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Abstract

The aim of the work in this thesis is to explore how visual speech can be used

within monaural masking based speech enhancement to remove interfering noise,

with a focus on improving intelligibility. Visual speech has the advantage of not

being corrupted by interfering noise and can therefore provide additional information

within a speech enhancement framework. More specifically, this work considers

audio-only, visual-only and audio-visual methods of mask estimation within deep

learning architectures with application to both seen and unseen noise types.

To estimate masks from audio and visual speech information, models are de-

veloped using deep neural networks, specifically feed-forward (DNN) and recurrent

(RNN) neural networks for temporal modelling and convolutional neural networks

(CNN) for visual feature extraction. It was found that the proposed layer normalised

bi-directional feed-forward hybrid network using gated recurrent units (LNBiGRU-

DNN) provided best performance across all objective measures for temporal mod-

elling. Also, extracting visual features using both pre-trained and end-to-end trained

CNNs outperform traditional active appearance model (AAM) feature extraction

across all noise types and SNRs tested. End-to-end CNNs trained on images focused

on mouth-only regions-of-interest provided best performance for both audio-visual

and visual-only models.

The best performing audio-visual masking method outperformed both audio-only

and visual-only masking methods in both matched and unseen noise type and SNR

dependent conditions. For example, in unseen cafeteria babble noise at −10 dB,

audio-visual masking had an ESTOI of 46.8, while audio-only and visual-only mask-
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ing scored 15.0 and 42.4, and the unprocessed audio scored 9.3. Formal tests show

that visual information is critical for improving intelligibility at low SNRs and for

generalisation to unseen noise conditions. Experiments in large unconstrained vo-

cabulary speech confirm that the model architectures and approaches developed can

generalise to unconstrained speech across noise independent conditions and can be

considered for monaural speaker dependent real-world applications.
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Chapter 1

Introduction

1.1 Motivation and problem statement

In real-world scenarios, an audio speech signal can be contaminated or distorted by

many artefacts. These include acoustic noise, channel distortion, echo, packet loss

and codec distortion. These effects will affect both the intelligibility and quality of

the resulting speech signal. To remove or reduce these effects and thereby improve

the quality of the signal, speech enhancement is necessary. This can remove or re-

duce these through noise removal or suppression (Boll [1979]; Lim and Oppenheim

[1978]; Ephraim and Malah [1984]; Kim et al. [2009]), channel equalisation (Chen

et al. [1993]), echo cancellation (Benesty et al. [1998]), packet loss mitigation (Rap-

paport et al. [1996]; Perkins et al. [1998]) and codec distortion reduction (Ikeda and

Sugiyama [1999]). However, this thesis focuses on speech enhancement for removing

the effect of interfering noise on the perception of speech.

Noise has two main effects on the perception of speech. Firstly, the perceived

quality of the speech signal is reduced by introducing artefacts and distortions onto

the speech signal. This results in a signal that is unpleasant and increases fatigue

for the listener, particularly in situations where the listener is exposed to high levels

of noise for long periods of time. Secondly, the perceived intelligibility of the speech

1
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signal is also effected. With the introduction of high levels of noise, the recognition

of words uttered from the speech signal is reduced for human listeners.

The need to enhance speech signals arises in many situations where the speech

signal is corrupted by noise from the source environment. Many applications de-

sire speech enhancement for improving either the perceived quality or intelligibility.

Voice communication over cellular telephone systems typically suffer from back-

ground noise in the environment, for example, whether in a car or restaurant. Simi-

larly, video conferencing suffer from background noise caused by competing speakers.

Speech enhancement algorithms can be used to remove or suppress the background

noise from restaurants or competing speakers, to improve the quality of the received

speech signal. In an air-ground communication systems between a pilot and ground

control, the speech signal is corrupted in high levels of background environment

noise from the cockpit. However, although improving quality is still important, im-

proving intelligibility is more important. The information from the pilot is likely

to be more important and desired by ground control over a better quality signal.

Also for military communication applications, the improvement of intelligibility is

more desired than quality. For hearing-aid and cochlear implant applications, im-

proving both the quality and intelligibility of the enhanced signal is important for

improving the quality of life of people suffering from hearing impairment. Within

each example, acoustic information is captured through microphones, however few

also capture visual information. Visual information within video conferencing could

be used to track the current speaker, cameras could be placed within the cockpit to

track the pilots speech, and for hearing impairment based applications, video could

be captured through body cameras and smart glasses.

From the examples shown, the desired result from speech enhancement depends

on the application, whether to improve quality, intelligibility or both. Ideally, speech

enhancement would improve both quality and intelligibility. Generally, most speech

enhancement algorithms which reduce background noise focus on the improvement

of quality, at the expense of introducing speech distortions, which can reduce the re-
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sulting intelligibility. The challenge, and focus of this thesis, is to remove or suppress

background noise without introducing perceptual distortions, targeting the improve-

ment of intelligibility. The remainder of this introduction first states the aims of

the work, before providing some background on speech enhancement algorithms,

applications using visual speech and an overview of deep learning.

1.2 Aims

The overall goal of this work is improving the perceived intelligibility of speech

corrupted with interfering noise from the environment, through noise removal speech

enhancement. This is explored with the following aims:

1.) Visual speech for speech enhancement Visual speech is the visual modal-

ity of the speaker, capturing information about mouth, lips, and other visual

articulators of speech production. The visual modality is not affected or de-

graded by interfering noise, and as such offers a robust clean source of infor-

mation. This work explores using visual speech and acoustic speech within

the speech enhancement system for counteracting the affect of noise through

audio-only, visual-only and audio-visual models.

2.) Deep learning architecture for modelling The supervised learning frame-

work selected is key to the success and accuracy of the speech enhancement

system. The emergence of deep learning through neural networks has provided

large gains in performance across the majority of supervised learning tasks.

This work explores and proposes using deep feed-forward (DNN), recurrent

(RNN) and convolutional (CNN) neural networks for modelling within the

supervised learning speech enhancement framework.

3.) Feature extraction from input data The features extracted from input

data are key to allow modelling to learn strong relationships between inputs

and target outputs. This work uses acoustic and visual information as input,



CHAPTER 1. INTRODUCTION 4

and as such explores both traditional feature extraction methods and feature

extraction via deep learning through CNNs for extracting acoustic and visual

information.

4.) Generalisation to unseen noise conditions In real-world applications, the

environmental noise condition is likely to change in both noise type and noise

level (SNR) across time, and as such the speech enhancement model must be

able to perform across varying conditions. This work explores building noise

type and SNR independent models to allow generalisation to new unseen noise

conditions.

1.3 Speech enhancement for noise removal

The solution to the general problem of speech enhancement for noise removal de-

pends on the desired application environment, types of noise present and the number

of available microphones. The noise type can be noise-like, such as fans spinning

or the engine and road surface when in a vehicle, or can be speech-like such as a

restaurant or cafe with competing speakers. The number of available microphones

has a significant impact on the performance of the speech enhancement algorithm.

Generally, the larger number of microphones available, the easier the task becomes

(single-channel or monaural verses multi-channel).

Given a simple example of two microphones, one microphone can be placed next

to the speaker, and the second can be placed next to the noise source, providing

two strong information streams for the speech enhancement algorithm. When a

single microphone is used, only a single source containing both the speech and noise

information is provided to the speech enhancement algorithm. Adaptive cancellation

can be used when at least one microphone is placed near the noise source. When

considering applications using audio and video, one source is provided from the

acoustic stream and a second source is provided from the visual stream. This can

be treated as a source of the speaker (video) and a source of the noise plus speaker



CHAPTER 1. INTRODUCTION 5

(audio). This provides an extension to single-microphone applications, allowing a

source to contain only information of the speaker and not noise, albeit only visual

information, but is not as effective as multi-microphone setups which can provide a

source containing only noise information.

This work focuses on speech enhancement in additive noise with only a single

microphone available (monaural). Figure 1.1 shows a simplified pipeline of an audio-

only speech enhancement system. The speech enhancement algorithm takes as input

the noisy (speech plus noise) signal, and outputs the enhanced signal.

Speech 
Enhancement

Enhanced 
Audio

Speech 
+ 

Noise 
Mixture

Figure 1.1: Overview of a simplified audio-only speech enhancement pipeline.

The speech enhancement algorithm can take the form of various approaches,

including those based on filtering, such as spectral subtraction, statistical-model-

based, subspace and masking algorithms, and those based on reconstructing or syn-

thesising a clean audio signal. Spectral subtractive algorithms are the simplest form

of speech enhancement algorithm to implement, and can only be used for additive

noise environments. Such algorithms (Weiss et al. [1975]; Boll [1979]) make an esti-

mate of the noise when no speech is present in the signal (i.e only noise is present in

the signal), and subtract this estimate from the combined noisy speech to leave only

the speech signal. Statistical-model-based algorithms form the problem in a statis-

tical estimation framework. Given measurements of the noisy speech, a linear or

non-linear transform is calculated to estimate parameters of the clean speech. Com-

mon algorithms using this approach are Weiner filtering (Lim and Oppenheim [1978,

1979]) and minimum mean square error (MMSE) (Ephraim and Malah [1984]). Sub-

space algorithms are based on linear algebra on the principle that the clean speech

signal could be confined to a subset of the noisy speech. Decomposition of the

noisy signal into subspaces primarily confined of speech signal and subspaces pri-

marily confined to the noise signal, the enhanced signal can be produced by nulling
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or removing the noise signal subspaces. The decomposition of the signal into sub-

spaces can be achieved using well-known orthogonal matrix factorisation techniques

from linear algebra, namely singularity value decomposition (SVD) (Dendrinos et al.

[1991]) and eigenvector-eigenvalue factorisation (Ephraim and Van Trees [1995]).

Masking algorithms originate from the field of auditory scene analysis (ASA)

(Brown and Cooke [1994]; Weintraub [1985]), forming computational auditory scene

analysis (CASA) (Wang and Brown [2006]), and produce a time-frequency (T-F)

mask derived from ideal separate clean and noise sources (i.e sources containing

only clean or noise information) and train a model to predict such masks using

the combined noisy speech as input (Kim et al. [2009]; Chen et al. [2014]; Zhao

et al. [2016]; Healy et al. [2017]; Chen and Wang [2018]). The mask represents

time-frequency (T-F) units that are either speech dominant or noise dominant, an

ideal mask is calculated given a specific criterion using the separate sources, the

criterion is not unique to each source, but produces masks which are specific for

each speech plus noise combination. The criterion determines which T-F units are

speech or noise dominant, and produces a mask such that the speech dominant

units are kept (retained) and the noise dominant units are removed (suppressed).

Criterion functions can either produce binary masks, where T-F unit values are fixed

to either 0 (noise dominant) or 1 (speech dominant), or ratio masks, where T-F unit

values are between 0 and 1 representing the proportion of speech present in each

T-F unit. The mask can then be applied to the noisy speech signal, suppressing

noise dominant T-F units yet retaining speech dominant T-F units, producing the

enhanced audio signal. The algorithm then uses a model trained with known noisy

speech and ideal mask pairings to predict and output the ideal mask. The model

can then be used in live noisy conditions, when separate clean and noise sources are

not available, to predict an estimation of an ideal mask. This estimated mask can

then be applied to the noisy speech signal to produce the enhanced speech signal.

Speech reconstruction or synthesis based speech enhancement aims to reconstruct

clean speech from speech parameters instead of retrieving clean speech from filtering
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noisy speech. For speech reconstruction applications (Harding and Milner [2012,

2015]; Kato and Milner [2016]), parameters are estimated from the noisy speech

to drive a speech production model. The model requires acoustic parameters of

spectral envelope, fundamental frequency, phase and voicing (voiced, unvoiced on

non-speech). The main benefit of using a speech reconstruction model as opposed

to filtering is the constraints applied to the reconstructed signal. Reconstruction

models are designed to only reconstruct components of the signal relating to speech,

and therefore artefacts, that result from inaccurate estimation of noise contribution

for filtering based algorithms, are not reconstructed. Speech reconstruction can also

be used as a post-filter to filtering based speech enhancement algorithms to reduce

these artefacts in the enhanced signal.

Spectral subtraction, statistical-model-based and subspace algorithms have been

shown to improve perceived quality and reduce listener fatigue, but do not improve

intelligibility, however masking algorithms have been shown to improve intelligibility

in monaural conditions (Kim et al. [2009]). Speech reconstruction has been shown

to be effective at removing noise from noisy speech, however errors in estimating the

spectral envelope and voicing classification can lead to artefacts in the reconstructed

speech reducing quality compared to filtering based algorithms (Harding and Milner

[2015]).

The main focus of this work is on improving speech intelligibility, therefore mask-

ing algorithms are selected as the speech enhancement framework. The key part of

the masking algorithms is the model used to predict ideal masks. The model has

to learn a relationship from the noisy input signal and the target ideal masks. This

allows speech enhancement to be treated as a mask estimation problem that uses

supervised learning to map features extracted from noisy speech to an ideal mask.

Therefore, the effectiveness of the model is determined by the criterion function,

quality of the features extracted from the input data, and the framework or archi-

tecture of the model used in supervised learning. This provides three main areas of

focus: selection of criterion function (binary or ratio masking), model input through
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input data and feature extraction, and model architecture through supervised learn-

ing framework.

1.4 Visual speech processing

Using audio as the only source of information within a monaural speech enhance-

ment system may be limited when applied to speech contaminated in high levels

of noise. In high levels of noise most of the speech signal is lost and overpowered

by the interfering noise. For speech enhancement using masking algorithms this

introduces difficulties in determining which time-frequency (T-F) units within the

mask are speech dominant or noise dominant causing over-suppression and under-

suppression of noise within the enhanced speech. Over-suppressions are caused by

incorrectly labelling speech dominant T-F units as noise dominant T-F units. This

incorrectly suppresses speech dominant T-F units, causing the speech enhancement

algorithm to suppress both noise and speech, resulting in the enhanced speech signal

to lose speech content. Under-suppressions are caused by incorrectly labelling noise

dominant T-F units as speech dominant T-F units. This incorrectly retains noise

dominant T-F units, causing the speech enhancement algorithm to not fully sup-

press the noise, resulting in interfering noise to be retained in the enhanced speech

signal. Effects introduced from over-suppressing or under-suppressing will reduce

the resulting intelligibility (Loizou and Kim [2011]).

One way to avoid this problem is to exploit visual speech information. This

has had success in a range of audio-only speech processing applications, such as

automatic speech recognition (ASR), voice activity detection, speaker separation

and speaker verification, have used information extracted from the visual modality,

captured from video of the speaker, to counteract the affect from interfering noise on

performance. The visual modality captures information about the mouth, lips, and

other visual articulators of the speaker. Unlike the acoustic signal, visual information

is not affected or degraded by interfering noise, and as such offers a robust clean
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source of information for these applications.

Audio-visual ASR uses visual information to complement audio information for

improving recognition accuracy in noise (Heckmann et al. [2002]; Liang et al. [2002];

Potamianos et al. [2003]; Thangthai et al. [2015]). However, using visual information

for ASR does not only provide benefits in noisy conditions, but can also help the

ASR system in clean conditions. This is because certain acoustic sounds are easier to

recognise in the visual modality. For instance, /b/ (a bilabial) and /d/ (an alveolar),

or nasal sounds like /m/ (a bilabial) and /n/ (an alveolar) are visually distinct but

often confused in the audio domain (Potamianos et al. [2004]). Due to the benefits

of the visual-stream, ASR applications have explored removing the acoustic stream

and applied within a visual-only setting, called lip-reading (Matthews et al. [2002];

Lan et al. [2009, 2010]; Chung and Zisserman [2016]; Assael et al. [2016]; Thangthai

et al. [2018]). Such applications, such as surveillance, can be applied where the

acoustic information is not present. However, using visual-only information can

add confusion into the ASR system, as certain acoustic sounds are produced with

similar visual articulation. For instance, acoustic sounds such as /b/, /p/, and /m/

(all bilabials) are impossible to separate in their visual appearance.

Given the robustness of the visual modality to acoustic noise, voice activity detec-

tion has benefited from using either visual-only information (Sodoyer et al. [2006];

Liu et al. [2014]) or both audio and visual information (Almajai and Milner [2008]),

where contributions between the audio and visual streams can be weighted depend-

ing on the SNR of the interfering noise. Furthermore, monaural speaker separation

systems, which attempt to extract speech of a target speaker from signals containing

speech of two or more speakers, have also shown improvements over audio-only sys-

tems by integrating visual information (Wang et al. [2005]; Khan and Milner [2013,

2015]; Khan et al. [2018]). The visual modality tends to be more speaker dependent,

and harder to spoof compared to the audio modality, and as such has been applied

for speaker verification (Dean and Sridharan [2010]; Fox and Reilly [2003]).

Due to the benefits of combining audio and visual modalities within many ap-
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Figure 1.2: Overview of a simplified audio-visual speech enhancement pipeline.

plications, and the robustness of visual information to noise, audio-visual speech

enhancement has also been considered for improving the perceived quality of the

enhanced signal. Not only have the approaches taken increased in complexity, but

the method of visual feature extraction has also increased in complexity over time.

Initial work in (Rivet et al. [2007]) found success by combining audio and simple vi-

sual information (height and width of inner lip) within blind source separation (BSS)

for solving indeterminacy problems, albeit within a highly constrained and limited

dataset. In (Almajai and Milner [2009]), visual information (2D-DCT features) was

used to estimate both clean speech and noise filterbanks used within Weiner filtering,

showing further improvements over audio-only systems and approaches which pre-

viously only estimated the clean speech from audio-visual information (Girin et al.

[2001]; Berthommier [2004]). The approach in (Liu et al. [2013]) used audio-visual

dictionary learning, using Active Appearance Models (AAM) for visual feature ex-

traction, for time-frequency masking. This method produced separate audio-only

and visual-only masks, before combining them into a single audio-visual fusion mask

used to enhance speech. Findings showed how combining both audio-only and

visual-only generated masks provided improved quality over the audio-only mask

and higher resolution over the visual-only mask. An overview of key methodologies

within audio-visual speech enhancement is provided in (Rivet et al. [2014]). Fig-

ure 1.2 extends the previously defined audio-only speech enhancement system to an

audio-visual speech enhancement system. This work also considers the performance

of visual-only speech enhancement with the acoustic stream removed.



CHAPTER 1. INTRODUCTION 11

1.5 Deep learning

The supervised learning framework selected is key to the success and accuracy of

the speech enhancement system. For speech enhancement using masking algorithms,

the model used is required to learn a mapping from input features to target masks.

This is achieved within model training, where examples of known noisy speech and

ideal mask pairings are used to train a model capable of learning target masks. The

model can then be used in live noisy conditions, when separate clean and noise

sources are not available and as such an ideal mask cannot be produced, to predict

an estimation of an ideal mask. This estimated mask can then be applied to the

noisy speech signal to produce the enhanced speech signal.

Previous audio-only speech enhancement systems have shown a clear progression

on the supervised learning framework used to train such models. The models used

have progressed from simple multilayer perceptrons (MLPs) (Hu and Wang [2004];

Jin and Wang [2009]; Chen et al. [2014]), Gaussian mixture models (GMMs) (Kim

et al. [2009]), support vector machines (SVMs) (Han and Wang [2012]; Wang and

Wang [2013]) and finally deep neural networks (DNNs) (Xu et al. [2015b]; Yu et al.

[2016]; Zhao et al. [2016]; Healy et al. [2017]; Chen and Wang [2018]; Gogate et al.

[2018]).

The emergence of deep learning through neural networks has also provided large

gains in accuracy across the majority of supervised learning tasks. Such applications

include speech recognition (Graves et al. [2013a]; Graves and Jaitly [2014]; Chung

and Zisserman [2016]; Assael et al. [2016]; Thangthai et al. [2018]), text-to-speech

(TTS) synthesis (Fan et al. [2014]), image classification (Krizhevsky et al. [2012];

Simonyan and Zisserman [2014]; Szegedy et al. [2015]; He et al. [2016a]) and object

detection (Krizhevsky et al. [2012]), among many other applications. Therefore, this

work explores and proposes using deep feed-forward (DNN), recurrent (RNN) and

convolutional (CNN) neural networks for modelling within the supervised learning

speech enhancement framework.
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1.6 Thesis structure

The remainder of this thesis is organised as follows, where further literature reviews

are provided in each chapter. An initial exploration into speech enhancement using

binary masking is performed in Chapter 2, providing a baseline architecture for the

thesis. Binary masking is explored within a deep feed-forward neural network (DNN)

framework for audio-only, visual-only and audio-visual models and is considered as

a classification problem. Traditional acoustic and visual feature extraction methods,

model architecture and loss functions used for network training are optimised. Novel

loss functions used within DNN training are proposed to maximise intelligibility with

comparisons made to traditional classification loss functions.

Chapter 3 explores the use of ratio masking and compares against the results

found for binary masking. Ratio masking is explored within a DNN framework,

and is considered as a regression problem instead of classification found for binary

masking. Traditional acoustic and visual feature extraction methods and model

architecture are optimised for ratio masking. Comparisons are made between ratio

masking and binary masking to evaluate the best performing masking algorithm.

The focus of Chapter 4 is improving the neural network architecture used within

supervised learning. Previously, only feed-forward neural network architectures have

been considered. In this chapter the use of recurrent neural networks (RNN) are

explored, with a proposed recurrent feed-forward hybrid architecture introduced.

Recurrent neural networks are designed and optimised for data with temporal struc-

ture and are therefore well suited for speech processing applications. Evaluations

are provided using the best performing feature extraction methods and speech en-

hancement algorithm (binary or ratio masking) found in Chapter 3 for audio-only,

visual-only and audio-visual models.

Only traditional feature extraction methods have been evaluated thus far, and

instead Chapter 5 uses neural networks to perform feature extraction within the

network architecture. The focus is on improving visual features which were found
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to be important for speech enhancement at low signal-to-noise ratios (SNRs). Con-

volutional neural networks (CNN) are used to process raw images extracted from

the video sequence instead of using traditional feature extraction methods. Images

extracted from the video sequence are cropped to either a region-of-interest of the

mouth-only or full-face and are upsampled via repetition or interpolation prior to

input to the CNN. The use of pre-trained CNNs and end-to-end trained CNNs are

compared within visual-only and audio-visual models.

All evaluations provided in Chapters 2 to 5 have optimised noise type and SNR de-

pendent models within a small constrained vocabulary dataset. Chapter 6 evaluates

the best performing audio-only, visual-only and audio-visual models for real-world

conditions, by training noise type and SNR independent models with focus being

generalisation to unseen noise conditions. Theses models are compared against the

previous dependent models, before being applied to a larger unconstrained vocab-

ulary dataset. It is found that visual information is critical for generalisation to

unseen noise types and SNR conditions, and expanding to a large scale dataset has

minimal performance degradation compared to the small dataset.

Finally, in Chapter 7 the work and results presented in this thesis on monaural

speech enhancement using masks derived from acoustic and visual speech are sum-

marised. Additionally, the limitations of this work are discussed with a number of

possible avenues of future work outlined, with focus on extending to speaker inde-

pendent applications and the adjustments required for use in real-time applications

such as hearing aids or cochlear implants.



Chapter 2

Binary masking

2.1 Introduction

Chapter 1 presented a review of current speech enhancement algorithms, most algo-

rithms are developed to improve perceived quality of the enhanced signal, whereas

this work focuses on improving intelligibility. From this review, it was found that

masking based algorithms are able to improve intelligibility, and are therefore se-

lected as the speech enhancement framework in this work. Masking algorithms

originate from the field of auditory scene analysis (ASA) (Brown and Cooke [1994];

Weintraub [1985]), forming computational auditory scene analysis (CASA) (Wang

and Brown [2006]), and produce a channel or frequency mask derived from ideal

separate clean and noise sources (i.e sources containing only clean or noise informa-

tion) and train a model to predict such masks using the combined noisy speech as

input (Kim et al. [2009]; Healy et al. [2013]; Chen et al. [2014]; Zhao et al. [2016];

Healy et al. [2017]; Chen and Wang [2018]).

The mask represents time-frequency (T-F) units that are either speech dominant

or noise dominant, an ideal mask is calculated given a specific criterion using the

separate sources. The criterion is not unique to each source, but produces masks

which are specific for each speech plus noise combination. The criterion determines

14
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which T-F units are speech or noise dominant, and produces a mask such that the

speech dominant units are kept (retained) and the noise dominant units are removed

(suppressed). Criterion functions can either produce ideal binary masks (IBM) or

ideal ratio masks (IRM). In this chapter the focus is on binary masking based speech

enhancement to develop a baseline system, and as such a binary criterion function

is selected. Binary masks are constructed from values which are fixed to either 0

(noise dominant) or 1 (speech dominant), determined by whether the binary criterion

function for each T-F unit is below (resulting in a 0) or above (resulting in a 1) the

local criterion (LC), also known as the speech dominance threshold. The mask can

then be applied to the noisy speech signal, suppressing noise dominant T-F units

yet retaining speech dominant T-F units, producing the enhanced audio signal.

Several studies have reported subjective test results where ideal binary mask-

ing (IBM) improved intelligibility for speech in noise for both normal-hearing and

hearing-impaired listeners (Ahmadi et al. [2013]; Brungart et al. [2006]; Li and

Loizou [2008]; Wang et al. [2009]; Healy et al. [2013]). In practice an IBM is not

available and instead the binary mask must be estimated from the noisy signal. This

allows speech enhancement to be treated as a mask estimation problem that uses

supervised learning to map features extracted from noisy speech to an ideal binary

mask (Kim et al. [2009]; Han and Wang [2012]; Wang and Wang [2013]).

The algorithm then uses a model trained with known noisy speech and ideal mask

pairings to predict and output the ideal mask. The model can then be used in live

noisy conditions, when separate clean and noise sources are not available, to predict

an estimation of an ideal mask (predicted mask). This predicted binary mask (PBM)

can then be applied to the noisy speech signal to produce the enhanced speech

signal. This work uses deep feed-forward neural networks (DNN) for modelling

the relationship between input noisy speech and target binary masks, which have

previously been shown to perform well for binary mask estimation (Healy et al.

[2013]; Chen et al. [2014]).

This work considers two extensions to binary mask estimation. Firstly, this work
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proposes the development of perceptually motivated loss functions within a DNN

framework (Websdale and Milner [2017a,b]; Liu et al. [2017]). Most existing meth-

ods of binary mask estimation using DNNs maximise the classification accuracy of

predicted masks. This is achieved by optimising the binary cross-entropy (CE) (Ru-

binstein and Kroese [2013]) loss function during training (Kim et al. [2009]; Healy

et al. [2013]; Chen et al. [2014]). However, several studies have shown that the hit

minus false alarm (HIT-FA) rate, where a hit is a correctly labelled speech dominant

T-F unit (i.e correctly retaining speech) and a false alarm is an incorrectly labeled

noise dominant T-F unit (i.e incorrectly retaining noise), of the predicted mask

correlates more closely to speech intelligibility than classification accuracy (Healy

et al. [2013]; Kim et al. [2009]; Chen et al. [2014]; Healy et al. [2015]; Chen et al.

[2016]; Websdale and Milner [2017a,b]). Further details of the HIT-FA rate and

classification accuracy are provided in Section 2.5.1. Therefore, we propose using

perceptually motivated loss functions that are based on maximising the HIT-FA

rate with the aim of increasing the intelligibility of the resulting masked speech

(detailed in Section 2.5). Some attention has been focussed on improving the clas-

sifier to reduce perceptual error by changing the loss function for text-to-speech

applications (Valentini-Botinhao et al. [2015]), and introducing signal approxima-

tion loss functions (Weninger et al. [2014]; Erdogan et al. [2015]) as a replacement

for mask approximation within speech separation applications. Signal approxima-

tion loss functions apply the output of the network to the noisy spectrum within the

loss function, and minimise this with respect to the target. Signal approximation

works well when the network target is the power spectrum, outperforming mask

approximation, however is not applicable to a cochleagram framework, due to the

cochleagram is constructed from overlapping gammatone filterbanks.

This second extension to mask estimation investigates the use of visual speech

information as a supplement to the acoustic information used in DNN training.

The use of visual speech information in traditionally audio-only speech processing

applications has given significant gains in performance in noisy conditions. For

example, in automatic speech recognition (ASR), supplementing the audio with
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visual features has reduced error rates in low SNR conditions (Thangthai et al.

[2015]; Potamianos et al. [2003]; Heckmann et al. [2002]). A benefit of using visual

speech information within mask estimation is that visual features are not degraded

by acoustic noise, although in themselves they may not have the discriminative

ability that audio features possess in terms of mask estimation. To investigate this

we explore mask estimation, and subsequently speech intelligibility, by comparing

audio-only, visual-only and audio-visual speech enhancement models. Figure 2.1

shows the training pipeline of the proposed audio-visual speech enhancement system

using feed-forward neural networks. Visual features are extracted from video and

combined with acoustic features extracted from noisy speech, before input into the

feed-forward neural network (DNN) for temporal modelling to estimate the binary

mask. For testing purposes, estimated masks are applied to a cochleagram of the

noisy speech which suppresses noise-dominated T-F units and the remaining signals

are overlapped and summed to produce the enhanced signal, shown in Figure 2.2.

The same pipeline is used for all speech enhancement configurations, except the

visual stream is removed for audio-only models, and the audio stream is removed

for visual-only models.

The remainder of this chapter is organised as follows. Section 2.2 details how

ideal binary masks are produced, and subsequently used for enhancement of noisy

speech. Section 2.3 provides an overview of acoustic and visual feature extraction

methods. The DNN architecture and training is introduced in Section 2.4, showing

the importance of loss function selection. Section 2.5 first reviews the classification

accuracy and HIT-FA rate objective measures (Section 2.5.1) before introducing

the loss functions used in DNN training, specifically the standard binary cross-

entropy (CE) (Section 2.5.2), and proposed HIT-FA (HF) (Section 2.5.3) and binary

cross-entropy HIT-FA hybrid (CEHF) (Section 2.5.4) loss functions. Performance

evaluations are made in Section 2.6 which first compare the effectiveness of the

feature extraction methods outlined in Section 2.3 for audio-only, visual-only and

audio-visual models using the CE loss function. Section 2.6.2 optimises the CEHF

loss function for maximising HIT-FA rate. Section 2.6.3 compares the performance
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Figure 2.1: Overview of training the DNN binary masking speech enhancement
system.
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Figure 2.2: Overview of applying the DNN predicted binary mask to noisy speech
for speech enhancement testing.

of all loss functions across varying noise type and SNR conditions and used the best

performing feature extraction methods from Section 2.6.1. Finally, this chapter is

concluded in Section 2.7.
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2.2 Ideal binary masking

In CASA, enhanced speech is extracted by applying a mask to a time-frequency

(T-F) representation of noisy speech. In ideal conditions separate clean and noise

sources (i.e sources containing only clean or noise information) can be used to cal-

culate an ideal binary mask (IBM). Figure 2.3 shows the pipeline for producing

IBMs, where cochleagrams are produced from separate speech and noise sources for

producing T-F units, the SNR between speech and noise cochleagrams is calculated

before producing the IBM. Section 2.2.1 details the production of cochleagram based

T-F units, before calculating the IBM in Section 2.2.2.

Gammatone
FilterbankSpeech

Ideal Binary 
Mask (IBM)SNRNoise

Speech
Cochleagram

Gammatone
Filterbank

LC

Noise
Cochleagram

Ideal Binary Mask 
Production

Figure 2.3: Overview of producing ideal binary masks (IBM).

2.2.1 Cochleagram production

In order to calculate ideal binary masks (IBM), the clean speech and noise source

are decomposed from the time domain into time-frequency (T-F) units. The IBM

criterion calculates which T-F units are speech dominant or noise dominant. The

combined noisy speech time domain signal is decomposed into T-F units, the cal-

culated mask is applied which subsequently suppresses noise dominant T-F units

and retains speech dominant T-F units, before retuning back into the time domain

producing the enhanced signal. From this, the decomposition into T-F units is key.

Previous studies (Healy et al. [2013, 2015, 2017]; Wang and Brown [2006]; Chen et al.

[2014]), have shown that using a cochleagram for producing T-F units is successful
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for both binary and ratio masking, and as such is selected in this work.

The same cochleagram implementation in (Wang and Brown [2006]), is used in

this work. Time domain signals (sampled at 16 kHz) are decomposed into T-F

units by first applying a 64-channel gammatone filterbank (Patterson et al. [1987]),

calculated as:

gfc = tN−1 exp[−2πtb(fc)] cos(2πfct)u(t) (2.1)

where fc is the centre frequency, N is the filter order, u(t) the step function and b

is the bandwidth of the filter. The centre frequencies of the channels are uniformly

spaced along the equivalent rectangular bandwidth (ERB) scale ranging from 50 Hz

to 8 kHz, this is used to imitate the human auditory filters, providing the relation

between b(fc) and fc as:

b(fc) = 1.019× ERB(fc) = 1.019× 24.7× (4.37× fc/1000 + 1) (2.2)

The response signals from the filterbanks are then framed into 20 ms frames with

10 ms frame shift, hamming windowed and summed to provide the total energy of

each windowed frame, producing the final cochleagram. Each 20 ms of the signal

in the time domain is decomposed into 64 T-F units, each representing the energy

contained within the gammatone filterbanks.

2.2.2 Ideal binary mask production

Ideal binary masks (IBM) determine whether T-F units within the noisy signal are

speech dominant or noise dominant. An IBM is calculated from the premixed speech

and noise sources using a criterion function. To calculate and IBM, first the SNR

between speech and noise T-F units is calculated as:

SNR(t, f) = 10 log10(X(t, f)2/D(t, f)2) (2.3)
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where X is the clean speech cochleagram, D the noise segment cochleagram and LC

is the local criterion used as the threshold between speech and noise dominance. The

production of cochleagrams is shown in Section 2.2.1). An IBM is then calculated

as:

IBM(t, f) =





1, if SNR(t, f) ≥ LC

0, otherwise
(2.4)

where t and f represent time frame and frequency bin respectively and LC is a local

criterion. Speech dominant T-F units are assumed to have SNRs greater than or

equal to LC, and are represented by 1 and retained. Noise dominant T-F units are

assumed to have SNRs less than LC, and are represented by 0 and suppressed.

The choice of LC determines how many T-F units are deemed to be speech

dominant or noise dominant. Ideally, and LC of 0 dB should be used, as any SNRs

above 0 dB are speech dominant, any below are noise dominant. However, if the

mixed noisy speech has an overall low SNR (below 0 dB), the majority of T-F units

would be removed. This introduces artefacts into the enhanced signal, which will

degrade resulting intelligibility. Previous studies have compared different values for

LC (Loizou and Kim [2011]; Healy et al. [2015]; Chen et al. [2016]), which have

shown an LC set 5 dB lower than the overall SNR provides best performance, and

is subsequently used in this work for all SNRs.

Ideal Binary 
Mask (IBM)

Enhanced 
Audio

Speech 
+ 

Noise 
Mixture

Gammatone 
Filterbank

Cochleagram

Overlap & 
Add

Speech 
Enhancement

Figure 2.4: Overview of enhancing noisy speech through binary masking.

Calculated masks can then be applied to noisy speech producing the enhanced

signal. Figure 2.4 shows the pipeline for generating enhanced signals. The combined
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noisy speech time domain signal is decomposed into T-F units, following the same

implementation to calculate a cochleagram, however the hamming windowed frames

are not summed. The IBM is then multiplied with the hamming windowed frames,

before returning back into a time domain signal through overlap and adding, and

summing across gammatone filterbank responses. The same enhancement proce-

dure is applied when testing different models, except the IBM is replaced with the

predicted binary mask (PBM) produced from the model output.

2.3 Feature extraction for mask estimation

Feature extraction aims to identify suitably discriminative information in the noisy

input speech and video that enables a model to determine whether T-F units are

speech dominant (1) or noise domoninant (0). We investigate two different acoustic

features and one visual feature extraction method.

2.3.1 Acoustic feature extraction

Acoustic feature extraction is applied to noisy speech (sampled at 16 kHz) for ex-

tracting suitably discriminant information from the noisy speech signal, used as

input into the supervised learning model. Two acoustic feature extraction methods

are considered, namely multi-resolution cochleagram feature (MRCG), specifically

designed for cochleagram based speech enhancement, and an ensemble of compli-

mentary features (ARPMG) traditionally used other speech processing applications.

2.3.1.1 Multi-resolution cochleagram feature (MRCG)

The multi-resolution cochleagram feature (MRCG) feature was designed specifically

for masking based speech enhancement estimation and combines four cochleagrams

at different resolutions (Chen et al. [2014]). The first captures high resolution lo-

calised detail while the remaining cochleagrams capture lower resolution spectrotem-



CHAPTER 2. BINARY MASKING 23

poral content. Cochleagrams are calculated using the same implementation outlined

in Section 2.2.1.

Cochleagrams are computed by passing the input signal through a 64-channel

gammatone filterbank. The response from the gammatone filterbanks are framed

into 20 ms frames with 10 ms frame shift, hamming windowed and summed pro-

ducing the energy of each frame. Unlike the approach in Section 2.2.1, a further

log operation is applied, which gives the first cochleagram, CG1. Similarly, CG2 is

calculated folowing the same method as CG1, except frames are 200 ms in length

with 10 ms frame shift. High resolution is captured by CG1, and low resolution is

captured by CG2. Finally, CG3 and CG4 are derived by applying an 11 × 11 and

23 × 23 mean filter kernel to CG1 respectively, capturing information across both

time and frequency. The final MRCG feature, xMRCG, is produced by stacking all

four CGs, an example is shown in Figure 2.5 for a clean utterance (clean utterance

selected for clarity of diagram) of “bin blue at e one now”.

2.3.1.2 Complementary feature set (ARPMG)

The complementary feature set (ARPMG) is an ensemble of commonly used acoustic

features (Chen et al. [2014]; Healy et al. [2015]; Chen et al. [2016]). This combines

amplitude modulation spectrum (AMS) (Kollmeier and Koch [1994]; Tchorz and

Kollmeier [2003]; Kim et al. [2009]), relative spectral transformed perceptual lin-

ear prediction (RASTA-PLP) (Hermansky and Morgan [1994]) and mel-frequency

cepstral coefficients (MFCCs) (ETSI [2002]) with a gammatone filterbank (GFB)

(Chen et al. [2014]).

The specific implementation used is taken from (Healy et al. [2015]) where AMS

features are computed from 32 ms frames with 10 ms frame shift to give a 15-D

vector. RASTA-PLP features are also computed from 32 ms frames with 10 ms

frame shift and result in a 13-D vector. MFCCs are computed from 20 ms frames

and 10 ms frame shift producing a 31-D vector. The GFB feature is computed from

a 64-channel gammatone filterbank, decimating to 100 Hz to give a 10 ms frame shift
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Figure 2.5: Multi-resolution cochleagram feature for clean utterance “bin blue at e
one now”.

and results in a 64-D vector. Combining these gives the 123-D ARPMG feature,

xARPMG, which is produced at a 100 Hz frame rate.

2.3.2 Visual feature extraction

The visual feature selected is the active appearance model (AAM) which has proven

to be an effective feature within visual-only and audio-visual ASR (Thangthai et al.

[2015]; Lan et al. [2009]; Websdale and Milner [2015]) and is a model-based com-

bination of shape and appearance. AAMs require labelled data with landmarks to

generate features and use a model to perform this task automatically. The model
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requires hand labelled training images to learn the variation in mouth shapes and

in this work 43 training images were selected with 101 landmarks tracked. An ex-

ample labelled image is shown in Figure 2.6, where 40 and 26 landmarks represent

the outer and inner lip respectively, with extra landmarks for the eyes and jaw line,

which assist the model in locating the face and fitting landmarks. A new model

is produced by selecting only the mouth landmarks, and is used to produce AAM

features, xAAM = [st at], that comprise shape, st, and appearance, at, components

for time t.

Figure 2.6: Hand labelled landmarks for AAM tracking and feature extraction.

The shape feature, s, is obtained by concatenating n, x and y coordinates that

form a two-dimensional mesh of the mouth, s = (x1y1, ..., xnyn)T . A model that

allows linear variation in shape is produced using PCA,

s = s0 +
m∑

i=1

pisi (2.5)

where s0 is the base shape, si are the shapes corresponding to the m largest eigen-

vectors and pi are shape parameters. Coefficients comprising 90 % of the variation

are selected, resulting in a vector size of 8 shape coefficients, st.

The appearance feature, a, is obtained from the pixels that lie inside the base

mesh, s0 (Cootes et al. [2001]). As with the shape model, an appearance model, a,
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can also be expressed with linear variation,

a = a0 +
m∑

i=1

qiai (2.6)

where a0 is the base appearance, ai are the appearances that correspond to the m

largest eigenvectors and qi are appearance parameters. Coefficients comprising 95 %

of the variation are selected, giving a vector size of 15 appearance coefficients, at.

Combining the shape and appearance features gives an AAM vector, xAAM, with

23 dimensions which is extracted from the video at a rate of 25fps. Due to the

difference in frame rates between acoustic and AAM features, visual features are

upsampled through interpolation to that of the acoustic features.

2.4 Feed-forward neural network (DNN)

architecture and training

The supervised learning framework selected is key to the success and accuracy of the

speech enhancement system. For speech enhancement using masking algorithms, the

model used is required to learn a mapping from input features to target ideal binary

masks (IBM). This is achieved within model training, where examples of known

noisy speech plus video and ideal mask pairings are used to train a model capable of

learning target masks. The model can then be used in live noisy conditions, when

separate clean and noise sources are not available and as such an ideal mask cannot

be produced, to predict an estimation of an ideal mask. This estimated mask can

then be applied to the noisy speech signal to produce the enhanced speech signal.

Previous speech enhancement systems have shown a clear progression on the

supervised learning framework used to train such models. The models used have

progressed from simple multilayer perceptrons (MLPs) (Hu and Wang [2004]; Jin

and Wang [2009]; Chen et al. [2014]), Gaussian mixture models (GMMs) (Kim et al.

[2009]), support vector machines (SVMs) (Han and Wang [2012]; Wang and Wang
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[2013]) and finally deep neural networks (DNNs) (Zhao et al. [2016]; Chen and Wang

[2018]).

Ideal Binary 
Mask (IBM)

Backpropagation

DNN Predicted Binary 
Mask (PBM)

Loss 
Function

Input 
Features

DNN Training

Figure 2.7: Overview of training DNNs for binary mask estimation.

This work uses DNNs as the model for learning the mapping between input

features and target masks. Figure 2.7 shows an overview of how DNNs are trained.

The DNN takes features as input and outputs a predicted binary mask (PBM).

The error between the PBM and IBM is calculated through a loss function, and

passed back through the DNN through backpropagation. The DNN updates internal

weighting, and the procedure of calculating error is repeated, with error minimisation

being the overall goal.

Feed-forward neural networks are constructed from a series of fully-connected

layers. Layers consist of a number of nodes, each take as input all outputs from the

previous layer for calculating a single output per node, where a non-linear activation

function is then applied to the output of certain layers. A simple single-layer DNN

is shown in Figure 2.8, which learns a mapping from input sequence, x = [x1; x2; x3],

to target y. The DNN consists of a single hidden layer, h, and outputs an estimation

of the target output, ŷ. The hidden layers perform feature extraction by learning

non-linear combinations of the inputs, where individually the features may not be

particularly descriptive (Murphy [2012]).

The output of the hidden layer, h, is calculated as:

h = σ(Wᵀx + b) (2.7)
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Figure 2.8: Computation of a typical feed-forward neural network.

which is a function of the input parameters, x, and the weighted connections be-

tween the two layers, W. A bias term, b, is included to provide each neuron (or

node) in the input layer with a constant output, performing a similar role to the

intercept in standard linear regression. In practice, however, the bias terms are

usually incorporated into the weight parameter matrix. In order to learn non-linear

mappings of inputs, the output from h is subject to a non-linear and differentiable

activation function, σ, such as the sigmoid (logistic), tanh function, or the rectified

linear unit (ReLU) (Maas et al. [2013]). The ReLU function is a non-saturating

activation function, and is calculated as:

σ(x) = max(0, x) (2.8)

Conversely, the tanh and sigmoid functions both saturate given large input values.

A benefit of using ReLU activations is that training is completed several times faster

over sigmoid functions (Krizhevsky et al. [2012]). It is important that a non-linearity
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activation is applied otherwise the DNN will be linear combinations of the inputs,

and the activation function is required to be differentiable for training weight (and

bias) parameters when the gradient descent method is used in training.

To derive the required weight parameters for each of the layer connections, the

backpropagation of errors algorithm, used in conjunction with gradient descent op-

timisation, is applied to minimise the error between the estimated output, ŷ, and

ideal target, y. The error is calculated through the loss function, L. Loss functions

determine the overall performance of the DNN, and effectively decide which features

are learnt within the DNN. The choice of loss function is key for the success of the

model. Loss functions are therefore application dependent, whether classification

based (for binary masking) or regression based (for ratio masking). This work ex-

plores and proposes different loss functions within classification, for binary mask

estimation to improve the resulting intelligibility of the enhanced signal. Details of

the loss functions used in this work are provided in Section 2.5.

x2 h3 ŷt Lt yt

x1 h2

h1

x3 h4

h5

Figure 2.9: Computation of a typical feed-forward neural network with dropout.

Care must be taken when training neural networks as they are prone to over-
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fitting on the training set if there is a lack of variation within the training material.

To prevent over-fitting the dropout technique (Srivastava et al. [2014]), is used within

the DNN architecture. During training, neurons (or nodes) are selected at random

and dropped, meaning the neuron and its connections are temporarily removed from

the network for that particular instance or set of training examples (mini-batch).

Figure 2.9 shows an example of dropout applied to the example network in Figure

2.8, where neurons x2, h2 and h4 were dropped, drastically reducing the number

of connections. A probability of p = 0.5 is typically used for dropout applied to

fully-connected hidden layers, and a probability close to or equal to 0, for dropping

input units. The effect of applying dropout during training reduce the large model,

into smaller thinned models. For estimation, the output is the average of all thinned

models. This achieves a similar effect to training a large ensemble of models and

averaging the predictions of all models (Goodfellow et al. [2013, 2016]).

Training of the networks is performed using the resilient backpropagation algo-

rithm (Adam) (Kingma and Ba [2014]), as training concludes considerably faster

than the standard backpropagation algorithm. The training data (training set and

validation set) are grouped into mini-batches of 256 examples, with z-score normal-

isation applied to the input features. Normalising standardises each input using its

mean and standard deviation, and helps the network to converge. Normalisation

through z-score calculates the mean and standard deviation for each coefficient in

the input feature vector, across all samples in the training set:

z-score(x) =
(x− µ)

σ
(2.9)

where µ and σ are the mean and standard deviation at for all feature coefficients

within the input x, calculated across all examples within the training set. The

calculated µ and σ are used to z-score normalise data within the validation set and

test set.

The DNN weight values are initialised with uniformly distributed random vari-

ables in the range −0.01 to 0.01, and the learning rate is fixed at 0.0001 for DNNs.
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To further prevent over-fitting early stopping of training (Prechelt [1998]) was used

when the validation score (error score calculated on the validation set) did not im-

prove after 5 further epochs, where an epoch is a full pass of the training set and

validation set.

The final DNN architecture selected for this task is shown in Figure 4.3 and

comprises 4 dense layers containing 1024 rectified linear units (ReLU) and a final

sigmoid output layer. The number of fully-connected or dense layers, and number of

units in each layer were optimised within a parameter grid search, the total number

of layers was varied between 2 and 5, and the number of units was selected from

[256, 512, 1024, 2048]. The model takes as input a window of stacked input features

Xt = [xt−K ; ...; xt; ...; xt+K ], and outputs a vector corresponding to the central frame

from the input window at time t, Ŷt = [yt]. Including temporal information along

with static features has shown to improve performance across many applications

(Furui [1986]; Hanson and Applebaum [1990]; Healy et al. [2013, 2015]; Zhao et al.

[2016]; Chen and Wang [2018]).
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Figure 2.10: Feed-forward (DNN) speech enhancement architecture.

2.5 Perceptually motivated loss functions

Feed-forward neural networks (DNN) are used to learn a mapping from input fea-

tures to target binary masks. Section 2.4 detailed how DNNs are trained, revealing

that the choice of loss function plays an important role in the performance of the

DNN. Binary mask estimation is treated as a classification problem. Classifica-

tion applications usually maximise the classification accuracy through the binary

cross-entropy (CE) loss function in training, whereas this work proposes two new
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perceptually motivated loss functions as alternatives to the CE loss function, based

on the HIT-FA rate, specifically designed for speech enhancement applications (Web-

sdale and Milner [2017a,b]). A review of classification accuracy and HIT-FA rate

objective measures is provided, before introducing the CE loss function and two new

perceptually motivated loss functions inspired by the HIT-FA rate.

2.5.1 Objective measures of predicted binary mask quality

The quality of the predicted binary masks (PBM) is key to the success of the speech

enhancement system. Without high quality masks, the enhanced speech signal will

contain unwanted artefacts, caused by errors from over-suppressing speech domi-

nant T-F units and under-suppressing noise dominant T-F units. Mask quality is

calculated by comparing the PBM with the reference ideal binary mask (IBM).

Table 2.1: Relationship between the IBM and PBM.

PBM(t, f)

IBM(t, f)
1 0

1 True Positive (TP) False Positive (FP)

0 False Negative (FN) True Negative (TN)

Table 2.1 shows the relationship between the PBM and the reference (or target)

ideal binary mask (IBM). Given that the PBM(t, f) is 1 (i.e predicted to be speech

dominant), the outcome is either a true positive (TP) if the IBM(t, f) is also 1 (i.e

also speech dominant), or is a false positive (FP) if the IBM(t, f) is 0 (i.e noise

dominant). Now given that the PBM(t, f) is 0 (i.e predicted to be noise dominant),

the outcome is either a true negative (TN) if the IBM(t, f) is also 0 (i.e also noise

dominant), or is a false negative (FN) if the IBM(t, f) is 1 (i.e speech dominant).

Therefore, the overall outcome is either true or false whether the PBM(t, f) =

IBM(t, f), and is either positive or negative whether the PBM(t, f) = 1 or 0. The

sum of TPs, FPs, FNs and TNs across all T-F units are calculated from Equations

2.10 through 2.13, where for clarity y and ŷ are used to represent the IBM and
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PBM respectively.

TP =
T∑

t=1

F∑

f=1

[
y(t,f)ŷ(t,f)

]
(2.10)

FP =
T∑

t=1

F∑

f=1

[
(1− y(t,f))ŷ(t,f)

]
(2.11)

FN =
T∑

t=1

F∑

f=1

[
y(t,f)(1− ŷ(t,f))

]
(2.12)

TN =
T∑

t=1

F∑

f=1

[
(1− y(t,f))(1− ŷ(t,f))

]
(2.13)

Objective measures then use these four summations (TP, FP, FN, TN) to cal-

culate the quality of the predicted mask. A commonly used objective measure for

binary mask quality is classification accuracy, calculated as:

Accuracy =
TP + TN

TP + FP + FN + TN
(2.14)

=
1

TF

T∑

t=1

F∑

f=1

[
y(t,f)ŷ(t,f) + (1− y(t,f))(1− ŷ(t,f))

]
(2.15)

which provides a measure of how accurate the PBM is compared to the IBM, cal-

culating the percentage of correctly labeled T-F units (TP+TN) from all T-F units

(T ×F ). An alternative measure of mask quality is the hit minus false alarm (HIT-

FA) rate (Kim et al. [2009]), calculated as:

HIT-FA =
TP

TP + FN
− FP

FP + TN
(2.16)

=
1

R

T∑

t=1

F∑

f=1

[
y(t,f)ŷ(t,f)

]
− 1

S

T∑

t=1

F∑

f=1

[
(1− y(t,f))ŷ(t,f)

]
(2.17)

where R is the number of T-F units within y that should be retained (1s) and S is
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the number of T-F units within y that should be suppressed (0s),

R =
T∑

t=1

F∑

f=1

[
y(t,f)

]
(2.18)

S =
T∑

t=1

F∑

f=1

[
(1− y(t,f))

]
(2.19)

which instead provides a measure which compares accuracy of labelling speech dom-

inant T-F units (HITs or TPs) minus errors in labelling noise dominant T-F units

(FAs or FPs). The number of HITs determines how much speech is retained, whereas

the number of FAs determines how much noise is incorrectly retained (i.e noise which

has not been sufficiently suppressed).

Both classification accuracy and HIT-FA are maximised by achieving high TPs

and high TNs (or specifically low FPs within HIT-FA), however the HIT-FA rate

has been shown to correlate more closely with speech intelligibility compared with

classification accuracy (Kim et al. [2009]). This is due to a potential bias found

within classification accuracy, which is discussed further in Section 2.5.4.

2.5.2 Binary cross-entropy (CE) loss function

Binary cross-entropy (CE) is a standard loss function used within DNN training

for classification tasks (Rubinstein and Kroese [2013]) and forms the baseline loss

function. The aim of CE is to maximise the accuracy of the estimated mask where

accuracy is defined as the proportion of correctly labeled T-F units. The CE loss,

LCE, is calculated as:

LCE = − 1

TF

T∑

t=1

F∑

f=1

[
y(t,f) log(ŷ(t,f)) + (1− y(t,f)) log(1− ŷ(t,f))

]
(2.20)

where y and ŷ are vectors that comprise concatenated frames of T-F units for each

mini-batch in DNN training, from the IBM and PBM respectively. Each of these

vectors comprises T time frames and F filterbanks.
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2.5.3 HIT-FA (HF) loss function

The first perceptually motivated loss function (HF) is based on optimising the HIT-

FA rate, which several studies have shown correlates more closely to intelligibility

than mask accuracy (Kim et al. [2009]; Healy et al. [2013]; Chen et al. [2014]; Healy

et al. [2015]; Chen et al. [2016]). In terms of the loss function, HITs refer to the

proportion of correctly labeled target-dominant T-F units while FAs refer to the

proportion of incorrectly labeled noise-dominant T-F units. Studies have shown

that achieving high HITs (accurately labelling speech dominant T-F units) and low

FAs (accurately labelling noise dominant T-F units) produces higher intelligibility

(Kim et al. [2009]). Details of the HIT-FA rate are provided in Section 2.5.1.

The key difference between the CE and HF loss functions is that CE calculates

accuracy over all T-F units together, whereas HF calculates the accuracy of target-

dominant (1) and noise-dominant (0) T-F units separately. HIT-FA has a range

between 1 and -1, with 1 being best performance. However within DNN training

loss is minimised, therefore −(HIT-FA) = −HIT+FA is minimised, to give best

performance at -1 and remove this discrepancy. The HIT-FA loss, LHF, is calculated

as:

LHF = − 1

R

T∑

t=1

F∑

f=1

[
y(t,f)ŷ(t,f)

]
+

1

S

T∑

t=1

F∑

f=1

[
(1− y(t,f))ŷ(t,f)

]
(2.21)

where R is the number of T-F units within y that should be retained (1s) and S

is the number of T-F units within y that should be suppressed (0s). The first part

concerning R calculates the number of HITs (−HIT), and the second concerning S

calculates the number of FAs (+FA).
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2.5.4 Binary cross-entropy HIT-FA hybrid (CEHF) loss

function

Within an IBM the number of retained T-F units, R, and number of suppressed

units, S, are generally not equal. In most cases there are more noise-dominant T-F

units than target-dominant units, due mainly to non-speech areas. The HF loss

function is calculated as proportions of R and S separately, and is therefore less

affected by bias towards a difference between R and S (shown later for an example

binary mask). Conversely, the CE loss function is calculated as an overall accuracy

of R and S and is therefore biased towards the greater of the two (shown later for

an example binary mask).

Inspiration from both the HF loss function and CE loss function produces a

hybrid cross-entropy HIT-FA (CEHF) loss function by modifying the CE function

to remove this bias. To do this the ratio between R and S is adjusted by applying

a weighting term ω to the portion related to S. The cross-entropy HIT-FA loss

function, LCEHF, is calculated as:

LCEHF = − 1

TF

T∑

t=1

F∑

f=1

[
y(t,f) log(ŷ(t,f)) + ω(1− y(t,f)) log(1− ŷ(t,f))

]
(2.22)

where the weighting term, ω, can adjust the balance between 1s and 0s, by reducing

or increasing the influence of errors from suppressions (right side of equation 2.22).

The weighting term could have been applied for adjusting the influence of errors

from retained T-F units, but this can be achieved by using a value of ω > 1.

To further show the differences between the loss functions, each loss function is

represented as a set of scales given an example mask. Each set of scales represent

a summation within the loss function. An example ideal binary mask is shown in

Figure 2.11, where the black squares represent retain and white suppress. In our

example there are 12 black squares and 24 white squares, giving a ratio of 1 : 2

between R and S.
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Figure 2.11: Ideal binary mask example.

The CE loss function can be represented as a single scale between the number of

target-dominant (retain) and noise-dominant (suppress) T-F units within the sum-

mation, shown in Figure 2.12. In the example the number of suppressions outweighs

the number of retains, which causes the CE loss function to favour its accuracy

towards suppressing (0).

Σ
N

Retain Suppress

Figure 2.12: Binary cross-entropy loss function example.

The HF loss function can be represented as two scales, one for the summation for

HITs calculated from the retain T-F units, and the second for FAs calculated from

the suppress T-F units, shown in Figure 2.13. Due to the separate summations, the

difference in number between retain and suppress has no impact on the loss function

favouring one over the other.

Figures 2.12 and 2.13 show that the CE loss function is biased to the S due to

the greater number of white squares, and that the HF loss function is not affected
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Figure 2.13: HIT-FA loss function example.

by this bias. Therefore setting the weighting term ω within CEHF to remove the

bias could maximise HIT-FA rate. Therefore, in order for the ratio between R and

S to be such that R = S, a weight of ω = R/S is applied. Figure 2.14 shows how

the weighting applied to suppressions causes the overall scale to become balanced

and unbiased just as the HF loss function, with ω = 12/24 = 1/2. The example has

a bias towards S, therefore this normalisation will cause an increase of HITs at a

cost of increasing FAs. The opposite would occur if the bias was towards R. A

reduction to overall classification accuracy will occur in all cases where R 6= S prior

to normalisation.

Retain Suppress

Σ
N

Figure 2.14: Cross-entropy HIT-FA hybrid loss function example.
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2.6 Experimental results

The performance of feature extraction methods, loss functions, and the inclusion of

visual information within feed-forward neural networks (DNN) is compared within

binary mask estimation speech enhancement. Firstly, the feature extraction methods

outlined in Section 2.3 are optimised across audio-only, visual-only and audio-visual

models using the binary cross-entropy (CE) loss function (Section 2.5.2). Secondly,

the binary cross-entropy HIT-FA hybrid (CEHF) loss function is optimised for HIT-

FA rate. Finally, the best performing feature extraction methods from Section

2.6.1 is used to compare the performance of using the binary cross-entropy (CE)

loss function, HIT-FA (HF) loss function and binary cross-entropy HIT-FA hybrid

(CEHF) loss function for binary mask estimation across varying noise type and SNR

conditions.

The first experiment compares feature extraction methods outlined in Section

2.3, namely multi-resolution cochleagrams (MRCG), complementary feature set

(ARPMG) and active appearance models (AAM). Initially audio-only and visual-

only models are compared to find the best performing feature extraction methods,

before combining into audio-visual models. This experiment is conducted in babble

noise at −5 dB, for audio-only, visual-only and audio-visual models using the val-

idation set, and optimises input window width. The best performing features are

selected for further analysis.

The second experiment takes the best performing features, and maximises the

proposed CEHF loss function for HIT-FA rate. The CEHF loss function contains

a weighting term, ω, which is adjusted to achieve maximum HIT-FA rate, and can

either be set to a fixed value, or dynamically set per minibatch during training

(i.e ω = R/S). This experiment is conducted in babble noise and factory noise at

−5 dB, for audio-visual models using the validation set. The best performing ω

configuration within CEHF is selected for further analysis.

The final experiment compares the performance of the CE loss function, HF
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loss function and CEHF loss function in varying noise types and SNRs conditions,

specifically babble and factory noise at SNRs of −10 dB, −5 dB, 0 dB and 5 dB,

again in audio-only, visual-only and audio-visual models.

Across all experiments, objective measures are used to evaluate the performance

of each model configuration. Various objective measures are available, such as

frequency-weighted segmental SNR (Hu and Loizou [2008]), normalised covariance

metric (Holube and Kollmeier [1996]) and the coherence speech intelligibility index

(Kates and Arehart [2005]). This work uses classification accuracy (Rubinstein and

Kroese [2013]) and HIT-FA rate (Kim et al. [2009]) to determine the accuracy of the

predicted masks. This work also uses PESQ (Rix et al. [2001]) and ESTOI (Jensen

and Taal [2016]) for measuring the quality and intelligibility of the enhanced sig-

nals, which have been shown to work well in many applications (Ma et al. [2009];

Websdale et al. [2015]).

All experiments are speaker dependent and use a single speaker (speaker 12) from

the GRID dataset (details provided in Section A.1) which contains 1000 utterances,

800 are selected for neural network training of which 160 are removed for the val-

idation set. The remaining 200 utterances are allocated to the test set. The same

split of data is used across all experiments, i.e the training, validation and test set is

unchanged between experiments. Noise files are taken from the NOIZEUS dataset

(details provided in Section A.2).

The DNN models were implemented within the Lasagne framework (Dieleman

et al. [2015]) with the Theano (Theano Development Team [2016]) back-end. Input

data was z-score normalised and grouped into mini-batches of 256. To prevent

overfitting, dropout of 0.2 was applied between all layers and early stopping (Prechelt

[1998]) was used when the validation score did not improve after 5 further epochs.

Training used backpropagation with the Adam optimiser (Kingma and Ba [2014])

and a learning rate of 0.0001, minimising the selected loss function.
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2.6.1 Comparing feature extraction methods

An initial comparison is made between the feature extraction methods outlined in

Section 2.3, namely multi-resolution cochleagrams (MRCG), complementary feature

set (ARPMG) and active appearance models (AAM). Audio-only and visual-only

experiments are first performed, with the best performing acoustic feature then

selected for use in audio-visual experiments. The window width size of input feature

context Xt = [xt−K ; ...; xt; ...; xt+K ] is also compared, with width K ranging from 1

to 17 across all experiments. For this investigation, experiments are conducted in

babble noise at −5 dB only.

Figure 2.15 shows the intelligibility score produced from ESTOI for all features

across the validation set. The validation set was selected for this initial comparison

as it is effectively parameter searching for the optimal window width K and the

feature set to be used in future experiments.
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Figure 2.15: Effect of feature extraction methods and temporal window width on
intelligibility (ESTOI) in babble noise at −5 dB.

Comparing initially the window width K across all features, we find performance

increases up to a width of 11 before flattening. On average the best performing
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window is of size 15, which is equivalent to a total window of 320 ms. Therefore a

window of k = 15 is selected for future experiments.

When comparing the two acoustic features for audio-only mask estimation, MRCG

and ARPMG, results show that the MRCG feature consistently outperforms ARPMG

across all window widths with an average improvement of 4.0 in terms of ESTOI.

This is attributed to using a cochleagram based framework. The MRCG is more

closely related to the framework and target mask, where both are generated using

cochleagrams. The complementary feature set does contain a gammatone feature,

however, does not represent the energy of each frame as found within the cochlea-

grams used in MRCG. Although the features used within the complementary feature

set are successful in other tasks, for this specific task and framework, the MRCG

feature is more appropriate.

Now looking at the visual-only performance using AAMs, the performance is

almost the same as that of MRCG with a window width above 7, and consistently

better than ARPMG across all window widths, with an average of 3.4 in terms of

ESTOI over ARPMG. This performance is surprising given that visual-only does

not contain information about the noise type or level. The DNN is learning a

mapping from purely mouth movements to an acoustic T-F mask. If the exact same

mouth sequence is seen in different utterances with different noise segments, the

DNN would still output the exact same mask, which therefore suggests the DNN is

learning a mean output mask for each input sequence of mouth movements. It is

worth recognising that these experiments are at low SNR (−5 dB) where the acoustic

information is more corrupted, yet the visual information is unaffected.

For audio-visual masking, the acoustic MRCG feature and visual AAM feature

are combined through stacking on input to the DNN. This combination provides

large gains over both audio-only and visual-only models, with an average gain of 6.2

in terms of ESTOI over MRCG. Combining both modalities into a single feature

provides a complementary feature for the DNN at this low SNR, where the visual

information provides the mouth movement (narrowing down the potential output
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mask options), and the acoustic information provides information about the noise

(fine tuning the output mask per noise level).

2.6.2 Maximising HIT-FA rate with loss functions

In Section 2.5 two perceptual loss functions were proposed to maximise HIT-FA rate

instead of classification accuracy. Within CEHF, a weighting term ω is introduced

to counter the bias found in CE. From the example shown in Section 2.5.4, it was

hypothesised that setting ω = R/S would maximise HIT-FA rate. This hypothe-

sis is explored by varying ω between 0 and 1, and show the performance of the

other loss functions. The experiments are performed within an audio-visual model

(MRCG+AAM), with a window of k = 15 as this was found to have best perfor-

mance in Section 2.6.1, in babble and factory noise at −5 dB. Figure 2.16 shows the

resulting HIT-FA rate for the validation set.
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Figure 2.16: Effect on HIT-FA rate across loss functions in babble and factory noise
at −5 dB for audio-visual.

When comparing HF against CE, results find that the HF provides large improve-

ments over CE for HIT-FA rate across both noise conditions. This is unsurprising

considering HF was designed to maximise the HIT-FA rate. Now considering the

CEHF loss function, performance of CEHF steadily improves over CE as ω is re-
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duced from 1 (where ω = 1 is equivalent to using the CE loss function), reducing

the bias towards suppression and increasing the importance of retaining T-F units.

When setting ω = R/S, shown as a magenta star, peak HIT-FA rate is achieved across

both noise conditions confirming our hypothesis, giving performance equivalent to

that of HF. When using the CEHF loss function in future experiments, ω is set to

R/S.

It is worth noting that setting ω = 0 causes the HIT-FA rate to become 0. This is

due to the error produced from suppressions is calculated as 0 within the loss function

(see Equation 2.22 within Section 2.5.4), causing the DNN to only minimise error

calculated from the T-F units concerned with retaining (speech dominant). This

results in an output mask containing only 1s, i.e all speech dominant (to reduce

error) and subsequently noise dominant T-F units are set to 1, producing a HIT-

FA rate of 0. When this mask containing only 1s is applied to the noisy speech,

no masking occurs and all T-F units are retained, producing the same unprocessed

noisy signal before enhancement, i.e no enhancement would occur.

2.6.3 Analysis across noise type and SNR

In Section 2.6.1 feature extraction methods were tested in babble noise at −5 dB

only, revealing extracting acoustic MRCG features, and visual AAM features to

perform best. This experiment uses the best performing features, and expands on

those tests to consider SNRs of −10 dB, −5 dB, 0 dB and 5 dB in both babble and

factory noise. Previously, the focus was on solely on intelligibility through ESTOI,

however now classification accuracy, HIT-FA rate and PESQ objective measures are

considered. Initially the performance of audio-only, visual-only and audio-visual

systems are compared using the CE loss function before evaluating the proposed

perceptually motivated loss function.
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2.6.3.1 Evaluating the binary cross-entropy loss function

This experiment explores the robustness of audio-only, visual-only and audio-visual

systems across varying SNR and noise conditions using the CE loss function using

the acoustic MRCG feature and visual AAM feature. Tables 2.2, 2.3 and 2.4 show

the full set of objective measures for the test across all noise type and SNR conditions

tests, for audio-only, visual-only and audio-visual models respectively. Figures 2.17

and 2.18 provide detailed breakdowns from Tables 2.2, 2.3 and 2.4 for babble noise

at −10 dB, −5 dB, 0 dB and 5 dB.
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Figure 2.17: Effect on mask classification accuracy and HIT-FA rate across SNR for
audio-only, visual-only and audio-visual in babble noise for binary mask estimation
using the binary cross-entropy (CE) loss function.

Focusing first on classification accuracy and HIT-FA rate, results show similar

trends for both measures across noise types and SNRs, with regards to model per-

formance, shown in Figure 2.17 for babble noise at SNRs from −10 dB to 5 dB.

Audio-visual models provide best performance across all noise types and SNRs for

both classification accuracy and HIT-FA rate. Audio-only performs well at high

SNRs, outperforming visual-only and reaching equivalent performance to audio-

visual. However, at low SNRs, audio-only performs particularly poor, falling below

visual-only. This is due to the high levels of noise at low SNRs, corrupting the

acoustic signal. The DNN is unable to extract useful information from the heavily
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degraded signal.

For visual-only systems, classification accuracy and HIT-FA rate provides a con-

sistent score across all SNRs for each noise type. This is due to the visual feature

being unaffected by noise type or SNR corrupting the audio stream, and the perfor-

mance is provided by how well the DNN can map the input visual features to the

target mask. The only difference between noise type and SNR configurations are

the configuration dependant target masks.

When comparing the performance of audio-visual against audio-only and visual-

only, an average improvement across both babble and factory noise at −10 dB for

classification accuracy of 3.2 and 1.2, and for HIT-FA rate of 15.6 and 2.9 can be

found over audio-only and visual-only models. Now comparing the performance

of audio-visual against visual-only (as audio-only performs equivalently to audio-

visual) across both babble and factory noise at 5 dB, an average improvement of 3.9

and 11.4, is found for classification accuracy and HIT-FA rate respectively.
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Figure 2.18: Effect on quality through PESQ and intelligibility through ESTOI
across SNR for audio-only, visual-only and audio-visual in babble noise for binary
mask estimation using the binary cross-entropy (CE) loss function.

Looking now at quality scores through PESQ and intelligibility with ESTOI,

similar trends as with classification accuracy and HIT-FA rate are found, where

audio-visual outperforms audio-only and visual-only. Audio-only performs poorly
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at low SNRs and well at high SNRs reaching equivalent performance to audio-visual.

Visual-only again performs well at low SNRs, this time reaching equivalent perfor-

mance to audio-visual, but poorly at high SNRs, shown in Figure 2.18 for babble

noise at SNRs from −10 dB to 5 dB. The performance between all systems for PESQ

is below that of unprocessed audio. However, for intelligibility all systems provide

large gains over unprocessed audio. This is a known side-effect from binary masking

based speech enhancement. Binary masking is focused on improving intelligibility

over quality, and our intelligibility results through ESTOI confirm this.

When comparing the performance of audio-visual against audio-only (as visual-

only performs equivalently to audio-visual) across both babble and factory noise at

−10 dB, an average improvement of 0.41 and 14.4, is found for PESQ and ESTOI

respectively. Now comparing the performance of audio-visual against visual-only (as

audio-only performs similarly to audio-visual) across both babble and factory noise

at 5 dB, an average improvement of 0.45 and 12.5, is found for PESQ and ESTOI

respectively. Audio-visual provides large gains over unprocessed audio across all

noise types and SNRs, specifically, an average improvement of 27.3 in ESTOI is

found for audio-visual models over unprocessed audio across babble and factory

noise across all SNRs.

Comparing the overall performance of audio-only, visual-only and audio-visual

systems across all noise types and SNRs, audio-visual models were found to consis-

tently provide best performance across all objective measures over audio-only and

visual-only. At high SNRs, the benefit gained from combining audio and visual

information over audio-only is reduced as the audio features are less degraded by

noise which allows the DNN to more effectively map to the target masks in these

less challenging conditions. At very low SNRs (−10 dB), the benefit gained with

audio-visual over visual-only is only found in classification accuracy and HIT-FA,

with both PESQ and ESTOI giving equivalent scores in performance.
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2.6.3.2 Evaluating the perceptually motivated loss functions

Section 2.6.3.1 explored the performance of audio-only, visual-only and audio-visual

systems across SNR and noise type with the CE loss function. This experiment

compares the performance of the proposed perceptually motivated loss functions

against the CE loss function under the same previously used noise conditions.

Tables 2.2, 2.3 and 2.4 show the full set of objective measures for the test across

all noise type and SNR conditions tests, for audio-only, visual-only and audio-visual

models respectively. Figures 2.19 and 2.20 provide detailed breakdowns from Tables

2.2, 2.3 and 2.4 for babble noise at −10 dB, −5 dB, 0 dB and 5 dB. The audio-visual

model was shown to consistently outperform (or match) both audio-only and visual-

only for all objective measures across all noise types and SNRs and is selected for

detailed analysis. The same performance trends between loss functions found for

audio-visual are also found for audio-only and visual-only.
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Figure 2.19: Effect on mask classification accuracy and HIT-FA rate across SNR
for CE, HF and CEHF loss functions in babble noise for audio-visual binary mask
estimation.

Focusing first on classification accuracy and HIT-FA rate, results show clear

differences between the CE and proposed HF and CEHF loss functions, shown in

Figure 2.19 for audio-visual models in babble noise at SNRs from −10 dB to 5 dB.

In classification accuracy, the CE loss function provides large gains over both HF
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and CEHF loss functions across all noise type and SNRs. This is expected as the

CE loss function is targeted to maximise accuracy. The hybrid CEHF loss function

has accuracy higher than HF at high SNRs but is equivalent at low. However, when

comparing HIT-FA rate, both the proposed HF and CEHF loss functions outperform

CE across all noise types and SNRs, with the CEHF loss function providing peak

performance over the HF loss function.

In terms of HITs, the CEHF and HF loss functions perform similarly, but the

main difference between them is that the CEHF loss function generates fewer FAs

compared to the HF loss function (shown in Tables 2.2, 2.3 and 2.4). Lowest HITs

and lowest FAs are found with the CE loss function due to it favouring 0s over 1s

in the mask, which is caused by the bias towards the larger of S and R. The CEHF

loss function is able to remove this bias and provides a balance between increasing

HITs without increasing as many FAs.
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Figure 2.20: Effect on quality through PESQ and intelligibility through ESTOI
across SNR for CE, HF and CEHF loss functions in babble noise for audio-visual
binary mask estimation.

Looking now at quality scores through PESQ and intelligibility with ESTOI, all

loss functions perform similarly across all noise types and SNRs, shown in Figure

2.20 for audio-visual models in babble noise at SNRs from −10 dB to 5 dB. Focusing

on quality through PESQ, both the proposed loss functions (HF and CEHF) provide
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improvements over the CE loss function, but again do not provide improvements over

unprocessed audio below 0 dB, with any performance gain being marginal.

Comparing now intelligibility as measured by ESTOI, the CE loss function out-

performs the HF loss function at lower SNRs while the HF loss function outperforms

CE at the higher 5 dB SNR for all noise types. Even though the HF loss function

outperforms CE with regards to the HIT-FA rate across all configurations, the large

number of FAs introduced by HF reduces the intelligibility to be lower than CE at

low SNRs. This shows that even a large increase in HITs does not compensate for a

large increase in FAs, which are more detrimental to intelligibility at low SNR than

at high SNR. When comparing the hybrid CEHF loss function the performance is

shown to outperform both CE at SNRs above −5 dB, and is slightly worse than CE

at −5 dB, but is shown to outperform the HF loss function across all noise types and

SNRs. The CEHF loss function had higher HIT-FA rate over CE across all SNR for

all systems, confirming that increasing the HIT-FA rate does increase intelligibility,

but the number of FAs introduced affects the resulting intelligibility. Reducing FAs

at low SNRs is critical whereas a higher HIT rate is more important at high SNRs.

Overall, with intelligibility being the main focus, all systems provide large gains in

ESTOI over unprocessed audio, with the bimodal audio-visual system outperforming

both audio-only and visual-only across all configurations. With regards to loss

functions, if the SNR is very low, CE is the loss function of choice, however at all

other SNRs, CEHF is the best performing loss function. CEHF provides the best

balance between both classification accuracy and the HIT-FA rate regarding all loss

functions, but favours HIT-FA rate over classification accuracy.
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Table 2.2: (AUDIO-ONLY) Classification accuracy (in %), HIT-FA (in %) PESQ
and ESTOI scores for the GRID dataset for audio-only binary mask estimation with
different loss functions in babble and factory noise at −10 dB, −5 dB, 0 dB and 5 dB.

Noise (dB) Loss Acc HIT-FA (FA) PESQ ESTOI

babble

-10

CE 85.3 51.2 (6.0) 0.97 26.9

HF 82.0 58.7 (15.7) 1.00 26.1

CEHF 81.3 59.4 (17.3) 1.04 25.2

unprocessed audio 1.61 10.6

-5

CE 89.2 67.3 (5.8) 1.39 46.3

HF 87.0 71.7 (12.0) 1.46 45.0

CEHF 86.9 72.2 (12.5) 1.50 44.5

unprocessed audio 1.82 20.3

0

CE 91.4 74.0 (4.7) 1.97 61.9

HF 89.7 78.8 (10.1) 1.98 62.2

CEHF 89.6 79.0 (10.4) 2.02 62.2

unprocessed audio 2.04 33.9

+5

CE 92.2 77.1 (4.6) 2.30 71.5

HF 90.2 81.5 (10.2) 2.33 73.2

CEHF 90.3 81.8 (10.2) 2.39 73.8

unprocessed audio 2.25 49.8

factory

-10

CE 89.9 58.1 (4.2) 0.91 28.1

HF 85.0 64.0 (13.5) 0.80 24.2

CEHF 82.2 63.6 (17.6) 0.86 22.5

unprocessed audio 1.46 10.5

-5

CE 92.6 70.5 (3.5) 1.44 44.4

HF 89.3 75.9 (10.0) 1.31 41.0

CEHF 89.3 76.7 (10.3) 1.39 42.9

unprocessed audio 1.66 20.1

0

CE 94.1 77.5 (3.0) 1.97 58.7

HF 92.0 83.1 (7.8) 1.90 59.0

CEHF 91.7 83.3 (8.3) 1.93 59.3

unprocessed audio 1.87 33.5

+5

CE 94.9 80.6 (2.8) 2.24 67.3

HF 92.1 85.7 (8.3) 2.24 69.9

CEHF 92.7 86.4 (7.5) 2.35 71.0

unprocessed audio 2.09 49.9
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Table 2.3: (VISUAL-ONLY) Classification accuracy (in %), HIT-FA (in %) PESQ
and ESTOI scores for the GRID dataset for visual-only binary mask estimation with
different loss functions in babble and factory noise at −10 dB, −5 dB, 0 dB and 5 dB.

Noise (dB) Loss Acc HIT-FA (FA) PESQ ESTOI

babble

-10

CE 88.1 66.0 (7.0) 1.41 42.6

HF 84.5 72.3 (16.9) 1.47 38.1

CEHF 84.9 72.4 (16.2) 1.50 38.6

unprocessed audio 1.61 10.6

-5

CE 88.2 66.1 (7.1) 1.51 47.9

HF 84.4 72.5 (17.2) 1.62 45.7

CEHF 84.7 72.5 (16.6) 1.65 45.8

unprocessed audio 1.82 20.3

0

CE 88.2 66.9 (7.4) 1.70 55.6

HF 85.2 72.5 (15.7) 1.81 55.7

CEHF 84.4 72.2 (17.1) 1.84 55.1

unprocessed audio 2.04 33.9

+5

CE 88.2 66.4 (7.2) 1.87 62.4

HF 84.8 72.3 (16.3) 2.00 65.1

CEHF 85.0 72.6 (16.1) 2.05 65.4

unprocessed audio 2.25 49.8

factory

-10

CE 91.0 68.7 (5.4) 1.22 40.7

HF 87.1 76.6 (13.5) 1.26 37.7

CEHF 87.3 76.3 (13.1) 1.31 38.0

unprocessed audio 1.46 10.5

-5

CE 90.9 69.1 (5.5) 1.42 46.0

HF 87.1 76.6 (13.5) 1.42 44.3

CEHF 87.2 76.4 (13.2) 1.47 44.9

unprocessed audio 1.66 20.1

0

CE 90.9 68.3 (5.3) 1.66 52.0

HF 87.4 76.5 (13.0) 1.69 54.1

CEHF 86.8 76.6 (13.9) 1.73 53.6

unprocessed audio 1.87 33.5

+5

CE 91.1 69.3 (5.4) 1.84 58.0

HF 86.8 76.9 (14.1) 1.94 62.7

CEHF 87.4 77.0 (13.1) 2.00 63.6

unprocessed audio 2.09 49.9
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Table 2.4: (AUDIO-VSIUAL) Classification accuracy (in %), HIT-FA (in %) PESQ
and ESTOI scores for the GRID dataset for audio-visual binary mask estimation with
different loss functions in babble and factory noise at −10 dB, −5 dB, 0 dB and 5 dB.

Noise (dB) Loss Acc HIT-FA (FA) PESQ ESTOI

babble

-10

CE 89.2 69.0 (6.5) 1.42 42.7

HF 86.8 73.3 (13.1) 1.44 39.3

CEHF 87.1 74.2 (12.9) 1.48 40.4

unprocessed audio 1.61 10.6

-5

CE 90.5 72.4 (5.7) 1.66 52.3

HF 88.4 77.2 (11.8) 1.71 50.5

CEHF 88.2 77.4 (12.2) 1.77 51.4

unprocessed audio 1.82 20.3

0

CE 91.7 76.0 (5.0) 2.05 63.9

HF 89.2 79.7 (11.5) 2.00 62.3

CEHF 89.8 80.5 (10.6) 2.09 64.2

unprocessed audio 2.04 33.9

+5

CE 92.2 77.6 (4.7) 2.32 77.6

HF 89.3 80.7 (11.6) 2.37 73.3

CEHF 90.6 82.0 (9.7) 2.42 74.3

unprocessed audio 2.25 49.8

factory

-10

CE 92.3 71.5 (4.2) 1.28 41.0

HF 89.4 78.3 (10.5) 1.26 38.3

CEHF 89.2 78.5 (10.9) 1.29 38.3

unprocessed audio 1.46 10.5

-5

CE 93.6 75.8 (3.4) 1.65 51.6

HF 90.9 81.5 (9.0) 1.54 48.9

CEHF 90.7 81.9 (9.5) 1.61 49.4

unprocessed audio 1.66 20.1

0

CE 94.3 78.9 (3.1) 2.01 60.6

HF 91.8 84.1 (8.4) 1.93 60.7

CEHF 92.0 84.5 (8.2) 2.01 61.5

unprocessed audio 1.87 33.5

+5

CE 94.9 80.9 (2.8) 2.28 67.7

HF 92.3 86.0 (8.1) 2.29 70.4

CEHF 92.8 86.6 (7.5) 2.38 71.5

unprocessed audio 2.09 49.9
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2.7 Conclusions

This work has examined the effect on intelligibility (ESTOI), quality (PESQ) and

mask accuracy (classification accuracy and HIT-FA) of including visual information

in binary mask estimation for speech enhancement. It was found that all systems

provide large gains in intelligibility over unprocessed, with largest gains found at

lower SNRs. Combining both audio and visual modalities into a single bimodal

audio-visual system provides largest gains across all noise types and SNRs, con-

firming that combining audio and visual features provides a robust complimentary

feature set.

This work also proposed two new perceptually motivated loss functions for binary

mask estimation based speech enhancement, inspired by the HIT-FA rate which is

known to correlate closely to speech intelligibility. A hybrid binary cross-entropy

HIT-FA loss function (CEHF) was proposed to reduce the bias found within binary

cross-entropy (CE) by adjusting the ratio between 1s and 0s inspired by HIT-FA.

Evaluations using classification accuracy, HIT-FA rate, PESQ and ESTOI reveal

that the proposed loss functions provide performance gains in HIT-FA and PESQ

across all noise types and SNRs tested over the standard binary cross-entropy (CE)

loss function.

Even though both HF and CEHF loss functions outperform the CE loss function

for HIT-FA rate across all noise types and SNRs, the large number of FAs introduced

reduces the intelligibility to be lower than CE at low SNRs. This shows that even

a large increase in HITs does not compensate for a large increase in FAs, which are

more detrimental to intelligibility at low SNR than at high SNR. Reducing FAs at

low SNRs is critical whereas a higher HIT rate is more important at high SNRs.



Chapter 3

Ratio masking

3.1 Introduction

Previous work in Chapter 2 explored speech enhancement using binary masks. It

was found that large gains in intelligibility could be found over unprocessed audio

for audio-only, visual-only and audio-visual models. However, binary masking failed

to provide any benefits in quality. This work instead explored speech enhancement

using ratio masking, which is known to provide improvements in quality and intelli-

gibility in ideal conditions (Wang et al. [2014]; Healy et al. [2017]). Unlike in binary

masking where each time-frequency (T-F) unit is either fully retained or fully sup-

pressed, ratio masking aims to retain only a proportion which is associated with the

level of speech present in the T-F unit. The ideal ratio mask calculation is shown in

Section 3.2, which produces a mask containing values in the range 0 to 1, compared

to an IBM which produces masks containing fixed values of 0 and 1. This change

from fixed values to varying values reduces the effect of transitioning between speech

dominant and noise dominant frames, and effectively smooths the resulting signal

reducing distortions. This reduction in introduced distortions is how the IRM is

able to improve both quality and intelligibility compared to an IBM. Overall speech

intelligibility and quality is found to be increased for the IRM over the IBM.

55
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Just as with binary masking (Chapter 2), in practice an IRM is not available

and instead the ratio mask must be estimated from the noisy signal. This allows

supervised learning to be used to map features extracted from noisy speech to a

ratio mask. The algorithm then uses a model trained with known noisy speech and

ideal mask pairings to predict and output the ideal mask. The model can then be

used in live noisy conditions, when separate clean and noise sources are not avail-

able, to predict an estimation of an ideal mask (predicted mask). This predicted

ratio mask (PRM) can then be applied to the noisy speech signal to produce the

enhanced speech signal. This work uses deep feed-forward neural networks (DNN)

for modelling the relationship between input noisy speech and target ratio masks,

which have previously been shown to perform well for DNN based ratio mask es-

timation (Narayanan and Wang [2013]; Healy et al. [2015, 2017]; Chen and Wang

[2018]).

This work also considers supplementing acoustic features with visual speech to

improve the mapping for mask estimation, which was found to be provide peak per-

formance in binary masking. The use of visual speech information in traditionally

audio-only speech processing applications has given significant gains in performance

in noisy conditions. For example, in automatic speech recognition (ASR), supple-

menting the audio with visual features has reduced error rates in low SNR conditions

(Thangthai et al. [2015]; Potamianos et al. [2003]; Heckmann et al. [2002]). A bene-

fit of using visual speech information within mask estimation is that visual features

are not degraded by acoustic noise, although in themselves they may not have the

discriminative ability that audio features possess in terms of mask estimation. To

investigate this we explore mask estimation, and subsequently speech intelligibility,

by comparing audio-only, visual-only and audio-visual speech enhancement models.

Figure 3.1 shows the training pipeline of the proposed audio-visual speech enhance-

ment system using feed-forward neural networks, and follows the same pipeline as

previously used for binary masking (Chapter 2), except now ratio masks are esti-

mated. Visual features are extracted from video and combined with acoustic fea-

tures extracted from noisy speech, before input into the feed-forward neural network
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(DNN) for temporal modelling to estimate the ratio mask. For testing purposes, es-

timated masks are applied to a cochleagram of the noisy speech which suppresses

noise-dominated T-F units and the remaining signals are overlapped and summed

to produce the enhanced signal, shown in Figure 3.2. The same pipeline is used

for all speech enhancement configurations, except the visual stream is removed for

audio-only models, and the audio stream is removed for visual-only models.
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Figure 3.1: Overview of training the ratio masking speech enhancement system.

The remainder of this chapter is organised as follows. Section 3.2 details how

ideal ratio masks are produced, and subsequently used for enhancement of noisy

speech. Section 3.3 provides an overview of acoustic and visual feature extraction

methods. The DNN architecture and training is introduced in Section 3.4, showing

the difference between classification based and regression based DNNs. Performance

evaluations are made in Section 3.5 which first compare the effectiveness of the

feature extraction methods outlined in Section 2.3 for audio-only, visual-only and

audio-visual models (Section 3.5.1). Section 3.5.2 compares the performance of ratio

masking across varying noise type and SNR conditions using the best performing
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Figure 3.2: Overview of applying the predicted ratio mask for speech enhancement
testing.

feature extraction methods from Section 3.5.1. A comparison is made between

estimating binary masks and ratio masks in Section 3.5.3. Finally, this chapter is

concluded in Section 3.6.

3.2 Ideal ratio masking

In CASA, enhanced speech is extracted by applying a mask to a time-frequency

(T-F) representation of noisy speech. In ideal conditions separate clean and noise

sources (i.e sources containing only clean or noise information) can be used to calcu-

late an ideal ratio mask (IRM). Figure 3.3 shows the pipeline for producing IRMs,

where cochleagrams are produced from separate speech and noise sources for produc-

ing T-F units, the IRM is then calculated between speech and noise cochleagrams.

Details of cochleagram production are provided in Section 2.2.1.

Similar to ideal binary masking (IBM), ideal ratio masking (IRM) retains speech

dominant T-F units and suppresses noise dominant T-F units. However, where as

an IBM is restricted to values of 1 and 0, an IRM can take any value in between,

and is instead defined as the ratio between speech and noisy speech with only the

proportion associated with speech for each T-F unit retained. The IRM is calculated
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Figure 3.3: Overview of producing ideal ratio masks (IRM).

as:

IRM(t, f) =

(
X(t, f)2

X(t, f)2 +D(t, f)2

)β
(3.1)

where X is the clean speech cochleagram, D the noise-only cochleagram, t and f

represent time frame and frequency bin respectively and β is a tuneable parameter

usually set to 0.5 as standard (Narayanan and Wang [2013]; Healy et al. [2015]). Just

as seen within binary masking, speech dominant T-F units produce values closer to

1 and noise dominant T-F units produce values closer to 0.
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Figure 3.4: Overview of enhancing noisy speech through ratio masking.

Calculated masks can then be applied to noisy speech producing the enhanced

signal. Figure 3.4 shows the pipeline for generating enhanced signals. The combined

noisy speech time domain signal is decomposed into T-F units, following the same

implementation to calculate a cochleagram, however the hamming windowed frames

are not summed. The IRM is then multiplied with the hamming windowed frames,
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before returning back into a time domain signal through overlap and adding, and

summing across gammatone filterbank responses. The same enhancement proce-

dure is applied when testing different models, except the IRM is replaced with the

predicted ratio mask (PRM) produced from the model output.

For the calculation of classification accuracy and HIT-FA rate objective measures,

a binary mask is required instead of a ratio mask. Therefore the ratio mask is

converted in to a binary mask, ÎBM, and calculated as:

ÎRM(t, f) =





1, if SNR(t, f) ≥ LC

0, otherwise

(3.2)

with

SNR(t, f) = 10 log10

(
IRM(t, f)1/β

1− IRM(t, f)1/β

)
(3.3)

where the local criterion (LC) is the threshold between speech dominant (1), and

noise dominant (0) T-F units. Previous studies have compared different values for

LC (Loizou and Kim [2011]; Healy et al. [2015]; Chen et al. [2016]), which have

shown an LC set 5 dB lower than the overall SNR provides best performance, and

is subsequently used in this work for all SNRs, and is equivalent to that used for

binary masking (Section 2.2.2).

3.3 Feature extraction for mask estimation

Feature extraction aims to identify suitably discriminative information in the noisy

input speech and video that enables a model to determine the speech dominant

proportion of each T-F units which will be retained. Previous work in Chapter

2, explored two methods of acoustic feature extraction (MRCG and ARPMG) and

visual feature extraction (AAM) within a binary mask estimation framework. The

same features are selected here for evaluation in ratio mask estimation.



CHAPTER 3. RATIO MASKING 61

The multi-resolution cochleagram (MRCG) feature combines 4 different cochlea-

grams, of both high and low resolution, into a single feature, and was specifically

designed for mask estimation based within a cochleagram framework (Chen et al.

[2014]). The complementary feature set (ARPMG) is an ensemble of commonly

used acoustic features, comprised of amplitude modulation spectrum (AMS), rela-

tive spectral transformed perceptual linear prediction (RASTA-PLP), mel-frequency

cepstral coefficients (MFCCs) and a gammatone filterbank (GFB). The specific im-

plementation used is taken from (Healy et al. [2015]). The active appearance model

(AAM) is a model-based combination of shape and appearance, producing a compact

feature representation of a mesh fitted to the speaker lips. Details of the implemen-

tations of MRCG, ARPMG and AAM feature extraction methods are discussed in

Sections 2.3.1.1, 2.3.1.2 and 2.3.2 respectively.

3.4 Feed-forward neural network (DNN) for ratio

mask estimation

This work uses the same pipeline and training procedure as previously used within

binary mask estimation (Section 2.4), except is trained to estimate an ideal ratio

mask (IRM). A DNN is used as the model for learning the mapping between in-

put features and target masks. Figure 3.5 shows an overview of how DNNs are

trained. The DNN takes features as input and outputs a predicted ratio mask

(PRM). The error between the PRM and IRM is calculated through a loss function,

and passed back through the DNN through backpropagation. The DNN updates

internal weighting, and the procedure of calculating error is repeated, with error

minimisation being the overall goal.

The same DNN architecture as used for binary masking is again used here for

ratio masking. The DNN architecture is shown in Figure 3.6 and comprises 4 dense

layers containing 1024 rectified linear units (ReLU) and a final output layer. To

enable the estimation of ratio masks, the output layer is changed from a sigmoid



CHAPTER 3. RATIO MASKING 62

Ideal Ratio 
Mask (IRM)

Backpropagation

DNN Predicted Ratio 
Mask (PRM)

Loss 
Function

Input 
Features

DNN Training

Figure 3.5: Overview of training DNNs for ratio mask estimation.

layer used in binary masking, to a linear layer for ratio masking, as the target

output is no longer constrained to values of 0 or 1. The model takes as input a

window of stacked input features X̂t = [xt−K ; ...; xt; ...; xt+K ], and outputs a vector

corresponding to the central frame from the input window at time t, Ŷt = [yt].
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Figure 3.6: Feed-forward (DNN) speech enhancement architecture.

This task is no longer a classification problem but regression, and therefore re-

quires a different loss function for the model to optimise. The standard loss function

used for regression tasks is mean squared error (MSE), and is consequently selected

for this task. The aim of MSE is to minimise the squared error between the ideal

ratio target mask (IRM) and predicted ratio mask (PRM), with LMSE calculated as:

LMSE =
1

TF

T∑

t=1

F∑

f=1

[
(y(t,f) − ŷ(t,f))

2
]

(3.4)

where y and ŷ are vectors that comprise concatenated frames of T-F units for each

mini-batch in DNN training, from the IRM and PRM respectively. Each of these
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vectors comprises T time frames and F filterbanks.

3.5 Experimental results

The performance of feature extraction methods and the inclusion of visual infor-

mation within feed-forward neural networks (DNN) is compared within ratio mask

estimation speech enhancement. Firstly, the feature extraction methods outlined

in Section 3.3 are optimised across audio-only, visual-only and audio-visual models.

The best performing feature extraction methods is then used to compare perfor-

mance cross varying noise type and SNR conditions.

The first experiment compares feature extraction methods outlined in Section

3.3, namely multi-resolution cochleagrams (MRCG), complementary feature set

(ARPMG) and active appearance models (AAM). Initially audio-only and visual-

only models are compared to find the best performing feature extraction methods,

before combining into audio-visual models. This experiment is conducted in babble

noise at −5 dB, for audio-only, visual-only and audio-visual models using the val-

idation set, and optimises input window width. The best performing features are

selected for further analysis.

The second experiment expands on the previous experiment by introducing addi-

tional noise types and varying SNRs, specifically babble and factory noise at SNRs

of −10 dB, −5 dB, 0 dB and 5 dB, again in audio-only, visual-only and audio-visual

models.

The DNN models were implemented within the Lasagne framework (Dieleman

et al. [2015]) with the Theano (Theano Development Team [2016]) back-end. Input

data was z-score normalised and grouped into mini-batches of 256. To prevent

overfitting, dropout of 0.2 was applied between all layers and early stopping (Prechelt

[1998]) was used when the validation score did not improve after 5 further epochs.

Training used backpropagation with the Adam optimiser (Kingma and Ba [2014])

and a learning rate of 0.0001, minimising the MSE loss function. All experiments
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use a single speaker (speaker 12) from the GRID dataset (details provided in Section

A.1), containing 1000 utterances which are allocated into 640, 160 and 200 for the

training, validation and test sets respectively.

3.5.1 Comparing feature extraction methods

An initial comparison is made between the feature extraction methods outlined in

Section 2.3, namely multi-resolution cochleagrams (MRCG), complementary feature

set (ARPMG) and active appearance models (AAM). Audio-only and visual-only

experiments are first performed, with the best performing acoustic feature then

selected for use in audio-visual experiments. The window width size of input feature

context Xt = [xt−K ; ...; xt; ...; xt+K ] is also compared, with width K ranging from 1

to 17 across all experiments. For this investigation, experiments are conducted in

babble noise at −5 dB only.

Figure 3.7 shows the intelligibility score produced from ESTOI for all features

across the validation set. The validation set was selected for this initial comparison

as it is effectively parameter searching for the optimal window width K and the

feature set to be used in future experiments.

Comparing initially the window width k across all features, we find similar trends

to that found within binary masking (Section 2.6.1), with performance increasing

up to a width of 13 before flattening. On average the best performing window is

of size 15, which is equivalent to a total window of 320 ms. Therefore a window of

k = 15 is selected for future experiments.

When comparing the two acoustic features for audio-only mask estimation, MRCG

and ARPMG, results show that the MRCG feature consistently outperforms ARPMG

across all window widths, just as that found in binary masking. For ratio masking

the difference between MRCG and ARPMG is increased with an average improve-

ment of 6.3 in ESTOI compared with 4.0 for binary masking. This increase in

performance for MRCG over ARPMG is attributed to using a cochleagram based
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Figure 3.7: Effect of feature extraction methods and temporal window width on
intelligibility through ESTOI in babble noise at −5 dB.

framework. The MRCG is more closely related to the framework and target mask,

where both are generated using cochleagrams. The complementary feature set does

contain a gammatone feature, however, does not represent the energy of each frame

as found within the cochleagrams used in MRCG. Although the features used within

the complementary feature set are successful in other tasks, for this specific task and

framework, the MRCG feature is more appropriate.

Now looking at the visual-only performance using AAMs, unlike in binary mask-

ing where performance was almost the same as that of MRCG with a window width

above 7, for ratio masking the performance is consistently worse than MRCG, sitting

halfway between MRCG and ARPMG. The difference between AAM and ARPMG

in ESTOI is an average improvement of 3.5 for ratio masking compared with 3.4

for binary masking. For ratio masking the performance of AAM is increased with

an average improvement of 3.2 in ESTOI over that found for binary masking. This

further confirms that the MRCG feature is the strongest and is more suited for ratio

masking compared to the complementary feature. Again just as with the binary
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masking experiment (Section 2.6.1), it is worth recognising that these experiments

are at low SNR (−5 dB) where the acoustic information is more corrupted, yet the

visual information is unaffected.

For audio-visual masking the acoustic MRCG feature and visual AAM feature are

combined through stacking on input to the DNN. This combination provides large

gains over both audio-only and visual-only models. An average gain in ESTOI of 6.4

for ratio masking compared to 6.2 found in binary masking shows that even though

the MRCG feature outperformed the AAM feature individually, when combined the

visual AAM still compliments the acoustic MRCG providing further performance

gains. Combining both modalities into a single feature provides a complementary

feature for the DNN at this low SNR, where the visual information provides the

mouth movement (narrowing down the potential output mask options), and the

acoustic information provides information about the noise (fine tuning the output

mask per noise level).

3.5.2 Analysis across noise type and SNR

In Section 3.5.1 feature extraction methods were tested in babble noise at −5 dB

only, revealing extracting acoustic MRCG features, and visual AAM features to

perform best. This experiment uses the best performing features, and expands on

those tests to consider SNRs of −10 dB, −5 dB, 0 dB and 5 dB in both babble and

factory noise. Previously, the focus was on solely on intelligibility through ESTOI,

however now classification accuracy, HIT-FA rate and PESQ objective measures are

considered.

Table 3.1 shows the full set of objective measures for the test set across all noise

type and SNR conditions tested, for audio-only, visual-only and audio-visual models

respectively. Objective measures selected are classification accuracy, HIT-FA rate,

PESQ and ESTOI. Figures 3.8 and 3.9 provide detailed breakdowns from Table 3.1

for babble noise at −10 dB, −5 dB, 0 dB and 5 dB.
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Figure 3.8: Effect on mask classification accuracy and HIT-FA rate across SNR
for audio-only, visual-only and audio-visual models in babble noise for ratio mask
estimation.

Focusing first on classification accuracy and HIT-FA rate, results show similar

trends for both measures across noise types and SNRs, with regards to model perfor-

mance, shown in Figure 3.8 for babble noise at SNRs from −10 dB to 5 dB. Audio-

visual models provide best performance across all noise types and SNRs for both

classification accuracy and HIT-FA rate. Audio-only performs well at high SNRs,

outperforming visual-only and reaching equivalent performance to audio-visual for

classification accuracy. However, at low SNRs, audio-only performs particularly

poor, falling below visual-only. This is due to the high levels of noise at low SNRs,

corrupting the acoustic signal. The DNN is unable to extract useful information

from the heavily degraded signal.

For visual-only systems, classification accuracy provides a consistent score across

all SNRs for each noise type. This is due to the visual feature being unaffected by

noise type or SNR corrupting the audio stream, and the performance is provided by

how well the DNN can map the input visual features to the target mask. However, for

HIT-FA rate, the performance is best at low SNRs and drops at higher SNRs. The

number of HITs is reduced at higher SNRs, and the number of FAs is also reduced

at higher SNRs, suggesting the DNN is favouring towards the suppressions. This
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is due from the increased difference between noise dominant and speech dominant

IRM values found at higher SNRs. At low SNRs, the speech dominant T-F units

produce IRM values closer to that of noise dominant, and as such when minimising

the MSE loss function, the mean between noise dominant and speech dominant is

closer, providing better performance in terms of HIT-FA rate. This reduction in both

HITs and FAs is equal in terms of the number of T-F units due to the classification

accuracy staying constant.

When comparing the performance of audio-visual against audio-only and visual-

only, an average improvement across both babble and factory noise at −10 dB for

classification accuracy of 2.7 and 1.7, and for HIT-FA rate of 13.3 and 4.4 can be

found over audio-only and visual-only models. Now comparing the performance of

audio-visual against visual-only (as audio-only performs similarly to audio-visual)

across both babble and factory noise at 5 dB, an average improvement of 4.4 and

21.1, is found for classification accuracy and HIT-FA rate respectively.

SNR (dB)
-10 -5 0 5

Q
u
a
li
ty

(P
E
S
Q
)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(a) PESQ

SNR (dB)
-10 -5 0 5

In
te
ll
ig
ib
il
it
y
(E

S
T
O
I)

0

10

20

30

40

50

60

70

80

A
V
AV
Unprocessed

(b) ESTOI

Figure 3.9: Effect on quality through PESQ and intelligibility through ESTOI across
SNR for audio-only, visual-only and audio-visual in babble noise for ratio mask esti-
mation.

Looking now at quality scores through PESQ and intelligibility with ESTOI,

similar trends as with classification accuracy and HIT-FA rate are found, where

audio-visual outperforms audio-only and visual-only. Audio-only performs poorly

at low SNRs and well at high SNRs reaching equivalent performance to audio-
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visual. Visual-only again performs well at low SNRs, this time reaching equivalent

performance to audio-visual, but poorly at high SNRs, shown in Figure 3.9 for

babble noise at SNRs from −10 dB to 5 dB.

The performance of all systems in PESQ provide large gains over unprocessed au-

dio. Average PESQ gains of 0.57, 0.53, and 0.69 are found for audio-only, visual-only

and audio-visual across all noise types and SNRs respectively. Also, the performance

of all systems in ESTOI provide large gains over unprocessed audio. Average ESTOI

gains of 28.6, 28.3, and 35.1 are found for audio-only, visual-only and audio-visual

across all noise types and SNRs respectively.

At low SNRs, when the audio is more corrupted, the visual-only system performs

as well as the audio-visual system, suggesting all the important information is held

within the visual stream. At high SNRs, the audio-only system performs as well

as the audio-visual system, suggesting all the important information is held within

the acoustic stream. This finding is similar to how stream weighting is controlled

within audio-visual ASR applications (Thangthai et al. [2015]). This confirms why

the audio-visual system performs best across all SNRs.

Comparing the overall performance of audio-only, visual-only and audio-visual

systems across all noise types and SNRs, audio-visual models were found to consis-

tently provide best performance across all objective measures over audio-only and

visual-only. At high SNRs, the benefit gained from combining audio and visual

information over audio-only is reduced as the audio features are less degraded by

noise which allows the DNN to more effectively map to the target masks in these

less challenging conditions. At low SNRs, the benefit gained over visual-only is

only found in classification accuracy and HIT-FA, with both PESQ and ESTOI pro-

viding equivalent performance, showing visual information provides effectively all

information needed.
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3.5.3 Comparing binary mask and ratio mask estimation

In Section 3.5.2 the best performing acoustic and visual feature extraction methods

were evaluated across varying noise type and SNR conditions for ratio mask estima-

tion. Now, the difference in performance between estimating binary masks (Section

2.6.3) and estimating ratio masks is compared. Figure 3.10 shows a comparison

between quality using PESQ and intelligibility using ESTOI for binary mask and

ratio mask trained models in babble noise at −10 dB, −5 dB, 0 dB and 5 dB. Similar

results and trends are also found across factory noise.
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Figure 3.10: Effect on quality through PESQ and intelligibility through ESTOI
across SNR for audio-only, visual-only and audio-visual in babble noise for binary
mask estimation and ratio mask estimation.
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Focusing first at quality through PESQ, the overall performance of ratio masking

is considerably larger than binary masking for all models, across all noise types and

SNRs, with large increases found over unprocessed audio across all ratio masking

models. Binary masking is shown to provide little (if any) performance improvement

over unprocessed audio, yet large gains are found for ratio masking. An average

performance difference of 0.72, 0.73 and 0.66 can be found for audio-only, visual-only

and audio-visual ratio masking models compared to binary masking models across

all SNRs for babble noise. This reveals a key difference between binary masking

and ratio masking and shows a clear indication of the benefit of ratio masking over

binary masking. The ability to adjust the amount of each T-F unit is retained or

suppressed instead of retaining/suppressing the entire unit smooths the transitions

between non-speech units, removing distortions caused by enhancement via binary

masking.

Looking now at intelligibility through ESTOI, a smaller difference between binary

masking and ratio masking models is found than that found in PESQ, with ratio

masking models still outperforming binary masking models across all SNRs. An

average performance difference of 5.2, 4.1 and 5.6 can be found for audio-only, visual-

only and audio-visual ratio masking models compared to binary masking models

across all SNRs for babble noise.

Overall, audio-only, visual-only and audio-visual models have large gains in qual-

ity and gains in intelligibility for ratio masking models over binary masking models.

This is attributed to the varying values within the IRM, compared to the fixed val-

ued IBM. The performance increase in PESQ over unprocessed audio is particularly

important, considering binary masking was unable to provide little/no benefit over

unprocessed audio.
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Table 3.1: Classification accuracy (in %), HIT-FA (in %) PESQ and ESTOI scores
for the GRID dataset for ratio mask estimation in babble and factory noise at −10 dB,
−5 dB, 0 dB and 5 dB.

Noise (dB) Model Acc HIT-FA (FA) PESQ ESTOI

babble

-10

A 86.3 56.0 (6.3) 1.82 32.2

V 87.7 67.0 (8.4) 2.09 45.5

AV 89.4 71.2 (7.0) 2.11 48.1

unprocessed audio 1.61 10.6

-5

A 89.8 69.6 (5.8) 2.19 51.6

V 88.0 66.5 (7.6) 2.24 51.6

AV 90.8 74.7 (6.0) 2.38 58.6

unprocessed audio 1.82 20.3

0

A 91.6 74.6 (4.6) 2.60 66.5

V 88.1 63.6 (6.0) 2.44 59.7

AV 91.9 76.5 (4.8) 2.66 68.7

unprocessed audio 2.04 33.9

+5

A 92.1 74.5 (3.5) 2.88 77.2

V 87.3 53.8 (3.2) 2.63 68.2

AV 92.3 76.4 (4.0) 2.92 78.0

unprocessed audio 2.25 49.8

factory

-10

A 90.3 59.7 (4.1) 1.95 32.8

V 90.8 67.5 (5.3) 2.17 47.5

AV 92.5 72.0 (4.0) 2.18 48.4

unprocessed audio 1.46 10.5

-5

A 93.0 71.9 (3.2) 2.31 52.0

V 91.0 66.6 (4.8) 2.32 53.0

AV 93.6 75.8 (3.3) 2.43 58.8

unprocessed audio 1.66 20.1

0

A 94.3 77.2 (2.7) 2.64 67.2

V 91.0 64.0 (4.1) 2.49 60.2

AV 94.4 79.0 (2.9) 2.71 69.9

unprocessed audio 1.87 33.5

+5

A 94.7 77.8 (2.2) 2.93 78.2

V 91.0 59.9 (3.1) 2.65 69.3

AV 94.8 78.5 (2.3) 2.96 79.0

unprocessed audio 2.09 49.9
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3.6 Conclusions

This work has examined the effect on intelligibility (ESTOI), quality (PESQ) and

mask accuracy (classification accuracy and HIT-FA) of including visual information

in ratio mask estimation for speech enhancement. It was found that all systems

provide large gains in intelligibility over the unprocessed audio, with largest gains

found at lower SNRs. Combining both audio and visual modalities into a single

bimodal audio-visual system provides largest gains across all noise types and SNRs,

confirming that combining audio and visual features provides a robust complimen-

tary feature set. At high SNRs, the benefit gained from combining audio and visual

information over audio-only is reduced as the audio features are less degraded by

noise which allows the DNN to more effectively map to the target masks in these

less challenging conditions. At low SNRs, the benefit gained over visual-only is

only found in classification accuracy and HIT-FA, with both PESQ and ESTOI pro-

viding equivalent performance, showing visual information provides effectively all

information needed.

This work also compared the previous results found within binary masking based

speech enhancement (Section 2.6.3) with ratio masking based speech enhancement,

revealing that across all measures, ratio masking outperforms binary masking for

audio-only and audio-visual systems, for visual-only ratio masking outperferms bi-

nary masking across all measures except for HIT-FA rate. Largest gains are found

for quality (PESQ) and intelligibility (ESTOI). The impact on quality provides a

key difference between the two masking methods, where binary masking provides

little/no improvement over unprocessed audio, yet ratio masking yields large im-

provements. This is attributed to the constrained nature of the binary mask, a

binary mask is a representation of a ratio mask that has been quantised into two

classes, speech dominant and noise dominant. This quantisation removes and re-

duces the resolution and detail found within the ratio mask, which produces the

degradation in performance.



Chapter 4

Ratio masking using recurrent

neural networks

4.1 Introduction

Previous work in Chapter 3 compared binary masking with ratio masking, find-

ing ratio masking to outperform binary masking across most objective measures.

This previous work was conducted using feed-forward neural networks (DNNs) for

mask estimation. It was found for both binary and ratio masking that the amount

of temporal context supplied to the DNN affected the performance of the model.

Temporal modelling is key for learning the relationship between input features and

target masks within supervised learning. In this chapter the focus is on improving

temporal modelling by using recurrent neural networks (RNNs) instead of DNNs

within the speech enhancement framework for ratio mask estimation. Specifically,

comparisons are made between three methods of temporal modelling, using feed-

forward neural networks, using standard bi-directional recurrent neural networks,

and using the proposed bi-directional recurrent feed-forward hybrid neural network

(RNN-DNN). Two implementations of recurrent cells are also compared, namely the

traditional long short-term memory cell (LSTM) and gated recurrent unit (GRU).

74
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Recurrent neural networks have been applied successfully in many speech related

tasks, such as speech recognition (Graves and Schmidhuber [2005]; Graves et al.

[2013a,b]; Graves and Jaitly [2014]) and TTS synthesis (Fan et al. [2014]). Other

fields of work where recurrent neural networks have been used are handwriting

generation (Graves [2013]), image captioning (Kiros et al. [2014]; Vinyals et al.

[2015b]; Xu et al. [2015a]) and parsing (Vinyals et al. [2015a]). Recurrent networks

are specifically designed for processing a sequence of values, such as a context window

of speech, and as such can process larger lengths of sequences than is feasibly possible

with other network architectures, such as DNNs. This is because RNNs process each

item in a sequence individually through time, and as such connections within the

layer are only connected to a single frame on input, plus additional connections

from within the recurrent cell. Whereas in DNNs the full sequence is concatenated

into a single vector, and as such connections within the layer are connected to all

frames of the sequence on input. Therefore, the full number of connections within an

RNN layer is considerably smaller than that in a DNN for larger sequence lengths.

Another property of RNNs traversing the sequence each frame sequentially allows the

sequence to be of variable length, whereas DNNs require a fixed length of sequence

due to the fully connected property of feed-forward dense layers.

Initially, recurrent networks were uni-directional and therefore processed the in-

put sequence in a single direction, propagating information from the past to the

current step within the sequence. In the context of speech processing this therefore

accounts for carry-over coarticulation but does not account for anticipatory coarticu-

lation. For the previously used DNN architecture, a symmetric context surrounding

the speech at a particular time was used as input into the network, and as such the

network had access to both carry-over and anticipatory coarticulations. To account

for this within a recurrent network, the sequence can still contain both past and

future context, but instead of traversing the sequence in a single forward direction,

a second traversal is performed in the backward direction creating a bi-directional

RNN. This allows the bi-directional RNN, at each step within the sequence, to have

access to both past information (from the forward direction) and future information
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(from the backward direction) providing information regarding both carry-over and

anticipatory coarticulations. The choice of recurrent cell used within recurrent lay-

ers effects the ability to learn temporal information. Various studies have evaluated

the performance of recurrent cells (Chung et al. [2014]; Jozefowicz et al. [2015]; Greff

et al. [2017]), revealing no single implementation performs best for all applications,

and as such this work compares two popular implementations, namely long short-

term memory cell (LSTM) (Graves [2013]) and gated recurrent unit (GRU) (Cho

et al. [2014]).

Due to the importance of modelling both carry-over and anticipatory coartic-

ulation for speech enhancement we implement bi-directional recurrent neural net-

works only, and do not consider uni-directional RNNs. This work continues to

consider audio-only, visual-only and audio-visual models. Figure 4.1 shows the

training pipeline of the proposed audio-visual speech enhancement system using

recurrent neural networks. Visual features are extracted from video and combined

with acoustic features extracted from noisy speech, before input into the recurrent

neural network (RNN) for temporal modelling to estimate the ratio mask. For test-

ing purposes, estimated masks are applied to a cochleagram of the noisy speech

which suppresses noise-dominated T-F units and the remaining signals are over-

lapped and summed to produce the enhanced signal, shown in Figure 4.2. The same

pipeline is used for all speech enhancement configurations, except the visual stream

is removed for audio-only models, and the audio stream is removed for visual-only

models.

The remainder of this chapter is organised as follows. Section 4.2 provides an

overview of the baseline DNN model and acoustic and visual feature extraction meth-

ods. Section 4.3 introduces recurrent neural networks and the proposed recurrent

feed-forward hybrid neural network architecture, while Section 4.4 describes the im-

plementation of recurrent cells used within recurrent neural networks, namely long

short-term memory cells (LSTM) and gated recurrent units (GRU), additional layer

normalisation extensions. Performance evaluations are made in Section 4.5 which



CHAPTER 4. RATIO MASKING USING RNN 77

Gammatone
FilterbankSpeech

IRMNoise

Speech
Cochleagram

Gammatone
Filterbank

Backpropagation

RNN

Speech 
+ 

Noise 
Mixture

Predicted Ratio 
Mask (PRM)

Loss 
Function

Noise
Cochleagram

Feature 
Extraction

Temporal 
Windowing

Feature 
Extraction

Visual
Series

Ideal Ratio Mask 
Production

RNN Training

Ideal Ratio Mask 
(IRM)

Figure 4.1: Overview of training the RNN ratio masking speech enhancement sys-
tem.
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Figure 4.2: Overview of applying the RNN predicted ratio mask to noisy speech for
speech enhancement testing.

first compare the effectiveness of the temporal architectures outlined in Sections 4.2

and 4.3 for audio-only, visual-only and audio-visual models (Section 4.5.1). Sec-

tion 4.5.2 compares the performance of feed-forward neural networks, with standard

recurrent neural networks and the proposed recurrent feed-forward hybrid neural
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network for temporal modelling. Experiments are conducted across varying noise

type and SNR conditions and used the best performing temporal architecture con-

figurations from Section 4.5.1. Finally, this chapter is concluded in Section 4.6.

4.2 Baseline feed-forward neural network based

temporal model

Previous work in Chapters 2 and 3 explored using feed-forward neural networks

(DNNs) for temporal modelling, using standard feature extraction methods for in-

put within binary masking and ratio masking speech enhancement. This found that

using DNNs within ratio masking provided best performance across all objective

measures for audio-only, visual-only and audio-visual models. This forms our base-

line model for this work and is the chosen architecture for the temporal model. The

DNN architecture is shown in Figure 4.3 and comprises 4 dense layers containing

1024 rectified linear units (ReLU) and a final linear output layer. The model takes

as input a window of stacked input features X̂t = [xt−K ; ...; xt; ...; xt+K ], and out-

puts a vector corresponding to the central frame from the input window at time t,

Ŷt = [yt]. Detailed implementations of the DNN are in Section 3.4.

f1 f2 f3 f4 f5

LQS
XW

RX
WSX
W

GH
QV
H

GH
QV
H

GH
QV
H

GH
QV
H

Figure 4.3: Feed-forward (DNN) speech enhancement architecture.

From our previous work in Chapters 2 and 3, the acoustic feature MRCG and vi-

sual feature AAM was found to perform best, and as such are selected for this work.

The multi-resolution cochleagram (MRCG) feature combines 4 different cochlea-

grams, of both high and low resolution, into a single feature, and was specifically

designed for mask estimation based within a cochleagram framework (Chen et al.
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[2014]). The active appearance model (AAM) is a model-based combination of

shape and appearance, producing a compact feature representation of a mesh fitted

to the speaker lips. Details of the implementations of MRCG and AAM feature

extraction methods are discussed in Sections 2.3.1.1 and 2.3.2 respectively. For

audio-only experiments the input feature x = [xMRCG], for visual-only experiments

the input feature x = [xAAM] while for audio-visual experiments the input feature

x = [xMRCG; xAAM], where ; is a concatenation function.

4.3 Recurrent neural network based temporal

models

Our previous work in Chapter 3 used feed-forward neural network regressors (DNNs)

for temporal modelling to learn a mapping from input features X to target ideal ra-

tio masks Y. This is now expanded with bi-directional recurrent neural networks

(RNNs) which model the temporal structure found within speech. This work also

proposes a bi-directional recurrent feed-forward hybrid architecture (RNN-DNN)

which combines the input and output of the recurrent network, allowing the recur-

rent layers to focus on temporal information with static information provided from

the input. The aim of this section is to show the different recurrent architectures,

while Section 4.4 provides detailed implementations of the recurrent cells.

4.3.1 Recurrent neural network (RNN)

We propose extending the DNN implementation (Section 4.2) by using bi-directional

recurrent neural networks (RNN), which have shown improvements in other speech

processing fields such as recognition (Graves and Schmidhuber [2005]; Graves et al.

[2013a]) and TTS synthesis (Fan et al. [2014]), and model the temporal structure

found within speech. Bi-directional RNNs process context windows in both forward

and backward directions, enabling the model to learn both carry-over and anticipa-
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tory coarticulations.

xt ht gt ŷt Lt yt

xt−1 ht−1 gt−1 ŷt−1 Lt−1 yt−1

xt+1 ht+1 gt+1 ŷt+1 Lt+1 yt+1

Figure 4.4: Computation of a typical bi-directional recurrent neural network.

A simple bi-directional RNN is shown in Figure 4.4 with ht representing the

state of the sub-RNN moving forward through time, and gt representing the sub-

RNN moving backward through time. This allows the output units ŷt to provide

a prediction that depends on both past and future context. This mapping is then

optimised with the target yt via the loss function Lt for each time step t.

The RNN selected for this task comprises 2 pairs of recurrent forward and back-

ward layers, each consisting of 512 (256 forward and 256 backward) recurrent cells

(explained in Section 4.4), such that pair fn = [hn; gn], followed by 2 further 1024

ReLU dense layers and a linear output layer, shown in Figure 4.5. The number of

recurrent layer pairs, dense layers and number of units in each layer were optimised

within a parameter grid search, the total number of layers was fixed at 4 to match

the DNN architecture, i.e 1 to 3 recurrent layer pairs with 3 to 1 dense layers.
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Figure 4.5: Recurrent (RNN) speech enhancement architecture.
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The first recurrent layer pair f1 traverses the full input context window:

h1 = [xt−K , ...,xt, ...,xt+K ] (4.1)

g1 = [xt−K , ...,xt, ...,xt+K ] (4.2)

and the second recurrent layer pair f2 traverses the full context window from f1:

h2 = [h1
t−K , ...,h

1
t , ...,h

1
t+K ] (4.3)

g2 = [h1
t−K , ...,h

1
t , ...,h

1
t+K ] (4.4)

The output from f2 is then reshaped such that each time step from the context

window is passed through the DNN layers (f3 and f4) separately, ie ωx× 512, where

ωx is the width of the input window, producing a separate output from the network

for each time step of size 64 (ωx × 64), as our target IRM is a vector of size 64 for

each time step, before reshaping back into context window form Ŷt = [64 × ωx].

This final reshaped predicted output is used within the loss function for training

with target Y = [yt−K , ...,yt, ...,yt+K ].

When applying this predicted mask to the noisy speech in the enhancement stage,

only the central frame at time t is used, providing the same output as that from the

DNN model. In preliminary tests, extracting the central frame outperformed taking

an average across all frames within the context window. Although the network could

have been trained to output only the central frame, it was found that the network

learned a more accurate central frame at time t when also learning the target for all

other time steps, t−K to t+K.

4.3.2 Recurrent feed-forward hybrid neural network

(RNN-DNN)

This work proposes an extension to the standard RNN architecture by introduc-

ing a skip connection between the input layer and the final output of the recurrent
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layers. The aim is to allow the recurrent layers to focus on temporal modelling

while the skip connection provides static information. This new network structure

is defined as a recurrent feed-forward hybrid neural network (RNN-DNN). Inspira-

tion comes from traditional speech processing tasks, where temporal derivatives are

stacked with static features before passing into models, traditionally by concatenat-

ing velocity and acceleration features with static frames (Furui [1986]; Hanson and

Applebaum [1990]). This approach is part of the ETSI standard (ETSI [2002]) for

MFCC production used commonly in acoustic speech processing tasks.

xt ht gt ŷt Lt yt

xt−1 ht−1 gt−1 ŷt−1 Lt−1 yt−1

xt+1 ht+1 gt+1 ŷt+1 Lt+1 yt+1

Figure 4.6: Computation of a typical bi-directional recurrent feed-forward hybrid
neural network.

A simple bi-directional RNN-DNN is shown in Figure 4.6 with ht representing

the state of the sub-RNN moving forward through time, and gt representing the sub-

RNN moving backward through time. The extra connection from xt to ŷt allows

the output units ŷt to provide a prediction that depends on both past and future

context and the current static input frame. This mapping is then optimised with

the true target yt via the loss function Lt for each time step t.

The RNN-DNN selected for this task follows the same construction as the RNN

shown in Section 4.3.1 with the additional RNN-DNN skip connections, shown in
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Figure 4.7.
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Figure 4.7: Recurrent feed-forward hybrid (RNN-DNN) speech enhancement archi-
tecture.

The skip connection between the input layer and the final output from the re-

current layers is achieved by concatenation such that the input into the first dense

layer (f3) is:

f3 = [X; f2], where f2 = [h2; g2] (4.5)

The remaining layers and reshaping steps are the same as that for the RNN

described in Section 4.3.1, producing the same size output.

4.4 Recurrent neural network cells

The recurrent layers in the temporal models discussed in Section 4.3 are constructed

from recurrent cells or units instead of the standard units used in dense layers. The

recurrent units calculate their output based on not only the current time step, but

previous time steps that they have seen. The two most popular recurrent units

are the long short-term memory cell (LSTM) and gated recurrent unit (GRU), and

are both selected for evaluation in our experiments. Various studies have evaluated

which recurrent unit is best (Chung et al. [2014]; Jozefowicz et al. [2015]; Greff

et al. [2017]), finding that with small modifications to either LSTM or GRU for the

specific task, performance was generally equal using either, with no clear best unit.

In this work we compare both units using their standard implementations.
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4.4.1 Long short-term memory (LSTM)

The long short-term memory cell (LSTM) (Graves [2013]) has been shown to provide

state-of-the-art performance in many speech processing fields such as recognition

(Graves and Schmidhuber [2005]; Graves et al. [2013a,b]; Graves and Jaitly [2014])

and text-to-speech synthesis (Fan et al. [2014]), and is generally the recurrent unit of

choice. The benefit of using LSTM cells comes from the ability to store information

(within a cell), allowing long range information found within the input sequence

can be exploited, unlike standard RNN units which do not contain cells and are

only able to access short term information. Additionally, LSTM cells are able to

overcome the problems of vanishing gradients typically found with standard RNN

units.

ct

Cell

××

×

ftForget Gate

itInput Gate otOutput Gate

ht

Activation

htxt

xt xt

xt

Figure 4.8: Long short-term memory cell.

The LSTM cell makes use of gates to control the flow of input and output in-

formation from both the cell itself and it’s internal storage cell. Figure 4.8 shows

a diagram of the connections between gates, storage cell, inputs and outputs found

within the LSTM cell. The LSTM cell contains three gates: input, output, and

forget. The forget gate, ft, decides which information currently within the internal
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storage cell (ct) should be kept or forgotten, and is calculated as:

ft = σ(xtWxf + ht−1Whf + Wcf � ct−1 + bf ) (4.6)

where xt is the input data, ht−1 is the activation of the LSTM cell of the previous

time step and ct−1 is the information stored within the internal storage cell of the

previous time step. These connections to ct−1, providing information stored within

the internal storage cell, for all gates are called peephole connections, which have

been shown to provide increased performance (Gers and Schmidhuber [2000]). The

contribution of input, previous activation and storage cell are determined by the

weighting terms Wxf , Whf , Wcf and bias bf for the forget gate calculation. The

output of the forget gate is controlled by the activation of the sigmoid function,

σ. When the output is close to 0, the information in the storage cell is forgotten,

whereas when the output is close to 1, the information in the storage cell is retained.

The forget gate decided how much of the previous data in the storage cell should

be forgotten, now the input gate decides how much of the current input frame should

also be stored within the storage cell. The input gate, it, is similar to that of the

forget gate and is calculated as:

it = σ(xtWxi + ht−1Whi + Wci � ct−1 + bi) (4.7)

where the contribution of input, previous activation and storage cell are determined

by the weighting terms Wxi, Whi, Wci and bias bi for the input gate calculation.

Similar to the forget gate, the output of the input gate is controlled by the activation

of the sigmoid function, σ. When the output is close to 0, the information in the

input is not stored in the storage cell, whereas when the output is close to 1, the

information in input is stored in the storage cell. The data stored in the internal

storage cell, ct, is updated and calculated as:

ct = ft � ct−1 + it � τ(xtWxc + ht−1Whc + bc) (4.8)
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where activations of the forget gate removes old data, and activations of the input

gate store new data. Further contributions from the input and previous activation

are provided by the element-wise multiplication, (�), with the tanh function, τ , of

the weighted input and previous activation from terms Wxc, Whc and bias bc. The

τ operation is used instead of the sigmoid to avoid the vanishing gradient problem

when training recurrent neural networks, as the second derivative can sustain for a

long range before going to 0, unlike the sigmoid function.

The output gate, ot, determines what information currently stored in the internal

storage cell (ct) should be output, and is calculated as:

ot = σ(xtWxo + ht−1Who + Wco � ct + bo) (4.9)

where the key difference between the calculation of the output gate and forget gate

or input gate is only information stored in the storage cell and previous activation

is used for output gate calculation. The contribution of input, previous activation

and storage cell are determined by the weighting terms Wxo, Who, Wco and bias bo

for the output gate calculation. Similar to both the forget gate and input gate, the

output of the output gate is controlled by the activation of the sigmoid function,

σ. When the output is close to 0, the information in the storage cell is not output,

whereas when the output is close to 1, the information in the storage cell is output.

The final LSTM cell activation, ht, is calculated as:

ht = ot � τ(ct) (4.10)

where the final application of the tanh function, τ , ensures that the outputs from

the cell are in the range of −1 to 1.

4.4.2 Gated recurrent unit (GRU)

An alternative recurrent unit to the LSTM cell is the gated recurrent unit (GRU)

(Cho et al. [2014]) which instead of containing a specific internal storage cell to store
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data, uses only the current input and the activation of previous time step. This

means that to model long range information, the GRU must continue to output

required information within it’s activation, otherwise only short term information is

available.

ht

Activation

ht

×

utUpdate Gate

h̃t

×

rtReset Gate

xt

xt

xt

Figure 4.9: Gated recurrent unit.

Similar to the LSTM cell, the GRU makes use of gates to control the flow of input

and output information. Figure 4.9 shows a diagram of the connections between

gates, inputs and outputs found within the GRU. The GRU contains two gates:

reset and update. The reset gate, rt, is similar to the forget gate, decides which

information from the previous activation (ht−1) should be kept or reset, and is

calculated as:

rt = σ(xtWxr + ht−1Whr + br) (4.11)

where xt is the input data and ht−1 is the activation of the GRU of the previous

time step. The contribution of input and previous activation are determined by the

weighting terms Wxr, Whr and bias br for the reset gate calculation. The output

of the forget gate is controlled by the activation of the sigmoid function, σ. When

the output is close to 0, the information in the previous activation is reset, whereas
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when the output is close to 1, the information in the previous activation is retained.

The reset gate decided how much of the previous data in the storage cell should

be forgotten, now the update gate decides how much of the current activation should

be updated, similar to combining both the input gate and output gate within the

LSTM cell. The update gate, ut, is similar to that of the reset gate and is calculated

as:

ut = σ(xtWxu + ht−1Whu + bu) (4.12)

where the contribution of input and previous activation are determined by the

weighting terms Wxr, Whr and bias br for the update gate calculation. Similar

to the reset gate, the output of the update gate is controlled by the activation of the

sigmoid function, σ. When the output is close to 0, the information from the previ-

ous activation is not updated, whereas when the output is close to 1, the information

from the previous activation is updated.

Unlike the LSTM which has a dedicated cell state (ct), the GRU calculates a

candidate state, h̃t, from the current input, reset gate and previous activation,

calculated as:

h̃t = τ(xtWxh̃ + rt � (ht−1Whh̃) + bh̃) (4.13)

where activations of the reset gate removes the old activation, and activations of

from the input add new data. Further contributions from the input and previous

activation are provided by the element-wise multiplication, (�), of the weighted

previous activation and reset gate before adding the new weighted input data, using

terms Wxh̃, Whh̃ and bias bh̃. The tanh function, τ , is used instead of the sigmoid

function to avoid the vanishing gradient problem when training recurrent neural

networks, as the second derivative can sustain for a long range before going to 0,

unlike the sigmoid function.
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The final GRU activation, ht, is calculated as:

ht = (1− ut)� ht−1 + ut � h̃t (4.14)

where the final activation is a linear sum of the previous activation, ht−1 and can-

didate state h̃t, controlled by the update gate ut.

4.4.3 Layer normalisation

Recurrent networks require longer processing time to train in comparison to feed-

forward networks, due to the self-looping involved in unravelling the time steps. A

recent approach to improve convergence in feed-forward and convolutional networks

is to introduce batch normalisation (Ioffe and Szegedy [2015]), which adds normali-

sation steps within the network architecture. Normalisation standardises each input

using its mean and standard deviation. This is similar to z-score normalisation,

which is computed over the entire training set, is instead computed over batches.

Batch normalisation works well when the input is a fixed length, which is required

in feed-forward and convolutional networks. However, recurrent networks can take

input sequences of varying length, which therefore requires an approach different to

batch normalisation, called layer normalisation (Ba et al. [2016]). Layer normali-

sation adjusts the computation of recurrent units to include normalisation steps on

gate inputs within each hidden layer. The normalisation function LN is defined as:

LN(χ;α,β) =
(χ− µ)

σ
�α + β (4.15)

with

µi =
1

N

N∑

n=1

χi,n, σi =

√√√√ 1

N

N∑

n=1

(χi,n − µi)2 (4.16)
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where µi and σi are the mean and standard deviation at position i of the input vector

χ and N is the length of the input feature when training the network. Parameters

α (initialised as all 1s) and β (initialised as all 0s) are the gain and bias of the same

size as χ. Both α and β are not fixed but learnable parameters, as even though

they are initialised to give zero mean and unit variance, this is unlikely be optimal

for the network (particularly when considering non-linear activations), and as such

are updated and learnt during training. Layer normalisation, is calculated over all

elements across the feature vector. In our work we compare both LSTM cells and

GRU units where layer normalisation can be applied to all connections using the

input, xt, previous activation, ht−1, for both LSTM cells and GRUs, and the current

internal cell state, ct, for LSTM cells. The layer normalised version of an LSTM cell

is calculated as (where α and β parameters within LN are removed for simplicity):

it = σ(LN(xtWxi) + LN(ht−1Whi) + Wci � ct−1 + bi) (4.17)

ft = σ(LN(xtWxf ) + LN(ht−1Whf ) + Wcf � ct−1 + bf ) (4.18)

ct = ft � ct−1 + it � τ(LN(xtWxc) + LN(ht−1Whc) + bc) (4.19)

ot = σ(LN(xtWxo) + LN(ht−1Who) + Wco � ct + bo) (4.20)

ht = ot � τ(LN(ct)) (4.21)

and to a GRUs as:

rt = σ(LN(xtWxr) + LN(ht−1Whr) + br) (4.22)

ut = σ(LN(xtWxu) + LN(ht−1Whu) + bu) (4.23)

h̃t = τ(LN(xtWxh̃) + rt � LN(ht−1Whh̃) + bh̃) (4.24)

ht = (1− ut)� ht−1 + ut � h̃t. (4.25)
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4.5 Experimental results

The performance of using feed-forward neural networks (DNN), traditional recur-

rent neural networks (RNN) and the proposed recurrent feed-forward hybrid neural

networks (RNN-DNN) for temporal modelling is compared. Firstly, the temporal

architectures outlined in Sections 4.2 and 4.3 are optimised across audio-only, visual-

only and audio-visual models. The best performing temporal model is then used to

compare the performance against DNNs in varying noise type and SNR conditions.

The first experiment compares temporal model architectures outlined in Sections

4.2 and 4.3, recurrent neural network cells and the layer normalisation extension

outlined in Section 4.4. This experiment is conducted in babble noise at −5 dB, for

audio-only, visual-only and audio-visual models using the validation set for optimis-

ing input window width. The test set is then used with the best performing window

width to select which temporal architectures will be used for further analysis.

The second experiment expands on the previous experiment by introducing addi-

tional noise types and varying SNRs, specifically babble and factory noise at SNRs

of −10 dB, −5 dB, 0 dB and 5 dB, again in audio-only, visual-only and audio-visual

models.

The DNN and RNN models were implemented within the Lasagne framework

(Dieleman et al. [2015]) with the Theano (Theano Development Team [2016]) back-

end. Input data was z-score normalised and grouped into mini-batches of 256. To

prevent overfitting, dropout of 0.2 was applied between all layers and early stopping

(Prechelt [1998]) was used when the validation score did not improve after 5 further

epochs. Training used backpropagation with the Adam optimiser (Kingma and

Ba [2014]) and learning rates of 0.0001 for DNN and 0.001 for RNN, minimising

the MSE loss function. All experiments use a single speaker (speaker 12) from

the GRID dataset (details provided in Section A.1), containing 1000 utterances

which are allocated into 640, 160 and 200 for the training, validation and test sets

respectively.
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4.5.1 Comparing temporal model architectures

An initial comparison is made between the temporal model architectures outlined in

Section 4.2 for DNN and Section 4.3 for RNNs, recurrent neural network cells and

the layer normalisation extension outlined in Section 4.4. Experiments in Chapters 2

and 3 showed that the amount of temporal context supplied to the DNN affected the

performance of the model. This experiment first optimises the amount of temporal

context supplied to the recurrent temporal models using the validation set (Section

4.5.1.1). Then a comparison of the varying temporal architectures at the selected

window width is performed using the test set, to select which architectures will be

used in subsequent experiments (Section 4.5.1.2). All experiments are performed in

audio-only (MRCG feature), visual-only (AAM feature) and audio-visual (MRCG

+ AAM features) models in babble noise at −5 dB.

4.5.1.1 Optimising temporal window width

This experiment optimises the temporal window width of the different temporal

architectures outlined in Table 4.1. Firstly, the DNN is compared with a baseline

bi-directional RNN using LSTM cells (BiLSTM) and then against the GRU units

(BiGRU). The best performing recurrent unit is then used in subsequent models

which test our proposed RNN-DNN architecture and the effect of including layer

normalisation (LN). Figure 4.10 shows the intelligibility scores produced from ES-

TOI for all models and architectures across the validation set. An optimal window

width ωk within the input context window, X = [xt−K , ...,xt+K ], is explored by

varying K between 1 and 17 producing context windows ranging from 40 ms to

360 ms.

Focusing first on comparing the performance of DNN against BiLSTM and Bi-

GRU models, the DNN outperforms the BiLSTM architecture across nearly all win-

dow widths for audio-only, visual-only and audio-visual configurations. The DNN

also performs better than the BiGRU architecture for short window widths in audio-



CHAPTER 4. RATIO MASKING USING RNN 93

Table 4.1: Architecture configurations selected for analysis.

Model Network architecture

DNN Feed-forward neural network

BiLSTM Bi-directional recurrent neural network with LSTM cells

BiGRU Bi-directional recurrent neural network with GRU units

BiGRU-DNN Bi-directional recurrent feed-forward hybrid neural network

with LSTM cells

LNBiGRU Layer normalised bi-directional recurrent neural network

with GRU units

LNBiGRU-DNN Layer normalised bi-directional recurrent feed-forward

hybrid neural network with LSTM cells

only and audio-visual models, however at long window widths the BiGRU provides

large gains over the DNN architecture. The DNN performance stays flat as the

context window increases, showing it is unable to take advantage of the increased

context available. This shows that the recurrent models are able to learn a better

mapping of the longer temporal structure compared to the DNN, yet both perform

well with only local context. For visual-only, the DNN performs best across all

window widths. This is attributed to the lack of visual variation across time, the

visual stream is upsampled to match the acoustic frame rate, and as such provides

smoother yet smaller increments between frames. Using GRU units consistently

outperformed LSTM cells across all conditions and is chosen for further analysis.

Comparing now the proposed BiGRU-DNN architecture against the standard Bi-

GRU architecture, the BiGRU and BiGRU-DNN perform similarly across all window

widths and models. For audio-only BiGRU performs slightly better, yet for visual-

only and audio-visual models the BiGRU-DNN performed best. Introducing layer

normalisation through LNBiGRU and LNBiGRU-DNN architectures increases per-

formance for both architectures and across all models and window widths, offering

best performance found on the validation set.

Overall, comparing the effect of varying window width K within the different

temporal architectures across all model conditions, a similar trend is found with
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Figure 4.10: Effect of temporal network architecture and window width on intelligi-
bility (ESTOI) in babble noise at −5 dB for audio-only, visual-only and audio-visual
inputs.

the recurrent networks as with the feed-forward network. Intelligibility with ESTOI

increases as the window width increases, on average the best performing window

size is K = 15, giving an input context of 320 ms. A window width of K = 15 is

selected for experiments on the test set (Section 4.5.1.2) for choosing which temporal

architectures will be used in varying noise type and SNR conditions (Section 4.5.2).

4.5.1.2 Evaluating temporal model architecture performance

To compare the performance of the temporal architectures the test set is applied

with a context window of K = 15, which was found optimal in Section 4.5.1.1,

in babble noise at −5 dB to each model architecture outlined in Table 4.1. Table

4.2 shows the classification accuracy, HIT-FA rate, PESQ and ESTOI scores for all

models using the test set.
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Table 4.2: Classification accuracy (in %), HIT-FA (in %), PESQ and ESTOI scores
for the GRID dataset in babble noise at −5 dB with different temporal network ar-
chitectures, window = 31 (K = 15), using the test set.

Feat Network Acc HIT-FA (FA) PESQ ESTOI

A

DNN 89.8 69.6 (5.8) 2.19 51.6

BiLSTM 89.6 68.6 (5.6) 2.18 51.8

BiGRU 90.3 70.5 (5.1) 2.25 54.0

BiGRU-DNN 90.2 70.1 (5.1) 2.21 53.7

LNBiGRU 90.4 71.6 (5.5) 2.25 54.6

LNBiGRU-DNN 90.5 71.0 (4.9) 2.27 54.9

V

DNN 88.0 66.5 (7.6) 2.24 51.6

BiLSTM 87.9 66.2 (7.7) 2.25 51.0

BiGRU 87.8 66.0 (7.7) 2.20 48.1

BiGRU-DNN 87.8 67.4 (8.5) 2.22 50.3

LNBiGRU 87.7 67.1 (8.5) 2.23 51.5

LNBiGRU-DNN 87.7 66.5 (8.2) 2.21 51.1

AV

DNN 90.8 74.7 (6.0) 2.38 58.6

BiLSTM 90.7 74.2 (6.1) 2.38 58.7

BiGRU 91.0 75.9 (6.3) 2.41 59.5

BiGRU-DNN 91.3 74.9 (5.1) 2.41 60.5

LNBiGRU 91.3 76.0 (5.7) 2.43 60.8

LNBiGRU-DNN 91.5 75.6 (5.2) 2.43 61.0

unprocessed audio 1.82 22.0

Focusing first on audio-only models, the BiLSTM model provides a small in-

crease in ESTOI over the DNN, yet a small decrease with all other measures. When

moving to the BiGRU system, all measures show gains over both the DNN and

the BiLSTM system, particularly for ESTOI. The proposed BiGRU-DNN system

performs slightly worse than the BiGRU system, yet when both have layer normal-

isation applied, the LNBiGRU-DNN becomes the best performing model. Gains

are also found with the LNBiGRU system over the BiGRU system showing that

layer normalisation does provide performance gains in both architectures. The best

performing recurrent network (LNBiGRU-DNN) provides consistent gains over the

DNN model for all objective measures, with largest gains found in intelligibility of
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3.3 in ESTOI.

Looking now at the audio-visual models, similar trends are found as with audio-

only. The BiGRU system outperforms the BiLSTM, and layer normalisation pro-

vides gains to both the BiGRU and BiGRU-DNN architectures. The best perform-

ing architecture across most measures is again the LNBiGRU-DNN, providing an

intelligibility gain of 2.4 in ESTOI over the DNN.

Comparing now the visual-only models, we find that across most measures, no

gains are achieved with any recurrent system. This is attributed to the lack of

visual variation across time, the visual stream is upsampled to match the acoustic

frame rate, and as such provides smoother yet smaller increments between frames.

When comparing the recurrent architectures, the BiLSTM model outperforms the

BiGRU and BiGRU-DNN models. Layer normalisation again provided gains over

the non-normalised versions, allowing performance to beat the BiLSTM and almost

match the DNN in terms of ESTOI. This confirms the importance of standardising

the recurrent inputs within recurrent neural network cells.

Overall, across both audio-only and audio-visual the best performing recurrent

network is the LNBiGRU-DNN providing large gains over the DNN counterpart and

the baseline BiLSTM network. We select the DNN, BiLSTM and LNBiGRU-DNN

for further analysis in varying noise types and SNR.

4.5.2 Analysis across noise type and SNR

In Section 4.5.1 temporal architectures were compared and optimised, finding the

layer normalised bi-directional recurrent feed-forward hybrid neural network using

gated recurrent units (LNBiGRU-DNN) to perform best for audio-only and audio-

visual models on the test set in babble noise at −5 dB. In this experiment a compar-

ison between feed-forward neural networks (DNN), standard recurrent neural net-

works (BiLSTM) and the best performing LNBiGRU-DNN for temporal modelling

in varying noise type and SNR conditions. The noise types and SNR conditions
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tested are babble and factory noise at SNRs of −10 dB, −5 dB, 0 dB and 5 dB.

Tables 4.3, 4.4 and 4.5 show the full set of objective measures for the test set across

all noise type and SNR conditions tested, for audio-only, visual-only and audio-visual

models respectively. Objective measures selected are classification accuracy, HIT-

FA rate, PESQ and ESTOI. Figures 4.11 to 4.14 provide detailed breakdowns from

Tables 4.3, 4.4 and 4.5 for babble noise at −10 dB, −5 dB, 0 dB and 5 dB.
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Figure 4.11: Effect on mask classification accuracy across SNR for audio-only,
visual-only and audio-visual in babble noise for ratio mask estimation.

SNR (dB)
-10 -5 0 5

H
IT

-F
A

R
a
te

50

55

60

65

70

75

80

(a) Audio-only

SNR (dB)
-10 -5 0 5

H
IT

-F
A

R
a
te

50

55

60

65

70

75

80

(b) Visual-only

SNR (dB)
-10 -5 0 5

H
IT

-F
A

R
a
te

50

55

60

65

70

75

80

DNN
BiLSTM
LNBiGRU-DNN

(c) Audio-visual

Figure 4.12: Effect on mask HIT-FA rate across SNR for audio-only, visual-only
and audio-visual in babble noise for ratio mask estimation.

Focusing first on classification accuracy and HIT-FA rate results show that tem-
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poral modelling using recurrent neural networks outperform the baseline feed-forward

system in most model conditions, for both audio-only and audio-visual models,

shown in Figures 4.11 and 4.12 for babble noise at SNRs from −10 dB to 5 dB. The

LNBiGRU-DNN outperforms both DNN and BiGRU models, particularly for clas-

sification accuracy. The BiLSTM performs similar to the DNN at low SNRs, but

shows an increase over DNN models at higher SNRs.

When comparing the LNBiGRU-DNN to the baseline DNN system, an average

improvement across both babble and factory noise at −10 dB for classification accu-

racy of 0.6 and 0.6, and for HIT-FA rate of 1.9 and 1.2 can be found for audio-only

and audio-visual models respectively. When comparing the visual-only models, re-

current networks perform worse than DNNs for temporal modelling, except at high

SNRs (5 dB) for both classification accuracy and HIT-FA rate.
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Figure 4.13: Effect on quality through PESQ across SNR for audio-only, visual-only
and audio-visual in babble noise for ratio mask estimation.

Looking now at quality scores through PESQ and intelligibility with ESTOI simi-

lar trends as with classification accuracy and HIT-FA rate are found, where temporal

modelling using recurrent neural networks outperform the baseline feed-forward sys-

tem most conditions, for both audio-only and audio-visual models, shown in Figures

4.13 and 4.14 for babble noise at SNRs from −10 dB to 5 dB. The performance

between all systems is close, with the LNBiGRU-DNN system providing best per-
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Figure 4.14: Effect on intelligibility through ESTOI across SNR for audio-only,
visual-only and audio-visual in babble noise for ratio mask estimation.

formance, particularly at low SNRs.

When comparing the LNBiGRU-DNN to the baseline DNN system, an average

improvement across both babble and factory noise at −10 dB for PESQ of 0.05 and

0.06, and for ESTOI of 2.9 and 2.4 can be found for audio-only and audio-visual

models respectively. The performance gained in PESQ is marginal, yet the gain

found for ESTOI is relevant, considering how well AAM features perform particu-

larly in this favourable speaker dependent task. At low SNR, gains in PESQ are

smaller which is attributed to the increase of noise in the speech, which causes

more unavoidable artefacts in the enhanced speech which affect PESQ more than

other measures. However, for ESTOI larger gains are found at low SNRs across

both audio-only and audio-visual, which is encouraging as the low SNR conditions

are more challenging and require more enhancement/noise reduction than compared

with high SNRs. When comparing the visual-only models, recurrent networks per-

form equivalent to DNNs for temporal modelling, showing little variation for both

PESQ and ESTOI across all noise types and SNR conditions.

Comparing the performance of the LNBiGRU-DNN to the baseline DNN system

across all modalities and SNR conditions, a consistent gain across all measures for
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both audio-only and audio-visual models is found. Visual-only models do not benefit

from using a recurrent network over a feed-forward network for temporal modelling,

although the performance degradation is minimal compared to the gains found in

audio-only and audio-visual. With the overall focus being improving intelligibility,

large gains are found across all SNR conditions, with larger gains found at the more

challenging lower SNR. This improvement at lower SNRs reveals a key benefit from

using recurrent networks.

The best performing modality is still audio-visual across all objective measures

compared to audio-only and visual-only. Figure 4.15 summarises PESQ and ESTOI

scores using the LNBiGRU-DNN in babble noise comparing audio-only, visual-only

and audio-visual. Previously, the performance of audio-visual was equivalent to

visual-only at an SNR of −10 dB using DNNs, however with the gain found when

using the LNBiGRU-DNN models, audio-visual now outperforms the visual-only

model. Both audio-only and audio-visual gained benefits from the recurrent archi-

tecture, as the SNR increases both models converge performing equally well at 5 dB,

as previously found within the DNN architectures.
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Figure 4.15: Effect on quality with PESQ and intelligibility through ESTOI across
SNR for audio-only, visual-only and audio-visual in babble noise for ratio mask esti-
mation using the LNBiGRU-DNN architecture.
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Table 4.3: (AUDIO-ONLY) Classification accuracy (in %), HIT-FA (in %) PESQ
and ESTOI scores for the GRID dataset for audio-only mask estimation with different
temporal network architectures in babble and factory noise at −10 dB, −5 dB, 0 dB
and 5 dB.

Noise (dB) Model Acc HIT-FA (FA) PESQ ESTOI

babble

-10

DNN 86.3 56.0 (6.3) 1.82 32.2

BiLSTM 85.8 55.6 (7.0) 1.78 33.2

LNBiGRU-DNN 87.0 59.2 (6.4) 1.84 36.1

unprocessed audio 1.61 10.6

-5

DNN 89.8 69.6 (5.8) 2.19 51.6

BiLSTM 89.6 68.6 (5.6) 2.18 51.8

LNBiGRU-DNN 90.5 71.0 (4.9) 2.27 54.9

unprocessed audio 1.82 20.3

0

DNN 91.6 74.6 (4.6) 2.60 66.5

BiLSTM 91.8 75.9 (4.8) 2.61 67.7

LNBiGRU-DNN 92.2 76.2 (4.1) 2.65 69.1

unprocessed audio 2.04 33.9

+5

DNN 92.1 74.5 (3.5) 2.88 77.2

BiLSTM 92.6 77.1 (3.8) 2.93 78.4

LNBiGRU-DNN 92.8 77.2 (3.5) 2.96 79.4

unprocessed audio 2.25 49.8

factory

-10

DNN 90.3 59.7 (4.1) 1.95 32.8

BiLSTM 90.3 59.0 (3.9) 1.92 34.3

LNBiGRU-DNN 91.0 62.4 (3.7) 1.95 37.4

unprocessed audio 1.46 10.5

-5

DNN 93.0 71.9 (3.2) 2.31 52.0

BiLSTM 93.0 71.9 (3.2) 2.28 52.6

LNBiGRU-DNN 93.3 73.2 (3.1) 2.35 54.6

unprocessed audio 1.66 20.1

0

DNN 94.3 77.2 (2.7) 2.64 67.2

BiLSTM 94.4 77.8 (2.7) 2.65 67.7

LNBiGRU-DNN 94.6 78.3 (2.4) 2.69 69.0

unprocessed audio 1.87 33.5

+5

DNN 94.7 77.8 (2.2) 2.93 78.2

BiLSTM 95.0 80.0 (2.3) 2.94 78.7

LNBiGRU-DNN 95.1 79.6 (2.1) 2.96 79.1

unprocessed audio 2.09 49.9
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Table 4.4: (VISUAL-ONLY) Classification accuracy (in %), HIT-FA (in %) PESQ
and ESTOI scores for the GRID dataset for visual-only mask estimation with different
temporal network architectures in babble and factory noise at −10 dB, −5 dB, 0 dB
and 5 dB.

Noise (dB) Model Acc HIT-FA (FA) PESQ ESTOI

babble

-10

DNN 87.7 67.0 (8.4) 2.09 45.5

BiLSTM 87.7 66.6 (8.1) 2.07 45.1

LNBiGRU-DNN 87.5 67.1 (8.8) 2.06 45.7

unprocessed audio 1.61 10.6

-5

DNN 88.0 66.5 (7.6) 2.24 51.6

BiLSTM 87.9 66.2 (7.2) 2.25 51.0

LNBiGRU-DNN 87.7 66.5 (8.2) 2.21 51.1

unprocessed audio 1.82 20.3

0

DNN 88.1 63.6 (6.0) 2.44 59.7

BiLSTM 88.0 61.5 (5.3) 2.42 58.9

LNBiGRU-DNN 87.9 62.8 (6.1) 2.41 58.1

unprocessed audio 2.04 33.9

+5

DNN 87.3 53.8 (3.2) 2.63 68.2

BiLSTM 87.3 53.9 (3.3) 2.64 68.2

LNBiGRU-DNN 87.7 58.8 (4.6) 2.61 68.2

unprocessed audio 2.25 49.8

factory

-10

DNN 90.8 67.5 (5.3) 2.17 47.5

BiLSTM 90.5 67.9 (5.8) 2.14 45.6

LNBiGRU-DNN 90.6 68.0 (5.8) 2.14 46.5

unprocessed audio 1.46 10.5

-5

DNN 91.0 66.6 (4.8) 2.32 53.0

BiLSTM 90.9 66.3 (4.9) 2.31 52.1

LNBiGRU-DNN 90.7 68.1 (5.6) 2.28 52.4

unprocessed audio 1.66 20.1

0

DNN 91.0 64.0 (4.1) 2.49 60.2

BiLSTM 90.8 62.8 (4.0) 2.47 59.7

LNBiGRU-DNN 90.9 66.4 (4.9) 2.44 60.1

unprocessed audio 1.87 33.5

+5

DNN 91.0 59.9 (3.1) 2.65 69.3

BiLSTM 90.3 52.6 (2.3) 2.63 68.4

LNBiGRU-DNN 90.7 56.8 (2.8) 2.61 68.0

unprocessed audio 2.09 49.9
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Table 4.5: (AUDIO-VISUAL) Classification accuracy (in %), HIT-FA (in %) PESQ
and ESTOI scores for the GRID dataset for audio-visual mask estimation with dif-
ferent temporal network architectures in babble and factory noise at −10 dB, −5 dB,
0 dB and 5 dB.

Noise (dB) Model Acc HIT-FA (FA) PESQ ESTOI

babble

-10

DNN 89.4 71.2 (7.0) 2.11 48.1

BiLSTM 88.8 69.4 (7.3) 2.12 48.4

LNBiGRU-DNN 90.0 71.7 (6.3) 2.18 51.4

unprocessed audio 1.61 10.6

-5

DNN 90.8 74.7 (6.0) 2.38 58.6

BiLSTM 90.7 74.2 (6.1) 2.38 58.7

LNBiGRU-DNN 91.5 75.6 (5.2) 2.43 61.0

unprocessed audio 1.82 20.3

0

DNN 91.9 76.5 (4.8) 2.66 68.7

BiLSTM 92.0 77.2 (4.9) 2.68 69.6

LNBiGRU-DNN 92.5 77.9 (4.4) 2.71 70.8

unprocessed audio 2.04 33.9

+5

DNN 92.3 76.4 (4.0) 2.92 78.0

BiLSTM 92.5 77.8 (4.2) 2.96 78.9

LNBiGRU-DNN 92.8 77.8 (3.7) 2.98 79.7

unprocessed audio 2.25 49.8

factory

-10

DNN 92.5 72.0 (4.0) 2.18 48.4

BiLSTM 92.4 72.1 (4.1) 2.22 51.3

LNBiGRU-DNN 92.8 73.7 (3.9) 2.25 52.6

unprocessed audio 1.46 10.5

-5

DNN 93.6 75.8 (3.3) 2.43 58.8

BiLSTM 93.6 75.8 (3.4) 2.46 60.3

LNBiGRU-DNN 94.0 77.1 (3.1) 2.50 61.7

unprocessed audio 1.66 20.1

0

DNN 94.4 79.0 (2.9) 2.71 69.9

BiLSTM 94.5 79.5 (3.0) 2.72 70.3

LNBiGRU-DNN 94.7 79.7 (2.7) 2.76 71.4

unprocessed audio 1.87 33.5

+5

DNN 94.8 78.5 (2.3) 2.96 79.0

BiLSTM 95.0 80.4 (2.5) 2.97 79.4

LNBiGRU-DNN 95.1 79.8 (2.1) 3.00 79.9

unprocessed audio 2.09 49.9
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4.6 Conclusions

This work has examined the effect on intelligibility (ESTOI), quality (PESQ) and

mask accuracy (classification accuracy and HIT-FA rate) of using recurrent neural

networks within ratio mask estimation for speech enhancement. It was found that all

recurrent systems provide large gains in intelligibility over our previous feed-forward

system (DNN) for audio-only and audio-visual modalities, with largest gains found

at lower SNRs. Further gains were also found across all other objective measures for

audio-only and audio-visual using our proposed bi-directional feed-forward hybrid

network using layer-normalised gated recurrent units (LNBiGRU-DNN). However,

for visual-only models, the baseline DNN architecture still outperformed the new

recurrent architectures, suggesting the longer temporal modelling found within a

recurrent network was unable to extract any additional visual temporal structure

over the DNN.

Combining both audio and visual modalities into a single bimodal audio-visual

system still provides best performance across all noise types and SNRs, confirming

that combining audio and visual features provides a robust complimentary feature

set. Previously, the performance of audio-visual was equivalent to visual-only at an

SNR of −10 dB using a feed-forward system. However with the gain found when

using the LNBiGRU-DNN architecture audio-visual now outperforms the visual-

only model. Both audio-only and audio-visual gained consistent benefits from the

recurrent architecture, as the SNR increases both models converge, and at high

SNRs (5 dB) still perform equally well as each other, as previously found within the

DNN systems.



Chapter 5

Ratio masking using convolutional

and recurrent neural networks

5.1 Introduction

Previous work in Chapter 4 compared using feed-forward and recurrent neural net-

work architectures for temporal modelling for ratio mask estimation. It was found

that using recurrent neural networks outperforms feed-forward neural networks for

audio-only and audio-visual models, with a slight degradation for visual-only. In

this chapter the focus is on improving the visual feature extraction stage using con-

volutional neural networks in place of traditional visual feature extraction (AAM)

within the speech enhancement framework, prior to temporal modelling, for ra-

tio mask estimation. Specifically comparisons are made between three methods of

visual feature extraction, traditional AAM feature extraction, end-to-end trained

convolutional neural networks (CNNs) and using pre-trained CNNs for bottleneck

feature extraction. The end-to-end trained CNN trains both the CNN and temporal

model (RNN) together as a single network. This allows dataset specific features

to be learnt, and allows full backpropagation through the recurrent and convolu-

tional layers. Extracting bottleneck features from pre-trained CNNs is similar to

traditional visual feature extraction. Features can be extracted and stored prior to

105
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temporal windowing, and can be used to train temporal models just as previously

shown with AAM features. This can then be treated as a two network approach,

the first network performs feature extraction, but does not necessarily need to be

re-trained (pre-trained CNN), and the second network performs temporal modelling

(RNN). This allows only the RNN to be trained per experiment, where the CNN

can be pre-trained and stored, saving both training time and processing resources

by the removal of CNN layers, compared against the end-to-end trained CNN.

The motivation for using convolutional neural networks (CNNs) is from their suc-

cess in many image processing tasks, such as image classification (Krizhevsky et al.

[2012]; Simonyan and Zisserman [2014]; Szegedy et al. [2015]; He et al. [2016a]),

object detection (Krizhevsky et al. [2012]) and object localisation (Tompson et al.

[2015]). Speech processing has recently utilised CNNs for extracting information of

the speakers lips from a video source for many tasks, such as speech recognition

through lip-reading (Noda et al. [2014]; Chung and Zisserman [2016]; Assael et al.

[2016]), and voice activity detection (Le Cornu and Milner [2015]). Convolutional

neural networks are designed to replace traditional feature extraction methods, in-

stead of specifying what the feature is and the method required to extract them,

the network can learn features itself from the data within training. Features are

extracted by convolving kernels over the input, the kernels weights are updated

and learnt through training. This therefore allows the network to determine what

features are important in order to learn a suitable mapping to the target output.

In some applications learnt features have been shown to extract similar properties

to traditional feature extraction, resembling Gabor filters (Gabor [1946]) and edge

detection (Krizhevsky et al. [2012]).

Previous work conducted thus far has shown the importance of including visual

information within the speech enhancement framework, with large improvements

found particularly at low SNRs when combined with audio over an audio-only sys-

tem across all objective measures. Therefore the focus of this chapter is to improve

visual feature extraction instead of acoustic feature extraction, although convolu-
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tional neural networks are used more in image processing, they can also be applied

to acoustic speech (Van Den Oord et al. [2016]), which is not explored in this work.

This chapter considers visual-only and audio-visual models only. Figure 5.1 shows

the training pipeline of the proposed audio-visual end-to-end trained CNN & RNN

speech enhancement system. For systems using pre-trained CNNs for feature extrac-

tion, the CNN is removed from the CNN & RNN stage, between Image Extraction

and Temporal Windowing, and is not re-trained as part of training the speech en-

hancement system. Images are extracted from video and input into either a pre-

trained CNN extracting bottleneck features or an end-to-end trained convolutional

neural network (CNN), combined with acoustic features extracted from noisy speech

(for audio-visual), before input into the recurrent neural network (RNN) for tempo-

ral modelling to estimate the ratio mask. For testing purposes, estimated masks are

applied to a cochleagram of the noisy speech which suppresses noise-dominated T-F

units and the remaining signals are overlapped and summed to produce the enhanced

signal, shown in Figure 5.2. The same pipeline is used for all speech enhancement

configurations, except the audio stream is removed for visual-only models.

The remainder of this chapter is organised as follows. Section 5.2 provides an

overview of the baseline AAM model and acoustic feature extraction method. Sec-

tion 5.3 introduces image extraction techniques, convolutional neural networks and

the final end-to-end trained CNN architecture. In Section 5.4, the process of using

pre-trained CNNs for feature extraction is discussed. A review of potential pre-

trained architectures is presented, before the final speech enhancement architecture

is discussed. Performance evaluations are made in Section 5.5 which first compare

the effectiveness of the image extraction techniques outlined in Section 5.3.1 for

both visual-only and audio-visual models using an end-to-end trained CNN (Sec-

tion 5.5.1). Section 5.5.2 compares the performance of traditional AAM features,

to our proposed end-to-end trained and pre-trained CNN for visual feature extrac-

tion. Experiments are conducted across varying noise type and SNR conditions and

used the best performing image extraction method from Section 5.5.1 as input into

both end-to-end trained CNNs and pre-trained CNNs. A comparison of features
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learnt from end-to-end trained CNNs and features learnt from pre-trained CNNs is

provided in Section 5.5.3. Finally, this chapter is concluded in Section 5.6.
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Figure 5.1: Overview of training an end-to-end trained CNN & RNN ratio masking
speech enhancement system.
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Figure 5.2: Overview of applying the end-to-end trained CNN & RNN predicted
ratio mask to noisy speech for speech enhancement testing.
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5.2 Baseline AAM based feature extraction

model

Previous work in Chapter 4 explored using bi-directional recurrent neural networks

as replacements for traditional feed-forward neural networks for temporal modelling,

using standard feature extraction methods for input (MRCG for audio and AAM

for visual). This found that using the proposed layer normalised bi-directional feed-

forward hybrid network using gated recurrent units (LNBiGRU-DNN) provided best

performance across all objective measures for audio-only and audio-visual input

features and performed equally well as the best performing visual-only model. This

forms our baseline model for this work and is the chosen architecture for the temporal

model. The LNBiGRU-DNN architecture is shown in Figure 5.3 and comprises 2

pairs of forward and backward recurrent layers containing 256 gated recurrent units

(GRU) per layer (512 per pair), 2 further dense layers containing 1024 rectified

linear units (ReLU) and a final linear output layer. A skip connection is included

combining the input and output from the recurrent layers. Detailed implementations

of the LNBiGRU-DNN are in Section 4.3.2.
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Figure 5.3: Layer normalised bi-directional recurrent feed-forward hybrid
(LNBiGRU-DNN) speech enhancement architecture.

From our previous work in Chapters 2 and 3, the acoustic feature MRCG and

visual feature AAM was found to perform best and was shown to also perform well

in recurrent neural networks (Chapter 4), and as such are selected for the baseline of

this work. The multi-resolution cochleagram (MRCG) feature combines 4 different

cochleagrams, of both high and low resolution, into a single feature, and was specif-

ically designed for mask estimation based within a cochleagram framework (Chen
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et al. [2014]). The active appearance model (AAM) is a model-based combination

of shape and appearance, producing a compact feature representation of a mesh

fitted to the speaker lips. Details of the implementations of MRCG and AAM fea-

ture extraction methods are discussed in Sections 2.3.1.1 and 2.3.2 respectively. For

visual-only experiments the input feature x = [xAAM] while for audio-visual experi-

ments the input feature x = [xMRCG; xAAM], where ; is a concatenation function.

5.3 End-to-end trained convolutional neural

network based feature extraction

This chapter proposes replacing traditional visual feature extraction using AAM

with convolutional neural networks (CNNs), which perform and learn feature ex-

traction within the network, instead of pre-extracting features prior to the tempo-

ral network. Convolutional neural networks work well with data that has a clear

grid structure and can scale to large sizes, and has been most successful for two-

dimensional topology. As such CNNs have been applied successfully in many image

processing tasks (Krizhevsky et al. [2012]; Tompson et al. [2015]; He et al. [2016a])

and speech processing tasks (Noda et al. [2014]; Le Cornu and Milner [2015]; Assael

et al. [2016]). This section explores the process of training an end-to-end trained

CNN where both the CNN and temporal model are trained as a single network. The

pipeline of the end-to-end trained CNN is shown in Figure 5.4. The image extrac-

tion process is discussed in Section 5.3.1, and the CNN architecture is discussed in

Section 5.3.2. The same acoustic feature extraction used within the AAM baseline

architecture (MRCG features) is used again here.
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Figure 5.4: Overview of the end-to-end trained CNN & RNN pipeline.

5.3.1 Image extraction for CNN

Instead of producing visual features via AAM feature extraction, convolutional neu-

ral networks take images as input, and effectively perform feature extraction through

convolving filter kernels within the model architecture (see Section 5.3.2). Mouth-

only and full-face ROIs are extracted from raw video frames in RGB colour map.

Extracted images are then upsampled across time to the same framerate of the

acoustic features (MRCG, 100fps) before input to the models.

Figure 5.5: Fitted ROIs for mouth-only and full-face image extraction for CNN
input.

Images are extracted from the raw video frames using the Viola-Jones (Viola and

Jones [2001]) cascade-based object detector. Images are cropped to a fixed box size

of 90 × 110 pixels centred around the mouth for the mouth-only ROI, or a fixed

box size of 300 × 300 pixels for the full-face ROI (see Figure 5.5), both are then
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downsampled to 64× 64 pixels.

Due to the difference in frame rates between acoustic and video input, input

images are upsampled to that of the acoustic features. Two different methods of

upsampling are considered, namely interpolation and repetition, which are applied

to each individual pixel and RGB channel. Just like with AAM features, upsam-

pling through interpolation is also considered for raw images. However, due to the

interpolation process, the upsampled images may introduce additional distortions

within the image, producing blurring and inconsistent frames. To compare against

this, upsampling through repetition is considered where the previous original raw

image is repeated, ensuring no additional processing distortions. Figure 5.6 shows

how the pixel intensities from the original (source) framerate are upsampled through

repetition and interpolation across time.
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Figure 5.6: Techniques for upsampling image pixel values across time, with true
source values (grey) and upsampled values (orange).

5.3.2 End-to-end CNN architecture

This section first introduces how traditional convolutional neural networks are imple-

mented, before detailing the specific architecture implementation of the end-to-end

trained CNN with temporal modelling. Convolutional neural networks convolve fil-

ter kernels over the input. Filter kernels are small in size in comparison to the input,

and are used to locate features within a small region of the input. The filter ker-

nels weights are learned through back-propagation during training. The number of

kernels and kernel size is specified when initialising the network. The same kernels

are used across the whole input as features learnt in one location are likely to be
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useful in other locations of the input, i.e edge detectors, this also reduces overheads

such as memory and training time, due to less parameters need to be stored and

learnt. Generally, CNN layers are constructed of [convolutional, dropout, pooling]

stages grouped together, with all three components named as a convolutional layer.

A simple one-dimensional CNN is shown in Figure 5.7 showing the stages of a single

convolutional layer.
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Figure 5.7: Computation of a typical 1-Dimensional convolutional neural network
for a single kernel (K = 3).

Initially a single filter kernel K is defined with width 3, which is convolved over

the input {x1, x2, ..., xn}. The kernel traverses the input at each location with a

kernel stride of 1, the stride length depends on the width of the kernel, and is

generally defined as

kernel stride =
kernel width− 1

2
(5.1)

When kernels are placed at the start and end of the input, the kernels are wider

than the input, and as such the input is zero padded to accommodate the kernel

(shown in dashed circles). Convolutions, S(i), produced from convolving each kernel

over the input sequence {x1, x2, ..., xn}, are calculated as (without bias and with unit
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stride)

S(i) =
kw∑

m=1

x(i+m)×K(m) (5.2)

where i is an index in the input sequence for each available stride from the kernel

and kernel width kw. At this stage the non-linear activation function is applied to

S, which in this work is rectified linear units (ReLU) (Maas et al. [2013]). Dropout

is then applied to S (not shown in the figure) to help prevent overfitting within

network training before passing to the pooling stage. Pooling, P , is applied to

not only reduce feature dimensionality, but also to highlight important features

found by the kernels. Pooling is performed similarly to convolving, except now the

filter kernels’ weights are fixed, and not adjusted through training. Pooling kernels

traverse S with a stride generally set to the same size as the kernel width, usually

a width and stride of 2 is used. Pooling either takes the form of average pooling

or max pooling, average pooling was often used historically but has recently fallen

out of favour compared to the max pooling operation (Zhou and Chellappa [1988]),

which has been shown to work better in practice, and is defined as

P (i) = max(S(i : i+ kw)) (5.3)

which selects the maximum value within the pooling kernel size, at each index i.

In this work convolutional neural networks are used to extract visual features from

the raw video stream, and as such are applied to cropped images instead of one-

dimensional signals. The one-dimensional convolution equation can be extended

and applied for two-dimensional inputs (Goodfellow et al. [2016]). Convolutions

are applied across the width and height of the input image, and are calculated as

(without bias and with unit stride)

S(i, j) =
C∑

c=1

kw∑

m=1

kh∑

n=1

x(c, i+m, j + n)×K(c,m, n) (5.4)
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where S is the convolution output, x is the input image with C = 3 channels for

RGB colourspace, with a width, i, and height j, of 64 pixels each, K is the filter

kernel with width kw and height kh and the same channel depth of C. Similarly the

pooling stage is adjusted to contain filter kernels of size 2 × 2 and stride 2 in both

directions to accommodate the extra dimension.

In this work the convolutional neural network selected is based on the LipNet (As-

sael et al. [2016]) architecture, which was designed for lip-reading within the GRID

corpus. The architecture is constructed of three sets of [convolutional, channel-wise

dropout, max-pooling] layers consisting of [32, 64, 96] kernels of size kw×kh = [5×5,

5× 5, 3× 3] for each layer pairing respectively, followed by a single 256 ReLU unit

bottleneck layer for feature reduction, before passing to the temporal network. The

temporal network selected is the LNBiGRU-DNN which was used within the baseline

AAM architecture (details of the LNBiGRU-DNN can be found in Section 5.2). The

full architecture is trained as a single model and is shown in Figure 5.8 (channel-wise

dropout omitted) for an audio-visual model, for visual-only the acoustic stream is

removed.
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Figure 5.8: Audio-visual convolutional recurrent feed-forward hybrid speech en-
hancement architecture.

When training either visual-only or audio-visual CNNs the features learnt can

vary between the models. For visual-only models the features learnt have to retrieve

all relevant information from the input images, whereas audio-visual models can

learn complimentary features to combine with the acoustic stream. From previous
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experiments conducted, the visual stream is known to be important for audio-visual

models at low SNRs, and less so at higher SNRs. Therefore features learnt from the

CNN are likely to be more distinctive at lower SNRs, extracting similar information

to visual-only, than those at higher SNRs for audio-visual models.

Channel-wise dropout has been shown to provide further performance improve-

ments with respect to CNNs for object localisation (Tompson et al. [2015]) over

standard dropout. The bottleneck layer is used simply to reduce the feature size

prior to the recurrent network, a size of 256 was chosen to match the feature size of

the acoustic MRCG feature. Without a bottleneck layer, the visual stream would

dominate the acoustic stream in size, which may force the recurrent layers to favour

visual information, and would cause the network to take longer to train due to the

increase in number of parameters. The size of input, output and kernel for the

production of bottleneck CNN features are shown in Table 5.1.

Table 5.1: CNN bottleneck feature production (channel-wise dropout omitted).

Layer Kernel: Size Stride Padding Input size

CNN C × 5× 5 1, 2, 2 0, 2, 2 C × 64 × 64

Pool 1× 2× 2 1, 2, 2 32 × 32 × 32

CNN 32× 5× 5 1, 1, 1 0, 2, 2 32 × 16 × 16

Pool 1× 2× 2 1, 2, 2 64 × 16 × 16

CNN 64× 3× 3 1, 1, 1 0, 1, 1 64 × 8 × 8

Pool 1× 2× 2 1, 2, 2 96 × 8 × 8

Bottleneck 256 96 × 4 × 4

5.3.3 Batch normalisation

Convolutional neural networks require longer processing time to train in compari-

son to feed-forward and recurrent networks, due to the larger input data size and

convolving of filters. A recent approach to improve convergence in convolutional

networks is to introduce batch normalisation (Ioffe and Szegedy [2015]), which adds

normalisation steps within the network architecture, similar to layer normalisation

used in recurrent neural networks (see Section 4.4.3). Normalisation standardises
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each input using its mean and standard deviation, similar to z-score normalisation

which is computed over the entire training set, is instead computed over batches.

Batch normalisation works well when the input is a fixed size, which is required

in convolutional networks. Batch normalisation is applied to the convolution layer

before the non-linear activation function applied (ReLU) [convolution, batch nor-

malisation, ReLU]. The normalisation function BN is defined as:

BN(χ;α,β) =
(χ− µ)

σ
�α + β (5.5)

with

µij =
1

N

N∑

n=1

χij,n, σij =

√√√√ 1

N

N∑

n=1

(χij,n − µij)2 (5.6)

where µij and σij are the mean and standard deviation at position i, j of the input χ

(for example 64×64 for the first convolution layer applied to input images), and N is

the number of inputs within each mini-batch when training the network. Parameters

α (initialised as all 1s) and β (initialised as all 0s) are the gain and bias of the same

size as χ, and are learnable parameters updated during network training. Batch

normalisation, as the name suggests, is calculated over all elements across the batch

dimension, unlike layer normalisation, which is calculated over the feature vector

dimension. In this work batch normalisation is applied to all convolutional layers,

for all models.

5.4 Pre-trained convolutional neural network

based feature extraction

Convolutional neural networks are larger than recurrent or feed-forward neural net-

works, and can be very deep in order to produce peak performance, and as such

require large amounts of processing time and hardware power to train. However,
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once trained, features can be extracted and used for other tasks. This allows for

the previous end-to-end trained CNN system to be split into two separate networks,

with one network designated for visual feature extraction (pre-trained CNN) and

a second designated for temporal modelling (RNN), a pipeline of this is shown in

Figure 5.9.
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Figure 5.9: Overview of the pre-trained CNN & trained RNN pipeline.

This allows for a single large CNN to be trained offline, and allow features to

be extracted for use in smaller temporal networks. Images can be passed through

a pre-trained network, and visual bottleneck features can be extracted, similar to

how traditional visual features are produced. Once features are stored, the second

temporal network does not require the original image, only the extracted bottleneck

feature, thus convolutional layers can be removed, which speeds up training of the

temporal model. This leaves the question of “which pre-trained network should be

selected?” A review of pre-trained networks is provided in Section 5.4.1 before the

final architecture is discussed in Section 5.4.2.

5.4.1 Review of pre-trained CNNs

This section provides a review of pre-trained networks that can be used for visual

bottleneck feature extraction, answering the question of “which pre-trained network

should be selected?” One competition that creates large networks is the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC). This challenge has become one

of the more popular for researchers to compete and advance convolutional networks.

From this challenge, four popular networks have emerged with publicly available
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pre-trained weights, AlexNet (Krizhevsky et al. [2012]), VGGNet (Simonyan and

Zisserman [2014]), GoogLeNet (Szegedy et al. [2015]) and ResNet (He et al. [2016a]).

The AlexNet architecture (Krizhevsky et al. [2012]) was the first CNN system

to drastically outperform non-CNN systems in the ILSVRC 2012 competition. The

system reduced the top-5 error from 26 % to 15.3 %. The network built upon the

LeNet (LeCun et al. [1998]) with more filters per layer, stacked convolutions and a

deeper architecture, which was possible due to the improvement in available hard-

ware compared to when LeNet was implemented. The architecture notably used

wide filter sizes [11× 11, 5× 5, 3× 3], used ReLU activations for both convolutional

and dense layers and included dropout after dense layers to prevent overfitting. The

overall size of the AlexNet architecture consisted of 60 million parameters.

The VGGNet (Simonyan and Zisserman [2014]) was runner-up at the ILSVRC

2014 competition scoring a top-5 error of 7.3 % and builds upon the AlexNet archi-

tecture. Instead of using large filter kernels, VGGNet replaces them with multiple

convolutional layers with small kernels [3× 3]. Given a receptive field stacking mul-

tiple smaller kernels is better than using a single large kernel because this allows

more non-linear layers. This enables the network to learn more complex features

at a cost of increasing the depth of the network. It is currently the most preferred

choice among researchers for extracting features from images and has been used in

many other applications and challenges as a baseline feature extractor. However,

VGGNet consists of 138 million parameters, which causes limitations in available

hardware.

While the VGGNet achieves very good performance on the ImageNet task, its

deployment on easily available hardware is challenging due to its large size for both

memory and processing time. Instead, Google developed a network that considers

deployment onto other hardware and as such focused on reducing the overall num-

ber of parameters, called GoogLeNet (Szegedy et al. [2015]), whilst still providing

strong performance, winning the ILSVRC 2014 competition scoring a top-5 error of

6.7 %. To reduce the number of parameters required, GoogLeNet builds upon the
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idea that most activations in a deep network are either unnecessary (value of zero) or

redundant because of correlations between them. Therefore the most efficient archi-

tecture of a deep network will have a sparse connection between activations, which

implies that all output channels will not have a connection with all input channels,

whereas all output channels in a standard convolutional operation is connected to

all input channels. To achieve this, GoogLeNet used a CNN inspired by LeNet, but

introduces a new module called the inception module.

Previous layer
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Figure 5.10: GoogLeNet inception module with dimensionality reduction.

The inception module approximates a sparse CNN using standard convolutional

layers, shown in Figure 5.10. Since only a small number of activations are effective

(i.e non-zero), the number of kernels and kernel size is kept small. The inception

module utilises convolutions with varying kernel sizes to capture information at dif-

ferent scales [5 × 5, 3 × 3, 1 × 1]. The module also uses [1 × 1] convolutions as

bottlenecks (shown in yellow) to further reduce the number of parameters, with

application before applying convolutions with large kernels to reduce the channel

dimension of the input. A further change implemented within GoogLeNet was to

replace the feed-forward layers at the end of the network with global average pool-

ing which averages applied across the channel dimension. This drastically reduces

the number of parameters as feed-forward layers generally use a large percentage

of parameters within CNN architectures. This resulted in the overall size of the
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GoogLeNet architecture to contain only 22 million parameters, giving a 6 times

reduction when compared with VGGNet.

The newest and best performing pre-trained network is the Residual Neural Net-

work or ResNet (He et al. [2016a]), winner of the ILSVRC 2015 competition scoring

a top-5 error of 3.57 %, with a network containing 152 layers whilst having less pa-

rameters than the VGGNet. Problems with increasing the number of layers is that

the signal required to change network weights during training is relatively small at

the start of the network compared to the end of the network, causing earlier lay-

ers to be almost removed an not updated, known as vanishing gradients. Residual

networks allow training of such deep networks by constructing the network through

modules called residual blocks shown in Figure 5.11.
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Figure 5.11: Difference between standard convolutional blocks, and residual blocks
introduced by ResNet.

The residual block allows the network to learn the residual, F (x) = H(x) −

x, instead of learning F (x) = H(x) as with standard convolutional connections,

forcing the network to update earlier layers, as only the residual is transmitted.

Learning the residual helps to alleviate the vanishing gradient, allowing very deep

networks to be learnt. ResNets continue to grow in popularity and size, with a recent
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implementation containing 1001 layers was used on the CIFAR-10/100 (Krizhevsky

and Hinton [2009]) achieving best performance for this task (He et al. [2016b]). The

use of skip connections is similar to the RNN-DNN architecture proposed in Section

4.3.2.

Overall, taking into considerations the size of the network and shown performance

given the limited hardware resource available, the GoogLeNet architecture is selected

as the pre-trained network for visual features to be extracted from. The process of

extracting bottleneck features from GoogLeNet and subsequent final architecture is

discussed in Section 5.4.2.

5.4.2 Pre-trained CNN architecture

This section details how bottleneck features are extracted from the GoogLeNet archi-

tecture and how subsequently can be used to train temporal networks (as previously

shown in Figure 5.9). Bottleneck features are simply an extraction of an internal

state within a network, which is representative of the input passed into the network.

States are extracted for every different input image, and can be stored for use in

training other networks. For CNNs the internal state extracted is generally the state

of the final (deepest) pooling layer. For the GoogLeNet architecture the final pooling

layer is called pool5, and is used to extract bottleneck features. Figure 5.12 shows a

basic implementation of the GoogLeNet architecture, with the prior convolutional,

pooling and inception blocks shown simply as the GoogLeNet block (grey), only a

single feed-forward layer and output layer trails the pool5 (pink) layer.
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Figure 5.12: Simplified GoogLeNet architecture for feature extraction.
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Input images are required to be of size 224 × 224 pixels and normalised by the

provided mean and standard deviation, for convenience the previously extracted

64 × 64 images used in the end-to-end trained system is simply upsampled to the

correct size (image extraction details can be found in Section 5.3.1). Extracted

bottleneck features are of size 1024 and are stored before training the temporal

model (RNN) specifically for speech enhancement.
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Figure 5.13: Audio-visual recurrent feed-forward hybrid speech enhancement archi-
tecture with bottleneck layer for visual feature reduction.

The temporal model is shown in Figure 5.13 and follows a similar implementation

of the LNBiGRU-DNN as used within the baseline AAM and end-to-end trained ar-

chitectures (details of the LNBiGRU-DNN can be found in Section 5.2). However, in

this implementation the visual and acoustic streams have separate inputs, allowing

the visual stream to pass through a bottleneck layer prior to the recurrent layers.

Similar to the end-to-end system, the bottleneck layer is used to reduce feature di-

mensionality, and again a 256 layer with ReLU units is selected. This then allows a

fairer comparison between the end-to-end trained system and this pre-trained archi-

tecture, and does not overpower the acoustic stream. The same temporal network

architecture is selected as the end-to-end trained system and is equivalent to the

baseline architecture, a layer normalised bi-directional recurrent feed-forward hy-

brid network using gated recurrent units (LNBiGRU-DNN) which was found to be

optimal in Chapter 4.
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5.5 Experimental results

The performance of using traditional AAM, end-to-end trained convolutional neural

networks and pre-trained convolutional neural networks for visual feature extraction

is compared. Firstly, the image extraction methods outlined in Section 5.3.1 are

optimised within an end-to-end trained CNN for both visual-only and audio-visual

models. The best performing image extraction method is then used to compare

the performance between AAM, end-to-end trained CNNs and pre-trained CNNs in

varying noise type and SNR conditions.

The first experiment compares image extraction techniques, combining using

mouth-only or full-face ROIs with repetition and interpolating upsampling meth-

ods. This experiment is conducted using the end-to-end trained CNN architecture

in babble noise at −5 dB, for both visual-only and audio-visual models. The best

performing image extraction technique (through objective measures) is selected for

further analysis.

The second experiment is to compare the performance of traditional AAM fea-

tures, to our proposed end-to-end trained and pre-trained CNN for visual feature

extraction. Experiments are conducted across varying noise type and SNR condi-

tions, specifically babble and factory noise at SNRs of −10 dB, −5 dB, 0 dB and

5 dB is used, again in visual-only and audio-visual models.

The CNN and RNN models were implemented within the Lasagne framework

(Dieleman et al. [2015]) with the Theano (Theano Development Team [2016]) back-

end. Input data was z-score normalised and grouped into mini-batches of 256. To

prevent overfitting, dropout of 0.5 was applied between all convolutional layers, and

dropout of 0.2 applied to all other layers and early stopping (Prechelt [1998]) was

used when the validation score did not improve after 5 further epochs. Training used

backpropagation with the Adam optimiser (Kingma and Ba [2014]) and a learning

rate 0.001 for CNN and RNN, minimising the MSE loss function. All experiments

use a single speaker (speaker 12) from the GRID dataset (details provided in Section



CHAPTER 5. RATIO MASKING USING CNN & RNN 125

A.1), containing 1000 utterances which are allocated into 640, 160 and 200 for the

training, validation and test sets respectively.

5.5.1 Image extraction using end-to-end trained CNNs

An initial comparison is made between the alternative ROIs and upsampling meth-

ods for extracting images used as input to the CNNs, outlined in Section 5.3.1.

Images are extracted with mouth-only or full-face ROIs, and upsampled via repe-

tition or interpolation before input to the end-to-end CNN in both visual-only and

audio-visual models.

All experiments are performed in babble noise at −5 dB, using the end-to-end

trained CNN architecture outlined in Section 5.3.2. A window width of 31 with

K = 15 (320 ms) is chosen, which was found to be optimal in Chapter 4. Table

5.2 shows the classification accuracy, HIT-FA rate, PESQ and ESTOI scores for all

models and image extraction methods across the validation set.

Table 5.2: Classification accuracy (in %), HIT-FA (in %), PESQ and ESTOI scores
for the GRID dataset in babble noise at −5 dB with varying CNN input features.

Feature Acc HIT-FA (FA) PESQ ESTOI

V

Mouth
rep 87.8 67.3 (8.3) 2.22 52.3

int 88.1 67.1 (7.9) 2.24 52.9

Face
rep 87.9 67.2 (8.1) 2.24 52.3

int 87.6 67.4 (8.7) 2.23 50.6

AV

Mouth
rep 91.7 76.8 (5.3) 2.43 61.6

int 91.7 76.1 (4.9) 2.46 62.1

Face
rep 91.4 75.3 (5.3) 2.41 59.8

int 91.6 75.7 (5.1) 2.44 61.2

unprocessed audio 1.82 22.0

Focusing first on visual-only, all models perform similarly across classification

accuracy, HIT-FA rate and PESQ scores with the mouth-only with interpolation

upsampling performing slightly better across all measures. For intelligibility through

ESTOI, more variation is seen across the models, with mouth-only with interpolation
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upsampling providing gains of 0.6 compared to the second best methods. Across

all measures the mouth-only with interpolation upsampling generally provides best

performance.

Looking now at the audio-visual models, similar trends are found to visual-only,

but the difference between each model is larger. Classification accuracy and PESQ

scores are similar between all models, with mouth-only with repetition upsampling

providing highest HIT-FA rate, and mouth-only with interpolation providing best

intelligibility scores with a gain of 0.5 in terms of ESTOI over the second best

performing method. As with visual-only, mouth-only with interpolation upsampling

generally provides best performance across all measures.

Overall, comparing both visual-only and audio-visual models, the mouth-only

ROI outperforms the full-face ROI across all measures, and upsampling through

interpolation outperforms upsampling with repetition. Upsampling through inter-

polation was likely to outperform repetition due to providing a smoother transition

between time-steps, which helps the recurrent layers within the temporal model.

The only downside could have been the potential to introduce image distortions

through processing errors such as blurring, however this does not seem to have

affected network performance.

The mouth-only outperforming the full-face is interesting due to the full-face con-

taining all the information of the mouth-only plus information about the jaw line

and cheeks, which should provide more information about speech production and

should therefore provide more information to the network. However, this degrada-

tion in performance is attributed to over-downsizing the full-face ROI, such that

important information, particularly the mouth, is now too small to capture impor-

tant features. Both ROIs are downsized to 64 × 64 pixels, this causes the mouth

information to be relatively small in the full-face condition. The mouth is likely to be

the most important aspect to capture as the visual feature. If the full-face ROI was

downsized such that the mouth was of similar size to that found in the mouth-only

condition, it is expected the full-face ROI would outperform the mouth-only, due
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to the additional facial information captured. However, two downsides to increas-

ing the size of the input image to the network are larger memory required to store

larger images (both HDD and RAM) and a larger CNN would be required, in terms

of layers to downsize the increased image within the network before the temporal

model, which therefore increases the number of trainable parameters. Increasing the

number of trainable parameters would cause both an increase in memory usage and

the time required to train the network. This introduces a trade-off between available

resource in terms of hardware and processing time, and with network performance.

With the experiments conducted and the limitations outlined, the mouth-only ROI

with interpolation upsampling is chosen for further analysis in varying noise types

and SNR.

5.5.2 Comparison of visual feature extraction methods across

noise type and SNR – AAMs, end-to-end trained CNNs

and pre-trained CNNs

In Section 5.5.1 different input image ROIs and upsampling techniques were tested

using an end-to-end trained CNN in babble noise at −5 dB only, which found mouth-

only ROIs upsampled via interpolation to perform best. In this experiment a com-

parison between AAM features, end-to-end trained CNNs and pre-trained CNNs

for visual feature extraction is tested in varying noise type and SNR conditions.

The noise types and SNR conditions tested are babble and factory noise at SNRs

of −10 dB, −5 dB, 0 dB and 5 dB. Both the end-to-end trained CNN (shown in

Section 5.3.2) and pre-trained CNN (shown in Section 5.4.2) use mouth-only images

upsampled via interpolation as input.

Tables 5.3 and 5.4 show the full set of objective measures for the test set across

all noise type and SNR conditions tested, for visual-only and audio-visual models.

Objective measures selected are classification accuracy, HIT-FA rate, PESQ and

ESTOI. Figures 5.14 and 5.15 provide detailed breakdowns from Tables 5.3 and 5.4
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for babble noise at −10 dB, −5 dB, 0 dB and 5 dB.

SNR (dB)
-10 -5 0 5

C
la
ss
ifi
ca
ti
on

A
cc
u
ra
cy

(%
)

85

86

87

88

89

90

91

92

93
Audio-visual

Visual-only

(a) Classification Accuracy

SNR (dB)
-10 -5 0 5

H
IT

-F
A

R
at
e

50

55

60

65

70

75

80

AAM
GoogLeNet
CNN

Audio-visual

Visual-only

(b) HIT-FA

Figure 5.14: Effect on mask classification accuracy and HIT-FA rate across SNR
for visual-only and audio-visual in babble noise for ratio mask estimation using con-
volutional neural networks.

Focusing first on classification accuracy and HIT-FA rate results show that ex-

tracting features using both end-to-end (CNN) and pre-trained (GoogLeNet) CNNs

outperform the baseline AAM feature in most conditions, for both visual-only and

audio-visual models, shown in Figure 5.14 for babble noise at SNRs from −10 dB

to 5 dB. The CNN and GoogLeNet systems perform similarly across all conditions,

with CNN performing slightly better in audio-visual models, and GoogLeNet per-

forming slightly better in visual-only models. Largest gains are found at low SNRs,

with little gain found at high SNRs. When comparing the CNN system against

AAM, an average improvement across both babble and factory noise at −10 dB for

classification accuracy of 0.35 and 0.6, and for HIT-FA rate of 1.4 and 1.95 can be

found for visual-only and audio-visual models respectively.

Looking now at quality scores through PESQ and intelligibility with ESTOI

similar trends as with classification accuracy and HIT-FA rate are found, where ex-

tracting features using both end-to-end (CNN) and pre-trained (GoogLeNet) CNNs

outperform the baseline AAM feature in most conditions, for both visual-only and

audio-visual models, shown in Figure 5.15 for babble noise at SNRs from −10 dB

to 5 dB. The performance between all systems is close, with the end-to-end CNN
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Figure 5.15: Effect on quality through PESQ and intelligibility through ESTOI
across SNR for visual-only and audio-visual in babble noise for ratio mask estimation
using convolutional neural networks.

system providing best performance, particularly at low SNRs and in ESTOI.

When comparing the CNN system against AAM, an average improvement across

both babble and factory noise at −10 dB for PESQ of 0.03 and 0.05, and for ESTOI

of 2.0 and 2.6 can be found for visual-only and audio-visual models respectively. The

performance gained in PESQ is marginal, yet the gain found for ESTOI is relevant,

considering how well AAM features perform particularly in this favourable speaker

dependent task.

Comparing the performance of the end-to-end CNN to the baseline AAM system

across all modalities and SNR conditions, consistent gains are found across all mea-

sures for both visual-only and audio-visual models. With our focus being improving

intelligibility, large gains are found across all SNR conditions, with larger gains found

at the more challenging lower SNR. This improvement at lower SNRs reveals a key

benefit from using convolutional neural networks for feature extraction. When com-

paring the end-to-end CNN with the pre-trained GoogLeNet feature, the difference

becomes smaller than found with AAM, however, training a bespoke end-to-end

CNN for the specific task does provide best performance across most measures and

conditions, although marginal.
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Table 5.3: (VISUAL-ONLY) Classification accuracy (in %), HIT-FA (in %) PESQ
and ESTOI scores for the GRID dataset for visual-only mask estimation with different
CNN architectures in babble and factory noise at −10 dB, −5 dB, 0 dB and 5 dB.

Noise (dB) Model Acc HIT-FA (FA) PESQ ESTOI

babble

-10

AAM 87.5 67.1 (8.8) 2.06 45.7

GoogLeNet 87.8 68.5 (8.8) 2.08 46.3

CNN 87.8 68.2 (8.6) 2.11 47.4

unprocessed audio 1.61 10.6

-5

AAM 87.7 66.5 (8.2) 2.21 51.1

GoogLeNet 88.1 68.2 (8.3) 2.23 51.3

CNN 88.1 67.1 (7.9) 2.24 52.9

unprocessed audio 1.82 20.3

0

AAM 87.9 62.8 (6.1) 2.41 58.1

GoogLeNet 88.3 66.2 (6.9) 2.43 59.2

CNN 88.1 65.3 (6.9) 2.40 59.6

unprocessed audio 2.04 33.9

+5

AAM 87.7 58.8 (4.6) 2.61 68.2

GoogLeNet 87.8 57.4 (3.9) 2.64 68.3

CNN 87.9 61.5 (5.6) 2.64 68.2

unprocessed audio 2.25 49.8

factory

-10

AAM 90.6 68.0 (5.8) 2.14 46.5

GoogLeNet 90.9 69.8 (5.8) 2.17 48.1

CNN 91.0 69.7 (5.6) 2.14 48.8

unprocessed audio 1.46 10.5

-5

AAM 90.7 68.1 (5.6) 2.28 52.4

GoogLeNet 91.0 68.4 (5.2) 2.30 53.2

CNN 91.0 68.0 (5.2) 2.29 53.9

unprocessed audio 1.66 20.1

0

AAM 90.9 66.4 (4.9) 2.44 60.1

GoogLeNet 91.1 66.3 (4.6) 2.45 60.2

CNN 91.1 67.2 (4.7) 2.43 60.8

unprocessed audio 1.87 33.5

+5

AAM 90.7 56.8 (2.8) 2.61 68.0

GoogLeNet 91.0 60.1 (3.2) 2.64 68.7

CNN 91.3 66.1 (4.0) 2.63 70.1

unprocessed audio 2.09 49.9
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Table 5.4: (AUDIO-VISUAL) Classification accuracy (in %), HIT-FA (in %) PESQ
and ESTOI scores for the GRID dataset for audio-visual mask estimation with dif-
ferent CNN architectures in babble and factory noise at −10 dB, −5 dB, 0 dB and
5 dB.

Noise (dB) Model Acc HIT-FA (FA) PESQ ESTOI

babble

-10

AAM 90.0 71.7 (6.3) 2.18 51.4

GoogLeNet 90.4 73.0 (6.0) 2.22 53.1

CNN 90.7 74.1 (6.0) 2.23 54.1

unprocessed audio 1.61 10.6

-5

AAM 91.5 75.6 (5.2) 2.43 61.0

GoogLeNet 91.7 76.5 (5.3) 2.46 61.6

CNN 91.7 76.5 (4.9) 2.46 62.1

unprocessed audio 1.82 20.3

0

AAM 92.5 77.9 (4.4) 2.71 70.8

GoogLeNet 92.6 77.5 (4.0) 2.74 71.3

CNN 92.6 77.7 (4.1) 2.73 71.2

unprocessed audio 2.04 33.9

+5

AAM 92.8 77.8 (3.7) 2.98 79.7

GoogLeNet 92.8 77.4 (3.4) 2.98 79.8

CNN 92.8 77.2 (3.4) 2.98 79.8

unprocessed audio 2.25 49.8

factory

-10

AAM 92.8 73.7 (3.9) 2.25 52.6

GoogLeNet 93.1 74.6 (3.7) 2.29 53.8

CNN 93.3 75.2 (3.6) 2.29 55.0

unprocessed audio 1.46 10.5

-5

AAM 94.0 77.1 (3.1) 2.50 61.7

GoogLeNet 94.1 77.5 (3.0) 2.54 63.0

CNN 94.1 77.8 (3.0) 2.52 62.8

unprocessed audio 1.66 20.1

0

AAM 94.7 79.7 (2.7) 2.76 71.4

GoogLeNet 94.8 79.2 (2.5) 2.76 71.5

CNN 94.8 79.7 (2.5) 2.76 72.0

unprocessed audio 1.87 33.5

+5

AAM 95.1 79.8 (2.1) 3.00 79.9

GoogLeNet 95.2 79.7 (2.1) 2.99 80.1

CNN 95.1 79.9 (2.2) 2.98 80.1

unprocessed audio 2.09 49.9
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5.5.3 Comparison of features learnt between end-to-end

trained and pre-trained CNNs

In this section a comparison of features learnt from an end-to-end trained CNN

is compared with features learnt within the pre-trained GoogLeNet architecture.

The end-to-end trained CNN was specifically trained for this task (lip-reading) and

for the GRID dataset, whereas the GoogLeNet architecture was specifically trained

for image classification on a different dataset. To extract the features learnt, the

internal state of the first convolutional layer is extracted, which learns features

directly from the input image, similar to how bottleneck features were extracted

in Section 5.4.2. For comparison, a visual-only end-to-end trained CNN in babble

noise at −5 dB was chosen to compare against the GoogLeNet architecture. A

visual-only model was chosen over an audio-visual model due to fairer comparison

with the GoogLeNet system, which was also trained purely on visual information.

Also, the features learnt within an audio-visual model can vary from visual-only due

to learning complimentary features between visual and acoustic information, which

may produce different features compared to visual-only models.

Figure 5.16: Example input image of a mouth-only ROI upsampled via interpolation
from the GRID dataset.

Figure 5.16 shows an example input image used for training the end-to-end CNN

and for extracting bottleneck features from GoogLeNet. This is applied to both ar-

chitectures to extract the internal state of the first convolutional layer representing

the features learnt within each architecture. Figures 5.17 and 5.18 show the activa-

tions of each filter kernel learnt within the first convolutional layer of the end-to-end
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CNN and GoogLeNet architectures respectively.

Focusing first on Figure 5.17, which shows features learnt within an end-to-end

trained CNN, strong activations are found across all kernels. The majority of acti-

vations are focused on the internal mouth across all kernels, specifically where teeth,

tongue and inner lip contours are. This area is where most of the visual articula-

tion occurs, and shows that the CNN was able to learn this itself from the training

data. Other areas where activations are prominent are on the lips themselves, again

an important visual cue. All kernels also provide some activation to the skin area

surrounding the lips. Surprisingly, many of the kernels show similar activations to

other kernels, extracting the same information. This could be due to the dropout

used within training, where this information was found to be critical and as such

multiple copies are extracted to ensure the information is not lost via dropout.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Figure 5.17: Activations of the filter kernels learnt from the first convolutional layer
of the end-to-end trained CNN.

Looking now at Figure 5.18, which shows features learnt within the GoogLeNet

architecture, strong activations are found for some kernels, yet many show little

to no activations. This is due from the GoogLeNet model being trained for image
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classification on another dataset, and not on the GRID dataset as with the end-to-

end system. Many of the kernels have learnt features which are not present within

an image of a mouth, and therefore show no activation when provided with mouth

images. Those kernels which do show activations are again focused on the inner

mouth, lip area or skin area around the lips, which is known to provide the majority

of visual cues.

Overall, it is clear that training CNNs specifically on the dataset used within

the application enables the CNN to learn more appropriate features. This is why

the end-to-end trained CNN outperformed the pre-trained CNN using features ex-

tracted from GoogLeNet within experiments in Section 5.5.2. However, features

learnt within the GoogLeNet model show similarities to the dataset specific end-to-

end model. This enabled models using the GoogLeNet bottleneck feature to still

perform well, and were able to beat traditional AAM feature extraction, which are

also dataset specific. Therefore, using pre-trained CNNs can be beneficial for appli-

cations if training a dataset specific CNN is not possible or is impractical in terms

of training time or available processing hardware.
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Figure 5.18: Activations of the filter kernels learnt from the first convolutional layer
of the pre-trained GoogLeNet CNN.
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5.6 Conclusions

This work has examined the effect on intelligibility (ESTOI), quality (PESQ) and

mask accuracy (classification accuracy and HIT-FA rate) of using convolutional

neural networks for feature extraction within ratio mask estimation for speech en-

hancement. It was found that extracting ROIs focusing on the mouth-only outper-

formed extracting full-face ROIs across both visual-only and audio-visual models.

Upsampling through interpolation also outperformed upsampling with repetition,

the variation produced for each time-step for interpolation over repetition likely

aids the temporal recurrent network when traversing through time.

Using mouth-only ROIs with interpolation upsampling in both pre-trained CNNs

and end-to-end CNNs provide large gains in intelligibility over the traditional AAM

feature extraction method, in both visual-only and audio-visual models. Further

gains were found across the other measures, with largest gains found for intelligi-

bility. Peak performance was found when training an end-to-end CNN over using

pre-trained networks, training a model specifically for the task (lip-reading) should

outweigh adapting a previously trained model targeted for a different task (image

classification), although the time-saved from training and ease of testing network

variations could outweigh the drop in performance compared to the end-to-end sys-

tem. Features learnt from the pre-trained GoogLeNet architecture showed similari-

ties to the dataset specific end-to-end trained CNN, which were sufficient to enable

the pre-trained models to outperform models using traditional AAM features.

Combining both audio and visual modalities into a single bimodal audio-visual

system still provides best performance across all noise types and SNRs, confirming

that combining audio and visual features provides a robust complimentary feature

set. Extracting features from CNNs not only improves performance over AAM,

but also removes many of the time-expensive processes required to extract AAM

features, such as hand labelling detailed landmarks, instead only a cropped box

around a tracked ROI is required to be extracted.



Chapter 6

Evaluation of model generalisation

to unseen noise conditions and

dataset size

6.1 Introduction

Previous work has explored and maximised the performance of audio-only, visual-

only and audio-visual speech enhancement systems in matched noise type and SNR

dependent conditions, with constraints on noise type and SNR conditions and dataset

size being applied to aid in the development of the speech enhancement systems.

However such constraints are impractical for application in real-world environments

where noise conditions will change over time. This chapter explores removing these

constraints by first developing systems for unconstrained noise type and SNR con-

ditions, before applying the best performing methods to a larger unconstrained

vocabulary dataset.

All evaluations so far have been conducted in matched noise and SNR conditions,

where individual models are trained for each noise condition. This approach works

well if all noise conditions for the application deployment environment are known

137
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in advance, allowing noise type and SNR dependent models to be implemented per

known condition. The speech enhancement system can select the noise dependent

model trained for the current environment. If the environment changes, the system

can simply select the new environment-dependent model. In unconstrained real-

world environments, where noise type and SNR conditions can vary greatly, having

noise dependent models becomes impractical and infeasible. Instead, having a noise

independent system, where a single speech enhancement system is trained which can

generalise to both known and unknown conditions would provide a more practical

solution for real-world environments. This is achieved by training a single model

with multiple and varying noise and SNR conditions, allowing the model to learn

from more noise sources, in an attempt to provide generalisation.

This work considers applying our best performing audio-only, visual-only and

audio-visual architectures for noise independent training. Figure 6.1 shows the

training pipeline of the audio-visual speech enhancement system, of which the im-

plementation is based from combining the architectures used in Sections 5.3.2 and

5.4.2. Images are extracted from video and input into an end-to-end trained con-

volutional neural network (CNN), bottleneck features extracted from the CNN are

then combined with acoustic features extracted from noisy speech, before input into

the recurrent neural network (RNN) for temporal modelling to estimate the ratio

mask. Noise conditions used in training are no longer condition dependent, and

instead cover a wide range of varying noise conditions. For testing purposes, es-

timated masks are applied to a cochleagram of the noisy speech which suppresses

noise-dominated T-F units and the remaining signals are overlapped and summed to

produce the enhanced signal, shown in Figure 6.2. The same pipeline is used for all

speech enhancement configurations, except the visual stream is removed for audio-

only and the audio stream is removed for visual-only. To confirm the models are able

to learn generalisation, and not operate only in noise conditions used in training,

both noise conditions used in training (seen conditions) and noise conditions not

seen in training (unseen conditions) are tested.
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Figure 6.1: Overview of training the CNN & RNN ratio masking speech enhance-
ment system for noise type and SNR independent conditions.
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Figure 6.2: Overview of applying the CNN & RNN predicted ratio mask to noisy
speech for speech enhancement testing in noise type and SNR independent conditions.

Previous chapters have performed evaluations within a small constrained vocab-

ulary dataset, GRID (Cooke et al. [2006]). Using the GRID dataset has allowed

for easier development and optimisation of the various speech enhancement mod-

els. However, the techniques and models developed are not specific for constrained
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speech, and can be extended and applied to an unconstrained dataset, RM-3000

(Howell et al. [2016]), using the same pipeline as used for GRID (details of the RM-

3000 dataset are provided in Section A.3). The key difference is between the number

of words within each dataset. Only 51 words are in GRID whereas RM-3000 con-

tains 1000. From experiments conducted so far, largest gains found over audio-only

models in intelligibility are from audio-visual models at low SNRs, where the acous-

tic information is most corrupted and the audio-visual model is using lip-reading

to improve performance. However, due to the large increase in words for RM-3000,

lip-reading specifically becomes more difficult giving a far more challenging task

for the speech enhancement systems, and will further test the generalisation of the

proposed work.

The remainder of this chapter is organised as follows. Section 6.2 provides an

overview of the model architectures and feature extraction methods used for noise in-

dependent training. Also shown is an adaptation of the visual-only and audio-visual

models through alternative visual feature extraction compared to the previously

best performing noise dependent architectures, required to perform noise indepen-

dent training within a reasonable time frame. Performance evaluations are made

in Section 6.3 which compare the effectiveness of audio-only, visual-only and audio-

visual models for generalisation in noise independent conditions for both small scale

(GRID) and large scale (RM-3000) datasets. Firstly, Section 6.3.1 evaluates the

generalisation to both seen and unseen noise conditions within the GRID dataset.

Section 6.3.2 compares the difference in performance when training in noise indepen-

dent conditions compared to noise dependent models. The generalisation of noise

independent models to larger vocabulary unconstrained speech is evaluated in Sec-

tion 6.3.3, before the effect of applying speech enhancement in small scale or large

scale datasets are compared in Section 6.3.4. Finally, this chapter is concluded in

Section 6.4.



CHAPTER 6. EVALUATION OF MODEL GENERALISATION 141

6.2 Neural network architectures

Previous work has explored and maximised the performance of audio-only, visual-

only and audio-visual speech enhancement models for noise dependent conditions.

This work now evaluates those models in unconstrained and noise independent con-

ditions, focusing on generalisation. This section introduces an alternative approach

for extracting visual features for noise independent training than used previously for

noise dependent models, which is subsequently used for visual-only and audio-visual

models. This was required to enable the noise independent models to be trained

within a reasonable amount of time, which would be impractical using the previ-

ous noise dependent approach. An overview of the acoustic feature extraction and

audio-only, visual-only and audio-visual architectures is provided. The same model

and architecture designs are used for both GRID and RM-3000 datasets.

6.2.1 Audio-only

The best performing audio-only model found is the layer normalised bi-directional

recurrent feed-forward hybrid network using gated recurrent units (LNBiGRU-DNN)

from Chapter 4, shown in Figure 6.3. The architecture comprises 2 pairs of forward

and backward recurrent layers containing 256 gated recurrent units (GRU) per layer

(512 per pair), 2 further dense layers containing 1024 rectified linear units (ReLU)

and a final linear output layer. A skip connection is included combining the input

and output from the recurrent layers. Detailed implementations of the LNBiGRU-

DNN are in Section 4.3.2.

ac
ou

sti
c i

np
ut

ou
tpu

trec
urr

en
t

rec
urr

en
t

de
ns

e
de

ns
e

Figure 6.3: Audio-only layer normalised bi-directional recurrent feed-forward hybrid
(LNBiGRU-DNN) speech enhancement architecture.
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The acoustic feature extracted was the multi-resolution cochleagram (MRCG),

which was found to perform best for both binary masking (Chapter 2) and ratio

masking (Chapter 3). The MRCG feature combines 4 different cochleagrams, of

both high and low resolution, into a single feature, this feature was specifically

designed for mask estimation based within a cochleagram framework (Chen et al.

[2014]). Detailed implementations of the MRCG feature are in Section 2.3.1.1.

6.2.2 Visual-only

The best performing visual-only model found is an end-to-end trained CNN for

feature extraction with a layer normalised bi-directional recurrent feed-forward hy-

brid network using gated recurrent units (LNBiGRU-DNN) temporal architecture,

from Chapter 5. In Chapter 5, an end-to-end trained CNN was compared against

using a pre-trained CNN which had been trained for image classification on an im-

age dataset (ImageNet). The end-to-end trained CNN system outperformed the

pre-trained CNN system due mainly from being specifically trained on the GRID

dataset, however, using features extracted from a pre-trained network was faster to

train.

In this work a single model is now trained under multiple noise conditions which

causes implications on the time taken to train models. For each additional noise

condition, the time taken to train a network increases linearly. Therefore, a compro-

mise between using end-to-end trained CNNs and pre-trained networks is proposed.

Instead of training an end-to-end CNN on all noise conditions, a single noise depen-

dent model is trained and used to extract bottleneck features as a replacement to

using the GoogLeNet model in Section 5.4.2. This provides a speed up in training,

as only the temporal network is trained in multiple noise conditions, and the per-

formance gain from using dataset specific features. The bottleneck features learnt

from a noise dependent system are unlikely to differ from one learnt in multiple

noise conditions. This is due to the fact the visual stream remains unchanged even

when the acoustic signal is mixed in different noise conditions, therefore the input
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image ROI is also the same across varying noise conditions.

The implementation of a visual-only noise independent speech enhancement ar-

chitecture is split into two networks. The first network is trained to extract visual

bottleneck features from raw video input using CNNs within a noise dependent en-

vironment. The second network trains a noise independent temporal architecture

using the extracted bottleneck features, without the need to train additional convo-

lutional layers. To extract visual bottleneck features the end-to-end trained CNN

previously shown to perform best in matched noise dependent conditions (Section

5.5.2) was selected. This architecture follows the same implementation as in Section

5.3.2, and is shown in Figure 6.4. The architecture comprises of three sets of [convo-

lutional, channel-wise dropout, max-pooling] layers consisting of [32, 64, 96] kernels

of size [5× 5, 5× 5, 3× 3] followed by a single 256 ReLU unit bottleneck layer for

feature reduction, before passing to the temporal network. The temporal network

selected is a layer normalised bi-directional recurrent feed-forward hybrid network

using gated recurrent units (LNBiGRU-DNN) and follows the same implementation

as shown for audio-only (Section 6.2.1).
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Figure 6.4: Visual-only noise dependent convolutional layer normalised bi-
directional recurrent feed-forward hybrid speech enhancement architecture used for
bottleneck feature extraction.

As discussed previously, the visual information does not change even when the

interfering noise condition does, and as such the visual stream remains unchanged

across all noise conditions. Thus, the choice of noise condition and SNR used to train

the dependent model should have minimal impact on the features learnt, any varia-

tion introduced can be accounted for within training the second temporal network.

Therefore, the noise dependent model previously trained in Section 5.5.2 for bab-
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ble noise at −5 dB was selected. The dependent model requires images extracted of

mouth-only ROIs upsampled via interpolation as input, which was found to perform

best in Section 5.5.1.

Mouth-only ROIs are extracted from raw video frames using the Viola-Jones

(Viola and Jones [2001]) cascade-based object detector. Images are cropped to a

fixed box size of 90×110 pixels centred around the mouth in RGB colourspace before

downsampling to 64×64 pixels. Due to the difference in frame rates between acoustic

and video input, input images are upsampled through interpolation, for each pixel

and RGB channel, to that of the acoustic features. Detailed implementations of

mouth-only ROI extraction are in Section 5.3.1. For the RM-3000 dataset, a new

noise dependent model is trained in babble noise at −5 dB to extract bottleneck

features specific for RM-3000.
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Figure 6.5: Visual-only noise independent layer normalised bi-directional recurrent
feed-forward hybrid speech enhancement architecture.

The second network is trained using the visual bottleneck features extracted

from the first network for noise independent conditions. The noise independent

architecture follows the same implementation as used for the temporal architecture

using extracted GoogLeNet features in Section 5.4.2, shown in Figure 6.5. The only

difference between this architecture and that used for audio-only, is the additional

bottleneck feature before the recurrent layers, this was to account for the potential

variation between noise dependent and noise independent features. Although in

initial experiments the inclusion of the additional bottleneck layer had minimal

performance difference to networks without this layer, but was kept for consistency

with the GoogLeNet implementation.
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6.2.3 Audio-visual

The best performing audio-visual model found is an end-to-end trained CNN for fea-

ture extraction with a layer normalised bi-directional recurrent feed-forward hybrid

network using gated recurrent units (LNBiGRU-DNN) temporal architecture, from

Chapter 5. As discussed in Section 6.2.2, using an end-to-end system for noise inde-

pendent models provides additional constraints than that for noise dependent. The

time taken to train a noise independent model increases linearly for each additional

noise condition over the noise dependent model. Instead, a pre-trained noise depen-

dent end-to-end trained CNN is used to extract bottleneck features before training

a noise independent temporal network. The same pipeline is used to build an audio-

visual noise independent model. Figure 6.6 shows the temporal architecture used to

train the audio-visual noise independent speech enhancement system.
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Figure 6.6: Audio-visual noise independent layer normalised bi-directional recurrent
feed-forward hybrid speech enhancement architecture.

The same visual-only noise dependent end-to-end trained CNN from Section 6.2.2

is used to extract bottleneck features for the GRID and RM-3000 datasets respec-

tively, i.e the visual bottleneck features used in audio-visual is the same as used in

visual-only. The acoustic input used is the multi-resolution cochleagram, which was

previously used in Chapter 5 and is the same as used in audio-only (Section 6.2.1).
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6.3 Experimental Results

The performance of audio-only, visual-only and audio-visual models (outlined in Sec-

tion 6.2) for noise generalisation are evaluated first using the small constrained GRID

dataset, before applying to the larger unconstrained RM-3000 dataset. Comparisons

are made between the performance of noise dependent and noise independent models

and between small scale and large scale datasets.

Models are trained in babble, factory and speech shape noise at SNRs of −10 dB,

−5 dB, 0 dB and 5 dB, giving 12 seen noise conditions. To evaluate noise gener-

alisation, models are tested in all seen conditions, and then in unseen conditions,

namely cafeteria babble and street noise at SNRs of −10 dB, −5 dB, 0 dB and 5 dB,

giving an additional 8 unseen noise conditions. Results for the GRID and RM-3000

datasets are in Sections 6.3.1 and 6.3.3 respectively.

The CNN and RNN models were implemented within the Lasagne framework

(Dieleman et al. [2015]) with the Theano (Theano Development Team [2016]) back-

end. Input data was z-score normalised and grouped into mini-batches of 256. To

prevent overfitting, dropout of 0.5 was applied between all convolutional layers, and

dropout of 0.2 applied to all other layers and early stopping (Prechelt [1998]) was

used when the validation score did not improve after 5 further epochs. Training used

backpropagation with the Adam optimiser (Kingma and Ba [2014]) and a learning

rate 0.001 for CNN and RNN, minimising the MSE loss function.

6.3.1 Noise independent speech enhancement – GRID

This experiment compares the generalisation of audio-only, visual-only and audio-

visual architectures across both seen and unseen noise conditions for the GRID

dataset. Previous experiments have shown the models to perform well in noise

dependent conditions, whereas here the focus is noise independence. All experiments

use a single speaker (speaker 12) from the GRID dataset (details provided in Section

A.1), containing 1000 utterances which are allocated into 640, 160 and 200 for the



CHAPTER 6. EVALUATION OF MODEL GENERALISATION 147

training, validation and test sets respectively.

Table 6.1 shows the full set of objective measures for the test set across all 20

noise conditions (12 seen and 8 unseen) for audio-only, visual-only and audio-visual

models. Objective measures selected are classification accuracy, HIT-FA rate, PESQ

and ESTOI. Figures 6.7 to 6.10 provide detailed breakdowns from Table 6.1 for

babble (seen) and street (unseen) noise conditions at −10 dB, −5 dB, 0 dB and 5 dB.

Focusing first on classification accuracy and HIT-FA rate results show that the

audio-visual model outperforms both audio-only and visual-only in most seen con-

ditions and all unseen conditions. Figures 6.7 and 6.8 show classification accuracy

and HIT-FA rate for babble (seen) and street (unseen) noise.
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Figure 6.7: Effect on mask classification accuracy across SNR for audio-only, visual-
only and audio-visual models in seen (babble) and unseen (street) noise conditions
for ratio mask estimation for the GRID dataset.

In seen conditions, audio-only performs almost equivalently to audio-visual at

high SNRs, dropping below audio-visual at low SNRs, particularly at −10 dB.

Visual-only performs consistently worse than both audio-only and audio-visual across

all conditions except at −10 dB for HIT-FA rate where visual-only outperforms

audio-only.

In unseen conditions, the performance of audio-only reduces drastically, partic-

ularly at low SNRs. At 5 dB, audio-only performs as well as audio-visual, but at
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Figure 6.8: Effect on mask HIT-FA rate across SNR for audio-only, visual-only and
audio-visual models in seen (babble) and unseen (street) noise conditions for ratio
mask estimation for the GRID dataset.

−10 dB, the difference between audio-only and audio-visual increases from 2.4 and

14.0 in seen conditions (babble) to 28.1 and 38.9 in unseen conditions (street) for

classification accuracy and HIT-FA rate respectively.

The performance of visual-only stays consistent across all conditions, for both

classification accuracy and HIT-FA rate, showing no sign of degradation in unseen

noise conditions. Audio-visual also performs similarly in unseen conditions, only

at −10 dB does performance drop below that of seen conditions, matching the per-

formance of visual-only. This clearly shows how the audio-visual model adapts the

weighting between visual information and acoustic information as the SNR varies,

even though the model is not told what the SNR is, only from what is provided by

the acoustic features. At low SNRs more weight is provided to the visual stream,

whereas at high SNRs more weight is applied to the acoustic stream. When compar-

ing visual-only in seen and unseen noise types across SNR for classification accuracy

the performance peaks between −5 dB and 0 dB and tails at both −10 dB and 5 dB,

yet for HIT-FA rate performance peaks at −10 dB before dropping rapidly towards

5 dB. This is due to the visual-only model not having access to the acoustic informa-

tion in training, instead only the visual information is presented. As mentioned in
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Section 6.2.2, the visual information does not change even when the audio is mixed

in different conditions, but the target ratio masks do change for different noise con-

ditions. The visual-only model can only learn a mapping from the provided visual

input, and is instead forced to learn a mean ratio mask for each given input se-

quence. Therefore the mask for an utterance mixed in a particular noise condition

is equivalent to the same utterance mixed in all other noise conditions. Here models

are trained with SNRs of −10 dB, −5 dB, 0 dB and 5 dB, producing a mean SNR

of −2.5 dB, where the peak is found for classification accuracy, suggesting the mask

produced is equivalent to an SNR of −2.5 dB. As for the trend found in HIT-FA

rate, this is due to calculating HITs and FAs for each SNR. At SNRs below −2.5 dB,

the output mask is amplified compared to the target mask, introducing higher HITs

and higher FAs, for example babble at −10 dB has 88.5 HITS and 19.8 FAs. At

SNRs above −2.5 dB, the output mask is attenuated compared to the target mask,

introducing lower HITs and lower FAs, for example babble at 5 dB has 24.6 HITS

and 0.9 FAs.

Looking now at quality scores through PESQ and intelligibility with ESTOI

similar trends as with classification accuracy and HIT-FA rate are found, where the

audio-visual outperforms both audio-only and visual-only in most seen conditions

and all unseen conditions. All models are shown to outperform unprocessed audio

across all noise and SNR conditions tested. Two-way analysis of variance (ANOVA)

over all model pairs (A, V, AV and unprocessed) per noise type and SNR is applied

with multiple comparison tests according to Tukey’s HSD (Tukey [1949]; Ghosh

and Sharma [1963]). This is performed for each combination of model pairs (giving

6 comparisons) within each noise type and SNR for both PESQ and ESTOI, by

comparing objective scores from the test set for each model, i.e for all 200 utterances

for GRID, and are statistically significantly different if p < 0.05. Figures 6.9 and

6.10 show PESQ and ESTOI scores for babble (seen) and street (unseen) noise for

the A, V, AV systems and for unprocessed audio. Two scores, where the difference

between them is not statistically significant, are highlighted by being enclosed in an

orange box. All other scores are measured to be statistically different.
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Figure 6.9: Effect on quality through PESQ across SNR for audio-only, visual-only
and audio-visual models in seen (babble) and unseen (street) noise conditions for
ratio mask estimation for the GRID dataset. Model pair’s within orange boxes are
not statistically significantly different through two-way ANOVA testing (i.e p ≥ 0.05).

SNR (dB)
-10 -5 0 5

In
te
ll
ig
ib
il
it
y
(E

S
T
O
I)

0

10

20

30

40

50

60

70

80

90

(a) babble

SNR (dB)
-10 -5 0 5

In
te
ll
ig
ib
il
it
y
(E

S
T
O
I)

0

10

20

30

40

50

60

70

80

90

A
V
AV
Unprocessed

(b) street

Figure 6.10: Effect on intelligibility through ESTOI across SNR for audio-only,
visual-only and audio-visual models in seen (babble) and unseen (street) noise con-
ditions for ratio mask estimation for the GRID dataset. Model pair’s within orange
boxes are not statistically significantly different through two-way ANOVA testing (i.e
p ≥ 0.05).

In seen conditions, audio-only performs almost equivalent to audio-visual at high

SNRs (no statistically significant difference), dropping below audio-visual at low

SNRs (below 0 dB), particularly at −10 dB. Visual-only consistently performs worse

than both audio-only and audio-visual across all conditions except at −10 dB, where
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high levels of noise is present, visual-only performs similarly to audio-only for both

PESQ and ESTOI with no statistically significant difference between them.

In unseen conditions, the performance of audio-only again reduces drastically,

particularly at low SNRs. Unlike for classification accuracy and HIT-FA rate, even at

high SNRs (5 dB), audio-only still performs worse than audio-visual. For PESQ the

performance difference at −10 dB stays consistent at 0.36 for both babble and street

noise respectively, however this is due to a reduction for both audio-only and audio-

visual, with audio-only providing little gain over unprocessed audio. For ESTOI

the performance difference at −10 dB increases from 15.4 for babble to 27.0 for

street noise even with the degradation of audio-visual, again audio-only offers little

gain over unprocessed audio. A larger difference is seen across higher SNRs (above

−10 dB) across PESQ and ESTOI where audio-visual performance stays closer to

seen conditions, whereas audio-only drops from seen conditions. A difference of 0.04

and 1.1 for babble and 0.27 and 11.7 for street is seen at 0 dB between audio-visual

and audio-only for PESQ and ESTOI scores respectively.

The performance of visual-only stays consistent across all conditions, for both

PESQ and ESTOI, showing no sign of degradation in unseen noise conditions.

Audio-visual also performs similarly in unseen conditions, only at −10 dB does per-

formance drop below that of seen conditions, matching the performance of visual-

only (no statistically significant difference). Both trends were also found for classi-

fication accuracy and HIT-FA rate, confirming the adaptability of audio-visual for

varying SNRs and the importance of visual information at low SNRs.

Comparing the performance of audio-only, visual-only and audio-visual across all

noise conditions and SNRs, audio-visual consistently outperforms both audio-only

and visual-only across all objective measures. In seen conditions, the performance

gain from audio-visual over audio-only is only found at low SNRs (below 0 dB), with

similar performance found at higher SNRs, both outperforming visual-only across

all SNRs. In unseen conditions again audio-visual performs best across all objective

measures. Visual-only performed equally as well in unseen conditions as to seen con-
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ditions, showing no sign of degradation. On the other hand, audio-only performed

particularly poorly in unseen conditions, particularly at low SNRs, where perfor-

mance was marginally better than unprocessed. When considering generalisation,

visual information is shown to be critical, allowing both visual-only and audio-visual

to perform well in unseen conditions, with the combination of audio-visual still pro-

viding best overall performance at all SNRs and noise types evaluated.

Table 6.1: (GRID) Classification accuracy (in %), HIT-FA (in %) PESQ and

ESTOI scores for the GRID dataset in seen (babble, factory, speech shape) and

unseen (cafeteria babble, street) noise at −10 dB, −5 dB, 0 dB and 5 dB.

Noise (dB) Model Acc HIT-FA (FA) PESQ ESTOI

babble

-10

A 88.8 63.9 (5.2) 1.93 42.8

V 82.1 68.7 (19.8) 2.00 42.7

AV 91.2 77.9 (6.7) 2.29 58.4

unprocessed audio 1.61 10.6

-5

A 92.2 76.7 (4.4) 2.44 62.1

V 86.1 65.3 (10.8) 2.22 50.0

AV 92.5 78.6 (4.6) 2.54 66.3

unprocessed audio 1.82 20.3

0

A 93.2 80.3 (4.0) 2.77 73.0

V 85.8 49.5 (4.2) 2.46 59.0

AV 93.2 80.3 (4.0) 2.81 74.1

unprocessed audio 2.04 33.9

+5

A 93.2 77.9 (3.0) 3.01 80.8

V 81.4 23.7 (0.9) 2.69 68.5

AV 92.8 75.6 (2.6) 3.03 81.0

unprocessed audio 2.25 49.8

Continued on next page
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Table 6.1 – continued from previous page

Noise (dB) Model Acc HIT-FA (FA) PESQ ESTOI

factory

-10

A 91.8 65.7 (3.4) 1.98 41.9

V 79.1 69.4 (24.0) 1.94 44.5

AV 93.6 77.9 (3.8) 2.32 58.7

unprocessed audio 1.46 10.5

-5

A 94.2 76.5 (2.6) 2.46 60.7

V 86.0 71.4 (13.8) 2.15 51.2

AV 94.6 78.9 (2.7) 2.59 66.7

unprocessed audio 1.66 20.1

0

A 95.2 81.0 (2.4) 2.79 72.7

V 89.4 59.8 (5.4) 2.37 59.8

AV 95.1 80.7 (2.4) 2.82 74.2

unprocessed audio 1.87 33.5

+5

A 95.4 80.0 (1.9) 3.02 81.1

V 87.3 31.0 (1.2) 2.60 68.8

AV 95.1 77.9 (1.7) 3.04 81.4

unprocessed audio 2.09 49.9

-10

A 92.6 76.1 (4.1) 2.21 53.9

V 81.8 71.6 (21.0) 2.02 45.1

AV 93.1 79.9 (4.6) 2.36 61.4

unprocessed audio 1.60 12.3

-5

A 94.2 82.2 (3.6) 2.54 67.3

V 87.2 70.6 (11.4) 2.22 52.2

AV 94.1 81.3 (3.5) 2.58 68.7

speech unprocessed audio 1.73 22.6

shape

0

A 94.8 83.8 (3.1) 2.81 75.9

V 88.0 54.9 (4.4) 2.46 61.4

AV 94.6 82.4 (3.0) 2.83 75.8

unprocessed audio 1.93 37.2

+5

A 94.9 82.0 (2.3) 3.06 83.2

V 84.0 26.5 (0.9) 2.68 70.9

AV 94.4 79.0 (2.0) 3.06 83.0

unprocessed audio 2.17 53.6

Continued on next page
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Table 6.1 – continued from previous page

Noise (dB) Model Acc HIT-FA (FA) PESQ ESTOI

-10

A 59.0 31.5 (45.7) 1.47 15.0

V 80.6 69.3 (22.1) 1.91 42.4

AV 88.2 76.8 (12.1) 2.07 46.8

unprocessed audio 1.51 9.3

-5

A 71.9 49.7 (30.1) 1.83 33.0

V 86.2 68.4 (12.5) 2.13 50.1

AV 91.7 79.5 (7.0) 2.38 58.8

cafeteria unprocessed audio 1.68 19.1

babble

0

A 83.4 66.0 (16.3) 2.28 53.9

V 87.7 54.0 (5.0) 2.35 58.9

AV 93.3 79.4 (4.3) 2.68 70.1

unprocessed audio 1.86 32.3

+5

A 90.9 72.4 (5.9) 2.67 71.4

V 84.6 26.7 (1.1) 2.58 67.9

AV 93.2 73.7 (2.5) 2.94 79.4

unprocessed audio 2.10 47.5

street

-10

A 52.7 30.9 (58.4) 1.76 19.1

V 81.6 67.7 (20.4) 2.05 46.6

AV 80.8 69.8 (22.8) 2.12 46.1

unprocessed audio 1.62 13.3

-5

A 67.5 48.1 (38.3) 2.06 35.4

V 85.3 63.4 (11.6) 2.24 52.5

AV 87.8 76.1 (12.5) 2.40 57.6

unprocessed audio 1.80 22.0

0

A 81.6 64.6 (19.0) 2.44 57.6

V 85.5 48.5 (4.7) 2.46 60.7

AV 90.8 76.9 (7.1) 2.71 69.3

unprocessed audio 2.01 35.1

+5

A 89.0 68.8 (7.2) 2.83 76.0

V 81.7 23.7 (1.0) 2.68 69.5

AV 91.0 70.7 (4.1) 2.98 79.1

unprocessed audio 2.25 50.9
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6.3.2 Noise dependent verses noise independent models

In Section 6.3.1 the best performing audio-only, visual-only and audio-visual archi-

tectures for noise dependent architectures were evaluated for generalisation within

noise independent conditions. Now, the difference in performance between training

noise dependent and noise independent models is compared. Figure 6.11 shows a

comparison between quality using PESQ and intelligibility using ESTOI for noise

dependent and noise independent trained models in babble noise at −10 dB, −5 dB,

0 dB and 5 dB. Similar results and trends are also found across factory noise.
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Figure 6.11: Comparison of the effect on quality through PESQ and intelligibil-
ity ESTOI across SNR for audio-only, visual-only and audio-visual noise dependent
and noise independent models in babble and factory noise conditions for ratio mask
estimation for the GRID dataset.



CHAPTER 6. EVALUATION OF MODEL GENERALISATION 156

Focusing first at quality through PESQ, the overall performance between noise

dependent and noise independent models are similar, with large increases found over

unprocessed audio across all models. For audio-only and audio-visual models, per-

formance is marginally better for noise independent models than noise dependent,

whereas for visual-only performance is again marginally better at higher SNRs but

is slightly degraded at lower SNRs for noise independent compared to noise de-

pendent. An average performance difference of 0.11, -0.05 and 0.07 can be found

for audio-only, visual-only and audio-visual noise independent models compared to

noise dependent models across all SNRs for babble noise.

Looking now at intelligibility through ESTOI, a larger difference between noise

dependent and noise independent models are found, where noise independent models

provide performance gains for audio-only and audio-visual models across all SNRs.

However, for visual-only models, performance stays equal at higher SNRs between

noise independent and noise dependent models, but degrades at lower SNRs where

a degradation of 4.7 at −10 dB in babble noise is seen. An average performance

difference of 4.8, -2.0 and 3.2 can be found for audio-only, visual-only and audio-

visual noise independent models compared to noise dependent models across all

SNRs for babble noise.

Overall, both audio-only and audio-visual models have gains in quality and large

gains in intelligibility for noise independent models over noise dependent models.

This is attributed to training with more data across more noise and SNR condi-

tions, as although dependent models are trained at specific noise type and SNR

conditions, the SNR still varies throughout the utterance. For visual-only models,

a small performance degradation was found for training in noise independent over

noise dependent conditions at low SNRs. The model only has access to visual infor-

mation, and as such cannot take advantage of the SNR variation within the acoustic

stream. Instead, the task becomes more challenging as the training data contains

more examples of similar input mouth shapes mapping to varying target masks per

additional noise condition and SNR. Audio-only and audio-visual models do have ac-
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cess to the acoustic stream, and as such can utilise the increased amount of noise and

SNR varying training data. Therefore training with more instances of varying SNR

conditions is more beneficial in terms of performance for models containing acoustic

information as input, and more beneficial for models containing visual information

as input due to increased noise generalisation as shown in Section 6.3.1.

6.3.3 Noise independent speech enhancement – RM-3000

In Section 6.3.1 the generalisation of audio-only, visual-only and audio-visual ar-

chitectures in noise type and SNR independent conditions was evaluated using the

GRID dataset. Now, the GRID dataset is replaced with the large vocabulary un-

constrained RM-3000 dataset. The RM-3000 dataset increases the vocabulary over

GRID from 51 words to 1000 words, increases the number of utterances from 1000

to 3000, which vary in length ranging between 2 and 12s, with an average of 5s,

compared to GRIDs 3s utterances, and removes the constrained grammar. This

provides a more realistic real-world dataset to evaluate the performance of the pro-

posed models from Section 6.2. The same 20 noise conditions (12 seen and 8 unseen)

as used for the GRID experiment are used here. All experiments use a single male

speaker from the RM-3000 dataset (details can be found in Section A.3), contain-

ing 3000 utterances which are allocated into 1920, 480 and 600 for the training,

validation and test sets respectively.

Table 6.2 shows the full set of objective measures for the test set across all 20 noise

conditions (12 seen and 8 unseen) for all audio-only, visual-only and audio-visual

models. Objective measures selected are classification accuracy, HIT-FA rate, PESQ

and ESTOI. Figures 6.12 to 6.15 provide detailed breakdowns from Table 6.2 for

babble (seen) and street (unseen) noise conditions at −10 dB, −5 dB, 0 dB and 5 dB.

Focusing first on classification accuracy and HIT-FA rate results show that the

audio-visual model outperforms both audio-only and visual-only in most seen con-

ditions and all unseen conditions. Figures 6.12 and 6.13 show classification accuracy

and HIT-FA rate for babble (seen) and street (unseen) noise.
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Figure 6.12: Effect on mask classification accuracy across SNR for audio-only,
visual-only and audio-visual models in seen (babble) and unseen (street) noise condi-
tions for ratio mask estimation for the RM-3000 dataset.
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Figure 6.13: Effect on mask HIT-FA rate across SNR for audio-only, visual-only
and audio-visual models in seen (babble) and unseen (street) noise conditions for
ratio mask estimation for the RM-3000 dataset.

In seen conditions, audio-only performs almost equivalent to audio-visual across

most SNRs, dropping just below audio-visual only at −10 dB. Visual-only consis-

tently performs considerably worse than both audio-only and audio-visual across all

conditions and SNRs, unlike for GRID where visual-only could outperform audio-

only at −10 dB for HIT-FA rate.
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In unseen conditions, the performance of audio-only reduces drastically across all

SNRs, performing considerably worse than audio-visual and visual-only in classifi-

cation accuracy. At 5 dB, audio-only performs as well as visual-only in classification

accuracy, and outperforms visual-only in HIT-FA rate at 5 dB. The largest difference

between audio-only and audio-visual is found at low SNRs, at −10 dB the difference

increases from 1.2 and 5.0 in seen conditions (babble) to 39.9 and 48.8 in unseen

conditions (street) for classification accuracy and HIT-FA rate respectively.

The performance of visual-only stays consistent across all conditions, for both

classification accuracy and HIT-FA rate, showing no sign of degradation in unseen

noise conditions. Audio-visual also performs similarly in unseen conditions to seen

conditions, with performance gradually reducing as the SNR lowers, before matching

the performance of visual-only at −10 dB in HIT-FA rate. Just as with GRID, this

shows clearly the benefit of using visual information over audio-only models. The

performance of visual-only in classification accuracy and HIT-FA rate follow the

same trends as seen for the GRID dataset, and as discussed in Section 6.3.1, this is

due from training on multiple noise conditions, producing a mean mask at roughly

−2.5 dB which is the mean SNR used in training, causing classification accuracy to

peak between −5 dB and 0 dB. For HIT-FA rate, at SNRs below −2.5 dB the output

mask is amplified compared to the target mask, introducing higher HITs and higher

FAs, for example babble at −10 dB has 90.1 HITS and 25.2 FAs. At SNRs above

−2.5 dB the output mask is attenuated compared to the target mask, introducing

lower HITs and lower FAs, for example babble at 5 dB has 18.8 HITS and 0.8 FAs.

Looking now at quality scores through PESQ and intelligibility with ESTOI

similar trends as with classification accuracy and HIT-FA rate are found, where the

audio-visual outperforms both audio-only and visual-only in all seen and unseen

conditions. Two-way analysis of variance (ANOVA) over all model pairs (A, V, AV

and unprocessed) per noise type and SNR is applied. This is performed for each

combination of model pairs (giving 6 comparisons) within each noise type and SNR

for both PESQ and ESTOI, by comparing objective scores from the test set for
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each model, i.e for all 600 utterances for RM-3000, and are statistically significantly

different if p < 0.05. Figures 6.14 and 6.15 show PESQ and ESTOI scores for babble

(seen) and street (unseen) noise for the A, V, AV systems and for unprocessed audio.

Two scores, where the difference between them is not statistically significant, are

highlighted by being enclosed in an orange box. All other scores are measured to be

statistically different.
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Figure 6.14: Effect on quality through PESQ across SNR for audio-only, visual-only
and audio-visual models in seen (babble) and unseen (street) noise conditions for ratio
mask estimation for the RM-3000 dataset. Model pair’s within orange boxes are not
statistically significantly different through two-way ANOVA testing (i.e p ≥ 0.05).

In seen conditions, audio-only performs almost equivalently to audio-visual at

high SNRs (no statistically significant difference at 5 dB for PESQ), dropping be-

low audio-visual at low SNRs (below 0 dB), particularly at −10 dB, the difference

in performance is closer in PESQ than found in ESTOI. Visual-only consistently

performs worse than both audio-only and audio-visual across all conditions.

In unseen conditions, the performance of audio-only again drastically reduces,

particularly at low SNRs. The performance in PESQ falls just below visual-only

across all SNRs (with statistically significant difference), but falls far below visual-

only for ESTOI across most SNRs, only at 5 dB can audio-only outperform visual-

only. When comparing audio-only to audio-visual, the performance drop in PESQ

is consistent across all SNRs, with an average drop of 0.19 found within street noise,
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Figure 6.15: Effect on intelligibility through ESTOI across SNR for audio-only,
visual-only and audio-visual models in seen (babble) and unseen (street) noise condi-
tions for ratio mask estimation for the RM-3000 dataset. Model pair’s within orange
boxes are not statistically significantly different through two-way ANOVA testing (i.e
p ≥ 0.05).

whereas the performance drop in ESTOI is greater at lower SNRs. At −10 dB, the

performance difference increases from 9.4 for babble to 24.3 for street noise even

with the degradation of audio-visual, as found with GRID audio-only offers little

gain over unprocessed audio.

The performance of visual-only stays consistent across all conditions, for both

PESQ and ESTOI, showing no sign of degradation in unseen noise conditions.

Audio-visual also performs similarly in unseen conditions to seen conditions, with

performance gradually reducing as the SNR lowers, before matching the performance

of visual-only at −10 dB in PESQ. Both trends were also found for classification ac-

curacy and HIT-FA rate, confirming the importance of visual information at low

SNRs.

Comparing the performance of audio-only, visual-only and audio-visual across

all noise conditions and SNRs, the same trends are found within RM-3000 as with

GRID. Audio-visual consistently outperforms both audio-only and visual-only for

both seen and unseen conditions. Visual-only performed equally as well in unseen

conditions as to seen conditions, showing no sign of degradation. Audio-only per-
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formed almost as well as audio-visual in seen conditions, but performed drastically

worse in unseen conditions, falling below visual-only and offering little benefit in

intelligibility over unprocessed audio from ESTOI results. When considering gener-

alisation, visual information is again shown to be critical, allowing both visual-only

and audio-visual to perform well in unseen conditions.

Table 6.2: (RM-3000) Classification accuracy (in %), HIT-FA (in %) PESQ and

ESTOI scores for the RM-3000 dataset in seen (babble, factory, speech shape) and

unseen (cafeteria babble, street) noise at −10 dB, −5 dB, 0 dB and 5 dB.

Noise (dB) Model Acc HIT-FA (FA) PESQ ESTOI

babble

-10

A 89.9 73.1 (6.7) 1.96 45.1

V 78.8 64.9 (25.2) 1.79 38.7

AV 91.1 78.1 (6.9) 2.06 54.7

unprocessed audio 1.55 11.5

-5

A 92.1 78.8 (5.2) 2.29 59.3

V 84.1 62.3 (12.8) 2.08 46.0

AV 92.5 80.0 (4.9) 2.34 63.9

unprocessed audio 1.69 22.0

0

A 92.9 81.0 (4.6) 2.57 69.9

V 83.2 43.0 (4.3) 2.39 55.0

AV 93.1 81.0 (4.3) 2.60 71.9

unprocessed audio 1.98 35.4

+5

A 93.0 79.4 (3.6) 2.83 78.1

V 78.5 18.0 (0.8) 2.68 64.5

AV 92.9 78.2 (3.3) 2.85 79.0

unprocessed audio 2.28 50.7

Continued on next page
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Table 6.2 – continued from previous page

Noise (dB) Model Acc HIT-FA (FA) PESQ ESTOI

factory

-10

A 92.3 70.6 (4.1) 2.02 43.7

V 73.1 61.8 (31.1) 1.79 41.3

AV 93.1 75.9 (4.2) 2.14 55.5

unprocessed audio 1.45 12.3

-5

A 94.1 77.0 (3.0) 2.36 59.0

V 82.0 63.1 (17.7) 2.10 48.4

AV 94.4 78.2 (2.9) 2.42 64.8

unprocessed audio 1.57 22.5

0

A 94.8 78.8 (2.4) 2.64 70.4

V 86.7 49.3 (6.9) 2.40 57.1

AV 94.9 79.1 (2.3) 2.67 73.0

unprocessed audio 1.85 35.9

+5

A 95.0 76.7 (1.6) 2.91 78.8

V 85.8 23.7 (1.3) 2.68 65.5

AV 94.9 76.3 (1.5) 2.92 79.8

unprocessed audio 2.15 50.3

-10

A 92.2 75.9 (4.8) 2.02 49.9

V 76.2 64.4 (28.2) 1.74 49.9

AV 92.4 77.4 (4.9) 2.08 56.3

unprocessed audio 1.36 12.7

-5

A 93.6 80.7 (4.0) 2.31 62.8

V 83.8 64.7 (15.1) 2.02 48.2

AV 93.7 80.7 (3.9) 2.34 65.5

speech unprocessed audio 1.57 23.7

shape

0

A 94.3 82.1 (3.3) 2.57 72.7

V 85.7 47.2 (5.4) 2.33 57.5

AV 94.3 81.5 (3.2) 2.59 73.9

unprocessed audio 1.87 38.4

+5

A 94.4 80.0 (2.4) 2.82 80.4

V 82.6 20.6 (1.1) 2.63 66.6

AV 94.2 78.6 (2.2) 2.83 80.8

unprocessed audio 2.18 53.9

Continued on next page
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Table 6.2 – continued from previous page

Noise (dB) Model Acc HIT-FA (FA) PESQ ESTOI

-10

A 42.9 20.0 (70.7) 1.67 15.8

V 76.7 63.8 (27.6) 1.73 39.4

AV 72.8 56.9 (31.8) 1.78 36.3

unprocessed audio 1.55 11.3

-5

A 57.2 33.9 (31.8) 1.86 31.8

V 83.4 62.2 (14.9) 2.02 47.0

AV 82.1 65.6 (18.4) 2.10 51.1

cafeteria unprocessed audio 1.58 21.2

babble

0

A 73.2 48.0 (27.4) 2.22 51.0

V 84.6 44.4 (5.5) 2.33 55.9

AV 87.9 67.1 (8.7) 2.41 65.3

unprocessed audio 1.84 34.2

+5

A 84.3 55.6 (10.5) 2.57 67.3

V 81.4 19.2 (1.1) 2.62 64.4

AV 89.2 61.1 (3.9) 2.71 75.4

unprocessed audio 2.15 48.1

street

-10

A 39.9 15.0 (76.1) 1.68 18.5

V 76.7 61.7 (27.1) 1.77 41.3

AV 79.8 63.8 (22.3) 1.88 42.8

unprocessed audio 1.44 13.2

-5

A 52.7 28.6 (58.0) 1.95 33.7

V 83.0 60.1 (14.4) 2.05 48.0

AV 84.8 68.0 (14.6) 2.18 54.5

unprocessed audio 1.67 23.8

0

A 66.5 43.4 (38.4) 2.30 52.4

V 83.4 42.2 (5.3) 2.36 56.8

AV 88.1 70.1 (9.2) 2.47 66.7

unprocessed audio 1.98 38.0

+5

A 78.6 52.9 (19.5) 2.60 69.0

V 79.9 18.0 (1.1) 2.64 65.9

AV 88.5 63.0 (5.1) 2.74 76.4

unprocessed audio 2.30 53.5



CHAPTER 6. EVALUATION OF MODEL GENERALISATION 165

6.3.4 Effect on dataset size on speech enhancement

In Sections 6.3.1 and 6.3.3 the generalisation of audio-only, visual-only and audio-

visual architectures in noise type and SNR independent conditions was evaluated for

the GRID and RM-3000 datasets respectively. Now, the difference in performance

between using small constrained vocabulary speech (GRID) and large unconstrained

vocabulary speech (RM-3000) is compared. Figures 6.16 and 6.17 show a comparison

between GRID and RM-3000 for quality using PESQ and intelligibility using ESTOI

in babble (seen) and street (unseen) noise at −10 dB, −5 dB, 0 dB and 5 dB.
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Figure 6.16: Comparison of the effect on quality through PESQ across SNR for
audio-only, visual-only and audio-visual models in seen (babble) and unseen (street)
noise conditions for ratio mask estimation for the GRID and RM-3000 datasets.
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(b) RM-3000 – babble
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(c) GRID – street
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Figure 6.17: Comparison of the effect on intelligibility through ESTOI across
SNR for audio-only, visual-only and audio-visual models in seen (babble) and un-
seen (street) noise conditions for ratio mask estimation for the GRID and RM-3000
datasets.

Focusing first at quality through PESQ, the overall performance for GRID is

consistently higher than RM-3000, and the performance difference between models

is reduced for RM-3000 compared to GRID. In seen conditions, average performance

gains of audio-only, visual-only and audio-visual models for babble noise over un-

processed audio across all SNRs of 0.61, 0.41 and 0.74 are found for GRID, whereas

gains of 0.54, 0.36 and 0.59 are found for RM-3000 respectively. The performance

reduction for RM-3000 compared to GRID stays consistent across all models, with
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an average reduction of 0.6. In unseen conditions, average gains over unprocessed

audio in street noise for audio-only, visual-only and audio-visual models of 0.35, 0.44,

and 0.63 are found for GRID, whereas 0.29, 0.36 and 0.47 are found for RM-3000

respectively. Now the performance difference between audio-only models stay con-

sistent at 0.6, but is increased for both visual-only and audio-visual, raising to 0.16

for audio-visual. This was due to the RM-3000 models containing visual information

reduced generalisation to unseen conditions, as discussed in Section 6.3.3.

Looking now at intelligibility through ESTOI, again the overall performance for

GRID is consistently higher than RM-3000, however the spread of performance

between each model is similar between datasets. In seen conditions, average per-

formance gains of audio-only, visual-only and audio-visual models for babble noise

over unprocessed audio across all SNRs of 36.0, 26.4 and 41.3 are found for GRID,

whereas gains of 33.2, 21.2 and 37.5 are found for RM-3000 respectively. The per-

formance reduction for RM-3000 compared to GRID stays fairly consistent across

all models, with an average reduction of 3.9. In unseen conditions, average gains

over unprocessed audio in street noise for audio-only, visual-only and audio-visual

models of 16.7, 27.0, and 32.7 are found for GRID, whereas 11.3, 20.1 and 28.0

are found for RM-3000 respectively. Unlike PESQ results, the difference between

models for intelligibility stays consistent in unseen conditions, raising to just 5.7 in

unseen from 3.9 in seen conditions.

The drop in performance for visual-only and audio-visual models is relatively

small across all conditions for intelligibility, raising slightly for unseen conditions

within PESQ. This is surprising considering how challenging lip-reading is for large

vocabulary speech. Audio-only performs similarly within both datasets, with lit-

tle distinction between them. Audio-visual performs slightly worse for RM-3000,

due mainly from the increased confusability within the visual information as seen

from visual-only. Overall, the application of noise independent speech enhancement

to an unconstrained, large vocabulary dataset has been successful showing similar

performance to the GRID dataset.
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6.4 Conclusions

This work has examined the effect on intelligibility (ESTOI), quality (PESQ) and

mask accuracy (classification accuracy and HIT-FA rate) of using audio-only, visual-

only and audio-visual models within noise type and SNR independent conditions for

estimating ratio masks for speech enhancement. Firstly, an alternative method for

extracting CNN bottleneck features was proposed to allow visual-only and audio-

visual models to be trained under multiple noise conditions within a reasonable

amount of time. These noise independent models were subject to experiments in

both seen and unseen noise conditions to evaluate generalisation, using both small

scale (GRID) and large scale (RM-3000) datasets.

It was found that both audio-only and audio-visual models perform well in seen

conditions. Audio-only performed drastically worse in unseen conditions, particu-

larly for intelligibility, where little benefit was found over unprocessed audio. Visual-

only performed equally well in both seen and unseen conditions, outperforming

audio-only in unseen conditions. Audio-visual provided peak performance across all

measures and conditions, and generalised well to unseen conditions. The inclusion of

visual information within audio-visual models over audio-only models not only pro-

vides large gains in performance at low SNRs, but is critical for allowing the model

to generalise to unseen noise conditions, proven by the audio-only and visual-only

results.

A comparison between training noise dependent and noise independent systems

revealed that both audio-only and audio-visual models show performance gains in

terms of quality and intelligibility in noise independent conditions over noise depen-

dent. Visual-only models showed a small degradation in performance at low SNRs

when trained in noise independent conditions. The improvements for audio-only

and audio-visual models, and reductions for visual-only is attributed to training with

more data across more noise and SNR conditions, as although dependent models are

trained at specific noise type and SNR conditions, the SNR still varies throughout

the utterance.
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Visual-only models only have access to visual information on input, and as such

cannot take advantage of the SNR variation within the acoustic stream. Instead, the

task becomes more challenging as the training data contains more examples of similar

input mouth shapes mapping to varying target masks per additional noise condition

and SNR. Audio-only and audio-visual models do have access to the acoustic stream,

and as such can utilise the increased amount of noise and SNR varying training data.

Therefore training with more instances of varying SNR conditions is more beneficial

in terms of performance for models containing acoustic information as input, and

more beneficial for models containing visual information as input due to increased

noise generalisation.

Performance using the large, unconstrained RM-3000 dataset provided surpris-

ingly similar results to the GRID dataset. Even though the RM-3000 dataset is

considerably larger and more challenging due to the increased vocabulary size, the

models were still able to provide substantial gains across all measures. The overall

strong performance of all models for RM-3000 shows that the model architectures

and approaches developed can generalise to larger vocabulary unconstrained speech

across noise independent conditions and can be considered for monaural speaker

dependent real-world applications.

Combining both audio and visual modalities into a single bimodal audio-visual

system still provides best performance across all noise types and SNRs, confirming

that combining audio and visual features provides a robust complimentary feature

set. Experiments clearly showed that the audio-visual model adapts its weighting

between visual information and acoustic information as the SNR varies, even though

the model is not told what the SNR is, only from what is provided by the acoustic

features. At low SNRs more weight is provided to the visual stream, whereas at

high SNRs more weight is applied to the acoustic stream. Visual information was

shown to be critical for generalisation to unseen noise conditions in both small scale

(GRID) and large scale (RM-3000) datasets.



Chapter 7

Conclusions

7.1 Restatement of the problem

Speech enhancement is concerned with improving some perceptual aspect of speech

that has been degraded by noise. The introduction of noise affects both the perceived

quality and perceived intelligibility of the speech for the listener. The aim of this

thesis has been to explore monaural speech enhancement focusing on improving

intelligibility, although the effect on quality is also considered.

The key focus is on how visual speech information can be used within speech

enhancement systems. Visual speech has been applied successfully to other areas

of speech processing when the acoustic stream is degraded by noise, such as ASR

for both lip-reading (visual-only) and as a combination of visual and acoustic in-

formation (audio-visual), as the information provided from the visual speech is not

corrupted from the interfering noise. This property of visual speech is therefore well

suited for speech enhancement, and as such audio-only, visual-only and audio-visual

speech enhancement models were evaluated throughout the thesis.

The methods presented in this work were developed using speech from a male

speaker from the GRID audio-visual dataset. Objective evaluations of the predicted

masks and the quality and intelligibility of the enhanced speech signal within varying
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noise type and SNR conditions were performed to determine the performance of

the various methods and configurations explored. The speech enhancement system

can be segmented into three main areas: speech enhancement algorithm selection,

feature extraction of input data for model input, and the model architecture used

within supervised learning.

7.2 Summary

Masking algorithms rely on a criterion function to determine the values contained

within the mask used to suppress noise and retain speech information, which can take

the form of either binary masking or ratio masking. Chapters 2 and 3 evaluated and

compared the performance of binary and ratio masking within a deep feed-forward

neural network (DNN) architecture.

In Chapter 2, binary masking was evaluated and formed the baseline system of

this thesis. Novel loss functions were proposed to improve the mapping of input

data to target masks within training the DNN model, focusing on improving the re-

sulting intelligibility of the enhanced signal. The proposed loss functions were found

to increase intelligibility over standard classification loss functions, particularly at

higher SNRs, with the binary cross-entropy HIT-FA hybrid (CEHF) loss function

performing best.

In Chapter 3, ratio masking was explored and compared against binary masking.

It was found that across all objective measures, ratio masking outperformed binary

masking for all models evaluated. This is attributed to the constrained nature of

binary masking, as a binary mask is a representation of a ratio mask that has been

quantised into two classes, speech dominant and noise dominant. This quantisation

removes and reduces the resolution found within the ratio mask, which produces

the degradation in performance. The largest improvement was for quality through

PESQ, which was found to provide large gains over unprocessed audio for ratio

masking, yet for binary masking unprocessed audio scored higher than the enhanced
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signals, particularly at low SNRs. Binary masking introduces musical noise into the

enhanced signal which reduces quality, however ratio masking does not introduce

these distortions, resulting in improved quality over binary masking and unprocessed

audio. The large gain in quality and improvements for intelligibility and mask

accuracy resulted in ratio masking being selected for the remaining experiments of

this thesis.

In Chapter 4, the DNN used in Chapter 3 was replaced with recurrent neural net-

works (RNNs) for temporal modelling. RNNs are specifically designed for modelling

sequences with temporal structure and as such are well suited for speech process-

ing tasks. It was found that RNNs outperform standard DNNs across all objec-

tive measures for audio-only and audio-visual models, but visual-only models found

minimal performance difference between architectures. The proposed bi-directional

recurrent feed-forward hybrid network using gated recurrent units and layer normal-

isation (LNBiGRU-DNN) was the best performing RNN architecture and was used

in subsequent experiments.

Feature extraction from input data plays a key role in the ability of the speech

enhancement models to learn a mapping to the target output masks. Without ro-

bust features extracted, the model is unable to accurately predict target masks,

resulting in poor enhanced speech signals. In Chapters 2 and 3 traditional acous-

tic feature extraction techniques were optimised within binary masking and ratio

masking frameworks. It was found that extracting multi-resolution cochleagram

(MRCG) acoustic features outperform an ensemble of traditional complimentary

acoustic features (ARPMG) for both binary and ratio masking frameworks. Al-

though the ARPMG features work well for other speech processing applications, the

MRCG is more similar and closer related to the masking framework used in this

work (cochleagram based).

In Chapter 5, traditional visual feature extraction using active appearance models

(AAM) was compared against using CNNs which perform feature extraction directly

on the raw image, for visual-only and audio-visual models. It was found that us-
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ing mouth-only regions-of-interests (ROIs) outperformed using full-face regions-of-

interest within CNN archtictures. This was attributed to the mouth area containing

most of the important information of the visual articulators, such as lips and teeth,

which although are captured within the full-face ROI, due to the downsizing prior to

input into the CNN, the information is degraded and lost. Upsampling images across

time via interpolation over repetition also provided performance gains for both the

mouth-only and full-face ROI configurations. For both visual-only and audio-visual

models, using CNNs on mouth-only ROIs outperformed traditional AAM features

across most objective measures, with large gains found for intelligibility.

For real-world applications, the noise type and SNR condition is likely to change

over time, and therefore dependent models are less effective. One approach could

be to train and store dependent models for all possible noise conditions, however

this approach is unfeasible and scales poorly. Instead, Chapter 6 presents noise

independent models, where a single model is trained within multiple noise conditions

(seen) and tested in both seen and unseen noise conditions to evaluate generalisation.

Evaluations found similar trends to dependent models in conditions which were

previously seen in training, with audio-visual models outperforming audio-only and

visual-only across all seen conditions. Audio-only still performed well at high SNRs

and visual-only performed well at low SNRs. However, in unseen conditions, the

performance of audio-only models significantly degraded, particularly at low SNRs

falling to equivalent performance of unprocessed audio. Both visual-only and audio-

visual performed well in unseen conditions, providing similar performance to seen

conditions, with only audio-visual performance degrading slightly at low SNRs. This

degradation in performance is attributed to the inability to extract useful informa-

tion from the acoustic stream, as found within the audio-only model. Audio-visual

provides best performance across all measures, generalising to both seen and unseen

noise conditions at varying SNRs, and with the stable performance also found with

visual-only reveals that visual information is critical for noise condition generalisa-

tion.
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Noise independent models were also applied to large unconstrained vocabulary

speech (RM-3000). Evaluations provided surprisingly similar results to the GRID

dataset. Even though the RM-3000 dataset is considerably larger and more chal-

lenging due to the increased vocabulary size, the models were still able to provide

substantial gains across all measures. The overall strong performance of all mod-

els for RM-3000 shows that the model architectures and approaches developed can

generalise to unconstrained speech across noise independent conditions and can be

considered for monaural speaker dependent real-world applications.

7.3 Key findings

Considering the aims of the project set out in Section 1.2, and the work carried out,

the following key findings were found.

7.3.1 Key finding #1 – Including visual speech information

for speech enhancement

Across Chapters 2 to 5 the performance of audio-only, visual-only and audio-visual

models were optimised in noise type and SNR dependent conditions. It was found

that all models provide large gains in intelligibility and quality over unprocessed au-

dio, and combining audio and visual speech into a single bimodal audio-visual model

outperformed both audio-only and visual-only models across all objective measures,

noise types and SNRs. Largest gains over audio-only was found at low SNRs, where

the acoustic signal is most corrupted from interfering noise, at high SNRs audio-

only models performed equally to audio-visual. At low SNRs, visual-only models

was able to outperform audio-only models, but performed poorly at high SNRs com-

pared to audio-only and audio-visual models. The audio-visual model was able to

utilise information from both acoustic and visual streams, where visual information

is more important at low SNRs, and acoustic information is more important at high

SNRs.
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7.3.2 Key finding #2 – Visual feature extraction

In Chapter 5 visual feature extraction using both pre-trained and end-to-end trained

CNNs was shown to outperform traditional AAM feature extraction. Pre-trained

CNNs train the CNN and temporal model in isolation from each other, whereas an

end-to-end trained CNN is trained with the temporal model in a single network with

backpropagation applied through all network layers. This work used the GoogLeNet

model trained for image classification as the pre-trained network used to extract

bottleneck features from passing images cropped to mouth-only ROIs, before feeding

into the temporal model. Training an end-to-end CNN outperformed extracting

bottleneck features from pre-trained networks across all objective measures for both

visual-only and audio-visual models. This was attributed to the dataset and task

dependent features learnt within an end-to-end trained CNN, whereas pre-trained

networks are more generalised.

In order to train both visual-only and audio-visual models for noise independent

conditions, a pre-trained visual-only noise dependent end-to-end system is used to

extract visual bottleneck features instead of training a fully end-to-end CNN system

(which performed best in dependent conditions) on all noise conditions. This pro-

vides the benefit of producing dataset dependent features and the time saving found

from pre-trained networks. This visual bottleneck feature was used for training

both visual-only and audio-visual models in noise independent conditions. Using an

end-to-end trained CNN for noise independent models could provide increased per-

formance over using pre-trained CNNs, however the substantial increase in training

time and processing requirements favours using dataset specific pre-trained CNNs.

7.3.3 Key finding #3 – Deep learning architecture for

temporal modelling

The use of neural networks has recently provided large gains in performance for

various supervised learning tasks, and as such were used as the model architecture
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throughout this thesis. Neural networks were used for modelling the relationship be-

tween input speech data and target masks generated from the speech enhancement

algorithms criteria function. This work has explored using deep feed-forward neural

networks (DNN) and recurrent neural networks (RNN) for temporal modelling of

the input speech data. Chapter 4 explored replacing the DNN used in Chapter 3

with RNNs, which are specifically designed for modelling temporal sequences and

as such are well suited for speech processing tasks. It was found that RNNs outper-

form standard DNNs across all objective measures for audio-only and audio-visual

models, but visual-only models found minimal performance difference between all

architectures. The proposed bi-directional recurrent feed-forward hybrid network

using gated recurrent units and layer normalisation (LNBiGRU-DNN) was the best

performing RNN architecture and was used in subsequent experiments.

7.3.4 Key finding #4 – Generalisation to unseen noise

conditions

For real-world applications, the noise type and SNR condition is likely to change

over time, and therefore dependent models are less effective. One approach could be

to train and store dependent models for all possible noise conditions, however this

approach is unfeasible and scales poorly. Instead, Chapter 6 presents noise indepen-

dent models, where a single model is trained within multiple noise conditions (seen)

and tested in both seen and unseen noise conditions to evaluate generalisation. The

best performing audio-only, visual-only and audio-visual dependent architectures

were selected for evaluation in noise independent conditions.

Evaluations found both audio-visual and visual-only models to generalise to both

seen and unseen conditions, however audio-only models only performs well in seen

conditions and significantly degrade in unseen conditions, particularly at low SNRs

falling to equivalent performance of unprocessed audio. The stable performance of

audio-visual and visual-only models showed the importance of visual information,

revealing visual information is critical for noise condition generalisation.
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7.3.5 Key finding #5 – Training noise dependent and noise

independent models

When comparing training in noise dependent or noise independent conditions, it

was found both audio-only and audio-visual models had large gains in intelligibility

for noise independent models over noise dependent models. This was attributed

to training with more data across more noise conditions, as although dependent

models are trained at specific noise type and SNR conditions, the SNR still varies

throughout the utterance. For visual-only, a small performance degradation was

found for training in noise independent conditions over noise dependent conditions.

The model only has access to visual information, and as such cannot take advantage

of the SNR variation within the acoustic stream. Instead, the task becomes more

challenging as the training data contains more examples of similar input mouth

shapes mapping to varying target masks per additional noise condition and SNR.

Audio-only and audio-visual models do have access to the acoustic stream, and

as such can utilise the increased amount of noise and SNR varying training data.

Therefore training with more instances of varying SNR conditions is beneficial for

models containing acoustic information as input.

7.3.6 Key finding #6 – Application to large unconstrained

vocabulary speech

The best performing models developed for the GRID dataset were applied on the

RM-3000 dataset to evaluate the generalisation of the developed models to large un-

constrained vocabulary speech. The same approach and model architectures used for

the GRID dataset was applied to RM-3000, with models trained in multiple varying

noise conditions and tested in both seen and unseen conditions. Evaluations found

the same trends as seen with the GRID dataset across all models for both seen and

unseen conditions. Audio-only continued to perform well in seen conditions, but

performed poorly for unseen showing poor generalisation. Visual-only performed
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equally well in both seen and unseen conditions showing strong generalisation, but

was consistently worse than audio-visual models. The audio-visual model continued

to provide best performance and generalisation across all conditions tested. When

comparing RM-3000 with GRID results, audio-only models performed equally well,

but visual-only and audio-visual models performed slightly worse for RM-3000 than

GRID. This performance degradation is attributed to the larger vocabulary set

within RM-3000, containing more confusable words within the visual domain. It is

well known that phonemes can have the same visual articulation, and as such was

more challenging for the model to distinguish them. The overall strong performance

of all models for RM-3000 shows that the model architectures and approaches de-

veloped can generalise to unconstrained speech across noise independent conditions

and can be considered for monaural speaker dependent real-world applications.

7.4 Future work

This thesis has presented audio-only, visual-only and audio-visual methods for monau-

ral speaker dependent speech enhancement. In this section, potential future work

is outlined focusing on three main areas: i) Further improvements for the best per-

forming architecture are outlined. ii) Modifications for real-time applications are

considered. iii) Performance implications and potential datasets for speaker inde-

pendent applications.

7.4.1 Further model improvements

Feature extraction has been shown to be key for the performance of speech enhance-

ment algorithms. It was shown that using convolutional neural networks (CNN) for

visual feature extraction outperformed traditional feature extraction methods. Fu-

ture work could explore the use of CNNs for improving acoustic feature extraction.

This could be achieved in two forms, either from applying 1-dimensional CNNs di-

rectly on the raw noisy audio signal, or by applying 2-dimensional CNNs on the
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noisy audio transformed into cochleagram or spectrogram representation. Both ap-

proaches are worth consideration, approach one would be an ideal scenario and would

remove the additional transform needed for approach two, however the network may

struggle to learn appropriate features due to the interfering noise degrading spectral

structure. Approach two would provide structure which may be necessary to aid

the network in training to learn features, at the expense of speed.

7.4.2 Real-time applications

Speech enhancement is also required for real-time applications such as hearing-aids,

cochlear implants and communication systems. Such applications also have security

concerns regarding personal data, which subsequently must be encrypted to prevent

cybersecurity attacks, when the speech enhancement model located within the cloud

instead of a personal device. Work performed in (Adeel et al. [2018]) has developed

encryption techniques for both the audio-visual input data and the transmitted

enhanced signal for hearing-aid applications. The approaches developed within this

thesis can be modified to work within real-time constraints. Two main factors

affect real-time performance, amount of future acoustic windowing used as input

and processing time. For acoustic windowing, traditionally symmetric windows

of speech are extracted, containing both past and future contexts. As discussed in

Chapter 4, both past and future contexts are important in order to model carry-over

and anticipatory coarticulation. For real-time applications, the amount of future

context affects the availability to be performed in real-time, yet reducing future

context reduces the ability of the model to learn anticipatory coarticulation.

Work performed for real-time automatic speech animation (Websdale et al. [2018])

has shown using asymmetric acoustic windows as input can still provide realistic per-

formance as fully symmetric windows. The same approach used can be applied for

speech enhancement and requires minimal modification to the architectures devel-

oped within this thesis which use recurrent neural networks for the temporal model.

The amount of processing time required depends on the available hardware and
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the neural network model. Using deep networks with convolutional and recurrent

networks does impact the time taken to make predictions, however the amount of

future context has a larger impact. The available hardware could limit the size of the

network model used and is application specific. Therefore, a balance between future

context, model architecture and hardware is required to fit the desired real-time

application.

7.4.3 Speaker independent audio-visual speech enhancement

For real-world applications it is likely that speaker independent speech enhancement

would be more beneficial than speaker dependent, such as systems used for automatic

speech recognition or for use within hearing impairment applications. Subsequently,

the speaker dependent models developed within this thesis have been shown to

generalise to both noise independent conditions and larger vocabulary unconstrained

datasets. However, this was achieved by training in multiple noise conditions (seen

conditions), and testing in unseen noise conditions (unseen conditions). To achieve

speaker and noise generalisation required for speaker independent applications, the

models could be trained on a number of speakers (seen speakers), and tested with

unseen speakers within a noise generalised framework. The same architectures and

approaches developed for speaker dependent applications can be extended for use

in speaker independent applications.

It is expected similar amounts of performance degradation found within speaker

independent ASR applications would also be found within speaker independent

speech enhancement. Visual-only applications (lip-reading) are particularly affected

when moving from speaker dependent to speaker independent conditions. This is

due to the highly speaker dependent visual stream, and although speakers may use

similar mouth movements and visual articulators to produce the same phoneme, the

acoustic signal produced can vary greatly in terms of frequency and pitch. There-

fore, when considering visual-only application for speech enhancement, the models

are likely to perform well for seen speakers, but generalise poorly to unseen speak-
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ers. However, for audio-only and audio-visual models, the performance should stay

stable between seen and unseen speakers and show strong generalisation due to the

acoustic stream. With these considerations, it is expected that audio-visual models

should continue to outperform audio-only and visual-only models, with the acoustic

information providing generalisation to speakers, and visual information providing

generalisation to noise type and SNR conditions.

To develop audio-visual speaker independent speech enhancement models, datasets

containing both audio and visual streams of multiple speakers are required. The cur-

rently used GRID dataset can provide small vocabulary constrained speech, and the

TCD-TIMIT (Harte and Gillen [2015]) dataset could be selected for large vocabu-

lary unconstrained speech (details of the TCD-TIMIT dataset are shown in Section

A.4). The number of speakers and noise conditions used within training will impact

the time taken to train models, and as such the available hardware and processing

power should also be considered.



Appendix A

Datasets

A.1 GRID

The GRID audio-visual speech dataset (Cooke et al. [2006]) contains low-resolution

and high-definition video, and audio recordings of 34 speakers, of which 18 are male

and 16 are female. Speaker 12 is selected in this work. For each speaker there are

recordings of 1000 utterances each with a length of three seconds, giving 50 minutes

of data in total. The ages of the speakers range from 18 to 49, with all but two of

the speakers having British accents. Sentences take the form:

< command >< colour >< preposition >< letter >< digit >< adverb >

and follow the grammar as displayed in A.1.

Table A.1: GRID sentence grammar.

command colour preposition letter digit adverb

bin blue at A-Z 1-9 again

lay green by minus W zero now

place red in please

set white with soon

The video has a frame rate of twenty-five frames per second, giving seventy-five
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frames per three-second video. The high-resolution frame size is 720 × 576 pixels,

and the low-resolution frame size is 360× 288. Both sets of video contains full red-

green-blue (RGB) colour information. Accompanying the dataset are word time-

alignment files for each utterance that describe the start and end points for each

word, including periods of silence. Separately recorded audio, sampled at 50 kHz,

accompanies the video stream. Furthermore, two sets of imaged-based 2D-DCT

visual features are provided. One set contains features extracted from a region of

interest that is stationary throughout the video, and the other from a region of

interest located about a tracked point localised to the mouth of the speaker.

A.2 NOIZEUS

A noisy speech corpus (NOIZEUS) (Hu and Loizou [2007]) was developed to fa-

cilitate comparison of speech enhancement algorithms among research groups. The

noisy database contains 30 IEEE sentences (produced by three male and three female

speakers) corrupted by eight different real-world noises at different SNRs. The noise

was taken from the AURORA database and includes suburban train noise, babble,

car, exhibition hall, restaurant, street, airport and train-station noise. Noises are

provided at 16 kHz and is the sampling rate used in this work.

A.3 RM-3000

The RM-3000 audio-visual speech dataset (Howell et al. [2016]) was collected for

performing confusion modelling for lip-reading, where it was found that other large-

vocabulary audio-visual datasets contained too few data. The corpus contains 3000

utterances spoken by a native English male speaker, with sentences selected from the

Resource Management corpus (Price et al. [1988]). The vocabulary contains 1000

words, and lends itself well for continous audio-visual speech processing applications.

The sentence length ranges between 2 and 12s, with an average of 5s.
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The video information was captured at 60 frames per second with a resolution

of 1920 × 1080 pixels. The camera was placed in front of the speaker to record

a full-frontal pose. A clip-on microphone was used to record the audio with a

sampling frequency of 48 kHz. Pre-extracted AAM features of the inner and outer-

lip are provided, having been extracted from the video re-sampled to a resolution of

640×360 pixels. The AAM visual feature vector dimensionality was chosen to retain

95 % of the shape variation, and 90 % of the appearance variation. Furthermore,

phoneme transcriptions are provided.

A.4 TCD-TIMIT

The TCD-TIMIT audio-visual speech dataset (Harte and Gillen [2015]) was collected

for performing speaker independent audio-visual speech recognition, where it was

found that other audio-visual datasets contained too few speakers. In total, there are

62 speakers in TCD-TIMIT, which use sentences from the TIMIT corpus (Garofolo

et al. [1993]). Three of these are professional lipspeakers, and each reciting almost

400 sentences each. All the lipspeakers are female. The average age of the lipspeakers

is 60. The other 59 TCD-TIMIT speakers are non-lipspeakers and were recruited

from volunteers around the local University, each reciting 98 sentences. Of these,

32 are male and 27 are female. The average age is 24, with the minimum age 16

and the maximum age 57. One speaker has a Spanish accent, and two have British

accents. The rest of the accents in the database are Irish accents, the majority being

“neutral” Dublin accents. The data was shot in front of a green screen for possible

speaker segmentation applications.

The video information was captured from two cameras, one camera recorded

the speaker from directly in front, while the other recorded at an angle of 30° to

the speaker’s right. Video is captured at 30 frames per second with a resolution

of 1920 × 1080 pixels. A clip-on microphone was used to record the audio with a

sampling frequency of 48 kHz.
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