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Abstract. In this paper, we propose an attention-based approach to short text classifica-
tion, which we have created for the practical application of Twitter mining for public health
monitoring. Our goal is to automatically filter Tweets which are relevant to the syndrome
of asthma/difficulty breathing. We describe a bi-directional Recurrent Neural Network ar-
chitecture with an attention layer (termed ABRNN) which allows the network to weigh
words in a Tweet differently based on their perceived importance. We further distinguish
between two variants of the ABRNN based on the Long Short Term Memory and Gated
Recurrent Unit architectures respectively, termed the ABLSTM and ABGRU. We apply the
ABLSTM and ABGRU, along with popular deep learning text classification models, to a
Tweet relevance classification problem and compare their performances. We find that the
ABLSTM outperforms the other models, achieving an accuracy of 0.906 and an F1-score
of 0.710. The attention vectors computed as a by-product of our models were also found
to be meaningful representations of the input Tweets. As such, the described models have
the added utility of computing document embeddings which could be used for other tasks
besides classification. To further validate the approach, we demonstrate the ABLSTM’s per-
formance in the real world application of public health surveillance and compare the results
with real-world syndromic surveillance data provided by Public Health England (PHE). A
strong positive correlation was observed between the ABLSTM surveillance signal and the
real-world asthma/difficulty breathing syndromic surveillance data. The ABLSTM is a useful
tool for the task of public health surveillance.

Keywords: Syndromic Surveillance · Sequence Modelling · Deep Learning · Natural Lan-
guage Processing

1 Introduction

Text classification is a well established field related to Natural Language Processing (NLP) and
data mining which has seen a lot of activity. Usually, literature published in this domain studies
medium to large bodies of text such as film and internet reviews as well as news articles. However,
with the proliferation of social media as a viable source of data for data mining, the issue of Tweet
classification has become more prominent. Tweet classification is a natural yet specific extension of
the text classification problem. Tweets are very short pieces of text, each limited to 280 characters
only. Forms of expression vary when they are constrained in this way. This means that although
we can apply existing text classification techniques, we have to pay special attention to the concise
nature of Tweets so that it does not negatively impact the workings of these techniques.

We are motivated by a real world problem. This is the analysis of Tweets for the purpose of
public health surveillance. Specifically, we have investigated the use of Tweets to obtain a signal for a
given syndrome [6], that is asthma and/or difficulty breathing. For this, we collected Tweets related
to our syndrome of interest - asthma and/or difficulty breathing - using keywords. Unfortunately,
as explained previously [6], many Tweets contain terms like “asthma” or “can’t breathe” but are
not actually related to individuals expressing concern over asthma or difficulty breathing. Hence
the classification of relevant/irrelevant Tweets for this particular syndrome is our problem. For
some context, examples of Tweets that contain the keyword “asthma” include “oh I used to have
asthma but I managed to control it with will power ” or “Does your asthma get worse when you
? Supported by Health Protection Research Unit, Public Health England



exercise? ”. However, we do not consider these Tweets as relevant for our purposes. On the other
hand, Tweets such as “why is my asthma so bad today? ” express a person currently affected and
will be considered as relevant.

Text classification using neural networks has been widely investigated and found to yield pos-
itive results [6,14,15]. These neural network models look at a document as a whole, examining
the interrelations of words and word vectors in the document without giving any words special
treatment. However, we believe that texts usually contain a number of keywords that inform the
meaning and sentiment of the whole text. Such keywords should be used to inform the classifi-
cation process. To this end, we propose to apply an attentive approach, which makes use of an
encoder-decoder architecture, to short text classification, and we demonstrate its value specifically
in the context of Tweet classification for public health monitoring.

Attentive neural networks pioneered for machine translation [9] have recently seen success in a
range of tasks ranging from question answering, speech recognition to image captioning [1,3,32]. We
propose adapting the attention mechanism for short text classification tasks such as Tweet analysis.
We apply our attention mechanism using two popular RNN setups - Long Short Term Memory
(LSTM) [10] and Gated Recurrent Unit (GRU) [2] networks in order to derive attention-based
variants for comparisons. We call our attention-based LSTM, ABLSTM and our attention-based
GRU, ABGRU. After we employ our attention-based RNN classifiers to Tweet classification to
generate an ‘activity’ signal over time, we compare our results to the activity recorded by syndromic
surveillance systems maintained by Public Health England (PHE).

Our proposed approaches combine the characteristics of both deep learning and traditional
classification algorithms. We combine the self-learning and intrinsic pattern recognition capabilities
of deep learning with the use of keywords in classification employed by traditional classification
methods. Through our experiments, we find that the ABLSTM and ABGRU are able to identify
keywords in a Tweet relevant to its meaning and improve classification accuracy. As an example,
Figure 1 shows a Tweet heatmap of perceived word importance generated with our ABLSTM
network. The darker areas/words represent words which the model deems key to the message of
the Tweet. We can see that the model does a good job of recognizing that swelling, throat and
difficulty, breathing are important for determining whether the Tweet is relevant to our health
context. We also found that using this attention-based approach to syndromic Tweet classification
yields a signal that correlates well with the signal recorded by syndromic surveillance systems put
in place by PHE for England.

Fig. 1. Heatmap showing weights placed on words in a Tweet by our attentive RNN model

2 Related Work

The problem of text classification has a long history. In the 1960s, it was often referred to as text
categorization, and was approached by employing a set of hand-crafted logical rules based on the
specific language and its grammar and idiosyncracies [24]. In the 1990s, the study of automatic
text categorization became more prominent. The approaches used in these studies involved the use
of pre-marked data to automatically learn discriminatory rules for classification with which new
samples could then be classified [12,34,33,30,18]. This was the precursor to the approaches used
today. A number of learning algorithms have been applied to text which had been vectorised using
a tf*idf weighting method, including Support Vector Machines [12], regression models [34], nearest
neighbour classification [33], Bayesian models [30], and inductive learning [18]. These algorithms
assume that independent key words or phrases are important to the text category and extract vec-
tor features representing those key words or phrases using statistical methods [29]. These methods
generally yield successful results but the assumption is an oversimplification that brings some short-
comings. While independent keywords and phrases are important, there are other linking words
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which also give meaning to a text. The way words relate can provide context and disambiguation
and without this, we potentially lose some information.

Recently, deep-learning-based methods have seen a lot of success for text classification. This
is mostly due to the fact that such methods can automatically and effectively learn underlying
features and interrelationships in data. Some authors [14,16] have adapted Convolutional Neural
Networks (CNNs), which are normally used for images, to the task of text classification. They
propose a semi-supervised approach by first learning word or region embeddings from a large
unstructured corpus to be used as inputs to the CNN. The work was also expanded to use RNNs
for the generation of region embeddings and text classification [15]. Lee and Dernoncourt [17] make
use of an RNN for short-text classification. We previously employed CNNs and RNNs for the task
of Tweet classification for syndromic surveillance and compared their performance [6]. Similar work
was carried out by Hankin et al. [7] in the USA. Both our work and that of Hankin et al. attempt
to use deep learning models for Tweet and news article classification in order to detect symptoms
reported on these platforms. The identified reported cases can then be aggregated to create an
estimate of the prevalence of the syndrome(s) under investigation.

While deep learning models have seen widespread success, they treat all the words as a block of
input without giving any words or phrases special treatment. We would like to leverage the advan-
tages of both the classical text categorization approaches, which employ keywords, and the modern
deep learning approaches, which learn underlying relationships, for short text (Tweet) classifica-
tion. Miyato et al. [23] make use of adversarial training to build semi-supervised text classification
models. They make use of LSTMs and BLSTMs, making small changes or perturbations to the
word embeddings during training. This approach is also similar to the semi-supervised transductive
SVM approach [13] in that both families of methods push the decision boundary far from training
examples. Zhou et al. [36] make use of attention BLSTMs for entity relation classification, which
is the task of finding relations between pairs of nominal values. That is useful for applications
such as information extraction and question answering. Zhang et al. [35] proposed an attention
network with a hierarchical architecture for document classification. The hierarchical structure of
the attention mechanisms is intended to mirror the hierarchical nature of documents. As such,
it involves two levels of attention applied at the sentence level and the word level. It is better
suited to large-scale text classification tasks that short text classification problems such as Tweet
classification.

Our work is also related to Du and Huang [5] who used a BLSTM with attention for text
classification. However, in their work, they compute the attention or weight of a word as the
similarity between the embedding for that word and the hidden state of the BLSTM at the time
step for that word. Rather than computing the attention from the hidden state, we opt for learning
a function to approximate the values of the attention vector through back-propagation. Hence, the
attention vector is a parameter to be learned directly. Furthermore, for the input to the classifier,
Du and Huang [5] concatenate the attention vector and BLSTM output states. We propose the
computation of a Tweet (or document) representation from the attention weights and hidden state.
Such a representation could then also be used in a similar manner as a document embedding.

3 Model

In this section, we describe the proposed attention-based RNN. The attention RNN can be broken
down into four parts:

1. Word Embedding : This step vectorises the Tweet. It involves mapping each word in the
Tweet to a fixed-dimension word embedding. In our work, we make use of GloVe embeddings
which we build from a large unlabelled corpus of Tweets.

2. RNN : Takes the output of the previous step as input. The RNN learns high level features
from the given input.

3. Attention Layer : Produces a weight vector which it uses in conjunction with the output
states of the RNN to form a new Tweet representation.

4. Classification : The attention-powered vector representation of the Tweet is fed into a classifier
to obtain a prediction

Figure 2 shows a simple illustration of the workflow of the attentive RNN model. Each compo-
nent of the process will subsequently be explored in more detail below.
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Fig. 2. Attention-based RNN model

3.1 Word Embeddings

Word embeddings (sometimes referred to as word vectors) are a powerful distributed representation
of text learned using neural networks that have been shown to perform well in similarity tasks [11].
They encode semantic information of words in dense low-dimensional vectors. There are many
different ways to learn word embeddings [26,22,19]. After learning, an embedding matrix X of size
|V | × d is produced where V is the set of all the words in our vocabulary and d is the dimension
of each word embedding. Given a Tweet T consisting of n words, T = {w1, w2, ..., wn}, each word
wi is converted to a real-valued vector xi by performing a lookup from the embedding matrix X.
For this work, we built GloVe embeddings [26] from a set of 5 million unlabelled Tweets.

3.2 RNNs

RNNs are a category of neural networks that incorporate sequential information. That is to say,
while in a traditional neural network, inputs are independent, in RNNs each node depends on the
output of the previous node. This is particularly useful for sequential data such as text where each
word depends on the previous one. While in theory, RNNs can make use of information in arbitrarily
long lengths of text, in practice, they are limited to looking back only a few steps due to the
vanishing gradient problem which occurs during the back-propagation algorithm. When tuning the
parameters of the network due to long sequences of matrix multiplications, gradient values shrink
fast and gradient contributions from earlier neurons become zero. As a result of this, information
from earlier inputs (words in the text) do not contribute to the overall algorithm. Long Short
Term Memory (LSTM) networks [10] and Gated Recurrent Unit (GRU) [2] networks are flavours
of the RNN architecture which make use of a gating mechanism to combat the vanishing gradient
problem. Succinctly, they are a solution for the short-term memory problem that simple RNNs
possess in which they cannot properly update and learn weights for earlier inputs in a sequence.
LSTMs and GRUs are very similar, the main difference is that GRUs have less parameters than
LSTMs. As such, GRUs are faster and have been observed to exhibit better performance on some
smaller datasets [2]. However, LSTMs have been shown to be better at learning in general [31].

Long Short Term Memory (LSTM) For simplicity, we make use of an LSTM with only one
layer. The network has an input layer x, hidden layer h, LSTM cell state c and output layer y.
Input to the network at timestep t is x(t), output is denoted as y(t), hidden layer state is h(t) and
LSTM cell state is c(t). The LSTM cell state is controlled by a gating mechanism as highlighted
above briefly. Each cell consists of the following gates which interact with each other to dictate the
overall cell state:
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– input gate (i)
– forget gate (f)
– write gate (g)
– output gate (o)

Each of these gates has its own weights and biases and is a function of the previous time step’s
hidden state h(t − 1). The hidden state of a layer can then be computed as a function of the cell
state as shown below:

c(t) = f(t) · c(t− 1) + i(t) · g(t) (1)

h(t) = o(t) · tanh(c(t)) (2)

For the sake of brevity and simplicity of our equations, let us assume that there is only one hidden
layer l so that we do not have to specify different equations for the different edge cases that would
come with multiple layers, such as when execution is in the first layer and has no previous layer
or when it is in a middle layer or the final layer. In the real world scenario, this is not the case as
each hidden layer state is influenced by the hidden state in the previous time step as well as the
state of the previous hidden layer. To adapt this, one may simply add the product of the weights
and input of the previous layer to each activation function. The activation functions for the gates
are computed as:

f(t) = sigmoid(Wxf · xt +Whf · ht−1 + bf ) (3)

g(t) = tanh(Wxg · xt +Whg · ht−1 + bg) (4)

i(t) = sigmoid(Wxi · xt +Whi · ht−1 + bi) (5)

o(t) = sigmoid(Wxo · xt +Who · ht−1 + bo) (6)

where Wpq are the weights that map p to q and bp refers to the bias vector of p. For example, if
we look at equation 3, Wxf refers to the weights going from input x to the forget gate f and so on
while bf refers to the bias of the forget gate f .

Gated Recurrent Unit (GRU) Again, for the sake of brevity and simplicity of our equations,
let us assume that there is only one hidden layer l. The GRU cell state is controlled by a gating
mechanism similar to the LSTM. Each cell consists of the following gates which interact with each
other to dictate the overall cell state:

– update gate (z)
– reset gate (r)

The gates can be formalised as follows:

z(t) = sigmoid(Wxz · xt +Wz · ht−1 + bz) (7)

r(t) = sigmoid(Wxr · xt +Wr · ht−1 + br) (8)

The hidden state of a layer is computed as a function of the input and gates as shown below:

h(t) = z(t) · h(t− 1) + (1− z(t− 1)) · tanh(Wx + r(t) ·Wh · h(t− 1)) (9)

where Wpq are the weights that map p to q and bp refers to the bias vector of p. For example, if we
look at equation 7, Wxz refers to the weights going from input x to the update gate z and so on,
while bz refers to the bias of the update gate z and Wz refers to the weights for the update gate
itself.

Bi-directional Networks The above RNNs process sequences in time steps with subsequent
time steps taking in information from the hidden state of the previous time steps. This means that
they ignore future context. Bi-directional RNNs (Bi-RNNs) extend this by adding a second layer
where execution flows in reverse order [28]. Hence, each layer in a Bi-RNN has two sub-layers: one
moving forward in time steps and one moving backwards in time steps. To compute the hidden
state h(t) of a Bi-RNN layer, we perform an element-wise sum of the hidden states computed from
both its sublayers:

h(t) =
−−→
h(t)

⊕←−−
h(t) (10)

where
−−→
h(t) and

←−−
h(t) are the hidden states of the forward and backward traversals of the bi-

directional RNN.
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3.3 Attention

In this section, we describe the attention mechanism used. The Bi-RNN layer takes in a sequence
of vectors for each of the words in an n-worded Tweet {x1, x2, ..., xn}, resulting in hidden states
{h1, h2, ..., hn} where hi is a vector derived from equation 10. That is, the hidden state of the
Bi-RNN for the word wi is hi. Let H be a matrix containing these vectors such that H ∈ Rk×n
where k is the number of neurons in the hidden layer. The Tweet representation t is derived by
taking a weighted sum of the hidden vectors with the attention weight for the relevant words.
The attention weights, α such that αi represents the attention weight for wi, are obtained from
trainable parameters and so are adjusted as the optimization algorithm trains the network:

M = tanh(H) (11)

α = softmax(wTM) (12)

t =MαT (13)

where w is a trainable parameter in the network and wT is its transpose. w, α and t have the
dimensions k, n and k respectively. Finally, the hyperbolic tangent function (tanh) is applied to
t, the Tweet attention vector, in order to squash it between the range [-1,1] and make it easier to
train with the network:

t∗ = tanh(t) (14)

3.4 Softmax Classifier

Once, the new attention-based representation for the Tweet has been obtained, it is passed to a
softmax classifier to make the class prediction. The softmax classifier predicts a class y from a
discrete set of m classes Y by calculating the probability that the observed Tweet belongs to each
class, P (y|T ), and assigning the Tweet the class with the highest probability:

P (y|T ) = softmax(Wst
∗ + bs) (15)

y = argmaxyP (y|T ) (16)

where Ws represents the softmax classifier network weight and bs represents its bias term. The loss
function used to train the entire network is the cross entropy loss function [4]:

L = − 1

m

m∑
i

eilog(oi) (17)

where L estimates loss between the observed and expected values. e is a one-hot encoded vector
of the ground truth for t and o is the probability of each class being the target according to the
softmax classifier.

4 Experiments and Results

We evaluate the performance of our attention-based RNN for Tweet classification. First, we eval-
uate our proposed approach’s ability to automatically classify Tweets as “relevant” or “irrele-
vant” based on whether they associate with an individual expressing concern or discomfort over
asthma/difficulty breathing or its symptoms. In these experiments, we compare the classifica-
tion ability of our proposed approach to that of popular existing approaches. Next, we apply our
attention-based RNN classifier to a continuous period of collected unlabelled Twitter data in order
to generate a public health signal representing Twitter activity for asthma/difficulty breathing. We
then compare this signal to data from real-world syndromic surveillance systems for evaluation.
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Table 1. Performance of different classifiers on Tweet relevance classification tast.

Classifier Metric

ABGRU

Accuracy 0.900
Precision 0.734
Recall 0.656
F1 0.682
F2 0.666

ABLSTM

Accuracy 0.906
Precision 0.752
Recall 0.672
F1 0.710
F2 0.687

Convolutional Neural
Network (CNN)

Accuracy 0.850
Precision 0.507
Recall 0.562
F1 0.533
F2 0.550

Recurrent Neural
Network (LSTM)

Accuracy 0.889
Precision 0.762
Recall 0.557
F1 0.644
F2 0.589

4.1 Tweet Relevance Classification

Tweets were collected using the official Twitter streaming Application Programmer’s Interface
(API). The streaming API contains parameters which can be used to restrict the Tweets obtained
(e.g. keyword search, where only Tweets containing the given keywords are returned). In conjunc-
tion with epidemiologists from Public Health England (PHE), we built a set of keywords likely to
be connected to the symptoms for asthma/difficulty breathing syndrome. We then expanded on
this initial set using synonyms from regular thesauri as well as from the urban dictionary in order
to capture some of the more colloquial language used on Twitter. This set of keywords was used
to restrict our Tweet collection. We also only collected Tweets we found to be geolocated to the
UK, marked as originating from a place in the UK or marked as originating from a profile with
its time zone set as the UK as our syndromic surveillance problem is in fact restricted to the the
UK. The collected Tweets had to be cleaned with the removal of duplicates and retweets and re-
placing URLs and user mentions with the tokens “<URL>” and “<MENTION>” respectively. We
considered implementing measures to prevent the false amplification of signals from users tweeting
multiple times, potentially about the same thing. After further inspection however, we found that
this was not necessary as it is discouraged by Twitter [8]. A similar concern existed for a single
user posting Tweets across multiple accounts but this is also handled by Twitter’s anti-spam efforts
[27].

Five million Tweets were collected in total. 8000 of these Tweets were randomly selected and
labelled to be used for development and experimentation. Tweets were labelled as relevant if they
declared or hinted at an individual displaying symptoms pertaining to respiratory difficulties or
asthma. The labelling was done by three volunteers. A first volunteer initially labelled the Tweets.
A second volunteer checked the labels and flagged up any Tweets with labels that they did not
agree with. These flagged Tweets were then sent to the third volunteer who then decided on which
label to use. 23% of the labelled Tweets were labelled as relevant while 77% were labelled as ir-
relevant. This labelled dataset was then partitioned into a 70:30 training-test split. The 5 million
Tweets were used to construct GloVe word embeddings while the labelled Tweets were used for
experimentation. To assess the models under evaluation, accuracy can be a misleading metric as
it may only be reflecting the prevalence of the majority class which is especially problematic in
this application, as our dataset is quite unbalanced. Our aim is to detect Tweets which might sug-
gest cases of a syndrome under surveillance (which for the purposes of this study was symptoms
of asthma/difficulty breathing). As this is a health surveillance application, we need to prioritise
that relevant Tweets are kept. We would like to reduce the number of irrelevant Tweets but not
at the expense of losing the relevant Tweets in the signal. In essence, errors are not of equal cost
for our application. Relevant Tweets that are classified as irrelevant (False Negative (FN) errors)
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should have a higher cost and hence be minimised; we can have more tolerance of irrelevant Tweets
classified as relevant (False Positive (FP) errors). These subtleties are well captured by additional
measures of model performance such as Recall, which can be interpreted as the probability that a
relevant Tweet is identified by the model and Precision, which is the probability that a Tweet pre-
dicted as relevant is indeed relevant. The F -measure (sometimes referred to as F -score) combines
precision and recall together in a meaningful way. The formula for positive real β is defined as:

Fβ = (1 + β2)× Precision×Recall
(β2 × Precision) +Recall

. (18)

The traditional F -measure or balanced F1-score [21] uses a value of β = 1. A variation of this,
the F2 measure, which uses β = 2, is more suited to our purpose as it weighs recall higher than
precision. For this reason, in addition to accuracy, we also examine the F1-score for an insight
into classification power and the F2-score for its utility in the context of syndrome detection. We
implemented and applied our ABLSTM and ABGRU networks to the Tweet relevance classification
task. The hyperparameters of the attention networks were selected using grid search. The dimension
of our word vectors d was 200. The hidden layer size k was also 200. The learning rate of the
optimization algorithm was 0.001. The dropout rate was set to 0.3 and the networks were trained
for 50 epochs. The other parameters such as weights and biases were initialised randomly. We
compare the results of applying both flavours of our proposed model and we also compare them to
established deep learning text classification methods as a baseline. For this, we implemented the
text classification CNN by Kim [16] and the short-text classification RNN by Nowak et al. [25].
The results of these comparisons are shown in table 1. Note that all our results were computed
from the test partition.

We found that the attentive RNNs outperformed the other architectures, with the ABLSTM
being the stronger attentive RNN. As shown in section 3.2, the gating mechanism used by the
GRU is smaller and less complex than that of the LSTM. This means that ABGRU is faster but
not quite as accurate as the ABLSTM. The LSTM RNN was seen to achieve a higher precision
than the ABLSTM and ABGRU but it fell behind in terms of recall. Its recall was quite low and
negatively impacted its overall performance. In effect, this translates to it being more likely to find
negative class examples which were the majority class in the dataset and it suggests that it may
be more suited to balanced datasets. However, our task of syndrome monitoring using social media
deals with highly unbalanced data as most social media posts are not about health reporting. We
also observed that the text CNN scored the worst in every metric so it performed quite badly at
the Tweet relevance classification, even though it had perform well at other text classification tasks
[16]. CNNs are good at extracting position-invariant features in space. They represent text as a 2D
matrix made up of the word vectors of the constituent words from which the CNN learns which
regions are important. However when applied to short Tweets, CNNs do not have a lot of salient
spatial information to work with and so do not perform nearly as well as they would when applied
to larger texts.

4.2 Document Embedding Capabilities

As was mentioned in section 3, the output of the attention layer is a Tweet attention vector, t.
This vector summarizes the input word vectors while putting emphasis on important words. t is
subsequently used as a vector representation for the Tweet in the classification part of the model.
As such, the described model could also be applied to documents in other problems to create mean-
ingful embeddings for them. We collected a random sample of Tweets, computed their attention
vectors and performed t-distributed stochastic neighbour embedding (t-SNE) [20] dimensionality
reduction to reduce their dimensions to 2. We then plotted these 2D attention vectors, shown in
figure 3 in order to spatially visualize them. We found that Tweets with similar meanings and
words appeared to be clustered together and away from irrelevant Tweets. In fact, it could be
possible from 3 to draw a decision boundary line that roughly separates both classes. Below the
red line, we see Tweets which are symptomatic of the asthma/dificulty breathing syndrome. Above
the line, we see Tweets which may contain keywords related to asthma/difficulty breathing but are
not expressing concern or suffering. It is also worth noting that “wheezing” is often used as slang to
exaggerate laughter. Social media contains a lot of slang. The Tweet attention vectors capture the
semantics of the different contexts of slang words, such as “wheezing”, and this boosts its discrim-
inatory ability. The attention vectors give us a semantic and discriminatory vector representation
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for our Tweets. In addition to its utility for short text classification, the attentive model we have
described has the added ability to create useful document embeddings.

Fig. 3. Plot of Tweets representative of distances in embedding space. The axes represent t-SNE dimen-
sional values.

Table 2. Pearson correlations and P-Values for extracted Twitter signals with syndromic surveillance
signals.

Twitter
with
ABLSTM
filtering

Twitter
with
LSTM
filtering

Twitter
without
filtering

GPOOH
Asthma/
Wheeze/
Difficulty
Breathing

0.792(p <
0.001)

0.637(p <
0.001)

0.555(p <
0.001)

NHS 111
Difficulty
Breathing

0.830(p <
0.001)

0.586(p <
0.001)

0.361(p <
0.001)

NHS 111
Diarrhoea

0.207(p =
0.09)

0.125(p =
0.3)

0.027(p =
0.8)

4.3 Syndromic Surveillance evaluation

While we have shown in the previous section that the ABLSTM performs well at the task of Tweet
relevance classification, we would like to demonstrate its utility to generate a signal for syndromic
surveillance. To do this, we employ our ABLSTM to mine relevant Tweets for asthma/difficulty
breathing in the UK. We then compare the results of our ABLSTM with recorded public health
data. PHE runs a number of syndromic surveillance systems across England. For this experi-
ment, we used Tweets outside of the labelled dataset used to build the classifier. We used un-
labelled Tweets collected continuously between June 21, 2016 and August 30, 2016. We per-
formed comparisons with relevant anonymised data from PHE’s syndromic surveillance systems
for this time period. PHE systems use primary care (general practitioner in hours and out of
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Fig. 4. Comparison of PHE syndromic surveillance indicators with Twitter signals.

hours) consultations, emergency department (ED) attendances and tele-health (NHS 111) calls
We performed retrospective analyses comparing the signals generated by some of these systems
to that generated by our ABLSTM. For this analysis, a number of ‘syndromic indicators’ moni-
tored by PHE’s syndromic surveillance systems were selected based upon their availability, qual-
ity and potential association to asthma/difficulty breathing. These indicators were “difficulty
breathing” and “asthma/wheeze/difficulty breathing” . We also made use of “diarrhoea” as
a control indicator. Difficulty breathing and diarrhoea are generated from NHS 111 calls while
asthma/wheeze/difficulty breathing are generated from GP Out-of-hours (GPOOH) consultations.
For all indicators, daily counts of consultations for relevant syndromic indicators, together with
daily counts of the consultations overall were used to compute daily proportions of consultations
related to the indicators. Similarly, for ABLSTM we computed daily proportions of Tweets that
were relevant to the syndrome of asthma/difficulty breathing relative to the number of Tweets
collected each day. We used these daily proportions to plot comparative time series shown in figure
4. We also included the LSTM from our comparisons in section 4.1 in this experiment. We included
it because it performed the best at the Tweet relevance classification task after our attentive RNNs
and we wanted to observe how it measured against our attentive RNN in the real world and not
just in the classification task with the limited test-partition data.

We smoothed the time series signals using a 7-day average to minimise the irregularities caused
by the differences between weekend and weekday activities for GP out-of-hours services. Figure 4
shows that the signals for asthma/wheeze/difficulty breathing, difficulty breathing and Twitter with
ABLSTM filtering follow very similar trends and have similar shapes. The signal for diarrhoea on
the other hand, does not appear to be related to any others as we may expect. We also show a time
series for the Twitter system without filtering. For this, we used the daily counts of collected Tweets
and normalised each day’s count by the average Tweet count for that week. We see in figure 4 that
this raw Twitter signal does not match well with the asthma/wheeze/difficulty breathing signal.
However, it still seems to match better than that of diarrhoea. To gain a clearer picture of how well
the signals matched, we calculated the Pearson correlations between them. The results of this are
shown in table 2. Table 2 confirms that the Attentive RNN (ABLSTM) does indeed perform well at
Twitter mining for syndromic surveillance for this specific syndrome and displays a strong positive
correlation (r = 0.830) with the recorded public health signal for asthma/ difficulty breathing.
The Twitter signal with LSTM demonstrated a lower correlation with what may be considered the
‘ground truth’ (r = 0.586), and was not that far off from the correlation between the ground truth
and Twitter without any filtering classifier applied to it.
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5 Conclusion

We describe an attention-based RNN architecture for short text classification. We find from the
literature that most Neural Network models used to classify Tweets treat all words as equal while
focusing on making use of semantic relationships between words to get the overall meaning. Our
proposed approach takes this a step further by not only trying to employ these semantic relation-
ships, but also acknowledging the presence of key words and capitalizing on them. We demonstrate
the utility of the described model for Tweet classification in a syndromic surveillance context.
We monitor Twitter and employ our text classifiers to detect Tweets relevant to asthma/difficulty
breathing. After learning and converting the words in Tweets to vectors, the Attentive bi-directional
RNN derives a vector representation for the Tweet, which places emphasis on important words in
the Tweet. We experimented with LSTM and GRU units for the cells in our attentive bi-directional
RNN. The attentive bi-directional LSTM (ABLSTM) approach was found to outperform the pop-
ular text-CNN and LSTM at the task of Tweet relevance classification.

The also show that the attentive model has strong understanding capabilities that can not only
be used for accurate short text classification, but could also be taken advantage of for building
informative document embeddings.

We then evaluate the ABLSTM performance on the real-world task of syndromic surveillance
by using it to generate a public health signal from Twitter and comparing it to the signal detected
by PHE syndromic surveillance systems. We found that the signal generated using the ABLSTM
had a strong correlation with the ’ground truth’ signal generated by PHE.

While we found strong correlations between the ABLSTM and the syndromic surveillance
data, we are yet to fully assess the syndromic surveilance utility of its application to Twitter
as there were no real-world major incidents during our investigated periods and we only have
Twitter data from these periods. We intend to repeat this analysis prospectively over a longer time
period, where incidents may occur. Another limitation is that our syndromic surveillance data
was collected with the geographical scope of England. However, as described in section 4.1,our
location filtering was not accurate. Our Tweet filtering system focused on Tweets geolocated to
the UK or marked loosely as originating from a place in the UK (e.g. by time zone). This makes
our geographical filtering larger in scope (UK-level) than that of the syndromic surveillance data
(England-level) and possibly inacurate. Better Twitter location filtering needs to be carried out in
order to further fine-tune our syndromic surveillance framework. Despite that, we show that the
ABLSTM performs better than popular neural network architectures for short text classification,
i.e. Tweet classification. We also show that the described attention model can be used for creating
meaningful document embeddings which not only summarize and encode the semantics of the
document, but also automatically encodes emphasis on keywords in the document.
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