcinoma, cervical cancer, 
and urothelial carcinoma

Keytruda (pembrolizimab) - BLA 125514
Non-small cell lung cancer and urothelial carcinoma

Tecentriq (atezolizumab) – NDA 761034/S012

BRACAnalysis CDx P140020/S016 Myriad Genetic Laboratories, 
Inc.

therascreen EGFR RGQ PCR Kit P120022/S018 Qiagen Manchester, Ltd.

PD-L1 (SP142) P160002/S006 Ventana Medical Systems, Inc.

cobas EGFR Mutation Test v2 P120019/S019 Roche Molecular Systems, Inc.

PD-L1 IHC 22C3 pharmDx P150013/S011 Dako North America, Inc.
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Diagnostic Name PMA/ 510(k)/ HDE Diagnostic Manufacturer Trade Name (Generic) - NDA/BLA
Acute myeloid leukemia

Tibsovo (ivosidenib) - NDA 211192
Chronic myeloid leukemia

Tasigna (nilotinib) - NDA 022068/S026
FoundationOne CDx P170019 Foundation Medicine, Inc. Non-small cell lung cancer

Gilotrif (afatinib) - NDA 201292
Iressa (gefitinib) - NDA 206995
Tarceva (erlotinib) - NDA 021743
Tagrisso (osimertinib) NDA 208065
Alecensa (alectinib) - NDA 208434
Xalkori (crizotinib) - NDA 202570
Zykadia (ceritinib) - NDA 205755
Tafinlar (dabrafenib) - NDA 202806 in combination with Mekinist (trametinib) - NDA 204114

Melanoma

Tafinlar (dabrafenib) - NDA 202806
Zelboraf (vemurafenib) - NDA 202429
Mekinist (trametinib) - NDA 204114 or Cotellic (cobimetinib) - NDA 206192 in combination with 
Zelboraf (vemurafenib) - NDA 202429

Breast cancer

Herceptin (trastuzumab) - BLA 103792
Perjeta (pertuzumab) - BLA 125409
Kadcyla (ado-trastuzumab emtansine) - BLA 125427

Colorectal cancer

Erbitux (cetuximab) - BLA 125084
Vectibix (panitumumab) - BLA 125147

Ovarian cancer

Rubraca (rucaparib) - NDA 209115

Abbott RealTime  IDH1 P170041 Abbott Molecular, Inc.

MRDx BCR-ABL Test K173492 MolecularMD Corporation
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Diagnostic Name PMA/ 510(k)/ HDE Diagnostic Manufacturer Trade Name (Generic) - NDA/BLA
Colorectal cancer

Erbitux (cetuximab) - BLA 125084
Vectibix (panitumumab) - BLA 125147

P110030 Colorectal cancer
P110027

Erbitux (cetuximab) - BLA 125084
Vectibix (panitumumab) - BLA 125147
Colorectal cancer

Erbitux (cetuximab) - BLA 125084
Vectibix (panitumumab) - BLA 125147
Non-transfusion-dependent thalassemia

Exjade (deferasirox) – NDA 021882
Gastrointestinal stromal tumors

Gleevec (imatinib mesylate) – NDA 021335
Glivec (imatinib mesylate) – NDA 021588
Breast cancer

Herceptin (trastuzumab) - BLA 103792
Breast cancer

Herceptin (trastuzumab) - BLA 103792
Breast cancer

Herceptin (trastuzumab) - BLA 103792
Breast cancer

Herceptin (trastuzumab) - BLA 103792
Breast cancer

Herceptin (trastuzumab) - BLA 103792
Breast cancer

Herceptin (trastuzumab) - BLA 103792
Breast cancer

Herceptin (trastuzumab) - BLA 103792

cobas KRAS Mutation Test P140023 Roche Molecular Systems, Inc.

Dako c-KIT pharmDx P040011 Dako North America, Inc.

INFORM HER-2/neu P940004 Ventana Medical Systems, Inc.

therascreen KRAS RGQ PCR Kit Qiagen Manchester, Ltd.

Dako EGFR pharmDx Kit P030044/S002 Dako North America, Inc.

FerriScan DEN130012/K12406
5

Resonance Health Analysis 
Services Pty Ltd

InSite Her-2/neu KIT P040030 Biogenex Laboratories, Inc.

SPOT-LIGHT HER2 CISH Kit P050040/S001-S003 Life Technologies Corporation

PathVysion HER-2 DNA Probe Kit P980024 Abbott Molecular Inc.

PATHWAY anti-Her2/neu (4B5) Rabbit 
Monoclonal Primary Antibody

P990081/S001-S028 Ventana Medical Systems, Inc.

Bond Oracle HER2 IHC System P090015 Leica Biosystems

HER2 CISH pharmDx Kit P100024 Dako Denmark A/S
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Diagnostic Name PMA/ 510(k)/ HDE Diagnostic Manufacturer Trade Name (Generic) - NDA/BLA
Breast cancer

Herceptin (trastuzumab) - BLA 103792
Breast cancer

Herceptin (trastuzumab) - BLA 103792
Perjeta (pertuzumab) - BLA 125409
Kadcyla (ado-trastuzumab emtansine) - BLA 125427

Gastic and gastroesophogeal cancer

Herceptin (trastuzumab) - BLA 103792
Breast cancer

Herceptin (trastuzumab) - BLA 103792
Perjeta (pertuzumab) - BLA 125409
Kadcyla (ado-trastuzumab emtansine) - BLA 125427

Gastic and gastroesophogeal cancer

Herceptin (trastuzumab) - BLA 103792
Breast cancer

Herceptin (trastuzumab) - BLA 103792
Mekinist (tramatenib) - NDA 204114
Tafinlar (dabrafenib) – NDA 202806
Non-small cell lung cancer

Xalkori (crizotinib) – NDA 202570
Melanoma

Zelboraf (vemurafenib) - NDA 202429
Cotellic (cobimetinib) - NDA 206192 in combination with Zelboraf (vemurafenib) - NDA 202429

INFORM HER2 Dual ISH DNA Probe 
Cocktail

P100027 Ventana Medical Systems, Inc.

HercepTest P980018/S018 Dako Denmark A/S

Vysis ALK Break Apart FISH Probe Kit P110012 Abbott Molecular Inc.

cobas 4800 BRAF V600 Mutation Test P110020/S016 Roche Molecular Systems, Inc.

HER2 FISH pharmDx Kit P040005/S009 Dako Denmark A/S

THXID BRAF Kit P120014 bioMérieux Inc.
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