
An Efficient Rerouting Approach in Software Defined
Networks

Md Israfil Biswas
School of Computing

Ulster University
Northern Ireland, UK

mi.biswas@ulster.ac.uk

Sally McClean
School of Computing

Ulster University
Northern Ireland, UK

si.mcclean@ulster.ac.uk

Philip Morrow
School of Computing

Ulster University
Northern Ireland, UK

pj.morrow@ulster.ac.uk

Bryan Scotney
School of Computing

Ulster University
Northern Ireland, UK

bw.scotney@ulster.ac.uk

Gerard Parr
School of Computing Sciences

University of East Anglia
Norwich, UK

g.parr@uea.ac.uk

Abstract— This paper illustrates an efficient traffic
rerouting solution in Software-Defined Networks (SDN) by
monitoring the network status periodically. The proposed
approach provides a rerouting solution by first calculating
the link utilization for available paths and then rerouting
the flow to the least delay path among the available paths.
The traffic rerouting solution is considering the network
condition to prevent the switch overutilization and
congestion while any new flow arrives. The proposed
method is implemented by using ONOS controller and
Mininet emulator. The proposed algorithm in the
controller predicts the utilization and delay on the link to
calculate how much load to be rerouted if the average link
utilization exceeds the threshold level. Hence, this method
will proactively avoid congestion by adding flows,
monitoring the parameters and prevent the unbalanced
distribution after rerouting as our experimental results
show.

Keywords— SDN, Network Monitoring, OpenFlow, congestion
control)

I. INTRODUCTION

Datacentre networking with the cloud is becoming an
apprehension of top priority because of the high availability
and security of computer networks. Hence, the prodigious trust
in the services of computer networks is essential for both users
and service providers. However, the Internet has dynamically
changed over the last decades and despite such a tremendous
success, the increasing dependability on the Internet has
created concerns for future.

Software-Defined Networks (SDN) have become the
new paradigm with the most promising and popular
advantages of the Internet; like global visibility, openness,
vendor independence and programmable networking devices
incorporating Network Function Virtualization (NFV) [1].
SDN with OpenFlow [2] protocol leads to various innovative
traffic engineering techniques with its intelligent controller and
a programmable data plane that are integrally flexible and

customizable. Virtualization capabilities over geographically
isolated and transparent resource provisioning [3] also shows
these advantages.

SDN has a faster deployment with programmable
networking elements in Control and Forwarding Plane. The
control deals with the necessary protocols like OSPF, BGP and
manages topology to exchange information so that the data
plane can forward packets, resulting in end-to-end
connectivity. Hence, the data plane is primarily focused on the
switching between the data paths of the routing architecture
that decides what to do when a packet is received on its
inbound interface. Fig.1 shows the routing planes operations in
SDN environment.

Efficient routing algorithms are essential for traffic
monitoring, especially during live Virtual machine (VM)
migration [4] to find the shortest paths in a network and lead
the traffic through the route. SDN helps to optimize the traffic
by analysing, predicting and regulating the transmitted data.
However, among many problems in the current routing system
is forwarding of packets along non-optimal routes by over-
utilizing some links while leaving other links idle. Reactive
forwarding by the Open Network Operating System (ONOS)
controller is the default packet forwarding mechanism to
forward packets whenever a new flow arrives at the switch [5].
This reactive forwarding method sends a copy of the first
packet header from a new flow to the controller and then the
controller installs a forwarding rule to the switch whenever the
new flow arrives there.

Fig. 1. Routing Planes Operation in SDN

���������	��
���������������
�������� 148

Hence, without awareness of traffic condition and Quality of
Service (QoS) parameters, making a route decision can lead to
inefficiency and is a major drawback of the reactive forwarding
method, which could result in throughput degradation and
increased flow completion time.

A. Related Works
This section briefly reviews some basic notions related to

traffic engineering techniques and discuss their aspects with
limitations.

A forwarding algorithm is proposed in [6] that separates the
elephant flows into mice and distributes them across multiple
paths. The routing algorithm is based on label-based
forwarding in a round-robin manner. However, this type of
algorithm requires overhead bytes. Hence, the packet header
increases linearly with a path to implement the policy. Our
current method is based on path utilization and estimated
delays of each path instead of round-robin to split traffic load.

A modified version of Penalizing Exponential Flow-
splitting (PEFT) is proposed in [7] to handle dynamic DCN
traffic. The optimal routing paths are calculated considering the
incoming and outgoing traffic volume across all the associated
ports of each switch. This method results in packet reordering
problem during the splits and transfers of the flow through
unequal cost path. The local traffic parameters are collected
during runtime at switches that help to make packet forwarding
decisions on hop-counts. Hence, the delay produces heavy load
on switches.

Automatic Re-routing with Loss Detection (ARLD) [8] is a
method enabled by SDN and the OpenFlow protocol while
packet drops occur in a congested network. Once packet loss is
detected, the node itself is removed from the topology. This
makes all other paths through this node unavailable during
alternate route computation. The controller reroutes to another
link during any packet loss at a particular link declared as a
bottleneck link. Hence, the controller updates switch flow
tables with the reroute information for further traffic to reroute
through the updated route until the flow table entry expires.
Thus, this is a reactive method initiating rerouting and
alternative route computation once network congestion and
packet drop happen. The problem with such method is that it
does not consider the existing network utilization and may
choose all the available paths for the reroute. Therefore, the
rerouting can again introduce congestion, if the new alternate
path is already a fully utilized link and degrades the whole
network performance or QoS. The main limitation of such a
reactive method is, as the network is already congested, a good
number of packets already gets dropped by the time controller
which computes and applies alternative route to flow tables.

In a proactive approach like our proposed method involves
computation of primary paths and avoid packet drops resulting
in additional resource reservations and flow table entries which
is an overhead to the SDN controller.

S. Song et al. [9] proposed a proactive method by changing
the topology predicting congestion in advance and monitoring
the network status periodically. The algorithm is designed in
such a way that the SDN controller will reroute to a new path

bypassing a switch that is over-utilized by crossing the
threshold. The controller recovers to the original route while
the utilization of congested switch is decreased to 50%.
However, the major limitation of such an approach is that it
may reroute the current flows to a long delay path and can lead
to worsened congestion condition.

Our goal in this paper is to provide an efficient rerouting
mechanism, we are interested in applications that provide
accurate, real-time information about the path utilization.
However, when it falls below an established threshold,
addresses the SDN controller to re-route network traffic to a
backup route with least delay. Our results show that the
developed open source application can effectively perform
these tasks in cooperation with an ONOS controller.

In summary, this paper is unique in the following aspects:

• The proposed rerouting approach in SDN
environment reduces Flow Completion Time (FCT)
for large flows by sending flows over less utilized and
least delay paths.

• The path reconfiguration experiments show the
benefit of the proposed method as more frequent path
reconfigurations can increase the number of packet
drops which leads to retransmissions and finally
degrade the application performance. The proposed
approach can reduce the number of packet drops for
large flows and improve the network performance.

• Experiment results show that the proactive approach
to transport solution with SDN maintains the total
number of flows as low as possible hence, avoid
congestion and makes the algorithm fast with reduced
overhead.

• The bandwidth utilization experiment shows that the
proposed proactive approach can have better
utilization of the associated switches.

The rest of the paper is organized as follows: Section II
describes Packet Rerouting approaches in SDN. Section III
presents the proposed transport rerouting solution for SDN.
Section IV describes the evaluation of the proposed method
with the experiment setup and results. Finally, section V
provides some conclusions and a view for future work.

II. PACKET REROUTING IN SDN
Internet Service Providers (ISPs) and Datacentres (DCs) are

facing challenges with the rapid growth of the Internet that
require dynamic topology adjustment (rerouting to backup
paths) to ensure stable and secure connectivity. However, this
may cause an expensive system with a number of demerits.
Therefore, SDN is used for the solution of effective dynamic
rerouting.

In SDN, the network control function is separated from the
forwarding elements and helps the control function into an
individual centralized control. One of the important control
function is routing control that contains the knowledge of
switches, routing information and network status.

���������	��
���������������
�������� 149

Fig. 2. Illustration of OpenFlow link Monitoring

SDN manages routing algorithms separately while keeping
data flows running on original network paths with the
centralized controller. The simple and flexible routing control
with the capability of adaption during the change in networking
state make SDN tremendously popular.

SDN uses the OpenFlow Protocol that sets rules for routing
by installing a small piece of OpenFlow firmware in a switch
and giving access to flow tables. In a flow table, each flow
entry is associated with an action, to instruct the switch how to
process traffic from the flow. A Secure Channel that connects
the switch to a remote controller, permitting commands and
packets for communication between a controller and the switch
using the OpenFlow protocol. The OpenFlow Switch provides
an easier and more convenient way for researchers to test new
proposals by specifying the OpenFlow Protocol through which
entries in the flow table can be defined externally. Many switch
vendors have therefore started to support OpenFlow for these
features.

SDN with the centralized management control of a network
is responsible for building, displaying the network topology
with the capability of network programming on devices like the
switch. ONOS with its potentiality of dynamic rerouting to
support customized infrastructure effectively manages the
entire network with stability. Hence, ONOS makes it a
controller choice for many services as it focuses on
performance aspects and clustering to increase the availability
and scalability.

ONOS is popular for its default applications that directly
interact with the controller with a certain level of network
abstraction and can serve as tools for network monitoring,
control, and analytics[10]. Usually, ONOS is run in a Virtual
machine (VM) with developing applications that provide
accurate real-time information about connection quality
(required for the link monitor), and, in the case where it falls
below an established threshold, address the SDN controller to
re-route network traffic to a backup route. Hence rerouting is
connected to network monitoring, which in turn is directly
linked to the ONOS controller.

As shown in Fig.2, the monitoring part is periodically
generating test L2 packets and sends them to a switch
indicating send to a specific port. The packets are transmitted
to the specified port and received by the neighbouring switch.
On the other hand, the received probe packets are then returned

to the controller. Hence, the quality of the link is measured by
the ratio of received and returned packets.

III. THE PROPOSED REROUTING APPROACH
The purpose of this section is to describe the proposed

rerouting approach in SDN. To achieve this goal, the
architecture is designed considering path utilization calculation
and finally forwards the packet to the least delay paths that
help to avoid congestion. Hence, the proposed Utilization
Delay Aware (UDA) forwarding algorithm first computes all
possible paths from source to destination sorted by hop-count
of each path as shown in Algorithm 1. For each path, the
number of links associated with its utilization is computed to
represent the cost of each link in the path. Here, the link cost
is calculated for each path to understand how much load can be
accepted without that path becoming congested.

In this approach, we have considered 80% of the link
utilization as a threshold to reroute the path to calculate the link
cost and then calculated least delay path to avoid the
congestion. For end-to-end delay calculation of each less
utilized path from the pathlist is measured by sending out
probe packets from the controller. As shown in the algorithm,
we get total delay TotalDelay for each path and the average
delay AvgDelay is calculated. After comparing the average
end-to-end delays of available paths, the flow is shifted to the
least delay path to avoid congestion and reduce flow
completion time.

Algorithm 1: Packet Forwarding through UDA

1: TotalDelay =0
2: LeastDelayPath=Max
3: if the LinkLoad exceed the threshold then
4: RerouteLoad← LinkLoad - (0.8 * bandwidth)
5: Find LessUtilized paths in the path-list
6: for j ∈ 1, 2 … RerouteLoad do
7: rerouteFlow← RequestedFlows [j]
8: flowRate ← rerouteFlow
9: if flowRate >= RerouteLoad then
10: grantedPath ← LessUtilizedPath
11: if grantedPath != NULL then
12: rerouteFlow to grantedPath
13: update the granted load of grantedPath
14: RerouteLoad ← 0
15: break
16: end if
17: end if
18: Find available shortest paths in the path-list
19: for each grantedPath in path-list do
20: for i ∈ 1, 2 … No_of_Flows (N) do
21: Calculate Delay for p

 22: TotalDelay = TotalDelay +Delay [i]
23: end for
24: AvgDelay= (TotalDelay/ Number of Flows);
25: LeastDelayPath=min(AvgDelay, LeastDelayPath);
26: end for
27: Update the granted load to LeastDelayPath
28: end for
29: else
30: route the flow as usual (no rerouting)
31: end if

The SDN controller calculates the link utilization and delays

periodically by sending a message to a switch. Timestamps are
used to check the time from the very beginning when the

���������	��
���������������
�������� 150

switch responds with the total bytes passed through its ports.
Hence, the controller stores and uses this information to
calculate port utilization and delay and thus helps to predict
link overutilization and congestion. Our approach is able to
communicate with connected switches and query their flow
tables and fetch their flow entries. This information contains
flow statistics and flows identifier. When any of switches
become over-utilized, this method queries its flow information
and sorts them by their periodic utilization calculation. When a
flow is rerouted to the selected path, the acceptable load of that
path is updated. Paths computed by this calculation is used in
forwarding the packets.

Using the flow statistics information, the method can predict
congestion. If any port utilization is more than a threshold, for
example, more than 80% the controller predicts congestion.
Using the UDA forwarding, the controller must be able to shift
the load RerouteLoad to another path. Where RerouteLoad is
the total load which must be rerouted from the congested link
to eliminate the congestion.

The method calculates the average transmission rate of the
out port. The controller iteratively reroutes the flows from the
active path to the proper backup path. To do this in each
iteration a flow is chosen and rerouted to the best backup path
capable of accepting that flow's load. This helps selection of
the flows to reroute while maintaining the total number of
flows as low as possible to make the algorithm fast and reduce
the overhead. This also helps on the ports of over-utilized, by
decreasing the flow and reducing the congestion. If the
RerouteLoad value is zero, all of the flows in the congested
switch are checked. Hence, this method will help to skip the
paths which are already over-utilized and preventing
acceptance of new load. It also checks the path utilization and
delays when new flow arrives and uses the shortest path for
that flow. If the utilization is near the threshold, the path is
skipped, and flow is rerouted to a less utilized path considering
the next shortest path. Therefore, this method uses network
information during the periodic updates.

IV. EXPERIMENT RESULTS AND ANALYSIS
We evaluated the proposed congestion aware mechanism in

a Leaf-Spine topology (as depicted in Fig. 3) using Mininet
emulator [11] and compared with reactive forwarding method
in ONOS. The benefits of a congestion-aware algorithm, using
metrics such as Completion time, packet drops, can be verified
by comparing with the legacy network.

Fig. 3. Illustration of a leaf-spine topology

A. Experiemnt Setup
The first set of experiments validates the proposed routing

mechanism compared to reactive forwarding in the leaf-spine
topology, where both short flows and long flows are used to
find the benefits. In the second set of experiments, we have
evaluated the performance of the proposed rerouting algorithm
for link utilization using long flows in a use case scenario.

The evaluation is done in an Intel(R) Core(TM) i7-
4770CPU 3.40 GHz CPU with Memory of 16 GB machine.
The network topology is created using Mininet version 2.2.1
and open flow version 13. Because of performance, high-level
abstractions and API, we have used the ONOS controller,
version 1.8 for the experiments. The iperf tool [13] is also used
to generate traffic and VMs with Wireshark traffic analyser to
generate graphs. All the experiments are done over 1000 runs
with 95% confidence intervals. The VMs are created
considering iperf TCP packets.

B. Configuration details and Results
The server-client model is used in this experiment,

considering two Hosts and two sets of flows are considered
depending on the VM sizes and link speed. The short flows are
with a threshold values less than link speed of 10 Mbps with a
packet sampling rate of 1 in 10 packets.

TABLE I. CONFIGURATION PARAMETERS: SHORT AND LONG
FLOW FCT EXPERIMENT

Parameters Value
Leaf switches 4
Spine switches 4
Host to Leaf switches Bandwidth 1Gbps
Leaf to Spine switches Bandwidth 1Gbps
Window Size (Short Flow) 200 kB
Window Size (Long Flow) 2 MB
VM Sizes (Short Flow) 2 to 10 MB
VM Sizes (Long Flow) 200 to 1000 MB
Traffic TCP

The other type of flows is long flows with a threshold value
of 100Mbps with a packet sampling rate of 1 in 100 packets.
Table 1 shows the configuration details for the Leaf-Spine
topology. In the first experiment of this set, we compared the
Average Flow Completion Time (FCT) for both short and long
flows. The FCT of a flow is the time difference between the
time when the first packet of a flow leaves the source and the
time when the last packet of the same flow arrives at the
destination [12].

Fig.4 shows the comparison result between the proposed
UDA forwarding and reactive forwarding for short flows with
various tiny VMs. The result shows no significant change in
the average FCT for short flows. However, Fig.5. Shows
improvement using UDA forwarding compared to reactive
forwarding method using long flows. The figure shows
average FCT reduction of 2.3% -19.6% using the proposed
method. This is because the proposed method reroutes the large
flows to the least utilized and least delay path while the
reactive forwarding method only uses the shortest paths for all
traffic flows.

���������	��
���������������
�������� 151

Fig. 4. Short Flow: Comparison of Average Flow Completion time with
various VM sizes

Fig. 5. Long Flow: Comparison of Average Flow Completion time with
various VM sizes

Fig. 6. Long Flow: Comparison of Average packet Drops

Fig. 7. Use case Scenario : Bandwidth Utilization using the proposed UDA
Forwarding Approach.

Frequent path reconfigurations in a network can increase
the number of packet drops, which lead to retransmissions and
finally can degrade application performance. However, the
frequency of path reconfiguration is usually enlarged by severe
variation of traffic. Few research studies have addressed the
adverse influence of frequent reconfiguration as well as the
mechanisms to avoid it.

Therefore, path reconfiguration is introduced in the second
experiment with background traffic to match varying traffic
demand in order to check the QoS of the network. As we could
not find any significant improvement for the short flows in our
previous experiments, in this scenario, the proposed UDA
forwarding is compared with the reactive forwarding for large
flows during path reconfigurations.

In this experiment, iperf UDP packets are used with a
constant bit rate of 100 Mbit/sec to compare the UDA
forwarding with the reactive forwarding by calculating the
average packet drops for a period of 10 sec. Table II shows the
details configuration parameters. According to our
experimental results as shown in Fig.6 the growth of
reconfiguration frequency leads to higher dropped packet
counts using reactive forwarding, whereas using the proposed
UDA forwarding shows improvement by reducing 1% - 8% of
the packet drops. This is because the ONOS controller uses less
utilized and least delay paths for packet fording and avoids
congestion with fewer packet drops compared to reactive
forwarding method.

C. Use case Scenario
Fig. 7 shows a use case scenario for bandwidth utilization

using UDA forwarding compared to Reactive forwarding in a
network from Host A to Host B. The Scenario is considered
during two sets of flows with background UDP traffic that
contains 30% of the link capacity. The Details of the
configuration parameters can be found in Table II.

Using Reactive forwarding, the first set of flows is chosen
through the Leaf switch (B) and Spine switch (C), with random
interval 1-2s. The second set of flows are sent through the Leaf
switch (B) and Spine switch (D). In this scenario, using the
UDA approach, the controller first selects the least delay path
and calculates the bandwidth utilization.

���������	��
���������������
�������� 152

Fig. 8. Utilization Comparisons between UDA and Reacive Forwarding

If the utilization is less than the threshold level, the
controller forwards the packet. Here, the controller selects
Spine switch (G) for the first set of flows and leaf switch (B).
For the second set of flows, it selects Spine Switch (H) with
leaf Switch (B) to reach Host B. Finally, the SDN controller
updates the link information periodically for next transmission.

Fig.8 shows the overall effect of the proposed UDA
forwarding approach, where all the switches better utilize its
bandwidth during the transfer compared to reactive forwarding
method that over-utilizes some of the switches. Hence, the
overutilization using reactive forwarding may reduce the
overall application performance by higher packet drops.

TABLE II. CONFIGURATION PARAMETERS: LONG FLOW
UTILIZATION EXPERIMENT

Parameters Value
Leaf switches 4
Spine switches 4
Host to Leaf switches Bandwidth 1Gbps
Leaf to Spine switches Bandwidth 1Gbps
Traffic TCP
First Set of Flows (VM1) 600MB
Second Set of Flows (VM2) 400 MB
Interval between Flows 1-2 sec
Background Traffic UDP, 30%

V. CONCLUSION AND FUTURE WORK
Although SDN is in the most challenging technology

domain, it is still popular with a lot of business because of the
adaptive solutions without any expensive investments. The
paper presented an efficient rerouting algorithm for congestion
control by monitoring link utilization and considering least
delay path in SDN environment. Any new flow is routed to the
shortest path normally considering that the path is not over-
utilized or congested. However, if the threshold level is crossed
for a certain switch, our method bypasses that switch by
rerouting to another switch. It chooses the minimum number of
flows possible for resolving the congestion and reroutes them
to the less utilized and least delay path. From the experimental

results, our investigation of the proposed method optimizes the
network performance with lower FCT and fewer packet drops
for large flows than the reactive forwarding method.

For future directions, our research will focus on reducing
the overhead while measuring network statistics for network
monitoring through smart algorithms as operations overhead
grows according to the scale and complexity of the network.
Our work will also explore on more useful SDN monitoring
applications by good use of programming languages and APIs
that will help researchers to develop various monitoring
mechanisms for achieving more flexible, adaptive, and high-
level control characteristics in SDN monitoring.

ACKNOWLEDGMENT
This research is supported by the ‘Agile Cloud Service

Delivery Using Integrated Photonics Networking’ project
funded under the US-Ireland Programme NSF (US), SFI
(Ireland) and DfE (N. Ireland). The authors would also like to
thank British Telecom (BT) and Invest NI for partly supporting
this research under the BT Ireland Innovation Centre (BTIIC).

REFERENCES
[1] Nakao, A.: Network virtualization as foundation for enabling new

network architectures and applications. IEICE Trans. commun. 93(3),
454–457 (2010).

[2] ONF, OpenFlow Switch Specification Version 1.5.0,
https://www.opennetworking.org/images/stories/downloads/sdnresource
s/onfspecifications/openflow/openflow-switchv1.5.0.noipr.pdf,
December 2014.

[3] M. I. Biswas, G. Parr, S. McClean, P. Morrow and B. Scotney, "SLA-
Based Scheduling of Applications for Geographically Secluded Clouds",
1st workshop on Smart Cloud Networks & Systems (SCNS'14),
December 3-5 Paris, France, 2014.

[4] M. I. Biswas, G. Parr, S. McClean, P. Morrow and B. Scotney, " A
Practical Evaluation in Openstack Live Migration of VMs using 10Gb/s
Interfaces", The Second International Workshop on Education in the
Cloud-EC2016, 29 March-2 April 2016, Oxford, UK.

[5] ONOS. [Online] Availible: http://github.com/opennetworkinglab/onos
[6] S. Hegde, S. G. Koolagudi, S. Bhattacharya, “Scalable and fair

forwarding of elephant and mice traffic in software defined networks,”
Computer Networks, vol. 92, pp. 330–340, December 2015.

[7] F. P. Tso and D. P. Pezaros.,”Improving Data Center Network
Utilization Using Near-Optimal Traffic Engineering”, IEEE
Transactions on Parallel and Distributed Systems, 2013.

[8] S. M. Park, S. J. and J. Lee,”Efficient routing for traffic offloading in
Software-defined Network”, Procedia ComputerScience 34 : 674- 679,
2014.

[9] S. Song, J. Lee, K. Son, H. Jung, 1. Lee, "A congestion avoidance
algorithm in SDN environment", IEEE International Conference on
Information Networking (ICOTN), pp. 420-423, 2016.

[10] Pang-Wei Tsai; Chun-Wei Tsai; Chia-Wei Hsu; Chu-Sing Yang,
“Network Monitoring in Software-Defined Networking: A Review”,
IEEE Systems Journal, 2018.

[11] “Mininet: An Instant Virtual Network on your Laptop (or other PC) -
Mininet.” [Online]. Available: http://mininet.org/

[12] F. Carpio, A. Engelmann, A. Jukan, “DiffFlow: Differentiating Short
and Long Flows for Load Balancing in Data Center Networks,” in Proc.
IEEE GLOBECOM, vol. 10, pp. 1–6, April 2016.

[13] iPerf - The network bandwidth measurement tool, https://iperf.fr/.

���������	��
���������������
�������� 153

