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Abstract—There has been a steady growth in machine
learning research in healthcare, however, progress is difficult
to measure because of the use of different cohorts, task
definitions and input variables. To take the advantage of
the availability and value of digital health data, we aim to
predict unplanned readmissions to the intensive care unit
(ICU) from a publicly available Critical Care dataset called
Medical Information Mart for Intensive Care (MIMIC-III).
In this research, we formulate a heterogeneous LSTM and
CNN architecture specifically to create a model of readmission
risk. Our proposed predictive framework outperformed all the
benchmark classifiers such as support vector machine, ran-
dom forest and logistic regression models on all performance
measures (AUC, accuracy and precision) except on recall where
random forest performed slightly better. Predictions from these
models will help in resource planning and decrease mortality
or length of stay in clinical care settings.
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I. INTRODUCTION

Reducing costs, improving quality of care and effectively
managing the resources are nowadays the main concerns of
health-care decision makers [1]. Traditionally models which
predict in-hospital length of stay, readmission and mortality
use the data available within the first 24 hours of admissions.
Most of these models are designed to require as few inputs
as possible and focus on admission data and individual
abnormal observations rather than patterns or trends over
time [2]. The emergence of machine learning to detect hid-
den patterns in complex, multi-dimensional datasets provides
unparalleled opportunities to develop an efficient discharge
decision-making support system for physicians. Deep learn-
ing models are well known for their end-to-end learning
capabilities so we do not need to worry about the feature en-
gineering part. Moreover, deep learning models are proved to
be very powerful at distilling the complicated relationships
hidden in the data and thus demonstrate good prediction
performance. In this research, we proposed supervised deep
machine learning approaches for ICU readmission predic-
tion. In the intensive care unit (ICU), readmissions represent
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Figure 1. Exemplar transfers undergone by an ICU patient. Since the

patients first ICU stay was followed by another ICU stay, starting less than
48 hours later, these situations can be avoided by the readmission prediction.
a type of adverse event that receives a lot of attention
from the general medical community. Patients readmitted
to the ICU have an increased risk of death. As such, it is
of interest to keep patients in the ICU until such risk is
minimal. Accurate prediction of hospital readmission can
effectively help reduce the readmission risk (Fig. 1 shows
exemplar transfers stages that happens in the ICU admission
and readmission setting). However, the complex relationship
between readmission and potential risk factors makes read-
mission prediction a difficult task. One of the main aims of
this paper is to explore heterogeneous deep learning models
to distill such complex relationships and make accurate
predictions. The remainder of this paper is organized as
follows. In Section II we present MIMIC III ICU database[3]
and the current literature that has used deep learning models
for clinical prediction tasks. Section III gives details for
the implemented deep neural network architecture with the
optional parameter settings and testing methods. We also
provide various pre-processing and feature encoding stages
for the readmission prediction task in this section and the
classification results are shown in Section IV.

II. BACKGROUND
A. Deep Learning for clinical predictions

There is a good number of early research [4] that uses
neural networks to predict Length of stay (LOS) in hospi-
talized patients. In our design, as we leveraged techniques
from deep learning, here we call special attention to both
historical and recent research that applies neural network
architectures to clinical data or electronic health records.



In predicting mortality from early admission data, feed
forward neural networks nearly always outperform baselines
based on logistic regression or severity of illness scores [5].
Machine learning techniques like state space models and
time series mining to integrate more detailed data about the
patient into mortality prediction have also been used in the
literature. Recently, novel deep learning architectures have
been proposed for survival analysis [6]. Many of these works
aim to make predictions based on complex temporal patterns
of physiology rather than individual patient measurements.
Others leverage information from clinical notes, extracted
using topic models [7]. However, the results are generally
not comparable due to use of different data, hence we
attempted to develop our models using a publicly available
dataset described in the next subsection.

B. MIMIC-III Dataset

Medical Information Mart for Intensive Care III (MIMIC-
IIl) is a database comprising Electronic Health Record
(EHR) information related to patients admitted to critical
care units during yeas 2001-2012 at the Beth Israel Dea-
coness Medical Centre, in Boston, USA. It contains data for
more than 40,000 patients regarding their vital signs, med-
ications, laboratory measurements from within the hospital
(i.e. in-patient) and from clinics (i.e. out-patient), charted
observations during a patients stay in the intensive care unit,
and de-identified notes regarding the patients stay, including
nursing notes, physician notes and discharge summaries [3].
MIMICH-III consists of 26 relational tables, where 16 of them
contain timestamped event information. Tables are linked
by identifiers: SUBJECT_ID refers to a unique patient
and HADM _ID refers to a unique admission. For this
study, we have mainly used chartevents table, along with
linked d_item table to get the label of item;d specified
in the chartevents table. Diseases and procedures in the
MIMIC-III are encoded using the International Classification
of Diseases version 9 (ICD-9) codes, and the mapping can be
found in diagnoses_icd and procedures_icd tables. Time
in the MIMIC-III database is stored with one of two suffixes:
TIME (down to the minute) and DATE (down to the day).
Most data are recorded with a time indicating when the
event took place (CHARTTIME) and when it was validated
(STORETIME). In this research, the event logs were created
using CHARTTIME attributes, as this is the best match to
the time of actual measurement. All the patient data in the
MIMIC-III database has been de-identified and all dates
have been randomly shifted to the future so that dates are
internally consistent for the same patient but inconsistent
across patients [8], [9].

C. Patient Screening for readmission modelling

We processed the MIMIC-III dataset to construct a rep-
resentative readmission dataset where we first screened out
the patients under age 18, and have removed the patients
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Figure 2. Exploratory Analysis for readmission modelling. (a) Age

distribution; (b)ICU admission count by Length of Stay(in days)

who died in the ICU. This results in total 35,334 patients
with 48,393 ICU stays. To be noted, one patient may have
multiple in-hospital records in the dataset. We then split the
processed patients into training(80%), validation(10%)and
testing(10%) partitions and conduct a five-fold cross vali-
dation. In the ICU readmission dataset, we categorized all
selected patients and the corresponding ICU stay records
into positive or negative cases. Positive cases are regarded as
ones in which the patients could benefit from a prediction of
readmission before being transferred or discharged. Negative
cases, on the contrast, are those that the patient do not need
ICU readmission. Specifically, patients who were transferred
or discharged from ICU and did not return and are still
alive within the next 30 days are considered to be negative
cases [8]. In the MIMIC Dataset, we had the following
instances that contributed to the positive cases: i) patients
were transferred to low-level wards from ICU, but returned
to ICU again (3,555 records); ii) patients were transferred to
low-level wards from ICU, and died later(1,974 records); iii)
patients were discharged, but returned to the ICU within the
next 30 days (3,205 records); iv) patients were discharged,
and died within the next 30 days (2,556 records). Fig. 2
illustrates the patient age distribution and readmission count
by days for the the discussed patient groups.

D. Dealing with the data imbalance

The dataset for the readmission modelling task was rela-
tively imbalanced, with the positive group that went through
any form of readmission formed of 11290 instances out of
48393 ICU stays. This resulted in a positive and negative



readmission class ratio of 1:3.3. The machine learning litera-
ture proposes to handle data imbalance through either under-
sampling or over-sampling strategies. The former involves
reducing the majority class by the removal of instances from
the training set, while the latter over-samples with repetition
from the minority class, thus increasing its impact within
the training process. Several variations of under- or over-
sampling were proposed in previous studies, including the
one-sided selection and Synthetic Minority Oversampling
Technique (SMOTE) [10]. We have applied the latter on the
training dataset to avoid any bias during the training stage.

E. 48 hour chart event segmentation

For temporal information modeling of the time-series
ICU records, a 48-hour window on each ICU stay has
been applied. From literature it was observed that, the data
during the last 48 hours before the patient is discharged or
transferred to a lower level ward are the most informative for
readmission prediction. Therefore, we separated out last 48-
hour data from each ICU record for the modelling purpose.
To maintain consistency, if a record was found shorter than
48 hours, we replicated the data of the last hour to fill the
gap in the 48 hour record window.

III. READMISSION MODELLING

In this section, we provide a brief description of the pro-
posed model along with the demographics, disease code and
chart events features used in our ICU readmission modelling
tasks from MIMIC III dataset. As readmission modelling
uses time series data, we attempted multiple model structures
including bidirectional LSTM, CNN, and various combina-
tions of them to automate the feature extraction process. The
mathematical foundation for LSTM can be found in ref [11],
[12]. After exploring the models systematically, we finally
proposed a heterogeneous LSTM+CNN model, where the
CNN computes the feature maps without zero padding after
receiving the output hidden unit sequence from LSTM.

A. Model Architecture

A summary of the proposed LSTM+CNN model archi-
tecture is shown in Fig. 3. We have utilized the sequential
model and the dense, ConviD, LSTM, concatenate, and
batch normalization layers from the python keras toolbox.

At the very first layer, we fed the processed chart events in
48-h structured windows, along with encoded demographic
features and ICD-9 embedding features to build up internal
states of the bidirectional LSTM layer and update its weights
to generate the significant memory states in the data. The
learning rate of training was set to 1 x 1073, and we
used binary cross-entropy along with an Adam optimizer
(beta =0.9) during the training stage of the model. After
that the CNN layer receives the output sequence from final
bidirectional LSTM layer and computes the feature maps to
be fed to the output decision making layer. We have used
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Figure 3. LSTM+CNN model, and CNN computes the feature maps for
final classification after receiving the output hidden unit sequence from
LSTM.

a softmax activation function as the output dense decision
layer. The layer calculates the loss between the predicted
values and the true values, and the weights in the network are
adjusted according to the loss. Our proposed classification
model was implemented using python keras library [13] with
TensorFlow back end. All of our evaluations were performed
on a linux pc with an Intel Xeon 3.60GHz processor, 128
GB RAM and an NVIDIA Titan V GPU.

B. Chart Events, demographics and ICD-9 features

There are several significant groups of variables for pre-
dicting readmission. The first group of variables are chart
events. Chart events are recorded from notes of healthcare
providers (e.g., physicians and nurses) and represent the
patients physiological conditions from experts observation
and opinions [14]. Second, patient variables, especially
chronic diseases, that are found strongly associated with
ICU readmission risk [15]. Thirdly, the basic demographic
information, such as gender, age, race, that are again demon-
strated as important factors in the state of art readmission
prediction . The demographic features we consider consist
of the patients gender, age, race, and insurance type. The
reason for including insurance type (uninsured) could lead
to insufficient payment and might result in an unexpected



Table T
QUANTITATIVE COMPARISON OF LSTM+CNN WITH OTHER TRADITIONAL CLASSIFICATIONS.

Classifier Features Accuracy (%)  Precision(%) Recall (%) Area Under Curve (AUC)
Statistical Models: Logistic Re- CE STAT + ICD-9+ D 70.3 87.2 73.6 0.714
gression
Random Forest CE STAT + ICD-9+ D 72.3 89.2 75.6 0.770
Support Vector Machine CE STAT + ICD-9 +D 71.1 90.4 72.2 0.775
LSTM 48-h CE only 69.5 89.4 68.6 0.761
LSTM 48-h CE+ ICD-9 + D 70.7 90.6 73.3 0.787
LSTM+CNN 48-h CE+ ICD-9 + D 73.1 92.2 74.2 0.821
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Figure 4. Weight Decay histogram for several chart events at the first hidden layer of the LSTM+CNN model

discharge. The whole dimension is fourteen for the four
demographic features we considered in this study. Chronic
diseases are one of the most important factors associated
with later readmissions. To deal with the EHR ICD-9 codes,
we regrouped them in 17 broad classes. For this study,
our features consist of 17 chart events (e.g. weight, height,
pH, respiratory rate, body temperature, systolic and diastolic
blood pressure, capillary refill rate, Glascow coma eye,
verbal and motor response parameters) are encoded in 59
channels, 17 diagnoses code groups, and 14 channels for
demographic information of the patients.

C. Statistical features

To compare the proposed model with some traditional
methods like logistic regression, we also extract statistical
features from the chart events for usage [12]. For the
implementation of the traditional methods, we also extract
the statistical features within each 48-hour window. For the
numerical chart events such as diastolic blood pressure or
pH, we regress the 48 data points from the 48 hour window
linearly and record the rate and the bias in the linear func-
tion. For categorical events (e.g. motor response, capillary
refill rate), we simply compute the majority occurrence of
the event in that category. Fig. 4 captures the long-term
temporal dependencies of time series observations in the
chart events with the proposed LSTM+CNN model during
the patients ICU stay.

IV. RESULTS AND DISCUSSION

In this section, we evaluated the performance of the
modelwith traditional statistical approaches such as logistic
regression, random forest etc, and variants of deep lean-
ing models such as Long-Short Term Memory(LSTM) and
Convolutional Neural Networks (CNN). We compared the
performance obtained by different models and derived the
optimal solution of the prediction system. Our experimental

results showed that LSTM followed by a CNN utilizing all
the feature sets obtains a higher positive recall rate and over-
all prediction performance. The proposed model outperforms
the traditional approaches trained with statistical features.
Our experiment results showed that LSTM followed by a
CNN utilizing all the feature sets obtains a higher positive
recall rate and better prediction performance than its generic
LSTM counterpart to explore temporal relationship in the
data. As can be seen in Table I, we also experimented with
various combination of available feature sets to train variants
of LSTM. The proposed model with the full feature set out-
performs the traditional approaches trained with statistical
features and selective raw features from the chart events,
ICD-9 embeddings and the demographic features.

The LSTM trained with basic 48 hour chart events (shown
in green in Fig. 5) had an area under the curve (AUC) value
of 0.76 while with the proposed LSTM+CNN (shown in
purple) with added demographics and ICD-9 embeddings
acheived higher AUC value of 0.821. Though the imple-
mented deep learning models take longer to train and to
extract the automated features than the statistical models,
they are able to predict faster due to the absence of manual
feature calculation stage. Our proposed model focused on
providing accurate and robust predictions on multi-variate
time series data. We only evaluated our method using the
publicly available MIMIC III dataset. However, in general,
the proposed model can be used in other applications in
practice.

V. CONCLUSIONS

We leveraged the MIMIC-III dataset to provide clinicians
with data-driven decision-making support that can help
to prevent inappropriate discharge or transfer of patients
that are high-risk for readmission so that ICU can reduce
effectively the risk to the patient of readmission and re-
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duce cost. The proposed models presented in this research
may find application either in helping with ICU discharge
decisions, or in better targeting ward resources towards
patients with a high chance of unplanned readmission before
any adversity or harm can occur. The proposed predictive
framework showed quantitatively superior performance (Ac-
curacy: 73.1%) to that of the benchmark statistical predictors
such as SVM (Accuracy: 71.1%), random forest (Accuracy:
72.2%) and logistic regression models (Accuracy: 70.3%)
in terms of model accuracy. In the future, we will extend
our models to provide higher overall accuracy in multi-task
clinical prediction problems [16].
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