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1 INTRODUCTION 
This work is concerned with investigating and comparing methods for detecting marine mammals 
from autonomous surface vehicles (ASVs) where processing power and communications are limited. 
Accurate detection of marine mammals is important for population monitoring and for mitigation as 
many species are endangered and protected by environmental laws. We consider the latter of these 
in the context of detecting North Atlantic right whales (Eubalaena glacialis) in the vicinity of potentially 
harmful subsea activities. Detecting their presence before they enter a mitigation zone both protects 
the animal and avoids the shutdown of costly offshore operations. 
 
As the human population grows so does the demand for commercial shipping. With this comes 
increased ocean sound, much of which has recently been under scrutiny for impacting the wellbeing 
of marine mammals. Ship sounds such as propellers and engine noise are often the source of loud 
low frequency tones within the ocean. These have the potential to not only interfere with marine 
mammal communication but also effect their physiological stress levels resulting in possible fatalities1. 
Military sonar testing has also been hypothesised as the cause of mass cetacean fatalities in Greece 
1996, with the post mortem report concluding that injuries were consistent with acoustic or impulsive 
signals causing cardiovascular collapse, which is often associated with extreme stress1. With a 
number of studies providing strong evidence to suggest physiological harm to marine mammals 
through anthropogenic noise it is logical to create techniques to help mitigate the future risk to 
mammals. 
 
Detection has traditionally been made by human observers on-board ships, but more recently ASVs 
have been used2. Using an ASV limits the detection to an acoustic only signal, as opposed to visual 
with a human observer, however it provides a cheaper and more accessible alternative. ASVs 
typically employ passive acoustic monitoring (PAM) which processes acoustic signals from a 
hydrophone to determine if marine mammals are present. This presents a number of challenges that 
include performing audio analysis and detection with the limited processing power on an ASV whilst 
maximising detection accuracy.  
 
A broad range of machine learning techniques have previously been applied to cetacean detection. 
For example, methods such as vector quantisation and dynamic time warping have been effective in 
detecting blue and fin whales from their frequency contours extracted from spectrograms3. Hidden 
Markov models (HMMs) have also been effective at recognising low frequency whale sounds using 
spectrogram features4,5. Further research utilised artificial neural networks (ANNs) for right whale 
detection, comparing its effectiveness to that of spectrogram correlation, with the ANN giving a better 
performance in samples with low signal-to-noise ratio (SNR)6. Neural networks were further used for 
classifying clicks of Blainville’s beaked whales, with a good performance recorded for correctly 
detecting beaked whale clicks7. The use of more advanced neural networks largely become popular 
in the 2010s with convolutional, deep and recurrent networks being widely used for speech, image 
and text classification8,9,10 as their performance far outweighs previous techniques. Following on from 
the popularity of neural networks, a convolutional neural network (CNN) has been applied to right 
whale detection with spectrograms being used as input features. The CNN performed well achieving 
extremely high accuracies11. Since neural networks have proven to be highly accurate across many 
feature domains, this work investigates the use of a convolutional neural network (CNN) for right 
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whale detection and considers both its accuracy and processing requirements. Further refinement of 
the CNN is then carried out in order to try and minimise total processing whilst maintaining a maximum 
accuracy.  
 
The remainder of this paper is organised as follows. Section 2 describes the characteristics of right 
whales and their acoustic properties. Issues of detection from an ASV are highlighted in Section 3. 
Section 4 outlines the use of the CNN and how it has been developed for this application, with details 
on how features have been extracted and used. Finally, experiments and results are presented in 
Section 5.   
 
 
2 BACKGROUND OF CETACEANS  
Cetaceans are a large and diverse group of marine mammals. They are split into two suborders, 
odontocetes (toothed whales) and mysticetes (baleen whales). Odontocetes have teeth and feed on 
fish whilst mysticetes have a comb like structure (baleen) which helps them to feed on large amounts 
of crustaceans and zooplankton at once. Right whales are part of the mysticeti suborder and are 
known to move seasonally to feed and give birth12. 
 
Communication between whales is achieved primarily through sound. Large amounts of water make 
sight extremely difficult however sound propagation over hundreds of kilometres is very common. 
Most cetaceans can vocalise in several ways with whistles, clicks and burst pulses being the most 
common13. These methods of vocalisation have been predominantly recorded for use in the tasks of 
communication, feeding and navigation.  
 
Our focus is on right whales which, are one of the most endangered marine mammals14 with a high 
possibly of extinction due to human activity within areas where they migrate, with as few as 350 
individuals remaining. Right whale calls have been well documented15 and this work focuses on their 
most commonly documented sound, a tonal up-sweep from approximately 60Hz to 250Hz typically 
lasting 1 second16. Tonal up-sweeps are believed to be used as contact calls and are produced by all 
ages of animal17. Examples of these tonal sounds are shown in Figure 1 which illustrates calls at 
different signal-to-noise ratios (SNRs) caused by marine noise. Calls, however, are not always 
consistent with one another and can often vary in duration, frequency range, by time of day, season 
and age of the animal18. Right whale vocalization patterns are also extremely variable with periods of 
silence regularly spanning many hours19. 
 
Calls can be difficult to hear, or visualise in spectrograms, as these low frequency bands are often 
congested with artificial sounds such as ship noise, drilling, piling, seismic exploration, or interference 
from other marine mammals20. These overlapping frequencies can cause large amounts of 
background noise in the signal making detection extremely difficult. Figure 1 shows three distinct 
levels of up-sweep visualisation. The top spectrograms show strong up-sweeps with little interference 
from background noise. The middle row shows strong calls amongst high levels of background noise. 
The bottom spectrograms show the most challenging scenario with weak calls embedded in large 
amounts of background noise, giving little indication of mammal presence. 
  
Current methods of collecting cetacean data involve towing a hydrophone array from a ship and using 
trained observers to listen and watch the water for mammal activity. Visual surveys are often hindered 
by poor weather conditions (e.g. high seas, fog, presence of ice and darkness), uncertainty of species, 
and short surfacing intervals21, causing this method to be extremely unpredictable for mammals that 
rarely surface. A combination of visual and acoustic monitoring from a ship will hypothetically yield 
the best result for detection however, ship time is expensive and often sporadically timed. Contrary 
to this, PAM only systems can record continuously without human interaction, giving a cheaper 
solution with a much higher likelihood of recording the animal of interest. Furthermore, being able to 
use an ASV with a PAM system will minimise local noises as no ship is needed for movement of the 
hydrophone.  
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3 LIMITATIONS OF AUTONOMOUS SURFACE VEHICLES 
Deploying ASVs for marine mammal detection is much cheaper than employing human observers 
on-board ships and allows surveys to last several months2. For the task of mitigation monitoring a 
positive detection result needs to be communicated immediately so that mitigation measures can be 
put in place to protect the animal. This differs from, for example, population monitoring where data is 
stored on an ASV and then transferred and processed at a later time.  
 

Figure 1: Example spectrograms showing up-sweep calls from right whales for: top row, 
high SNR; middle row, medium SNR; bottom row, low SNR. 

Figure 2: Alternative ASV architectures, showing a) 'thick' ASV with on-board detection 
and b) 'thin' with detection done remotely. 

a) b) 



Proceedings of the Institute of Acoustics 
 
 

Vol. 41. Pt. 1. 2019 
 
 

Two potential ASV architectures can be considered for mitigation monitoring and can be termed ‘thick’ 
and ‘thin’. The ‘thick’ ASV samples the acoustic data from the hydrophone and inputs this into an on-
board detection algorithm with positive detections transmitted for mitigation alert. The ‘thin’ ASV 
performs only the sampling on-board and transmits the data remotely for detection processing and 
mitigation alerts. Providing communication beyond a few miles, where a wireless modem could be 
employed, requires a satellite link. For the ‘thin’ ASV, the communication costs are generally 
prohibitive as a permanent satellite link is necessary. Furthermore, transmission would likely exceed 
the 2.4kbps limit for the Iridium network and thereby require a connection to the Inmarsat network 
which is substantially more expensive and has much higher power consumption (100 W, as opposed 
to 2.5 W). Based on these limitations of the ‘thin’ ASV architecture, we consider only the ‘thick’ ASV 
and explore how processing requirements can be minimised. To reduce false alarms (and the 
potentially large associated costs) with the ‘thick’ ASV architecture, the segment of audio associated 
with a detection can be transmitted for a human to check, with the frequency of occurrence of this 
unlikely to be prohibitive. 
 
 
4 CNN-BASED DETECTION 
Convolutional neural networks have been hugely successful in the field of image classification22. 
CNNs work by sliding gradient filters over an input feature, computing the dot product for each filter 
region along with a weight value (generated randomly initially). This process is repeated for multiple 
filters, producing a feature map of values that the CNN has learnt. An activation function is then 
applied to each of the filters output to normalise the data. If a value is high it determines that the 
feature is likely to be present. Often pooling is then carried out to reduce the dimensionality of the 
data and to minimise computation of small transformations, whilst aiming to retain the most important 
details. Class probabilities are then returned often after multiple iterations of convolutional and pooling 
layers. Gradients of the error in respect to the initial weights are then utilised by a gradient descent 
function to adjust the filter weights. This can be carried out multiple times in order to minimise the 
output error and produce a more accurate system23.  
 
4.1 FEATURE EXTRACTION 

The CNN-based detection is implemented by first extracting a time-frequency spectral feature from 
the audio signal and then inputting this into a CNN to predict the presence of a whale. The time-
frequency feature, 𝑿, is created using a sliding window that transforms short-duration frames of audio 
into log power spectral vectors. Specifically, an 𝑁-point frame of time-domain samples is extracted 
from the audio, Hamming windowed and a Fourier transform computed. The upper 𝑁/2 frequency 
points are discarded, and the remaining points logged. Analysis windows are advanced by 𝑆 samples 
to compute each new spectral vector. For an audio recording comprising of T samples, a total of 
'()*+,

-
. spectral vectors are computed. This gives the total number of time-frequency points, 𝐷, as 

Equation 1 

𝐷 =	2
𝑇 − 𝑁 + 1

𝑆 7	×	
𝑁
2  

 
Within each time-frequency matrix, normalisation is applied so all elements, 𝑥(𝑡, 𝑓), are in the range 
0 to 1. 
 
Time-frequency feature vectors were systematically created in an attempt to establish which 
temporal-spectral resolution gave the best detection accuracy. By varying the temporal and spectral 
resolutions independently, processing complexity could be assessed against detection accuracy. This 
would ideally result in a system which can obtain a high accuracy, whilst greatly reducing processing 
requirements. An explanation of the experiments that alter temporal and spectral resolutions can be 
found in Section 5. 
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4.2 CNN DEVELOPMENT 

A number of CNN architectures were considered with highest accuracy found using three 
convolutional layers. Each of these has a max pooling layer followed by a final dense layer. The size 
of the input varies according to the time and frequency resolution of the feature extraction and this is 
investigated in section 5. In all convolutional layers, 3	 × 	3	filters are applied with zero-padding at the 
edges, with 32, 64 and 128 in each layer, respectively, with a ReLU activation function following a 
dropout of 0.5. Again, other filter sizes and numbers of filters in each layer were tested, with the 
highest accuracy attained using this configuration. The final dense layer uses a sigmoid activation 
function to give a probability of whale detection. 
 
Preliminary tests were carried out to evaluate a suitable number of epochs for use in the final system. 
40 – 500 epochs were tested on the system with the conclusion that there was no significant 
difference when using 40 epochs compared to 500. All further experiments therefore use 40 epochs 
for training as it was much faster, although it is understood that the number of epochs used for training 
does not affect the testing time.  
 
 
5 EXPERIMENTS 
The aim of these experiments is to explore the accuracy of the CNN and to consider this in respect 
of the trade-off against processing requirements. The first test evaluates the CNN performance as 
the sampling frequency is reduced. Secondly, tests were run that altered both the temporal and 
spectral resolution of the input feature whilst maintaining a 50% window overlap. Later tests then 
maintained a frequency resolution of 15.6Hz and 3.9Hz whilst varying temporal resolutions. 
 
Tests use a database of North Atlantic right whale up-calls that was obtained as part of the 
Marinexplore and Cornell University Whale Detection Challenge* where the audio is segmented into 
2 second duration blocks. Each block is labelled as either containing a right whale or not, with 
annotations produced manually. A set of 10,934 audio blocks for are used for training, 1,122 for 
validation and 1,962 for testing. The training, validation and test sets are configured to contain equal 
numbers of blocks with and without right whales. 
 
5.1 EFFECT OF SAMPLING FREQUENCY 

Initially a set of baseline spectral parameters were selected to assess the effect that downsampling 
had on the detection accuracy. For the full sampling frequency of 2kHz on a 2 second signal, a width 
of 128 time-domain samples, overlap of 50% and 128 fast-Fourier transform (FFT) points were used. 
These parameters were scaled proportionally for both the 1kHz and 500Hz sampling frequencies in 
order to maintain a consistent frequency resolution.  
 
Right whale calls typically rise to approximately 250Hz in frequency (see Figure 1) and so reducing 
the sampling frequency from 2kHz to 1kHz serves to remove the 500-1000Hz band which contains 
no whale tones. Figure 3 shows the achieved accuracy of the CNN across all frequencies. Both the 
2kHz and 1kHz systems show little variation in accuracy, with the small improvement in the 1kHz 
system that we attribute to the removal of noise present in this band which may lead to false alarms. 
Downsampling further to 500Hz leaves the remaining signal bandwidth at 0-250Hz which is very close 
to the upper tone frequencies in right whale calls that may be the cause of a 1% drop in accuracy. 
Further experiments consequently focus on comparing 2kHz and 1kHz systems only. 
 

                                            
*https://www.kaggle.com/c/whale-detection-challenge/data 
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Given that an aim of this work is to deploy detection on low processing power devices situated on an 
ASV, we also measured processing times for the methods when run on a CPU. Figure 4 shows the 
processing time for the three sampling frequencies. Results show that the CNN is able to process 
each 2 second block in between 2-7ms which is substantially faster than real-time. These tests were 
performed on an Intel Core i7-870 CPU which is likely to be much faster than processors deployed 
on an ASV. Also shown on Figure 4 is the number of time-frequency points in the CNN input feature, 
which is seen to be linearly proportional to the processing time. 

 
5.2 ANALYSIS AND OPTIMISATION OF THE CNN 

Tests now concentrate on the CNN using only 2kHz and 1kHz features and examine further the trade-
off between accuracy and processing time by examining the time and frequency resolution of the 
input feature.  
 
Frame widths between 256ms and 16ms are considered first with a fixed 50% overlap of frames which 
gives a time resolution, ∆𝑡, between 128ms and 8ms. In terms of the frequency resolution, ∆𝑓, this 
varies between 3.9Hz and 62.5Hz, depending on the window size and sampling frequency. The 
number of time-frequency points, 𝐷, for each configuration is computed using Equation 1. For each 
time resolution, Table 1 shows the resulting frequency resolution, number of time-frequency points 
and detection accuracy, for sampling frequencies of 2kHz and 1kHz - we chose not to pursue the 
500Hz system as accuracy had reduced slightly. 
 
Table 1: Detection accuracy and number of points for varying time and frequency resolution features with 50% 
frame overlap. 

 ∆𝑡 128ms 64ms 32ms 16ms 8ms 

2kHz 
∆𝑓 3.9Hz 7.8Hz 15.6Hz 31.3Hz 62.5Hz 
𝐷 3584 3840 4032 3968 3984 
Accuracy 91.4% 92.1% 91.6% 90.2% 89.9% 

1kHz 
∆𝑓 3.9Hz 7.8Hz 15.6Hz 31.3Hz 62.5Hz 
𝐷 1792 1920 1952 1984 1992 
Accuracy 91.2% 92.0% 91.6% 90.6% 90.0% 

 
Highest accuracy for both sampling frequencies is found with the 64ms-7.8Hz time-frequency 
resolution, with 92.1% for 2kHz and 92.0% for 1kHz. Considering the number of points, and hence 
processing time, the 1kHz system requires half the computations and gives almost equal performance 
to the 2kHz system. 
 

Figure 4: Processing time and number of time-frequency 
points across different sampling frequencies for a CNN 

Figure 4: CNN accuracy across different sampling 
frequencies 
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Table 2: Detection accuracy and number of points for varying time resolutions and frequency resolutions of 
15.6Hz and 3.9Hz. 

 ∆𝑡 64ms 32ms 16ms 8ms 

2kHz 

∆𝑓 15.6Hz 15.6Hz 15.6Hz 15.6Hz 
𝐷 1984 3904 7808 15552 
Accuracy 91.1% 91.6% 91.0% 90.0% 
∆𝑓 3.9Hz 3.9Hz 3.9Hz - 
𝐷 7168 14080 28160 - 
Accuracy 92.1% 92.3% 91.3% - 

1kHz 

∆𝑓 15.6Hz 15.6Hz 15.6Hz 15.6Hz 
𝐷 992 1952 3904 7776 
Accuracy 91.0% 91.6% 91.5% 91.0% 
∆𝑓 3.9Hz 3.9Hz 3.9Hz 3.9Hz 
𝐷 3584 7040 14080 28032 
Accuracy 92.3% 92.5% 91.6% 91.0% 

 
The tests in Table 1 were performed with 50% frame overlap which means that frequency resolution 
deteriorates as time resolution improves. We now consider these independently by allowing the frame 
overlap, 𝑆, to vary while keeping the frame width fixed. Specifically, we consider two fixed frame 
widths to give high and low frequency resolutions of ∆𝑓 = {3.9𝐻𝑧, 15.6𝐻𝑧} and adjust the frame slide 
to give varying time resolutions ∆𝑡, from 64ms to 8ms. The resulting accuracy and number of time-
frequency points are shown in Table 2 for 2kHz and 1kHz sampling frequencies. 
 
For both frequency resolutions and both sampling frequencies the time resolution has relatively little 
effect between 64ms and 16ms, with highest accuracy at 32ms. In terms of frequency resolution, the 
finer resolution gives higher accuracy across all configurations tested, although this comes at the cost 
of increased processing time. For example, highest performance of 92.5%, with 1kHz sampling 
frequency, 3.9Hz frequency resolution and 32ms time resolution used 7,040 points. This could be 
reduced to 1,952 points (corresponding to a processing time three times faster) by using a wider 
frequency resolution but with a reduction in accuracy to 91.6%. 
 
 
6 CONCLUSION 
A CNN has been applied to right whale detection within audio, using a range of parameters for feature 
extraction. The feature extraction parameters have been specifically chosen in order to reduce the 
resolution of the feature and subsequently its computational complexity. The audio has been 
converted from the time-domain into the time-frequency domain and inputted as features for the CNN 
to classify. Downsampling the audio leaves accuracy almost unchanged but gives a substantial 
reduction in processing time which is advantageous for ASVs. Considering time and frequency 
resolutions reveals that a wide resolution of 32ms gives good accuracy whilst higher frequency 
resolutions are marginally better, albeit at an increased processing cost. 
 
Possible pre-processing steps such as prefiltering to remove noise or using more noisy training data 
may result in a more accurate system. We have set the decision boundary at a probability threshold 
of 0.5 which gives close to an equal error rate. This could be adjusted to bias detections and it may 
be useful to reduce false alarms as whales typically exhibit long periods of calls, which makes it 
unlikely to miss all of them at times when mitigation alerts are necessary. 
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