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The response of a floating elastic plate to the motion of a moving load is studied using
a fully dispersive weakly nonlinear system of equations. The system allows for accurate
description of waves across the whole spectrum of wavelengths and also incorporates
nonlinearity, forcing and damping. The flexural-gravity waves described by the system
are time-dependent responses to a forcing with a described weight distribution, moving
at a time-dependent velocity. The model is versatile enough to allow the study of a wide
range of situations including the motion of a combination of point loads and loads of
arbitrary shape.

Numerical solutions of the system are compared to data from a number of field
campaigns on ice-covered lakes, and good agreement between the deflectometer records
and the numerical simulations is observed in most cases. Consideration is also given
to waves generated by an accelerating or decelerating load, and it is shown that a
decelerating load may trigger a wave response with a far greater amplitude than a load
moving at constant celerity.
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1. Introduction

Flexural-gravity waves occur naturally in ice sheets floating on various bodies of
water in cold regions, and the study of such waves has a long history. The pace of
scientific inquiries into the nature of flexural-gravity waves intensified in the middle
of the 20th century, prompted by the increasing use of solid ice covers to support
mechanized transportation systems. In Canada for example, ice-covered lakes enabled
the routing of trucks on winter roads built partially on ice, and in some places air strips
and train tracks were built on thick ice covers. As these endeavors met with varied
success, sometimes resulting in loss of life and equipment, it became clear that there
was a need to improve our understanding of engineering properties of ice covers such as
bearing capacity, resonant behavior, and the susceptibility to crack formation.

A number of experimental campaigns were mounted with the goal of understanding
the wave response to moving loads on ice covers. Some of these studies, such as Takizawa
(1987) and Wilson (1955) also included mathematical treatments based on linear wave
theory, and these combined efforts gave some information about possible resonances and
critical load speeds. In addition, efforts were undertaken to develop more sophisticated
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mathematical models that could predict the wave response to a moving load. Prompted
by observed oscillations in the ice cover at McMurdo Sound (Antarctica) during the
approach and landing of transport aircraft a considerable distance away, Davys, Hosking
& Sneyd (1985) used classical techniques of contour integration to evaluate the integrals
appearing in the steady formulation of the hydro-elastic wave problem with a point-load,
and found intricate wave patterns including caustics and zones of zero wave response. In
a spectacular contribution, it was recently shown by Babaei, Van der Sanden, Short &
Barrette (2016) and Van der Sanden & Short (2017) that such wave patterns can actually
be found in the field by using satellite SAR radar observations of an ice sheet during the
motion of a vehicle.

The analysis pioneered in Davys, Hosking & Sneyd (1985) has been used and extended
by a number of authors, but the main restrictions of a point load and constant load speed
have only been partially removed in subsequent works. While the use of a point load as
forcing is unproblematic due to the fact that the shortest waves created by the load are
generally still very much longer than the typical load itself, the adherence to constant
load speed in most works on the subject is somewhat more restrictive. Indeed, the issue
of variable load speed was already raised by Beltaos (1981), but as far as we know this
issue has only been investigated in very few contributions. The authors of Miles & Sneyd
(2003) showed that the wave response to an accelerating load stays bounded; the landing
and deceleration of an airplane on ice cover was investigated in Matiushina, Pogorelova
& Kozin (2016), and the wave resistance due to the unsteady motion of and air-cushion
vehicle on a supporting ice sheet was studied in Pogorelova (2008).

The necessity of making allowances for time-dependency is already implicit in the works
of Davys, Hosking & Sneyd (1985); Kheysin (1971); Schulkes & Sneyd (1988) where it was
found in that in addition to transient effects due to an impulsively started load, some
constant load speeds lead to genuinely time-dependent wave responses. In particular,
these authors showed that if the load is moving at the critical speed V = cmin which
is the minimum of the dispersion curve defined in (1.2), the wave amplitude grows as
t1/2, where t is the time variable. Schulkes & Sneyd (1988) investigated moving line loads
and characterized a second critical load speed V =

√
gH, where g is the gravitational

acceleration and H is the depth of the fluid. While the analysis of one-dimensional wave
patterns of Schulkes & Sneyd (1988) showed an amplitude growth of t1/3, the work of
Milinazzo, Shinbrot & Evans (1995) and Nugroho, Wang, Hosking & Milinazzo (1999)
implied that the amplitude of a two-dimensional wave response to a point-load moving
at the speed V =

√
gH is bounded.

The experiments conducted by Wilson (1955) at Mille Lacs in Minnesota, USA un-
covered the existence of a time-lag between the passage of the load and the greatest
depression of the ice sheet. The in-depth field campaign coordinated by Takizawa, and
described in detail in Takizawa (1978, 1985, 1987, 1988) confirmed the existence of the
time-lag between the passage of the load and the greatest depression of the ice sheet. In
Takizawa (1987, 1988), a linear ordinary differential equation featuring a simple damping
term was put forward, and this model was able to predict a time-lag such as observed in
the field measurements. However, since this model was also based on the assumption of
steady-state responses, no time-dependent wave solutions could be described.

While damping has the benefit of allowing a time-lag between the passage of the load
and the maximum depression of the ice sheet, nonlinearity may also be important to
describe the response exhibited near the critical load speed V = cmin. Părău & Dias
(2002) included nonlinearity in reconsidering the two resonances (singularities) inherent
in previous linear elastic theory for a line load such as studied by Kheysin (1963) and
Schulkes & Sneyd (1988), and demonstrated that the deflection is consequently bounded
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near this critical load speed. Hosking, Sneyd, & Waugh (1988) and Wang, Hosking &
Milinazzo (2004) showed that incorporating viscoelasticity in the linear theory via a
memory function, corresponding to anelasticity consistent with the so-called standard
model described in Squire, Hosking, Kerr & Langhorne (1988) also predicted a large but
finite response at V = cmin together with some additional observed features (including
the time lag). Thus while it emerged that a bounded response is always generated by a
moving load, the development of a nonlinear viscoelastic theory was called for to more
comprehensively treat the large amplitude responses near the critical speed cmin in Wang,
Hosking & Milinazzo (2004).

The aim of the present contribution is the development of a versatile wave model
which will allow the simulation of the wave response to a moving load under a wide
range of conditions. In particular, we allow for two-dimensional waves created by a two-
dimensional load of arbitrary shape and weight distribution, and moving at an arbitrary
time-dependent speed in the geometric configuration indicated in Figures 1 and 2. Our
analysis incorporates nonlinearity, damping and non-zero thickness of the ice cover while
retaining accurate treatment of all linear frequencies.

Our work is essentially motivated by an idea due to Whitham (1967), who proposed
weakly nonlinear models in combination with the full dispersion of the water-wave
problem. In the current context, the simplest such model would be the fully dispersive
equation

ηt +
3

2

√
g/H ηηx +

1

2π

∫ ∞
−∞

c(ξ) η̂(ξ, t) eiξxdξ = 0, (1.1)

where the linear part of the equation is defined with the help of the dispersion relation
c(ξ). This relation which describes the phase speed c of a linear periodic wave as a
function of the wave number ξ, is given here by

c2(ξ) =
g/ξ +Dξ3/ρ

coth ξH + hξρI/ρ
. (1.2)

This relation is defined in terms of the thickness of the elastic cover h, the fluid density
ρ, the density of the elastic cover ρI , and the flexural rigidity of the elastic material D
in addition to the undisturbed depth H and gravitational acceleration g defined above.
The values of these parameters are tabulated for four experimental sites in Table 1. The
unknown η(x, t) in the equation (1.1) is the deflection of the ice cover at a point x and
a time t, and η̂(ξ, t) is the Fourier transform given by

η̂(ξ, t) = F{η(x̃, t)}(ξ) =

∫ ∞
−∞

η(x̃, t)e−iξx̃ dx̃. (1.3)

Solutions of equation (1.1) describe only right-going waves, and there is no forcing or
damping. In the present paper, in order to allow for the most possible flexibility we will
derive a multi-directional system whose linear part corresponds to the full dispersion
relation (1.2). In fact, by incorporating damping and rotatory inertia in the elastic
description of the ice sheet, we obtain an even more general form of the dispersion
relation (see (4.13)) which forms the basis for the linear part of our model.

A few nonlinear time-dependent models of flexural-gravity waves have appeared in
the literature. In particular, long-wave equations of Boussinesq and KdV type have been
proposed for general settings by Guyenne & Părău (2012, 2014a); Marchenko (1988), and
in particular for the study of waves in ice sheets on frozen rivers by Xia & Shen (2002).
One potential problem with long-wave equations is that they may model the flexural part
of the dispersion relation inaccurately. Figures 3 and 4 show the dispersion relation for
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Figure 1. Geometry of the problem. H is the fluid depth, h is the thickness of the elastic
layer, g is gravity, V is the velocity of the load.

Figure 2. Two-dimensional wave response to a moving point load.

two cases under study in this paper. In the case shown in the left panel in Figure 3, the
flexural rigidity of the the ice sheet is comparatively small, and long-wave models do not
give an accurate description of the true linear dispersion relation.

Nonlinear models in the spirit of the nonlinear Schrödinger equation were also put
forward for the study of flexural waves on relatively deep fluids. One interesting feature of
these narrow-banded spectrum models is that they can be shown to exhibit modulational
instability, as shown for example in Liu & Mollo-Christensen (1988) and Marchenko
(2016). Finally, fully nonlinear models such as proposed by Bonnefoy, Meylan & Ferrant
(2009) can also be used, but are more expensive with regard to computational time.
The weakly nonlinear approximation coupled with the full dispersion relation as put
forward in the present work allows significant savings in terms of computational time
when compared to solving the full Euler equations for the underlying fluid flow problem
such as used in Bonnefoy, Meylan & Ferrant (2009); Guyenne & Părău (2014b).

The disposition of the present paper is as follows. In the next section, the hydro-
elastic system is derived from the Kirchhoff-Love plate theory and the inviscid potential
theory of surface waves. In Section 3, the dispersion relation is analyzed, and in section
4, it is explained how this system is reduced to a weakly nonlinear formulation which
nevertheless retains the full dispersion relation in the linear part. In section 5, the
equations for two-dimensional wave patterns are presented, and in section 6, exact
solutions of the linearized equations are found. These can be used to validate both
the two-dimensional and three-dimensional codes, and to approximate some of the
experimental data outright. Section 7 details the numerical method used, and Section 8
contains a number of numerical experiments including comparison with data from field
campaigns and a study of decelerating loads. Our findings are summarized in Section 9.
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Parameter Symbol Units Lake Saroma Cold Lake Mille Lacs McMurdo Sound

Gravity g m s−2 9.81 9.81 9.81 9.81
Water density ρ kg m−3 1026 1024 1024 1024
Ice density ρI kg m−3 917 917 917 917
Water depth H m 6.8 4.3 3.26 350
Ice thickness h m 0.17 0.59 0.61 2.5
Elastic modulus E N m−2 5.1× 108 4.9× 109 9× 109 5× 109

Flexural rigidity D Nm 2.35× 105 9.4× 107 1.91× 108 7.32× 109

Poisson ratio ν 0.33 0.33 0.33 0.33

Table 1. Parameter values for measurements taken at four experimental sites: Lake Saroma
(Takizawa (1987)), Cold Lake (Beltaos (1981)), Mille Lacs (Wilson (1955)) and McMurdo Sound
(Davys, Hosking & Sneyd (1985))

Finally, Appendix A contains a comparison of steady wave profiles of a weakly nonlinear
model to solutions of the hydro-elastic full Euler equations.

2. The hydro-elastic system

We consider irrotational motion of an inviscid and incompressible fluid of undisturbed
mean depth H, and with gravity g acting in the negative z-direction. The fluid is covered
by an elastic solid layer which is described by the Kirchhoff–Love plate theory (cf. Squire,
Hosking, Kerr & Langhorne (1988)). For the sake of readability, we first treat the two-
dimensional problem, and return to the three-dimensional setting in Section 5. The flow
of the underlying liquid is described by the velocity potential φ(x, z, t) and by the fluid
surface elevation η(x, t) that coincides with the vertical deformation of the underside of
the elastic cover. The fluid domain is the set

{
(x, z) ∈ R2| −H < z < η(x, t)

}
extending

to infinity in the positive and negative horizontal x direction. The level z = 0 corresponds
to the fluid-solid interface at rest.

As explained for example in Whitham (1974), the fluid flow is governed by the Euler
system consisting of the Laplace equation

φxx + φzz = 0 for x ∈ R, −H < z < η(x, t), (2.1)

the Neumann boundary condition at the flat bottom

φz = 0 at z = −H, (2.2)

the kinematic condition at the interface between the cover and the liquid

ηt + φxηx − φz = 0 for x ∈ R, z = η(x, t), (2.3)

and the Bernoulli equation

φt +
1

2
|∇φ|2 + gη +

p

ρ
= CB for x ∈ R, z = η(x, t). (2.4)

This constant CB will be specified below. As is common in hydro-elastic problems, we
combine nonlinear equations for the fluid motion with linear elastic equations for the
solid. This choice can be justified by noticing that liquid motions are of a different order
of magnitude than deformations of the elastic solid cover. The presence of the overlying
elastic solid is indicated via the pressure p at the interface between the liquid and solid.
This pressure is obtained from the beam equation for elastic solids. This equation is



6 E. Dinvay, H. Kalisch and E. I. Părău

written as

D∂4xη −
ρIh

3

12
∂2t ∂

2
xη + ρIh∂

2
t η + ρIgh+ P − p = 0.

This is a well known equation describing deflection η(x, t) of beams. The second term
in the equation which is due to horizontal acceleration of media particles is usually
neglected, but in the present analysis, this term will actually allow an improved handling
of the pressure imposed by a point load.

As already indicated in the introduction, it is important to include the effect of
dissipation into the model. For the anelastic ice response to a moving load, the standard
model of viscoelasticity (visualized as a spring in series with a Voigt unit) is considered
to be most appropriate (see Hosking, Sneyd, & Waugh (1988); Squire, Hosking, Kerr &
Langhorne (1988); Wang, Hosking & Milinazzo (2004)). However, the simpler approach
previously used for beams and adopted here assumes a damping force proportional to the
vertical velocity, which results in the addition of a damping term −b/h∂tη to the beam
equation. The corresponding proportionality factor b > 0 is assumed to be constant, and
needs to be tuned for any given situation. The resulting equation is the beam equation
in presence of damping which is given by

D∂4xu2 −
ρIh

3

12
∂2t ∂

2
xu2 + ρIh∂

2
t u2 + b∂tu2 + ρIgh+ P − p = 0. (2.5)

At this point one may wonder whether an improvement may be made by using more
advanced beam models such as the Timoshenko theory which takes account of rotational
bending effects, and is usually considered more precise (see Squire, Hosking, Kerr &
Langhorne (1988) for example). However, the use of such models is not very common,
and it would also make the weakly nonlinear approximation explained in the next section
much more difficult. Moreover, the Timoshenko theory’s main advantage lies in the study
of dynamics of either short beams or beams subjected to high-frequency excitation when
the wavelength is near the media thickness, and neither of these are important in the
situation at hand.

Assuming that the fluid foundation is always in contact with underside of the elastic
plate (i.e. that there is no cavitation), and choosing the Bernoulli constant CB = ρIgh/ρ
the beam equation (2.5) can be combined with the Bernoulli equation (2.4) by eliminating
the pressure p at the interface. The resulting equation be written in terms of the hydro-
elastic parameter κ = D/(ρg) in the form

κg∂4xη −
ρIh

3

12ρ
∂2t ∂

2
xη +

ρIh

ρ
∂2t η +

b

ρ
∂tη + gη + φt +

1

2
|∇φ|2 +

P

ρ
= 0. (2.6)

This equation holds on the interface z = η(x, t). Note that both the horizontal accelera-
tion of the solid media particles and the nonlinear hydrodynamical effects are taken into
account here. The load P is considered to be a distributed pressure

P (x, t) = ρf(x− x0 −X(t)) (2.7)

moving along the x-axis at a velocity X ′(t).
The main hydro-elastic system to be solved consists of the equation (2.1), together

with the boundary conditions (2.3) and (2.6) with the exterior pressure (2.7). Note that
the imposition of a point load will lead to usage of a Dirac delta function in Definition
(2.7). This formal approach can be made mathematically precise in a number of ways
(see Davys, Hosking & Sneyd (1985) and Nevel (1970) for the steady case). In the present
context, a rigorous formulation of an inhomogeneous problem with a point load will be
given in the next section in the framework of the weakly nonlinear approximation. It
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also deserves notice that some authors advocate for taking account of the vertical inertia
of the moving load mass in (2.7). However, this change would complicate the following
analysis considerably. On the other hand, Squire, Hosking, Kerr & Langhorne (1988)
note that rotary inertia (the second term in (2.6)) must be included only if the loading is
applied suddenly, or if it is of high frequency. As will come to light in Section 4, keeping
the second term in (2.6) may actually be advantageous since it permits the treatment of
a point load (2.7) in a mathematically consistent way.

3. The dispersion relation

In the situation depicted in Figure 1, but without load forcing, small-amplitude waves
of the form a cos(ξx− ξct) exist if the wave number ξ and the the phase speed c satisfy
the dispersion relation (1.2). In stating this relation, the tacit assumption is made that
the wavelength λ = 2π/ξ is greater than the thickness of the elastic layer h. This
assumption is generally reasonable, but for the sake of completeness, a more general
dispersion relation is stated in (4.13). On the other hand, if the wavelength is very much
longer than h, the term hξ is negligible, so that the dispersion relation (1.2) may be
approximated by

c2 =
g

ξ

[
1 + ξ4D/gρ

]
tanh ξH. (3.1)

This approximate dispersion relation is used in Takizawa (1987) and many other works.
Figures 3 and 4 show the two dispersion relations (1.2) and (3.1) for a number of
parameter sets corresponding to different field experiments. Both dispersion relations
have the same minimum wave speed cmin (up to a very small error). These critical wave
speeds and the corresponding critical wavelengths are recorded in the captions of Figures
3 and 4. The wave speed cmin is singular in the sense that linear elastic theory predicts
that the response to a point or distributed two-dimensional rectangular or circular load
moving at this speed is unbounded (see Milinazzo, Shinbrot & Evans (1995); Nugroho,
Wang, Hosking & Milinazzo (1999)). Thus cmin is a critical load speed in the traditional
sense. A three-dimensional analysis shows that the load speed

√
gH is not a critical

speed, but it does mark the low load speed bound for the shadow zone predicted in
Davys, Hosking & Sneyd (1985). For loads moving below cmin, no wave response is
observed (see section 8), and this is the quasi-static range according to Takizawa (1987).

Various other approximate dispersion relations have been used in the literature. In Xia
& Shen (2002), an approximation taking into account transversal loading and background
shear was used, such as would be more common in the situation of an ice cover in a river.
In the case of zero transversal loading and no background shear the dispersion relation
reduces to

c2 =
g +Dξ4/ρ

1/H + hξ2ρI/ρ
. (3.2)

The purpose of the work of Xia & Shen (2002) was the study of waves of ice sheets with
axial loading, such as in frozen rivers. As a consequence, the equations are more similar
to the shallow-water equations for river flow, and the authors advocate for the inclusion
of nonlinear effects since the dispersion curve is such that many linear modes are in near
resonance, i.e. with nearly the same linear phase speed. Since the focus of Xia & Shen
(2002) was not on moving loads, this approximation is not given further consideration.

A Boussinesq-type nonlinear system was found in Guyenne & Părău (2014a), where
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Figure 3. Dispersion curves for various approximations of the full dispersion relation. The
phase speed c is plotted as a function of wavenumber ξ = 2π/λ. The solid curves represent the
full dispersion relation (1.2). The dashed-dotted curves represent the approximation (3.1). The
dashed curve (GP) represents the dispersion relation from the Boussinesq model put forward
by Guyenne & Părău (2014a). The left panel shows the parameter values measured at Lake
Saroma by Takizawa (1987). The minimum phase speed using(1.2) is cmin = 5.94m/s, and
the corresponding wavelength is λmin = 18.6m. The right panel shows the parameter values
measured at Cold Lake by Beltaos (1981) (see table 1). The minimum phase speed using (1.2)
is cmin = 6.49m/s, and the corresponding wavelength is λmin = 296.3m.
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Figure 4. Dispersion curves for various approximations of the full dispersion relation. The
phase speed c is plotted as a function of wavenumber ξ = 2π/λ. The solid curves represent the
full dispersion relation (1.2). The dashed-dotted curves represent the approximation (3.1). The
dashed curve (GP) represents the dispersion relation from the Boussinesq model put forward by
Guyenne & Părău (2014a) (this curve is not shown in the right panel where the depth is very
large). The left panel shows the parameter values measured at Mille Lacs (see Wilson (1955)).
The minimum phase speed using (1.2) is cmin = 5.65 m/s, and the corresponding wavelength
is λmin = 533m. The right panel shows the parameter values measured at McMurdo Sound
used by Davys, Hosking & Sneyd (1985) (see table 1). The minimum phase speed using (1.2) is
cmin = 21.8m/s, and the corresponding wavelength is λmin = 237m.

the approximate dispersion relation

c2 =
(
g/ξ +Dξ3/ρ

)(
Hξ − (Hξ)3/3 + 2(Hξ)5/15

)
(3.3)

appears if the system is linearized. As can be seen if Figures 3 and 4, the critical wave
speed in the dispersion relation 3.3 differs from the critical wave speed provided by the
full dispersion relation. The value of the critical speed is a matter of great practical
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importance for mechanized operations in cold regions, and it is therefore desirable to
utilized a mathematical model which describes the critical speed as accurately as possible.
In the next section, a more general approach is taken, and the full hydro-elastic system
is approximated by a weakly nonlinear system.

4. Weakly nonlinear approximation

The main aim of this section is to find an approximation of the system (2.1)-(2.3),
(2.6) in the weakly nonlinear framework. The system will also include a time and space
dependent pressure forcing (2.7) in order to simulate a moving load on the ice sheet.

Considering the deflection of the ice cover η(x, t) as above, and assuming irrotational
flow in the fluid under the ice sheet, we introduce the surface trace of the velocity potential
Φ(x, t) = φ(x, η(x, t), t). Then the variable u = Φx = φx + ηxφz = φτ

√
1 + η2x, where φτ

is the fluid velocity tangent to the surface. It should be noted that due to the assumption
of irrotational flow, and the resultant existence of the velocity potential, the unknowns
η and Φ can be used to describe the complete fluid motion as well as the deflection of
the ice sheet.

We define the Dirichlet-Neumann operator G(η) associated with the problem (2.1),
(2.2) and φ = Φ on the domain bounded by the horizontal bottom and the curve z = η
by the formula

G(η)Φ = (∂zφ− ∂xη∂xφ)z=η(x) . (4.1)

The dependence of the Dirichlet-Neumann operator G on the deflection η is nonlinear,
but it is analytic in the sense explained in Nicholls & Reitich (2001) and can be expanded
as a power series as

G(η)Φ =

∞∑
j=0

Gj(η)Φ, (4.2)

where each operator Gj(η) is homogeneous of degree j in powers of η. There is a well
known recursion formula for the Gj(η), and following Craig & Groves (1994); Craig &
Sulem (1993), the first three terms have the form

G0(η) = D tanh(HD), G1(η) = DηD −G0ηG0,

G2(η) = −1

2

(
|D|2η2G0 +G0η

2|D|2 − 2G0ηG0ηG0

)
where D = −i∂x is the operator given by multiplication with ξ in wavenumber space.

Using Equation (2.3) and Definition (4.1) leads to the equation

ηt = GΦ. (4.3)

Note that this equation describes the kinematic boundary condition exactly. The second
equation which is needed to describe the flow is found as follows. We first express
derivatives of φ in terms of derivatives of η and Φ. The gradient ∇φ is found from
the definitions of Φ and G in the form

∇φ =

(
1 ηx
−ηx 1

)−1(
Φx
GΦ

)
=

1

1 + η2x

(
Φx − ηxGΦ
GΦ+ ηxΦx

)
. (4.4)

Now differentiation of the surface potential Φ with respect to t and applying (4.3) results
in

Φt = φt + φzηt = φt + φzGΦ.
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This equation together with the velocity ∇φ from (4.4) yields the acceleration potential
of the inviscid fluid on surface in the form

φt +
1

2
|∇φ|2 = Φt +

1

2(1 + η2x)

(
Φ2
x − (GΦ)2

)
− 1

1 + η2x
ηxΦxGΦ. (4.5)

Substituting Expression (4.5) into the Bernoulli equation (2.6) gives us the second
governing equation for the unknowns η and Φ. Thus by means of the the Dirichlet-
Neumann operator G(η) we transformed the two-dimensional problem (2.1)-(2.3), (2.6)
to the one dimensional problem (4.3), (2.6) with (4.5). Note again that so far all
manipulations have been formally exact, and no approximations have been introduced.

In order to approximate the one-dimensional problem above in the case of small surface
deflections, the idea is to use a weakly nonlinear, but linearly fully dispersive system
of evolution equations. In effect, in the equations (4.3) and (2.6) we discard all terms
of cubic or higher order, and also all nonlinear dispersive terms. This procedure was
justified in Moldabayev, Kalisch & Dutykh (2015) by using an exponential scaling, but
it can also be viewed as simply keeping all linear error terms as they do not change
the order of the approximation. The equation is thus formally of the same order as the
corresponding Boussinesq equation, but including the exact form of the linear terms
gives a decisive advantage when it comes to describing flexural-gravity waves. The idea
of keeping various corrections of a lower order has been used in a number of other cases,
especially in the context of coastal engineering (see for example Madsen, Murray &
Sørensen (1991); Nwogu (1993); Wei, Kirby, Grilli & Subramanya (1995)). Thus using
this idea, the first term in the series (4.2) G0 = D tanhHD is kept unchanged, while
the term G1 is simplified to G1(η) = DηD = −∂xη∂x. This approximation immediately
transforms (4.3) to the simplified equation

ηt = G0Φ− ∂x(ηΦx). (4.6)

Next, the equation (2.6) is simplified. First, we aim to remove the second time derivatives
by means of applying (4.3) iteratively. Anticipating that cubic and higher-order nonlin-
earities will not be carried through, we approximate the Dirichlet-Neumann operator by
G = G0 +G1 +G2. We will temporarily use the notation

G2(η1, η2) = −1

2

(
|D|2η1η2G0 +G0η1η2|D|2 − 2G0η1G0η2G0

)
which reduces to our regular notation G2(η) = G2(η, η) in the case when η1 = η2. Then
taking into account that time and spatial derivatives commute, it can be seen that

∂tG2(η)Φ = G2(ηt, η)Φ+G2(η, ηt)Φ+G2(η, η)Φt

= G2((G0 +G1 +G2)Φ, η)Φ+G2(η, (G0 +G1 +G2)Φ)Φ+G2(η, η)Φt.

Treating ∂tG1(η)Φ in a similar manner, applying (4.3) again and truncating nonlinearity
at the third order we eventually arrive at the relation

∂2t η = (G0 +G1(η) +G2(η))Φt +G1(G0Φ)Φ.

This identity together with (4.3) and (4.5) is substituted into (2.6), so that we find

FΦt = −g(1+κ∂4x)η− b
ρ

(G0 +G1(η))Φ− ρIh
ρ

(
1− h2∂2x

12

)
G1(G0Φ)Φ− 1

2
Φ2
x−

P

ρ
, (4.7)

where the operator F is defined by

F = K +
ρIh

ρ

(
1− h2∂2x

12

)
(G1(η) +G2(η)),
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and the operator K is defined by

K = 1 +
ρIh

ρ

(
1− h2∂2x

12

)
G0. (4.8)

In wavenumber space, K has the expression

k(ξ) = 1 +
ρIh

ρ
ξ tanhHξ +

ρI
ρ

h3

12
ξ3 tanhHξ, (4.9)

which shows that K can easily be inverted. Thus equation (4.7) can be simplified further
by taking inverse of the operator F as follows

F−1 =K−1−ρIh
ρ

(
1− h

2∂2x
12

)
K−1(G1(η)+G2(η))K−1+

(ρIh
ρ

)2
K−1G1(η)K−1G1(η)K−1

(4.10)
where higher-order terms in η have been omitted. We introduce the notation

Γ =
1

ρ
F−1P, (4.11)

where the inverse is understood in the sense of (4.10), and the function Γ (x, t) depends
on both the surface elevation η(x, t) and the imposed pressure P (x, t). Thus applying
(4.10) to both sides of the expression (4.7), discarding highly nonlinear and nonlinear
dispersive terms and simplifying yields the equation

Φt = −g 1 + κD4

K
η − b

ρ

G0

K
Φ− ρIgh

2ρ
∂2xη

2 +
b

ρ
∂x(ηΦx)− 1

2
Φ2
x − Γ. (4.12)

The equations (4.6), (4.12) give a one-dimensional fully dispersive weakly nonlinear
approximation of the problem (2.1)-(2.3), (2.6).

Looking for solutions of the homogeneous linearization in the form η(x, t) = Aeiξx−iωt,
Φ(x, t) = Beiξx−iωt gives rise to the necessary condition

ω2 +
ib

ρ

ξ tanhHξ

k(ξ)
ω − g(1 + κξ4)

ξ tanhHξ

k(ξ)
= 0.

In terms of the phase speed c = ω(ξ)/ξ, the dispersion relation is written as

c2 +
ib

ρ

tanhHξ

k(ξ)
c− g(1 + κξ4)

tanhHξ

ξk(ξ)
= 0. (4.13)

So far all approximations have been made for a general inhomogeneity P (x, t). Con-
sidering in particular a moving load (2.7) firstly one calculates

w(x, t) = K−1P/ρ =
1

2π

∫
R

f̂(ξ)ei(x−x0−X(t))ξ

k(ξ)
dξ

where the operator K and its symbol k(ξ) are defined by (4.8) and (4.9). Note that since
the rotatory inertia term, i.e. the third term in (4.9) is included in the definition of k(ξ),
this integral is convergent even in the case of a point load. In fact, if f(x) = γδ(x) with

f̂(ξ) ≡ γ, the function w is well defined and bounded. The regularity of this function
permits the omission of the quadratic parts with respect to η in (4.11) since these parts
are highly dispersive and nonlinear. Thus the presence of the load results in the forcing
term

Γ = w − ρIh

ρ

(
1− h2∂2x

12

)
K−1G1(η)w.
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Bi-directional weakly nonlinear systems such as (4.6), (4.12) have only appeared
recently in the literature. Aceves-Sánchez, Minzoni & Panayotaros (2013) and Vargas-
Magana & Panayotaros (2016) studied a Whitham-type system for free surface waves
in the presence of non-trivial bottom topography. In Carter (2018) and Moldabayev,
Kalisch & Dutykh (2015) the fidelity of Whitham-type systems when compared with
Euler flows and lab experiments is under review. One interesting feature of these models
is that periodic solutions exist (see Ehrnström & Kalisch (2009, 2013)), and that they
feature modulational instability in a similar fashion as deep-water wave models (see Hur
& Johnson (2015a,b); Sanford, Kodama, Carter & Kalisch (2014)). As far as we know,
the only result pertaining to multi-directional fully dispersive systems is given by Lannes
& Saut (2013), where it is assumed that perturbations in the direction transverse to the
main direction of wave propagation are weak. In the next section, we derive a multi-
directional fully dispersive system without that assumption.

5. 2D weakly nonlinear approximation

Regarding now the fluid surface displacement η(x, y, t) as a function of two spatial
variables we introduce the surface velocity potential Φ(x, y, t) = φ(x, y, η(x, y, t), t). In
this case, the first two terms of the Dirichlet-Neumann operator have the form

G0 = |D| tanh(H|D|), G1(η) = −∂xη∂x − ∂yη∂y −G0ηG0

where D = (−i∂x,−i∂y) and |D| =
√
−∆ =

√
−∂2x − ∂2y . We define the operator K by

K = 1 +
ρIh

ρ

(
1− h2∆

12

)
G0 (5.1)

with the symbol

k(ξ1, ξ2) = 1 +
ρIh

ρ

(
1 +

h2

12
(ξ21 + ξ22)

)√
ξ21 + ξ22 tanh

(
H
√
ξ21 + ξ22

)
. (5.2)

The formal derivation of the previous section can be used in the same way without
any substantial changes. The final two-dimensional system to be solved is

ηt = G0Φ− ∂x(ηΦx)− ∂y(ηΦy), (5.3)

Φt = −g 1 + κ∆2

K
η− b

ρ

G0

K
Φ−Γ−1

2
Φ2
x−

1

2
Φ2
y−

ρIgh

2ρ
∆η2+

b

ρ
∂x(η∂xΦ)+

b

ρ
∂y(η∂yΦ), (5.4)

with

Γ = w − ρIh

ρ

(
1− h2∆

12

)
K−1G1(η)w, (5.5)

and

w(x, y, t) = K−1P/ρ,

where the operator K and the corresponding symbol k(ξ) are defined by (5.1) and (5.2).
In case of the distributed moving load

P (x, y, t) = ρf(x− x0 −X(t), y)

one finds

w(x, y, t) =
1

(2π)2

∫
R2

ei(x−x0−X(t))ξ1+iyξ2 f̂(ξ1, ξ2)

k(ξ1, ξ2)
dξ1dξ2.
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It is clear that also in this case a point load f(x, y) = δ(x, y) will lead to a smooth
function w with respect to spatial variables. This justifies making use of the system
(5.3)-(5.4) even for the load concentrated at a point. It is worth notice that this feature
is achieved by keeping rotary inertia which is usually neglected by other authors in (2.6).
Thus there is no need for regularization of the point load as it is smoothed naturally in
our framework by the inverse operator K−1.

6. Exact solution of the linearized problem

It turns out that after further simplification of (5.3)-(5.4) the new system can be
solved exactly. First we consider the linearized problem without an imposed pressure.
This simplification leads to the homogeneous linear system

ηt = G0Φ, (6.1)

Φt = −g 1 + κ∆2

K
η − b

ρ

G0

K
Φ. (6.2)

Introducing the operators

R =
bG0

2ρK

and

U =

√
g(1 + κD4)G0

K
−R2,

one can easily solve the new system exactly. In terms of initial values η0, Φ0, the solution
is given by

ηHL(t) = e−Rt
(R sin(Ut)

U
+ cos(Ut)

)
η0 + e−Rt

G0 sin(Ut)

U
Φ0, (6.3)

ΦHL(t) = e−Rt
(
− g 1 + κ∆2

K

) sin(Ut)

U
η0 + e−Rt

(−R sin(Ut)

U
+ cos(Ut)

)
Φ0. (6.4)

Notice that operator R is associated with the viscosity of the ice, and these solutions are
damped very quickly.

The next level of accuracy is to discard again all nonlinear terms in System (5.3)-(5.4)
and use a slightly simplified expression for the imposed pressure Γ . It turns out that the
second term in the expression for Γ given in (5.5) does not affect the solution a great
deal. Indeed one may omit the term depending on G1(η), and use the approximate form
Γ = w. The numerical scheme was run both with and without this approximation, and
there was no discernible difference in the solution. Thus the new two-dimensional linear
system to be solved is

ηt = G0Φ, (6.5)

Φt = −g 1 + κ∆2

K
η − b

ρ

G0

K
Φ− w. (6.6)

For constant load speed X ′(t) = V , a closed-form solution of this system can be found

using the Laplace transformation L. Let η̂, Φ̂ and ŵ be Laplace transforms of η, Φ and
w, respectively. Then the system is transformed to the system

η̂(s) =
1

s2 + 2Rs+R2 + U2
((s+ 2R)η0 +G0Φ0 −G0ŵ(s)),
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Φ̂(s) =
1

s2 + 2Rs+R2 + U2
(−(R2 + U2)G−10 η0 + sΦ0 − sŵ(s)),

where

ŵ(x, y, s) =
1

(2π)2

∫
R2

ei(x−x0)ξ1+iyξ2 f̂(ξ1, ξ2)

(s+ iξ1V )k(ξ1, ξ2)
dξ1dξ2.

The solution of this system has the form η(t) = ηHL(t)+ηw(t) and Φ(t) = ΦHL(t)+Φw(t),
where

ηw(t) = L−1
( −G0

(s+R)2 + U2
ŵ(s)

)
,

Φw(t) = L−1
( −s

(s+R)2 + U2
ŵ(s)

)
.

And so we have

ηw(x, y, t) = F−1
(
Aη(ξ)e−R(ξ)t−iU(ξ)t +Bη(ξ)e−R(ξ)t+iU(ξ)t + Cη(ξ)e−iξ1V t

)
(x−x0, y),

Φw(x, y, t) = F−1
(
AΦ(ξ)e−R(ξ)t−iU(ξ)t +BΦ(ξ)e−R(ξ)t+iU(ξ)t + CΦ(ξ)e−iξ1V t

)
(x−x0, y),

where the Fourier variable is ξ = (ξ1, ξ2), and the functions Aη, Bη and Cη, are defined
by

Aη(ξ) = − f̂(ξ)k(ξ)−1G0(ξ)

2iU(ξ)(R(ξ) + iU(ξ)− iξ1V )
,

Bη(ξ) =
f̂(ξ)k(ξ)−1G0(ξ)

2iU(ξ)(R(ξ)− iU(ξ)− iξ1V )
,

Cη(ξ) = − f̂(ξ)k(ξ)−1G0(ξ)

(R(ξ) + iU(ξ)− iξ1V )(R(ξ)− iU(ξ)− iξ1V )
,

and correspondingly we have

AΦ(ξ) =
f̂(ξ)k(ξ)−1(R(ξ) + iU(ξ))

2iU(ξ)(R(ξ) + iU(ξ)− iξ1V )
,

BΦ(ξ) = − f̂(ξ)k(ξ)−1(R(ξ)− iU(ξ))

2iU(ξ)(R(ξ)− iU(ξ)− iξ1V )
,

CΦ(ξ) =
f̂(ξ)k(ξ)−1iξ1V

(R(ξ) + iU(ξ)− iξ1V )(R(ξ)− iU(ξ)− iξ1V )
.

These formulae represent the exact solution of the linear system (6.5)-(6.6) in the case
of constant load speed. These formulae may be used to check the numerical algorithm
put forward in the next section, and they are also of independent interest as they can by
implemented with relative ease.

7. Numerical treatment of general nonlinear system

An effective way of approximating the full system (5.3)-(5.4) numerically is to treat
the linear and nonlinear parts separately using a split-step scheme. To be more specific,
the system (5.3)-(5.4) is represented in the form

Zt = A(Z) + B(Z, t), (7.1)
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and each time step is split into two parts where the systems Zt = A(Z) and Zt = B(Z, t)
are solved separately. Here the first differential equation corresponds to the homogeneous
linear system (6.1)-(6.2). More precisely, the solution vector is Z = (η, Φ) and the system
has the form [

ηt
Φt

]
=
[ A1(Z)
A2(Z)

]
,

where A1(Z) = G0Φ and A2(Z) = −g(1 +κ∆2)K−1η− bG0(ρK)−1Φ. Its exact solution
(6.3)-(6.4) represents the integrator exp(tA) of the first system. As for the second
differential equation with B(Z, t) one needs to be careful since in general numerical
splitting schemes are developed only for autonomous equations. This is not the case with
the second system ‡t = B(Z, t) having the form[ ηt

Φt

]
=
[ B1(Z)
B2(Z, t)

]
,

where

B1(Z) = −∂x(ηΦx)− ∂y(ηΦy),

B2(Z, t) = −Γ (η, t)− 1

2
Φ2
x −

1

2
Φ2
y −

ρIgh

2ρ
∆η2 +

b

ρ
∂x(η∂xΦ) +

b

ρ
∂y(η∂yΦ).

This system contains the pressure forcing and all nonlinear terms. Note that the right-
hand side depends on time t.

Now let δt denote a time step. Suppose we know the solution z(t) of the equation
Zt = B(Z, t) associated with the system Zt = B(Z, t) at time t. To find its solutions
at time t + δt, we solve it making use of a standard numerical scheme, as for example
the four-stage Runge-Kutta method. However, for use in the the split-step scheme it
needs to be modified slightly in a semi-autonomous way as follows. If Zi is a value
at the beginning of a substep with the length δti then the value zZi+1 is defined by
Zi+1 = Zi + (F1 + 2F2 + 2F3 + F4)/6, where

F1 = δtiB(Zi, t),
F2 = δtiB(Zi + F1/2, t)

F3 = δtiB(Zi + F2/2, t),

F4 = δtiB(Zi + F3, t).

Note that the time t is fixed here. The procedure defines the numerical integrator
exp(δtiB) on a substep of the time interval (t, t + δt). The integrator exp(δt(A + B))
of the whole system (7.1) is defined as an integrator of 6th-order which is thoroughly
described in Dinvay, Dutykh & Kalisch (2019), so that we do not go into any more detail
here.

In order to solve each substep, we use a Fourier spectral discretization for the spatial
part, where the nonlinear terms are evaluated with the fast Fourier transform.

8. Numerical experiments

In this section, we test our model on a number of cases provided by the experimental
campaigns carried out on Mille Lacs, Minnesota, USA by Wilson (1955), at Cold Lake
in Canada by Beltaos (1981), and on Lake Saroma in Japan by Takizawa (1987, 1988).
A number of additional important field campaigns have been conducted over the years,
most notably the work conducted at McMurdo sound in Antarctica and reported in
Squire, Robinson, Langhorne & Haskell (1988) and Squire, Hosking, Kerr & Langhorne



16 E. Dinvay, H. Kalisch and E. I. Părău
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Figure 5. Comparison of numerical approximation of equations (4.6), (4.12) and experimental
ice deflection records from the experiments of Takizawa (1987). The load speeds are 2.2m/s,
4.2m/s, 5.5m/s, 6.2m/s, and 8.9m/s (from top to bottom). The dashed black curves are the
experimental data of Takizawa (1987), and the red dots indicate the z-position of the skidoo
used in these experiments at the time it passes the deflectometer. The blue curves represent the
a time series of the numerical approximation of equations (4.6), (4.12), taken at a measuring
station corresponding to the position of the deflectometer in the field experiment. The blue dots
represent the z-position of the load as it passes the x-position where the time series is obtained.
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Figure 6. Numerical approximation of equations (5.3), (5.4) for constant load velocity
V = 8.9m/s, such as in Figure 5. The left panel shows the wave crest pattern, and the right
panel shows the deflection of the ice sheet along the center line y = 0. For comparison, the
solution of equations (4.6), (4.12) is also plotted in the right panel. This graph is shifted left for
easier comparison.

(1988). However, in this campaign, a strain gauge was instead of a deflectometer. Using
a strain gauge has certain practical advantages, but makes a comparison to numerical
simulations more difficult.

We first focus on experiments of a Japanese research group headed up by Takatoshi
Takizawa. These experiments were conducted on Lake Saroma on the island of Hokkaido
in Japan. The lake was covered with an icesheet of about 0.16 m thickness which had a
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Figure 7. Comparison of numerical approximation of equations (5.3), (5.4) and experimental
ice deflection records from the single truck experiments of Wilson (1955). The dashed black
curves are the experimental data of Wilson (1955), and the red dots indicate the z-position
of the truck at the time it passes the deflectometer. The blue curves represent the numerical
approximation of equations (5.3), (5.4), and the blue dots represent the z-position of the load
at the time is passes the deflectometer.

light snow cover of about 2 to 8 cm. A skidoo weighing 235 kg was driven on a test track
about 200 m long. Deflectometers and vehicle detectors were installed in several locations
along the track. The flexural properties of the ice were determined with static loading
tests, and the most important physical parameters in these experiments are summarized
in Table 1.

In the following, our aim will be to compare numerical approximations of the system
(4.6), (4.12) with results from Takizawa’s experimental data. For this purpose, Figure 6 of
Takizawa (1987) has been digitized. This figure shows typical deflectometer records from
skidoo passages on February 5th, 1981. It can be seen in Figure 5 that the main features
of the experimental data can be found in the numerical solutions. The quasi-static cases
of load velocity 2.2m/s and 4.2m/s which are well below the minimum phase speed
shown in the dispersion curve (left panel of Figure 3) are matched almost perfectly. The
two-wave stage with a speed of 6.2m/s also shows good agreement between experiment
and numerical simulation, and in particular, both the flexural and the gravity wave are
captured in the computed solution. The single-wave stage at load velocity 8.9m/s which
is above the limiting long-wave speed gives a fairly good fit, but the leading waves are
slightly exaggerated. The case of load speed 5.5m/s which is close to the critical speed
dividing the range of quasi-static and two-wave regimes features a few spurious leading
waves in the computed solution. Nevertheless, even in this case, the difference between
maximum and minimum deflection is captured fairly well. It should be noted that this
computation was done using the one-dimensional model (4.6), (4.12). Running this case
with a one-dimensional model necessitates adjustment of the load (as done for example
also in Părău & Dias (2002). The load was adjusted by aiming for an optimal fit in a
static loading case, i.e. with zero load velocity.

It should also be emphasized that the same damping coefficient b was used in all five
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of the computations shown in Figure 5. The damping is due to a number of factors such
as inherent viscous damping, snow cover and damping in the turbulent boundary layer
in the underlying fluid base. The coefficient b is non-dimensionalized by setting b = Bbc,
where bc is defined as bc = 2

√
ρgρIh. The coefficient B then needed to be determined by

trial and error, but the process can be optimized by choosing B in such a way that the
time lag is optimized (see Fig. 11 in Takizawa (1987)). In the case of fitting the records
of Takizawa, we determined B = 0.41 for a best fit.

Previous attempts to match the experimental data from Takizawa (1987) were made
by Takizawa himself in Takizawa (1987) who obtained good qualitative agreement, but
did not aim for quantitative agreement. Fair quantitative agreement was obtained in
Milinazzo, Shinbrot & Evans (1995), but the numerical data needed to be symmetric for
subcritical load speeds and did not feature temporal localization for super-critical load
speeds due to the steady nature of their model. The present work removes both of these
impairments.

We also made some comparisons with the two-dimensional model (5.3), (5.4), which
gave similar results. An example of a two-dimensional wave pattern is shown in Figure 6
for the case when the load speed is u = 8.9m/s In particular it should be noted that the
contours shown in the two-dimensional wave pattern in the left panel of Figure 6 are of
very small amplitude. Examining the center line of the wave deflection in the right panel,
it becomes clear that the shadow zone discovered by Davys, Hosking & Sneyd (1985)
using the linear steady model is recovered in our nonlinear time-dependent model.

In the field campaign of Wilson (1955), an ammunition truck was driven over the
ice-covered Mille Lacs near Brainerd, Minnesota in the United States of America. The
deflection of the ice cover was measured with a deflectometer, the depth at the measuring
point was about 3.26m, and the ice thickness was 0.61m. The elastic modulus was
estimated to be 9 × 109N/m2 (see Table 1). The non-dimensional damping coefficient
was taken to be B = 0.95. Figure 7 shows comparisons with these experimental data.
The load speeds (from top to bottom) are 2.6m/s, 4.6m/s, 7.3m/s, 8.4m/s, and 17.9m/s
The data are compared to numerical approximations of solutions to the two-dimensional
model (5.3), (5.4). The match between experimental data and numerical approximation
is superb for the two subcritical cases. For the third and fourth case, the match is not as
good, but given a probably rather large uncertainty in the measurements, the comparison
is overall fair.

Figure 8 shows comparisons with the experimental data of Wilson (1955) pertaining to
the two-truck experiments. In these runs, two trucks were driven over the ice at a fixed
distance. The comparison with the numerical approximation of (5.3), (5.4) is quite good,
and in particular better than the single-truck case.

Lastly, we consider the experimental work of Beltaos (1981) carried out on Cold Lake
which is located on the Alberta-Saskatchewan provincial boundary in Canada. A truck
was driven along a test track located about 800m from shore. The water depth was
about 4.3m and the ice thickness was 0.59m. The elastic modulus was estimated to be
4.9 × 109N/m2 (see Table 1). Note that while the dispersion curve also has two critical
values in this case, they are so close together that in practice there is only one critical
load speed, which Beltaos determined experimentally to be about Vc = 7.3m/s.

Figure 9 shows comparisons of the numerical approximations of (5.3), (5.4) with the
experimental data of Beltaos (1981). The load speeds (from top to bottom) are 4.4m/s,
8.0m/s and 13.9m/s. The first load speed is subcritical, while the second and third are
supercritical. The comparison of the wave profile is qualitatively good, but the numerical
simulation slightly underpredicts the maximum deflection of the ice sheet. Of course, as
also pointed out by Beltaos (1981), there is considerable uncertainty in the measurements,
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Figure 8. Comparison of numerical approximation of equations (5.3), (5.4) and experimental
ice deflection records with two trucks driving at constant speed. The dashed black curves are the
experimental data of Wilson (1955), and the red dots indicate the z-position of the two trucks
used in these experiments at the time they pass the deflectometer. The blue curves represent
the a time series of the numerical approximation of equations (5.3), (5.4), taken at a measuring
station corresponding to the position of the deflectometer in the field experiment. The blue dots
represent the z-position position of the two loads as they pass the position where the time series
is obtained.

and as in the cases above, the damping parameter has to be estimated based on the fit
with the experiments. In this case, the non-dimensional damping coefficient was taken
to be B = 1.05. For the near-critical case with load speed V = 1.1Vc = 8.0m/s the
two-dimensional wavecrest pattern is shown in Figure 10. Since the load speed is above
the critical speed, one also expects a shadow zone in this case, and this can bee seen in
the wavecrest pattern in the left panel of Figure 10, and in the centerline deflection in
the right panel. The small trailing disturbances are transients which decay over time.

Beltaos (1981) also raised the interesting question of whether a changing load speed
may have an impact on the response of the ice sheet. In particular, he noted that drivers
have reported ice failures occurring in the case of sudden deceleration because of a
perceived danger ahead. As will be shown presently, deceleration may indeed have an
adverse effect on the stability of the ice sheet, as interference patterns may contribute to
exceeding the critical strain beyond which failures are likely to occur.

Figure 11 shows the development of the free surface for a load passing a measuring
station. The left panels show a load moving at constant speed. The curve in the upper
left panel depicts the deflection of the ice sheet at the measuring station, and the black
dot indicates the time when the load passes the measuring station. The middle left panel
shows the vertical position of the free surface at the point of the load, and the lower
left panel shows the maximum strain of the ice. The strain computed here is the linear
or axial strain which is used in defining the bending moment of an elastic solid, and
which can be measured experimentally using a strainmeter, such as explained in Davys,
Hosking & Sneyd (1985). According to Page & Părău (2014) and references therein, the
strain is approximated by the expression ε = h

2 ηxx. The strain takes on large values at
the beginning which is probably due to the impulsively started load (even though we
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Figure 9. Comparison of numerical approximation of equations (5.3), (5.4) and experimental ice
deflection records. The dashed black curves are the experimental ice deflection records of Beltaos
(1981), and the red dots indicate the z-position of the truck as it passes the deflectometer. The
blue curves represent time series of the numerical approximation of equations (5.3), (5.4), taken
at a measuring point corresponding to the position of the deflectometer in the field experiments.
The blue dots represent the z-position of the numerically imposed load as it passes the measuring
point.
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Figure 10. Numerical approximation of equations (5.3), (5.4) for constant load velocity
V = 8.0m/s, such as in Figure 9. The left panel shows the wave crest pattern, and the right
panel shows the deflection of the ice sheet along the center line y = 0.

made sure to use initial data corresponding to a static load so as to avoid a non-smooth
start-up phase). Otherwise the maximum strain is on the order of 10−5.

The panels on the right in Figure 11 show the case of a decelerating load. The upper
right panel shows the development of the surface deflection at the measuring station, and
the black dot indicates the time when the load passes the measuring station. We note
that the surface deflection is larger by a factor of more than 10 compared to the case of a
load moving at constant speed. The middle right panel shows the corresponding vertical
position of the load on the ice sheet, and the amplitude here is also larger by a factor
of 10 when compared to the case of constant propagation speed of the load. Finally, the
lower right panel shows the maximum strain in the ice sheet as a function of time. Here
it must be noted that the maximum strain occurring at time t = 28 is about 2 × 10−4

which is approaching the value 2.14× 10−4 which was indicated in Goodman, Wadhams
& Squire (1980) as the critical strain where cracks may appear in the ice.
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Figure 11. Comparison of numerical approximation of equations (4.6), (4.12) for constant load
velocity 10m/s (left) and deceleration from 10m/s to 0m/s (right). The upper panels show the
evolution of the surface deflection at a measuring station at a fixed location. The middle panels
show the z position of the load as a function of time. The lower panels show the maximum
relative strain as a function of time.

Figure 12. Comparison of numerical approximation of equations (4.6), (4.12) for constant load
velocity 6.2m/s (left) and deceleration from 10m/s to 0m/s (right). The position of the load is
indicated in magenta. The left panel shows gravity waves trailing the load, while the right panel
show gravity waves continuously catching up with the load.

Maximum ice deflection and strain are summarized in Table 2. Note that the values of
maximum strain are slightly decreasing as the deceleration gets higher. From this trend,
one may conclude that it is actually safer to brake swiftly rather than to brake slowly.
The dependence of the maximum deflection and maximum strain on the load appears to
be approximately linear.

The stark difference between the cases of constant load speed and decelerating load
may be explained by constructive interference of waves of different phase speed created by
the changing speed of the load. Indeed, as the load decelerates through the critical long-
wave speed

√
gH, it continuously excites gravity wave of smaller and smaller velocities.

The analysis in Takizawa (1987) shows that gravity waves will generally trail the moving
load, but as the load velocity is getting smaller than the previously excited waves, the
waves immediately catch up with the load, and through constructive interference an
increasing bulge and trough traveling with the load is formed. Eventually, this leads to
much larger surface deflections than could be expected with constant load speed. The
time development of these two cases are contrasted in Figure 12.
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Deceleration rate 0.2 0.4 0.6 0.8 m/s2

Max. deflection 0.022 0.018 0.016 0.015 m
Max. strain 1.97e-04 1.76e-04 1.61e-04 1.51e-04

Table 2. Maximum ice deflection and maximum strain rate during the deceleration of a light
vehicle. The parameter values for this study have been taken from the experiments by Takizawa
(1987), summarized in Table 1.

9. Conclusions

Following Whitham’s idea, we have developed a fully dispersive weakly nonlinear
system describing flexural-gravity waves in an elastic plate on a fluid foundation, excited
by a moving load. The system is written in terms of the deflection of the elastic plate and
the surface trace of the fluid velocity potential. The system derived here gives an accurate
description of the linearized dynamics as the full linear dispersion relation is incorporated
in the systems. The system also allows for multi-directional wave propagation and various
configurations of the imposed load.

The equations are also nonlinear which makes the model more flexible in the case when
shallow fluids or very thin elastic plates are to be described. Indeed, nonlinearity may be a
desirable feature of a model for hydro-elastic responses as there are observations of large-
amplitude hydro-elastic waves in coastal regions. For example, such waves were described
in Marko (2003). Note also that Liu & Mollo-Christensen (1988) describe focussing of
wave energy in an ice pack which can lead to modulational instability and large-amplitude
waves.

The system has been approximated numerically, and the results have been compared
with a few experimental measurements. Overall, fairly good agreement with the available
experimental measurements has been obtained. Both the one-dimensional model (4.6),
(4.12) and the one-dimensional model (5.3), (5.4) have been used in the simulations. In
general, it appears that as long as the load configuration is such that a point mass may
be used to model the load, there is no particular advantage in using the two-dimensional
equations (5.3), (5.4) for making predictions from a practical point of view. Of course,
if the precise nature of the wave pattern is under study then the two-dimensional model
needs to be used. The two-dimensional model will also have to be used if the load
configuration is such that strongly two-dimensional wave patterns are to be expected,
such as the motion of a train on tracks laid on an ice sheet for example.

We have also investigated the question of variable load speed, and we have found that
under certain conditions, the wave amplitude during decelerating motion can exceed
the corresponding values due to constant speed by a large factor. Indeed, for otherwise
reasonable parameter values, the maximum strain may approach values where ice break-
up may occur. Future work may focus on studying a larger number of cases with a
particular focus on non-constant load velocities in order to identify potentially hazardous
configurations.

Appendix A. Comparison with a potential model

In Section 8, the fully dispersive damped model was compared with field experiments.
Due to safety concerns, ice break-up must be avoided in these experiments. As a conse-
quence, these data do not feature large icesheet deflections, and the role of nonlinearity
in the equations is of minor importance. We nevertheless incorporated weakly nonlinear
terms into the equations since large surface deflections are known to occur. In order to
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Figure 13. Bifurcation diagrams for λ = 4π and τ = 0.1. The blue curve represents solutions of
the hydro-elastic full Euler system. The green curve represents solutions of the fully dispersive
weakly nonlinear equation (1.1)
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Figure 14. Solutions profiles for λ = 4π and τ = 0.1. The blue curve is an approximate
solutions of the hydro-elastic full Euler system with wave speed c = 0.9353. The green curve is
an approximate solution of the Whitham equation with c = 0.9257.

verify that the equations also give representative results in the case of larger amplitudes,
we now analyze the weakly nonlinear approximation by comparing with solutions of the
full Euler system.

In order to focus on a concrete situation, we consider traveling-wave solutions in the
case without an external load. In addition, we will assume that the ice is thin, so that
h = 0, and damping is negligible, i.e. b = 0. These are standard assumptions which are
known to lead to the existence of traveling waves for the full Euler system Plotnikov &
Toland (2011). The fully nonlinear Euler equations can be solved numerically by applying
a conformal mapping technique.

Taking the depth H as a unit of length and the long-wave speed
√
gH as a unit of

velocity, one may rewrite the complete system in non-dimensional form. Omitting details
and referring the reader to Guyenne & Părău (2014a) we only note that the Bernoulli
equation takes the form

φt +
1

2

(
φ2x + φ2z

)
+ η + τ

(
κss +

1

2
κ3
)

= 0 for x ∈ R, z = η(x, t), (A.1)
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where κ = ηxx(1 + η2x)−3/2 is the curvature of the shell and s is the arclength along this
cover and so

κss +
1

2
κ3 =

1√
1 + η2x

∂x

(
1√

1 + η2x
∂x

(
ηxx

(1 + η2x)3/2

))
+

1

2

(
ηxx

(1 + η2x)3/2

)3

.

In our framework of Kirchhoff–Love assumptions the latter simplifies to the form

κss +
1

2
κ3 = ∂4xη,

however, for technical reasons we use the exact expression in our calculations in the
case of the full Euler system. The hydro-elastic parameter τ = D/(ρgH4) = κ/H4 is
now non-dimensional. We approximate travelling wave solutions numerically, following
the method laid out in Guyenne & Părău (2014a) and compare them with ones for the
Whitham equation (1.1).

We set the hydro-elastic parameter τ = 0.1, the wavelength λ = 4π and construct
periodic solutions on the interval [−λ/2, λ/2]. The choice of τ and λ seems reasonable
as these values correspond, for example, to a depth H ≈ 4 meters and a wavelength
L = λH ≈ 50 meters which appear physically reasonable.

We observe solutions of two types in these settings. There are solutions bifurcating
from trivial linear solutions. They can be approximated asymptotically by linear theory,
at least if the amplitudes are not too high. There are, however, solutions that cannot
be predicted or approximated by linear theory at all (the leftmost branch in Figure 13).
They start to appear when the non-dimensional waveheight reaches approximately 0.14
according to Figure 13. Thus it can be inferred that waves of waveheight 56 cm in the
case of a depth of H = 4 m could be purely nonlinear in nature. Notably, as seen in
Figure 14 weakly nonlinear modelling, i. e. use of the Whitham equation, can give high
accuracy up to moderate waveheights.
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