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I. Introduction

When economists think about insurance, they usually consider policies that pay

claims conditional on the losses incurred. However, in reality, claims are not always

reimbursed, and there is a very limited understanding of how various circumstances,

such as insolvency, discord about coverage, payment delays, or the basis risk in-

herent in index insurance, contribute to the probability of an insurance contract

not to perform. While there is a literature on such so-called probabilistic insurance

contracts (Kahneman and Tversky, 1979; Doherty and Schlesinger, 1990), a central

assumption here is that the contract nonperformance probability is known to all

parties. This assumption could easily be violated in reality; for example, when

insurance clients have limited experience with providers and cannot judge their re-

liability. Such uncertainty regarding probabilities attached to economic outcomes

has been shown to be undesirable for many individuals and should therefore also

influence the perceived value of probabilistic insurance.1 So whenever there is

limited transparency regarding the reliability of providers, it is relevant to know

how uncertainty affects insurance demand and whether these effects persist with

increasing experience.

In this paper, we assess the effect of both contract nonperformance risk and un-

certainty on insurance demand within a large behavioral experiment. We find that

increasing contract nonperformance risk from 0 to 10 percent significantly decreases

insurance demand by 17.1 percentage points. Uncertainty regarding contract non-

performance risk leads to a further significant decrease in uptake of 14.5 percent-

age points. The effects of uncertainty are particularly pronounced for ambiguity-

1The literature uses different terms to refer to situations in which probabilities are known or
unknown. The word “risk,” as opposed to “uncertainty,” has been used in Knight (1921). The
terms “unambiguous” and “ambiguous” were introduced by Ellsberg (1961). While Savage (1954)
uses the terms “precise” and “vague,” Gärdenfors and Sahlin (1982) differentiate between the
levels of the “epistemic reliability” of a probability estimate to infer the amount of information
available on all possible states and outcomes. We use the term “uncertainty” in general and
“ambiguity” specifically when we employ models of ambiguity aversion. The presence of an
aversion to ambiguity was established in the laboratory under different conditions (Einhorn and
Hogarth, 1986; Sarin and Weber, 1993; Epstein, 1999; Chow and Sarin, 2001) and in field settings
(Dimmock, Kouwenberg and Wakker, 2016).
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and risk-averse agents. These results are supported by a theoretical framework in

which we extend probabilistic insurance models to allow for uncertainty in contract

nonperformance probabilities and by corresponding simulations calibrated to our

setup. The predictions of our model are driven by the presence of ambiguity-averse

individuals (Klibanoff, Marinacci and Mukerji, 2005), but we show that pessimistic

beliefs (Savage, 1954) under uncertainty could equivalently explain these results.

As uncertainty is essentially a lack of information, we also study dynamics over

time. We find that individuals take some experience into account, but they seem

unable to form more precise beliefs using the information they accumulate. In

particular, own experiences affect beliefs, but pessimistic priors and disregard of

peer experiences hinder optimal updating. Consistent with this, the effects of un-

certainty are little affected by experience and remain stable over time. We also

test different framings regarding the insurer’s influence on the decision not to pay

claims. While we cannot rule out that framing plays a role for some participants,

it does not seem to change the effect of uncertainty.

The literature on contract nonperformance in insurance markets so far mainly

studies risky environments, i.e., those with known probabilities. Doherty and

Schlesinger (1990) show that contract nonperformance risk reduces insurance de-

mand in theory.2 Subsequent empirical works confirm the strong detrimental effects

of contract nonperformance risk on insurance demand.3 Uncertainty regarding con-

tract nonperformance risk has been neglected in both the theoretical and empirical

literature.4 Exceptions are Bryan (2018) and Peter and Ying (2017). In a very

2Generalizations and further theoretical explanations of these results are provided by Hau
(1999) and Mahul and Wright (2004, 2007). Cummins and Mahul (2003) capture divergent beliefs
about the probability of contract nonperformance risk between insurers and their customers. In
such a setting, however, none of the contracting parties perceives uncertainty, and hence ambiguity
aversion plays no role.

3Wakker, Thaler and Tversky (1997), Albrecht and Maurer (2000), Herrero, Tomás and Villar
(2006), and Zimmer, Schade and Gründl (2009) examine the effects of such risk on hypothetical
willingness to pay. Zimmer et al. (2016) implement an incentive-compatible experiment with real
monetary payoffs. All studies find a negative effect of contract nonperformance risk on insur-
ance demand. Harrison and Ng (2018) further analyze the welfare consequences of probabilistic
insurance, taking into account violations of the reduction of compound lotteries axiom.

4Studies including uncertainty in the context of insurance have so far focused on the effect of
uncertain loss probabilities on insurance demand (Hogarth and Kunreuther, 1989; Alary, Gollier
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complementary approach, Bryan (2018) uses data from a field setting to show

that uncertainty reduces demand for an index insurance contract featuring con-

tract nonperformance probability. While this paper clearly suggests the relevance

of uncertain contract nonperformance for insurance demand in a real-world set-

ting, the identification is relatively complicated and essentially relies on comparing

ambiguity-averse and non-ambiguity-averse individuals in a double difference ap-

proach. In contrast to Bryan (2018), we exogenously vary uncertainty, permitting

us to assess cleanly its effect on insurance decisions.5 We also give full theoretical

consideration to the problem, including modeling heterogeneous attitudes towards

risk and uncertainty, and provide simulations suited to our experimental setup.

Furthermore, we can exploit random variation in contract nonperformance experi-

ence generated in our experiment and analyze dynamics under the presence of both

one’s own and peer signals. Our detailed and targeted analysis thus neatly com-

plements the field evidence Bryan (2018) provides on the uncertainty effect, effect

heterogeneity by risk aversion, and stability of effects over time. Peter and Ying

(2017) follow the theoretical idea of our paper and indicate that the implications

of our model are robust to some extensions and variations.

Perceived contract nonperformance risk seems to be relevant to insurance de-

mand, even in an environment with high levels of regulation, customer protec-

tion, and access to reliable information. In such markets, significant efforts have

been made to disseminate information on insurers’ reputations for servicing claims

(Mahul and Wright, 2004).6 Our empirical setup, in contrast, is based on a be-

havioral experiment conducted with participants from the Philippines, the leading

emerging insurance market in terms of coverage around the world (Munich Re Foun-

and Treich, 2013; Huang, Huang and Tzeng, 2013; Gollier, 2014; Bajtelsmit, Coats and Thistle,
2015) and self-insurance as well as self-protection (Snow, 2011).

5In Bryan (2018), uncertainty enters through a new production technology combined with
insurance, such that the identification requires more assumptions and it is harder to model the
problem in a standard way, resulting in a somewhat less straightforward theory.

6Roughly 50 percent of all complaints reported to the US state regulators in 2014 are related
to denials and delays of claims and unsatisfactory settlements, amounting to over 30,000 cases
(National Association of Insurance Commissioners, 2016).
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dation, 2014). This setting ensures participant familiarity with insurance, while at

the same time many recent market entries limit the information about insurance

provider reliability, and lower income levels of participants exacerbate the conse-

quences of an insurance policy default. Additionally, low levels of regulation and

customer protection in many emerging markets are likely to generate higher lev-

els of contract nonperformance risk, whereas limited access to reliable information

and limited trust in regulators and legal institutions may fuel perceptions of high

uncertainty. Thus, the topic of our research is particularly salient in this context.

Contract nonperformance risk and uncertainty emerge as a potential piece of the

puzzle explaining the low demand for insurance with potentially significant social

welfare benefits in emerging markets.7 Our results are consistent with these find-

ings, and our extension from risky to uncertain nonperformance of insurance con-

tracts offers a novel and economically relevant perspective on the factors restricting

insurance demand. In a broader sense, this novel perspective has explicit policy

implications. While regulations to restrict contract nonperformance risk (i.e., sol-

vency and market conduct) are obvious candidates to stimulate demand, making

individual providers’ contract nonperformance risk transparent can reinforce (or

even enable in the first place) the regulatory stimulus by reducing uncertainty.

There is a particular value to increasing transparency in emerging markets where

many new insurers with unknown reliability operate.

The remainder of this paper proceeds as follows. In Section II, we present our

theoretical framework as well as the corresponding simulations and derive the hy-

potheses. The experimental design and field implementation, including sample

characteristics, are explained in Section III. In Section IV, we discuss our empirical

results, and Section V concludes.

7Motivated by a low-income setup with liquidity constraints, Liu and Myers (2016) provide
theoretical evidence for reductions in insurance demand due to possible insurer default (similar to
Doherty and Schlesinger (1990)), and Cole et al. (2013) empirically reveal trust as an important
market friction constraining demand.
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II. Model Predictions and Simulations

A. Preliminaries

In this section, we formalize the characteristics of contract nonperformance risk

and uncertainty, provide a theoretical intuition on how insurance demand should

behave, and provide simulations calibrated to our setup in order to derive more

specific predictions. Figure 1 describes the process we consider here. We assume

that a decision maker with initial wealth w has a positive probability p of suffering

a loss L > 0, against which she can purchase insurance that pays ε, for some

premium I(ε).8 In the case that the decision maker buys insurance and the loss

does not occur (with probability 1−p), she is left with w−I(ε). In the case that the

decision maker buys insurance and incurs a loss of L, there is a positive probability

r that her claim is not reimbursed. In this case, she is left with w − I(ε) − L;

otherwise, the insurer pays the claim and the decision maker gets w− I(ε)−L+ ε.

Table 1 summarizes the parameters and the specific values of our experimental

setup, which are also used for the corresponding simulations.

w

no insurance

no loss w1− p

lose L w − Lp

insurance

no loss w − I(ε)1− p

lose L

w − I(ε)− L+ ε1− r

w − I(ε)− Lr

p

Figure 1: Decision Tree

In our theoretical framework, any decision maker evaluates the expected utility

8We remain general in our definition of a premium and do not presume that the insurance is
priced as being actuarially fair.



7

Table 1: Simulation Parameters

Name Parameter Value

Initial wealth w 210

Loss L 150

Insurance coverage ε 150

Insurance premium I(ε) 50

Loss probability p 0.3

Contract nonperformance probability r 0.1

of the upper branch of the tree (i.e., insurance) against the lower branch (i.e.,

no insurance) shown in Figure 1. This is a binary setup, which is different from

insurance decisions under continuous coverage. While our theory provides results

which are relevant to both setups, we are mostly interested in deriving predictions

for the binary decision described here. Whereas we remain more general in our

theory (see Appendix A1 and A2), we employ a constant relative risk aversion

(CRRA) utility function u(x) = x1−ρ/(1 − ρ)9 and the parameters presented in

Table 1 in our simulations.10

B. Demand for Probabilistic Insurance

As our empirical application also includes testing the role of contract nonperfor-

mance (i.e., r > 0 versus r = 0) in the standard probabilistic insurance setting, we

provide some theoretical intuition at this point. Doherty and Schlesinger (1990)

show that, with actuarially fair premiums, the introduction of contract nonperfor-

mance risk leads to a decrease in optimal insurance demand. Because this theoreti-

cal literature only provides conclusive results for actuarially fair premiums, we also

discuss the case of unfair premiums. The following aspect makes predictions more

9ρ = 0 indicates risk neutrality, and risk aversion increases with ρ.
10Under decreasing absolute risk aversion (DARA), which is implied by CRRA, heterogeneity in

asset integration could in principle bias empirical results if it correlates with ambiguity preferences
or subjective beliefs. To probe the stability of our simulation results, we substituted the CRRA
utility function with an exponential utility function exhibiting constant absolute risk aversion
(CARA) u(x) = 1− e(−ax), where a = 0 indicates risk neutrality, and risk aversion increases with
a. The results are qualitatively equivalent. Note also, that our theory (see Appendix A1 and A2)
shows that the results derived from the simulations hold independent of assumptions about the
particular shape of the preference functional.
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complicated under actuarially unfair premiums: when introducing contract nonper-

formance risk and adjusting the premium correspondingly, absolute loadings may

decrease, which certain individuals might perceive as beneficial.11 In particular,

for mildly risk-averse individuals the utility loss generated by increased contract

nonperformance risk is lower than the utility gains from a reduction in absolute

loadings. Reductions in absolute loadings should be only sizable, however, if overall

loadings are large—a condition which usually deters mildly risk-averse individuals

from purchasing any insurance at all. The simulation results presented in Figure

2 are in line with this argument and show that, for any loading factor α, the de-

mand for insurance without contract nonperformance risk dominates demand for

probabilistic insurance. Thus, we formulate the first hypothesis accordingly.

Hypothesis 1. Introducing contract nonperformance risk reduces insurance

demand.

Figure 2: Demand for Insurance with Known Contract Nonperformance Risk

Notes: The colored areas represent the preference regions of the respective insurance policy over no insurance

coverage. In particular, the dark (light) grey area indicates that the expected utility from insurance with known
(without) contract nonperformance is preferred to no insurance coverage. The dashed line indicates the actual

loading factor of 23.5 percent applied in the experimental setup for the insurance contract with r = 0.1.

11We define corresponding premiums for different levels of contract nonperformance risk as
Ir(ε) = (1− r)I0(ε), where I0(ε) is the premium with r = 0.
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C. Demand for Uncertain Probabilistic Insurance

We now focus on our main area of interest, the effect of uncertainty with respect

to contract nonperformance risk on insurance demand (i.e., r is unknown). This

situation gives rise to two major streams of decision models: subjective expected

utility (SEU), suggested by Savage (1954), and expected utility models incorpo-

rating ambiguity attitudes. These types of models differ, because agents following

SEU may simply hold optimistic or pessimistic beliefs, while ambiguity-averse ex-

pected utility individuals genuinely adjust their utility when exact probabilities are

unknown. This might lead ambiguity-averse (or -loving) agents to behave in ways

which cannot be rationalized by subjective beliefs, as shown in the seminal work of

Ellsberg (1961). In our setup, we can show that both types of behavioral models

lead to very similar predictions. More precisely, it is possible to show that, in an

expected utility model with smooth ambiguity aversion (Klibanoff, Marinacci and

Mukerji, 2005), ambiguity-averse (-loving) agents act as if they hold pessimistic

(optimistic) beliefs under SEU (the proof is presented in Appendix A3). As both ex-

planations are behaviorally equivalent, we are to some extent agnostic about which

of the channels exactly explains the results. Even though we employ a model of

ambiguity aversion for our theoretical results, we consider ambiguity preferences

and subjective beliefs under SEU to be two related interpretations leading to an

equivalent effect.

To incorporate uncertainty, we define contract nonperformance risk as the am-

biguous probability r(γ), depending on the unknown parameter γ. Ambiguity

is defined as a probability distribution for γ with discrete support {1, . . . , n}.

Let q(γ) denote the subjective probability that the true value of the parameter

is γ, with
∑n

γ=1 q(γ) = 1. We assume that ambiguity is mean preserving (i.e.,∑n
γ=1 q(γ)r(γ) = r). Following the smooth ambiguity approach of Klibanoff, Mari-

nacci and Mukerji (2005), we model ambiguity aversion using an increasing valu-

ation function for the expected utility derived from each state of γ. Ambiguity-

neutral agents use a linear valuation function, while concavity expresses ambigu-
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ity aversion and convexity mirrors ambiguity-loving preferences. We show that,

for ambiguity-averse (-loving) agents, marginal willingness to pay for insurance is

strictly lower (higher) when ambiguity over contract nonperformance risk is intro-

duced, and therefore also demand should decrease (increase) (see Appendix A1).

This Lemma can be generalized to situations in which the extent of ambiguity or

ambiguity aversion changes (see Appendix A2).12 These results are in line with

Mukerji and Tallon (2001), who show that risk-sharing opportunities on financial

markets that involve ambiguity can be less attractive to ambiguity-averse agents.

The rationale for our theoretical result is that ambiguity-averse agents assign

higher weights to states of γ that are associated with low utility. In our case, this

is equivalent to giving higher weight to high contract nonperformance probabili-

ties. The reverse is true for ambiguity-loving agents. We show that, given risk

aversion, there is a monotonic one-to-one mapping between ambiguity aversion ζ

and subjective contract nonperformance probability rsub, leading to exactly the

same behavioral predictions (see Appendix A3). The slope of the mapping changes

with risk aversion, but the monotonic nature always holds.

Figure 3 shows the result of simulating insurance demand with uncertainty, where

the contract nonperformance probability on average should be 0.1 but can be in the

range between 0 to 1 (as in our empirical setup). Dark shading indicates predicted

insurance uptake. In the left panel, we assume constant relative ambiguity aversion

(CRAA) of the form φ(EU) = EU1−ζ

1−ζ for ρ < 1. For all ρ > 1, we apply the

adapted CRAA function for negative utilities φ(EU) = −(−EU)1−ζ

1−ζ defined in Gollier

(2011). In the right panel, we simulate insurance choices for a range of subjective

probabilities rsub.

Demand for insurance with a known contract nonperformance probability is

shown at ζ = 0 or equivalently rsub = 0.1. Relative to this benchmark, it is clearly

12We derive the central condition for the development of marginal willingness to pay, which
involves the covariance between r(γ) and Φ′(EUr(γ)). This condition generally holds in our
setting of mean-preserving ambiguity and smooth ambiguity aversion as proposed by Klibanoff,
Marinacci and Mukerji (2005). The effect on the marginal willingness to pay directly translates
into changes of optimal coverage in both continuous and binary insurance decisions.
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(a) Ambiguity Aversion (b) Subjective Expected Utility

Figure 3: Demand for Insurance with Uncertain Contract Nonperformance Risk

Notes: The dark grey areas represent the preference regions of the insurance with inherent contract

nonperformance uncertainty over no insurance coverage. While predictions in part (a) are based on simulations
of our ambiguity model, part (b) provides estimates of areas of take-up based on our subjective expected utility

model. The horizontal axes in (a) and (b) map comparable regions based on the translation of ambiguity

aversion parameter ζ into subjective probabilities rsub which we provide in Appendix A3.

apparent that the range of predicted uptake shrinks with increasing ζ or rsub, and

vice versa. The effect of introducing uncertainty therefore depends on the degree

of ambiguity aversion (or pessimism) and on the joint distribution of risk and am-

biguity aversion (or pessimism). However, there are arguments regarding why the

effect of ambiguity-averse, as opposed to ambiguity-neutral or -loving, preferences

should dominate. Based on a sample of 30 countries, Vieider et al. (2015) show that

individuals seem to be, on average, averse to ambiguity. In addition, risk aversion

seems to be positively correlated with ambiguity aversion. The group of potential

insurance clients should therefore have a strong tendency towards ambiguity aver-

sion. In addition to the overall effect, our theory also clearly predicts differential

effects by ambiguity aversion or pessimism. Thus, we state the second and third

hypotheses as follows.

Hypothesis 2. Uncertainty about contract nonperformance probabilities re-

duces insurance demand compared to when contract nonperformance risk is known.
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Hypothesis 3. Uncertainty about contract nonperformance probabilities re-

duces insurance demand more strongly for ambiguity-averse (pessimistic) individ-

uals.

We now turn to an analysis conditional on risk aversion. Based on our simulation

results presented in Figures 2 and 3, we should only expect uptake for insurance

with inherent contract nonperformance risk in the area of mildly risk-averse in-

dividuals.13 Predictions of the uncertainty effect conditional on risk aversion are

slightly more complicated, because they are at the same time conditional on am-

biguity aversion or pessimism. Simulations of the treatment effects of uncertainty

for different levels of ambiguity aversion while continuously varying risk aversion

suggest that we should expect the strongest uncertainty treatment effects among

the risk-averse (see Appendix B). We therefore formulate the following hypothesis.

Hypothesis 4. Uncertainty about contract nonperformance probabilities re-

duces insurance demand, particularly for strongly risk-averse individuals.

III. Experimental Design

We implement a field lab experiment in which subjects decide whether to pur-

chase probabilistic insurance in a risky environment. The experiment was explained

with reference to real insurance policies, a concept which is well known to our sam-

ple, given the prevalence of insurance products in the Philippines (Munich Re

Foundation, 2014).

Participants received an initial endowment w, and could opt to buy insurance

at cost I. Once the insurance decision was made, participants experienced a loss

with probability p. Participants who bought insurance could claim a payment

from the insurer, contingent on having experienced a loss. Whether the insurer

13The exact range varies by ambiguity aversion or pessimism. Individuals who are ambiguity
neutral or hold unbiased beliefs should take up insurance in a range of risk aversion ρ ∈ (0.7, 1.7);
the range becomes smaller (larger) for more (less) ambiguity averse or pessimistic (optimistic)
individuals.
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paid the claim was determined by another random draw, with probability r for

the contract not performing. All random draws are implemented using opaque

bags, each containing 10 balls, some of which were orange and the rest white. In

the first draw, orange balls represented a loss of L, while in the second draw (i.e.,

only in the case of an insurance claim), orange balls indicated nonperformance of

the insurance contract. Hence, the mixtures of orange and white balls determine

the loss probability p and the contract nonperformance probability r. Participants

were grouped into sessions of six participants. They were not allowed to exchange

information or talk amongst themselves during the first round of the experiment.

This procedure aimed to prevent peer effects on the participants’ initial beliefs

about probabilities. Participants were then allowed to communicate with other

members for the remaining five rounds, such that they could learn from their peers’

experiences.

An additional lottery choice task was played prior to the insurance experiment

in order to classify each participant in terms of risk and ambiguity preferences.

At this stage, participants were presented with pairs of two-outcome monetary

lotteries, of which they had to choose one (Glöckner, 2009). We use incentivized

lottery choices involving uncertainty and risk (Holt and Laury, 2002), from which

we infer ambiguity and risk preferences (details in Appendix E2).14 The lottery

choices we use in this study were part of a larger choice experiment for which

participants played up to 122 lotteries and earned the average of four randomly

drawn gambles. To avoid potential wealth effects, participants only learned about

the gambles drawn and their respective outcomes at the very end of the experiment.

Protocols for the insurance experiment and the lottery choice task are provided in

Appendices E1 and E2.

14For inferring ambiguity preferences, we rely on two easy-to-understand lottery choices with
equally likely outcomes and equal expected value. Trautmann, Vieider and Wakker (2011) stress
the importance of using choice-based measures of ambiguity aversion as opposed to those relying
on willingness to pay, which tend to overestimate the degree of ambiguity aversion.
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Table 2: Experimental Treatments

Treatments

C TNoDef TUnc TFr TUnc−Fr

Panel A: Universal parameters

Initial endowment (in PHP) 210 210 210 210 210

Loss (in PHP) 150 150 150 150 150

Loss probability p 0.3 0.3 0.3 0.3 0.3

Panel B: Treatment characteristics

Contract nonperformance probability r 0.1 0 0.1 0.1 0.1

Uncertainty of r No No Y es No Y es

Framing Neutral Neutral Neutral Negative Negative

Insurance premium (in PHP) 50 60 50 50 50

Panel C: Participants and sessions

Number of subjects 144 162 168 174 168

Number of sessions 24 27 28 29 28

A. Treatments

A complete overview of all treatments is presented in Table 2. Every partici-

pant was provided with an initial endowment of PHP 210. Under the benchmark

control treatment C, both the 30 percent probability of losing PHP 150 and the

10 percent probability of experiencing contract nonperformance were known to

participants. The variation in contract nonperformance probability introduced in

treatment TNoDef (i.e., the elimination of the 10 percent contract nonperformance

risk) allows for an inference about Hypothesis 1. The elimination of contract non-

performance risk is accounted for in terms of a higher premium of PHP 60 for

treatment TNoDef , as opposed to PHP 50 for all other treatments.15

Comparing treatment TUnc with control treatment C allows us to identify the

effect of uncertainty on insurance demand and, thus, to test Hypothesis 2. Here,

15Because the actual price of an insurance policy is its loading, we targeted a 30 percent
markup on all insurance treatments. This target resulted from simulations that suggested suf-
ficient variation across treatments. To make the resulting premium values manageable in our
experimental setting using artificial PHP bills, we rounded premium values to even amounts,
resulting in actual loadings of 23.5 percent and 33.3 percent for the TNoDef treatment. Given
that rounding necessarily leads to different loadings, we made sure that the loading for insurance
without contract nonperformance risk was at least as high as that with contract nonperformance
risk. This implies that our results are lower bounds of the effect of contract nonperformance risk
on insurance demand. In general, insurance premiums commonly include risk and cost loadings,
which are often high in low-income insurance markets (Biener, 2013).
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the contract nonperformance probability was uncertain to the participants. In

order to provide the participants with an initial signal of probabilities by which to

form their prior beliefs, the balls in the bags of the uncertain treatments (TUnc and

TUnc−Fr) were selected blindly by one research assistant from a big bag containing

100 balls during the instructions. Of the 100 balls in the big bag, 10 were orange

and 90 were white. One of the participants was invited to count the balls in the

bag blindly to make sure that 10 balls were placed in the uncertain bags. Our

setting with multiple rounds allows us to analyze the effects over time, which is

especially interesting under uncertainty, when experience about losses and contract

nonperformance can be shared within the peer network. In particular, one might

expect uncertainty to decrease over time once sufficient learning has taken place.

We also test the role of different framings regarding the insurer’s influence on

the decision not to pay claims in treatments TFr and TUnc−Fr. In these treatments,

we describe contract nonperformance as a case in which the insurer does not want

to pay a valid claim, providing examples such as fraud or scam. All other treat-

ments include a neutral statement (”the specific type of loss is not covered by the

insurance”). We expect that the negative framing might lead to a more pessimistic

evaluation of insurance, leading to an overweighting of contract nonperformance

probabilities. There should be more scope for subjective weighting when probabil-

ities are unknown, and we thus suspect a stronger reduction in insurance demand

when contact nonperformance risk is uncertain. To test this conjecture, our exper-

iment includes a two-by-two factorial design to test uncertainty, negative framing,

and their combination.

B. Procedures and Sample Characteristics

We conducted a field lab experiment in the Philippine provinces of Iloilo and

Guimaras in October and November 2013. Four treatments and one control set-

ting of this experiment were randomized across four sessions, implemented in each
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of a total of 42 villages.16 This random assignment was implemented such that

distinct treatments were executed in each village in order to reduce the likelihood

of correlations between village-level covariates and treatment assignment or order.

Furthermore, we applied a two-stage randomization procedure. In the first stage,

rural villages were selected randomly.17 In the second stage, individuals aged be-

tween 18 and 65 years were selected randomly from complete household lists, as

provided by village officials. The recruitment procedure resulted in 24 participants

per village, forming four groups (or sessions) of six participants.

The structure of an experimental session was as follows. First, a pre-experimental

survey was conducted to gather individual and household characteristics, followed

by the lottery choice task to measure risk and ambiguity attitudes. Next, the in-

surance experiment began with instructions. Detailed explanations were provided

by one instructor, with the help of visual aids. We ensured the participants’ un-

derstanding by conducting a test questionnaire. Only when all questions of the

test could be answered correctly was a participant allowed to continue, whereas

we allowed for one re-explanation.18 Each participant played six rounds of the

insurance experiment, and the initial endowment was restored at the start of each

round. In order to gather the participants’ beliefs about contract nonperformance

probabilities, a brief survey was implemented at the beginning of rounds 1, 2, 4,

and 6 (i.e., before the insurance decisions). Here, participants provided their beliefs

about the number of orange balls in the respective bag and stated the minimum

and maximum numbers of orange balls they believed were in the bag. The first

survey at the beginning of round 1 inquired about participants’ beliefs regarding

the contract nonperformance probabilities in the absence of any peer or network

16One additional treatment, unrelated to uncertain contract nonperformance risk, was con-
ducted. Thus, six variants were randomized altogether. The omitted treatment is irrelevant to
the research questions analyzed in this paper. Details are available upon request.

17Villages from municipalities with high income (i.e., the top two income classes out of five)
were excluded from the study; income classes are defined by the Department of Finance Republic
of the Philippines (2008).

18The share of correctly answered questions in the first attempt was higher than 90 percentage
points in all treatments on average. A sample of the test questionnaire implemented for TUnc and
TUnc−Fr is provided in Appendix E3.
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effects.

A post-experimental survey was conducted to gather data on mathematical and

numerical capabilities, past real-life loss experiences, insurance ownership, and

other beliefs. Finally, participants were paid the proceeds from one of the six

rounds played in the insurance experiment, plus the proceeds from the lottery

choice task and a show-up fee, in real PHP. The round of the insurance experiment

that was paid out was selected randomly by the participant from another opaque

bag, with six numbered balls representing the six rounds of the experiment. The

average earnings from the experiment were PHP 156.5 in the insurance experiment

and PHP 13.5 in the lottery choice task. Additionally, participants received a

show-up fee of PHP 100,19 amounting to PHP 270, or approximately USD 6.2—a

substantial amount for the average participant.20

In total, we conducted 136 sessions with 816 participants in 42 villages. Table 3

presents the mean values of individual characteristics and equality of means tests

by treatment group. The results show that individual characteristics are balanced

throughout the treatments (i.e., versus the control treatment C) and that few

variables exhibit significant differences. Treatments TNoDef and TFr have slightly

higher proportions of female participants. Treatment TNoDef exhibits a slightly

higher share of participants being responsible in household financial decision mak-

ing. The proportion of employed participants in the TNoDef and TFr treatments is a

bit lower than in the control treatment C. Finally, the share of participants owning

a dwelling is higher under treatment TNoDef . However, overall, it is apparent that

the sample is balanced across treatment groups.

As a further balancing check, we implement a multivariate analysis of variance to

19The show-up fee was increased by PHP 20 if the participant was the head of his or her
household. We wanted to make sure that the sample is representative of members of the household
who are involved in financial decision-making at the household level, which holds true for almost
all of our participants.

20The official exchange rate was PHP 43.3 to USD 1 in early October 2013. Note that the
stakes of PHP 210 in the experiment are close to the minimum daily wage of PHP 250 in the
agricultural sector in the Iloilo province, as of October 2013 (Republic of the Philippines, 2008),
which few participants are able to earn. The median daily earnings of those participants receiving
a daily wage (12 percent of total sample) is only PHP 180.
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Table 3: Descriptive Statistics

Equality

C TNoDef TUnc TFr TUnc−Fr of Means

(p-value)d

Panel A: Socio-demographic characteristics

Age 39.86 38.80 38.96 38.76 39.86 0.838

(in years) (10.50) (10.08) (9.966) (10.94) (9.755)
Gender 0.741 0.840* 0.810 0.833* 0.786 0.464

(1 = female) (0.439) (0.368) (0.394) (0.374) (0.412)

Financial responsibilitya 0.958 0.994* 0.964 0.977 0.970 0.324
(1 = yes) (0.201) (0.0786) (0.186) (0.150) (0.170)

Married or in partnership 0.903 0.889 0.869 0.902 0.899 0.812

(1 = yes) (0.297) (0.315) (0.338) (0.298) (0.302)
Education 9.573 9.580 9.911 9.552 9.381 0.467

(in years) (2.642) (2.472) (2.476) (2.210) (2.619)

Employment status 0.465 0.358* 0.387 0.351* 0.429 0.329
(1 = employed) (0.501) (0.481) (0.488) (0.479) (0.496)

Regular income 0.270 0.295 0.282 0.250 0.275 0.627
(1 = yes) (0.447) (0.460) (0.453) (0.436) (0.449)

Seasonal income 0.716 0.787 0.732 0.653 0.637 0.234

(1 = yes) (0.454) (0.413) (0.446) (0.479) (0.484)
Land ownership 0.133 0.142 0.113 0.167 0.161 0.793

(1 = yes) (0.341) (0.350) (0.318) (0.374) (0.368)

Dwelling ownership 0.799 0.895** 0.845 0.839 0.851 0.318
(1 = yes) (0.402) (0.307) (0.363) (0.369) (0.357)

Reduced meals within last month 0.273 0.210 0.214 0.218 0.244 0.869

(1 = yes) (0.447) (0.408) (0.412) (0.414) (0.431)

Panel B: Mental capabilities, risk and ambiguity aversion

Mathematical ability score 6.660 6.654 6.661 6.655 6.494 0.901

(0 min 8 max) (1.698) (1.815) (1.630) (1.612) (1.754)
Numerical ability score 9.236 9.142 9.119 9.040 8.994 0.968

(0 min 16 max) (3.084) (2.988) (2.999) (2.930) (2.958)
Risk aversionb 0.480 0.451 0.479 0.482 0.498 0.689

(0 min 1 max) (0.297) (0.281) (0.295) (0.272) (0.287)

Ambiguity aversec 0.397 0.461 0.445 0.445 0.454 0.91
(1 = yes) (0.491) (0.5) (0.499) (0.499) (0.5)

Panel C: Loss and insurance experience

Insurance ownership 0.528 0.580 0.577 0.557 0.542 0.884
(1 = yes) (0.501) (0.495) (0.495) (0.498) (0.500)

Illness or accident shocks 0.625 0.627 0.631 0.590 0.563 0.682

(1 = yes) (0.486) (0.485) (0.484) (0.493) (0.498)
Weather or livestock shocks 0.451 0.391 0.423 0.439 0.425 0.874

(1 = yes) (0.499) (0.490) (0.495) (0.498) (0.496)

Observations 144 162 168 174 168

Notes: Mean coefficients reported; standard errors in parentheses. aIndicator variable in which 1 indicates respon-

sibility for financial decision-making in the household. bPercentage of risk-seeking choices made in a set of Holt and
Laury (2002) lotteries. cAmbiguity classification: 1 indicates ambiguity aversion, while 0 indicates no aversion to

ambiguity. dp-values for multivariate equality of means test based on Wilks’ lambda test statistics. ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01 indicate significance levels for equality of means t-tests of all treatments versus the control
treatment C.
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test for differences between means across treatment groups on each of the variables

presented in the summary statistics. The last column of Table 3 shows the p-values

associated with the F-statistic based on Wilks’ lambda. We do not reject the null

hypothesis that the means across the groups are all equal. Thus, we conclude that

the participants’ characteristics shown in Table 3 are balanced across treatments.

IV. Experimental Results

A. Main Results

The discussion of results is structured along the hypotheses defined in Section II.

We show the average uptake across treatments in Figure 4. Appendix Table C1

mirrors the figure using estimates from linear probability and probit models and

shows that the results are robust to the inclusion of control variables.21 In all of our

analyses, we account for the potential correlation within our unit of randomization

(i.e., the experimental session) via clustered standard errors.22

Hypothesis 1—Eliminating contract nonperformance risk in treatment TNoDef ,

that is, setting r = 0 instead of r = 0.1, results in a significant increase in insurance

uptake of 17.1 (p=0.007) percentage points. For all specifications, the treatment

dummy is significant at the 1 percent level. Hence, the risk that the insurance

contract might not perform is clearly unattractive to participants, on average, even

if they are compensated by lower premiums. In line with Hypothesis 1 as well as the

findings of prior studies (Zimmer et al., 2016; Zimmer, Schade and Gründl, 2009;

Herrero, Tomás and Villar, 2006; Albrecht and Maurer, 2000; Wakker, Thaler and

21The added covariates are age, gender, financial responsibility, marital status, education,
employment, dwelling ownership, land ownership, reduced meals within the last month, score on
mathematical and numerical capabilities, insurance ownership, health or accident shocks, and
weather or livestock shocks. We also include round controls and the additional variable Typhoon,
which takes a value of one if the subject was exposed to typhoon Haiyan, and zero otherwise.
Typhoon Haiyan passed by the Iloilo Province halfway through our experiment, in November
2013. Our main effects are consistent before and after the typhoon.

22We assured that wealth effects cannot play a role in the repeated game by restoring the
initial endowment at the start of each round. While learning could theoretically explain aver-
age treatment effects observed for all rounds, our results also hold when considering first-round
decisions only.
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Figure 4: Average Insurance Uptake by Treatment

Notes: The bars represent the mean proportion of individuals taking up insurance for the different treatment

groups. Error bars indicate 95 percent confidence intervals based on clustered standard errors at the session level.

Tversky, 1997), we thus conjecture that the presence of contract nonperformance

risk in an insurance contract considerably decreases uptake, even when premiums

are adjusted for the potential default on valid claims on an actuarially fair basis.

Hypothesis 2—When introducing uncertainty in the probability of contract non-

performance in treatment TUnc, insurance uptake is reduced by 14.5 percentage

points (p=0.062) relative to C. The result suggests that the presence of uncertainty

in the contract nonperformance probability decreases insurance uptake compared

to when contract nonperformance risk is known. In particular, the magnitude of

the effects indicates that the reduction of insurance uptake induced by contract

nonperformance risk is almost twice as strong in the presence of uncertainty. In

line with Hypothesis 2, we conjecture that the reduction in insurance uptake in-

duced by the presence of contract nonperformance risk is amplified significantly if

the nonperformance probability of the insurance contract is uncertain.
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Hypothesis 3—Following our theoretical model, individual ambiguity aversion

could be a major factor explaining the sign and strength of the uncertainty effect.

Therefore, we exploit the fact that we can classify participants with respect to

ambiguity aversion, given their behavior in the lottery choice task prior to the in-

surance experiment. In particular, we use two lottery choices involving uncertainty

to classify individuals as ambiguity averse or non-ambiguity averse.23 Figure 5

presents average treatment effects for ambiguity-averse and non-ambiguity-averse

subjects.24
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Figure 5: Average Treatment Effects by Treatment and Ambiguity Aversion

Notes: The bars represent the average treatment effects relative to control treatment C for the two subsamples
of ambiguity-averse (dark grey) and non-ambiguity-averse (light grey) individuals. Error bars indicate 95 percent

confidence intervals, based on clustered standard errors at the session level.

The results for ambiguity-averse subjects are in line with our theoretical predic-

23Those choices are between lotteries with known and unknown content. Participants who
chose the known content twice were classified as ambiguity averse, and those with one or two
choices for known content were classified as non-ambiguity averse. The protocol for this task is
available in Appendix D2.

24In Appendix Table C2 we provide the respective regression results. The result that a large
share of participants exhibits ambiguity aversion is in line with the empirical literature (Traut-
mann and van de Kuilen, 2015).
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tions. There is a strong reduction in insurance demand when the probability of

contract nonperformance is uncertain. When ambiguity-averse subjects are con-

fronted with the TUnc and TUnc−Fr treatments, insurance demand is reduced by 18.2

percentage points (p=0.048) and 22.0 percentage points (p=0.02), respectively. For

non-ambiguity-averse subjects, all effects of contract nonperformance uncertainty

are smaller, but this difference is only significant for TUnc−Fr (p=0.0499).25 One

reason the differences are not more pronounced might be the imprecise classification

of participants, leading to a negative point estimate, even for non-ambiguity-averse

subjects.26 Note that we cannot take these latter results as evidence against our

theory, as we cannot reject that these effects are, in fact, positive. Overall, the more

pronounced uncertainty effect among ambiguity-averse individuals is in line with

our theoretical predictions, but these results should be carefully interpreted given

the imprecise differences between subsamples and the risk of multiple hypothesis

testing involved in subsample regressions.

Hypothesis 4—So far, we have focused on the role of ambiguity aversion, because

the predictions of its influence on the treatment effect are the most straightforward.

However, together with ambiguity aversion, risk aversion also determines decisions

in uncertain (i.e., inherently also risky) environments. Deriving exact predictions

on the interplay of risk and ambiguity aversion without further assumptions is

difficult. Therefore, we simulate insurance demand under parametric specifications

of the utility function (see Section II for details). Specifically, we assume CRRA

and CRAA; otherwise, we use all parameters as given in our experimental setup.

The simulations predict that, with contract nonperformance risk, (1) insurance

should be taken up primarily by individuals within a range of “moderate” risk

aversion parameters (see Figure 2), and that (2) the effects for ambiguity-averse

subjects should be observed primarily at the boundaries of this “moderate” range

25We test the difference between the two subsamples using seemingly unrelated regressions,
which consistently follow our earlier specifications.

26A possible explanation for this could be that measures of ambiguity aversion are subject to
high levels of noise (see l’Haridon et al. (2018)).
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(see Figure 3). Our first prediction is in line with Doherty and Schlesinger (1990),

who show a violation of the standard monotonic relationship between risk aversion

and optimal insurance demand when contract nonperformance is present. Similarly,

Clarke (2016) makes the case for a hump-shaped relationship between risk aversion

and optimal insurance demand for index insurance with basis risk, which is similar

to the notion of contract nonperformance risk considered here, except that it has

both upside and downside risk.27
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Figure 6: Average Insurance Uptake and Treatment Effect by Risk Aversion

Notes: In parts (a) and (b) of this figure, we focus on the subsample of participants in Treatments C and TUnc.

The dots in (a) represent the mean proportion of individuals taking up insurance under C and TUnc, conditional

on the percentage of risky choices in the Holt and Laury (2002) lotteries; (b) shows average treatment effects of
TUnc. All estimates are based on third-degree polynomials interacting with TUnc for the subsample of

ambiguity-averse participants used in Table C2. Error bars indicate 95 percent confidence intervals, based on
clustered standard errors at the session level.

Therefore, we start by analyzing whether insurance uptake is indeed higher in a

certain “moderate” range of risk aversion. The behavior in the lottery choice task

prior to the insurance experiment again serves as a basis to classify participants.

In particular, we use the percentage of risk-seeking choices made in a set of Holt

and Laury (2002) lotteries as a measure of risk aversion that we translate into their

implied midpoints of CRRA parameter intervals. Figure 6 (a) shows the expected

27However, note that the decrease in optimal index insurance demand with basis risk in risk
aversion is driven by the downside risk, not by the upside potential. This is equivalent to what
we observe here.
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effect of higher insurance uptake among “moderately” risk-averse individuals. 28

From our simulation, we expect that the effects of the TUnc treatment should

materialize primarily among the risk-averse up until a certain level of risk aversion

at which differences between C and TUnc no longer matter, because insurance is

anyway forgone (i.e., ρ > 1.9). Testing this prediction empirically is not straight-

forward, because our measure of risk aversion is noisy and difficult to translate

into the parameters used in our simulation. In addition, the location of effects is

sensitive to the model specifications. However, the results presented in Figure 6

(b) mirror the predictions from our model presented in Figure B1, showing that

predictions from utility theory are, to some extent, supported by our empirical

results. This lends further credibility to our interpretation of the effects.

B. Belief Formation

Uncertainty is essentially a lack of information. Studying the dynamics of deci-

sions under uncertainty is important, because individuals might collect information

over time. If such experience (directly, or indirectly via peers) affects the degree

of uncertainty, static analyses are insufficient. In our setting, participants lack

information about the contract nonperformance probability, which is governed by

the mixture of orange and white balls in an opaque bag. We study the dynamics

of subjective beliefs about the mixture of balls in this section and thereby shed

some light on how individuals update beliefs as well as how they adapt insurance

decisions.

A standard economic principle for updating beliefs is based on Bayes’ rule that

considers beliefs about an unknown stochastic process in the context of newly

available information. As the number of observations increases, the true probabil-

ity can be estimated more and more precisely. For a perfectly rational Bayesian

updater, the subjective probability distribution q(.) over the possible contract non-

28We expect the hump-shape for the C as well as the TUnc treatment and Figure 6 (a) shows
average patterns accordingly. Note that the patterns within each treatment are in line with our
predictions as well.
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performance probabilities should converge towards a degenerate distribution with

a value of one at the true probability. Such decreasing uncertainty with experience

should be reflected in a more positive evaluation of the insurance contract and thus

uptake under models of ambiguity. Also under SEU, the level of individuals’ prior

beliefs and the speed of updating jointly determine posterior probability beliefs,

which are the key determinants for uptake. However, consistently updating beliefs

is a difficult task. A number of experimental studies suggest that the Bayes’ rule

is usually not applied correctly, and several cognitively less demanding heuristics

have been proposed to explain updating behavior (Tversky and Kahneman, 1971,

1973; Kahneman and Tversky, 1972; Grether, 1980, 1992; Ouwersloot, Nijkamp and

Rietveld, 1998; Zizzo et al., 2000; Charness and Levin, 2005). This has particular

bearing in our setting, as the experimental subjects stem from a rural low-income

population with lower levels of education and (potentially) lower numeracy than

populations considered previously.

Irrespective of the exact heuristic that participants use to update beliefs, it is

interesting to see whether the incoming information is used. We therefore elicited

participants’ beliefs about the contract nonperformance probability by having them

guess (1) the number of orange balls contained in the bag from which contract

nonperformance was drawn (best guess), and (2) the minimum and maximum

number of orange balls they deemed possible (as described on the experimental

design section). The spread between the minimum and maximum guess of orange

balls can be used as a proxy for subjective uncertainty.

Figure 7(a) shows pooled treatment effects for uncertainty treatments TUnc and

TUnc−Fr as well as beliefs, separately by round. Contrary to the rational updating

hypothesis, the treatment effect of uncertainty exhibits no clear trend. At the

same time, Figure 7(b) shows that participants are highly pessimistic in terms of

subjective contract nonperformance probability. Their best guess is around 2.5,

which is 150 percent above the true average contract nonperformance probability.

This bias does not decrease over time (Appendix D shows that it should under
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Bayesian updating, even when starting out with a pessimistic prior). The minimum

and maximum guesses are also high (about 1.6 and 3.5). Only the maximum guess

exhibits a downward tendency (p=0.003), which also implies a decreasing trend for

the subjective spread, our proxy for uncertainty (p=0.001).
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Figure 7: Average Treatment Effects and Beliefs by Round

Notes: (a) shows average treatment effects for the pooled treatment groups TUnc and TUnc−Fr, and (b) shows
average beliefs about the number of orange balls, from a total of 10 balls, in terms of the mean minimum, mean

best, and mean maximum guess, by round. Guesses were elicited via a short survey in rounds 1, 2, 4, and 6 (see

Section III). We restrict the sample to those participants which always made meaningful statements (i.e.,
minimum ≤ best guess ≤ maximum, no extreme outliers). The error bars indicate 95 percent confidence

intervals, based on clustered standard errors at the session level.

Overall, it seems that the changes in beliefs do not affect demand on average.

These aggregate trends might mask interesting dynamics at the individual level.

We will therefore pursue the following questions in greater detail: do beliefs play a

role in insurance demand? How do realizations of contract nonperformance (own

and peer experiences) affect beliefs and insurance uptake? While these questions

are important plausibility checks for our theoretical framework, they are difficult

to answer, as causality runs multiple ways. Participants’ experiences not only in-

fluence beliefs and uptake, but also vice versa. For example, without insurance

uptake, no realizations of contract nonperformance can be experienced. Addition-

ally, peer effects through communication within the experiment create even more

possible causal chains and feedback loops (similar to learning in reality). We can,
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however, exploit some features of our experimental setup to avoid identification

problems.

First, we did not allow communication in the initial round of the experiment to

eliminate peer effects during this period. We can therefore use beliefs, which were

always elicited before the corresponding insurance decision, to explain insurance

uptake in the first round. Table 4 provides the result of a simple probit regression

of insurance uptake on minimum guess, best guess, and maximum guess. The only

significant finding is the negative correlation between uptake and the maximum

guess (p=0.008). The other estimates are imprecise relative to their effect size.

Controlling for a number of covariates does not change these results. The results,

however, also indicate that perceived uncertainty (i.e., difference between minimum

and maximum guess) correlates negatively with insurance uptake, as predicted

by the theory. This correlation is significant when replacing the minimum and

maximum guess with their difference in the regression (p=0.046).

Table 4: Impact of Beliefs on Insurance Uptake

(1) (2)

Best guess 0.0466 0.0421

(0.0373) (0.0363)
Min guess -0.0016 -0.0096

(0.0554) (0.0522)

Max guess -0.0505*** -0.0520**
(0.0191) (0.0206)

Observations 249 249

Covariates No Yes

Notes: Probit models are used (marginal effects shown) with the dependent variable set to

1 if the subject takes up insurance in the first round. We restrict the sample to those partic-

ipants which always made meaningful statements (i.e., minimum ≤ best guess ≤ maximum,
no extreme outliers). Standard errors (reported in parentheses) are corrected for cluster-
ing at the session level. Covariates are age, gender, financial responsibility, marital status,

education, employment, dwelling ownership, land ownership, reduced meals within the last
month, score on mathematical and numerical capabilities, insurance ownership, health or

accident shocks, and weather or livestock shocks. An alternative linear probability specifica-

tion leads to the same conclusions. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 indicate significance
levels of 10, 5, and 1 percent, respectively.

Second, we can use random draws during the experiment for causal inference. In

particular, we exploit the random contract nonperformance realizations to identify

causal effects of experiences on future beliefs and behavior. It is important to
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note that contract nonperformance is only truly exogenous if conditioning on prior

insurance uptake and experiencing a loss. Our data features 683 such situations

(323 in treatments with uncertainty), which represents a sufficiently large set for

quantitative analysis. Depending on the contract nonperformance realization, we

can compare subsequent reactions in terms of beliefs and insurance uptake.

Figure 8 shows simple OLS regression coefficients of two outcomes—(a) change

in maximum guesses and (b) insurance demand—on contract nonperformance.29

To illustrate effect dynamics over time, we compute lagged outcome variables by

ordering outcomes according to game play order, i.e., orders 0 and 6 correspond

to outcomes for the participant and the remaining are peer outcomes. We run

separate regressions for each lagged outcome on contract nonperformance, whereas

the latter takes a value of 1 if contract nonperformance is realized, and 0 otherwise.

As contract nonperformance is always the last experience of an individual in each

round, no causal effects should exist up to order 0. Only when the subsequent peer

(i.e., order 1) makes decisions and states beliefs, can effects start to materialize. An

important focal point is order 6, in which the individual experiencing the contract

nonperformance takes part in the next round of the experiment. Effects indeed

seem strongest, most significant, and most intuitive at order 6, at which there is a

significant upwards trend in maximum guesses and a negative, though insignificant,

effect on future insurance uptake. Peer effects all seem to fluctuate around zero,

even though estimates are too imprecise for drawing firm conclusions. Reassuringly,

the ”placebo effects” (i.e., decisions up to order 0) do not suggest a violation of

our identifying assumptions.

Given that we do not find evidence of peer effects, we now focus on the effects

of own experience in the next round (i.e., order 6) for all relevant outcomes. In-

stead of focusing only on the difference between nonperformance and performance

of the contract (as in Figure 8), we consider the effect of each signal separately

29We focus on the maximum guesses in particular, because they seem to play the largest role
for demand in the previous regression.
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Figure 8: Dynamic Contract Nonperformance Effects

Notes: The figures show simple OLS regression coefficients of the two outcomes on contract nonperformance. We

compute lagged outcome variables by ordering outcomes according to game play order. Separate regressions are
run for each lagged outcome. The sample excludes the treatment without contract nonperformance probability

TNoDef and is restricted to those taking up insurance and facing a loss. The change in maximum guess in part

(a) is calculated as the change of the next available maximum guess of the respective participant relative to the
last available guess at the time of the event. For guesses, we restrict observations to those participants who

always made meaningful statements (i.e., minimum ≤ best guess ≤ maximum, no extreme outliers). Figure (b)

shows lagged insurance uptake. The error bars indicate 95 percent confidence intervals, based on clustered
standard errors at the session level.

at this point. The reason is that each of the two signals should lead participants

to update their beliefs in different directions, relative to receiving no signal. If

there is contract nonperformance, chances are that the contract nonperformance

probability is higher, and vice versa. We therefore regress future guesses as well

as uptake on two dummies: one indicating a loss with subsequent payout and one

indicating a loss with subsequent contract nonperformance. As both the contract

nonperformance experience and the arrival of losses are fully exogenous and inde-

pendent events (given insurance uptake), these coefficients are unbiased estimates

of the corresponding causal effects.

Table 5 shows the effects of the two possible signals. In almost all cases, effects

point in the expected direction: with an insurance payout, guesses tend to decrease

(except for the best guess) and uptake increases, while guesses increase and uptake

decreases with contract nonperformance. Even though precision of the estimates is

limited, we find several significant effects: a positive contract performance effect on
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insurance uptake, a positive contract nonperformance effect on minimum as well

as maximum guesses, and effect differences between the two signals with respect

to minimum and maximum guesses.

Table 5: Impact of Experimental Experience on Beliefs and Uptake

Best guess Min guess Max guess Uptake

Loss and performance 0.0492 -0.0228 -0.147 0.0401**

(0.0840) (0.0574) (0.130) (0.0157)
Loss and nonperformance 0.162 0.396*** 0.750* -0.0372

(0.114) (0.0939) (0.439) (0.0486)

p-value Lossperf = Lossnonperf 0.3247 0.0003*** 0.0379** 0.1358

Observations 695 695 695 1710

Notes: The sample excludes the treatment without nonperformance probability TNoDef
and is restricted to those taking up insurance. For guesses, we restrict the sample to those

participants who always made meaningful statements (i.e., minimum ≤ best guess ≤ max-
imum, no extreme outliers). Standard errors (reported in parentheses) are corrected for

clustering at the session level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 indicate significance
levels of 10, 5, and 1 percent, respectively.

These results point to individual updating behavior, which is in line with the

theoretical framework to some extent. Several restricting factors stand out. First,

participants hold very pessimistic initial priors, and the individual dynamics do not

add up to reduced pessimism over time. Second, peer experiences do not seem to

influence updating behavior, or at least not as strongly as own experiences. This

might be one reason why updating is too slow to affect aggregate demand. We

cannot rule out, however, that pessimism and uncertainty also persist in the longer

run. At least, the issue does not seems to disappear easily.

C. Framing

Insurance clients have been shown to be sensitive to the insurer’s influence on the

decision not to pay claims (Kunreuther et al., 2002; Zimmer, Schade and Gründl,

2009), and we are interested in whether these framing effects are relevant in our

uncertain contract nonperformance setting. We consider two main channels by

which framing could impact insurance demand. The first channel relates to a

framing impact on the perceived uncertainty of contract nonperformance risk. Here

we would expect framing to induce a more pessimistic evaluation of insurance that
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implies an overweighting of contract nonperformance probabilities. As there should

be more scope for subjective weighting when probabilities are unknown, we suspect

that the negative framing and the uncertainty treatment should be complementary,

jointly inducing a stronger reduction in insurance demand. The second channel

presumes a direct impact of framing on utility, independent of perceived uncertainty

and subjective probabilities. A utility loss driven by negative framing could, for

example, be rationalized by betrayal aversion (Bohnet and Zeckhauser, 2004). In

this scenario, framing effects should be independent of the presence of uncertainty.

Figure 4 shows average insurance uptake under all combinations of framing and

uncertainty. The treatment effect of introducing negative framing without uncer-

tainty in TFr is a 12.1 percentage point reduction in insurance uptake, which is

statistically insignificant (p=0.134). In contrast to our initial hypothesis, the fram-

ing effect does not become larger but even seemingly smaller under uncertainty; the

average uptake in treatments featuring uncertainty (TUnc), framing (TFr), and their

combination (TUnc−Fr) is very similar. We cannot reject the hypothesis that the ef-

fects of these treatments relative to the control (C) are equal (p=0.858), suggesting

that they are not complementary but substitute each other. This interpretation is

substantiated further by the fact that the subjective beliefs about contract non-

performance probabilities measured within our experiment in treatments TUnc and

TUnc−Fr are very similar.30

A remaining question is whether framing and uncertainty are substitutes, as they

influence the same belief-related channel, or whether framing works in a distinct

way, directly reducing the utility derived by insurance (e.g., through betrayal aver-

sion). Some evidence can be obtained when looking at heterogeneous treatment

effects by ambiguity aversion. Ambiguity aversion should only play a role in the

belief-related channel, while it would be harder to argue why it should drive the

strength of the direct utility loss. Revisiting Figure 5, similar heterogeneity pat-

30When testing for differences induced by framing, p-values are large: p=0.44 for maximum
guess, p=0.91 for minimum guess, and p=0.833 for mean guess.
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terns emerge for all treatments TUnc, TFr, and TUnc−Fr. Irrespective of whether

uncertainty or negative framing is present, effects are similarly more pronounced

for ambiguity-averse participants. While these point estimates suggest that both

uncertainty and the framing effect work through a similar mental channel, limited

precision prevents us from drawing firm conclusions.

V. Conclusion

We show the detrimental impact of contract nonperformance risk and uncer-

tainty on insurance demand in a large behavioral experiment and develop a theo-

retical model that rationalizes the observed effects. Our setup relaxes the standard

assumption of known probabilities for insurance contracts failing to perform by

allowing for uncertainty. We establish empirically that the demand for insurance

significantly decreases when introducing risk and uncertainty, respectively, and that

the effects are comparable in magnitude (17.1 and 14.5 percentage points). Along

the lines of our theoretical framework, we analyze effect heterogeneity by risk and

ambiguity preferences and show that the group of risk- and ambiguity-averse par-

ticipants is affected most. These results suggest that the reduction in insurance

demand induced by contract nonperformance risk that has been identified in the

literature is significantly reinforced by uncertainty.

Though the strong uncertainty effect on ambiguity-averse participants is in line

with models incorporating ambiguity attitudes (Klibanoff, Marinacci and Mukerji,

2005), we show that pessimistic beliefs within a subjective expected utility frame-

work (Savage, 1954) lead to behaviorally equivalent predictions. In particular, we

show that ambiguity-averse (-loving) agents act as if they hold pessimistic (opti-

mistic) beliefs under subjective expected utility. In other words, both modes of

judgment under uncertainty might equivalently explain results, and we are to some

extent agnostic about which of the two is more likely to drive choices.

Uncertainty essentially results from insufficient information about the contract

nonperformance probability and should be reduced with experience over time fol-
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lowing Bayes’ rule. We find that individual updating behavior is to some extent

in line with this framework, as own experiences affect beliefs and demand in a

meaningful way. However, very pessimistic initial priors and the disregard of peer

experiences impede optimal updating, potentially explaining why updating is too

slow to affect aggregate demand in our experiment. High subjective uncertainty

might well persist also outside the experiment, because information transmission

is potentially less effective when information arrives sporadically over longer time

periods (Gallagher, 2014).

We also study framing effects regarding the insurer’s influence on the decision not

to pay claims. While previous studies show that the reason for contract nonperfor-

mance is important for demand under probabilistic insurance (Kunreuther et al.,

2002; Zimmer, Schade and Gründl, 2009), such framing effects might be even larger

under uncertainty. The substance of this conjecture depends very much on whether

agents simply dislike unreliable insurers framed as such (as a direct component of

their utility) or whether this aspect is related to subjectively overweighting the

contract nonperformance probability. In the latter case, there should be a much

greater scope for overweighting under uncertainty. Our results, however, do not

support this hypothesis. While we cannot rule out that framing plays a role for

some participants, it does not seem to change the effect of uncertainty. Results even

suggest that both the uncertainty and the framing effect work in a similar way, as

they create similar heterogenous treatment effects by ambiguity preferences.

Our findings imply that ensuring low contract nonperformance risk and reduc-

ing its uncertainty should both be primary policy objectives. Consequential policy

interventions might not be in the best interests of individual insurance providers,

because they limit the range of valuable management decisions that benefit the

owners of an insurance company. For example, contract nonperformance risk is

endogenous to increases in investment risk, decreases in solvency capital, or de-

lays of claims payments. Thus, there is a particular trade-off between the costs

and benefits that can be exploited by insurers, which the regulator may want to
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restrict through solvency and market conduct regulation. Similarly, in the case

of uncertainty, reasons not to create transparency may be endogenous to manage-

ment decisions. For example, an insurance provider publishing data about claims

payment practices might send an unintended negative signal or lose the option

of denying contract nonperformance risk towards clients altogether. These and

other strategic factors might limit the incentives for transparency, even though the

insurance market as a whole might profit from reduced uncertainty.

There is particular room for improvement in emerging insurance markets with

currently low regulatory oversight, limited customer protection, and low levels of

trust. Contract nonperformance risk and uncertainty might explain why insurance

demand is limited in these settings, and our results show that the effects from re-

ducing contract nonperformance risk and uncertainty can be sizeable among such a

low-income population, providing a potential tool to improve market development.

From the perspective of an insurance company, a strategic focus on sound policies

and practices may prove beneficial in order to gain a competitive advantage and

build trust in an emerging market.

Our conclusions are based on the empirical results presented in this paper, but

their interpretation inevitably rests on certain assumptions, because randomizing

all potential factors influencing insurance demand under uncertainty is impossible.

For example, in our experiment, groups consist of six individuals, and it is not

clear how the results would change with larger groups and, thus, more information

potentially being available under uncertain settings. In addition, varying the con-

tract nonperformance probability is potentially interesting, enabling us to judge

the sensitivity of demand with regard to this factor in greater detail. However,

prior work suggests that the largest part of the demand-reducing effect of contract

nonperformance risk can be attributed to whether this risk is present, and that

sensitivity of demand is highest when moving from non-probabilistic insurance to

insurance with a non-zero contract nonperformance probability (Zimmer et al.,

2016). In a similar vein, further research may investigate the role of the degree of
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uncertainty and the way it is introduced, which we did not vary in our experiments.

Therefore, in the absence of additional experimental findings across a range of pa-

rameters, it is crucial to think about the interpretation of results theoretically in

order to judge their plausibility and generalizability. Our main empirical findings

are in line with the hypotheses derived from our theoretical model, and the corol-

lary findings appear to be sensible: the demand effects of uncertainty are strongest

for ambiguity-averse or pessimistic and risk-averse subjects, and demand seems to

follow an inverted U-shape with respect to risk aversion (Doherty and Schlesinger,

1990; Clarke, 2016). These properties suggest that the findings are meaningful and

might hold when moving beyond the restricted parameter set tested here.
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Appendix A: Proofs

In this appendix we analyze the effects of uncertain contract nonperformance risk,

compared to the benchmark setting with a known probability of contract nonper-

formance. Alary, Gollier and Treich (2013) show that ambiguity aversion raises

both marginal willingness to pay and optimal insurance for self-insurance if loss

probabilities are uncertain.31 Their intuition is that ambiguity aversion increases

the distorted probability of the state to insure, thus also increasing demand for

insurance (a special case of self-insurance). We proceed in a very similar way, but

in our case uncertainty about contract nonperformance risk leads ambiguity-averse

agents to overweight states with positive nonperformance probabilities and thus

makes them less willing to insure. This aspect can be observed best when focusing

on willingness to pay, and we therefore devote most of our attention to it. We

nevertheless show the implications for optimal demand as well.

A1. Introducing Uncertainty in Probabilistic Insurance

We assume a decision maker with von Neumann–Morgenstern preferences with

utility function u(.) that is continuous, monotonically increasing (u′(.) > 0), and

two times continuously differentiable. We furthermore restrict our attention to

risk-averse agents (u′′(.) < 0). Without uncertainty, agents maximize expected

utility EUr:

EUr =(1− p)u(w − I(ε))

+ p[(1− r)u(w − I(ε)− L+ ε)(A1)

+ ru(w − I(ε)− L)].

Under uncertainty, we define the ambiguous contract nonperformance probability

r(γ), depending on the unknown parameter γ. The ambiguity is defined as a

31Self-insurance refers to a situation where wealth in a specific state (with lower wealth than
the certainty equivalent wealth in other states) is increased against a cost incurred in all states.
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probability distribution for γ with discrete support {1, . . . , n}. Let q(γ) denote the

subjective probability that the true value of the parameter is γ, with
∑n

γ=1 q(γ) = 1.

We assume that ambiguity is mean preserving (i.e.,
∑n

γ=1 q(γ)r(γ) = r). In the

case that γ is known to be γ? (i.e., q(γ?) = 1), we are back to the case described

in equation (A1), simply replacing r = r(γ?).

Following the smooth ambiguity approach of Klibanoff, Marinacci and Mukerji

(2005), we model ambiguity aversion using an increasing and concave valuation

function Φ for the expected utility derived from each state of γ.32 The state-specific

expected utilities (EUr(γ)) are again defined by equation (A1), using r = r(γ).

Thus, the decision maker’s expected utility derived from uncertain probabilistic

insurance corresponds to:

Φ−1
(
IEγΦ(EUr(γ))

)
,(A2)

where IEγΦ(EUr(γ)) =
∑n

γ=1 q(γ)Φ(EUr(γ)). Using the above formula and plug-

ging in the expected utility definition from equation (A1), we can see that individ-

uals maximize the following expression when deciding about insurance uptake:

IEγΦ(EUr(γ)) =IEγΦ[(1− p)u(w − I(ε))

+ p[(1− r(γ))u(w − I(ε)− L+ ε)(A3)

+ r(γ)u(w − I(ε)− L)]].

Concavity of Φ expresses ambiguity aversion, that is, an aversion to mean-

preserving spreads in the random probability of contract nonperformance r(γ).

Ambiguity-averse agents assign higher weights to states of γ that are associated

with low utility. As we will show later, this essentially leads to an overweighting of

contract nonperformance probabilities. For ambiguity-loving agents, Φ is convex,

and higher weights are assigned to favorable (i.e., high utility) probabilities, lead-

32Peter and Ying (2017) suggest that our original results also hold when assuming non-smooth
ambiguity preferences such as weighted maxmin expected utility.
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ing to an underweighting of contract nonperformance probabilities. An ambiguity-

neutral agent uses a linear valuation function. It is easy to show that in this case

the resulting objective function IEγEUr(γ) further simplifies to EUr (equation A1),

which means that ambiguity-neutral agents behave as if the contract nonperfor-

mance probability was known to equal its expected value (r(γ) = IEγr(γ) = r).

The optimal choice of insurance coverage is the ε that maximizes IEγΦ(EUr(γ))

(or EUr in the special case with known contract nonperformance risk, or ambi-

guity neutrality). Assuming that there is a unique maximum (i.e., concavity of

IEγΦ(EUr(γ)) =: V (ε)), this point is defined by the ε satisfying the following first-

order condition:

V ′(ε) = IEγΦ
′(EUr(γ))EU

′
r(γ)(ε) = 0.(A4)

Besides the optimal insurance coverage ε, we can also derive the marginal will-

ingness to pay for additional coverage from this condition by solving it for the

marginal premium increase I ′(ε) satisfying the equation.33 We focus our analysis

on this object, as we can clearly show how changes in uncertainty and ambiguity

aversion are reflected in changes in the marginal willingness to pay, as documented

in the following Lemma 1.

Lemma 1. For ambiguity-averse (-loving) agents, the marginal willingness to

pay for additional insurance is strictly lower (higher) at every coverage point after

introducing mean-preserving ambiguity over contract nonperformance risk com-

pared to when contract nonperformance risk is known.

These effects on willingness to pay also imply corresponding changes in optimal

demand (lower marginal willingness to pay implies lower optimal coverage and vice

versa).34 One way to think about this is that the changes in marginal willingness to

33Note that the marginal willingness to pay is the marginal premium increase that makes the
agent indifferent between purchasing a marginal additional unit of insurance coverage ε.

34A direct proof for the effect of ambiguity aversion on optimal insurance demand can be
obtained by applying the (more general) proof in Alary, Gollier and Treich (2013) to our setup.
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pay after introducing uncertainty (as per Lemma 1) imply that the first order con-

dition cannot be fulfilled any more at the initial optimal coverage point ε?. These

changes actually lead to V ′(ε?)) < 0 for ambiguity-averse agents after introducing

uncertainty, and vice versa for ambiguity-loving agents.35 Together with concavity

of the objective function V (ε), this implies that the the new optimal coverage level

ε̃? is smaller (larger) than ε? for ambiguity-averse (ambiguity-loving) agents.

Having established the relation between changes in marginal willingness to pay

and optimal demand in our case, let us now turn back to the dynamics regarding

willingness to pay in more detail.

Proof of Lemma 1 : Taking the derivative of EUr(γ) with respect to ε and plugging

this into equation (A4) results in the following equation:

IEγΦ
′(EUr(γ))[(1− p)u′(w − I(ε))(−I ′(ε)) + p[(1− r(γ))u′(w − I(ε)

− L+ ε)(−I ′(ε) + 1) + r(γ)u′(w − I(ε)− L)(−I ′(ε))]] = 0.(A5)

Solving this for I ′(ε) defines the marginal willingness to pay for additional cov-

erage:

pu′(w − I(ε)− L+ ε)

(1− p)u′(w − I(ε))r̂ + p[u′(w − I(ε)− L+ ε) + r̄u′(w − I(ε)− L)]
,(A6)

where r̂ =
IEγΦ′(EUr(γ))

IEγ(1−r(γ))Φ′(EUr(γ))
and r̄ =

IEγr(γ)Φ′(EUr(γ))

IEγ(1−r(γ))Φ′(EUr(γ))
.

We are interested in comparing the above marginal willingness to pay to the

marginal willingness to pay for probabilistic insurance with known contract non-

performance risk. Optimizing equation A1 with respect to ε and solving for I ′(ε)

35The following holds for ambiguity-averse agents: We know that I ′(ε?) = wtp(ε?) (the
marginal willingness to pay at ε? without uncertainty). Therefore, I ′(ε?) > w̃tp(ε?) (marginal
willingness to pay with uncertainty) as per Lemma 1. Hence, the first order condition under
uncertainty cannot be fulfilled at coverage level ε? (it would only be fulfilled if I ′(ε?) was lower,
i.e., additional insurance was cheaper). Further, as V ′(ε)) is decreasing in I ′(ε) (straightforward
to show), we know that V ′(ε?) < 0. For ambiguity-loving agents, we can proceed analogously to
find the reverse.
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results in the following simpler equation:

pu′(w − I(ε)− L+ ε)

(1− p)u′(w − I(ε)) · 1
(1−r) + p[u′(w − I(ε)− L+ ε) + r

(1−r)u
′(w − I(ε)− L)]

.

(A7)

In order to compare the two equations, it will suffice to compare 1
1−r to r̂ and

r
1−r to r̄. If r̂ > 1

1−r and r̄ > r
1−r , it follows that the marginal willingness to pay

decreases, and vice versa. We begin by showing that both conditions are equivalent:

r̂ >
1

1− r

⇔
IEγΦ

′(EUr(γ))

IEγ(1− r(γ))Φ′(EUr(γ))
>

1

1− r

⇔ IEγr(γ)Φ′(EUr(γ)) > r · IEγΦ
′(EUr(γ))(A8)

⇔
IEγr(γ)Φ′(EUr(γ))

IEγ(1− r(γ))Φ′(EUr(γ))
>

r

1− r

⇔ r̄ >
r

1− r
.

The desired result can now be obtained from equation (A8) by exploiting the

shape of Φ(.). For ambiguity-averse agents, Φ(.) is concave. This means that

as r(γ) increases (and EUr(γ) decreases), Φ′(EUr(γ)) increases as well. That is,

r(γ) and Φ′(EUr(γ)) are positively correlated, such that the expectation of their

product is greater than the product of their expectation, and equation (A8) holds.

The reverse is true for ambiguity-loving agents. Hence, we have established that

for ambiguity-averse (-loving) agents, the willingness to pay for insurance with

uncertain contract nonperformance risk is lower (higher) than it is in the case

where it is known.�

A2. Generalizing Lemma 1

Lemma 1 refers to the introduction of uncertainty regarding contract nonperfor-

mance risk. Other comparative statics such as increasing ambiguity aversion or
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increasing the extend of uncertainty are interesting as well. In the following we

show that the development of the marginal willingness to pay boils down to one

central property:

cov
(
r(γ),Φ′(EUr(γ))

)
IEγΦ′(EUr(γ))

.(A9)

If this normalized covariance increases, the marginal willingness to pay decreases

and vice versa. To see this, consider equation (A6) for two alternative situations

with distinct ambiguity in contract nonperformance risk (r(γ1) versus r(γ2)) and

distinct ambiguity preferences (Φ1 versus Φ2). Comparing the marginal willingness

to pay between both settings leads to comparing r̂1 with r̂2 and r̄1 with r̄2. If

r̂2 > r̂1 and r̄2 > r̄1, it follows that the marginal willingness to pay decreases from

situation 1 to 2, and vice versa. We again begin by showing that both conditions

are equivalent:

r̂2 > r̂1

⇔
IEγ2Φ

′
2(EUr(γ2))

IEγ2(1− r(γ2))Φ′2(EUr(γ2))
>

IEγ1Φ
′
1(EUr(γ1))

IEγ1(1− r(γ1))Φ′1(EUr(γ1))

⇔ 1−
IEγ1r(γ1)Φ′1(EUr(γ1))

IEγ1Φ
′
1(EUr(γ1))

> 1−
IEγ2r(γ2)Φ′2(EUr(γ2))

IEγ2Φ
′
2(EUr(γ2))

⇔
IEγ2r(γ2)Φ′2(EUr(γ2))

IEγ2Φ
′
2(EUr(γ2))

>
IEγ1r(γ1)Φ′1(EUr(γ1))

IEγ1Φ
′
1(EUr(γ1))

(A10)

⇔ IEγ2r(γ2)Φ′2(EUr(γ2)) · IEγ1Φ
′
1(EUr(γ1)) > IEγ1r(γ1)Φ′1(EUr(γ1)) · IEγ2Φ

′
2(EUr(γ2))

⇔
IEγ2r(γ2)Φ′2(EUr(γ2))

IEγ2(1− r(γ2))Φ′2(EUr(γ2))
>

IEγ1r(γ1)Φ′1(EUr(γ1))

IEγ1(1− r(γ1))Φ′1(EUr(γ1))

⇔ r̄2 > r̄1.

Note that the expected contract nonperformance probability is assumed to lie in

the interval (0, 1) and that Φ′1(.),Φ′2(.) > 0 such that the direction of inequality

holds through all divisions and multiplications. Dividing equation (A10) by r

(= IEγ1r(γ1) = IEγ2r(γ2)), subtracting one, and subsequently multiplying by r
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yields the condition:

cov
(
r(γ2),Φ′2(EUr(γ2))

)
IEγ2Φ

′
2(EUr(γ2))

>
cov
(
r(γ1),Φ′1(EUr(γ1))

)
IEγ1Φ

′
1(EUr(γ1))

.(A11)

The evolution of this normalized covariance uniquely determines whether the

marginal willingness to pay uniformly decreases (if the inequality holds), remains

the same (if equality holds), or increases (if the reverse inequality holds). From

here, different kinds of comparative statics can be derived. Note, for example, that

our derivation of Lemma 1 is a special case of the above general statement. Without

ambiguity in the initial situation (r(γ1) being a constant), the right hand side of

equation (A11) is necessarily zero. Ambiguity aversion implies that on the left

hand side r(γ2) and Φ′2(EUr(γ2)) are positively correlated (negatively for ambiguity

loving subjects), which proves Lemma 1.

Beyond the result of Lemma 1, it is intuitive that the willingness to pay will

decrease when increasing the extend of ambiguity or increasing ambiguity aversion.

For this proposition to hold, however, these changes must lead to an increase in

the normalized covariance. The above derivation hence delivers a useful criterion

which facilitates proving further comparative statics.

A3. Relating the Smooth Ambiguity Model to Subjective Expected Utility

Several concepts can be used to explain reactions to uncertainty in our setup.

Those include pessimism and optimism regarding contract nonperformance prob-

abilities in a subjective expected utility model (Savage, 1954), smooth ambiguity

aversion (Klibanoff, Marinacci and Mukerji, 2005), and maxmin expected utility

(Gilboa and Schmeidler, 1989). In our theory, we only show proofs using smooth

ambiguity aversion, but the predictions derived by all those models are nested in

the ambiguity model results, as we will show in the following.

In case of maxmin expected utility, this is obvious. Maxmin expected utility

simply evaluates options based on the minimum expected utility amongst the set
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of expected utilities which are possible under uncertainty. In our case, this would

translate to always assuming the highest possible contract nonperformance prob-

ability. This is clearly equivalent to setting a pessimistic subjective contract non-

performance probability to this level in a subjective expected utility model.

It is a bit more complex to show that we can represent any level of ambiguity

aversion in a smooth ambiguity aversion model by a corresponding subjective con-

tract nonperformance probability (and vice versa), and that this relation is strictly

monotone (under CRAA). As a basis for the proof, we can use equation A8, where

we showed how marginal willingness to pay for insurance with and without ambigu-

ity relate to each other. Using this equation, we can show under which subjective

contract nonperformance probability willingness to pay in a subjective expected

utility model equals willingness to pay under smooth ambiguity aversion. Let rsub

denote a pessimistic or optimistic subjective contract nonperformance probability.

Then:

rsub =
IEγ[r(γ)Φ′(EUr(γ))]

IEγ[Φ′(EUr(γ))]
= IEγ[r(γ)] +

cov[r(γ),Φ′(EUr(γ))]

IEγ[Φ′(EUr(γ))]
.(A12)

So, a smooth ambiguity averse individual has the identical willingness to pay to

a subjective expected utility individual, who adjusts the expected contract non-

performance probability by an optimism/pessimism constant. To see more exactly

what happens to rsub when changing ambiguity aversion, let us write the expected

value as a weighted sum of the possible contract nonperformance probabilities r(γ):

rsub =

∑
γ q(γ)r(γ)Φ′(EUr(γ))∑
γ q(γ)Φ′(EUr(γ))

=
∑
γ

r(γ)
wγ∑
γ wγ

,(A13)

with wγ = q(γ)Φ′(EUr(γ)). These weights depend on the shape of the smooth

ambiguity aversion weighting function. As a result of higher ambiguity aversion,

the relative weight for higher contract nonperformance probabilities r(γ) should

increase. Let us assume that a higher γ corresponds to a higher contract non-
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performance probability and that k < l. Then the weight of r(l) relative to r(k)

is:

wl∑
γ wγ

wk∑
γ wγ

=
wl
wk

=
q(l)

q(k)

Φ′(EUr(l))

Φ′(EUr(k))
.(A14)

r(l) > r(k) implies that EUr(l) < EUr(k). For ambiguity-averse agents (i.e.,

Φ′(.) > 0,Φ′′(.) < 0), we know that the relative weight of higher contract nonper-

formance probabilities must be larger than q(l)
q(k)

. The reverse is true for ambiguity-

loving individuals. Intuitively, the relative weight should increase if the weighting

function becomes more concave (i.e., higher ambiguity aversion) and vice versa.

For a more exact relationship, we specify a CRAA weighting function, such that

Φ′(x) = x−ζ . Then the relative weights become:

q(l)

q(k)

(
EUr(l)
EUr(k)

)−ζ
.(A15)

Under CRAA, the relative weight of higher contract nonperformance probabilities

is hence a strictly increasing function in ζ. Also, with ζ → ∞, these relative

weights for higher contract nonperformance probabilities go to infinity (implying

that the weighted sum goes to 1), while with ζ → −∞, the relative weights go

to zero (implying that the weighted sum goes to 0). The simulation presented in

Figure A1 shows the relation between ζ and rsub conditional on CRRA parameter

ρ graphically.
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Figure A1: Relationship between Ambiguity Aversion Parameter ζ and Subjective
Probability rsub
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Appendix B: Simulations

To illustrate the two-way conditionality underlying Hypothesis 4, we show treat-

ment effects of uncertainty for different levels of ambiguity aversion while continu-

ously varying CRRA parameter ρ. While part (a) of Figure B1 provides a broad

indication of the areas in which treatment effects are to be expected based on a

deterministic choice model, part (b) shows corresponding results while allowing

for stochastic error in choices, where negative (positive) values indicate a higher

probability of taking up probabilistic insurance (uncertain probabilistic insurance).
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(a) Deterministic Model
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(b) Stochastic Error Model

Figure B1: Theoretical Prediction of Uncertainty Treatment Effect by Risk Aver-
sion

Notes: This figure shows treatment effects of uncertainty for different CRRA parameters ρ and conditional on

selected values for CRAA parameter ζ. (a) Deterministic simulation of uncertainty treatment effect. (b)
Difference between the predicted probability of taking up uncertain probabilistic insurance and the predicted

probability of taking up probabilistic insurance based on a stochastic error model and noisy estimates of CRRA

risk aversion parameter ρ. The difference is defined as F (((EUr/EU0)− 1)/µ)−F (((EUr(γ)/EU0)− 1)/µ) if ρ≤1
and F (((EU0/EUr)− 1)/µ)− F (((EU0/EUr(γ))− 1)/µ) if ρ > 1, with the cumulative distribution function of

the standard normal distribution F (.) and error sensitivity µ = 0.1. To account for noise in our measure of risk
aversion, the difference is smoothed using kernel-weighted local polynomial smoothing with a kernel bandwidth of
0.3 (i.e., the average width of the bins in the Holt and Laury (2002) lottery task we apply to elicit risk aversion).

Following the insights of the deterministic simulation in Figure B1 (a), we would

expect two areas in which the effects of uncertainty should materialize. Accounting

for stochastic errors in decisions as well as noisy estimates of the CRRA parameter

ρ, however, Figure B1 (b) suggests that we should expect the strongest uncertainty

treatment effects among the risk-averse. With even greater risk aversion (ρ > 1.9),
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the differences between probabilistic and uncertain probabilistic insurance should

start to decrease again, but this is outside of the parameter space we observe with

our experimental measures of risk aversion.
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Appendix C: Linear Probability and Probit Models for Average

Treatment Effects

Table C1: Average Treatment Effects

(1) (2) (3) (4)
(OLS) (OLS) (OLS) (Probita)

TNoDef 0.171*** 0.172*** 0.187*** 0.223***
(0.0626) (0.0629) (0.0638) (0.0718)

TUnc -0.145* -0.143* -0.133* -0.124*

(0.0768) (0.0782) (0.0763) (0.0713)
TFr -0.121 -0.119 -0.111 -0.103

(0.0803) (0.0796) (0.0771) (0.0722)
TUnc−Fr -0.104 -0.101 -0.1 -0.0943

(0.0795) (0.0791) (0.0769) (0.0725)

Typhoon 0.038 0.0319 0.0324
(0.0442) (0.0430) (0.0422)

Round 0.00294 0.00267 0.00309

(0.00371) (0.00371) (0.00376)
Constant 0.707*** 0.678*** 0.632***

(0.0580) (0.0631) (0.158)

Observations 4,896 4,896 4,872 4,872

R-squared 0.0612 0.0629 0.0832 0.0709
F-test 15.02 11.17 4.84

Covariates No No Yes Yes

Notes: Linear probability models are used, with the dependent variable set to 1 if the sub-

ject takes up insurance. For the treatment variables, the control treatment C serves as the

reference category. Standard errors (reported in parentheses) are corrected for clustering
at the session level. Covariates are age, gender, financial responsibility, marital status, ed-

ucation, employment, dwelling ownership, land ownership, reduced meals within the last

month, score on mathematical and numerical capabilities, insurance ownership, health or
accident shocks, and weather or livestock shocks. a The probit model results are provided

in terms of marginal effects.∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 indicate significance levels

of 10, 5, and 1 percent, respectively.
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Table C2: Average Treatment Effects by Ambiguity Aversion

Ambiguity-averse Non-ambiguity-averse

(1) (2) (3) (4)

TNoDef 0.166** 0.135* 0.194** 0.208**
(0.0677) (0.0694) (0.0803) (0.0821)

TUnc -0.182** -0.184** -0.117 -0.114

(0.0909) (0.0872) (0.0927) (0.0919)
TFr -0.192** -0.191** -0.0676 -0.061

(0.0897) (0.0851) (0.0974) (0.095)

TUnc−Fr -0.220** -0.229** -0.0368 -0.0424
(0.0934) (0.0891) (0.0974) (0.096)

Typhoon 0.04 0.015

(0.0507) (0.051)
Round 0.00941 -0.00183

(0.00491) (0.00523)
Constant 0.747*** 0.822*** 0.68*** 0.673***

(0.0638) (0.233) (0.0735) (0.209)

Observations 2,004 1,986 2,532 2,526

R-squared 0.101 0.158 0.0518 0.079
F test 17.48 8.812 8.50 2.50

Covariates No Yes No Yes

Notes: Linear probability models are used with the dependent variable set to 1 if the sub-
ject takes up insurance. For the treatment variables, the control treatment C serves as the

reference category. Standard errors (reported in parentheses) are corrected for clustering
at the session level. Covariates are age, gender, financial responsibility, marital status, ed-

ucation, employment, dwelling ownership, land ownership, reduced meals within the last

month, score on mathematical and numerical capabilities, insurance ownership, health or
accident shocks, and weather or livestock shocks. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

indicate significance levels of 10, 5, and 1 percent, respectively.
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Appendix D: Bayesian Updating

In this Appendix, we present the results of simulated Bayesian updating under

perfect information transmission, for all participants. This serves as a benchmark

for how well rational and well-informed individuals could, in principle, decrease

uncertainty over time in our setting. We assume that all participants in a session

share their experiences. Then, we follow a Bayesian updating rule to predict the

probability that the insurer pays a claim in the case of a loss, and the uncertainty

around this probability. In our setup, the number of orange balls (#γ) determines

the contract nonperformance probability (r(γ) = #γ/10) under the different states

of the world γ. Formally, each participant is assumed to calculate the probability

that the state of nature γ = h ∈ [0, ..., 10], given the observation of K orange balls

out of N draws, as:

(D1) P (γ = h|K of N ) =
P (K of N |γ = h) · P (γ = h)∑
i

(P (K of N |γ = i) · P (γ = i))︸ ︷︷ ︸
P (K of N )

,

where P (γ = i) is the initial prior for the probability of the respective mix in the

uncertain bag. The uncertain bag is a random subset of a big bag with known con-

tent (see Section III.B for more detail). Hence, the initial prior can be calculated

using a hypergeometric distribution. In addition, the probability of observing K

contract nonperformance outcomes out of N draws (P (K of N |γ = i)) is easy to

compute for each of the different possible numbers of orange balls #i in the uncer-

tain bag. Thus, a Bayesian updater can calculate the likelihood for each probability

state (γ = h) based on the history of draws, according to the above formula. In

other words, this enables us to calculate the distribution of possible contract non-

performance probabilities based on past experiences, as well as any moment of

this distribution. Note that, given observed beliefs, we assume individuals to start

with pessimistic priors. In particular, we assume them to use hypergeometric dis-
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tribution for probabilities that averages to 2.5 orange balls out of 10 balls in the

uncertain bag, which is close to the observed empirical beliefs. Technically, this is

achieved by assuming the big bag to hold 25 orange balls out of 100 balls.

Figure D1 shows two main statistics. The first line shows how average beliefs

about the number of orange balls should develop, given the experiment history,

Bayesian updating, and pessimistic initial priors (E[#γ|K of N ]). This simula-

tion of the “best guess” clearly decreases over rounds. The second statistic de-

scribes the remaining “subjective uncertainty” individuals face. This is calculated

as the standard deviation of the possible contract nonperformance probabilities

(SD[#|K of N ]); that is, we calculate how much a rational Bayesian updater should

expect the real number of orange balls to deviate from the expected value. Con-

sistent with the bias of best guesses, uncertainty also decreases over the rounds.

However, both some bias and some uncertainty remain until the end of the exper-

iment in our simulation. The reason is that, until round six, only 5.2 insurance

performances can be observed, on average, which is not sufficient to considerably

compress the belief distribution around the correct value. This picture is quali-

tatively very similar if we start out with heterogeneous individual priors based on

initial best guesses.

1
1
.5

2
2
.5

1 2 4 6
Round

Best guess Subj. uncertainty

Figure D1: Bayesian Updating Simulation for TUnc and TUnc−Fr

Notes: “Best guess” measures the expected number of orange balls, given the experiment history and pessimistic

initial priors for the Bayesian updaters. “Subjective Uncertainty” is the standard deviation of orange balls, given
the updated probability distribution for the number of orange balls.



 

 

General Information  

 

§1. Thank you all for coming today. My name is [Name RA] and this is [Researcher]. [Researcher] is a 

researcher at the University of Mannheim, in Germany. In this experiment today, you can earn a 

considerable amount of money that you are permitted to keep and take home. In the experiment you will 

have to make decisions that will influence your personal outcome, but each of you will be given a show-

up fee of 100 Pesos at the end for sure. [Show a 100 Peso bill.] The whole procedure will last around 3 

hours. Thank you in advance for your effort and time. You should understand that the money you can 

earn in this experiment is not [Researcher]’s own money. It is money given by the Swiss Government to 

do a research study. [Researcher] is working together with other researchers who are carrying out similar 

experiments all around the world.  

 

§2. If at any time you find that this is something that you do not wish to participate in for any reason, you 

are of course free to leave whether we have started the experiment or not. But if you feel uncomfortable 

already now, or you already know that you will not be able to stay for the three to four hours, then 

you should tell us now. 

 

§3.  It is important that you understand the experiment. Therefore we will check your understanding by 

asking each of you test questions about the rules. If you do not understand the rules you may always ask 

the assistants to explain them. But if you cannot answer the test questions after explaining them 

again, we will have to exclude you from the experiment and you receive only the show-up fee of 100 

Pesos. But don’t worry; we will do our best to help you understand. 

 

§4.  Before the experiment you have answered a first set of questions. Before you get handed out your 

money at the end of the workshop, you are asked to answer the second part of the questionnaire. It is very 

important for our research, that you answer all questions seriously. You will receive your payment only 

after completing the questionnaire. After knowing these rules, is there anybody who does not like to 

participate anymore? [Wait some moments.] 

 

§5. You will be paid 100 Pesos for coming to the workshop plus the additional earnings that you have 

kept throughout the experiment. During the first part of the workshop we will conduct the Lottery 

Experiment. Here you will have the chance to win some money, but also to lose some money. During the 

second part of the workshop we will conduct the Insurance Experiment. Here you will have the 
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possibility to keep some money from an initial endowment of 210 Pesos. At the end, we will sum your 

earnings from the Lottery Experiment and from the Insurance Experiment, and this amount will be paid 

out to you. In the case that your total balance from the experiments is negative, we will set your balance 

for the experiments to zero. Your private money is always untouched, so you can only lose money that 

you received from us for the experiment. You will for sure receive the show up fee of 100 Pesos. The 

minimum you receive will be 100 Pesos, and the maximum will be 310 or even more.  

 

§6. After you went through the experiment and answered your questionnaire at the end, one by one will 

come to [Researcher], who will hand out your earnings and you sign the receipt. You all received a name 

tag with player number and group number already. The player number is your personal number and the 

group number is the same for all of you. Please keep these numbers throughout the experiment; you will 

have to show them at the end in order to get paid. So always remember to keep your name tag with 

you. If you have questions, please always raise your hand and wait until one of the assistants comes to 

you. Then you can ask your question and the assistant will answer it.  

 

Lottery Experiment [Instructions in next appendix section] 

 

Introduction to Insurance Experiment 

 

§7. This experiment consists of an insurance experiment. In this experiment, you will receive an initial 

amount of 210 Pesos. We conduct the experiment with play money. That means the bills look similar to 

real bills and have the same value. At the end of the workshop you get your earnings for this experiment 

as real Peso money. Here you can see some of the play money. [Show play money]. The insurance 

experiment consists of 6 rounds. At the end of the session, each participant will receive the payment of 

only one of the rounds, and this round will be chosen randomly. 

 

§8. During each round, you have the risk of losing 150 Pesos from a new initial endowment. Think of an 

unexpected event that might happen, such as getting sick and not being able to work, or having an 

accident with the motorcycle and having hospital costs. You will have the chance to buy insurance 

against this loss for the cost of 50 Pesos [60 Pesos if TNoDef].  

 

§9 [C TAmb]. However, there is a chance that the specific type of cost is not covered by the insurance. 

Then the insurance does not pay out your claim. 

§9 [TFr TAmb-Fr]. However, there is a chance that the insurer does not pay your valid claim. For example 

because a fraud or scam by the insurance agent, or because the insurer does not want to pay your 

claim]. Then the insurance does not pay out your claim. 
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§10. It is important that you understand that there is no correct decision whether to buy insurance or not. 

It might be good for you, for example, if you have a shock, and the insurance pays out. Or it might be bad 

for you, for example, if you paid for it and you have no shock [if TNoDef: or if you have a shock and it 

does not pay out]. You are free in your personal decision. 

 

§11. How will the experiment work exactly? First, each participant chooses whether to take up insurance 

or not, before the loss is determined. To determine whether you lose 150 Pesos or not, you will draw a 

ball from bag 1 [show bag 1] that has 10 balls. Of the 10 balls, 3 are orange and 7 are white. If you draw 

an orange ball, then that means that you lose 150 Pesos. If you draw a white ball, then that means that 

you do not lose any money and this round is completed for you. For this round you will have ended up 

with 210 Pesos if you did not buy insurance and with 160 Pesos [150 Pesos if TNoDef] if you bought 

insurance.  

 

§12 [TNoDef]. If you have drawn an orange ball, you lose your 150 Pesos. In this case, if you did not buy 

insurance before, then you end up with 60 Pesos and this round is complete for you. If you bought 

insurance before, then you end up with 150 Pesos and this round is complete for you. 

§12 [C TFr]. If you have drawn an orange ball, you lose your 150 Pesos. In this case, if you did not buy 

insurance before, then you end up with 60 Pesos and this round is complete for you. If you bought 

insurance before, you can claim a payment from the insurer. Once you claim your payment, you have to 

see whether the insurance pays your claim or not.  How is this determined? You will then draw a ball 

from bag 2 [show bag 2] with 10 balls. If you draw an orange ball from bag 2, then the insurer does not 

pay your claim and this round is over for you. You will then end up with 10 Pesos in this round. If you 

draw a white ball, then the insurer pays your claim of 150 Pesos and this money is again yours. Then the 

round ends for you and you end up with 160 Pesos for this round.  

§12 [TAmb TAmb-Fr]. If you have drawn an orange ball, you lose your 150 Pesos. In this case, if you did 

not buy insurance before, then you end up with 60 Pesos and this round is complete for you. If you 

bought insurance before, you can claim a payment from the insurer. Once you claim your payment, you 

have to see whether the insurance pays your claim or not.  How is this determined? You will then draw a 

ball from bag 2 [show bag 2] with 10 balls. How many orange balls and how many white balls are in bag 

2? We do not know. Why? The balls in bag 2 come from a big black bag with 100 balls. From the 100 

balls 10 balls are orange, and 90 balls are white. We will then take 10 balls from the 100 balls, and place 

them inside bag 2. The number of orange balls in bag 2 will be important for you, because if you draw an 

orange ball from bag 2, then the insurer does not pay your claim and this round is over for you. You will 

then end up with 10 Pesos in this round. If you draw a white ball, then the insurer pays your claim of 150 

Pesos and this money is again yours. Then the round ends for you and you end up with 160 Pesos for this 

round. 
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? 

Let us do some examples [use Poster 1 to illustrate]: 

Poster 1: Illustration of Insurance Experiment 
 

 

        [TNoDef]                  [C TFr]                                        

 

  

        [TAmb TAmb-Fr] 
 

§13. These rounds will be played 6 times. We will record the amount of money you had for each round 

and at the end we will pay out one of these 6 rounds. Only one of the rounds of the experiment is 
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finally paid out. The round to be paid will be chosen randomly by drawing numbered balls from bag 3 

[show bag 3].  

 

§14. So, how many rounds will be played? [Wait for answer]. And how many rounds will be paid out? 

[Wait for answer]. Once the round to be paid is chosen, we will then proceed to the last part of the 

questionnaires and then the payments. Are there any questions? [Wait some moments and answer 

questions]. If there are no further questions, we will now proceed with the test questions. [Administer test 

questionnaire to confirm understanding]  

 

Insurance Experiment 

 

§15. We will now start the experiment. The research assistants (RAs) will now provide you with the 

initial endowment of 210 Pesos in play money; immediately afterwards they will call you by your player 

number and ask you for your decisions. We ask you to please remain silent for the first round of the 

experiment. From the second round onwards you are free to talk with the other participants. Are there any 

questions?  

[Wait some moments and answer questions.]  

[Assisting RAs (not Instructor) hand out play money to all participants.] 

[RA visibly introduces 3 orange balls and 7 white balls in bag 1.]  

[if C TFr: RA visibly introduces 1 orange balls and 9 white balls in bag 2.]  

[if TAmb TAmb-Fr: RA introduces 10 orange balls and 90 white balls in a big black bag. Afterwards, the 

RA blindly selects 10 balls from the big black back and introduces it in bag 2. One of the participants 

checks that bag 2 has 10 balls.]  

[RAs start calling the participants by player number in sequential order and ask insurance take-up 

decision (see Box 1) until all 6 participants are done.] 

 

Box 1: Initial Take-up of Insurance 

 

§16. Player [insert player number], please follow me. Would you like to take up insurance against the 

chance of losing 150 Pesos of your initial endowment at the cost of 50 Pesos [60 Pesos if TNoDef]? 

[Mark yes or no in the tablet] Many thanks [insert player name], your available amount is now [160 if 

bought insurance [150 Pesos if TNoDef], 210 if did not buy insurance]. Please take your seat again. 

 

[RAs start calling the participants by player number, in sequential order to draw balls (see Box 2) until all 

participants are done] 
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Box 2: Draw Balls 

 

§16. Player [insert player number], please follow me. I will now ask you to please take a ball from bag 

1. If you get an orange ball that means that you lose 150 Pesos of your available amount of [160 Pesos 

if Insured [150 Pesos if TNoDef] / 210 if not insured], if you get a white ball that means that you do not 

lose 150 Pesos of the available amount. [RA presents bag 1 to participant and allows him to blindly 

take a ball] 
 

[if WHITE BALL and UNINSURED] 

§17. Many thanks [insert player name], you drew a white ball and you did not buy insurance. That 

means you lose 0 of your available amount of 210 Pesos. You end up with 210 Pesos. This round 

is now complete for you. I have registered what you have earned and I will now take back the 

play money. Once we are done with all other participants we will start the next round. Please take 

your seat again.  
 

[if WHITE BALL and INSURED]  

§17. Many thanks [insert player name], you drew a white ball and you bought insurance. That 

means you lose 0 of your available amount of 160 Pesos [60 Pesos if TNoDef]. You end up with 

160 Pesos [150 Pesos if TNoDef]. This round is now complete for you. I have registered what you 

have earned and I will now take back the play money. Once we are done with all other 

participants we will start the next round. Please take your seat again.  
 

[if ORANGE BALL and UNINSURED] 

§17. Many thanks [insert player name], you drew an orange ball and you did not buy insurance. 

That means you lose 150 of your available amount of 210 Pesos. You end up with 60 Pesos. This 

round is now complete for you. I have registered what you have earned and I will now take back 

the play money. Once we are done with all other participants we will start the next round. Please 

take your seat again.  
 

[if ORANGE BALL and INSURED] 

§17. Many thanks [insert player name], you drew an orange ball and you bought insurance. That 

means you lose 150 of your available amount of 160 Pesos [150 Pesos if TNoDef]. 

§18 [TNoDef]. You claim the insurance and the insurance reimburses you 150 Pesos. You end up 

with 150 Pesos. This round is now complete for you. I have registered what you have earned. 

Once we are done with all other participants we will start the next round. Please take your seat 

again. 

§18 [All but TNoDef]. You end up with 10 Pesos. You now can claim an insurance payout. Please 

draw a ball from bag 2. If you get an orange ball that means that the insurer does not pay out your 

claim, if you get a white ball that means that the insurance reimburses your loss of 150 Pesos [RA 

presents bag 2 to participant and allows him to blindly take a ball]. 

63



Box 2: Draw Balls (cont.) 

 

[if WHITE BALL] Many thanks [insert player name], you drew a white ball. That means 

the insurance reimburses your loss of 150 Pesos. You end up with 160 Pesos. This round 

is now complete for you. I have registered what you have earned and I will now take back 

the play money. Once we are done with all other participants we will start the next round. 

Please take your seat again.  

[if ORANGE BALL] Many thanks [insert player name], you drew an orange ball. That 

means the insurance does not reimburse your loss of 150 Pesos. You end up with 10 

Pesos. This round is now complete for you. I have registered what you have earned and I 

will now take back the play money. Once we are done with all other participants we will 

start the next round. Please take your seat again.  
 

[After all participants are done with round 1, specify that now they are free to talk] 

 

 

[DO 6 ROUNDS] 

[Start next round of the experiment and distribute once more the initial endowment of 210 Pesos] 

 

§19. Now the six rounds are done and the experiment is over. We will now randomly choose the round 

that will be paid out to you. [Each subject draws one of six balls from a bag, and the number that comes 

out will be the round paid out. Please register the number drawn by your participant in the tablets] 

 

[ADMINISTER POST QUESTIONNAIRE] 

 

[Participants get their money and sign their receipt] 
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§1. For the following game, you will need to work with tablets. You can work with the tablets 
simply by pressing the buttons on the screen. If you have any questions, you can always raise 
your hand and a research assistant will come and help you. If you have problems with reading 
information on the tablets, please raise your hand and we will assist you [if someone raises 
his/her hand, RA comes and talks to the person. If problems are too serious, the person has to 
skip the lottery game + waits outside]. Please switch off your mobile phone before the game 
starts. Before we start, we would again ask you to confirm that you agree with the rules we 
just explained to you. If you agree please press “I agree” on the tablet. 
 
§2. The current game deals with decisions between lotteries. I will explain what these lotteries 
are and how they work next. After this you will receive some information about your task. 
Then you will work on the task. Everything together will take around 45 minutes. Please all 
press the “Start” button now [wait for everyone to press the Start button]. 
 
§3. Example urn. On your tablet, you see a box [RA prepares the bag with the balls]. This box 
is a lottery. It contains 10 balls with different values. This is the box on your tablet [show 
bag]. As you can see, this box contains 6 balls with a value of 70 [show balls]. And it contains 
3 balls with a value of 230 [show balls]. It contains 1 ball with a value of -120 [show ball]. To 
determine the payout of the lottery in the following game, we randomly draw one ball from 
this box. This means that we stir the balls in the box and draw one ball without looking. You 
gain or lose the amount of money that is shown on the ball. Values greater than 0 mean that 
you win this amount of money. Values smaller than 0 mean that you lose this amount of 
money. 
 
§4. In our example, this means, you could win 70 pesos, if you draw a ball with the value 70. 
You could win 230 pesos, if you draw a ball with the value 230. And you could lose 120 
pesos, if you draw a ball with the value -120 [show corresponding balls during explanation]. 
Remember that in the game we only draw 1 ball from the box. In the game, you will also see a 
description of the lotteries. Please press the “Next” button to see what this description looks 
like [wait for everyone to press the “Next” button]. 
 
§5. As you can see, the description of the lottery has the same information as the box [RA 
puts poster 1 on the wall for the length of explanation]. In this illustration, you can see the 
values and the probabilities of the lottery. As you can see, in the “value” column there are the 
different values that you can win or lose in this lottery [point to values]. And in the 
“probability” column you can see the chances that you get each of the values when we 
randomly draw one ball from the box without looking. 
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E2. Lottery Choice Task Protocol



 
Poster 1: Illustration of Lotteries 

 
§6. As you can see, 6 out of 10 balls have a value 70, but only 3 out of 10 balls have a value 
of 230 [point to the value that corresponds to that chance]. This means that it is more likely to 
draw a ball with 70 than a ball with 230. Finally, only 1 out of 10 balls has a value of -120. 
This means that there is a less chance that you will draw -120 than drawing 230 and much 
lesser chance compared to 70. Do you have any question what the lottery means so far? [wait 
for questions]. Please press the “Next” button.  
 
§7. In the current game, you will always be presented with two lotteries. Your task is to 
decide which of these two lotteries you would prefer to play. Note that there is no right or 
wrong answer. We are simply interested in your personal preference. Please take a look at the 
following two lotteries called “Lottery A” and “Lottery B”. You can indicate which lottery 
you prefer to play by pressing the corresponding button. For Example, if you choose “Lottery 
A”, it is like drawing a ball from the box shown here [point at “Lottery A” box]. And if you 
choose “Lottery B”, it is like drawing a ball from the box shown here [point at “Lottery B” 
box]. Please pick one of the lotteries – this choice is just an example which has no 
consequence for your earnings [wait for everyone to pick a lottery] [RAs come to participants 
and ask them if they understand what the instructing RA explained to them]. Do you have any 
questions regarding your task? [wait for questions]. Please press the “Next” button so I can 
give you some additional details. 
 
§8. The current game has 5 blocks – 1 practice block and 4 real blocks. In each block you 
decide between several lottery pairs. Please have a look at the lotteries first before you press a 
button. In some blocks you can win money, in some blocks you can lose money. At the end of 
the game, we will randomly select 4 lotteries that you have chosen – one from each real block. 
We will randomly draw a ball from each of these lotteries. The value on the ball shows how 
much money you gain or lose. We will add up the gains, subtract the losses, and divide them 
by 4. This will be your final earnings for the game. You will now start with your task. Please 

66



work alone and do not talk to each other so you don’t disturb the other participants. Please 
take the task seriously. This is very important for our study. Please remember that your final 
payout depends on your choices. Please press the “Next” button. 
 
§9. First lottery block (practice block). In the following, you will work on the practice block 
to help you understand more of the task. The choices you make in this block will not affect 
your final earnings. You will be presented with 10 lottery pairs. After your choice, we will 
randomly draw one ball for each lottery in the pair. We will show these balls to you. This 
way, you can see what the result is for your lottery and for the lottery that you did not choose. 
This means you can compare the pesos you win or lose in each lottery. We only show you the 
results in this practice block. Please raise your hand after you have finished the block or if you 
have questions. Please start the game by pressing the “Start game” button. 
[RAs stay with the participants to answer questions – in case participants have a question 
about their task, please use the following explanation:] [your task is to decide which of 2 
lotteries you prefer to play. A lottery means that we randomly draw 1 ball from a box. You 
gain or lose the amount of money that is shown on the ball. In the “value” column you see the 
different values that are possible in the lottery. These are the different amounts of money you 
can win or lose. In the “probability” column, you find the probability of each value. For 
example: __ of the 10 balls in the box have the value __. __ of the 10 balls in the box have the 
value __. This means that it is more likely to get a value of ___ than a value of ___.] 
[if participants only press one button all the time in the first block, the following message 
appears on the tablet: Please raise your hand to contact the research assistant. You have 
pressed the same button many times. Because of this, we just wanted to remind you of your 
task: Your task is to decide which of 2 lotteries you would prefer to play. Please take the task 
seriously. This is very important for our study. A lottery means that we randomly draw 1 ball 
from a box. This means that we stir the balls in the box and draw one ball without looking. 
You gain or lose the amount of money that is shown on the ball. In the “value” column there 
are the different values that you can win or lose in the lottery. And in the “probability” 
column you can see the chances that you get each of the values when we draw one ball from 
the box without looking] [RA presses Next to go to next slide] 
 
§10. [RAs read out text on tablet, it mentions gains/losses for different participants]. You have 
finished the first block of the game. All previous decisions were practice decisions that did 
not affect your earnings. Now you will start with the real decisions. This means that from now 
on you will no longer see the result of the lotteries after your choice. It also means that you 
from now on you can win or lose actual money on the following rounds. 

 
[IN THIS STUDY, WE ONLY MAKE USE OF A SUBSET OF LOTTERY CHOICES. FOR 

SIMPLICITY OF PRESENTAITON WE RESTRICT THE PRESENTATION HERE TO 
THOSE LOTTERIES USED TO ELICIT RISK AND AMBIGUITY PREFERENCES] 

 
§11. Second lottery block. In the next block, you will be presented with ___ lottery pairs. 
Each lottery can have values between 0 pesos and 250 pesos. This means that in the following 
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part you can only win different amounts of money. Higher values mean that you win more 
money. Smaller values mean that you win less money. Please press “Start block” to start the 
next block [wait for participants to finish the second block and raise their hand] [RAs stay 
with the participants for the first item (filler item) to answer questions and then go to the 
back] [only come to participants in case they have a questions/raise their hand]. You have 
finished the second block of the game. 
 

[IN THIS STUDY, THE LOTTERY PAIRS PRESENTED IN TABLE 1 WERE USED] 
 

Table 1: Risk Lottery Pairs 
Lottery A (“safe”) Lottery B (“risky”) Expected payoff difference 

9/10 of 110, 1/10 of 130 9/10 of 10, 1/10 of 250 78 
8/10 of 110, 2/10 of 130 8/10 of 10, 2/10 of 250 56 
7/10 of 110, 3/10 of 130 7/10 of 10, 3/10 of 250 34 
6/10 of 110, 4/10 of 130 6/10 of 10, 4/10 of 250 12 
5/10 of 110, 5/10 of 130 5/10 of 10, 5/10 of 250 -10 
4/10 of 110, 6/10 of 130 4/10 of 10, 6/10 of 250 -32 
3/10 of 110, 7/10 of 130 3/10 of 10, 7/10 of 250 -54 
2/10 of 110, 8/10 of 130 2/10 of 10, 8/10 of 250 -76 
1/10 of 110, 9/10 of 130 1/10 of 10, 9/10 of 250 -98 

 
§12. Third lottery block. [NOT USED IN THIS STUDY] 
 
§13. Risk urn. [after everyone is done with first 3 blocks] For the last blocks of the game, we 
will change the lotteries a bit. Please press “Next” to see the first example [RA shows poster 
2]. As in the previous blocks, each lottery has 10 balls. However, in the following blocks the 
balls have colors on it – either blue or red.  In Lottery A, there are 5 blue balls and 5 red balls. 
Again, we randomly draw one ball from the box to determine your payoff. Depending on the 
color, you gain or lose a specific amount of money. In this lottery, you would gain 100 pesos 
if you draw a red ball. And you would lose 100 pesos, if you draw a blue ball.  
 
§14. Ambiguity urn. Lottery B is different. Please press “Next” to see what it looks like. 
Lottery B is constructed in a different way. For this lottery, you also have 10 balls in the box, 
but you don’t know the color of each ball. Therefore, the balls are shown in grey. However, 
you do know that the 10 balls have been randomly drawn from a larger box with 100 balls 
[show large box]. Randomly means that we stir the balls in the large box, draw 10 balls 
without looking and put them in the small box [show this process on poster 2]. As you can 
see, you know how many balls of each color are in this large box. There are 50 blue balls and 
50 red balls in the large box. To determine your payoff for lottery B, we randomly draw a ball 
from the small box. Depending on the color, you gain or lose a specific amount of money. In 
this lottery, you would gain 100 pesos if you draw a red ball. And you would lose 100 pesos, 
if you draw a blue ball. Please press “Next” and I will tell you about your task. 
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Poster 2: Illustration of Ambiguity Task 
 
§15. Ambiguity task. Your task is again to decide which of the two lotteries you would prefer 
to play. As I explained to you, you have one lottery where the colors of the balls in the urn are 
known and one lottery where you don’t know the colors of the balls. However, for this lottery 
you know the colors of the balls in the large box from which the balls came from. You will 
now start with the last 2 blocks. Please press the “Next” button. 
 
§16. Fourth lottery block. In the following, you will work on the fourth block of the game. 
Please press “Start block” to start the next block [take down poster 2 + wait for participants to 
finish the fourth block and raise their hand] [RAs stay with the participants for the first item to 
answer questions and then go to the back] [only come to participants in case they have a 
questions/raise their hand] You have finished the fourth block of the game.  
 

[IN THIS STUDY, THE LOTTERY PAIRS PRESENTED IN TABLE 2 WERE USED] 
 

Table 2: Ambiguity Lottery Pairs 
Lottery A (“risky”) Lottery B (“ambiguous”) 

5/10 of 100, 5/10 of 0 ?/10 of 100, ?/10 of 0 
5/10 of -100, 5/10 of 0 ?/10 of -100, ?/10 of 0 

 
§17. Fifth Lottery block. [NOT USED IN THIS STUDY] 
 
You have finished all blocks. Please raise your hand to contact the research assistant. Thank 
you for your work. You will learn about your payout after all games are finished. 
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 [Participation was conditional on answering test questions correctly] 
[One re-explanation allowed, but large majority passed in first attempt] 

 
 

Q1. How many balls in bag 1 are orange? _____ 

CORRECT?  YES   �        NO � 
 

Q2. How many balls in bag 2 are white? _____ �  unknown 

CORRECT?  YES   �        NO � 

 

Q3. How is the number of orange and white balls in bag 2 determined? 

�  10 balls are drawn from a big black bag  

�  By myself 

�  I cannot know 

CORRECT?  YES   �        NO � 
 

Q4. How many balls in bag the big black bag are orange? _____ 

CORRECT?  YES   �        NO � 
 

Q5. What does it mean if you draw a white ball from bag 1? 

�  You can claim insurance 

�  You lose 150 Pesos 

�  You lose 0 Pesos 

CORRECT?  YES   �        NO � 
 

Q6. What does it mean if you draw an orange ball from bag 1? 

�  You lose 250 Pesos 

�  You lose 150 Pesos 

�  You lose 0 Pesos 

CORRECT?  YES   �        NO � 

 

Q7. Which conditions have to be fulfilled for you to receive an insurance payout? 

(May chose more than one) 

�  You pay 30 Pesos 

�  You had a loss of 150 Pesos by drawing an orange ball from bag 1  

�  You drew a white ball from bag 1 

�  You paid 50 Pesos to be insured 

�  You drew an orange ball from bag 2 

�  You drew a white ball from bag 2 

CORRECT?  YES   �        NO � 
 

Q8. With how much do you end up with... 

…when you have insurance and have no loss (white)? _____ 

…when you have insurance and have a loss (orange) and the claim is paid (white)? _____ 

…when you have insurance and have a loss (orange) and the claim is not paid (orange)? ____ 

…when you have no insurance and have no loss (white)? _____ 

…when you have no insurance and have a loss (orange)? _____ 

CORRECT?  YES   �        NO � 
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E3. Sample Test Questionnaire for TUnc and TUnc−Fr


