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Abstract 

Our visual system can easily categorize objects (e.g. faces vs. bodies) and further 

differentiate them into subcategories (e.g. male vs. female). This ability is particularly 

important for objects of social significance, such as human faces and bodies. While many 

studies have demonstrated category selectivity to faces and bodies in the brain, how 

subcategories of faces and bodies are represented remains unclear. Here, we investigated 

how the brain encodes two prominent subcategories shared by both faces and bodies, sex 

and weight, and whether neural responses to these subcategories rely on low-level visual, 

high-level visual or semantic similarity. We recorded brain activity with fMRI while 

participants viewed faces and bodies that varied in sex, weight, and image size. The results 

showed that the sex of bodies can be decoded from both body- and face-responsive brain 

areas, with the former exhibiting more consistent size-invariant decoding than the latter. 

Body weight could also be decoded in face-responsive areas and in distributed body-

responsive areas, and this decoding was also invariant to image size. The weight of faces 

could be decoded from the fusiform body area (FBA), and weight could be decoded across 

face and body stimuli in the extrastriate body area (EBA) and a distributed body-responsive 

area. The sex of well-controlled faces (e.g. excluding hairstyles) could not be decoded from 

face- or body-responsive regions. These results demonstrate that both face- and body-

responsive brain regions encode information that can distinguish the sex and weight of 

bodies. Moreover, the neural patterns corresponding to sex and weight were invariant to 

image size and could sometimes generalize across face and body stimuli, suggesting that 

such subcategorical information is encoded with a high-level visual or semantic code.  

 

Keywords: body perception, face perception, EBA, FBA, OFA, FFA 
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1. Introduction 

Our visual system makes use of various aspects of shape information to categorize 

objects (e.g. person vs. house) and to further categorize them into different subcategories 

(e.g. male vs. female person). This seemingly effortless ability is actually remarkably non-

trivial, as objects that fit one subcategory can be of a great variability (e.g. both faces and 

bodies can belong to the same subcategory male), yet exemplars from different 

subcategories can look comparably similar (e.g. male vs. female faces). In the brain, both 

monkey neurophysiology and human neuroimaging studies indicate that object 

categorization and subcategorization processes are primarily implemented in the ventral 

temporal cortex (VTC) (Grill-Spector and Weiner, 2014; Gross et al., 1972; Haxby et al., 2001; 

Kriegeskorte et al., 2008; Logothetis and Sheinberg, 1996; Tanaka, 1996). While the VTC 

contains high-level category-selective areas for objects (Malach et al., 1995), faces (Gauthier 

et al., 2000; Kanwisher et al., 1997), bodies (Downing et al., 2001; Peelen and Downing, 

2005), scenes (Epstein and Kanwisher, 1998), and visually presented words (Cohen et al., 

2000), how, and where in the brain, subcategories are encoded remains to be elucidated. 

Even less is known about how the brain represents the same semantic categories that are 

shared by different object categories (e.g. sex of faces and sex of bodies).  

Recent studies on face perception suggest that face-responsive brain areas may 

contain neural representations of subcategories (e.g. the sex, race, and identity of faces). 

Different patterns of neural responses to male and female faces have been identified in the 

fusiform face area (FFA) and other face-responsive regions (Contreras et al., 2013; Freeman 

et al., 2010; Kaul et al., 2011). Different patterns of neural responses to faces of different 

races have also been identified in the fusiform gyrus and early visual cortex (Contreras et al., 

2013; Ratner et al., 2013). Several studies have investigated how the brain represents face 

identities (an extreme level of subcategorization) and found stimulus-independent 

representation of face identities in the anterior temporal face area (ATFA) (Anzellotti et al., 

2014; Guntupalli et al., 2016; Kriegeskorte et al., 2007). Other studies found that the FFA 

(Anzellotti et al., 2014; Axelrod and Yovel, 2015) and the superior intraparietal sulcus (Jeong 

and Xu, 2016) also encode face identity.  

It remains unclear exactly which subcategory features drive distinctive patterns of 

neural responses to different face subcategories, and whether these subcategories are 
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represented in brain areas beyond those selective for faces (Haxby et al., 2001). The 

distinction between visual and semantic representation has been observed during general 

object categorization (Bracci and Op de Beeck, 2016), which may similarly apply to face and 

body categorization. For instance, different patterns of neural responses to male versus 

female faces could be driven by differential sensitivity to the visual feature of hairstyle, 

rather than the perceived semantic category of biological sex. Similarly, separable neural 

responses to faces of different races may be caused by the visual feature of skin tone, rather 

than the semantic category of race. Studies finding different neural responses to bodies of 

different subcategories in body-responsive areas may have the same visual/semantic 

concern. There is some evidence that the extrastriate body area (EBA) and fusiform body 

area (FBA) contain information about the identity of bodies (Ewbank et al., 2011) and the 

FBA and right middle occipital gyrus contain information about the weight of bodies 

(Hummel et al., 2013). However, different neural responses to lower vs. higher weight 

bodies might be supported by different sensitivity to the physical image size of bodies rather 

than the semantic perception of body weight. In behaviour, perceived body weight has been 

found to be processed independently of physical image size (Sturman et al., 2017).  

In this study, we investigated how information about subcategories shared by faces 

and bodies is encoded in the face- and body-responsive brain networks. We chose the same 

two subcategories of faces and bodies: sex (male vs. female) and weight (lower vs. higher). 

We presented participants with images of faces and bodies varying in sex, weight, and 

image size (larger vs. smaller) whilst recording their brain activity using functional magnetic 

resonance imaging (fMRI). Inclusion of both face and body stimuli allowed us to investigate 

whether the brain encodes shared semantic subcategories (e.g. male/female) in an abstract 

manner, despite dramatic differences in the visual appearance of stimuli (e.g. faces vs. 

bodies). We varied image size of stimuli to further test whether the neural coding of 

subcategories is more abstract (i.e. image size invariant) or more bound to visual features 

(i.e. image size dependent). Varying image size also helps to clarify whether or not neural 

processes in high-level visual areas are modulated by low-level visual features (e.g. image 

size) (Andrews and Ewbank, 2004; Sawamura et al., 2005; Yue et al., 2011).   

To investigate how face- and body-responsive brain regions encode the 

subcategories of sex and weight, we first trained support vector machine (SVM) classifiers to 
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discriminate patterns of blood-oxygen-level dependent (BOLD) activity elicited by each 

subcategory, and then used them to predict the subcategories within separate test data. We 

further tested if neural responses to different subcategories generalize across stimuli sizes 

(e.g. trained with smaller faces, tested on larger faces), and across face and body stimuli 

(e.g. trained with faces, tested on bodies). We performed these multivoxel pattern analyses 

(MVPA) for both functionally defined face- and body-responsive areas and in whole-brain 

searchlight analyses. These analyses allow us to differentiate whether the neural coding of a 

subcategory is driven by low-level visual features, by high-level visual features, or by 

semantic processing. Specifically, if neural responses to face and body subcategories were 

driven by low-level visual features, they would be dependent on image size. If the neural 

responses to these subcategories were driven by high-level visual features, they would be 

independent of the image size, but not necessarily able to generalize across face and body 

stimuli. In contrast, if neural responses were driven by semantic information then they 

would be able to generalize across image size and across face and body stimuli. 
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2. Materials and methods 

2.1. Participants  

Thirteen participants (7 female, 6 male, 22-32 years old) were included in the fMRI 

experiment analyses presented in the results section, out of fifteen who had originally 

participated. Due to scanner malfunction the face-stimuli runs could not be completed in 

one participant. This participant was included in the body-related analyses but not the face 

ones. Data from two participants were excluded from analyses due to excessive head 

movement during scanning. All participants provided written informed consent prior to the 

experiment, and the procedures were approved by the ethics committee of the University 

Clinic Tübingen. 

2.2. Stimuli  

The experimental stimuli were grayscale images of faces and bodies that varied in 

biological sex (i.e. male or female) and weight (i.e. higher weight or lower weight), resulting 

in four stimulus classes for faces, and four for bodies. Each class was presented in both a 

smaller and larger image size (larger images were twice the height and width of smaller 

images) resulting in a total of 16 conditions (Fig. 1A). Each class contained 42 exemplars (e.g. 

low-weight, male bodies), all of which were different individuals. The perceived sex and 

weight of these images were validated via ratings from independent observers (see sections 

2.2.3 and 3.1.1 below).  

2.2.1. Face stimuli 

Face stimuli were created using 3D face models of the face database of the Max 

Planck Institute for Biological Cybernetics (Blanz and Vetter, 1999; Troje and Bülthoff, 1996). 

To increase the variability of weight of faces, we intensified the perceived weight of the 

faces using a 3D morphable model (Blanz and Vetter, 1999), using the following procedure. 

Six observers (5 female, 1 male, 22-27 years old, 1 author), who did not participate in the 

fMRI experiment, rated the perceived weight of 311 faces from the database. Based on 

these ratings we selected all faces that were above or below one standard deviation from 

the average perceived weight, separately for male and female faces. These selected faces 

were then morphed together to generate average higher and lower weight faces separately 
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for male and female faces. The difference between higher- and lower-weight average 

morphs was then applied to the original individual face models, so that for each face we 

were able to create higher and lower weight versions of that face. Any stimuli with artefacts 

from the morphing procedure were removed.  

2.2.2. Body stimuli  

Body stimuli were created based on body scans from the CAESAR dataset (Robinette 

et al., 2002). We selected bodies with a Body Mass Index (BMI) between one and two 

standard deviations above the average BMI for our higher weight bodies, and between one 

and two standard deviations below the average BMI for our lower weight bodies (both 

calculated separately for male and female bodies). The selected 264 body scans were then 

registered to a 3D body shape and pose model (Loper et al., 2015). This allowed us to obtain 

individual body shapes in a standard A-pose (see Fig. 1A). We modified the texture obtained 

from the original scans in order to remove markers and fill in any missing texture. In the 

final body images, the faces were covered with an oval in order to exclude any face 

information from the body images.  

2.2.3. Ratings of face and body stimuli  

To select stimuli that truly differed in perceived weight and sex, we had six observers 

(3 female, 3 male, 22-35 years old), who were not participants in the fMRI experiment, rate 

the perceived sex and weight, for both face and body stimuli, on 7-point Likert scales. Based 

on these ratings we then selected 42 stimuli for each of the eight conditions (e.g. low-

weight, male bodies) that maximized perceived difference in sex and weight.  

2.2.4. Background stimuli  

During the fMRI experiment, face and body images were shown in front of a 

randomly generated Gaussian noise background (Fig. 1B), in order to keep the area of 

retinal stimulation constant for all stimuli despite differences in the foreground image 

shape.  

2.2.5. Localizer stimuli  

Stimuli for the localizer experiment consisted of grayscale images of faces, headless 

bodies, objects and phase-scrambled images. Phase-scrambled images were created by 
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making a collage containing the face and headless body images and then generating Fourier-

scrambled images from the collage image.  

 

 

Figure 1. Experimental stimuli and procedure of the fMRI experiment. (A) Example stimuli for the 16 

conditions of the fMRI experiment. Stimuli were shown at a larger and a smaller image size (larger 

images were twice the height and width of smaller images). (B) An example block of stimuli in the 

fMRI experiment. Subjects viewed the stimuli in 6 second blocks, where each block contained images 

from one condition. Each image was presented for 900 ms with a 100 ms blank grayscale screen 

between images. Two Gaussian noise only images were shown between blocks, each lasted 900 ms 

followed by a 100 ms blank screen.   
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2.3. fMRI experiment 

The study consisted of two fMRI sessions on separate days. On the first day localizer 

runs and anatomical data were collected. On the second day experimental runs were 

collected. Stimuli were presented via a projector (resolution 1920x1080) with Matlab 2013b 

using the Psychophysics Toolbox extensions (Brainard, 1997; Kleiner et al., 2007) on a 

Windows PC. Participants lay supine in the scanner and viewed a screen positioned behind 

their head via a mirror attached to the head coil. The screen was positioned at a distance of 

82 cm, and spanned 28° x 16° of visual angle in horizontal and vertical directions 

respectively.   

2.3.1. Experimental runs  

Participants completed 8 experimental runs where 4 runs contained face stimuli and 

4 runs contained body stimuli. Each run contained 8 conditions of a 2 (Sex: male vs. female) 

x 2 (Weight: lower vs. higher) x 2 (Image Size: larger vs. smaller) factorial design (Fig. 1A). 

Conditions were presented in a carryover counterbalanced blocked design, such that each 

condition block was preceded by each condition block once in a run (Brooks, 2012). This was 

to avoid biases due to remaining BOLD activation from a previous condition block (Aguirre, 

2007). Stimuli were presented in front of a centred Gaussian noise background (width 5.1°, 

height 7.9°). Average stimulus sizes were of the following widths and heights; larger faces 

2.4°x3.7°; smaller faces 1.2°x1.8°; larger bodies 4.0°x6.5°; smaller bodies 2.0°x3.3°. In each 

block 6 images were shown, where each image was shown for 0.9 s followed by a 0.1 s blank 

grayscale screen. Two Gaussian noise only images were shown between blocks, each for 0.9 

s followed by a 0.1 s blank grayscale screen. Images in each block appeared in 6 different 

positions (horizontally either 0.2° left or right of the screen centre; vertically either centred, 

or 0.2° above or below the screen centre) in a random order.  

2.3.1.1. fMRI task 

Participants fixated a central fixation cross at all times and pressed a button 

whenever a red dot appeared on the fixation cross. This occurred twice during each block at 

randomly determined times at least 2 s apart. 
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2.3.2. Localizer runs  

Participants completed 5 localizer runs, which were collected on a separate day prior 

to the experimental runs. In each run participants viewed blocks of faces, bodies, objects 

and phase-scrambled images. Faces, bodies and objects were shown in front of the phase-

scrambled images to match the amount of retinal stimulation in all blocks. In each block 8 

images were shown, with each image being presented for 1.8 s, and a 0.2 s blank grayscale 

screen between images. Images were presented in a carryover counterbalanced sequence 

(Brooks, 2012). Participants performed a one-back matching task on the images, to ensure 

balanced attention across conditions. Image repetitions occurred on average once every 9 

seconds.  

2.4. fMRI scan parameters 

Images were acquired using a 3T Siemens Prisma scanner with a 64-channel head 

coil (Siemens, Erlangen, Germany). Functional T2* echoplanar images (EPI) were acquired 

using a sequence with the following parameters; multiband acceleration factor 2, TR 1.2 s, 

TE 30 ms, flip angle 68°, FOV 192x192 mm. Volumes consisted of 36 slices, with an isotropic 

voxel size of 3x3x3 mm. The first 8 volumes of each run were discarded to allow for 

equilibration of the T1 signal. During each session a gradient echo field map was recorded so 

that magnetic field inhomogeneity could be corrected during preprocessing. For each 

participant a high-resolution T1-weighted anatomical scan was acquired with the following 

parameters; TR 2 s, TE 3.06 ms, FOV 232x256 mm, 192 slices, isotropic voxel size of 1x1x1 

mm.  

2.5. fMRI data preprocessing  

Data was preprocessed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). All 

functional data was realigned, unwarped to correct for inhomogenities in the magnetic field 

and coregistered to the anatomical data. Localizer data was spatially smoothed with a 6 mm 

Gaussian kernel. For the whole-brain univariate analyses the data was normalized to MNI 

(Montreal Neurological Institute) space and spatially smoothed with a 6 mm Gaussian 

kernel. Multivariate data analyses were performed in individual subject space on 

unsmoothed data. For searchlight analyses the resulting single-subject maps of classification 

http://www.fil.ion.ucl.ac.uk/spm/
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accuracies were normalised to MNI space, and spatially smoothed with a 6 mm Gaussian 

kernel. 

2.6. Definition of regions of interest   

We defined separate face- and body-responsive regions of interest (ROIs) using data 

from the localizer runs. The contrast faces > objects was used to identify the OFA and FFA 

and the contrast bodies > objects was used to identify the EBA and FBA (Table 1). As ROI size 

has been shown to affect decoding accuracy (Gardumi et al., 2016) we kept ROI sizes 

constant by selecting the 100 most active voxels in each region bilaterally to form the ROI. 

To achieve this, we initially attempted to identify each ROI using a threshold of p < 0.05 

(FWE corrected). If the ROI was not identifiable in 100 voxels we attempted to define the 

ROI using a lower threshold of t = 2. ROIs were defined using localizer data only, therefore 

their definition was independent to the main experiment analyses. The FFA and the FBA are 

known to partially overlap (Schwarzlose et al., 2005). We initially performed analyses in 

both ROIs without removing any overlapping voxels (this overlap had a mean of 32% of FFA 

voxels and 38% of FBA voxels). In any instances where an analysis was significant for both 

FFA and FBA (and therefore significant decoding could be caused be overlapping voxels) we 

planned to run additional analyses removing the overlapping voxels to investigate this 

possibility.  

In addition to the separate ROIs we defined distributed face- and body-responsive 

ROIs that contained voxels from several of the isolated ROIs, as described previously (Hahn 

and O’Toole, 2017). This allowed us to investigate whether neural information from 

distributed brain regions improves categorical classification of faces and bodies. Distributed 

face-responsive ROIs were defined using voxels from OFA, FFA, STS and ATFA. Distributed 

body-responsive ROIs were defined using voxels from EBA and FBA. The 300 and 500 most 

responsive voxels were selected to create two sizes of distributed ROIs. We defined 300 

voxel ROIs as every participant had at least 300 face- and body-responsive voxels, thus we 

were able to define a distributed face- and body-responsive ROI of this size in every 

participant. Most participants also had many more face-and body-responsive voxels, thus 

we additionally defined 500 voxel face- and body-responsive ROIs (in N=10 and N=11 

participants respectively) to see if classifier performance would benefit from information in 

these additional voxels.  
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We used V1 as a control ROI, which was bilaterally localized using anatomical labels 

generated using the Freesurfer software package (Hinds et al., 2009) 

(https://surfer.nmr.mgh.harvard.edu/). This method generates V1 ROIs based on the 

anatomy of the participant, and the method has been validated to show that there is close 

agreement between these anatomical V1 ROIs and V1 defined functionally using retinotopic 

mapping. For each participant, we selected the 50 most posterior voxels (corresponding to 

the foveal section of V1) from each hemisphere and combined them to create a 100-voxel 

V1 ROI.  

To investigate if our choice to fix the ROI size at a constant number of voxels, rather 

than fixing ROI size at a constant t-contrast threshold had any impact on our results, we 

additionally conducted supplemental analyses where ROIs were defined using this 

alternative method (Supplementary Table S1). Specifically, we defined supplemental 

versions of our face- and body-responsive ROIs by selecting all active voxels at a constant 

threshold of t = 3 rather than a constant number of voxels. A supplemental V1 ROI was 

defined using the same method as the original V1 ROI, except that the 510 most posterior 

voxels were selected in order to match the size of this V1 ROI to the average size of the 

largest separate ROI (EBA). All results of these supplemental analyses can be found in the 

supplemental materials.  

https://surfer.nmr.mgh.harvard.edu/
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Table 1 

ROI coordinates (in MNI space), ROI volume and number of subjects each ROI was identified in (N). 

All ROI analyses were done in subject space. ROIs were subsequently normalized to MNI space in 

order to show the mean ROI locations. Coordinates show mean x, y and z locations and volume, ± 

standard deviations.  

 

 

2.7. Multivoxel pattern analyses (MVPA)  

Data from the main experiment was modelled with General Linear Models (GLMs) 

using SPM12. The responses to each block (i.e. trial) were modelled as separate regressors 

in the GLM. Classification analyses were performed using The Decoding Toolbox (Hebart et 

al., 2015) from the resulting beta weight images. Input data was feature-scaled using z-score 

normalization and outlier values (greater than 2 standard deviations) were set to 2 or -2. 

Mean and standard deviation for z-scoring were estimated using training data and then 

these values were applied to testing data to ensure independence of training and testing 

data. Classification was performed using a linear support vector machine classifier (LIBSVM).  

We performed three different MVPA analyses (one combining both image sizes, one 

across image size, and one across face and body stimuli), and each was done for separate 

ROI hemisphere x y z Volume (mm3) N 

OFA left -34 ± 6.4 -83 ± 7.1 -12 ± 3.4 520 ± 296.9 13 

 right 37 ± 5.9 -80 ± 7.4 -13 ± 3.5 945 ± 356.4 13 

FFA left -41 ± 2.8 -56 ± 8.8 -19 ± 3.7 519 ± 253.4 12 

 right 43 ± 3.1 -53 ± 6.0 -18 ± 2.6 979 ± 274.5 13 

EBA left -47 ± 2.8 -77 ± 3.7 4 ± 5.0 385 ± 153.0 12 

 right 48 ± 2.6 -70 ± 3.3 -1 ± 5.4 1106 ± 252.1 13 

FBA left -42 ± 2.7 -48 ± 5.8 -21 ± 5.0 374 ± 277.2 11 

 right 44 ± 2.9 -49 ± 4.0 -18 ± 3.5 994 ± 272.2 11 

V1 left -9 ± 1.4 -100 ± 1.8 -3 ± 4.3 390 ± 70.8 13 

 right 12 ± 3.9 -98 ± 1.8 0 ± 3.9 468 ± 80.2 13 
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ROIs, distributed ROIs and in whole-brain searchlight analyses. Statistical significance for ROI 

analyses was assessed using permutation tests with the following procedure. For each ROI 

classification analysis the entire analysis was repeated 10,000 times with condition labels 

randomly assigned. Thus, we generated a null distribution of classification accuracies 

expected by chance and specific to each analysis. We assessed the significance of our ROI 

classification results by testing how often in the null distribution we obtained a mean 

decoding performance greater than or equal to the actual mean decoding performance 

found in our analysis. We first tested whether this was significant at the p < 0.05 threshold 

using a one-sided test (mean decoding performance in the null distribution must be greater 

than or equal to the actual mean decoding performance in less than 500 out of 10,000 

tests). We then additionally applied a Bonferroni-correction to correct p-values for the 

number of ROIs tested. P-values following Bonferroni correction were limited to a maximum 

value of one (i.e. if Bonferroni correction caused a p-value to be greater than one, we set its 

value to one).  

We additionally performed whole-brain searchlight analyses to investigate if any 

regions outside of our defined ROIs would be able to decode sex or weight. Searchlight 

analyses involved performing each classification analysis in 4-voxel radius spheres, where 

each sphere was centred around each voxel in the brain once, thus producing whole-brain 

maps of classification accuracies. To assess the significance of searchlight data we 

performed one-sided t-tests in SPM12 using a False Discovery Rate (FDR) correction to 

adjust for multiple comparisons.  

2.7.1. MVPA analysis 1: classification of sex and weight  

Our first set of analyses aimed to determine which brain regions encode the 

subcategories sex and weight, separately based on neural activity induced by viewing faces 

and bodies of these subcategories. For classification of sex, the classifier was trained and 

tested on male versus female stimuli, regardless of image size and weight. For classification 

of weight, the classifier was trained and tested on higher weight versus lower weight 

stimuli, regardless of image size and sex. Thus, we maximised the amount of data for the 

classifier to make its decision, and pooled across irrelevant subcategories. This meant also 

that the classifier was trained to be invariant to one of the features when distinguishing the 

other. We used 3 out of 4 runs as training data for the SVM classifier. We then used the 
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trained classifier to predict the subcategories of the blocks in the independent test data 

from the 4th withheld run. A four-fold cross-validation procedure was used, such that each 

run was used once as the held out test dataset. Final decoding accuracy was determined by 

averaging over the four cross-validation iterations.  

2.7.2. MVPA analysis 2: size-invariant classification of sex and weight  

Our second set of analyses aimed to determine which brain regions encode the 

subcategories sex and weight in an image-size invariant manner. To this end, we trained the 

classifier to decode the subcategory from neural data evoked by one image size and then 

tested its ability to decode this subcategory from neural activity evoked by the other image 

size. As previously, 3 out of 4 runs were used as training data for the SVM classifier and the 

4th withheld run was used as test data. However, in this case the training data only used 

neural activity data evoked by one image size, whereas the test data only used neural 

activity data evoked by subjects viewing the other image size. A four-fold cross-validation 

procedure was again used, such that each run was used once as the held out test dataset. 

This was repeated two times, once using the smaller image size data as training data and the 

larger image size data as test data, and vice-versa. The final decoding accuracy was 

determined by averaging over the four cross-validation iterations and both image size 

training and test set combinations.    

2.7.3. MVPA analysis 3: classification of sex and weight across face and body stimuli 

Our third set of analyses investigated which brain regions encode the subcategories 

sex and weight across face and body stimuli. To this end, we trained classifiers to decode 

each subcategory from neural data evoked by faces and tested them on neural activity 

evoked by bodies, and vice-versa. As face and body stimuli were shown in separate runs (4 

runs each) we trained classifiers on all 4 runs of data evoked by one category (i.e. face or 

body stimuli) and tested them on all 4 runs of data evoked by the other category. The final 

decoding accuracy was determined by averaging over the two training and test set 

combinations.  
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2.8. Univariate analyses 

We also performed univariate analyses to identify brain regions that are sensitive to 

the sex, weight, and image size of faces and bodies. In both separate and distributed ROIs 

we used t-tests to look for significant differences in the average BOLD response. P-values 

were Bonferroni-corrected for the number of ROIs tested. In addition, whole-brain analyses 

were conducted to look for additional brain regions with univariate activation differences, 

using a FDR correction to adjust for multiple comparisons.  

2.9. Data and code availability statement 

Data cannot be shared as participants were informed that their data would be stored 

confidentially, in accordance with the rules of the local ethics committee. Code is available 

on request. 
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3. Results 

3.1. Behavioural results 

3.1.1. Perceptual differences of face and body stimuli 

Our selected face and body stimuli were perceptually different in terms of perceived 

sex and weight (Fig. 2). Participants gave significantly different ratings of sex to male and 

female faces and bodies (Fig. 2A; faces:  t5 = 15.2, p = 2.3 × 10-5; bodies:  t5 = 20.0, p = 5.8 × 

10-6) and gave a significantly higher weight score for higher-weight stimuli than lower-

weight stimuli (Fig. 2B; faces:  t5 = 7.1, p = 8.8 × 10-4; bodies:  t5 = 9.3, p = 2.5 × 10-4). There 

were also differences in the rating between face and body stimuli. The difference between 

male and female ratings was greater for body stimuli as compared to face stimuli (t5 = 5.3, p 

= 0.0031; Fig. 2C) and the difference between higher and lower weight ratings was greater 

for body stimuli as compared to face stimuli (t5 = 2.8, p = 0.04; Fig. 2D). Note that during the 

fMRI experiment, participants performed a simple task on the fixation cross that was 

unrelated to the stimuli.  
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Figure 2. Perceptual ratings of stimuli in an independent behavioural experiment. Participants rated 

how they perceived the biological sex (A) and weight (B) of face and body stimuli on 7-point scales. 

Circles indicate the mean rating scores and error bars show the standard error of the mean. (C) and 

(D) show the difference between the mean ratings of sex for the male and female stimuli (C), and 

between the mean ratings of weight for the higher and lower weight stimuli (D). Error bars show the 

standard error of the mean. 
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3.1.2. Attention task during scanning  

Participants showed high performance on the attention task during scanning (mean 

detection rate of 92% across all conditions). Detection performance showed no difference 

between face and body conditions (t11 = 0.42, p = 0.68), between male and female 

conditions (t11 = -0.34, p = 0.74), between higher and lower weight conditions (t11 = 0.02, p = 

0.98) or between larger and smaller image size conditions (t11 = -0.33, p = 0.74). There was 

also no difference in reaction times between face and body conditions (t11 = -0.36, p = 0.71), 

between male and female conditions (t11 = 0.06, p = 0.95), between higher and lower weight 

conditions (t11 = -0.03, p = 0.98) or between larger and smaller image size conditions (t11 = -

0.21, p = 0.84). Therefore, any observed decoding difference between experimental 

conditions (i.e. faces or bodies, sex, weight or image size) cannot be attributed to different 

levels of attention during scanning.  

3.2. Classification of sex and weight  

We first tested which brain regions show separable patterns of neural activity 

evoked by male and female stimuli or by higher- and lower-weight stimuli, regardless of 

image size. We used a leave-one-run-out cross-validation method, so that for each iteration 

we trained a linear support vector machine (SVM) classifier using data from three fMRI runs 

and tested the classifier with the data from the one remaining run. We performed these 

classification analyses in three types of brain regions; (1) separate face- and body-

responsive regions, (2) distributed face- and body- responsive regions, and (3) in whole-

brain searchlight analyses. The results are shown in Fig. 3 and 4.  
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Figure 3. Classification of sex and weight. Classification results for sex in separate ROIs (A) and 

distributed ROIs (B). Classification results for weight in separate ROIs (C) and distributed ROIs (D). 

Scatter plots show decoding accuracy for individual participants, horizontal black lines show group 

mean decoding accuracies and vertical error bars show the standard error of the mean. * indicates p 

< 0.05, ** indicates p < 0.001, Bonferroni-corrected for the number of ROIs (separate ROIs: N = 5; 

distributed ROIs: N = 4). Dotted lines indicate chance-level decoding performance, 50%. 
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3.2.1. Classification using separate ROIs 

For body stimuli, classification of sex (Fig. 3A) was significantly above chance in EBA 

(53.4%, p < 0.0005), but not FBA (52.0%, p = 0.078). In addition, face-responsive areas OFA 

(53.2%, p = 0.001) and FFA (52.9%, p = 0.0025), as well as V1 (55.7%, p < 0.0005), also 

showed higher-than-chance classification of the sex of bodies. Classification of body weight 

(Fig. 3C) was significantly above chance in the EBA (52.0%, p = 0.044), but not the FBA 

(50.4%, p = 1). Again, we found higher-than chance level classification of body weight in OFA 

(52.9%, p = 0.0015) and V1 (53.4%, p < 0.0005). These results indicate that the encoding of 

body subcategories is not unique to body-responsive regions as both body- and face-

responsive areas encode information about the sex and weight of bodies. Higher-than-

chance decoding performance observed in V1 suggests that low-level visual features could 

be used to distinguish body subcategories.  

 For face stimuli, none of the separate ROIs was able to classify the sex of faces at a 

higher-than-chance level (Fig. 3A): OFA (50.6%, p = 1), FFA (51.3%, p = 0.36), EBA (49.9%, p = 

1), FBA (50.3%, p = 1), V1 (52.1%, p = 0.073). Classification of the weight of faces was above 

chance in FBA (52.3%, p = 0.046) and V1 (52.5%, p = 0.017), but not in OFA (52.0%, p = 

0.072), FFA (51.2%, p = 0.48), or EBA (50.3%, p = 1).  

To examine whether our results were influenced by the way we defined ROIs (i.e. 

using a fixed number of voxels), we performed additional analyses using ROIs defined at a 

constant t-contrast threshold rather than a constant number of voxels. These additional 

analyses revealed the same results as reported above (see Supplementary Fig. S1), with the 

exception that the classification of the weight of faces was not significant in the FBA (50.9%, 

p = 0.80).  

3.2.2. Classification using distributed ROIs 

We further investigated classification of sex and weight in larger, distributed face- 

and body-responsive ROIs. These ROIs may show improved classification performance 

compared to smaller separated ROIs, due to increased information available for 

classification and known effects of ROI size on classification accuracy (Cox and Savoy, 2003; 

Gardumi et al., 2016). We defined ROIs of two different sizes: 300 voxels and 500 voxels (see 

Section 2.6 for details). For body stimuli, classification of sex (Fig. 3B) was higher than 
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chance in both sizes of body-responsive ROI (300 voxels: 54.1%, p < 0.0004; 500 voxels: 

54.0%, p < 0.0004), as well as both sizes of face-responsive ROI (300 voxels: 53.7%, p < 

0.0004; 500 voxels: 53.4%, p = 0.0024). Classification of body weight (Fig. 3D) was also 

higher than chance in both sizes of body-responsive ROI (300 voxels: 52.5%, p = 0.012; 500 

voxels: 52.5%, p = 0.015), and in the larger face-responsive ROI (500 voxels: 52.3%, p = 0.03).  

For face stimuli, no distributed face or body ROIs were able to decode the sex or 

weight of faces, even using the large 500-voxel ROIs (which had the most information 

available for classification). Specifically, for the sex of faces the decoding performance was 

50.5% (p = 1) in the larger face-responsive ROI and 50.9% (p = 0.75) in the larger body-

responsive ROI. For the weight of faces the decoding performance was 51.3% (p = 0.40) in 

the larger face-responsive ROI and 50.9% (p = 0.68) in the larger body-responsive ROI. It is 

worth noting that when the distributed face-responsive ROI was defined at a constant t-

contrast threshold rather than constant number of voxels, we were able to decode the 

weight of faces (52.2%, p = 0.015; see Supplementary Figure S1D).  

3.2.3. Classification using whole-brain searchlight analysis.  

To investigate if any other brain regions were sensitive to sex or weight information 

of faces and bodies, we performed the same classification analyses at the whole-brain level 

using a searchlight analysis. Fig. 4 shows the brain regions identified in the searchlight 

analyses with body stimuli. Higher-than-chance decoding of the sex of body stimuli was 

observed in much of occipitotemporal cortex (Fig. 4A) and consistent with the ROI 

classification analysis, the regions sensitive to the sex of bodies overlapped with the peak 

coordinates of body-responsive rEBA and rFBA, as well as face-responsive OFA and FFA and 

V1. Additional clusters sensitive to the sex of bodies were revealed in parietal (MNI 

coordinates: -2, -66, 56) and frontal regions (MNI coordinates: 40, 60, 6; 20, 32, 42; 28, 16, 

28). These results show that many regions contain low-level visual, high-level visual or 

semantic information that allows a classifier to distinguish between neural activity evoked 

by bodies of different sexes.   

Classification of the weight of body stimuli was significantly above chance in two 

regions that overlapped with the mean coordinates of lOFA and rEBA, as well as a small 

cluster in the right anterior temporal lobe (MNI coordinates: 40, -6, 32). For the face stimuli, 
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classification of weight revealed a cluster in the left early visual cortex (MNI coordinates: -

14, -94, -12). No regions were identified that could decode the sex of face stimuli. 

 

 

 

Figure 4. Results of searchlight analyses for the classification of the sex (A) and weight (B) of bodies. 

(A) Regions able to classify the sex of bodies in the searchlight analysis overlapped with the mean 

coordinates of the rEBA, OFA, FFA, rFBA and V1. (B) Regions able to classify the weight of bodies in 

the searchlight analysis overlapped with the mean coordinates of the lOFA and rEBA.  
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3.3. Size-invariant classification of sex and weight 

To investigate whether neural responses to sex and weight were invariant to image 

size, we tested whether patterns of neural activity evoked by one size of stimuli could be 

generalized to decode the sex or weight when participants view stimuli of a different size. 

Thus, we trained SVM classifiers to distinguish sex and weight using data obtained with only 

one of the two image sizes. We then tested the classifier using only the data obtained with 

the other image size. Significant decoding would suggest that the pattern of neural response 

to sex or weight was invariant to image size. Again, we performed the size invariant 

classification analysis using separate ROIs, distributed ROIs, and in searchlight analyses 

across the whole brain. The results are shown in Fig. 5.  

 For classification analysis using the separate ROIs, both body-responsive ROIs 

showed higher-than-chance performance when decoding the sex of body stimuli (EBA, 

52.7%, p = 0.002; FBA, 52.8%, p = 0.003), but face-responsive ROIs OFA (50.9%, p = 0.67) and 

FFA (51.1%, p = 0.47), as well as V1 (50.2%, p = 1), did not. Paired-sample t-tests showed 

that decoding performance was significantly higher than V1 in EBA (t12 = 3.2, p = 0.0077) but 

not in FBA (t10 = 1.6, p = 0.15). Furthermore, classification results using ROIs defined at a 

constant t-contrast threshold (Supplementary Fig. S2A) showed significant decoding of the 

sex of bodies in EBA (53.0%, p = 0.0005), OFA (52.2%, p = 0.016) and V1 (52.3%, p = 0.0070) 

but not in FBA (51.1%, p = 0.43). These results suggest that decoding the sex of body stimuli 

across image size is most robust in the EBA.  

Size-invariant classification of the weight of bodies was significant in FFA (52.3%, p = 

0.013) but not in the body-related ROIs (EBA: 51.4%, p = 0.20; FBA: 49.8%, p = 1). A paired t-

test showed that the classification of body weight in FFA was also significantly higher than in 

V1 (t12 = 2.3, p = 0.042). Classification results using ROIs defined at a constant t-contrast 

threshold (Supplementary Fig. S2C) showed significant decoding of body weight in OFA 

(52.3%, p = 0.013) but not in FFA (51.2%, p = 0.40). This difference may be due to an 

increase in information to the larger OFA ROI defined at a contrast t-contrast threshold, and 

an increase in noisy information hindering classification in the FFA ROI. No regions 

contained size-invariant information about the sex or weight of face stimuli.  
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For classification analyses using distributed ROIs, size-invariant classification of the 

sex of body stimuli was observed in both sizes of body-responsive ROI (300 voxels: 52.5%, p 

= 0.0048; 500 voxels: 53.0%, p = 0.0008) but not in face-responsive ROIs (300 voxels: 50.7%, 

p = 0.85; 500 voxels: 50.4%, p = 1). Similarly, size-invariant classification of the weight of 

bodies was found in both sizes of body-responsive ROI (300 voxels: 52.5%, p = 0.0028; 500 

voxels: 52.3%, p = 0.022), but not in face-responsive ROIs (300 voxels: 51.4%, p = 0.20; 500 

voxels: 51.0%, p = 0.62). Neither face- nor body-responsive ROIs could decode the sex or 

weight of face stimuli across image size (sex classification, face-responsive ROI, 500 voxels: 

51.4%, p = 0.32; sex classification, body-responsive ROI, 500 voxels: 50.7%, p = 0.94; weight 

classification, face-responsive ROI, 500 voxels: 51.1%, p = 0.57; weight classification, body-

responsive ROI, 500 voxels: 50.9%, p = 0.73). 

 The whole-brain searchlight analyses revealed no significant regions that could 

reliably decode the sex or weight of stimuli. This null-result, despite significant ROI 

decoding, might be due to the individual variance in ROI location that would weaken the 

group searchlight result in normalized space, combined with the overall weaker signal in the 

cross-decoding approach. 
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Figure 5. Size-invariant classification of sex and weight. In this cross-classification analysis, a SVM 

classifier was trained on neural activity from subjects viewing stimuli of one image size and tested on 

its decoding performance on neural activity from the subjects viewing a different image size. (A) and 

(B) show classification results for sex in separate ROIs (A) and distributed ROIs (B). (C) and (D) show 

classification results for weight in separate ROIs (C) and distributed ROIs (D). Scatter plots show 

decoding accuracy for individual participants, horizontal black lines show group mean decoding 

accuracies and vertical error bars show the standard error of the mean.* indicates p < 0.05, ** 
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indicates p < 0.001, Bonferroni-corrected for the number of ROIs (separate ROIs: N = 5; distributed 

ROIs: N = 4). Dotted lines indicate chance-level decoding performance, 50%. 

 

3.4. Classification of sex and weight across face and body stimuli 

We investigated whether patterns of neural response to sex and weight would be 

able to generalize from patterns of activity evoked by faces to those evoked by bodies and 

vice-versa. To do this we trained SVM classifiers to distinguish sex and weight using neural 

activity data when participants viewed faces, and then tested the classifier on neural activity 

data when participants viewed bodies, and vice-versa. Significant decoding across face and 

body stimuli would suggest a semantic representation of the subcategory. We performed 

classification analyses with separate ROIs, distributed ROIs, and in searchlight analyses 

across the whole brain. The results are shown in Fig. 6.  

We found significant decoding of weight across face and body stimuli in the EBA 

(51.5%, p = 0.021) and the 500 voxel body-responsive ROI (51.7%, p = 0.016), but not in any 

other ROIs (FBA: 50.6%, p = 0.89; OFA: 51.1%, p = 0.14; FFA: 49.8%, p = 1; V1: 49.4%, p = 1; 

face-responsive ROI, 500 voxels: 50.6%, p = 0.84). Paired-sample t-tests showed that 

decoding performance was significantly higher than V1 in EBA (t12 = 3.3, p = 0.0068) and the 

500 voxel body-responsive ROI (t9 = 3.1, p = 0.012). We additionally compared the 

classification performance of weight across face and body stimuli using ROIs defined at a 

constant t-contrast threshold (Supplementary Fig. S3C). We did not find significant decoding 

of weight in EBA (50.4%, p = 1) or the distributed body-responsive ROI (51.1%, p = 0.063) as 

defined using this method.  

We were not able to decode sex across face and body stimuli in any of our separate 

or distributed ROIs (EBA: 50.0%, p = 1; FBA: 50.6%, p = 0.9; OFA: 50.4%, p = 0.39; FFA: 49.2%, 

p = 1; V1: 50.0%, p = 1; body-responsive ROI, 500 voxels: 50.1%, p = 1; face-responsive ROI, 

500 voxels: 49.4%, p = 1). This non-significant decoding of sex across face and body stimuli is 

probably due to the fact that we were unable to identify any regions that could decode the 

sex of faces.  
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We additionally performed searchlight analyses to investigate if any other brain 

regions would be able to decode sex or weight across face and body stimuli. We did not 

identify any regions in these analyses.  
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Figure 6. Classification of sex and weight across face and body stimuli. In these cross-classification 

analyses, SVM classifiers were trained to distinguish sex and weight from neural activity when 

participants viewed faces and then subsequently tested on neural activity when participants viewed 

bodies, and vice-versa. (A) and (B) show classification results for sex in separate ROIs (A) and 

distributed ROIs (B). (C) and (D) show classification results for weight in separate ROIs (C) and 

distributed ROIs (D). Scatter plots show decoding accuracy for individual participants, horizontal 

black lines show group mean decoding accuracies and vertical error bars show the standard error of 

the mean.* indicates p < 0.05 Bonferroni-corrected for the number of ROIs (separate ROIs: N = 5; 

distributed ROIs: N = 4). Dotted lines indicate chance-level decoding performance, 50%. 
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3.5. Univariate analyses 

To investigate whether the sex, weight, and image size of faces or bodies elicited 

different overall levels of neural activity, we conducted both ROI and whole-brain univariate 

analyses. The results are shown in Fig. 7, 8 and 9. 

3.5.1. ROI analyses 

Firstly, to investigate if there were any differences in mean response between faces 

or bodies of different sexes, we performed the contrast female stimuli minus male stimuli. 

None of the face- or body-responsive ROIs showed significant differences between male and 

female stimuli (Fig. 7A and 7B). There was a slight trend for higher activity to male bodies 

compared to female bodies in the body responsive regions, EBA (t12 = -2.6, p = 0.12), FBA (t10 

= -2.8, p = 0.098), 300 voxel body-responsive ROI (t12 = -2.4, p = 0.14) and 500 voxel body-

responsive ROI (t10 = -2.9, p = 0.069).  
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Figure 7. Mean BOLD differences between the categories sex and weight. (A) and (B) illustrate mean 

differences between male and female stimuli for separate (A) and distributed (B) ROIs. Positive 

values indicate higher activation by female stimuli, negative values higher activation by male stimuli. 

(C) and (D) illustrate mean differences between higher and lower weight stimuli for separate (C) and 

distributed (D) ROIs. Positive values indicate higher activation by higher weight stimuli, negative 

values higher activation by lower weight stimuli. None of the differences were significant in any of 

the ROIs. Error bars show the standard error of the mean. 
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Secondly, we investigated if there were any differences in the mean response to 

faces or bodies of different weights, using the contrast higher weight stimuli minus lower 

weight stimuli. No significant differences between higher and lower weight stimuli were 

identified in any ROI (Fig. 7C-D). V1 showed a slight trend to higher activity to lower weight 

bodies compared to higher weight bodies (t12 = -2.1, p = 0.27) and to lower weight faces 

compared to higher weight faces (t12 = -2.6, p = 0.12). 

Finally, we investigated if there were any differences in the mean response to faces 

or bodies of different image sizes (Fig. 8). For face stimuli, we found significantly higher 

BOLD activation to larger faces compared to smaller faces in FFA (t11 = 8.2, p = 2.6 × 10-5), 

FBA (t9 = 5.9, p = 0.0011), both distributed face-responsive ROIs (300 voxels: t11 = 3.8, p = 

0.012; 500 voxels: t8 =3.7, p = 0.024) and both distributed body-responsive ROIs (300 voxels: 

t11 = 3.8, p = 0.013; 500 voxels: t9 =3.5, p = 0.027). Additionally, a slight trend to higher 

activity to larger compared to smaller faces was seen in EBA (t11 = 2.7, p = 0.10) and V1 (t11 = 

2.4, p = 0.17). For body stimuli, none of ROIs showed significant differences between larger 

and smaller bodies. A trend for higher activity to larger than smaller bodies was seen in FBA 

(t10 = 2.4, p = 0.19), V1 (t12 = 2.2, p = 0.25) and the 500-voxel body-responsive ROI (t10 = 2.2, 

p = 0.20).  
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Figure 8. Mean BOLD differences between larger and smaller images. (A) and (B) illustrate mean 

differences between larger and smaller image size stimuli for separate (A) and distributed (B) ROIs. 

Positive values indicate higher activation by larger size stimuli, negative values higher activation by 

smaller size stimuli. * indicates p < 0.05, ** indicates p < 0.001, Bonferroni-corrected for the number 

of ROIs (separate ROIs: N = 5; distributed ROIs: N = 4). Error bars show the standard error of the 

mean. 

 

3.5.2. Whole-brain analyses 

To investigate if any other brain regions were sensitive to the sex, weight, and image 

size of faces and bodies, we performed the same three contrasts in whole-brain analyses. 

We found that the occipitotemporal cortex showed higher brain activity for larger stimuli 

than smaller stimuli, for both faces (Fig. 9A) and bodies (Fig. 9B). For face stimuli the 

significant area overlapped with the mean coordinates of the OFA, FFA and FBA bilaterally. 

For body stimuli the significant area overlapped with the mean coordinates of the FBA, rEBA 

and rFFA. As for the sex and weight of stimuli, no brain regions showed significant 

differences between male and female stimuli or between higher- and lower-weight stimuli.  
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Figure 9. Whole-brain results showing univariate activation differences between larger and smaller 

image size stimuli. (A) Brain regions showing higher activation to larger faces compared to smaller 

faces. These regions overlapped with the mean coordinates of the OFA, FFA and FBA bilaterally. (B) 

Brain regions showing higher activation to larger bodies compared to smaller bodies. These regions 

overlapped with the mean coordinates of the FBA, rEBA and rFFA.  
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4. Discussion 

In this study, we investigated how face- and body-responsive brain regions encode 

information about the subcategories sex and weight. We show, for the first time to our 

knowledge, that subcategorical information about bodies is encoded in both body- and face-

responsive areas in the brain, and that this information is encoded in a size-invariant 

manner, more so for the body- than face-related brain network. Furthermore, we find 

evidence that the FBA responds to the weight of faces, and that weight is encoded in an 

abstract manner in the EBA and distributed body-responsive network. These results indicate 

that subcategories shared by faces and bodies (e.g. sex) are encoded by different patterns 

of neural responses in the brain network related to person perception.   

4.1. Neural coding of body subcategories 

We found that both face-responsive and body-responsive regions encoded 

information about the sex and weight of bodies. For the sex of bodies, higher-than-chance 

decoding was observed not only in all body-responsive ROIs but also in all face-responsive 

ROIs. For the weight of bodies, both the distributed body-responsive areas and the largest-

size distributed face-responsive area showed higher-than-chance classification of body 

weight. For the separate ROI analyses, higher-than-chance decoding of body weight was 

observed in the EBA as well as the face-responsive ROIs OFA and FFA. In contrast to the 

differential multivariate activity patterns, no ROI showed stronger net activity for one 

subcategory than another.  

Our searchlight results showed that brain regions responding to the weight of bodies 

overlapped with those responding to the sex of bodies, though the latter is more 

widespread. This result shows similarity to a recent behavioural finding that judgements of 

the sex of bodies are independent of judgements of the weight of bodies but not vice-versa 

(Johnstone and Downing, 2017). This coincidence suggests that the above behavioural 

difference might be related to how the brain regions processing these two subcategories 

overlap. The encoding of body subcategory information in face-responsive areas indicates 

that these face areas are not exclusively involved in face processing (cf. Kanwisher & Yovel, 

2006). These results are in line with previous findings showing that categorical (e.g. faces 

and bodies) and subcategorical information is distributed across occipitotemporal cortex, 
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rather than selective to specific sub-regions of cortex (Haxby et al., 2001; Huth et al., 2012; 

Op de Beeck et al., 2010).  

Although both face- and body-responsive brain areas encoded the sex and weight of 

bodies, size-invariant body information was more prominent and consistent in the body-

responsive areas. When we used data obtained from one image size to train the classifier 

and then tested it with the data obtained from a different image size, we were able to 

decode the sex of bodies from EBA, FBA and both distributed body-responsive regions, but 

not from any face-responsive region. Similarly, the two distributed body-responsive ROIs, 

but not face-responsive ROIs, showed higher-than-chance decoding of body weight in a size-

invariant manner. Although the FFA showed size-invariant decoding of the weight of bodies, 

in total less face-responsive ROIs showed size-invariant decoding of body subcategories than 

body-responsive ROIs.  

In our first classification analysis we found that V1 was able to decode the sex of 

bodies and the weight of bodies and faces, suggesting there may be some low-level visual 

information that could be used for classification in these analyses (where both image-sizes 

were present in both the training and test set). In contrast, size-invariant decoding of sex 

and weight was not possible in our V1 ROI.   

4.2. Neural coding of face subcategories 

We were able to decode the weight of faces from the FBA, and classify weight across 

face and body stimuli in the EBA and distributed body-responsive network. The decoding of 

weight across face and body stimuli in the EBA and distributed body-responsive network 

suggests that these regions may contain a semantic encoding of weight (i.e. not dependent 

upon low-level visual features). Although the sex of faces can be clearly differentiated in 

perception (as shown by perceptual ratings), we were unable to decode the sex of faces 

based on the pattern of neural activity recorded with fMRI. Previous studies have found 

mixed results about whether the sex of faces can be decoded based on the patterns of 

neural activity in face-responsive brain areas. Some studies were not able to decode the sex 

of faces from the occipitotemporal cortex (Kriegeskorte et al., 2007) and the FFA 

(Kanwisher, 2017), whereas others showed that the sex of faces can be successfully decoded 

from the FFA or extended face network (Contreras et al., 2013; Kaul et al., 2011). One factor 



Body Subcategories   37 
 

that may cause such discrepant results is the stimuli. Our face stimuli were carefully 

controlled and lacked external face features (such as hair or make-up) whereas Contreras et 

al. (2013) and Kaul et al. (2011) used photographs of faces varying in hairstyle, make-up, and 

beards. These external cues are often diagnostic for the sex of faces and facilitate sex 

categorization (Rossion, 2002). Thus, despite clear perceptual differences shown in the 

rating task, the sex differences in our face stimuli might be insufficient to elicit distinct 

patterns of brain activity that can be detected and decoded using MVPA. Note that a lack of 

ability to decode face subcategories does not necessarily reflect a lack of information about 

the subcategories in these regions, it may simply be beyond the resolution that fMRI MVPA 

can detect. For instance, (Dubois et al., 2015) compared identity decoding from fMRI 

recordings with that from single cell recordings in the anterior temporal cortex of 

macaques: they found that identity information decodable from single cells was not 

decodable from the fMRI data.  

Another factor that might have hindered our ability to decode the sex of faces was 

the task. Our attention task (i.e. detecting a red dot) did not involve any effortful processing 

of faces, whereas both Contreras et al. (2013) and Kaul et al. (2011) employed tasks 

encouraging effortful face processing (i.e. judgments about the gender or attractiveness of 

faces). Given that task-related attention has been shown to affect the neural representation 

of faces and semantic categories in natural vision (Çukur et al., 2013; Dobs et al., 2018; 

Kaiser et al., 2016), the automatic processing of faces in our study may lead to weak 

responses to the sex of faces, thereby reducing the possibility of higher-than-chance 

decoding. In addition, while sex and weight are two of the most salient dimensions that 

differentiate the shape of bodies (Hill et al., 2016), they are probably not the most 

important ones for faces (e.g. in comparison with the identity or emotional expression of 

faces (Burton et al., 1999; O’Toole et al., 2011)). In line with this, we found greater 

differences in perceptual ratings between male and female stimuli and between higher and 

lower weight stimuli for body stimuli than for face stimuli. We note however that lower 

rating differences cannot be the only reason for the differences we see in decoding 

performance as rating differences of the sex of faces (for which we do not find significant 

decoding in any region) are considerably larger than for the weight of bodies and faces (for 

which we find significant decoding in a number of brain regions). Lastly, our relatively small 
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sample size (N=12 for face stimuli) might also have impacted our ability to decode the sex of 

faces. A larger sample size might be able to improve the decoding of the sex of faces.   

4.3. Neural coding of subcategories shared by faces and bodies 

Previous studies investigating neural processing of face and body information have 

suggested that such information is supported by largely separated neural networks in 

occipitotemporal cortex (Peelen and Downing, 2007; Pitcher et al., 2009). This segregated 

neural processing of faces and bodies has been demonstrated with both human and 

nonhuman primates (Premereur et al., 2016). For example, neuroimaging studies in 

macaques and humans have shown that responses to whole-agents (i.e. where the image 

contains both the face and body) can be best modelled by a linear combination of responses 

to faces and bodies alone, suggesting that there are separate neural populations responsive 

to face and body information respectively (Fisher and Freiwald, 2015; Kaiser et al., 2014). In 

contrast to this parallel processing hypothesis, we found that the EBA and distributed body-

responsive network could classify weight across face and body stimuli, suggesting that these 

regions encode some shared subcategorical information from faces and bodies in an 

abstract manner. This abstract coding may be semantic or based on high-level visual 

features (for example concavity vs convexity). Although sex can also be perceived from both 

faces and bodies, we were unable to identify brain regions showing stimuli-independent 

encoding of sex. In behaviour, psychological adaptation studies have demonstrated that 

perception of gender (Ghuman et al., 2010; Palumbo et al., 2014) can adapt across face and 

body stimuli, suggesting an overlapping representation.  

Recent studies have suggested that the anterior temporal lobes may contain an 

integrated representation of body and face information. For example, the right ATFA 

showed an equivalent level of brain activity to faces and headless bodies and exhibited 

significant correlation between face- and body-elicited neural responses (Harry et al., 2016). 

Similarly, the anterior temporal face patch (ATFP) in macaques has been shown to respond 

more strongly to whole-agents than the addition of the responses to the face and body 

shown separately, suggesting an integration of face and body information in this region 

(Fisher and Freiwald, 2015). Such integration may help differentiate individuals’ identity, as 

this area has been linked to identity representation in humans (Anzellotti et al., 2014; 

Guntupalli et al., 2016; Kriegeskorte et al., 2007). However, our results (from searchlight 
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analyses across image size or across face and body stimuli) suggest that this identity-

sensitive area does not automatically encode the sex or weight of a person in an abstract 

manner. 

4.4. Effect of low-level stimulus features 

We found consistently enhanced neural responses to faces and bodies when the size 

of images increased. For both faces and bodies, significantly higher brain activity for larger 

than smaller stimuli was observed in distributed areas across occipitotemporal cortex, 

covering face- and body-responsive ROIs, respectively. For face stimuli, the active area 

overlapped with the mean coordinates of face-responsive OFA and FFA, as well as body-

responsive FBA. For body stimuli the overlap was with the mean coordinates of body-

responsive FBA and rEBA, as well as face-responsive rFFA. Neural responses to faces 

appeared to be more sensitive to the stimulus size than those to bodies (see Fig. 8 and Fig. 

9). The influence of stimulus size on neural response of high-level visual areas has been 

shown for faces (Yue et al., 2011) and general everyday objects (Konkle and Oliva, 2012), 

but not, to our knowledge, for human bodies. These results demonstrate that neural 

responses to faces and bodies in high-level visual areas are modulated by low-level stimulus 

properties, rather than being size-invariant (cf. Andrews & Ewbank, 2004; Sawamura et al., 

2005).   

5. Conclusion 

Our study provides the first evidence, to our knowledge, that the sex and weight of 

human bodies can be decoded from neural activity in the person-related brain network 

using MVPA. By demonstrating size-invariant decoding of body subcategories in both the 

body- and face-responsive brain network, as well as cross-classification of weight across face 

and body stimuli, we show that the neural responses to these subcategories are largely 

driven by high-level visual or semantic features rather than by merely low-level visual 

features. The present study also offers an alternative approach to repetition suppression for 

investigating neural responses to subcategorical body information using fMRI. Methods like 

repetition suppression may be biased by top-down effects (Summerfield et al., 2008). 

Together, these findings not only offer new insights into how the brain encodes person-

related visual information like faces and bodies, but also shed light on how shared 
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subcategories from visually distinctive object categories may be encoded in the human 

brain.  
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