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Abstract  16 

Intensive soil tillage is a significant factor in soil organic matter decline in cultivated 17 

soils. Both cultivation abandonment and foregoing tillage have been encouraged in 18 

the past 30 years to reduce greenhouse gas emissions and soil erosion. However, the 19 

dynamic processes of soil organic carbon (SOC) in areas of either continuous 20 

cultivation or abandonment remain unclear and inconsistent. Our aims were to assess 21 

and model the dynamic processes of SOC under continuous tillage and after 22 

cultivation abandonment in the black soil of Northeast China. Soil profiles were 23 

collected of cultivated or abandoned land with cultivation history of 0 to 100 years. 24 

An isotope mass balance equation was used to calculate the proportion of SOC 25 

derived from corn debris (C4) and from natural vegetation (C3) to deduce the dynamic 26 

process. Approximately 40% of SOC in the natural surface soil (0 to 10 cm) was 27 
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eroded in the first 5 years of cultivation, increasing to about 75% within 40 years, 28 

before a slow recovery. C4 above 30 cm soil depth increased by 4.5% to 5% or 0.11 to 29 

0.12 g·kg-1 on average per year under continuous cultivation, while it decreased by 30 

approximately 0.34% annually in the surface soil after cultivation abandonment. The 31 

increase in the percentage of C4 was fitted to a linear equation with given intercepts in 32 

the upper 30 cm of soil in cultivated land. A significant relationship between the 33 

change of C4 and time was found only in the surface soil after abandonment of 34 

cultivation. These results demonstrate the loss and accumulation of corn-derived SOC 35 

in surface black soil of Northeast China under continuous tillage or cultivation 36 

abandonment. 37 

Key words: C3 photosynthesis; C4 photosynthesis; Land-use change; Stable carbon 38 

isotopes; Black soil of Northeast China 39 

1. Introduction  40 

Soils have about three time as much carbon as the terrestrial biosphere and 41 

twice as much as the atmosphere (Batjes 1996). Soil organic carbon (SOC) 42 

concentration in a soil is influenced by many factors, including the biomass of 43 

vegetation, climatic factors, and physical soil qualities (such as parent material and 44 

clay content) (Dawson and Smith 2007). These factors have close relationships with 45 

land use. The management of land affects vegetation structure and some physical soil 46 

factors. In the 1990s, the Land Use and Cover Change program (LUCC) was launched 47 

as a core project of the International Geosphere-Biosphere Program (IGBP) to address 48 
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our understanding of how anthropogenic and biophysical forces affect land use and 49 

hence land cover, and the environmental and social impacts of this change. So far, 50 

evidence increasingly shows that land-use change (LUC) can affect soil carbon 51 

content by influencing the rates of mineralization (Sun et al. 2013) and soil erosion 52 

(Quine and Van Oost 2007; Van Oost et al. 2007) and by providing fresh surfaces 53 

upon which vegetation can grow, sequestering CO2 and delivering plant residues to 54 

soil (Sul et al. 2013). LUC is a major controlling factor for the balance of SOC stocks 55 

and the global carbon cycle (Watson 2000; Poeplau et al. 2011). 56 

It is clear that LUC significantly affects soil C stock (Wang et al. 2011; Smith et al. 57 

2012). As rising population has increased demand for agricultural products, the 58 

conversion of natural ecosystems to cropland and pasture has been extensive (Don et 59 

al. 2011). In most cases, about 25% to 42% SOC tends to be lost following the 60 

conversion of grasslands, forest, or other native ecosystems to cropland; or by 61 

draining, cultivating, or liming highly organic soil (Smith 2008; Poeplau and Don 62 

2013). These reports about dynamics and balance of SOC after conversion are not 63 

consistent due to spatial variation in climate, chemical composition of SOC, soil type 64 

or depth, and intensity of management (Yonekura et al. 2012; Wei et al. 2013). 65 

Methodological inconsistencies also exist (Laganiere et al. 2010; Poeplau et al. 2011). 66 

SOC stock changes do not occur instantaneously, but rather over a period of years to 67 

decades after land-use conversion (Yonekura et al. 2012; Wei et al. 2013). For 68 

instance, Poeplau et al. (2011) reviewed 95 studies covering 322 sites in the temperate 69 

zone, and showed that grassland establishment or afforestation caused a long-lasting 70 
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carbon sink and that no new equilibrium was reached within 120 years, but C loss 71 

after deforestation and grassland conversion to cropland was rapid with a new SOC 72 

equilibrium being reached after 23 and 17 years, respectively, suggesting that the 73 

intensification of land use for food production has detrimental impacts on C storage in 74 

soils.  75 

Regardless of any report on the dynamics of SOC, it is critical to observe the 76 

loss of old carbon and accumulation of new carbon to assess land-use impacts on SOC 77 

dynamics. Each production season, maize residues are returned to soil after harvest, 78 

which can help maintain soil productivity and sequester CO2. The average amount of 79 

maize residue in the world is estimated at 10.1 Mg·ha-1·y-1 (Lal 2005). After a period 80 

of time, maize residues are converted into soil organic matter (SOM) through 81 

humification. Maize-derived SOM is also transformed into CO2 through 82 

mineralization, and discharged into the atmosphere. Additionally, maize-derived 83 

SOM migrates downward with the movement of soil particles, or is eroded by water. 84 

Consequently, to understand the dynamics of maize-derived SOC, we must 85 

understand the parameters of the above processes.  86 

Monitoring spatial and temporal trends in the carbon isotopic composition of 87 

SOM is a key tool used to understand the component processes of the terrestrial 88 

carbon cycle, especially when vegetation changes between C3 and C4 (Bernoux et al. 89 

1998; Boutton et al. 1998; Wynn et al. 2006). Plants with C3 photosynthesis have 90 

δ13C values ranging from approximately -32 to -22‰ (mean -27‰), while those 91 

with C4 photosynthesis have values ranging from about -17‰ to 9‰ (mean -13‰) 92 
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(Griffiths 1992).These natural isotopic differences allow carbon derived from each 93 

photosynthetic pathway to be traced through aboveground and belowground food 94 

webs, and ultimately into the SOM compartment (Ehleringer et al. 2000; Del Galdo et 95 

al. 2003; Potthoff et al. 2003). This method has regularly been applied to understand 96 

the fate of fresh organic carbon from corn, a globally-grown crop species with a C4 97 

photosynthetic pathway (John et al. 2003; Dungait et al. 2013).  98 

The black soil region in northeastern China is in the North Temperate Zone and 99 

is well known for its high SOC. Cultivation in black soil can be traced back a few 100 

hundred years. Most black soil has been converted to cropland. Following LUC, the 101 

black soil layer is visibly eroded and SOC decreases rapidly (Liang, Zhang, et al. 102 

2009; Xu et al. 2010). However, some research has suggested SOC has stabilized 103 

during the past two decades (Yang et al. 2004). Due to a lack of in-situ observation, 104 

the dynamics of new and old SOC are poorly understood. In this paper, we analyzed 105 

SOC concentrations and stable C-isotope composition of soils from natural land, land 106 

cultivated with corn, and restored poplar tree belts to (i) observe the changes of SOC 107 

concentration after conversion to corn land; and (ii) assess and model the dynamic 108 

process of corn-derived SOC.  109 

2. Materials and methods 110 

2.1 Study sites  111 

The black soil region in Northeast China is in the middle of Heilongjiang and 112 

Jilin provinces, and covers an area of 59 600 km2. The topography of the region is 113 

characterized by undulating slopes of 1 to 5°. The climate is semi-humid temperate 114 
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with annual precipitation in the range of 500 to 600 mm, and mean annual 115 

temperature variation of 0.5 to 6 ℃. The original predominant vegetation was 116 

steppe-meadow grasses with high cover and high litter supply to soils, which resulted 117 

in the accumulation of SOM. The region has several hundred years of cultivation 118 

history, and mass cultivation occurred during the 1960s to 1980s. Traditional 119 

cropping practices in the region are continuous soybean, continuous corn, or 120 

corn-soybean rotation and most aboveground biomass is taken away as fuel or food 121 

for livestock. The main sources of organic matter to the soil are stubble and roots. 122 

Intensive cultivation has exposed the soil to the damaging forces of wind and water. 123 

To alleviate soil erosion and provide a buffer from main roads, some poplar trees have 124 

been strategically planted in crop fields as isolation belts of 10- to 20-m width. (Li 125 

1987; Yu et al. 2006; Liang, Yang, et al. 2009; Liu 2009). 126 

2.2 Field investigation and soil sampling 127 

Soil sample profiles were taken from seven sites given over to corn and six 128 

poplar isolation belts; each poplar isolation belt was paired with a cropland site (Table 129 

1). Sample profiles within each paired site were separated by a distance less than 200 130 

m. Generally, the black soil can be divided into two sub-types according to the depth 131 

of the black soil layer—thick and thin. The study used thick and thin reference sites of 132 

native vegetation being used as pasture (Figure 1). The thin black soil profile was the 133 

reference for sites No. 4 and No. 5, and the thick was the reference for the remaining 134 

sites. The slope angle at all sites was 0 to 3°. The basic parameters of all sites are 135 

listed in Table 1. Land-use history was investigated by talking with local farmers and 136 



7 
 

by examining records in local documents. However, the information was vague for 137 

two sites with long cultivation history (Dehui and Jiutai counties, Jilin Province). We 138 

assumed the years of cultivation were 100 and 50 years, respectively, based on elderly 139 

farmers’ descriptions, and determined by the diameter at breast height of poplar trees 140 

that the establishment of isolation belts occurred 25 and 12 years ago, respectively, 141 

for the corresponding poplar belt sites.   142 

To construct a soil profile, we dug 1-m3 pits, and collected soil samples at 0 to 143 

10, 10 to 20, 20 to 30, 30 to 40, 40 to 60, 60 to 80, and 80 to 100 cm. Each sample 144 

was about 2 to 3 kg in weight. Visible plant residues and roots were removed. Soil 145 

samples were divided into two parts: one part was stored at 4 ℃ prior to analysis 146 

(fresh soil), and the other was air dried and ground to pass through a 0.154-mm (100 147 

mesh) stainless-steel sieve. At the same time, mixed litter samples and some dominant 148 

plant leaves were collected. 149 

2.3 Soil analysis 150 

Soil pH was measured with a pH electrode (Orion) in a ratio of 1:2.5 151 

(mass/volume) soil to de-ionized water. The bulk density of soil was calculated using 152 

the inner diameter of the core sampler cutting edge, segment depth, and the weight of 153 

soil after being oven-dried at 105 ℃ for at least 6 h. Total SOC and nitrogen were 154 

quantified by combustion of ground samples in an elemental analyzer (PE2400 II, 155 

USA) with an analytical precision of 0.1%. Carbonate was removed before analysis 156 

by HCl-fumigation for 24 h (Harris et al. 2001). 157 

The natural abundance of heavy isotopes was expressed as parts per thousand 158 
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relative to the international standard PDB (Pee Dee Belemnite) using delta units (δ). 159 

The δ13C was calculated according to Eqn. (1):  160 

𝛿 C(‰) = '(𝛿)*+,-./𝛿)0*12*324 − 1789 × 109              (1) 161 

where 𝛿)*+,-. is the 13C/12C ratio of sample, and 𝛿)0*12*32 is the 13C/12C ratio of 162 

the reference standard (PDB). For stable isotopic analyses of SOC, a sample mass 163 

yielding 0.5 mg C was placed in a quartz tube with CuO. The sample tube was then 164 

evacuated and flame sealed. Organic carbon in the sample was oxidized to CO2 at 165 

850 ℃ for 5 h. CO2 was purified with liquid nitrogen, then measured with a Finnigan 166 

MAT252 isotope ratio mass spectrometer for carbon isotopic relative content. Three 167 

to five replicated measurements per sample were carried out, and the δ value 168 

presented is the average of these measurements. IAEA-C3 (δ13C=24.91%, cellulose) 169 

was used as a correction standard for δ13C and analytical precision (n=5) was ±0.1%. 170 

Before determination of δ13C, the inorganic C was removed by HCl-fumigation of soil 171 

for at least 24 h (Harris et al. 2001). 172 

2.4 Estimation of carbon derived from C3 and C4 plants 173 

As shown by several researchers, δ13C values can be used to estimate the 174 

distribution of C sources in soils cultivated with C4 crops following deforestation of 175 

C3 plants; the proportion of C3 and C4 carbon in the soil can be estimated according to 176 

the following isotopic dilution equation (Bernoux et al. 1998; Dungait et al. 2013): 177 

𝑓(C4) = (𝛿0 − 𝛿>)/(𝛿? − 𝛿>)                 (2) 178 

where f(C4) is the proportion of C4 carbon, 𝛿0 is the carbon isotopic composition of 179 

the SOC, 𝛿> is the value of original plant–derived SOC (C3), and δ? is the value of 180 
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corn-derived SOC (C4). All major original grass vegetation and poplar trees had δ13C 181 

values characteristic of C3 plants. The δ13C values of original grass ranged from 182 

-30.04 to -27.52‰. The mean δ13C value of poplar leaves was -28.67‰. The corn 183 

leaves measured in this study had more depleted 13C than the corn root, with average 184 

δ13C values of -12.24 and -11.06‰, respectively. The main debris supplied to soil was 185 

corn root, thus the δ13C value of corn root was selected as δB for Eqn. (2). The fraction 186 

of C4 lost (flost(C4)) since the installation of the poplar isolation belt was calculated as 187 

follows: 188 

              𝑓-AB0(C4) = f(s) − f(a)               (3) 189 

where 𝑓(a) is the fraction of corn-derived SOC calculated by Eqn. (2); and 𝑓(s) is 190 

the percentage of corn-derived SOC at the time of poplar isolation belt establishment, 191 

which was estimated by models developed during the analysis of corn-derived SOC 192 

dynamics after conversion of original grass land to corn land.  193 

2.5 Data analysis 194 

Statistical analyses were conducted using SPSS 13.0. The significant 195 

differences of soil properties between cropland and poplar isolation belts were 196 

compared by two-way t-test. In all cases p<0.05 was considered to be significant.      197 

3. Results 198 

3.1 General soil characteristics  199 

Descriptive statistics of the soil profiles under different land uses are listed in 200 

Table 2. The natural soil profiles, used as reference values, had high SOC. Ranges 201 
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above 30 cm in thin- and thick-layer black soil were 36.62 to 51.92 g·kg-1 and 44.86 202 

to 52.93 g·kg-1, respectively. Below 40 cm, the SOC in the thin black soil decreased 203 

greatly, but in the thick soil the change was smaller. The change in nitrogen with 204 

depth displayed a similar trend, but the C/N ratio did not obey such a consistent trend. 205 

Soils were neutral pH at the surface and increasingly alkaline with depth.  206 

In the samples from areas where natural soil (Figure 2) had been converted to 207 

cropland, SOC concentrations decreased from an average of 23.08 g·kg-1 in the 208 

surface layer to 9.96 g·kg-1 below 80 cm, with the majority of this decrease occurring 209 

between 0 and 60 cm (Table 2 and Figure 3). In the upper 40 cm, SOC content was  210 

consistently above 20 g·kg-1 and accounted for nearly 80% of the total organic carbon 211 

stock. The average nitrogen content also declined from 2.17 g·kg-1 at the surface to 212 

1.23 g·kg-1 below 80 cm, making C/N quite stable through the average profile. From 0 213 

to 20 cm, the cropland soil became, on average, less acidic, but further down it was 214 

less variable.  215 

In contrast to the cropland areas, the entire poplar isolation belt soil profile was 216 

alkaline according to average values of pH. Although the average SOC content was 217 

lower at all depths than in the corresponding soil layers of the cropland soil, the 218 

differences did not reach the prescribed significance level (p>0.05). The average 219 

nitrogen content decreased consistently with depth and was significantly (p<0.05) 220 

lower than that in the cropland at all depths. While the average C/N ratios exhibited a 221 

similar range (10.54 to 13.26) to the cropland soils, the variation with depth differed. 222 

Most notably, the lowest ratio (10.54) was at 20 to 30 cm, rather than being deep 223 
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within the profile. Two-way t-tests showed significant difference (p<0.05) in pH 224 

between 0 and 20 cm, and in soil density between 10 and 20 cm, between cropland 225 

and poplar isolation belt soils. 226 

3.2 Temporal changes in soil organic carbon contents  227 

The strongest changes in SOC content occurred in the topsoil after conversion 228 

from natural soil to cropland. Compared with natural soil, at least 40% SOC in the 229 

surface soil (0 to 10 cm) was lost in the first five years of reclamation, but SOC 230 

contents in surface soil did not decrease with time in the seven corn land soil profiles. 231 

The lowest value (13.29 g·kg-1) was in the land with a 40-year cultivation history. The 232 

surface SOC contents of soils with 50- and 100-year histories were 22.12 and 24.87 233 

g·kg-1, respectively. In the subsoil of corn land, almost all SOC content was lost 234 

compared with corresponding soil layers in the natural soil profile. The biggest SOC 235 

contents in corn land with 5- and 25-year histories appeared between 30 and 60 cm 236 

(Figure 3). Similar to surface soil, SOC content of subsoil above 60 cm showed a 237 

decreasing trend with time in the first 50 years as corn land. 238 

The change of SOC content in poplar isolation belts did not reach a significant 239 

level. The surface SOC contents in three poplar isolation belts established 10 years 240 

ago were higher than the corresponding corn land, by 15% to 37%. But for the poplar 241 

isolation belts with longer histories, the surface SOC content was lower. Most subsoil 242 

layers in the six soil profiles contained less SOC. Except for the two-year old poplar 243 

belt, SOC contents decreased with soil depth.  244 

3.3 Temporal change in carbon isotopic composition and soil organic carbon 245 



12 
 

percentage derived from each source 246 

Soils in the natural fields, corn lands, and poplar isolation belts had very 247 

different organic carbon isotopic composition patterns (Figure 3). The δ13C value of 248 

SOC in the natural soil profile ranged from -27.21 to -25.25‰ and became enriched 249 

in 13C with soil depth. The selected corn soil profiles had different cultivation periods, 250 

significantly affecting the δ13C value of SOC. As expected, the most negative 251 

(-25.10‰) and most positive (-18.99‰) values of SOC in surface soil (0 to 10 cm) 252 

were found in 5-year-old and 100-year-old corn lands, respectively. The biggest 253 

difference of δ13C value between surface soil and lower mineral horizon (80 to 100 254 

cm) (3.84‰) was found in the 50-year-old corn land.  255 

Of the six poplar isolation belts, the age range was 2 to 25 years (Table 1). The 256 

δ13C values of SOC in each poplar soil profile show an inflection point at 20 or 30 cm 257 

(Figure 3). The δ13C values of SOC above the inflective layer became enriched in 13C 258 

with soil depth, whereas below the inflective layer they became depleted. In the 259 

surface soil (0 to 10 cm), δ13C values were 0.83 to 2.58‰ higher than in the paired 260 

cropland soil profiles; the difference increased with time. However, in other layers, 261 

there was no relationship between the difference and established time. 262 

According to Eqn. (2), we calculated the percentage of SOC derived from corn 263 

plants in each core. In the corn land, the percentage of corn-derived SOC in the 264 

profile ranged from 2.1% to 19.3% in the 20-year-old crop profile, from 1.7% to 22.5% 265 

in the 25-year profile, from 1.6% to 35.26% in the 50-year, and from 20.9% to 50.2% 266 

in the 100-year. The percentage of corn-derived SOC in all corn land decreased with 267 
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soil depth. In the five-year-old corn land, no corn-derived SOC was present below 40 268 

cm. There were positive linear relationships between the percentage of SOC derived 269 

from corn and cultivation time in the upper soil layers from 0 to 10 cm (R2=0.968, 270 

p<0.01), 10 to 20 cm (R2=0.930, p<0.01), and 20 to 30 cm (R2=0.950, p<0.01). The 271 

average annual growth rate of corn-derived SOC in the surface soil was 0.5% 272 

throughout the 100-year period covered by the sample sites.  273 

4. Discussion  274 

4.1 δ13C values in soil profile 275 

The SOC in the soil profile with original grass became enriched in 13C with soil 276 

depth. To explain this phenomenon, Wynn et al. (2006) reviewed and grouped 277 

hypotheses: (1) isotopic fractionation during decomposition; (2) isotopic composition 278 

difference between surface litter and root-derived SOM; (3) preferential 279 

decomposition or stabilization of components with different isotopic composition; and 280 

(4) the terrestrial Suess effect—the decrease in the 13C/12C isotopic ratio of 281 

atmospheric CO2 by up to 1.4‰ since the beginning of the Industrial Revolution, due 282 

predominantly to fossil fuel burning.  283 

In the natural soil profiles of our study, the vertical trends of δ13C values were 284 

similar to other reported cases and can be explained by the four hypotheses mentioned 285 

above. The black soil region of Northeast China is in the North Temperate Zone. The 286 

average annual temperature is very low. Under this cold climate, the rate of most 287 

SOM degradation is low (Conant et al. 2011) and it is easy to accumulate SOC, 288 

especially in areas with high grass coverage. Due to the slow degradation of SOC, 289 
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organic carbon fractionation in the top meter of soil is smaller than in other types of 290 

soil or locations in China (Tu et al. 2011; Guo et al. 2013). In addition, δ13C values of 291 

SOC in the surface soil (0 to 10 cm) with natural plants averaged 1.6‰ lower than 292 

original grass. This can be attributed to isotopic fractionation during the 293 

decomposition of original debris. Vegetative debris consists of many organic 294 

components with different carbon isotopic compositions. Some 13C-depleted organic 295 

components can preferentially accumulate during the initial stages of SOM 296 

decomposition and their concentration in some cases increases with depth and with 297 

SOM age (Wedin et al. 1995; Wynn et al. 2006; Tu et al. 2008). This is different from 298 

southern China, where carbon isotopic fractionation increases 2.1‰  to 4.7‰ after 299 

transformation from plant debris to SOC (Tu et al. 2011).  300 

With land-use conversion from original grass to agricultural land, the source of 301 

SOC changed. Corn has typically been the main agricultural vegetation in this region. 302 

Because corn has a different carbon isotopic composition from the original grass, the 303 

change of δ13C values can be attributed to the change of SOC source. The percentage 304 

of different sources can be estimated by using the isotope mass balance equation (Del 305 

Galdo et al. 2003; Zach et al. 2006). Spohn and Giani (2011) found soil became more 306 

enriched in 13C with cultivation time. The main reason for this is that some labile SOC 307 

with low δ13CSOC is preferentially degraded or eroded (John et al. 2005). In our 308 

research, the values of δ13CSOC showed significant linear relationships with cultivation 309 

time (p<0.01) above 30 cm, with a mean annual increase rate of 0.06‰. This 310 

indicates that the change of SOC source is relatively steady. Compared with other 311 
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reports, the values of δ13CSOC had a smaller change. Possible reasons for this include 312 

that the original organic carbon remained a high proportion of the total in spite of 313 

severe erosion and that the input of corn-derived carbon was relatively small. 314 

After the reconversion from cultivated land to poplar isolation belt, SOC gains 315 

a C3 source and the δ13C values should decrease with time. In theory, the new carbon 316 

should be in continuous growth, whereas the original carbon should be in continuous 317 

consumption after LUC. However, we found the δ13C values of some soil layers in all 318 

soil profiles became more enriched in 13C than their paired corn-land profile, meaning 319 

the corn-derived SOC increased in these layers. We conclude there was some corn 320 

residue that was not degraded completely and became SOC when the land use 321 

changed to poplar belts.    322 

4.2 Soil organic carbon dynamics in corn land 323 

To date, most reports have found SOC is lost rapidly after cultivation of former 324 

grasslands, especially soon after establishment of cropland. Zach et al. (2006) found 325 

33% to 57% loss of original bulk soil carbon within 12 to 18 years of continuous 326 

cultivation. Tiessen and Stewart (1983) calculated average carbon losses in grassland 327 

of the Great Plains, North America, were 30% to 50% in 50 to 80 years after 328 

conversion. Guo and Gifford (2002) compiled research prior to 2002 and reported that 329 

about 59% of soil carbon stocks are lost after LUC from pasture to cropland before a 330 

new equilibrium is established. In our study, the maximum carbon loss occurred at 0 331 

to 20 cm depth. The loss percentage from original bulk soil carbon ranged from 27% 332 

to 74.4%. Of original bulk soil carbon, 37.6% was eroded in the first 5 years of 333 
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cultivation. At 40 years of cultivation, eroded SOC reached the maximum. SOC 334 

concentrations then rebounded after 40 years of cultivation. These results clearly 335 

differ from Poeplau et al.’s (2011) report that deduced a new equilibrium could be 336 

reached within 17 years after conversion for 27 cm depth. Indeed, there are some 337 

conflicting reports about the change of SOC content within the last 20 years according 338 

to Chinese government and other researcher’s investigations (Yang et al. 2004; Wang 339 

et al. 2007). One major factor affecting SOC stocks is the close relationship of soil 340 

erosion to land use (Griffiths 1992; Quine and Van Oost 2007; Van Oost et al. 2007). 341 

Don et al. (2011) considered that SOC losses were underestimated if eroded SOC was 342 

completely decomposed or overestimated if SOC was enhanced in eroded material. 343 

Additionally, around some areas with deposition of eroded material, it is very difficult 344 

to identify whether erosion decreases or increases the terrestrial carbon sink (Lal 2003; 345 

Van Oost et al. 2007). 346 

Subsoil below 20 or 30 cm depth has been largely ignored because of its low 347 

carbon content (Rumpel and Kögel-Knabner, 2011). The loss percentages of SOC 348 

below 20 cm displayed no consistent trend with soil depth in all soil profiles. Overall, 349 

in most soil layers below 20 cm, the loss of SOC was enlarged. But some soil layers 350 

in 5-, 25-, 40-, and 50-year-old corn land contained more SOC than corresponding 351 

reference soil layers. Tillage may mix carbon-rich topsoil with the deeper horizon and 352 

result in increased SOC in subsoil after conversion (Fujisaka et al. 1998; Hughes et al. 353 

2000). In this way, the loss percentage in a given layer would suddenly increase. The 354 

input of new carbon may stimulate the degradation of original organic carbon 355 
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(Fontaine et al. 2007) and result in decreased SOC. 356 

From Fig. 4, the amount of corn-derived SOC increased with time. Additionally, 357 

corn-derived SOC displayed a good linear relationship with time (p<0.01) above 30 358 

cm. Equations with intercepts of 12.176, 10.977, and 5.372 fit the dynamic process of 359 

corn-derived SOC at depths of 0 to 10, 10 to 20, and 20 to 30 cm, respectively (Fig. 5), 360 

with average annual growth rates of 5.0%, 4.5% and 4.5%, respectively. 361 

4.3 Soil organic carbon dynamics in poplar isolation belts 362 

Poplar isolation belts were usually established on cropland and used to alleviate 363 

soil erosion or as a buffer from main roads. After establishment, these areas have not 364 

been cultivated again, but may have been transporting lanes for agricultural material. 365 

Overall there is no current corn-derived SOC input in these areas.  366 

Afforestation or abandonment of agricultural fields may have some important 367 

effect on the dynamics of SOC by impacting soil properties, sources, quality of SOC, 368 

and so on (Zhang et al. 2010; Zhu et al. 2010). Castro et al. (2010) found changes in 369 

litter decomposition rate were largely due to litter quality following abandonment. 370 

Generally SOC stock in the surface soil recovers slowly following afforestation or 371 

abandonment (Post and Kwon 2000; Silver et al. 2000). But changes in SOC are not 372 

always positive, and depend on previous land use, soil type, texture and mineralogy, 373 

climate conditions, plant species, and the intensity of management (Guo and Gifford 374 

2002; Paul et al. 2002; Poeplau et al. 2011). Raiesi (2012) found abandonment of 375 

cultivated fields significantly promotes SOC content growth in the 0 to 15 cm soil 376 

layer, with no effect in the 15 to 30 cm layer after 18-22 years. 377 
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In our study, the SOC in the surface soil (0 to 10 cm) increased slightly in the 378 

first 10 years following poplar isolation belt establishment compared with paired corn 379 

soil profiles, then decreased over the next 15 years. However, the change of SOC 380 

below 10 cm did not show any relationship with time after LUC. According to the 381 

model we developed during the analysis of corn-derived SOC dynamics after 382 

conversion from original grass field to corn land, the amounts and percentages of 383 

corn-derived SOC were estimated at the time when land use was converted to poplar 384 

isolation belts. The percentage loss of corn-derived SOC showed a significant linear 385 

relationship with time (p<0.01) in the surface soil (Fig. 6). Average annual loss was 386 

approximately 0.34%. Due to consumption of nitrogen and the change in C/N ratio 387 

(Table 1), the decomposition rate of corn-derived SOC may gradually decline. 388 

However, there was a strange phenomenon below 10 cm: some layers returned higher 389 

values of corn-derived SOC than corresponding corn land layers in all poplar isolation 390 

belt soil profiles. We concluded there were two reasons for this: 1) presence of some 391 

high corn-derived SOC soil in these soil layers and 2) existence of some 392 

un-decomposed corn debris when the poplar isolation belts were planted. Following 393 

the establishment of poplar isolation belts, these un-decomposed corn residues 394 

transformed gradually to SOC.  395 

5. Conclusions  396 

Owing to lack of in-situ observation, it is very difficult to show the dynamic 397 

processes of SOC, especially for new SOC. Since most black soils in the study area 398 

had been cultivated with similar agricultural activities for long periods, this study 399 
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used space instead of time to deduce the dynamics of SOC following LUC. The main 400 

conclusions are as follows: 401 

After land-use conversion from original grass fields to cropland, approximately 402 

40% of total SOC in surface soil (0 to 10 cm) was eroded in the first 5 cultivated years 403 

and declined to about 25% ofits original value in 40 years, followed by a slow 404 

recovery. The trend of SOC above 30 cm is similar to surface soil after conversion to 405 

cropland. The losses of SOC below 30 cm showed no clear relationship with 406 

cultivation time, whereas some layers showed higher SOC content than corresponding 407 

reference soil layers. 408 

Using δ13C values, the amounts and percentages of corn-derived SOC (C4) were 409 

estimated by isotope mass balance. The amount and percentage growth of SOC have 410 

positive relationships with cultivation time after conversion from original grass fields 411 

to cropland. Above 30 cm soil depth, these relationships were significant (p<0.05), 412 

but not below 30 cm. The fit between growth of corn-derived SOC and cultivation 413 

time (p<0.05) was lower than that between percentage growth of corn-derived SOC 414 

and cultivation time (p<0.01) above 30 cm soil depth. The average annual growth rate 415 

of corn-derived SOC above 30 cm was 4.5% to 5% or 0.11-0.12 g·kg-1 over 100 years. 416 

This means that using percentage to demonstrate the change of new and old carbon 417 

was a good method and could eliminate effects of different background SOC content.   418 

SOC increased slightly in the first 10 years of the poplar isolation belts 419 

compared with paired corn soil profiles, then decreased in the next 15 years. The 420 

percentage loss of corn-derived SOC showed a significant linear relationship with 421 
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time (p<0.01) in poplar belt surface soil (0 to 10 cm). Corn-derived SOC as a 422 

percentage of the total SOC decreased about 0.34% on average per year in 25 years. 423 
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Table 1. Sample site characteristics. 505 

No. Location Sub-soil type Land-use Cultivated 
history (y)  

1 
Lengjiang County, Heilongjiang Province 

125.4771°E, 49.2053°N 
thick Natural soil 1 0 
thin Natural soil 2 0 

2 
Lengjiang County, Heilongjiang Province 

125.4783°E, 49.2153°N 
thick Cropland 5 

3 
Dehui County, Jilin Province 

 125.8626°E, 44.6192°N 
thick Cropland  100 

Poplar isolation belt  25 

4 
Jiutai County, Jilin Province 

 126.0119°E, 44.2171°N 
thin Cropland 50 

Poplar isolation belt  12 

5 
Zhaoyuan County, Heilongjiang Province 

125.1315°E, 45.5421°N 
thin Cropland 40 

Poplar isolation belt  12 

6 
Bayan County, Heilongjiang Province 

127.1128°E, 46.2952°N 
thick 

Cropland 25 
Poplar isolation belt  2 

7 
Hailun County, Heilongjiang Province 

126.9908°E, 47.4016°N 
thick 

Cropland 20 
Poplar isolation belt  10 

8 
Tongyi County, Heilongjiang Province 

124.9486°E, 48.2173°N 
thick 

Cropland 20 
Poplar isolation belt  10 

  506 
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Table 2. Descriptive statistics of the soil profiles under different land-use. 507 

Land-use Depth    
(cm) pH SOC      

(g·kg-1) 
N         

(g·kg-1) C/N Soil density 
(g·cm-3) 

Natural soil 
/reference1 

0-10 6.63/6.65 52.93/51.92 5.12/5.88 10.3/8.83 0.89/0.92 

10-20 6.49/6.74 49.72/48.09 6.05/4.26 8.2/11.16 0.93/0.99 

20-30 6.95/6.34 44.86/36.62 5.41/5.88 8.3/6.23 1/1.03 

30-40 6.61/6.93 39.01/28.85 4.88/3.15 8.0/9.16 1.07/1.09 

40-60 6.84/7.08 24.23/12.76 2.89/2.31 8.4/5.52 1.09/1.12 

60-80 6.78/7.23 26.85/5.18 3.15/0.63 8.5/8.22 1.13/1.21 

80-100 7.34/7.36 13.99/6.27 1.83/0.49 7.6/12.8 1.19/1.23 

Corn land2,3 

0-10 6.12±0.43 a 23.08±6.74  2.13±1.19 a 12.94±6.17 1.01±0.07 

10-20 6.33±0.38 a 22.67±7.42  1.88±0.98 a 13.21±3.62  1.05±0.07 a 

20-30 6.92±0.50  20.94±7.87 1.90±1.22 a 12.60±3.87  1.14±0.06  

30-40 7.03±0.50 22.62±11.48 2.17±1.64 a 12.28±4.85 1.23±0.10 

40-60 7.14±0.84 18.56±9.53 1.78±1.45 a 12.94±4.91  1.21±0.08 

60-80 6.96±0.95 12.38±5.20 1.41±1.08 a 11.00±4.23 1.22±0.06 

80-100 7.10±0.70 9.96±4.41 1.23±1.15 a 12.93±7.60 1.26±0.03 

Poplar 
isolation 

belt2,3 

0-10 7.21±0.58 b 22.45±8.07  1.74±0.52 b 12.83±1.76 1.07±0.11 

10-20 7.00±0.68 b 19.14±7.32 1.65±0.68 b 12.38±3.38 1.14±0.04 b 

20-30 7.38±0.64 17.56±5.15 1.79±0.75 b 10.54±3.06 1.17±0.06 

30-40 7.59±0.80 14.66±3.91 1.35±0.48 b 11.40±2.61 1.26±0.06 

40-60 7.58±0.72 12.67±4.08 1.13±0.64 b 12.42±3.74 1.25±0.05 

60-80 7.27±0.67 13.05±8.78 1.22±0.94 b 13.26±8.25 1.26±0.03 

80-100 7.66±0.96 12.58±11.03 1.24±1.35 b 11.23±1.37 1.28±0.04 

1We selected a thick black soil and a thin black soil profile as references. Aside from depth, the first 508 

value in each cell is for the thick reference soil and the second for the thin reference soil. 2Aside from 509 

depth, values represent mean±St.d. 3Letters following values indicate that values are significantly 510 

different at p<0.05 probability level (LSD) for the corresponding soil layer between cropland and 511 

poplar isolation belt profiles. 512 
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                                513 

Figure 1. Distribution of sample sites in black soil regions of Northeast China. 514 

 515 

 516 

 517 

Figure 2. SOC content and δ13C values of reference soil profiles. 518 

 519 
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 520 

 521 
 522 

Figure 3. SOC content and δ13C of paired soil profiles 523 
Jilin Province: (a) 100-year cropland and 25-year poplar isolation belt of Dehui County and (b) 50-year cropland 524 
and 12-year poplar isolation belt of Jiutai County; and Heilongjiang Province: (c) 40-year cropland and 12-year 525 

poplar isolation belt of Zhaoyuan County, (d) 20-year cropland and 10-year poplar isolation belt of Hailun County, 526 
(e) 25-year cropland and 2-year poplar isolation belt of Bayan County, and (f) 20-year cropland and 10-year poplar 527 

isolation belt of Tongyi County. 528 
δ13C (‰): calculated by Eqn. (1).   529 
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 530 
Figure 4. Change in corn-derived SOC percentage in paired soil profiles. 531 

Jilin Province: (a) Dehui County and (b) Jiutai County; and Heilongjiang Province: (c) Zhaoyuan County, (d) 532 
Hailun County, (e) Bayan County, and (f) Tongyi County. 533 

SOC: soil organic carbon; Percentage of C4 (%): the percentage of SOC that is corn-derived.  534 
 535 
 536 
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 537 

 538 
Figure 5. Relationships between amount and percentage of corn-derived carbon and 539 

cultivated time in cropland. 540 
  541 
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 542 

 543 

Figure 6. Relationships between amount and percentage of corn-derived carbon and 544 
cultivated time at 0 to 10 cm depth in poplar isolation belts. 545 

 546 


