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Abstract 

For long, scientists thought that our body was driven only by our genetic code that we inherited 

at birth. However, this determinism was shattered entirely and proven as false in the second half 

of the 21st century with the discovery of epigenetics. Instead, cells turn genes on and off using 

reversible chemical marks. With the tremendous progression of epigenetic science, it is now 

believed that we have a certain power over the expression of our genetic traits. Over the years, 

these epigenetic modifications were found to be at the core of how diseases alter healthy cells, 

and environmental factors and lifestyle were identified as top influencers. Epigenetic 

dysregulation has been observed in every major domain of medicine, with a reported implication 

in cancer development, neurodegenerative pathologies, diabetes, infectious disease and even 

obesity. Substantially, an epigenetic component is expected to be involved in every human 

disease. Hence, the modulation of these epigenetics mechanisms has emerged as a therapeutic 

strategy. Histone deacetylases (HDAC) are silencing epigenetic markers involved in the 

mediation of the acetylation system. Aberrant HDAC activities have been associated with the 

development of a broad range of pathologies, and HDAC inhibition is highly regarded as a 

potential therapeutic target. This approach became successful with the approval by the FDA of 

several epidrugs. However, they present undesired side effects. Lack of selectivity was identified 

as a principal suspect and, therefore, the development of novel compounds that would target more 

selectively the epigenetics enzymes represent a major axis of research for future pharmacological 

applications. 

Accordingly, this work focus on designing new classes of HDAC inhibitors. A variety of 

structures, build around the use of amino acids, were explored and potential inhibitors were 

produced with different cores. These series were then evaluated in enzymatic inhibition assays on 

HDAC and in cell growth inhibition assays on leukaemia cell lines. Additionally, we were also 

involved in the international consortium A-ParaDDisE that aimed to develop epigenetic 

modulators as drug candidates against the main parasitic diseases: malaria, schistosomiasis, 

leishmaniasis and Chagas disease. This collaboration resulted in the identification of critical 

targets for the different parasites and the development of testing methods to move compounds 

toward clinical development. The antischistosomal effect of some of our inhibitors was, thus, 

evaluated. Finally, a side project was carried at the University of Salerno in Italy in a short-term 

scientific mission that aimed to develop a new class of SETD8 methyltransferase inhibitors.  
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Chapter 1. Introduction  

1. Epigenetics 

Heredity. This notion has been a long-term question mark in scientific history. Indeed the Greek 

philosopher Aristotle was already interested in inheritance in 350 BC.1,2 Although the observation 

that living organisms inherit traits from their parents has been used since prehistory to enhance 

crop plants and animals through selective breeding the processes remained an enigma for 

centuries. In his book “On the origin of species” Darwin introduced the concept of natural 

selection as a long-term mechanism of adaptation of an organism to its environment. In a 

population, slight variations between individuals were affecting the survival capability. 

Accordingly, individuals more suited to a specific environment were more likely to survive and 

more likely to reproduce and pass down their heritable traits to the next generations. 

The twentieth century started with a revolution when Bateson coined the word genetics (from the 

Greek word genesis-byγένεσις, "origin") following the work of Mendel and Hugo de Vries that 

laid the foundation of genes.3 Although genetics was unable to understand the physical reality of 

heredity, it provided an accurate depiction of the laws involved and of its outcome. The field then 

experienced a significant gain in interest and met several breakthroughs with the discovery of the 

nucleus being the repository of genetic information in eukaryotes, the identification of the DNA 

as genetic material,4 and the determination of the DNA structure.5  

These advances gave us a better understanding of the previously described natural selection. 

Differences in the DNA sequence induced variation between individuals and the selection was 

influenced by the inherited genes.  

Nevertheless, these theories were unable to explain the adaptation of an organism during its 

lifetime. For example, complex organisms such as humans or animals originate from a single 

fertilized egg. Over the development of the embryo to adulthood, this cell will multiply, and the 

newly formed stem cells will differentiate and acquire specific biological functions. However, the 

adaptive alterations occurring during this process are ignored by the natural selection theories.  

Scientists, therefore, became interested in the relationship between DNA and the production of 

proteins. Their work led to the discovery of the genetic code, the set of rules used by living cells 

to translate information encoded within the genetic material into proteins. Genes on the DNA are 

first transcribed into RNA and then translated to proteins. This two-step sequence, DNA making 

RNA and RNA producing proteins was called the central dogma of molecular biology by Crick.6 

But the mechanisms involved had yet to be understood. Additionally, those mechanisms were 

https://en.wikipedia.org/wiki/Phenotypic_trait
https://en.wikipedia.org/wiki/Cell_(biology)
https://en.wikipedia.org/wiki/Translation_(biology)
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responsible for the phenotypic differentiation of cells and, therefore, represented their adaptation 

to experience. As the genotype was unaltered the question of inheritance of these mechanisms 

rapidly came up.  

“We certainly need to remember that between genotype and phenotype, and connecting them to 

each other, there lies a whole complex of developmental processes. It is convenient to have a 

name for this complex: epigenotype seems suitable.” 

 Waddington, 1942.7 

These interrogations, coupled to the introduction of the notion of epigenotype by Waddington, 

laid the foundation of a new field of study called epigenetics (from the Greek word epi-, 

“upon”) defined as the study of heritable changes in phenotype that occur without modification 

of the DNA sequence.  

Over the last 25 years, considerable progress has been made in the field, and epigenetics 

mechanisms were identified to occur on the chromatin, the physiological form of genetic material. 

In response to environmental signals, enzymes known as chromatin-modifying enzymes can 

activate a range of epigenetic modifications, tagging the DNA, which can then be passed down 

to the next generation.8 These tags, which do not modify the genotype sequence, are the core 

machinery in the control of gene expression. Chemically altering histone tails, cytosine, and non-

coding RNAs, these epigenetic marks modulate the gene expression by profoundly affecting the 

state of compaction of chromatin. 

To date, epigenetic dysregulation had been linked to most major diseases such as cancer, 

neurodegenerative diseases and diabetes.9–11 However contrary to genome mutation, epigenetic 

marks are reversible. Thus, epigenetic modulators have considerable potential as therapeutic 

agents, and interest in the field has been steadily growing for years.  

2. Chromatin 

History of chromatin started around 1880 when Flemming coined the term. Histones, one of the 

components of chromatin, were discovered shortly after in 1884.12 Over the first half of the 

twentieth-century, genetic researchers mainly focused on the discovery of the genetic material 

carrier, and little was done to understand chromatin further. The period between 1973 and 1975 

witnessed a groundbreaking series of publications which identified a subunit model in 

chromatin.13–16 This subunit, called nucleosome, was then successfully crystallized and observed 

by X-ray in 1984,17 and then in 1997 at higher resolution,18 by Richmond. 

The nucleosome represents the first high-order of DNA packaging in eukaryotes. Each 

nucleosome is composed of 146 base pairs of DNA forming a superhelix around a histone core. 
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This core consists of a pair of four histones (H2A, H2B, H3, and H4) organized as an octamer 

structure (Figure 1.1) which is further stabilized by a fifth histone (H1) playing the role of the 

linker.  

 

Figure 1.1: Schematic view of the nucleosome. 

H2A dimer is shown in yellow, H2B in red, H3 in blue, H4 in green and H1 in brown. 
Adapted from Biochemistry (4th Edition).19 

Inside the cell, chromatins are divided into two categories. Indeed, in 1928, long before it was 

understood, Heitz had observed two states of chromatin. He called euchromatin the form which 

was expressing genes and heterochromatin the mode which was transcriptionally inactive.20,21 

This distinction is the core of modern epigenetics. As previously mentioned, epigenetic 

mechanisms, that affect the state of the chromatin, regulate gene expression. Heterochromatin is 

a condensed conformation in which the DNA, tightly wrapped around the histone core, is not 

accessible to transcription factors. As shown in the X-ray structure (Figure 1.2), the histones are 

packed inside the structure of the nucleosome. Meanwhile, histone tails are easily accessible to 

chromatin-modifying enzymes. Chemical alterations of the histones impact the interaction with 

DNA and loosen the structure. As a result, this decondensed structure becomes more accessible 

to transcription factors. Thus, genes are expressed in euchromatin. Representation of both states 

is shown below (Figure 1.3). 
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Figure 1.2: High-resolution structure of nucleosome.  

DNA double brand are shown in brown and turquoise. Histone protein main chains are shown as 

ribbon (H3: blue; H4: green; H2A: yellow; H2B: red). Taken from Luger et al.
18 

Current research in epigenetics focuses on the study of these histone post-translational 

modifications. Additionally, a second significant reaction affecting the state of chromatin, and 

thus the expression of genes, was observed with DNA methylation.  

 

Figure 1.3: Packaged nucleosome representation (heterochromatin) and bead on string 

representation (euchromatin). 

The blue strands represent the DNA, nucleosome are beige cylinders, and histone tails are black 

lines. Taken from Arrowsmith et al.22 

3. Epigenetic modulators: DNA methylation and histone post-translation 

modifications 

Modern epigenetic research is mainly focusing on two categories of mechanism.  



   

 

27 

 

 

3.1 DNA methylation 

The first class consists of markers targeting the DNA. By definition, epigenetics modifications 

cannot alter the DNA sequence, but the genome is still a cog in the highly dynamic machinery. 

Hotchkiss detected chemically modified DNA bases in 1948.23 This modified nucleotide turned 

out to be 5-methylcytosine (5mC) resulting from methylation of the DNA. The occurrence of this 

altered base was observed in a wide range of organisms, and in particular, it was reported that 2 

to 7 per cent of cytosine on mammalian DNA was converted to 5mC.24 In the mid-1970s, Holliday 

and Pugh suggested that 5mC was involved in the process of gene regulation during 

development,25 and this role was later confirmed.26 

Over the following years, numerous studies led to a better understanding of the DNA methylation. 

In the DNA, all cytosines are not equal in front of this epigenetic mark. Indeed, the cytosine-

phosphate-guanidine (CpG) dinucleotide was found to be a hotspot for DNA methylation with 

around 70 % of CpG region being methylated.27,28 

Catalysed by a class of enzyme called DNA methyltransferase (DNMTs), cytosine of the CpG 

regions reacts with S-adenosyl methionine (SAM) acting as a methyl donor (Scheme 1.1). This 

interaction promotes the introduction of a methyl group on the 5th position of the cytosine to form 

5mC (1-4). 

 

Scheme 1.1: DNA methylation mechanism. 

DNMTs have been widely studied and well characterized. In mammals, DNMTs consist of three 

enzymes namely DNMT1, DNMT3A, and DNMT3B. Historically, a fourth enzyme named 

DNMT2 had been identified, but later evidence revealed that the protein didn’t methylate DNA 

but RNA.29 Therefore, it was renamed TRDMT1 (tRNA aspartic acid methyltransferase 1). 

DNMT1 is the most abundant DNMT in adult cells,30 and acts as a maintenance methylase. 

During DNA replication, the epigenetic alterations are not copied to the newly synthesized strand. 

DNMT1 recognizes and binds to the CpG site of this hemi-methylated DNA, only bearing 

methylation on the parent strand, to reproduce the cytosine methylation motif on the new stand. 

The role of the DNMT is, therefore, to maintain the epigenetic profile through mitosis and 

promotes the inheritance of DNA methylation pattern.31 
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DNMT3a and DNMT3b are de novo DNA methyltransferases showing an equal affinity for hemi-

methylated and non-methylated DNA.32 The role of DNMT3 enzymes is to initiate the 

methylation process of DNA that occurs after embryo implantation. Both DNMT3a and DMNT3b 

are crucial for early development, and the inactivation was reported to cause early embryonic 

lethality.33,34 The DNMT3 group also includes a catalytically inactive member, DNMT3L. 

However, DNMT3L has an essential role as a booster of activity during development. Binding to 

the catalytic domain of DNMT3a or DNMT3b enzymes, it increases their catalytic activity 15-

fold.35 

However, it is important noting that the opposition maintenance/de novo function of these 

enzymes is not absolute. Mounting evidence suggests that DNMT1 may also be required as de 

novo methylation of the genome,36,37 while a DNMT3 class can fill the role of maintenance 

methylation during DNA replication.38,39 In particular, human cancer cells lacking DNMT1 have 

shown only a 20 percent reduction in methylation of CpG sites.40 

Heterochromatin is frequently rich in methylated regions, thus preventing the binding of 

transcription factors to gene promoters and repressing gene expression. On the other hand, 

euchromatin is impoverished in methylated CpG region, and genes are accessible to 

transcriptional mechanism.34,41,42 

Over the years, a variety of diseases have been linked to aberrant DNA methylation activity either 

by hypomethylation or hypermethylation.43–45 DNMT inhibitors are, therefore, interesting 

therapeutic agents and this approach successfully led to the discovery of 5-azacytidine (vidaza®) 

and 5-aza-20-deoxycytidine (decitabine®) which were approved by the Food and Drug 

Administration (FDA) for the treatment of myelodysplastic syndromes (MDS) and chronic 

myelomonocytic leukaemia (CML).46 The development of new classes of DNMT inhibitor is 

currently a significant axis of research in the field. 

3.2 Histone post-translational modifications 

In the mid-1960s, Allfrey published results of his work on histone methylation and acetylation.47 

Although post-translational modifications of protein had been reported a few years earlier with 

phosphorylation48 and acetylation,49 this pioneering work laid the foundation of the model 

proposing that histone modifications could affect the accessibility to DNA and regulate the gene 

expression.50 

In the following years, several histone modifications affecting the gene expression, such as 

acetylation, methylation, phosphorylation, ubiquitination, and glycosylation, were discovered.51 
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These reactions are catalyzed by histone modifying enzymes (HMEs) and occur on the N-terminal 

histone tails (Figure 1.4). 

 

Figure 1.4: Overview of post-translational modification of protein.  

Taken from Liu et al.52 

HMEs were divided into three categories depending on their function: writers, readers, and erasers 

(Figure 1.5). 
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Figure 1.5: Epigenetic writers, erasers, readers.  

Taken from Falkenberg et al.53 

3.2.i Epigenetic writers 

Writers represent the enzymes which can introduce an epigenetic mark on the histone tails. 

Histone acetyltransferases (HATs) were first isolated in 1996.54 These enzymes can interact with 

a histone lysine side chain on H2A, H2B, H3 and H4.9,51 Positively charged lysine side chains 

have a strong affinity for negatively charged DNA, and their interaction is involved in the high 

order of compaction of heterochromatin. HATs are responsible for the transfer of acetyl group on 

the lysine amino group and convert it into a neutral amide group. The loss of charge disrupts the 

interaction with DNA which leads to the formation of the transcriptionally active euchromatin 

and the expression of affected genes. Additionally, HATs were also reported to promote the 

acetylation of non-histone protein such as p53.55  

Another important class of enzyme was reported in 2000 with the isolation of the first human 

histone methyltransferase (HMT).56 Similarly to the DNMTs, the methylation process involves 

the SAM co-factor as a methyl donor.57  

This subclass of HME can interact with the N-terminal lysine side chain of histone but also on 

arginine, and the HMTs are able to transfer up to three methyl group to a lysine. However, their 

effect on the state of compaction of the chromatin and the gene expression is subtle. Indeed 

contrary to acetylated lysine, methylation of the amino group does not remove the charge and 
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only affects the steric hindrance. Although this could suggest that a higher degree of methylation 

induces a higher disruption of the interaction with DNA the relation between lysine methylation 

and gene transcription was shown to be more complicated. The change of conformation between 

euchromatin and heterochromatin, and by extension the activation or deactivation of gene 

transcription, is not only dependent of the degree of methylation (mono, di- or tri-methylated) but 

is also conditioned by the position of the epigenetic mark. For instance, mono, di- and tri-

methylated H3K4 are found in the active site of transcription.58 On the other hand di- and tri-

methylated H3K9 and H3K27 are marks for heterochromatin and gene silencers, but H3K9 

monomethylation is linked with gene expression.58–61 Thus methylations could be both activating 

and repressing marks. 

3.2.ii Epigenetic readers 

Reader enzymes represent the second leading category of HMEs. This class recognizes histone 

modifications introduced by writer enzymes and specifically bind to the epigenetic marks. Thus, 

their action mediates the DNA transcription. For example, chromodomains and Tudor domains 

showed a high affinity for the site of lysine methylation while bromodomains bind to acetylated 

lysine.62 Historically, reader enzymes have been less studied than writers and erasers. 

Bromodomains, notably, have been highly investigated since their identification in 1992,63,64 and 

their recognition as specific acetylated lysine binders in 1999.65  Protein containing 

bromodomains, in particular, those from the bromodomain and extra-terminal (BET) family, are 

currently regarded as compelling therapeutic agents in oncology,66,67 and selective and potent 

inhibitors are under investigation.68,69  

3.2.iii Epigenetic erasers 

The erasers are the last category of HMEs. Conversely to writers enzymes, erasers describe the 

proteins responsible for the removal of the epigenetic marks. These enzymes are crucial in the 

gene transcription machinery and confer the reversible nature to epigenetic mechanisms. Current 

research on erasers mainly focuses on two class of erasers: the lysine demethylase (KDM) and 

the histone deacetylase (HDAC).  

 Lysine demethylase 

The first class is the lysine demethylase which recognizes mono, di- and trimethylated lysine 

residue on H3 and H4 and alters the order of methylation. From the discovery of methylated 

histone in the early 1960s, and even after the isolation of the first KMT in the late 1990s,56 the 

demethylation process remained a question mark in the field. Whether enzymes, capable of 

catalyzing the removal of methylation mark, existed or not was an important debate in the 
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scientific community. For several years a dogma was that histone methylation, contrary to other 

epigenetic marks, was irreversible and that the removal could only occur by histone exchange.70 

It was only in 2004 that Shi reported, in a groundbreaking study, the identification of Lysine-

specific demethylase (LSD1).71 This enzyme was found to catalyze the specific post-translational 

demethylation of H3K4me1/me2. However, LSD1 was not able to interact with the trimethylated 

lysine residue on H3K4.72 Recently a second demethylase LSD2 has also been reported to interact 

with H3K4me1/me2.73  

In 2004, the second subfamily of KDM, containing a JumonjiC (JmjC) domain, was identified.74 

So far about 30 members of the JmjC domain-containing proteins have been identified and 

classified in five subgroups (KDM2/7, KDM3, KDM4, KDM5, and KDM6).72,75 Contrary to the 

LSD1/2 family of demethylase, JmjC domain-containing proteins can promote the demethylation 

of mono, di- and tri-methylated marks.72 This difference is due to their mechanism (Figure 1.6). 

Indeed, the demethylation process occurs through successive oxidative steps converting the 

methyl group firstly to a hydroxymethyl and then to formaldehyde. However while the LSD1/2 

family uses flavin adenine dinucleotide (FAD) redox cofactor, JmjC domain-containing proteins 

are Fe(II) and 2-oxoglutarate dependant.75  

Alteration of the KDMs activity has been linked to a variety of diseases in oncology, in particular, 

in leukaemia and in neurology.9,75–77 Therefore, the development of KDM inhibitors as therapeutic 

agents is of growing importance.78–80 
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Figure 1.6: Lysine demethylation mechanism catalyzed by LSD1 (KDM1) and JmjC family 

(KDM2-7).  

Taken from Thinnes et al.75 

 Histone deacetylase 

Histone deacetylases are the second leading class of erasers. These enzymes promote the 

formation of the heterochromatin by catalyzing the removal of acetyl group on lysine side chains 

and restoring the positive charge on the histone tails. Thus, histone deacetylases have a silencing 

role in the control of gene expression (Figure 1.7).  

 

Figure 1.7: Effect of acetylation mark on chromatin state. 

Histone octamers are shown as a yellow cylinder, histone tails as the blue line, DNA strand as a 
red line, acetyl marks as white beads and others epigenetic marks as green beads. Adapted from 

Verdin et al.50 
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Although Inoue had reported enzymatic deacetylation of histone,81 the study of histone 

deacetylation had a breakthrough in the 1990s when Taunton published the isolation of the first 

histone deacetylase named HDAC1.82 In the following years, several histone deacetylases were 

reported, and to date, 18 different enzymes have been identified.50,83 

These enzymes were named in order of discovery and were divided into classes depending on 

their similarity of sequence (Table 1.1). Class I shares sequence similarity with the yeast Rpd3 

protein and is made of HDAC1, HDAC2, HDAC3, and HDAC8. Class II proteins, composed of 

HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, and HDAC10, have sequences analogues to yeast 

Hda1 protein. Class III is similar to the yeast Sir2 protein and consists of seven Sirtuin enzymes 

called Sirt1-7. Finally, HDAC11 constitutes the class IV due to its resemblance to both classes I 

and II deacetylase. In addition to this classification, histone deacetylase enzymes are divided into 

two superfamilies: the histone deacetylase family (class I, II and IV) and the Sir2 regulator family 

(class III).   

Family Class Subclass Protein 

Histone deacetylase 

Class I  
HDAC1, HDAC2, 

HDAC3, HDAC8 

Class II 
Class IIa 

HDAC4, HDAC5, 

HDAC7, HDAC9 

Class IIb HDAC6, HDAC10 

Class IV  HDAC11 

Sir2 regulator Class III 

I Sirt1, Sirt2, Sirt3 

II Sirt4 

III Sirt5 

IV Sirt6, Sirt7 

Table 1.1: HDAC classification. 

The most significant difference between these two families is the mechanism of deacetylation.  

On the one hand, sirtuins catalyze the removal of acetyl marks on lysine side chain in a 

nicotinamide adenine dinucleotide (NAD+) dependant reaction (Figure 1.8).83,84   
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Figure 1.8: Lysine deacetylation by Sirtuin family. 

Sirtuins are localized in different sections of the cell with Sirt1 and Sirt2 found in both the nucleus 

and the cytoplasm, Sirt3 in the nucleus and the mitochondria, Sirt4 and Sirt5 found exclusively 

in the mitochondria, and Sirt6 and Sirt7 present only in the nucleus (Figure 1.9).85 Except for Sirt4 

and Sirt5, histone substrates and biological roles were identified for every other enzyme.9,50,55 

Additionally Sirt1 was also reported to have deacetylase activity on non-histone protein such as 

p53.86 The therapeutic potential of the Sirtuin family has been evaluated for several pathologies,87 

but modulators are mainly considered as promising agents in the treatment of type 2 diabetes,88 

and age-related diseases.89–91 

 

Figure 1.9: Schematic representation of the Sirtuin histone deacetylases. 

The subcellular localization, dependent protein deacetylases (DAC) or ADP-ribosyltransferases 
(ART) binding domains (dark blue) and zinc-binding domains (black) are depicted. Taken from 

Karagiannis et al.85 
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On the other hand, the HDAC family catalyzes the deacetylation of lysine in a metal-dependent 

manner. Finnin proposed the mechanism of the reaction in 1999 based on the crystal structure of 

the A. aeolicus HDAC homolog.92 This histone deacetylase-like protein (HDLP) shared a 

sequence homology to human HDAC1 and revealed the nature of the catalytic core of the enzyme. 

The catalytic pocket of the HDACs contains a Zn2+ cation and a water molecule both involved in 

the deacetylation mechanism (Scheme 1.2). In the first place, the zinc ion is chelated to the water 

and the surrounding amino acid residues, two aspartic acids (D168, D258) and a histidine (H170). 

Then in the presence of acetylated lysine, the zinc atom binds to the carbonyl group, and this 

interaction brings together the lysine side chain and the water molecule. The carbonyl, polarized 

by the presence of the zinc, then undergoes a nucleophilic attack by the water molecule, whose 

nucleophilic character has been enhanced by a close-by histidine residue (H131), to form a 

tetrahedral intermediate stabilized by hydrogen bonding to a tyrosine (Y297). Finally, the 

breaking of the carbon-nitrogen bond releases the lysine, which is then protonated by reaction 

with H132.   

 

Scheme 1.2: Proposed mechanism of lysine deacetylation. 

HDLP residues are labelled in black and their HDAC1 counterpart in blue. 

Similarly to the Sirtuin family, HDACs can be found in different sections of the cell and were 

linked to various functions (Figure 1.10). Class I are exclusively found inside the nucleus and are 

involved in cellular proliferation and survival.93 Class IIa can move between the nucleus and the 

cytoplasm and is mainly linked to tissue-specific roles.94,95 Class IIb contains cytoplasmic proteins 
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playing an essential role in cell growth, migration and survival.96–98 Finally, HDAC11 shuttles 

between the nucleus and the cytoplasm and has been linked to the regulation of immune 

function.99  

 

Figure 1.10: Schematic representation of metal-dependent HDAC enzymes and their 

subcellular localization. 

The deacetylase catalytic domain (pink), nuclear localization signal (purple), myocyte enhancer 
factor 2 binding domain (light blue), and serine binding motif (orange) are shown. SE14 (serine-

glutamate tetradecapeptide) and ZnF (zinc finger protein) binding domain, as well as leucine-rich 

domain, are also depicted. Taken from Karagiannis et al.85 

With the discovery of the mechanism, and following the publication of potent HDAC inhibitors 

in the late 1990s,100–102 a general pharmacophore of HDAC inhibitors (HDACi) was identified 

(Figure 1.11). Typical HDACi are made up of three distinct regions: 

- A cap region or surface recognition domain interacting with the enzyme rim 

- A zinc-binding group (ZBG) or warhead which chelates to the zinc in the active site 

- A linker connecting the cap and the ZBG and fitting in the enzyme channel 

 

Figure 1.11: Domain of HDACi pharmacophore shown on vorinostat (Zolinza®). 
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Abnormal HDACs activities have been linked to several diseases and HDAC inhibitors are 

considered as remarkable therapeutic targets especially in cancer and neurodegenerative 

diseases.9,53,94,95 In 2006, vorinostat (Zolinza®) became the first HDAC inhibitor approved by the 

FDA for the treatment of cutaneous T-cell lymphoma. This success boosted the field, and a variety 

of inhibitor structures and zinc binding group have been studied.103–105 The development of more 

potent and selective HDAC inhibitors, and their investigation as therapeutic agents is currently 

an expanding field of broad interest.  
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Chapter 2. HDACs and SETD8 inhibitors: overview and perspective. 

1. SETD8 inhibition 

1.1 Introduction 

As mentioned in the first chapter, lysine methylation on histone proteins is a major post-

translational modification and is a main actor in the regulation of the chromatin compaction and 

the gene expression. Besides, depending on the degree of methylation and its location, histone 

lysine methylation is correlated with either activation or repression of genes. Most KMTs contain 

the SET (Su(var), Enhancer of zeste, Trithorax) domain , and evidence suggests that the catalysis 

could follow a specific pathway, known as a sequential bi-bi kinetic mechanism, in which the 

association of the substrate and the release of the product occur randomly.
106–108

    

SETD8 (also known as Pr-SET7, SET8, or KMT5A) is a member of the SET domain-containing 

family with a growing popularity rating (Figure 2.1). Indeed, SETD8 maps to chromosome 12 

and is identified as the sole histone methyltransferase in mammals that is capable of the mono-

methylation of histone H4 lysine 20 (H4K20me1). This modification is involved in a range of 

biological processes such as DNA replication, DNA damage repair and heterochromatin 

formation.109,110 SETD8 is a nucleosome-specific methyltransferase,111 and important studies have 

been investigating its precise role in gene expression.  

 

Figure 2.1: SETD8 protein catalytic SET domain.  

Taken from Girish et al. 112 

1.2 Therapeutics applications 

SETD8 has been identified as a key player in oncology and overexpression of SETD8 was 

measured in different types of tumours such as bladder cancer, non-small cell and small cell lung 

carcinoma, and leukaemia.106  

MicroRNAs (miRNAs) are a cluster of non-encoding single-stranded RNA molecules of 20–24 

nucleotides. These molecules function to silence gene expression by binding to complementary 

recognition sequences of the 3’-untranslated region (3’UTR) of target miRNAs, leading to either 

miRNA degradation or translation inhibition.113,114 There is increasing evidence suggesting that 

single-nucleotide polymorphisms (SNPs) in the 3’UTR of SETD8 targeted by miRNA alter the 
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gene expression and thereby affect an individual’s cancer risk. To begin with, a polymorphism at 

the miR-502 binding site in the 3’UTR of SETD8 has been associated with breast cancer,115 

epithelial ovarian cancer,116 small-cell lung cancer,117 and hepatocellular carcinoma.118 Moreover, 

a significant increase in SETD8 levels was noted in samples of bladder and pancreatic cancers, 

myelogenous leukaemia, hepatocellular carcinoma and non-small cell lung carcinoma.119 

Moreover, several miRNAs, such as miR-127-3p and miR-382 were reported to target SETD8 in 

osteosarcoma cell,120 gliomas,121 and non-small cell lung cancer,122 and inhibit tumour 

progression. Finally, miR-7 was shown to not only decrease the invasive potential of breast cancer 

but also to affect the sensitivity to DNA damage.123  

DNA damage response is a signalling pathway activated by DNA double-strand breaks. The 

presence of the lesion is first recognised by sensor proteins which then initiate a cascade of 

reactions via a range of protein-protein interactions and post-translational modifications.106,124 

Then, the chromatin relaxes to allow waves of DNA damage repair proteins to flank the lesion 

and operate. The interaction between histone modifications, such as histone H4 lysine K20 

methylation, and specific reader domains which are able to distinguish the site and degree of 

methylation plays a key role in the recruitment of DNA damage repair proteins.125 One of the first 

responses is the phosphorylation of a variety of proteins and, among them, the spreading of 

histone H2AX at serine 139 (H2AX) marks acts as an anchor for larger proteins.126 These 

interactions can be detected by immunofluorescence and H2AX is, therefore, a hallmark of DNA 

damage. The reduction of SETD8 activity has been negatively correlated to the formation of 

H2AX and led to increased sensitivity to DNA damage due to defects during DNA replication 

or mitosis and to an increased genomic instability.126–128 Afterwards, the 53BP1 protein is 

recruited for the recognition of the DNA damage site. This protein contains a tandem tudor 

domain specifically binding to mono- and di-methylated lysine in H4K20 but not to unmethylated 

or trimethylated H4K20.129 It was demonstrated that the recruitment process of 53BP1 required a 

prompt increase of H4K20me1 on the sites of the DNA double-strand breaks and that SETD8 

activity was, therefore, crucial in the DNA damage response.128,130  

In addition to H4K20, SETD8 is also involved in the methylation of other proteins. In particular, 

the methylation of the proliferating cell nuclear antigen (PCNA) was found to be not only 

responsible for the recruitment of SETD8 on the DNA double-strand breaks sites in the DNA 

damage response,128 but also play a role in human carcinogenesis.119 

SETD8 also regulates the tumour suppressor protein p53. The transcription factor p53 is a DNA 

sequence-specific transcriptional regulator that responds to various cellular stresses and controls 

the expression of numerous genes. Its activity was reported to highly affect cell-cycle arrest, 
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apoptosis, senescence or DNA damage response.131,132 The p53 protein is involved in multiple 

interactions with activators, repressors, and transcriptional components to express or silence the 

transcription of targeted genes but p53 also prevents DNA damage and limits its spreading by 

controlling the cell cycle. As a result of its high importance for cell survival, an exquisite control 

mechanism has evolved to enable a fast response but prevent an inappropriate activation. In order 

to be transcriptionally active, and thus recruit co-factors, the p53 protein has the ability to 

recognise and bind specific DNA sequences.131,132 The p53 pathway is directly regulated by the 

activity of SETD8. Indeed, the monomethylation of p53 on lysine 382 (p53K382me1) by the 

SETD8 methyltransferase suppresses the p53-dependent transcription activation.133 Under normal 

conditions, a high level of p53K382me1 could block the p53 pathway by preventing its 

acetylation. During the DNA damage response, a decrease in p53K382me1 levels was observed 

thus suggesting that SETD8 could be downregulated.133 This is correlated with recent research of 

neural crest-derived tumours.134 Indeed, SETD8 methyltransferase is overexpressed in numerous 

cancer cells including neuroblastoma.119 Accordingly, the p53 pathway is highly inhibited by the 

important level of p53K382me1 (Figure 2.2). As a result, the study showed that inhibition of 

SETD8 induced p53-dependent cell death in neuroblastoma.134 Alongside its effect on p53 

methylation, SETD8 also indirectly affects the p53 pathway by methylation of Numb. This protein 

exists in multiple isoforms in mammals and plays a key role in cell division.135 The Numb protein 

was shown to interacts with several proteins,136 and in particular, the formation of a complex with 

p53 and the E3 ubiquitin ligase MDM2 was observed.137 As a result of this interaction, Numb 

promotes apoptosis in a p53-dependent manner. However, the interaction of Numb with SETD8 

leads to the methylation of the protein on the K158 and the K163 residues. This methylation 

adversely affects the binding with p53 and prevents the promotion of apoptosis. Moreover, this 

disruption results in increased ubiquitination and degradation of p53.137  

 

Figure 2.2: Model of SETD8 normal functions and role in neuroblastoma. 
Re-drawn from Veschi et al.134 
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Although SETD8 has been mainly studied for its links to oncology, it has also been linked to other 

pathologies.106  

SETD8 was reported to be expressed at a higher level in CD71+ erythroid precursors compared 

to other cell types.138 This result suggested that SETD8 could have Erythroid-cell-specific 

functions. In a study to identify the role of the SETD8/H40K20me1 pathway in erythroid cells, 

the downregulation of SETD8 was shown to impair the erythroid maturation.139 Erythroid 

maturation is characterized by haemoglobin accumulation, changes in cell surface marker 

expression, and a progressive decrease in cell and nuclear size that culminate in enucleation.140 

Malik and coworkers recently reported that the knockout of SETD8 didn’t alter the proliferation 

and the morphology of self-renewing cells, but resulted in a slower haemoglobin accumulation, 

larger mean cell area, incomplete nuclear condensation, and lower rates of enucleation.141 The 

study also established that SETD8 functions as a transcriptional repressor of the erythroid cell 

and identified a link between the activity of the SETD8 methyltransferase and the expression of 

the transcription factors GATA-2. Later, another study provided evidence that SETD8 is also a 

context-dependent GATA-1 corepressor in erythroid cells.142 These results led to the hypothesis 

that SETD8 controls erythroid cell maturation and function physiologically. More recent studies 

confirmed that the methyltransferase SETD8 is essential for the maturation and the survival of 

erythroid cells.141,143 Interestingly, these studies suggest that the crucial role for SETD8 in 

erythroid proliferation and survival doesn’t regulate the expression of the anti-apoptotic protein 

Bcl-xL and is independent of the p53 pathway. Besides, they also demonstrated that the Gata2 

repressor function of SETD8 only occurs in the early stages of maturation as SETD8 

downregulation only affected proerythroblasts but not the more mature basophilic erythroblast in 

which the gene is silenced. Therefore, the SETD8 methyltransferase could be required for the 

initiation of Gata2 but not its maintenance.143 

In addition, the monomethylation of H4K20 was shown to regulate cell differentiation in 

adipogenesis.144 Adipocyte differentiation is controlled by a cascade of transcription factors, and 

among them, peroxisome proliferator-activated receptor  (PPAR) is considered as a key 

regulator of adipogenesis. PPARis a member of the nuclear receptor superfamily and is present 

in two isoforms PPARandPPAR Recent studies have shown that PPAR upregulates 

SETD8 during adipogenesis.144 Reciprocally, it was also demonstrated that SETD8 

monomethylation of H4K20 was required to enhance the transcription of PPARFurthermore 

adipogenesis was also promoted by an increase of H4K20me1 marks on PPARproteins 

following the activation of the receptor.144,145 Finally, H4K20me1 levels increase robustly toward 

the end of adipocyte differentiation while the knockout of SETD8 suppressed adipogenesis.144,145  
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Intrauterine growth restriction (IUGR) occurs when a foetus fails to reach full growth potential in 

utero and sets up neurodevelopmental deterioration and long-term neurological damages. Those 

are correlated with a smaller hippocampus, the brain region involved in the formation of memory, 

as well as modification in brain connectivity. The PPAR pathway was shown to be involved in 

hippocampal repair and plasticity,146 and its activation improves cognitive function in 

neurodegenerative disorders.147–149 As a result of the reported link between PPAR and SETD8, 

Ke and coworkers studied the possible relationship with IUGR.147 The study demonstrated that 

IUGR induces a reduction of the levels of PPARγ, SETD8 and H4K20me1 in juvenile rat 

hippocampus. Besides, IUGR also downregulates the Wnt signalling pathway, which plays a 

crucial role in a range of biological and pathophysiological processes including CNS 

development.150,151 For instance, the Wnt3a gene is essential for the normal growth of the 

hippocampus, and it regulates the expansion of the caudomedial cortex, from which the 

hippocampus develops. Moreover, Axin2, another Wnt signalling target gene, is essential for 

myelination and remyelination in brain development. Interestingly, the Wnt signalling was proved 

to be mediated by the H4K20 monomethylation by SETD8.152 Therefore, IUGR could result from 

a stream of reaction with a reduced PPAR associated with a downregulated SETD8 and 

H4K20me1 abundance. The downregulation of H4K20me1 could then be associated with a 

reduced expression of Wnt signalling genes Wnt3a and Axin2. 

Finally, SETD8 is also required for the maintenance of adult skin and mediates Myc-induced 

epidermal differentiation.153 Indeed, knockout of SETD8 in c-Myc-overexpressing skin resulted 

in a loss of proliferation, impaired differentiation and caused apoptosis. The loss of differentiation 

is due to the disappearance of the transcription factor p63, a critical H4K20me1-mediated 

regulator required for epidermal stratification and differentiation,154 in the SETD8-depleted 

skin.153 On the other hand, the loss of proliferation is likely due to the overexpression of p53 in 

the SETD8-depleted skin which results in increased apoptosis in the epidermis.153  

1.3 SETD8 inhibitors 

Methyltransferase SETD8 plays a critical role in a wide range of biological processes and could 

be an attractive target for a variety of pathologies such as oncology, neurological disorder or 

treatment of obesity. Therefore, the development of selective SETD8 inhibitors would provide 

new chemical probes to investigate the role of SETD8 further, but would also offer a lead structure 

for the development of therapeutic agents.  

The first report about SETD8 inhibitors occurred in 2007,155 and since then only a limited number 

of inhibitors have been reported.156 Besides, only a fraction of them was showing a degree of 

selectivity against other methyltransferases.  



   

 

44 

 

 

1.3.i Dye-like compound: H acid and thymolphthalein 

In the first publication, two classes of molecules were identified as potent SETD8 inhibitors 

(Figure 2.3).155 The first compound corresponded to H-acid 2-1, the 4-amino-5-

hydroxynaphthalene-2,7-disulfonic acid. Derivatives of aminonaphthol have been extensively 

used as intermediates in the development of dyes, but they also emerged as synthetic intermediates 

in the development of biologically active compounds in the pharmaceutical industry.156,157 The 

second inhibitor was the thymolphthalein 2-2, which is a dye commonly used as an indicator in 

the acid-base titration. Use of these molecules as inhibitors first originated from studies on the 

inhibition of the arginine methyltransferase PRMT1.158,159 These compounds were then screened 

against SETD8, H3K9-specific methyltransferase G9a, and the H3K4-specific methyltransferase 

SETD7 which are all SET-domain containing KMTs.155,156 The assay revealed that both 2-1 and 

2-2 exerted an influence on SETD8 but had no inhibition activity on the non-nucleosomal 

methyltransferase G9a and SETD7 (Table 2.1). In a cell assay on the human cervical carcinoma 

HeLa cells, the very low lipophilicity of 2-1 likely induced a low cellular uptake and no inhibition 

effect was observed on the cell proliferation, even at a high concentration of 500 µM. On the 

contrary, thymolphthalein 2-2 had a concentration-dependent effect on cell viability and showed 

a selective downregulation of the methylation mark H4K20me1 but not of H3K27me3.155        

 

Figure 2.3: Structure of the dye-like SETD8 inhibitors 2-1 and 2-2. 

Compound Methyltransferase IC50 (µM) 

 SETD8 3.8 

2-1 G9a > 500 

 SETD7 > 1380 

 SETD8 9.0 

2-2 G9a > 1450 

 SETD7 > 1450 

Table 2.1: Inhibition by 2-1 and 2-2 of a panel of methyltransferases.155 
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1.3.ii EBI compounds 

A couple of years later, three novel classes of SETD8 inhibitor were reported.160 Using 

computational tools, Kodama et al. performed a virtual screening based on the crystal structure 

of SETD8 (PDB ID: 1ZKK). They generated over 3550 molecules which were predicted to bind 

to the enzyme according to their in silico methodology.160 They then submitted 161 commercially 

available compounds to in vitro enzymatic inhibition assay. They identified three molecules EBI-

099 2-3, EBI-435 2-4 and EBI-455 2-5 (Figure 2.4) with a strong inhibitory effect on SETD8. 

Besides, 2-3 was shown to downregulate the methylation activity of SETD8 but had no impact 

on G9a.156,160 

 

Figure 2.4: Structure of the EBI classes of SETD8 inhibitors. 

1.3.iii MC compounds 

In 2012, bis(bromo- and dibromomethoxyphenol) derivatives were reported to inhibit SETD8.161 

These compounds originated from a series of simplified analogues of AMI-5, which had been 

published as potent inhibitors of both protein arginine methyltransferase (PRMT) and histone 

lysine methyltransferase.162 In this study, they had identified a structure, analogous to 

dibenzylideneacetone, which behaved as multiple epigenetic ligands inhibiting at the same time 

all the tested PRMT, HAT, and SIRT enzymes, as well as the methyltransferase SET7 (Figure 

2.5). Interestingly, the number of bromine substituents on both phenyl rings had a significant 

impact on the inhibition of the acetylation-linked enzyme. Indeed, 2-6 and 2-7, which are both 

carrying a 3,5-dibromo-4-hydroxyphenyl, were active on every epigenetic target while 2-8 was 

potent on methyltransferase enzyme PRMT, CARM1 and SET7, but inactive on HAT and SIRT.  
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Figure 2.5: Structure of dibenzylideneacetone derivative 2-6 to 2-8. 

Those compounds were then evaluated against three lysine methyltransferases, SET7, G9a and 

SETD8. They all displayed inhibitory effect on each methyltransferase in the range 4.3-62.5 

µM.161  

Modification of the scaffold to introduce a methoxy group in place of the hydroxy led to the 

successful synthesis of selective inhibitors (Figure 2.6).161 

 

Figure 2.6: Structure of the MC compounds. 

These four compounds displayed micromolar activity on SETD8 but had no inhibition effect on 

both G9a and SET7 (Table 2.2). Besides, they were also tested against the multiprotein polycomb 

repressor complex 2 (PRC2), the active component of methyltransferase EZH2. Interestingly both 

2-9 and 2-11 were active on EZH2 whereas both 2-10 and 2-12, which feature bromine instead of 

hydrogen, were also selective against EZH2.  

Compound 
SETD8 G9a SET7 EZH2 

IC50 (µM) or % inhibition at 75 µM 

2-9 9.0 ± 0.4 > 250 > 250 74.9 ± 4.0 

2-10 3.3 ± 0.2 > 250 > 250 8.7 % 

2-11 10.2 ± 0.5 > 250 > 250 313.8 ± 15.0 

2-12 2.6 ± 0.1 > 250 164.4 ± 11.0 6.2 % 

Table 2.2: Inhibitory activities of MC compound on SETD8, G9a, SET7 and EZH2.161 
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The results were confirmed by assessing H4K20me1 levels in Western blot analyses of leukaemia 

U937 cells after 24h treatment with the compounds at 50 µM. Furthermore, 2-9 also induced cell 

death and U937 differentiation.161  

1.3.iv Nahuoic acid A 

Isolated from cultures of Streptomyces sp. obtained from marine sediment collected in Papua New 

Guinea, nahuoic acid A was identified in 2013 as a selective SAM- competitive SETD8 inhibitor 

in vitro, following a screen of a library of marine organism extracts and pure marine natural 

products (Figure 2.7).163  

 

 

Figure 2.7: Structure of Nahuoic acid 2-13 to 2-17. 

The authors reported that nahuoic acid A inhibited SETD8 with a micromolar IC50 (Table 2.3: 

Inhibitory activities of nahuoic acids on SETD8.164) but had no significant activity against other 

methyltransferases such as G9a, EHMT1, SETD7, SUV39H2, SUV420H1, SUV420H2, DOT1L, 

PRMT3, and PRMT5 and MLL complexes (Figure 2.8). Moreover, they demonstrated that 2-13 

was a noncompetitive inhibitor with respect to the binding of the peptide substrate but instead 

competed with SAM binding with a Ki value of 2 µM.163  

Compound 
SETD8 

IC50 (µM) 

2-13 8 

2-14 27 

2-15 41 

2-16 76 

2-17 13 

Table 2.3: Inhibitory activities of nahuoic acids on SETD8.164 
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Figure 2.8: Activity of nahuoic acid A (2-13) on SETD8 and 12 other methyltransferases. 

 Adapted from Williams and al.163 

Following these results, they isolated nahuoic acid B-E and showed they were also exerting an 

inhibitory effect on SETD8.164 Moreover, they demonstrated that nahuoic acid A inhibited 

proliferation of several cancer cell lines in vitro with modest potencies. Finally, 2-13 showed 

selective inhibition of SETD8 in U2OS osteosarcoma cells.164   

Interestingly, these compounds are the only reported SAM competitive selective SETD8 

inhibitors.164 

1.3.v UNC and MS compound 

Jin and coworkers reported in 2009 the discovery of potent and selective G9a inhibitors based on 

2,4-diaminoquinazoline.
165

 Following up from this study, they demonstrated that 2,4-

diaminoquinazolines are selective, substrate-competitive inhibitors of the lysine 

methyltransferases G9a and GLP.156,166 Next, they screened their library of quinazoline-based 

inhibitors against SETD8. From over 150 compounds, they identified UNC0379 (2-18) as the 

most potent inhibitors of the series (Figure 2.9).166  

 

Figure 2.9: Structure of UNC0379 (2-18). 

The result of the screening, a radioactive biochemical assay that measures the transfer of the 

tritiated methyl group from 3H-SAM to a peptide substrate catalysed by SETD8, was then 

confirmed in an orthogonal biochemical assay, microfluidic capillary electrophoresis (MCE) 
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assay. Next, they performed mechanism of action (MOA) studies to determine whether the 

inhibition was due to competition with the substrate or with the SAM co-factor. In a series of 

assays, they demonstrated that the IC50 was proportional to the histone H4 substrate concentration 

while the variation of the SAM concentration had no effect on the inhibition. Therefore, they 

determined that compound 2-18 is competitive with the substrate and noncompetitive with the 

SAM co-factor.166 Moreover, inhibition assay on a panel of enzymes showed that UNC0379 2-18 

was selective for SETD8 over 15 other methyltransferases, including G9a and GLP (Figure 2.10).  

 

Figure 2.10: Activity of 2-18 on 15 methyltransferases.  

Adapted from Ma et al.166 

They then synthesised a series of analogues and studied the SAR of the quinazoline scaffold.166,167 

First, they focused on the modification of the C2-substituent (Table 2.4). This position was found 

to be mainly intolerant to modification. Indeed, most adjustments resulted in a significant loss of 

potency. In particular, an extension of the ring (2-19, 2-20) and substitution of the pyrrolidine by 

chlorine (2-21), phenyl (2-22) or aniline (2-23) led to inactive compounds. The replacement by a 

dimethylamino group (2-24) was the only modification that maintained similar activity. 

Importantly, disubstitution of the amino group seemed to be required for proper inhibition (2-25, 

2-26).   
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Compound R 
SETD8 

IC50 (µM) 

2-18 

 

7.3 ± 1.0 

2-19 

 

94 ± 18 

2-20 

 

> 250 

2-21 
 

> 250 

2-22 

 

> 250 

2-23 

 

> 250 

2-24 
 

9.2 ± 1.2 

2-25 

 

37.0 ± 9.3 

2-26 

 

> 250 

Table 2.4: SAR of the C2-position of 2-18.166,167 

Then, they studied the substituent on the C4-position. This position was shown to be much more 

tolerant to modification. The ring size of the terminal cyclic amino group did not have a significant 

impact on SETD8 potency with both cyclic (2-27) and acyclic (2-28) amino groups maintaining 

a similar activity. The length of the alkyl chain had more impact on the potency (2-29, 2-30) and 

the 5-carbon linker was the optimum. Introducing amide in the chain (2-31) also reduced the 

activity of the compound. Finally, N-methyl analogue (2-32) was drastically less potent than 2-

18, suggesting that the hydrogen of the secondary amine could serve as a hydrogen bond donor. 
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Compound R 
SETD8 

IC50 (µM) 

2-18 
 

7.3 ± 1.0 

2-27 

 

7.9 ± 1.2 

2-28 
 

7.9 ± 1.4 

2-29 

 

43 ± 13 

2-30 

 

26 ± 5 

2-31 

 

63 ± 19 

2-32 
 

> 250 

Table 2.5: SAR of the C4-position of 2-18.166,167 

Finally, the authors looked at the methoxy substituents on C6 and C7 (Table 2.6). Replacement 

by hydrogens led to an important drop of potency, in particular at the C6 position that led to 

inactive compounds (2-33, 2-34). At the C6 position, the methoxy and ethoxy (2-35) groups were 

preferred, and a larger group (2-36) or a less electron-donating group (2-37) was disfavoured. At 

the C7 position, modifications were more tolerated, and diverse groups could be introduced 

without affecting the potency (3-38, 3-39, 3-40).   
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Compound R1 R2 
SETD8 

IC50 (µM) 

2-18 MeO- MeO- 7.3 ± 1.0 

2-33 H- MeO- > 250 

2-34 MeO- H- 52 ± 11 

2-35 EtO- MeO- 9.5 ± 0.9 

2-36 iPrO- MeO- 61 ± 12 

2-37 Cl- MeO- 46 ± 11 

2-38 MeO- EtO- 11 ± 1 

2-39 MeO- 
 

8 ± 0.8 

2-40 MeO- 

 

8.7 ± 0.4 

Table 2.6: SAR of the C6 and C7 positions of 2-18.166,167 

Recently, two new compounds were reported.168 MS2177 (2-41) directly followed the previous 

SAR by introducing an aminoethyl group on the C7 position (Figure 2.11). This compound was 

shown to be more potent than 2-18 in a scintillation proximity assay (Table 2.7). Besides, 

isothermal titration colourimetry (ITC) confirmed the binding to SETD8 with a binding constant 

much lower than that of 2-18. Similarly to 2-18, competition assay confirmed that 2-41 was 

competitive with the H4 substrate and noncompetitive with SAM co-factor.168  
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Figure 2.11: Structure of MS compounds. 

Compound 
SETD8 

IC50 (µM) 

KD 

(µM) 

2-18 7.3 1.3 

2-41 1.9 18 

Table 2.7: Activity of MS2177 (2-41) and 2-18 on SETD8 and binding constant KD.168 

Crystal structure of 2-41 in complex with SETD8 was then obtained and used to design a new 

inhibitor. Indeed, the 4-(pentylpyrrolidine) group of 2-41 appeared to be close to a cysteine 

residue, and the authors decided to modify the structure to benefit from this interaction. The alkyl 

chain was therefore modified to introduce an electrophile group, and MS453 (2-42) was 

synthesised.168 This compound was reported to be a covalent inhibitor of SETD8 with a 

nanomolar IC50 in a scintillation proximity assay after five hours of incubation (Table 2.8). 

Compound 
SETD8 IC50 

1 h of incubation 5 h of incubation 

2-42 6.90 µM 804 nM 

Table 2.8: Activity of MS453 (2-42) on SETD8.168 

Finally, 2-42 was shown to selectively inhibit SETD8 over 28 other methyltransferases (Figure 

2.12). 
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Figure 2.12: Activity of MS453 (2-42) on 29 methyltransferases.  

Taken from Butler et al.168 

1.3.vi SPS8I compound and derivatives. 

In 2012, Luo and coworkers formulated a radioactivity-based scintillation proximity imaging 

assay in a high throughput screening format to identify new protein methyltransferase 

inhibitors.169 A few years later, they identified three structures selectively inhibiting SETD8 after 

screening over 5000 commercially available compounds on the KMTs.170 These compounds were 

called SPS8I1-3, for Small-molecule Pool of SETD8 Inhibitor and are displayed in Figure 2.13. 

 

Figure 2.13: Structure of SPSI8 compounds. 

The three compounds were evaluated against a panel of six lysine methyltransferases. SPS8I1 (2-

43) and SPS8I3 (2-45) were not active against GLP, SETD7, but inhibited all the other 

methyltransferases with IC50 values in the low micromolar or submicromolar range, whereas 

SPS8I2 (2-44) also inhibited GLP (Table 2.9). 
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Compound 
SETD2 GLP G9a SETD8 SMYD2 SETD7 

IC50 (µM)  

2-43 1.5 ± 0.2 > 100 6.5 ± 0.4 0.21 ± 0.02 0.5 ± 0.2 > 100 

2-44 2.3 ± 0.2 4.7 ± 0.3 3.1 ± 0.2 0.5 ± 0.2 2.0 ± 0.2 > 100 

2-45 1.0 ± 0.7 > 100 3.2 ± 0.1 0.7 ± 0.2 3 ± 1 > 100 

Table 2.9: Activity of SPSI81-3 on lysine methyltransferases.170 

Interestingly, studies of the MOA revealed that those three compounds inhibited SETD8 

differently. Indeed, 2-43 was found to be substrate dependent, 2-44 was neither substrate nor 

SAM-dependent, and 2-45 was both substrate and SAM dependent.170 

Additionally, all three inhibitors contained a Michael-acceptor quinoid motif that could react with 

active cysteine residues in accordance to the covalent interaction observed in MS453 (2-42). Thus, 

the authors performed further mechanistic studies and showed that SPS8I1–3 inhibited SETD8 

through an irreversible slow-onset process. They then identified that both 2-43 and 2-44 

specifically interacted with the C270 of SETD8, whereas 2-45 targeted cysteine residues in a 

nonspecific manner.
170  

A series of quinones inhibiting SETD8 with an IC50 value below 5 µM was then patented by the 

same authors.171 Besides, these compounds also inhibited other KMTs (SETD2, SETDB1, GLP, 

G9a, SMYD2, SMYD3, MLL1, and SETD7) and PRMTs (PRMT1, PRMT3, CARM1, PRMT8) 

in the low micromolar range.  

1.3.vii Peptide-based inhibitors. 

Although  SETD8 inhibitor development has mostly been based on the use of small molecules, a 

different approach was reported in 2016 with the first inhibitors based on a peptide.172 Working 

on the development of substrate competitive SETD8 inhibitors, the authors used a combination 

of docking studies and synthesis to study the SAR of the H4 peptide. They focused on the residues 

16-23 of the H4 peptide (Figure 2.14) and used molecular modelling to investigate the binding 

potential of mutants in which the lysine K20, methylated by SETD8, had been replaced by a set 

of natural and unnatural amino acids.  
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Figure 2.14: Structure of the (16 - 23) area of H4 peptide (2-46). 

Then, they synthesised a set of compounds and evaluated their binding constant by isothermal 

titration calorimetry (Table 2.10). 

Compound Side chain KD (µM) 

2-46 
 

46.60 ± 2.80 

2-47 
 

0.14 ± 0.01 

2-48 
 

1.26 ± 0.05 

2-49 
 

1.58 ± 0.10 

2-50 

 

6.70 ± 0.50 

Table 2.10: ITC binding of the native H4 (2-46) and K20 substituted mutant peptides.172  

Next, they decided to modify the H4 peptide further and substitute other amino acid residues. The 

norleucine peptide 2-47, which offered the best binding, was modified alternatively on its arginine 

R17 residue and leucine L22 residue.172  



   

 

57 

 

 

Replacement of R17 with shorter, hydrophobic, and sulfur-containing residues targeting the 

cysteine residues and hydrophobic pockets near the entrance of the pocket, resulted in a significant 

reduction of the binding (Table 2.11). 

Compound Side chain KD (µM) 

2-47 

 

0.14 ± 0.01 

2-51 
 

14.80 ± 2.00 

2-52 
 

3.04 ± 0.38 

2-53 
 

5.57 ± 0.36 

2-54 
 

1.84 ± 0.14 

Table 2.11: ITC binding of the Nle H4 (2-47) and R17 substituted mutant peptides.172 

On the other hand, L22 sits in a mostly hydrophobic pocket with some charge on the periphery. 

This position was more tolerant to substitution by larger hydrophobic groups (Table 2.12). 

However, with the exception of -cyclohexylalanine, modifications of L22 resulted in slightly 

less potent compounds.  
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Compound Side chain KD (µM) 

2-47 
 0.14 ± 0.01 

2-55 

 
0.12 ± 0.01 

2-56 

 
0.21 ± 0.01 

2-57 

 
0.32 ± 0.02 

2-58 

 
0.58 ± 0.01 

2-59 

 
0.80 ± 0.04 

Table 2.12: ITC binding of the Nle H4 (2-47) and L22 substituted mutant peptides.172 

The norleucine substituted peptide (2-47) was then tested as a SETD8 substrate competitive 

inhibitor against the H4 peptide in the presence of SAM. It was found to have a Ki of 50 nM and 

an IC50 of 0.33 μM.172 Finally, assays on a panel of 32 methyltransferases revealed that the peptide 

2-47 demonstrated some selectivity (Figure 2.15).  

 

Figure 2.15: Inhibition of 32 methyltransferases by Nle H4 peptide (2-47). 
Taken from Judge et al.172 
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1.4 Summary 

SETD8 was identified as the only mammalian methyltransferase responsible for the 

monomethylation of lysine K20 on histone H4. H4K20me1 is a methyl mark critical for the 

genomic integrity of eukaryotic cells, and SETD8, therefore, plays a crucial role in the regulation 

of transcriptional activity. In addition, this unique methyltransferase also interacts with non-

histone proteins such as p53 and PCNA. Over the last decades, its action on different substrates, 

and H4K20 in particular has been linked to a wide range of biological processes. Moreover, a 

dysregulation of the SETD8 activity has been linked to several pathologies including cancer, 

neurological disorders, and obesity. Nonetheless, the functions of the protein, and its effect in 

both normal and altered cells, are not fully understood yet. Thus, the development of new 

chemical tools is required to pursue the investigation of the biological role. Over the past decades, 

SETD8 inhibitors emerged as potential therapeutic agents and their development has experienced 

a steadily growing interest. As a result, significant progress has been made in medicinal chemistry, 

assay development, structural biology and high-throughput screening. These advances 

successfully led to the development of different classes of SETD8 inhibitors, but a limited number 

have been reported so far. Moreover, only a fraction of them is showing a degree of selectivity 

and/or cellular activity. The development of more potent and more selective SETD8 inhibitors is 

of great importance and the recent identification of the binding to the nucleosome,112 as well as 

the resolution of the crystal structure of SETD8 in complex with inhibitors,168,172 could pave the 

way for new generation of inhibitors. 

2. HDAC inhibition 

2.1 Introduction 

Lysine acetylation is the most studied epigenetic post-translational modification. In histones, 

lysine acetylation decreases their affinity for DNA and relaxes the nucleosome to enable the gene 

transcription. Conversely, HDACs act as gene repressors by removing histone acetylation marks 

and prevent the recognition by bromodomains. In addition, more than 50 non-histone proteins 

have been identified as a substrate for one of the HDACs.173 HDACs have a regulatory role in cell 

development, cell proliferation, cell migration and cell death. Therefore, HDAC inhibitors 

(HDACi) have vast potential as therapeutic agents in the treatment of a range of pathologies.  
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2.2 Therapeutic applications 

2.2.i Therapeutic applications targeting human HDACs 

 Oncology 

HDAC inhibitors have been thoroughly studied as anticancer agents. In many cancers, an 

increased level of expression of HDAC had been observed,174 and treatment with HDAC 

inhibitors had a significant impact.53 

Induced apoptosis 

Cell death is one of the most studied anticancer effects of HDAC inhibitors.175,176 Treatment with 

HDACi induces tumour cell death with all the characteristics of apoptosis, and the therapeutic 

efficacy has been observed in preclinical models.176–179 Their therapeutic potential comes from 

their ability to induce apoptosis in tumour cells selectively. Indeed in vitro studies have shown 

that transformed cells could be 10-fold more sensitive to HDACi than normal cells.180 

Notwithstanding, as a result of the numerous biological effects of HDACi-induced cell death is 

likely mediated by multiple molecular pathways in all cell types. Indeed, both the intrinsic and 

extrinsic apoptotic pathways have been shown to be involved. Moreover, there is growing 

evidence that the effect of HDACi can be cell-type dependent.175,176  

The intrinsic pathway was reported to be critical for the potent apoptotic effect of HDACi, and 

its activation resulted from overexpression and an upregulation of the activity of proapoptotic 

BH3-only genes such as Bim, Bid, Bmf, Noxa and Puma.181 In addition, it was reported that over 

4200 genes responded differently to treatment with an HDACi between normal and transformed 

cells,182 and the authors identified a tumour-cell-selective pro-apoptotic gene-expression 

signature with the BCL2 family genes. In cancer cells, upregulation of the proapoptotic gene BMF 

was observed after treatment with HDACi while the prosurvival gene BCL2A1 encoding BFL-1 

was downregulated.182 Moreover, the upregulation and downregulation of the BCL2 family, 

induced by treatment with HDACi, were also reported in a variety of cancer cell lines such as 

chronic lymphocyte leukaemia,183 breast and brain cancer,184 hepatocellular carcinoma,185 and 

other haematological malignancies.186 Besides, the altered expression of the apoptotic genes Bmf, 

Bim, Puma and Noxa, was proved to be linked to the histone hyperacetylation of the gene 

promoters induced by the treatment with HDACi.175,187–189 Finally, HDACi also indirectly regulate 

the expression of proapoptosis and antiapoptosis genes by mediating the expression of micro-

RNAs,190–192 and the activity of transcription factors such as E2F1,193 p53,194 and Sp1.195  

Activation of the extrinsic pathway also plays an important role in HDACi-induced apoptosis.181 

Firstly, HDACi can repress the expression of c-FLIP, an endogenous inhibitor of caspase-8 that 
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inhibits the activation of the extrinsic apoptosis pathway.196 Secondly, HDACi enhance the 

sensitivity of malignant cells to death receptors ligands and increase the expression of death 

receptors.197 In addition, the induction of death receptors has been demonstrated to be tumour 

cell-selective,179 and the restriction of these two pathways reduced the efficacy of HDACi in 

preclinical studies.177,179,198  

A third mechanism of the HDACi-induced cell death has been identified with the generation of 

reactive oxygen species (ROS), and pre-incubation with antioxidants have been shown to protect 

the HDACi-induced cell death.199,200 Moreover, the increase in ROS levels precedes changes in 

mitochondrial membrane potential, the release of cytochrome c, and subsequent tumour cell 

death.201,202
 It has recently been proposed that the regulation of ROS might underpin the tumour-

selective killing activity of these agents.180,200 

Finally, HDACi-induced cell death can also occur through the accumulation of DNA damage.203 

In the first place, HDACi treatment downregulated critical proteins involved in the DNA damage 

response and required for DNA damage sensing, homology-directed repair (HDR) and 

nonhomologous end joining (NHEJ).203–205 In addition, HDACi were shown to induce DNA 

damage which could be repaired in normal cells but not in transformed cells.206 Furthermore, 

HDACi treatment was shown to induce hyperacetylation of Ku70 in prostate cancer cells, thus 

reducing Ku70 DNA binding and increasing the sensitivity to DNA-damaging agents.206 Finally, 

the slowed down DNA replication in cancer cells, induced by HDACi, and the previously 

described accumulation of ROS species can also cause DNA damage.207,208  

Cell cycle arrest 

In the first place, HDAC inhibitors can induce cell cycle arrest at the G1/S cell cycle checkpoint 

and the G2/M boundary.175 Treatment with HDACi is associated with p53-independent induction 

of CDKN1A transcription. This gene, located on chromosome 6 in human, is encoding the p21 

WAF1/CIP1 protein, a cyclin-dependent kinase CDK inhibitor acting as a regulator of cell cycle 

progression at G1 and S phase.209 In addition, treatment with HDAC inhibitors was also shown to 

upregulate other CDK inhibitors.175 Two genes involved in DNA synthesis, CTP synthase and 

thymidylate synthetase, are transcriptionally repressed by HDAC inhibitors.210 Loss of these 

enzymes would have a similar effect to antimetabolite treatment that blocks S-phase progression, 

thereby also contributing to the G1/S arrest.174  

Treatment with HDAC inhibitors also induces downregulation of cyclin D and cyclin A genes 

and contributes to the loss of CDK2 and CDK4 kinase activities and hypophosphorylation of 

pRb.174,175 Therefore, HDAC inhibition blocks the activation of G2/M regulatory complexes and 

leads to G2/M arrest.211 
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Finally, a biological hierarchy has been established between the different processes and evidence 

suggested that apoptosis induced by the treatment with HDAC inhibitor is dominant over the G1/S 

arrest, which itself is dominant over the G2/M arrest.175  

Differentiation 

Induced differentiation is another critical effect of HDAC inhibitors. Oncogenic fusion proteins, 

such as PML-RAR and AML1-ETO, are known to initiate tumorigenesis by inhibiting cellular 

differentiation.212 In acute promyelocytic leukaemia (APL), a PML-RAR-driven acute myeloid 

leukaemia, HDAC inhibition can induce a differentiation-mediated antitumor response.53 Indeed, 

treatment of APL by HDAC inhibitors showed a therapeutic effect in a mouse model by reversing 

the myeloid differentiation block caused by the repression of RAR genes.175,213 The treatment 

enhanced the sensitivity to retinoic acid in APL cells and restored the sensitivity in resistant APL 

lines.214 As a result, a sequential HDAC inhibitor/all-trans retinoic acid (ALTRA) treatment was 

shown to reprogram differentiation in refractory and high-risk AML in clinical trials.215      

In addition, HDAC inhibitors induce differentiation of AML1-ETO-driven AML cells both in 

vitro and in vivo in a mouse model.216 This differentiation co-occurred with tumour cell arrest 

coupled with an increase in the promyeloid differentiation genes PU-1, GATA-2, SCL, and 

C/EBPa.216 

A similar effect was observed in the treatment of NUT midline carcinoma (NMC), a malignant 

pediatric tumour driven by the BRD4-NUT oncogenic fusion protein.217 Squamous cell 

differentiation was restored in vitro after treatment with HDAC inhibitor and resulted in cancer 

cell growth inhibition and increased survival of mice suffering from NMC.217 Furthermore, 

treatment with the FDA-approved HDAC inhibitor vorinostat of a patient with NMC showed 

antitumor response by positron emission tomography.217 Similar response was observed in the 

xenografted tumour from the same patient, providing preclinical and clinical evidence for HDAC 

inhibitor therapy for NMC.217    

More broadly, HDAC inhibitors have been shown to induce differentiation of primary sarcoma 

cell lines,218 human hepatoma cells,219 small cell lung cancer cells,220 and breast cancer.221 

Senescence 

In addition to the previously described increased expression of p21 WAF1/CIP1, treatment of 

cancer cell lines with HDAC inhibitors induces cell senescence and staining of associated 

biomarkers such as senescence-associated -galactosidase (SA-Gal).222
 HDACi-induced 

senescence was shown to be linked to a downregulation of the polycomb repressor of cytokinesis 

1 (PRC1) component Bmi1.175,223 Moreover, the PRC2 component and senescence inhibitor 
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protein EZH2 was also downregulated. Interestingly, these reduced levels of expression were not 

due to a direct effect of HDAC inhibition on these proteins. Instead, they resulted from the 

upregulation of miR-31, a transcriptional target of histone deacetylase inhibitors.223 

Autophagy 

Autophagy was observed in cancer cells after treatment with HDAC inhibitors.224–226  However, 

the exact role of autophagy in the mediation of HDACi therapeutic effect has not been elucidated 

yet. In an in vitro study of hepatocellular carcinoma cell lines, HDACi-induced cell death was 

shown to require autophagy.227 On the other hand, in glioblastoma cell lines, inhibition of 

autophagy greatly increased HDACi-induced apoptosis.228 Although these results seem to suggest 

that the effect of autophagy on HDACi-induced apoptosis could be tumour cell line-dependant, 

opposing observations were also obtained within a single cancer cell line. In U937 cells, activation 

of autophagy increased the sensitivity to vorinostat-induced apoptosis. Meanwhile, U937 cells 

with acquired resistance to vorinostat possessed a high level of autophagy, and its inhibition 

restored the sensitivity of the cells to vorinostat.229 These results indicate that autophagy can 

switch from a proapoptotic signal to a prosurvival function. 

The link between HDAC inhibition and the activation of an autophagic response is not fully 

understood, but several pathways have been identified. HDACi where shown to induce autophagy 

in cells through inhibition of mechanistic target of rapamycin (mTOR) pathway.227 In addition, a 

recent study demonstrated that HDACi-induced autophagy was also dependent on the forkhead 

box proteins (FOXO) pathway.230 Finally, the previously described increased vorinostat-induced 

apoptosis, following autophagy inhibition, was shown to be linked to ubiquitinated protein 

accumulation.231 

Immunomodulatory effects 

There is growing evidence that HDACi can enhance immunogenicity either by directly affecting 

malignant cells to make them more attractive immune targets, or by altering immune cell 

activity.175 HDACi were showed to upregulate the expression of major histocompatibility 

complex MHC class I and II molecules and the antigen-processing machinery.
232–234 Moreover, 

HDACi were reported to induce the expression of MHC class I related molecules MICA and 

MICB on the surface of tumour cells.235,236 Those molecules bind to the activating 

immunoreceptor NKG2D (natural killer cell protein group 2D) on the surface of natural killer 

(NK) cells, γδ T cells and CD8 T cells. Therefore, HDACi can increase the NK cell cytotoxicity 

by activating the NKG2D signalling pathways.235,237 HDACi can also induce immunogenic 

tumour cell death and lead to enhanced tumour clearance by CTL killing and dendritic cell 

phagocytosis.233,238 Besides, it was established that an intact immune system was critical for an 
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HDACi-induced anticancer response against solid and haematological tumours.239,240 The in vivo 

antitumor effects and antitumor immunity was also shown to be enhanced by immune-stimulating 

antibodies increasing CTL activity.238  

Despite these results, it was also reported that HDACi treatment, and in particular, the knockdown 

of some class I HDAC isoforms, could downregulate the expression of B7-H6, an NK-cell 

activating ligand, and therefore decrease NK cell activation and tumour cell killing.241  

Conclusion 

HDACi are exciting new anticancer agents that induce tumour-cell death, cycle-arrest, 

differentiation, senescence, autophagy and immunogenicity (Figure 2.16). If the therapeutic 

potential of HDAC inhibitors in oncology has been established, the molecular processes 

underlying the effects of HDACi remain to be fully elucidated. To this end, the development of 

more potent and more isoform selective HDACi represents a high-profile topic. 

 

Figure 2.16: Overview of biological response to HDACi treatment in cancer cells. 

Taken from Newbold et al.175 

 Neurodegenerative diseases 

Histone deacetylases represent emerging therapeutic targets in the context of neurodegeneration. 

Indeed, pharmacologic inhibition of HDACs activities in the nervous system has shown beneficial 

effects in several preclinical models of neurological disorders.95 
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Huntington’s disease 

Huntington’s disease (HD) is a dominantly inherited neurodegenerative disorder characterized by 

progressive impairment in cognitive and motor functions. HD is caused by a mutation encoding 

an abnormal expansion of a trinucleotide (CAG)-encoded polyglutamine repeats in the huntingtin 

protein (htt). Increasing evidence suggests that mutant htt (mhtt) disrupts the normal 

transcriptional regulation of susceptible neurons but the mechanisms by which mhtt causes 

neuronal dysfunction and death remains unclear.95 Global reduction of the levels of histone 

acetylation was first identified in neurons,242 and since then the link between hypoacetylation and 

neurodegeneration has been well established.243,244 

In a Drosophila model of HD, treatment with vorinostat managed to stop the progressive neuronal 

photoreceptor degeneration and reduced the mortality rate of the flies.245 Moreover, inhibition of 

reduced potassium dependency 3 (Rpd3, orthologue to human class I HDAC), as well as the 

orthologue of human SIRT1-3, led to neuroprotection effect. 

To evaluate the hypothesis that expanded polyglutamine (polyQ) domains could interfere with 

the transcriptional regulation, RNA interference (RNAi) was used in C. elegans neurons 

expressing an expanded polyQ human htt fragment (Htn-Q150).246 This study revealed that 

knockdown of had-3 (orthologue to human HDAC3) suppressed Htn-Q150 toxicity while the 

repression of others HDACs resulted in increased toxicity. These results suggest that, in C. 

elegans, HDAC3 acts as an antagonist of the polyQ toxicity pathway. 

In R6/2 mouse model, the most widely used mouse model for HD, treatment with HDACi resulted 

in increased level of acetylation, protection against 3-nitropropionic acid neurotoxicity, improved 

motor performance, delayed of the onset of the neuropathological development, and extended 

survival in a dose-dependent manner.247 Besides, one of the primary challenge in the treatment of 

neurological diseases is to cross the blood-brain barrier (BBB). Complexation of vorinostat with 

cyclodextrin was proved to increase the brain permeability and significantly improved the 

efficacy of the drug in the R6/2 mouse model.248  

In addition to the alteration of the transcription and the deregulation of the acetylation level, HD 

toxicity also results from a defect in microtubule-based transport.249 HDAC6 was reported to be 

a microtubule -tubulin deacetylase.250 Therefore, its inhibition resulted in an increase of 

-tubulin acetylation and enhanced vesicular transport of brain-derived neurotrophic factor 

(BDNF).249 

HD pathology is also associated with impaired cognitive functions and motor deficits. 

HdhQ7/Q111 transgenic HD mice display cognitive deficits, which are associated with reduced 
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hippocampal expression of the CREB-binding protein (CBP), decreased levels of histone H3 

acetylation, and lower expression of CREB/CBP target genes related to memory. Treatment with 

HDACi resulted in enhanced transcription of selective CREB/CBP target genes and a significant 

improvement of recognition memory.251  

In addition to these in vitro and in vivo studies, the effects of HDAC inhibition on HD were also 

evaluated in clinical trials. HDACi treatment in myoclonic hyperkinesias in HD patients showed 

beneficial effect both as monotherapy,252 and in combination with haloperidol, a typical 

antipsychotic.253 These studies reported an improvement of motor performance and an attenuation 

of the aggressiveness in the patients.254 As a follow-up, several HDACi are now undergoing 

clinical trials.255 

Alzheimer’s disease 

Alzheimer's disease (AD) is one of the most severe age-related neurodegenerative disorder 

affecting the cortex and hippocampus, respectively the learning and memory centres in the brain. 

The disease is characterized by abnormal phosphorylation levels of the tau protein, leading to the 

formation of neurofibrillary tangles. In addition, the accumulation of -amyloid (A) neurotic 

plaques induces a neuroinflammatory response by promoting the release of proinflammatory 

mediators that perpetuate reactive gliosis, disrupt the Wnt pathway and cause oxidative stress.85,256 

This cascade of reactions enhance the neuropathological damages and lead to neuronal death.  

HDACs, especially HDAC2 and HDAC6, have been associated with AD. In mice, overexpression 

of HDAC2 demonstrated an adverse effect on brain functions and resulted in reduced synaptic 

plasticity and damaged memory formation.257 Conversely, a deficiency in HDAC2 resulted in the 

improvement of the same functions, thus demonstrating a crucial modulating activity of HDAC2 

in synaptic plasticity, learning and memory.257 Regarding HDAC6, several studies revealed its 

implication in neurodegenerative diseases.258 Brains of AD patients expressed a higher level of 

HDAC6, and the tau protein was found to bind to HDAC6 both in vitro and in human brain 

tissues.259 This protein also acts as an HDAC6 inhibitor,260 and treatment with more potent 

HDACi resulted in a lower level of tau phosphorylation which may decrease neurofibrillary tangle 

formation in AD.261 Besides, AD displays deregulation of mitochondrial transport, and HDA6 has 

been shown to play a crucial role in its mediation through an association with glycogen synthase 

kinase-3b GSK3b.262 

Treatment with HDACi has been shown to improve contextual memory in a mouse model and 

inhibited the production of A in cells.263 HDACi treatment have demonstrated beneficial effects 

upon AD pathology and memory performance with no signs of toxicity in AD transgenic mouse 

models.264–267 Increased synaptic plasticity, improved learning and memory, attenuation of spatial 
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memory deficits, and repressed apoptosis in stressed neuronal systems all resulted from the 

restoration of acetylation of histone H4 and the clearance of A accumulation after HDACi 

treatment,85,265,268,269 Moreover, inhibition of HDAC6, by treatment with selective HDAC6 

inhibitors or siRNA, was shown to promote neurite extension or protect neurons from oxidative 

stress.259,270  

However, as we mentioned earlier, HDACi have cell-specific effects and are well-known for their 

potential to induce cell death and cell-cycle arrest in cancer cells, but similar effects have been 

observed in neuronal cells.271  

As a result, the development of more selective or isoform-specific inhibitors could be a crucial 

requirement for the treatment of AD. 

Parkinson’s disease  

Parkinson’s disease (PD) is one of the most devastating neurodegenerative diseases. The two 

typical hallmarks of PD are a progressive loss of dopaminergic neurons from the substantia nigra 

pars compacta (SNpc), and the presence of aggregates of α-synuclein (-Syn), called Lewy 

bodies, that are expressed in many regions of the central and peripheral nervous systems.95 

Although the exact mechanisms of neurodegeneration are not fully elucidated yet, the abnormal 

level of Lewy bodies in PD, as well as the misfolding and oligomerization of -Syn, were shown 

to be key contributing factors to the development of PD.272–274 

It has been demonstrated that HDAC6 is localized in brain sections of PD patients and regulates 

the formation of aggregates in the response of misfolded protein stress.97  

In cell culture, HDAC6 activated the formation of aggresomes containing the polyubiquitinated 

mutant DJ-1, a protein involved in the early stages of PD.275 Furthermore, HDAC6 also improved 

the transport of DJ-1 to the microtubule organizing centre (MTOC).275  

Several studies have shown that HDACi treatment of cellular models displayed neuroprotective 

effects.276 Besides, class IIa selective HDACi were reported to promote the growth of neural 

processes and protect both dopaminergic and sympathetic neurons from MPP+-induced 

cytotoxicity.277 

Summary 

In addition to their potential as anticancer agents, HDAC inhibitors could be at the forefront in 

the development of new therapies for neurodegenerative diseases (ND). Most ND remain 

incurables, and several clinical trials have experienced a gruesome fate. As an illustration, 244 

compounds entered a clinical trial in the Alzheimer’s disease pipeline between 2002 and 2012, 
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and analysis revealed a failure rate of 99.6%.278 HDAC inhibition represents a new approach for 

ND, and has shown promising results for the treatment of Huntington’s disease, Parkinson’s 

disease and Alzheimer’s disease. Furthermore, HDAC has also been linked to other ND such as 

amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), ischemic stroke, 

Friedreich’s ataxia (FRDA), and fragile X syndrome (FXS).95,279 However, some side effects were 

also observed with pan-inhibitors, so the development of more selective or isoform-specific 

inhibitors are therefore required.  

 Conclusion 

HDAC inhibitors have been extensively studied in cancer and neuropathology, and their 

therapeutic potential has been well established. Nevertheless, over the last few years, a broader 

scope of pathology has been investigated. Among others, HDAC inhibitors have been studied in 

diabetes,280 obesity,281 cardiac hypertrophy,282 autism,283 alcohol use disorder,284,285 and a range of 

fibrosis.286–288  

In this respect, the use of HDACi is a highly promising therapeutic strategy, and the key to the 

use of HDACi as therapeutic tools lie in the development of isoform-specific inhibitors to 

investigate further the roles of HDAC isoforms in the pathology of diseases.  

2.2.ii Therapeutic applications targeting non-human HDACs 

While research on HDACs was mainly focused on the human enzymes, HDAC are also expressed 

in other species. Although mutations are observed between human and non-human HDACs, they 

also present a significant rate of homology which can vary with species. Besides, those HDAC 

orthologues can show similarities in function and can be used as a model, as we mentioned earlier 

with the Drosophila flies.  

As we saw, HDACs are involved in a wide range of biological processes and the disruption of 

their level of expression profoundly affect the cells, leading to the development of important 

diseases. As a result, the idea arose to use epigenetic modulators as a therapy against parasitic 

diseases to disrupt the epigenetic machinery of the parasites. 

 A-ParaDDisE project 

Following up with this idea, a collaborative project called A-ParaDDisE, for Anti-Parasitic Drug 

Discovery in Epigenetics, was funded by the European Union. This collaboration involved 

international universities and research centres from Australia, Brazil, France, Germany, Italy, 

Sweden, and the UK. It aimed to investigate the therapeutic potential of epigenetic modulators 

against several Neglected Tropical Diseases (NTDs) in particular, malaria, Chagas disease, 

leishmaniasis and schistosomiasis.  
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These diseases, mainly affecting the population of developing countries, infect over one billion 

people altogether, cause hundreds of thousand deaths every year and represent a major economic 

burden. Besides, treatments for all these diseases face drug resistance due to the lack of alternative 

drugs. Prolonged dosing schedules and low drug availability are further issues of the current 

therapies. The development of new drugs is, therefore, a priority. 

The strategy of this collaboration was to target enzymes and proteins in the different parasites. 

More specifically those involved in the modification of histones via acetylation/deacetylation and 

methylation/demethylation.  

The project was structured around several units, each dedicated to a specific aspect of the drug 

discovery pipeline and the high complementarity between the different research groups allowed 

going through the complete process of the development (Figure 2.17). The various stages included 

the identification of histone modifying enzyme in the parasites and their characterization as 

potential targets, the production of recombinant proteins of the selected targets, the development 

of related biological assays, the generation of crystal structure and X-ray analysis to enable 

modelling and virtual screening, the set-up of high-throughput screening, the synthesis of 

optimized modulators, and finally the realisation of in vitro and in vivo pharmacological and 

toxicological studies. 

 

Figure 2.17: Organization chart of the A-ParaDDisE project.  
Research groups were affiliated with different units of specific functions.  

Taken from A-ParaDDise website.289  

 Plasmodium HDACs 

Malaria is a mosquito-borne infectious disease caused by six Plasmodium species. To date, it 

represents one of the most critical diseases with an estimated 216 million cases of malaria in 2016 

and 445 000 casualties.290 The prevention and the treatment mainly focus on mosquito control 
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and chemotherapy but Plasmodium falciparum, the principal malarial protozoan parasite, has 

become increasingly resistant to chloroquine (CQ) and artemisinin, the best drugs available.291,292 

In Plasmodium falciparum, five genes were identified to encode HDACs. Two genes (PfSir2A 

and PfSir2B) were class III human HDAC orthologues while the other three encoded proteins 

similar to human class I (PfHDAC1) or class II (PfHDAC2 and PfHDAC3) HDACs.293–295 Like 

its human homologue, PfHDAC1 is localized in the nucleus, and a study of its level of expression 

at several stages of development revealed that PfHDAC1 is functionally essential for the parasite 

in both mosquito vector and human host.296 The functional roles of PfHDAC1 have not been fully 

elucidated, but treatment with HDACi affected the parasite’s survival. HDACi caused altered 

histone acetylation pattern in Plasmodium falciparum and inhibited P. falciparum growth in 

erythrocytes at both the early and late stages of the parasite’s life cycle.297,298 In addition, 

PfHDAC2 was reported to be a global silencer of virulence gene expression and to play a role in 

P. falciparum transcriptional controls by regulating the frequency of switching from the asexual 

cycle to sexual development.294 

As a consequence, HDACs represent interesting targets in Plasmodium falciparum, and the 

development of potent and selective inhibitors is investigated as therapeutic agents.298–300
 

 Leishmanial HDACs 

Leishmaniasis is an infectious disease caused by 20 species of Leishmania and is transmitted by 

sandfly bites. The prevalence of the disease is difficult to determine but the WHO estimates that 

4 to 12 million people are currently affected while 200 million people live in areas where the 

disease is common. Moreover, about 2 million new cases and 25000 deaths occur every year.301,302 

In Leishmania, four class I/II HDACs orthologues were identified as well as three genes encoding 

for the SIRT class of deacetylases.293 As with Plasmodium, the functional roles of class I/II 

HDACs in Leishmania donovani have not been fully elucidated, but a transient up-regulation was 

observed during the promastigote-to-amastigote differentiation.303 

Over the past few years, several HDACi have been tested in vitro and in vivo against the 

Leishmania parasite to evaluate the therapeutic potential.304–306 Treatment with HDACi was 

shown to affect the parasite survival. Besides, in order to assess the role of class I and class II 

HDACs, L. donovani amastigote and promastigote forms were treated with selective human 

HDAC6 and selective hHDAC8 inhibitors.306 In promastigotes, lower cytotoxicity was observed 

after treatment with hDAC8 inhibitors than with hHDAC6 inhibitors. In amastigotes, the 

cytotoxic activity of the hHDAC6-selective inhibitors was found to be 2-fold lower than that of 

its effect on the promastigote stage while hHDAC8-selective inhibitors had no cytotoxic effect.306 
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These results suggest that the antileishmanial activity observed after treatment with HDACi is 

mainly due to the inhibition of the HDAC6-like activity of L. donovani, especially in the 

amastigote form. Targeting the protozoan HDAC6 with isoform-selective inhibitors could, 

therefore, represent a therapeutic strategy for leishmaniasis.  

 Trypanosoma HDACS 

Trypanosoma brucei is the parasite responsible for African Trypanosoma, also known as sleeping 

sickness, and is transmitted by an insect vector belonging to different species of tsetse fly. The 

disease is present in sub-Saharan Africa with a population of 70 million in the high-risk region 

and, in 2015, it was estimated that about 11000 people were infected with 2500 new cases of 

infections.301 Besides, the diseases cause 3500 deaths yearly. 

T.brucei possesses four HDAC orthologues (TbDAC1-4), of which two share similar sequence 

identity with human class I HDAC (TbDAC1 and TbDAC2), while the other two have higher 

homology with class II HDAC (TbDAC3 and TbDAC4).293,307,308 In addition, both TbDAC2 and 

TbDAC4 have been reported to be localized in the cytoplasm and appear not to be required for 

viability, while TbDAC1 and TbDAC3 are nucleus-localized and play a critical role for the 

parasite survival.307  

Following host infection, T. brucei evades the mammalian host’s immune response by 

periodically changing its variant surface glycoprotein (VSG) coat.309 It was then reported that 

TbDAC1 antagonizes telomeric silencing in bloodstream-form cells, and that TbDAC3 is required 

for VSG silencing in both bloodstream and insect-stage cells.310 

The use of antitrypanosomal HDAC inhibitors has not been extensively studied yet, but treatment 

with four HDACi, clinically approved for the treatment of cancer, was shown to have an 

antitrypanosomal effect on the bloodstream form of T. brucei.311 However, those compounds 

induced higher cytotoxicity on mammalian cells than on the parasites. Those results were also 

observed with other class of HDACi, with potent cytotoxicity on T. brucei but a lack of selectivity 

which could induce severe side effects.312,313 Those results suggest that HDACi-based therapies 

represent an attractive strategy against Trypanosoma, but more selective compounds have to be 

developed. To this end, further studies are required to identify specificities of the TbDACs 

structures that could be exploited. 

T.cruzi is another species of Trypanosoma and is responsible for the American Trypanosoma, also 

called Chagas disease. This infectious disease affects 6.6 million people in Central America and 

South America and is guilty for 8000 deaths every year.301 The genome of T. cruzi has been 

successfully sequenced,314 and four HDAC orthologues have been identified. However, little has 
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been done to investigate the modulation of HMEs in T. cruzi. This represented an essential 

objective of the A-ParaDDisE project. In gene knockout studies, TcDAC1 and TcDAC2 were 

found to be critical to the parasite survival.315 The consortium evaluated TcDAC2 as a priority 

therapeutic target. Consequently, the enzyme has been produced in quantity and in an 

enzymatically active form. An HTS-compatible assay has been developed, and diffracting crystals 

have been produced.315 However, no potent inhibitors of TcDAC2 have been reported so far. 

Therefore, the development of TcDAC2i is a challenging new field of study that could pave the 

way to a new therapeutic strategy for the Chagas disease.  

 Schistosoma HDACs 

Schistosomiasis, also called bilharzia, is an acute and parasitic disease caused by several species 

of parasitic worms Schistosoma. Member of the NTDs, schistosomiasis is the most devastating 

parasitic disease after malaria with over 250 million people infected worldwide and a number of 

people in need of preventive chemotherapy globally estimated at 208 million, of which 112 

million are school-aged children.301 

The infection was reported in 78 countries and is endemic in 52 of them with a moderate to high 

risk of transmission. In particular, the parasite is widespread in poor countries of tropical and sub-

tropical areas.  

The process of transmission and the life cycle of the Schistosoma has been fully established 

(Figure 2.18).316 Eggs of the parasite are found in contaminated water sources of infected areas. 

Hatching releases miracidia, the primary form of the parasite, which infects an intermediate host. 

Inside, miracidia evolve through successive generation to produce a larval form called cercariae. 

This new form is able to survive without the host and is released in the water. Cercariae represent 

the infective form of the parasite toward humans. In these regions with limited resources, river 

and lake have considerable importance, and people frequently use them to swim, fish or as 

drinking sources. Upon contact with the human, cercariae are able to penetrate the human skin 

and infect healthy people. During the penetration, cercariae lose their tails to become 

schistosomula. This new form can then migrate via the blood system and reach the intestine or 

the liver. There, schistosomula mature to give birth to adult worms, which are unable to relocate 

in blood vessels and, therefore, are trapped in the organ's tissues. Over their 3 to 30 years lifespan, 

mature worms mate and produce eggs. A part of them penetrates blood vessels and is passed out 

of the body in the faeces or urine, regenerating the cycle. However, the adult worms and the rest 

of the eggs remain trapped inside the different tissues, causing immune reactions and damages to 

organs. 
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Figure 2.18: Life cycle of the Schistosoma.  

Taken from King.316 

The WHO strategy to control the expansion of the disease mainly focus on preventive 

chemotherapy of the at-risk population and the improvement of the access to safe water sources.317  

This strategy rests on the massive use of praziquantel (Figure 2.19), a safe and low-cost treatment. 

This drug is effective at single-dose against all forms of schistosomiasis and is used for an early 

and late stage of the infection. Therefore, it is registered on the WHO Model List of Essential 

Medicines.  

 

Figure 2.19: Structure of Praziquantel 

However, a significant limitation of this strategy is the limited availability of the drug. According 

to WHO, only 13% of people requiring treatment were reached globally in 2013.317 Moreover, 

although the treatment with praziquantel is efficient, it does not prevent reinfection and constant 

access to the drug is therefore required in high-risk areas. 
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In addition, one of the biggest problems is the lack of alternative drugs. Indeed, praziquantel is 

the only treatment available, and after decades of use some resistance emerged in different areas 

of the world.318–320   

With such a critical prevalence and incidence, coupled to the low availability of the drug, the 

spreading of the praziquantel-resistant parasite would have a dramatic effect and could annihilate 

decades of progress in the control of the disease. Therefore, the need for new drug targets and the 

development of new therapies is crucial. 

Schistosomiasis was a primary target of the A-ParaDDisE consortium. Several class I HDAC 

orthologues were isolated in the Schistosoma mansoni species and were identified as SmHDAC1, 

SmHDAC3 and SmHDA8.321 Furthermore, the authors quantified the level of expression of these 

SmHDAC at every stage of life (Figure 2.20A). Those three SmHDAC were expressed at every 

stage of life, but the level of expression was dependent on the form of the parasite. In particular, 

their level of expression was significantly higher in miracidia, the form resulting from egg 

hatching. Moreover, the comparison of their relative expression revealed that SmHDAC8 was the 

most expressed SmHDAC at every stage of life (Figure 2.20B). These results suggested that 

SmHDAC8 could have a vital role in the parasite and, therefore, its inhibition could have 

interesting antischistosomal effects.  

 

Figure 2.20: Quantification of transcripts of SmHDAC1, 3 and 8 at different S. mansoni 
life-cycle stages. 

(A) SmHDAC1, SmHDAC3 and SmHDAC8 mRNA were measured by quantitative real-time PCR. S. 

mansoni -tubulin was used as a reference gene. Results are expressed as the 2-Ct ratio compared 
to the expression in male worms taken arbitrarily as the baseline. (B) Relative expression of 
SmHDAC8 compared respectively to SmHDAC1 (black bars) and SmHDAC3 (grey bars). Taken from 

Oger et al.321 



   

 

75 

 

 

Following up, another study was designed to evaluate the importance of SmHDAC8 in the 

development of the parasite.322 Using RNA interference, the transcription level of SmHDAC8 

was downregulated by 50% in schistosomula and no effect on the integrity, mortality, and motility 

was observed. The natural level of expression of SmHDAC8 in schistosomula being significantly 

lower than in other life forms, the impact of the downregulation was expected to be stronger on 

adult worms. Consequently, the mutated schistosomula were used to infect mice. After 35 days, 

mice infected with SmHDAC8 knocked-down parasites showed an overall 50% reduction in the 

number of recovered adult worms compared to control in three independent experiments (Figure 

2.21A). In addition, the tissue egg burden was reduced by 45%, again compared to the control 

(Figure 2.21B). These experiments confirmed that SmHDAC8 is required for infection of the 

definitive host and plays a significant role in parasite homeostasis.  

 

Figure 2.21: Infection of mice with SmHDAC8 knocked-down parasites for 35 days. 
(A) Average number of worms is decreased by 50%. (B) The number of recovered eggs from the 

livers of infected mice is decreased. Taken from Marek et al.322 

As a result of these studies, SmHDAC8 inhibition was shown to have a high impact, and the 

development of potent SmHDAC8 inhibitors could offer a new strategy for the development of a 

therapeutic agent against schistosomiasis.   

One of the earliest studies of HDACi efficacy revealed that treatment with non-selective HDACi 

inhibited the class I SmHDAC in every form of the life-cycle.323 In addition, HDACi were shown 

to induce a dose-dependent increase of mortality in schistosomula via an apoptosis mechanism.323 

Similar results were observed using other HDACi.324,325 Interestingly, treatment with HDACi 

shows important toxicity against schistosomula while praziquantel is mainly potent on adult 
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worms.326 Therefore, therapies based on HDACi could be a great alternative to praziquantel in the 

early stages of the infection and for preventive treatment.   

However, there are several challenges to overcome in order to develop drugs based on SmHDAC 

inhibition. Indeed, if the use of HDACi was shown to be effective, those inhibitors were usually 

more active on hHDAC than on the parasite.322–325 Such inhibitors present a risk of cross-reactivity 

which could cause off-target effects. In order to minimize these potential side-effects, specific 

SmHDAC inhibitors have to be developed. 

To this end, the crystal structure of SmHDAC8 was solved and analysed to find differences with 

the hHDACs that could be exploited to afford selectivity.322 It is important to note that, although 

the enzyme was crystalized without inhibitors, analysis of the structure revealed an L-tartrate 

molecule provided by the crystallization buffer, which was bound in the SmHDAC8 active site 

where it coordinated the catalytic zinc ion. 

Comparison of the active sites of hHDAC8 and SmHDAC8 highlighted several significant 

differences (Figure 2.22).322  

First, the M274 of the human enzyme is replaced by H292 in SmHDAC8. This modification 

diminishes the hydrophobic character of the pocket that usually accommodates the aliphatic chain 

of the acetylated lysine.  

Secondly, a change in conformation was observed between the SmHDAC8 Y341 and the 

hHDAC8 Y306. Indeed, the hydroxyl group of Y306 is turned towards the zinc ion, where it 

interacts with the warhead of the inhibitors. On the other hand, Y341 side chain points towards 

the rim of the catalytic pocket. 

The third and most exciting difference is the conformation of the SmHDAC8 F151 compared to 

the hHDAC8 F152. In the parasite enzyme, F151 is turned away from the catalytic pocket and is 

inserted into a smaller hydrophobic pocket formed by loops that surround the active site. On the 

other hand, F152 is turned towards the active site, adopting a flipped-in conformation in all 

inhibitor- and substrate-bound hHDAC8 structures reported in the Protein Data Bank (PDB). 

Moreover, careful inspection of the hHDAC8 structure revealed that F152 could not adopt a 

flipped-out conformation because of the presence of the L31 side chain that is locked in this 

conformation by the surrounding residues.  
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Figure 2.22: Ribbon representation of the active sites of (A) SmHDAC8 in complex L-
tartrate from the buffer, (B) hHDAC8 (PDB 1T67).  

Adapted from Marek et al.322 

Interestingly, this phenylalanine is conserved in every hHDAC, and an investigation of the 

available crystallized enzyme structures revealed that, due to surrounding amino acid residues, 

the flipped-in conformation is also conserved (Figure 2.23).322  

 

Figure 2.23: Ribbon representation of the active sites of (C) hHDAC3 (PDB 4A69) (D) 
hHDAC7 (PDB 3COY).  

Adapted from Marek et al.322  
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Finally, hDAC8 and SmHDAC8 were co-crystallized in complex with two non-selective 

inhibitors to observe the impact of the structural differences on the binding.322
 

In complexes with SAHA, the conformation of the phenylalanine was conserved in both enzymes. 

As expected, the differences in conformation affected the rim of the enzymes and induced 

modification of the binding (Figure 2.24A and B). 

Unexpectedly, in the case of the inhibitor M344, both HDAC8 displayed a flipped-in 

conformation (Figure 2.24C and D). In hHDAC8, the binding was similar to that of vorinostat. 

On the other hand, in SmHDAC8 the inhibitors adopted a completely different binding. However, 

despite the flipped-in conformation, the binding of M344 with both enzymes was not comparable. 

These findings clearly demonstrate that SmHDAC8 F151 is flexible and can adopt both flipped-

out and flipped-in conformations. This is likely due to the presence of the amide group on M344, 

which can interact with D100 through hydrogen bonding. Therefore, F151 could adopt the most 

suitable conformation in order to optimize the bonding.  

 

Figure 2.24: Close-up view of the active sites of the (A) SmHDAC8/SAHA, (B) 
hHDAC8/SAHA (PDB 1T69), (C) SmHDAC8/M344, (D) hHDAC8/M344 (PDB 1T67)  

Complexes are shown as ribbon and sticks (i), surface view (ii), and side cut surface view (iii). 

Taken from Marek et al.322 

In conclusion, inhibition of SmHDAC8 is a potent target for the development of antischistosomal 

activity, but selective inhibitors are likely to be required to avoid side-effects. Structural 
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differences between the catalytic site of SmHDAC8 and those of hHDACs have been identified. 

In particular, the phenylalanine flipped-in/flipped-out conformation difference modifies the shape 

of the enzyme rim and highly affect the binding of inhibitors.  The development of inhibitors 

specifically targeting those differences could, therefore, be the key to future therapies.  

2.3 HDAC inhibitors 

Following the approval by FDA of some HDACi in mid-2000, the development of new classes 

has experienced steady growth over the last decade. Based on the structure of the natural substrate 

and these first inhibitors, a pharmacophore containing three elements was established (Figure 

2.25).  

 

Figure 2.25: Typical HDACi pharmacophore. 

First, the zinc-binding group (ZBG) is a polar functional group that form monodentate or bidentate 

coordination to the zinc cation. The second element is the linker that substitutes the lysine side 

chain of the natural substrate. The linker has to accommodate the narrow channel of the enzyme 

and is usually a linear moiety. The last part is the cap that is localized at the rim of the protein and 

is involved in side interactions with the enzyme. 

Over the years, a variety of structure has been synthesized. Several functional groups were found 

to be potent ZBG, and important diversity of cap group was explored to develop selective HDACi.   

2.3.i Hydroxamic acid HDAC inhibitors 

The first hydroxamic acid-based HDACi reported was the natural product trichostatin A 2-60 

(Figure 2.26).327 A few years later, suberoylanilide hydroxamic acid (SAHA, 2-61) was also 

reported as a potent non-selective HDACi.101,102 SAHA later became the first HDAC inhibitor to 

enter clinical trials under the name of vorinostat and received FDA approval for the treatment of 

cutaneous T-cell lymphoma.328. 

 

Figure 2.26: Structure of trichostatin A (2-60) and SAHA (2-61). 
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The strong affinity for metal ions coupled to the success of vorinostat has made hydroxamic acid 

a favourite choice of ZBG in the development of HDACi. Afterwards, several inhibitors derived 

from vorinostat were developed and joined clinical trials. In particular, belinostat (BelodaqTM, 2-

62) and panobinostat (FarydakTM, 2-63) were successful candidates (Figure 2.27).329,330  

 

Figure 2.27: Structure of belinostat (2-62) and panobinostat (2-63). 

These drugs are pan-inhibitors and potently inhibit class I HDAC, with the exception of HDAC8, 

class IIb and class IV HDAC (Table 2.13). However, they display no inhibition activity on 

HDAC4 and HDAC7.  

It is worth noting that differences in assay methodology and enzyme preparation are frequent in 

HDAc inhibition. Therefore, the absolute IC50 values of HDAC inhibitors should not be directly 

compared between publications. 

Class Isoform 
Vorinostat 

IC50 (nM) 

Belinostat IC50 

(nM) 

Panobinostat IC50 

(nM) 

Class I 

HDAC1 76 18 3 

HDAC2 360 34 13 

HDAC3 58 21 2 

HDAC8 >1000 160 280 

Class IIa 

HDAC4 >1000 >1000 200 

HDAC5 160 76 8 

HDAC7 >1000 600 530 

HDAC9 78 44 6 

Class IIb 
HDAC6 27 15 11 

HDAC10 88 31 2 

Class IV HDAC11 110 44 3 

Table 2.13: The IC50 values of approved HDAC inhibitors against individual isoforms.330 

Notably, those second-generation of inhibitors both displayed a cinnamoyl group on the linker 

that can also be found in two other clinical candidates, pracinostat (2-64) and resminostat (2-

65).331,332 Besides cinnamoyl linker, several rigid linkers were investigated, and some inhibitors 
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became clinical candidates (Figure 2.28). For example, a benzyl was used in givinostat (2-66),333 

and abexinostat (2-67),334while a pyrimidine linker is employed in quisinostat (2-68),335 and CHR-

3996 (2-69).336   

 

Figure 2.28: Structure of clinical candidate with rigid linkers. 

Some of these compounds were shown to be highly potent against the different HDACs and 

displayed some selectivity (Table 2.13).  
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Class Isoform 
2-64        

IC50 (nM) 

2-68           

IC50 (nM) 

2-69                

IC50 (nM) 

Class I 

HDAC1 49 0.1 3 

HDAC2 96 0.3 4 

HDAC3 43 4.9 7 

HDAC8 140 4.3 ND 

Class IIa 

HDAC4 56 0.6 ND 

HDAC5 47 3.7 200 

HDAC7 137 119 ND 

HDAC9 70 32.1 ND 

Class IIb 
HDAC6 >1000 76.8 2100 

HDAC10 40 0.5 ND 

Class IV HDAC11 93 0.4 ND 

Figure 2.29: IC50 values of HDAC inhibitors 2-64, 2-68 and 2-69 against individual 
isoforms.331,335,336 

Although those clinical candidates are promising compounds, current research is focusing on the 

development of more selective inhibitors.  

One fundamental approach toward hydroxamic acid HDAC6-selective inhibitors was the 

introduction of new cap groups such as tricyclic carbazole, pyrrolidinone, or benzimidazole 

(Figure 2.30). Tubastatin A (2-70), was developed via structure-based design and homology 

modelling. Tubastatin A displayed HDAC6 inhibitory activity and 50 to 2000-fold selectivity 

versus other HDAC isoforms.337 The selectivity was further increased in a second-generation by 

the same group.338 Inhibitors derived from a tricycle poly hydro acridine (2-71) were reported to 

have a nanomolar activity on HDAC6 and a 100-fold selectivity against all the other HDACs.339 

A novel class of 3-aminopyrrolidinone-based hydroxamic acid (2-72) inhibitors was reported to 

have a nanomolar IC50 on HDAC6, a 10-fold selectivity against HDAC8 and over 4000-fold 

against HDAC1–3 isoforms.340 Besides, scientists from Dana-Farber Cancer Institute reported a 

series of new selective HDAC6 inhibitors based on substituted benzimidazole heterocycles (2-

73) with inhibitory activity in picomolar concentration range against HDAC6 and micromolar 

activity against other HDACs.341 Selective HDAC6 inhibition was also achieved with 

cycloheptane-fused tetrahydrobenzothiazepines (2-74) with a 100-fold selectivity against 

HDAC8 and up to 1000-fold on other HDACS.342 
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Figure 2.30: Examples of HDAC6 selective hydroxamic acid inhibitors. 

Drug discovery efforts, directed toward hydroxamic acid derivatives able to interact with the 

unique subpocket of HDAC8, resulted in resulted in the discovery of indole derivative PCI-34051 

(2-75).343 This compound was reported to inhibit HDAC8 with a Ki value of 10 nM and 200-fold 

selectivity over HDAC1–3, 6, and 10. Selective HDAC8 inhibitors could be produced using click 

chemistry (2-76) and resulted in an HDAC8 inhibition activity in the nanomolar range, a 35-fold 

selectivity against HDAC6 and over 500-fold selectivity against HDAC1/2/4.344 Recently, a 

significant advancement in the development of potent and selective HDAC8 inhibitors was 

reported. Triazolyl-benzohydroxamic acid compound 2-77 was reported to inhibit HDAC8 with 

a subnanomolar IC50, over 1000-fold selectivity over HDAC6 and significantly greater selectivity 

for all other HDACs.345 To date, this compound is both the most potent and most selective 

HDAC8 inhibitor reported. 

 

Figure 2.31: Examples of HDAC8 selective hydroxamic acid inhibitors. 
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Hydroxamic acids have proved to be a major ZBG for the development of HDACi, and both 

potent and selective inhibitors based on hydroxamic acids have been synthesised.  

However, hydroxamic acids also have limitations. In particular, use of hydroxamic acid 

precipitates drug clearance through glucuronidation, and can also form mutagenic metabolites via 

Lossen-type rearrangements.346 As a result, alternative ZBG have also been investigated. 

2.3.ii Benzamide  

Beside hydroxamic acids, benzamide is also able to coordinate in a bidentate fashion to the zinc 

cation through the amine and the carbonyl oxygen. Several HDAC inhibitors using benzamide as 

ZBG also became successful candidates (Figure 2.32). Two examples in clinical development are 

entinostat (2-78), which was in Phase I clinical trials for the treatment of metastatic 

melanoma,347,348 and mocetinostat (2-79) in clinical trials for the treatment of myelogenous 

leukaemia and advanced solid tumours .349–351 In addition, an example containing a pyridine 

capping group and an N-(2-amino-fluorophenyl)-benzamide unit had remarkable results and 

advanced to clinical trial. Indeed, tucidinostat (2-80, EpidazaTM), was approved in China for the 

treatment of relapsed or refractory peripheral T-cell lymphoma.352 It also displays anticancer 

activity in colon, lung, breast, pancreatic and liver solid tumour cells, and in myeloid leukaemia 

cells.353,354 
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Figure 2.32: Examples of benzamide HDAC inhibitors. 

These clinical candidates benzamide are primarily class I HDAC isoform selective (Table 2.14). 

However, it is important to note that HDAC8 is usually poorly inhibited. The lack of inhibition 

of HDAC8 is attributed to structural differences at the bottom of the active site tunnel and in 

particular, the substitution of leucine residue by tryptophan in HDAC8 which prevents the binding 

of the bulky 2-aminoanilide moiety.103,355  Furthermore, class II HDACs are characterised by a 

restricted space of the corresponding region at the bottom of the active site, which also prevents 

the binding of the bulky ZBG.103 

Besides, by taking advantage of the structural differences between the class I HDAC isoforms, 

more selective compounds could be produced with 2-81 being a selective inhibitor of HDAC1 

and HDAC2.356 Conversely, analogue 2-82 displays high activity on HDAC3 but low potency on 

the other class I HDACs.357 
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Class Isoform 
Entinostat        

IC50 (nM) 

Tucidinostat           

IC50 (nM) 

2-81                

IC50 (nM) 

2-82                

IC50 (nM) 

Class I 

HDAC1 260 100 10 5800 

HDAC2 310 160 72 7900 

HDAC3 500 70 6180 170 

HDAC8 >1000 730 >20000 ND 

Class IIa 

HDAC4 >1000 >1000 >50000 ND 

HDAC5 >1000 >1000 >50000 ND 

HDAC7 >1000 >1000 >50000 ND 

HDAC9 >1000 >1000 ND ND 

Class IIb 
HDAC6 >1000 >1000 >50000 ND 

HDAC10 250 80 ND ND 

Class IV HDAC11 650 430 ND ND 

Table 2.14: IC50 values of benzamide HDAC inhibitors against individual isoforms.354,356,357 

2.3.iii Mercaptoacetamides and -mercaptoketone 

Kozikowski and coworkers looked for alternative functional groups that could display similarities 

with the hydroxamic acids. They identified mercaptoacetamide as a suitable ZBG and synthesised 

a series of compounds derived from vorinostat, such as 2-83, which presented HDAC inhibition 

activity in a submicromolar range of concentration (Figure 2.33).358 This compound was shown 

to be mainly potent on HDAC6 with a 34-fold selectivity against HDAC1 and over 60-fold 

selectivity against HDAC2, HDAC8 and HDAC10 (Table 2.15).359 The second generation of 

inhibitors was synthesised by introducing an isoxazole as a capping group and reversing the 

amide.360 Compound 2-84 was shown to selectively inhibit HDAC6 with a nanomolar activity 

and over 22-fold selectivity against HDAC1, HDAC2, HDAC3, HDAC4 and HDAC5. Besides, 

the authors also investigated the impact of chiral mercaptoacetamides. Introduction of a methyl 

led to two enantiomers 2-85. This chiral centre was shown to have a high impact on the inhibition 

profile as (S)-2-85 was mostly inactive on every HDAC while the enantiomer (R)-2-85 retained 

its activity on HDAC6 but with much higher selectivity. Interestingly, introducing two methyls 

led to inactive compounds. Using a similar approach, the -mercaptoketone vorinostat analogue 

2-86 was synthesised and was more active in HDAC inhibition compared to vorinostat.361 
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Figure 2.33: Examples of mercaptoacetamide and -mercaptoketone HDAC inhibitors. 

Class Isoform 
2-83        

IC50 (nM) 

2-84           

IC50 (nM) 

(S)-2-85                

IC50 (nM) 

(R)-2-85                

IC50 (nM) 

Class I 

HDAC1 3220 5700 >30000 >30000 

HDAC2 7380 28000 >30000 >30000 

HDAC3 ND 14000 6180 15000 

HDAC8 6120 ND ND ND 

Class IIa 
HDAC4 ND 10000 >30000 >30000 

HDAC5 ND 15000 >30000 >30000 

Class IIb 
HDAC6 95 260 >30000 280 

HDAC10 10700 ND ND ND 

Table 2.15: IC50 values of mercaptoacetamide HDAC inhibitors against individual 
isoforms.359,360 

2.3.iv Cyclic-peptide analogues 

Cyclic peptide moieties are the most complex capping groups of all HDAC inhibitors. In 1998, 

the natural product FK228 (2-87), a bicyclic depsipeptide isolated from the bacteria 

Chromobacterium violaceum,  was identified by Yoshida and coworkers as an HDAC inhibitor 

(Figure 2.34).362 Over the last decade, several other bacterial natural product such as largazole (2-

88) and thailandepsin A (2-89) were discovered and identified as HDACi.363–365  

Although these compounds don’t have apparent ZBG, Yoshida et al. showed that the zinc 

coordination resulted from the disulfide bridge reduction, releasing a thiol sidechain that can 

interact with the metal.366 This rather weak ZBG benefits from a sizeable macrocyclic cap that 

offer better binding to the enzyme surface than the phenyl ring present in hydroxamic acid 

inhibitors such as vorinostat.367 Those natural products are a highly potent class I HDAC 
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inhibitors and moderate HDAC6 inhibitors. FK228 was later approved for the treatment of 

cutaneous T-cell lymphoma as romidepsin (IstodaxTM).368 

 

 

Figure 2.34: Examples of depsipeptide natural product HDAC inhibitors. 
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Class Isoform 
Romidepsin        

IC50 (nM) 

Largazole           

IC50 (nM) 

Thailandepsin A                

IC50 (nM) 

Class I 

HDAC1 0.8 0.4 14 

HDAC2 1.0 0.9 3.5 

HDAC3 1.3 0.7 4.8 

HDAC8 26 100 >1000 

Class IIa 

HDAC4 470 >1000 >1000 

HDAC5 >1000 >1000 ND 

HDAC7 >1000 >1000 >1000 

HDAC9 >1000 >1000 >1000 

Class IIb 
HDAC6 330 42 380 

HDAC10 0.9 0.5 ND 

Class IV HDAC11 0.3 >1000 ND 

Table 2.16: IC50 values of the active forms of depsipeptide HDAC inhibitors against 
individual isoforms.367 

Following the successful total synthesis of largazole, numerous research groups reported 

derivatives with variations in potency and selectivity. Those analogues mainly explored the role 

of the amino side chains in the cyclic peptides. The 4-methylthiazoline residue has hydrophobic 

interactions with the side chains F150 of the HDAC1, and these interactions may be crucial for 

HDAC class I isoform selectivity of largazole.103 Therefore, several groups focused on the 

alteration of the methyl group of the 4-methylthiazoline moiety at the C7 position to increase 

these interactions. A series of new largazole derivatives with different substituents at the C7 

position was reported (2-90a-c) with low nanomolar inhibition activity on HDAC1.369 

Alternatively, the residue was replaced in a romidepsin-largazole hybrid (2-91),370 and in 

bipyridyl analogue (2-92).371 Finally, the ring was also expanded with the introduction of a -

alanine (2-93).372  

 



   

 

90 

 

 

 

Figure 2.35: Examples of synthetic depsipeptide HDAC inhibitors. 

2.3.v Multitarget compound 

Combination therapy, the use of multiple drugs to treat a single disease, is commonly used for the 

treatment of aggressive diseases such as cancer or AIDS. Nonetheless, the use of a single drug 

that modulates several targets might be therapeutically advantageous over the use of drugs in 

combination. Polypharmacology refers to the ability of drugs to interact simultaneously and 

specifically with multiple targets. In cancer research, the design and synthesis of new molecules 

that simultaneously modulate multiple oncogenic targets are of current interest.373  

Multitarget drugs offer several advantages compared to combination therapy with more 

predictable pharmacokinetic (PK) and pharmacodynamic (PD) relationship of the drug, lower 

toxicity, and greater efficacy against advanced-stage diseases.374 Besides, it can produce a better 

synergy as one motif might improve the bioavailability of the second entity, leading to the 

simultaneous presence of the chemical entities in multiple tissues.373 

HDAC inhibition activity is mainly due to the presence of strong ZBG, and the simple 

pharmacophore of HDACs was shown to tolerate a large variety of cap groups. As this region 

interacts with the enzyme surface, the idea emerged to use a second pharmacophore as cap group. 

https://en.wikipedia.org/wiki/Disease
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In other words, the introduction of an alkyl linker, bearing a potent ZBG, on a biologically active 

compound could potentially confer some additional HDAC inhibition effect to the molecule.  

This approach has gained significant interest over the last decades, and several multitarget drugs 

have been reported.373,375  

To begin with, the dual inhibition of protein kinases and HDACs has become the most popular 

choice for epigenetic multitarget drugs (Figure 2.36). Introduction of hydroxamic acid (2-94) or 

benzamide (2-95) on the approved ABL kinase inhibitor imatinib (2-96) successfully led to potent 

dual-target inhibitors. Both compounds were micromolar inhibitors of the ABL, PDGFR- and 

VEGF-R2 kinases. Besides, they featured antiproliferative activity HeLa and K562 cell lines in 

the micromolar range.376 Interestingly, no difference in activity was observed between the wild-

type ABL and the imatinib-resistant mutant T315I. Similarly, the substitution of an ether group 

on the approved kinase inhibitor erlotinib (2-97) by a heptanoic hydroxamic acid led to nanomolar 

inhibitors (2-98) of HDACs, EGFR and HER2.377 This compound became a promising Phase I 

clinical candidate against intermediate or high-risk head and neck squamous cell carcinoma.378 

Several series were then reported, both for hydroxamic acid and benzamide, with a more rigid 

linker,379 substitutions of the quinazoline,380 or attachment of the zinc binding group onto the aryl 

ring of erlotinib rather than the quinazoline moiety.381  

In addition to protein kinases, the dual inhibition of HDACs and phosphatidylinositol 3-kinase 

(PI3K) was also investigated. This led to the candidate CUDC-907 (2-99), a potent nanomolar 

dual HDAC and pan-PI3K inhibitor which was effective in cell lines and a tumour xenograft 

model.382 The compound is currently in phase I clinical trials for lymphoma and solid tumours. 
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Figure 2.36: Example of dual HDAC and kinase inhibitors.  
IC50 values are indicated.375 

In addition to these compounds, various dual inhibitors of HDACs and non-kinase enzymes have 

been synthesized (Figure 2.37).373,375 Compound 2-100 was developed as HDAC-inosine 

monophosphate dehydrogenase (IMDPH) dual inhibitor for the treatment of chronic myelogenous 

leukaemia.383 The statin inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase 

(HMGCR) lovastatin have a beneficial effect in cancer and, coupled with a hydroxamic acid, 

lovastatin derivative 2-101 inhibited both HDAC and HMGCR and was active in colitis-

associated colorectal cancer in a mouse model.384 Epigenetic response was also coupled to 

receptor ligand to bind to the nuclear vitamin D receptor (VDR) (2-102),385 or the retinoid X 

(RXR) (2-103).386 Finally, this approach can also be used for dual epigenetic targets like a dual 

active HDAC-bromodomain and extra-terminal (BET) inhibitor (2-104).387 



   

 

93 

 

 

 

Figure 2.37: Example of dual inhibitors of HDAC and non-kinase enzyme. 

IC50 values are indicated.375 

To sum up, the HDAC pharmacophore was shown to be highly versatile, and potent HDAC 

inhibition can be obtained as long as a strong ZBG and a linker are available. Multitarget drugs 

are promising and offer significant advantages over the more common combination therapy. To 

date, HDAC inhibition has been combined with the following targets: ABL, EGFR, HER2, JAK, 

PDGFR, P13K, PLK, PKC and VEGFR kinases; inosine-5’-monophosphate dehydrogenase; 

HMG-CoA reductase; phosphodiesterase type 5; DNA cross-linking; DNA alkylation; 

topoisomerase; vitamin D receptor; retinoid X receptor; estrogen receptor; tubulin; and RAS 

localization.375 In addition, it is possible to inhibit two epigenetic targets simultaneously by dual 

inhibition of HDACs and DNA methyltransferases, sirtuins, Jumonji C demethylases and 

bromodomains.375 Therefore, the multitarget approach has excellent and exciting future prospects 

for the development of more efficient drug with reduced side-effects.  
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2.4 SmHDAC8 inhibitors 

Over the last few years, and following the identification of SmHDAC8 as a potential target against 

schistosomiasis, several academic groups have investigated the development of selective 

inhibitors.  

As part of their study on the crystal structure of SmHDAC, Marek and coworkers also performed 

a virtual screening to search for inhibitor scaffolds that would fit into the enlarged catalytic pocket 

of SmHDAC8.322 They identified several linker-less aromatic hydroxamate derivatives, which 

fitted in the enzyme channel and had little interaction with the enzyme rim but where predicted 

to be highly potent inhibitors (Figure 2.38). Those compounds 2-105, 2-106 and 2-107 were then 

tested on SmHDA8 as well as on a panel of hHDACs. These novel inhibitors showed similar 

activity on SmHDAC8 as the two references, vorinostat and M344, with an IC50 of 2-4 µM.322 On 

hHDACs, those inhibitors were more selective than the reference compounds with a 3-7 fold 

selectivity against hHDAC1 and hHDAC3. However, they were not selective against hHDAC6 

and hHDAC8 and featured higher potency on these HDAC than on SmHDAC8. Although the 

selectivity remained a potential issue, those compounds were a significant improvement to the 

reference pan-HDACi. Besides, treatment of schistosomula with 2-107 was shown to induce 

100% mortality at 50 µM within 3 days and induced apoptosis even at 10 µM. Treatment of worm 

pairs caused a complete separation of male and female couples within 3 days at 50 µM and 5 days 

at 20 µM.322  

 

Figure 2.38: Structure of SmHDAC8 inhibitors 2-105, 2-106 and 2-107.322 

Recently, a series of 3-aminobenzohydroxamate derivatives was reported (Figure 2.39).325 The 

inhibitors were evaluated for their inhibitory activity against SmHDAC8, hHDAC1, hHDAC6, 

and hHDAC8. In in vitro assay, 27 compounds, like 2-108, exhibited a nanomolar inhibition 

activity and demonstrated high selectivity for SmHDAC8 over the major human HDAC isoforms 

HDAC1 and HDAC6 (Table 2.17). Some compounds, such as 2-109 and 2-110, were also 

reported to have a preference for SmHDAC8 over hHDAC8. Furthermore, SmHDA8 was 

crystallized in complex with 2-109, and docking studies revealed the formation of a hydrogen 

bond between the amide and H292 in SmHDAC8. As mentioned earlier, in hHDAC8 this histidine 

is replaced by M274 and, therefore, cannot form a similar bond. In addition, the difference of 



   

 

95 

 

 

conformation of the phenylalanine residue was observed with F151 adopting a flipped-out 

conformation in SmHDAC8 while the corresponding F152, F150 and F620 took a flipped-in 

conformation in hHDAC8, hHDAC1 and hHDAC6 respectively.325 This could partly explain the 

observed selectivity.  

 

Figure 2.39: Example of 3-aminobenzohydroxamate inhibitors of SmHDAC8. 

In phenotypic assays, 2-109 had a moderate effect on the viability of the schistosomula at 10 µM 

and 20 µM.325 On the other hand, both 2-108 and 2-110 showed significant dose-dependent 

toxicity. Treatment of worm pairs with 2-110 caused 90% separation of male and female pairs 

within 5 days at 20 µM, and a corresponding reduction in egg laying by these worm pairs was 

also induced, reaching 80% for the 20 μM dose. 

Compound 
SmHDAC8        

IC50 (nM) 

hHDAC8           

IC50 (nM) 

hHDAC1                

IC50 (nM) 

hHDAC6 

IC50 (nM) 

% viability 

20µM 

2-108 75 26 6300 390 33.4 

2-109 468 582 34000 3000 75.6 

2-110 92 149 2800 600 35.8 

Table 2.17: IC50 values for 3-aminobenzohydroxamate derivatives. The results of toxicity 
assay on schistosomula are also shown.325 

Inspired by these results, a series of isophthalic acid-based HDAC inhibitors were reported in 

2017 (Figure 2.40).388 Compound 2-111 and 2-112 were the most promising compound and were 

more potent on SmHDAC8 than on hHDAC1, hHDAC6 and hHDAC8 (Table 2.18). However, 

in similar phenotypic assays, 2-111 showed moderate toxicity toward schistosomula at 20 µM in 

a dose-independent fashion. 2-112 showed a dose-dependent effect but was only slightly active. 

Moreover, none of them significantly affected adult worm pairing during 5 days of culture in 

vitro.    
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Figure 2.40: Structure of isophthalic acid SmHDAC8 inhibitors. 

Compound 
SmHDAC8        

IC50 (nM) 

hHDAC8           

IC50 (nM) 

hHDAC1                

IC50 (nM) 

hHDAC6 

IC50 (nM) 

% viability 

20 µM 

2-111 400 630 > 10000 5120 75 

2-112 750 1310 > 10000 7110 79 

Table 2.18: IC50 values for isophthalic acid derivatives. The results of toxicity assay on 
schistosomula are also shown.388 

Finally, a novel class of inhibitor was recently identified by structure-based virtual screening, and 

a series of N-(2,5-dioxopyrrolidin-3-yl)-n-alkylhydroxamate was reported (Figure 2.41).389 

Compound 2-113 was the most potent inhibitor of SmHDAC8 and was slightly selective against 

hHDAC1 and hHDAC6 but was more active on hHDAC8. Removal of the chlorine (2-114) highly 

impacted the potency, while the extension of the alkyl chain (2-115) reduced the activity on 

SmHDAC8 and hHDAC8 but increased hHDAC6 inhibitory activity making it the favourite 

target. Furthermore, 2-113 induced dose-dependent apoptosis in the infective larval stage of 

S. mansoni, affecting 67 % of the larvae after 3 days at a dose of 100 µM. This is comparable to 

the effect achieved with the pan-HDAC inhibitor vorinostat (43% at 100 µM).389  

Although this class of inhibitor was found to be less potent and less selective than those previously 

reported, this series offers an interesting new perspective. So far, hydroxamic acid has been used 

as a terminal moiety while the cap group was linked through the carbonyl. This scaffold reversed 

the use of hydroxamic acid with a cap linked directly to the nitrogen of the ZBG. Besides, the 

crystal structure of SmHDAC8 in complex with 2-113 revealed that the n-pentyl moiety is buried 

beneath the zinc cation in the SmHDAC8 foot-pocket , where it makes non-polar contacts with 

SmHDAC8 residues F21, T140 and C152.389 This specificity could be further explored with the 

introduction of different cap groups providing more interaction with the enzyme rim and could 

lead to new class of more potent SmHDAC8 inhibitors.  
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Figure 2.41: Structure and IC50 value of N-(2,5-dioxopyrrolidin-3-yl)-n-alkylhydroxamate 
inhibitors.389 

In conclusion, several classes of inhibitor were reported to have strong inhibitory activity on 

SmHDAC8. Besides, they induced apoptosis in schistosomula and were able to affect the pairing 

of adult worms. Those inhibitors also reported selectivity against hHDACs, in particular, 

hHDAC1 and hHDAC6. Although some compounds were also selective against hHDAC8, most 

are still more active on hHDAC8 than on the parasite. 

However, it has been reported that hHDAC8 inhibition showed only limited effects on many cell 

types.390 In addition, HDAC8 inhibitor had the most limited impact on the human acetylome 

among a panel of selective inhibitors of HDACs.325 Cytotoxicity studies of the different 

SmHDAC8 inhibitors have also shown a relatively low effect on cell proliferation, indicating that 

the inhibition of human HDAC8 does not result in intrinsic toxicity.  

Hence, although future investigation could lead to new classes of SmHDAC8 inhibitor with 

greater selectivity on hHDAC8, it is believed that high selectivity against other class I and class 

II HDAC, especially hHDAC1 and hHDAC6, will be more important for a potential therapeutic 

setting.   

2.5 Summary 

HDACs are a class of enzymes involved in a wide range of biological processes, and deregulation 

of their activity has been linked to a large panel of pathology. Therefore, their inhibition was 

regarded as an attractive strategy for the development of new therapies. The discovery of several 

non-selective HDAC inhibitors confirmed their therapeutic potential, and a decade ago, FDA 

approved the first inhibitors. This became the launching ramp for the development of new classes 

of HDACi, and a variety of compounds were reported. More selective inhibitors helped to better 

investigate the role of the different class and isoform of HDACs and to identify new functions. 
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The field has experienced steady growth in popularity over the last decade, and it will, without 

doubt, lead to exciting findings in the coming years. To this end, current research mainly aims to 

develop highly selective compounds targeting a limited number of HDAC isoforms.  
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Chapter 3. Synthesis of new classes of HDAC inhibitors 

1. Introduction 

The central part of this thesis is focused on the synthesis of new classes of HDAC inhibitors. As 

we saw in the previous chapter, a large variety of structures has been investigated, and structure-

activity relationship studies of HDAC inhibitors demonstrated that important variations on the 

scaffold are tolerated. Several series of compounds were reported with diverse structures playing 

the role of the cap group without compromising biological activity. To investigate further this 

flexibility of skeleton, we designed several scaffolds that could lead to the development of new 

classes of HDAC inhibitors. Synthetic pathways for these structures were established, and 

examples of compounds were synthesised in order to evaluate their potency and selectivity on 

HDAC inhibition. 

2. Synthetic approach 

As a starting point in our search of new scaffolds, we identified a series of specific features. First, 

we decided to focus on the synthesis of low molecular weight compounds with limited numbers 

of H-bond donors and acceptors. Those factors comply with the rule-of-five, also known as 

Lipinski’s rules. Published by Lipinski,391 these rules depict a set of molecular properties that are 

of importance in pharmacokinetics for oral bioavailability. Although there are multiple successful 

exceptions in drug development, these rules are still commonly used as a general guideline in 

drug discovery to increase the chances of developing a lead-compound with appealing 

pharmacokinetics properties. 

Secondly introducing a centre of chirality was also of higher importance. Indeed, a chiral centre 

in the scaffold would secure a non-flat topology. As the enzyme rim is made of numerous chiral 

amino acids, this trait in the inhibitors could create isoform-dependent interactions and, therefore, 

provide a selectivity. 

A third factor was the accessibility of commercial building blocks with high diversity.  

Finally, we opted for the sole use of hydroxamic acid as zinc binding group. Thus, it was crucial 

to have at our disposal a carbonyl precursor or to have the ability to introduce one, to form the 

hydroxamic acid. 

Based on these factors, amino acids emerged as an essential class of building block that fulfilled 

all the above criteria. To begin with, they naturally possess a chiral centre, allowing the 

investigation of enantiomeric effects, and they can also be easily coupled to synthesise molecules 
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with several chiral centres. Secondly, they have a high diversity with a variety of H-bond 

acceptor/donor side chains, acid/base properties and a range of lipophilicity. Moreover, their C-

terminal carbonyl group, either a carboxylic acid or an ester can be converted to hydroxamic acid. 

Finally, they are commercially available with a variety of N-terminal, C-terminal and side chain 

protective groups hence being able to adapt to diverse synthetic pathways.  

As results, we decided to design and develop new classes of HDAC inhibitors build around the 

use of amino acids. 

2.1  First scaffold: imidazole-based inhibitors 

The imidazo-ketopiperazine structure appeared as an interesting scaffold.  

The first engaging trait of the structure was the similarity with 2,5-diketopiperazines (Figure 3.1), 

a privileged scaffold in drug discovery.392,393 Ganesan group has been interested in 

diketopiperazine for years, and several libraries of compounds were produced by solid-phase 

synthesis and reported in the literature.394–396  

Another influential factor was the presence of two chiral centres in the structure of imidazo-

ketopiperazine. Schematically, this scaffold is a fusion between a diketopiperazine, which derived 

from the cyclization of a dipeptide, and an imidazole. For that reason, the configuration of the 

stereo-centres originate from the amino acid starting materials and can thus be controlled 

efficiently. 

 

 

Figure 3.1: Structure of 2,5-diketopiperazine (3-1) and imidazo-ketopiperazine (3-2). 

The synthesis of an imidazo-ketopiperazine has been reported by Bischoff and coworkers in 

2010.397 Based on conditions developed by Hopkins,398  imidazole 3-4 was synthesised by 

intramolecular cyclization of the N-glycinyl thioamide substituted dipeptides 3-3 (Scheme 3.1). 

The N-terminal protection of 3-4 was removed in acidic conditions and then neutralized to 

generate a free amine. The spontaneous intramolecular reaction of the deprotected intermediate 

resulted in the second cyclization to afford the imidazo-ketopiperazine 3-5.  
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We foresaw that the imidazo-ketopiperazine core could serve as a capping group in a new class 

of HDAC inhibitor. In addition, a linker, and by extension the zinc-binding group, could be 

introduced on the scaffold through the reactivity of the formed thiol. 

 

 

Scheme 3.1: Synthetic pathway to imidazo-ketopiperazine. 

Bertrand Lecointre, a PhD student in Bischoff group, started the investigation of this scaffold as 

part of a visiting mission in Ganesan group prior to my arrival. He developed a first synthetic 

route featuring an L-Phe-L-Ala analogue of 3-3 and successfully synthesised a series of 

inhibitors.399 My PhD work followed on from his preliminary results, and my first assignment 

consisted of optimising the developed synthetic pathway by introducing improvements in this 

sequence. This would then be applied to the synthesis of known inhibitors as well as new 

analogues with this scaffold. 

In a one-pot sequence of three reactions (Scheme 3.2), L-Ala methyl ester 3-6 was initially 

alkylated by reaction with iodoacetamide in the presence of DIPEA to give the glycidyl amide 3-

7. Following addition of Cbz-L-Phe-OH, propane phosphonic acid anhydride (T3P) was used as 

a coupling agent to form the dipeptide 3-8 by condensation. In the same pot, the solvent was 

removed by evaporation and the residue redissolved in 1,2-dimethoxyethane. Then, treatment 

with Lawesson’s reagent resulted in a selective thionation, and the thioamide 3-9 was isolated in 

a 44% overall yield over the three reactions. 
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Scheme 3.2: Synthesis of the dipeptide thioamide L-Phe-L-Ala. 

In this sequence, T3P was preferred to more common coupling reagent based on carbodiimide, 

uronium or phosphonium such as EDC, HATU or PyBOP. Although these traditional classes of 

reagents have been extensively used in peptide synthesis, T3P displays several exciting properties 

and is becoming a prominent reagent.400 Among other assets, T3P is highly soluble in organic 

solvent, non-hazardous and promotes the amide bond formation in mild conditions. More 

importantly, it was identified as a first choice coupling reagent to avoid epimerization,401 and the 

by-product of the reaction can be easily removed by aqueous work-up. 

The mechanism of the reaction is detailed below (Scheme 3.3). At first, carboxylic acid 3-10 is 

deprotonated, and the resulting carboxylate attacks the cyclic phosphonic acid anhydride T3P 3-

11. The activated carboxylic acid 3-12 then undergoes a nucleophilic attack of the amine to form 

the desired peptide bond, releasing at the same time the phosphonate by-product 3-13. Finally, 

the amide 3-14 is deprotonated to afford the desired product 3-15. 
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Scheme 3.3: T3P coupling mechanism. 

In a second one-pot sequence of four reactions (Scheme 3.4), thioamide 3-9 was treated with 

trimethylsilyl triflate and Et3N. After completion, the volatiles were evaporated, and the residue 

was kept at reflux in toluene. This resulted in the dehydrative cyclization of thioamide 3-9, 

affording the disulfide 3-16. Next, the disulfide bond was reduced with DL-dithiothreitol, and the 

regenerated thiol then performed a nucleophilic substitution on -halo-esters 3-17 leading to the 

formation of thioether 3-18.  

The structure of vorinostat motivated the initial choice of a 7-carbon alkyl chain as mimicking its 

linker, in size and functionality, it should favour the synthesis of an active compound. 

 

Scheme 3.4: Synthesis of thioester 3-18 from thioamide 3-9. 

The mechanism of the cyclization was reported by Bischoff (Scheme 3.5).397 In the first step, the 

L-Phe-L-Ala peptidic carbonyl of 3-9 was activated by reaction with trimethylsilyl triflate. 

Secondly, intramolecular nucleophilic attack, by the thioamide, led to the cyclisation of 3-19 and 

to the formation of a more stable intermediate 3-20. Finally, reflux in toluene eliminated TMSOH 

and to the imidazole ring. In addition, the reaction being carried out in the presence of air, the 
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thiol intermediate 3-21 was oxidized by O2 and reacted with a second molecule to create a more 

stable disulfide bridge and form the dimer 3-16. 

 

Scheme 3.5: Mechanism of the imidazole cyclization. 

Removal of the N-terminal Cbz protecting group of 3-18 in strongly acidic conditions resulted in 

the protonated amine, which was then neutralized with NaHCO3 to afford the free amine (Scheme 

3.6). The amine then spontaneously cyclized through nucleophilic attack on the methyl ester to 

afford the imidazo-ketopiperazine 3-22. The ester side chain was then hydrolysed to provide the 

carboxylic acid. In the last step, we tried to couple the carboxylic acid with O-(tert-

butyldimethylsilyl) hydroxylamine, but no desired product was recovered after purification.  
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Scheme 3.6: Attempt to synthesise 3-23. 

Despite an unfortunate attempt, we managed to familiarize with the general route previously 

developed. From there, several new ideas arise to modify the synthetic pathway and to optimize 

it. 

One of the solutions was to look at the first steps of the sequence. On the one hand, the ability to 

run one-pot reaction was highly beneficial. This process removed the need for isolation and 

purification of intermediate compounds, thus speeded up the synthesis. On the other hand, 

successive reactions could lead to lower yield, increased number of side products and were more 

difficult to monitor due to the presence of numerous chemical entities. 

Therefore, we decided to check if we could improve the overall yield of formation of thioamide 

3-9 by cutting the one-pot three reactions sequence. However, although we could have run each 

reaction separately, we decided only to isolate the glycidyl amide intermediate 3-8. This decision 

was a compromise between our will to improve the yield and the convenience of the one-pot 

sequence. Additionally, isolation of highly polar intermediate 3-7 would have been difficult and 

could have lessened the yield. 

This modification resulted in a significant improvement of the overall yield (Table 3.1). 
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Entry Overall yield 

One-pot 3 reactions sequence 44% 

Isolation of intermediate 3-8 followed by conversion to 3-9 89% 

Table 3.1: Comparison of synthetic methods to form thioamide 3-9. 

This led us to also reconsider the second one-pot sequence. Indeed, we noticed that the divergence 

between analogues only occurred over the last step of the sequence. Therefore, we decided to split 

again the sequence into separated reactions to isolate the disulphide 3-16, which is the last 

common intermediate. Accordingly, we were able to synthesise and isolate 3-16 in 62% yield.  

Turning to the developed route, we realised that this synthetic pathway could also be used to form 

a linear analogue derived from our imidazo-ketopiperazine. Using the intermediate 3-18, we could 

skip the ring closure steps and directly convert the ester to hydroxamic acid to synthesise 3-25 

(Scheme 3.7).  

This “open” version of the imidazole-based scaffold had more flexibility in the cap part of the 

molecule compare to the “closed” imidazo-ketopiperazine. As a result, the interactions between 

the inhibitors and the enzyme rim could be profoundly affected. This could lead to a different 

profile of activity, and the assessment of the evolution in potency and selectivity between these 

two structures could then be of great interest for further optimisation of the scaffolds. 

However, to comply with this new objective, some adaptations of the synthesis were required. 

Indeed, the presence of two methyl esters on the intermediate 3-18 would render the conversion 

to hydroxamic acid more difficult. It was likely that getting a proper selectivity between the 

methyl ester on the side chain and the second from the L-alanine would have been challenging, 

and several side products would have been formed. Hence, methyl ester on the side chain had to 

be avoided. 



   

 

107 

 

 

 

Scheme 3.7: Modification of the synthetic pathway to “open” and “closed” analogues. 

Taking this idea a step further, and combining it with the other modifications we envisaged led 

us to perform the ring closure, and so formation of the imidazo-ketopiperazine, from the disulfide 

3-16, giving us a new synthetic pathway (Scheme 3.8). Starting from the isolated disulfide 3-16, 

N-terminal Cbz protective group was removed under strongly acidic condition followed by 

neutralisation with NaHCO3 (1M) to afford the imidazo-ketopiperazine disulfide 3-26. 

 

Scheme 3.8: Synthesis of disulfide 3-26. 

2.1.i Spotlight on “closed” analogue 

Focusing on the imidazo-ketopiperazine scaffold, the disulfide intermediate 3-26 was reduced to 

thiol with tris(2-carboxyethyl)phosphine (TCEP) followed by the addition of -bromo-esters in 

the presence of Et3N to give the alkylated imidazo-ketopiperazine ethyl ester 3-27 (Scheme 3.9).  
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Scheme 3.9: Synthesis of ethyl ester 3-27. 

TCEP is a powerful reducing reagent commonly used in biochemistry to break disulfide bonds in 

a protein, and it offers several advantages compared to DTT. First, it is odourless and highly 

soluble in water. Moreover, despite having different reactivity, both reagents could react during 

the alkylation step leading to the formation of side products. Thanks to its high solubility in water, 

TCEP can be removed from the reaction mixture with a quick extraction before adding the halide 

reagent to prevent the side reaction. However, as shown by the mechanism (Scheme 3.10) water 

is required in the reaction mixture for the reduction of the disulfide, and a mix of solvents has to 

be used. Therefore, either DTT or TCEP was used as reducing agent depending on the solubility 

of the reactants. 
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Scheme 3.10: Mechanism of disulfide reduction by DTT (A) and TCEP (B). 

In the last step, the ethyl ester 3-27 reacted with hydroxylamine, in the presence of a catalytic 

amount of potassium cyanide, to give the final compound 3-28 (Scheme 3.11) in 29% yield. 

Although the conversion of ester to hydroxamic acid could occur without it, the addition of a 

catalytic amount of potassium cyanide in the reaction was reported to favour and accelerate the 

reaction by cyanide catalysed nucleophilic displacement.402 

 

Scheme 3.11: Synthesis of final compound 3-29. 



   

 

110 

 

 

Following the synthesis of this compound, we decided to modify the linker length and make 

analogues with six and eight carbons. Bertrand Lecointre had previously studied the impact of the 

linker size, and six to eight carbons chain were shown to be the most suitable lengths.399 

Furthermore, in accordance with our will to optimise the synthesis, we decided to introduce side 

chains that were already containing the hydroxamic acid. 

Ethyl 7-bromoheptanoate 3-28 was hydrolysed to the corresponding carboxylic acid 3-31 with 

lithium hydroxide in 96% yield as reported in the literature,403 and then converted to hydroxamic 

acid 3-34 in 62% yield following activation with CDI (Scheme 3.12).404 Similarly, commercially 

available 6-bromohexanoic acid 3-30 and 8-bromooctannoic acid 3-32 were activated and 

converted to afford the hydroxamic acids 3-33 and 3-35 in 79% and 84% yields respectively.  

 

Scheme 3.12: Synthesis of alkyl linkers. 

After that, disulfide 3-26 was reduced, with either TCEP or DTT, and the regenerated thiol was 

then alkylated, by hydroxamic acids 3-33 and 3-35, to provide the final compounds 3-36 and 3-

37, respectively in 60% and 51% yield (Scheme 3.13).  
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Scheme 3.13: Synthesis of compounds 3-36 and 3-37. 

Those three compounds had been synthesised and evaluated on HDAC enzymatic assay as part 

of Bertrand Lecointre work.399 However, this modified synthesis is more convergent and reduced 

the number of steps. As a result, the yield of the synthesis was greatly improved with a 36% to 

43% yield from disulfide 3-16 to 3-37 and 3-36, respectively, compared to 3% to 11% with the 

previous synthetic pathway. 

2.1.ii Spotlight on “open” analogue 

In respect to the previously developed synthesis, and to evaluate the impact of the cap group, we 

then focused on the formation of analogues with a non-cyclized imidazole core.  

Starting from isolated disulfide 3-16, and following its reduction to thiol with either DTT or 

TCEP, the imidazole core was coupled with the 6-, 7- and 8-carbon alkyl side chains 3-33, 3-34 

and 3-35 to retrieve respectively the final compounds 3-38, 3-39 and 3-40 (Scheme 3.14).  
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Scheme 3.14: Synthesis of "open" analogues 3-38 to 3-40. 

With regard to this synthesis, we decided to change the nature of the linker. On the one hand, 

alkyl linkers offer great flexibility and can adapt to the enzyme channel to optimise the interaction 

with the zinc cation, resulting in high potency. On the other hand, this plasticity flattens the impact 

of amino acid differences between HDAC isoforms and thus can hamper the selectivity. 

Therefore, we decided to introduce a bulkier and less flexible spacer containing a benzyl ring. 

Starting with the preparation of the linker, 4-(bromomethyl)benzoic acid was activated with 

thionyl chloride and converted to hydroxamic acid 3-41 in 90% yield (Scheme 3.15), in agreement 

with reported procedures.405,406 The 4-(bromomethyl)-N-hydroxybenzamide linker 3-41 was then 

coupled with the disulfide 3-16, following its reduction with DTT, to afford the final compound 

3-42 in 24% yield. 

 

Scheme 3.15: Synthesis of linker 3-41 and compound 3-42. 
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Wishing to keep investigating rigid and bulky linkers, we decided to turn to cinnamic acid 

derivatives. This choice of linker derived from the structure of the two HDAC inhibitors 

panobinostat and belinostat, approved by FDA and both containing a cinnamic group as a linker 

(Figure 3.2).  

 

Figure 3.2: Structure of panobinostat and belinostat. 

Based on the large-scale synthetic route of belinostat published by Reisch and coworkers,407 a 

first pathway was investigated (Scheme 3.16).  

Disulfide 3-16 was reduced to thiol by DTT, and coupled with 1-bromo-3-(bromomethyl)benzene 

3-43 to afford the thioether intermediate 3-44 in 69% yield. The following step consisted of a 

palladium-catalysed coupling reaction with tert-butyl acrylate to synthesise 3-45. Several 

conditions were tested (Table 3.2)408,409 but none showed a positive outcome, and only starting 

material was recovered.  

 

Scheme 3.16: Attempt to make cinnamic analogue 3-45. 
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Entry Conditions Yield 

1 
Et3N (5 eq), t-Butylacrylate (1.2 eq), PPh3 (0.5 eq), 

Pd(OAc)2 (0.5 eq), DMF, 80 °C, 16 h 

Starting 

material 

2 
Et3N (1.7 eq), t-Butylacrylate (1.2 eq), PPh3 (0.5 eq), 

Pd(OAc)2 (0.5 eq), K2CO3 (1 eq), DMF, 80 °C, 16 h 

Starting 

material 

3 
Et3N (1.7 eq), t-Butylacrylate (1.2 eq), PPh3 (0.5 eq), 

*Pd(OAc)2 (0.5 eq), NaHCO3 (1 eq), DMF, 80 °C, 16 h 

Starting 

material 

4 
Et3N (1.7 eq), t-Butylacrylate (1.2 eq), PPh3 (0.5 eq), 

*Pd(OAc)2 (0.5 eq), K2CO3 (1 eq), DMF, 80 °C, 16 h 

Starting 

material 

 *another batch of Pd(OAc)2 was used  

Table 3.2: Heck reaction conditions. 

In order to understand these results, we turned to the Heck reaction mechanism (Scheme 3.17). 

The first step of Heck reaction is an oxidative addition which inserts the palladium(0) in the aryl 

bromide bond to give the palladium(II) intermediate 3-46. In a second step, the palladium(II) 

forms a complex 3-47 with the alkene bond, followed by a syn-addition of aryl and 

palladium(II) to afford 3-48. The complex then undergoes an internal rotation to the trans-isomer 

3-49, and a -hydride elimination step leads to the complex 3-50. Finally, the complex releases 

the desired alkene 3-51 and palladium(0) is regenerated by reductive elimination of 3-52.  

As only starting materials were recovered in our reactions, it suggests that one of the steps in the 

catalytic cycle could be blocked or tremendously slowed down, thus preventing the required high 

catalytic turnover.  

The first difference between our compound and belinostat is the absence of electro-withdrawing 

group on the aryl ring which is known to accelerate the reaction.410 However, although this factor 

may have some influence, the mixture was kept at a high temperature overnight and should have 

overcome a lower rate of reaction. Moreover, aryl bromide remains a common substrate for Heck 

reactions, which was successfully reported with a large variety of substituents. 
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Scheme 3.17: Heck mechanism.411 

We then checked the literature to find examples of Heck coupling between acrylate ester and 

(bromobenzyl)(methyl)sulfane derivative to have a better comparison of structure but none were 

found. The closest and only similar reaction involved a sulfone instead of sulfane (Scheme 

3.18).412 Interestingly the reaction was reported to last three days at 100 °C. As low reactivity was 

also observed, a side effect inherent to the structure could be affecting the cycle turn-over. 

 

Scheme 3.18: Heck reaction example between sulfone 3-53 and methyl acrylate. 

A hypothesis was a side interaction between palladium and sulfane/sulfone, hampering proper 

catalysis. To check this hypothesis, we went back to the literature and extended the search to any 

Heck reaction on this kind of structure. Once more only minimal material was found (Scheme 
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3.19).413 In the only example, the product 3-56 was obtained at only 12% yield under microwave 

irradiation, suggesting once again low reactivity of the structure in Heck couplings.   

 

Scheme 3.19: Heck reaction example on sulfone 3-55. 

Interestingly, when the search was extended to any coupling reaction catalysed by palladium, 

several examples of Suzuki reaction were found with both sulfone and sulfane derivatives.414,415,416 

However, the Suzuki coupling mechanism differs from the Heck  reaction (Scheme 3.20). Thus, 

we examined the different steps to find a potential explanation in the divergent reactivity.  

Although oxidative additions are similar in both cycles, the introduction of the vinyl group is 

distinct. In Heck reaction, the vinyl directly interacts with the palladium and undergoes a 

migratory insertion. On the other hand, in Suzuki reaction the vinyl is initially bonded to a boron 

nucleus, forming a boronic ester 3-57. After reaction with a base to build 3-58, the reactive species 

then goes through a transmetalation step with the palladium(II) complex 3-59. This step results 

in 3-61, as trans and cis isomers, that then undergoes reductive elimination to regenerate 

palladium(0) and releases the desired compound 3-62. To my knowledge, the mechanism of this 

transmetalation has not been fully elucidated yet, but a different insertion process of the vinyl 

could affect the reaction speed. 
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Scheme 3.20: Suzuki coupling mechanism.417 

Moreover, a key step in the Heck reaction mechanism is the internal rotation allowing the syn 

-H elimination and the formation of the alkene bond. Meanwhile, in Suzuki reaction, this step is 

not necessary as the double bond is not affected by the transmetalation. The hypothetic interaction 

between the palladium and the sulfane/sulfone after the migratory insertion of the acrylate could, 

therefore, impede the internal rotation and highly hamper the catalytic cycle. 

In spite of these hypotheses, no further work was done to study this reaction, and we decided to 

change the synthetic route (Scheme 3.21).  

Disulfide 3-16 was reduced with DTT, and the newly formed thiol coupled with 4-

(bromomethyl)benzaldehyde 3-63, which resulted from the reduction of 3-(bromomethyl) 

benzonitrile with DIBAl-H,418 to give the benzaldehyde 3-64 in 54% yield. Afterwards, 

Knoevenagel condensation with malonic acid419 in pyridine led to the successful procurement of 

cinnamic acid derivative 3-65 in 97% yield. However, attempts to couple O-tritylhydroxylamine 

with EDC/HOBt/NMM420 was unsuccessful, and no product was recovered.  

Although we are confident that the last step could be successful under other conditions, due to the 

time constraints and the lack of starting material the reaction couldn’t be repeated and will be part 

of future work.  
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Scheme 3.21: Alternative route to cinnamic hydroxamate compound 3-66. 

2.2 Second Scaffold: From Lysine to Aspartic acid 

A common and straightforward idea to design a class of inhibitors is to use the structure of the 

natural substrate. Several studies have been made to take advantage of the substrate acetyllysine 

side chain in a peptidomimetic approach. This strategy led to the discovery of the aminosuberoyl 

hydroxamic acid class of inhibitors, and extensive work has been done to investigate cyclic and 

linear peptide and non-peptide cap groups.421–424 

In contrast with these studies, little work has been done to investigate the use of amino acids with 

non-alkyl sidechains. In 2004, Fairlie published the results of a new class of HDACi, derived 

from cysteine, as antitumor agent.425 This led us to consider the synthesis of a new class derived 

from a different amino acid.  
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Several parameters were used to select a candidate. Firstly, we needed easy accessibility from a 

commercial source, so we opted in favour of natural amino acids. Secondly, the high reactivity of 

the sidechain was required to be able to introduce a hydroxamic acid as zinc binding group. 

Finally, we wanted to maintain a five-atom length, between the main chain and the carbonyl, to 

mimic the acetylated lysine. The above factors led us to choose aspartic acid as the core of the 

scaffold, and to couple it to -alanine on the side chain to introduce the hydroxamic acid (Scheme 

3.22).  

 

Scheme 3.22: Overview of our scaffold and reported related structure. 

Our first synthetic approach consisted of a solid phase synthesis commonly used in peptide 

synthesis. The principle consists in using polymer beads as a support for the reaction. This resin 

is usually made of polystyrene with a small percentage (1-2%) of a second polymer bearing a 

specific reactive group. Depending on the nature of these groups different resins can be obtained, 

and their reactivity thus conditions the choice of resin.  
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In peptide synthesis, the first step consists in attaching an N-protected amino acid to the polymer 

by its C-terminal side to give 3-67 (Scheme 3.23). As the polymer bead is insoluble in the solvent, 

the reaction mixture can be filtered, and the resin washed several times with a small amount of 

solvent to remove any traces of reagents. In the same manner, washing is consistently done 

following every step. Secondly, the N-protection is removed to give a free amine 3-68, which can 

then be coupled to a second amino-acid bearing the same N-protection to synthesise a dipeptide 

3-69. To avoid the formation of side products, this step is usually followed by a capping reaction 

to convert the potential remaining free amines, which were not successfully coupled, to unreactive 

species such as acetyl amide group. The rest of the synthesis will then consist in repeating the 

sequence deprotection/coupling/capping until the desired peptide sequence 3-70 is synthesised. 

In the last step, the peptide is cleaved from the resin, and the desired peptide 3-71 is recovered.  

 

Scheme 3.23: General Solid Phase Peptide Synthesis using a Fmoc strategy. 

This type of synthesis offers several advantages over solution phase synthesis. As mentioned, no 

purification is needed after coupling as washing remove unreacted reagents and resulting by-

products. Moreover, there is a repetition of simple steps. Therefore the synthetic process can be 

automated, and long peptide sequences can be obtained rapidly. On the other hand, the success of 

intermediary steps is difficult to control. Additionally, resins have a limited loading permitted 

(usually 0.8-1.8 mmol/g). In extended peptide synthesis of high molecular weight this limitation 

has a low impact but for the small molecules more significant amount of resin is required, and the 

synthesis can be more expensive than solution phase. 

Turning to our synthesis, we decided to use a hydroxylamine resin and attach it to the side chain 

to directly obtain the desired hydroxamic acid after cleavage (Scheme 3.24). 
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Scheme 3.24: Retrosynthesis of the Aspartic acid scaffold.  

Firstly, we had to prepare the resin we were going to use. Our idea was to use a Fmoc strategy, 

meaning the N-terminal part of the intermediate would be Fmoc protected. As Fmoc protecting 

group are removed in basic conditions (Scheme 3.25) this approach required to use a resin which 

would be stable in these conditions and could be selectively cleaved in the last stage of the 

synthesis.  

 

Scheme 3.25: Mechanism of Fmoc deprotection with piperidine. 

We chose a 2-chlorotrityl chloride polymer which could be rapidly cleaved by TFA in DCM and 

presented a high loading (1.3 mmol/g). Following a reported procedure,426 hydroxylamine was 

protected using Fmoc chloride in the presence of a carbonate base in 86% yield. Then 

2-chlorotrityl chloride polystyrene resin 3-73 was swelled in DCM. Afterwards, Fmoc protected 

hydroxylamine 3-72, and DIPEA were added, and the mixture was shaken for 48 hours to form a 
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Fmoc-hydroxylamine resin 3-74. The resin was finally capped by washing with MeOH to 

eliminate unreacted chloride. 

 

Scheme 3.26: Preparation of Fmoc-hydroxylamine resin 3-74. 

In parallel, we worked on the aspartic acid synthons (Scheme 3.27). Starting from Fmoc-L-

Asp(OtBu)-OH, activation by HATU followed by addition of benzylamine led to the amide 3-75 

in 98% yield. The tert-butyl ester was then rapidly hydrolysed with TFA to afford carboxylic acid 

3-76 in 98% yield.  

 

Scheme 3.27: Synthesis of 3-76. 

This paragraph presents the results obtained by Ludmilla Sturm and Karolina Sliwa, two 

undergraduate students that I supervised during their placement in Ganesan group. The resin 3-

74 was first deprotected with piperidine in DMF, and then coupled to Fmoc--Alanine with 

HBTU and HOBt additive to get 3-77 (Scheme 3.28). To improve the coupling, this step was 

repeated before reacting with acetic anhydride to cap the potentially remaining free amine. Then 

the resin was once again deprotected, coupled twice with aspartic acid 3-76, still with HBTU and 

HOBt, and capped to get 3-78. Following the same sequence, reaction with cinnamoyl chloride 

led to dipeptide 3-79. Finally, the resin was cleaved with TFA. However, residue from the 

cleavage was a mixture, and after purification by flash chromatography, no desired compound 

was recovered. 
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Scheme 3.28: Solid phase synthesis of 3-80. 

As mentioned earlier, one of the difficulties of solid phase synthesis is to monitor the success of 

each step. Qualitative methods were developed to check the coupling reaction, and in particular, 

the Kaiser test became the most commonly used procedure. At the end of a coupling step, a small 

number of beads was recovered, washed with solvent and placed in a test tube. Then a drop of 

three solutions were added: 5% (wt/vol) ninhydrin in ethanol, phenol (80% wt/vol) in ethanol and 

2% (vol/vol) aqueous KCN (0.001 M) in pyridine. The tube was then heated at 100 °C for 5 

minutes. Incomplete coupling resulted in the blue colouration of the polymer beads while 

complete coupling showed no change of colour. This difference is due to the reaction between 

ninhydrin and primary amine (Scheme 3.29). Ninhydrin firstly loses water molecule to form the 

ketone 3-81 which then undergoes nucleophilic substitution with a primary amine to give a Schiff 

base 3-82. Isomerisation to 3-83 followed by hydrolysis led to the amine 3-85 which then reacted 
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with a second molecule of 3-81 to afford the imine 3-86 also known as Ruhemann’s purple. The 

observation of blue colour in the Kaiser test thus indicates the formation of 3-86 and, by extension, 

confirms the presence of remaining free amine.  

 

Scheme 3.29: Kaiser test mechanism. 

Although this procedure was used in our synthesis, it is only a qualitative test that monitors the 

coupling step. Insufficient loading during the synthesis of the resin, incomplete Fmoc 

deprotection, and defective capping can all be reasons for reduced yield and formation of a side 

product. An alternative for monitoring the synthesis would be to take a sample of the resin after 

each coupling, cleave it and analyse the residue by LCMS. However, this approach wasn’t 

practical due to a technical issue on our instrument. Besides, as only a limited amount of material 

can be loaded on the resin, it is usually necessary to optimise each step to ensure almost 

quantitative coupling. After a few attempts that gave unsatisfactory and irregular results, we opted 

for another approach.  

Since parallel work was already involving solution phase reactions, we decided to switch to a full 

solution synthesis. Moreover, one drawback of this pathway was the early formation of amide 3-

75 from aspartic acid. This position was important as it could also be used as a diverging step in 

the elaboration of the future library. Thus, we decided to modify the synthetic route to perform 

this reaction at a later stage.  

Starting from the same Fmoc-L-Asp(OtBu)-OH, we opted to convert the C-terminal carboxylic 

acid to allyl ester. The allyl group was chosen as a protecting group of the carboxylic acid to be 

selectively deprotected on a later stage of the synthesis in orthogonal conditions to basic Fmoc 

deprotection and acidic tert-butyl cleavage. Compound 3-87 was isolated in 97% yield after 

reaction with allyl bromide (Scheme 3.30).  
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Scheme 3.30: Synthesis of allyl ester 3-87. 

Similarly to the previous route, tert-butyl ester on the side chain was then hydrolysed with TFA 

to afford 3-88 in 79% yield (Scheme 3.31). The newly synthesised carboxylic acid side chain was 

then coupled with -alanine ethyl ester with HATU and DIPEA to get compound 4-89 in 81% 

yield. 

 

Scheme 3.31: Synthesis of 3-89. 

The rest of the synthesis, until 3-94, was investigated with the help of Angus Yuen, another 

undergraduate student that I supervised during his research project in the Ganesan group. The 

allyl group was firstly removed with palladium(0). This reaction could be carried in mild 

conditions with Pd(Ph3)4 as a source of palladium, and additional phenylsilane is acting as a 

scavenger of the reaction.427 Free carboxylic acid 3-90 was obtained in 58% yield and then 

coupled to benzylamine to give 3-91 in 76% yield (Scheme 3.32).  
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Scheme 3.32. Synthesis of 3-91. 

Following this step, the N-terminal Fmoc protecting group was cleaved with diethylamine to give 

the free amine 3-92 in 44% yield (Scheme 3.33). Then reaction with cinnamoyl chloride, in the 

presence of Et3N, led to the isolation of cinnamyl compound 3-93 in 26% yield. 

 

Scheme 3.33: Synthesis of 3-93. 

In the last step, we tried to convert the ethyl ester to hydroxamic acid with hydroxylamine and a 

catalytic amount of potassium cyanide (Scheme 3.34). However, this reaction did not work as 

expected. After several hours of reaction, a TLC control showed a mixture of starting material 

and a second product. As the reaction was made on a small scale, we tried to push the reaction 

toward completion. Keeping the stirring longer showed no apparent evolution so more reagent 

was added to the mixture and the reaction mixture was left stirring overnight. New monitoring by 

TLC indicated the formation of several new compounds and no desired compound was isolated. 
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Scheme 3.34: Attempt to synthesise 3-94. 

Due to the lack of remaining intermediate 3-93 and time constraints, the reaction could not be 

repeated. Despite this unsuccessful last step conversion, we still believe that this synthetic route 

is viable with proper optimisation of the reaction conditions.  

Although this could prove to be fruitful, we looked for a potential alternative. Firstly, we could 

opt for an indirect conversion with a primary ethyl ester hydrolysis followed by activation of 

carboxylic acid and reaction with hydroxylamine. Naturally, the main drawback of this 

adjustment would be to add a step to the synthesis.  

Another possibility would be to switch the steps in order to introduce the hydroxamic acid earlier 

in the synthesis such as on intermediate 3-91. Notwithstanding optimisation of reactions may be 

needed. Indeed, hydroxylamine is a weak base, and Chang and coworkers428 reported that Fmoc 

deprotection of amino acid could be slowly achieved .  

Alternatively, the most interesting modification could be to directly couple a -alanine 

hydroxamic acid with the intermediate 3-88. This side chain was successfully synthesised starting 

from commercially available Boc--alanine (Scheme 3.35). According to a published 

procedure,429 the free carboxylic acid was first activated with CDI and a solution of 

hydroxylamine was added to give the Boc--alanine hydroxamic acid 3-95. Low yield of the 

reaction could be due to the high solubility of the product in aqueous solution, and the reaction 

would need optimisation.  
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Scheme 3.35: Synthesis of -alanine hydroxamic acid 3-96. 

By using 1H NMR a shifting of proton signal on the -position from carbonyl confirmed the 

successful conversion from carboxylic acid to hydroxamic acid (Figure 3.3). 

 

 

Figure 3.3: 1H NMR spectrum of formation of Boc--Ala-NH2OH 3-95. 

Starting material (red), incomplete reaction (green), product 3-105 (blue) 

In the second step, the N-(tert-butoxycarbonyl) group of 3-95 was cleaved under acidic conditions 

using a solution of HCl in EtOAc to give the -alanine hydroxamic acid hydrochloric salt 3-96 in 

97% yield.     

2.3 Third scaffold: triazole-based inhibitors 

The copper-catalyzed azide-alkyne cycloaddition, also known as 1,4-CuAAC or click chemistry 

is a powerful reaction developed by Sharpless and Fokin,430 which allows the formation of a 

Shift 
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triazole from azide and alkyne (Scheme 3.36). Improving the 1,3-dipolar cycloaddition previously 

developed by Huisgen,431 this process has enormous scope and has been extensively used.  

 

Scheme 3.36: General 1,4-CuAAC reaction. 

The main advantage of this reaction, besides compatibility with most functional groups, is the fast 

synthesis of a regioselective 1,4-triazole in mild conditions. This selectivity is explained by the 

mechanism of the reaction. Nonetheless, it is worth noting that several mechanisms can be found 

in the literature.  

A standard version refers to the one proposed by Sharpless and Fokin and involves mono-nuclear 

copper(I) intermediate (Scheme 3.37). In a first step, the interaction between the copper and the 

acetylene leads to the formation of copper(I) acetylide 3-97. Then, coordination between the 

copper and the azide forms the intermediate 3-98, which undergoes intramolecular cyclization to 

give a 6-membered copper-containing compound 3-99. The cycle then proceeds via internal 

rearrangement to form the triazole 3-100 and is finally protonated to afford the 1,4-disubstituted 

triazole 3-101. 
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Scheme 3.37: CuAAC mechanism proposed by Sharpless and Fokin.430 

Although this mechanism can still be found, Fokin and coworkers proposed an alternative version 

in 2013 that was more consistent with the latest results.432 Using several sources of copper, with 

different isotopic composition, they showed that dinuclear copper(I) intermediate had to be 

involved to fit their experimental results and the mechanism was then modified as shown below 

(Scheme 3.38). Notably, the previously proposed 6-membered ring intermediate 3-99 was 

replaced by a new transitional compound 3-105 involving two copper atoms. 
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Scheme 3.38: CuAAC mechanism revised by Fokin.432 

To the author’s knowledge, the most recent studies showed that both mechanisms are actually 

involved in the CuAAC reaction (Scheme 3.39). Indeed, Bertrand reported in 2015 the successful 

isolation of key intermediates 3-97 and 3-100 (R1 = phenyl, R2 = benzyl, L = cyclic 

(alkyl)(amino)carbenes) showing that mononuclear copper catalysis was happening.433 

Additionally, intermediates 3-106 and 3-107 were isolated (X = TfO), proving the reaction was 

also proceeding through the dinuclear copper cycle. However, the latter catalytic cycle was 

kinetically favoured and therefore matched with Fokin’s results. 
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Scheme 3.39: CuAAC mechanism revised by Bertrand.433 

With a simple and efficient method to synthesise triazoles with regioselective control, medicinal 

chemists naturally became interested in taking benefits of this reaction. In the field of HDAC 

inhibitors, several groups studied the possibility to design dual target compounds. Indeed, by 

introducing an acetylene or azide group on the extremity of a molecule of interest, biologically 

active and potent against any target, it became possible to quickly couple this compound with a 

chain bearing a hydroxamic acid to add a potential effect on HDAC. This strategy was 

successfully applied to conjugate HDAC inhibition with a variety of targets such as 

topoisomerase,434,435 antibiotics,436 cyclooxygenase,437 protein kinase,438 or estrogen receptor 

modulators.439 

Although exciting results were obtained, this approach generally considered triazole as a linker 

between a complex compound and a simple alkyl zinc binding group. In comparison, limited work 

has been done to design, specifically, HDAC inhibitors and exploit the powerful potential of click 

chemistry to make a library combining triazole and hydroxamic acid. Thus, we became interested 

in designing a scaffold based on the triazole. 

First and foremost, the synthetic route was depending on the position of the zinc binding group 

on the triazole. Indeed, linkage to the nitrogen on the 1st position of the triazole would require a 

precursor bearing the azide group (Scheme 3.40). Conversely, linkage to the carbon on 4th position 

would need an acetylene group, thus completely changing the synthesis of the precursor.  

 

Scheme 3.40: Two possible 1,4-triazole configurations. 
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Our choice inclined toward the first option with an azide precursor. Several factors motivated this 

decision. To begin with, the latter option has been more investigated. In particular, several 

inhibitors were successfully discovered by Wang,440–442 Jiang,443 and Suzuki.344,444,445 Thus, we 

decided that exploring the other configuration would be of more significant interest. In the second 

place, Suzuki also showed that reversing the triazole from a C4-bonded zinc binding group to an 

N1-bonded was slightly improving the potency against HDAC8 but greatly enhancing the 

selectivity toward class I and class II HDACs (Figure 3.4).446 Moreover, a library of N-bonded 

triazole-based HDAC inhibitors was reported to have antimalarial and antileishmanial activity.305 

This work was of particular interest to us as the parasitic diseases were one of the targets at the 

origin of this project.  

 

Compound IC50 (M) 

 HDAC1 HDAC2 HDAC3 HDAC8 HDAC4 HDAC6 

3-108 38 >100 68 0.070 44 2.4 

3-109 >100 >100 >100 0.053 >100 2.2 

Figure 3.4: Reported HDAC inhibition of C-bonded and N-bonded triazole.446 

In accordance with the global chemistry of this thesis, we desired to use amino acids in our 

designed structure, as they are commercially available with a source of chirality and can be 

converted to hydroxamic acid.  

Combining these ideas, we designed our scaffold and a first general synthetic route in which an 

amino acid would be converted to azide to form the triazole and then the hydroxamic acid 

(Scheme 3.41). 

 

Scheme 3.41: General synthetic pathway to triazole compounds. 
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In the literature, only one example of the closely related structure was found (Scheme 3.42). 

Indeed, a series based on a 1,4,5-trisubstituted triazole had been patented in 2014.447 This library, 

with an alkyne on the 5th position, was reported to inhibit HDAC8 selectively. 

 

Scheme 3.42: Patented structure of 1,4,5-trisubstituted triazole HDAC inhibitors.447  

Although limited data were published, one crucial piece of information was extracted from this 

patent. To build their SAR four different amino-acid were used on the 1st position of the triazole. 

Natural phenylalanine, tryptophan and valine, as well as the non-natural phenyl glycine, were 

investigated, and the authors suggested that best results were obtained with phenylalanine.  

These results, also limited, validated our decision to investigate this scaffold. Moreover, we 

decided to use phenylalanine as a starting material. Finally, this also led us to consider a future 

modification of the structure to study a 1,4,5-trisubstituted triazole. 

Turning our attention to the synthesis, the first step consisted in converting the commercial 

L-phenylalanine methyl ester to the corresponding azide-phenylalanine methyl ester. In 1972 

Cavender and coworkers published the first method to convert alkyl amine to alkyl azide using 

trifluoromethanesulfonyl azide (TfN3).
448 This method presented two main drawbacks. Firstly, the 

preparation of triflyl azide from sodium azide and triflic anhydride required a biphasic mixture of 

water and DCM, but triflic anhydride tends to be hydrolysed. Thus, a large excess of reagent was 

necessary. Secondly, the use of DCM, containing the freshly formed TfN3, could face a solubility 

problem with primary amine during the azide transfer. Additionally, it is important to note that 

isolated triflic azide, as many azide salts, is known to be energetic materials that are sensitive to 

shock and friction and potentially explosive.449 Therefore, they have to be kept in solution.  

The Wong group improved this method by using a mixture of H2O/MeOH/DCM as a solvent for 

the diazo transfer reaction and by adding a metal catalyst such as copper(II) sulfate or zinc(II) 

chloride.450,451 Interestingly the reaction with chiral amine occurs with retention of configuration. 

The mechanism was proposed by Wong and has been recently confirmed (Scheme 3.43).452 In the 

first step, copper(II) interacts with the amine to give 3-110. Nucleophilic attack of the amine on 

the electrophilic terminal nitrogen of the azide leads to the formation of the tetrazene 3-111 which 

then cyclized to a more stable five-member copper containing complex 3-112. Internal 

rearrangement then releases the product of diazo transfer 3-113 and copper-imido complex 3-114. 
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Finally, complex 3-110 is regenerated. As the C-N bond from the primary amine remains intact 

during the diazo transfer cycle, the reaction is not subject to epimerization.  

 

 

Scheme 3.43: Plausible mechanism of copper-catalysed diazo transfer reaction.452 

Based on this work, Yan and coworkers further optimised the reaction by switching to a single 

solvent of reaction, with either acetonitrile or pyridine, thus preventing hydrolysis of triflic 

anhydride, reducing the amount of reagent needed and avoiding solubility issues.453 

2.3.i Focus on 1,4-disubstituted triazole 

With this established methodology, we could focus on the synthesis. Accordingly, triflic azide 

was prepared by reaction of sodium azide and triflic anhydride at 0 °C in acetonitrile for two 

hours (Scheme 3.44). The freshly prepared solution was then added to L-phenylalanine methyl 

ester, in the presence of Et3N and a catalytic amount of CuSO4, to form the corresponding azide 

3-116 in 50% yield. Following this step, reaction with phenylacetylene under CuAAC conditions 

led to the formation of the triazole 3-117 in 98% yield.  
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Scheme 3.44: Synthesis of 1,4 disubstituted triazole 3-117. 

Subsequently, the methyl ester was hydrolysed to carboxylic acid 3-118 with hydrochloric acid 

at 70 °C in 97% yield, followed by activation with CDI and conversion to hydroxamic acid 3-119 

(Scheme 3.45).  

 

 

Scheme 3.45: Synthesis of 3-119. 

This synthetic pathway successfully led to the procurement of the final compound 3-119. 

However, the last step was incomplete even after two days, and the purification was difficult. 

Thus, we decided to change the order of the steps and introduce a protected hydroxamic acid 

earlier in the synthesis. We also decided to start the synthesis directly from unprotected 

L-phenylalanine to avoid the additional hydrolysis.  

Consequently, L-phenylalanine was converted to azido-L-phenylalanine under the same 

conditions in 79% yield (Scheme 3.46).  



   

 

137 

 

 

 

Scheme 3.46: Synthesis of azido-L-Phe-OH 3-120. 

Alternatively, synthesis of some -azido acids had been recently reported using different 

conditions.454 We decided to compare the methods (Table 3.3), but similar results were obtained. 

Importantly the control of the temperature during the preparation of the triflyl azide was found to 

be crucial for the reaction. When the temperature was not properly maintained at 0 °C during the 

addition of triflic anhydride on sodium azide or during the reaction, decomposition was observed 

with the reaction mixture turning dark brown, and resulted in low yield or unsuccessful amine-

azide conversion.  

Try Methods 

 
TfN3 1.2 eq, CuSO4 1% eq, Et3N 2 eq, 

MeCN 

TfN3 1.2 eq, CuSO4•5H2O 1% eq, 

K2CO3 2.7 eq, MeOH/MeCN/H2O 

5/2/1 

Try 1 77% 81% 

Try 2 79% 70% 

Try 3  87% 

Table 3.3: Isolated yield of diazo transfer reaction in two conditions. 

Intermediate 3-120 was activated with CDI and then coupled with O-benzylhydroxyl amine to 

give 3-121 in 71% yield. Then, the azide underwent the CuAAC reaction to afford 

1,4-disubstituted triazole (Scheme 3.47). 

Several groups were introduced to the 4th position. Firstly, we decided to evaluate the impact of 

the substituent on the phenyl ring and analogues were synthesised with a modification on the para 

position. The hydrogen on the para position was respectively substituted by fluorine (3-122), 

highly electronegative atom of similar size, a methoxy group (3-123) possessing an electron-

donating mesomeric effect and a trifluoromethyl group having an electron-withdrawing effect (3-

124). Secondly, we also decided to look at the role of the aromatic ring in the structure. We chose 

to substitute it with a smaller non-aromatic cycle and synthesised the cyclopropyl analogue 3-



   

 

138 

 

 

125. This part was explored with the help of Alex Chan, an undergraduate student that I 

supervised during his research project in the Ganesan group, who synthesised compound 3-122, 

3-123 and 3-124. 

 

R group Compound Yield 

4-fluorophenyl 3-122 65% 

4-methoxyphenyl 3-123 76% 

4-(trifluoromethyl)phenyl 3-124 64% 

cyclopropyl 3-125 59% 

Scheme 3.47: Synthesis of 1,4 disubstituted triazole compound. 

The final step of the synthesis consisted of the O-benzyl deprotection to obtain the free 

hydroxamic acid. A typical procedure involves the use of palladium on charcoal under hydrogen 

atmosphere to reduce the oxygen-carbon bond. However, this hydrogenation turned out to be 

substrate dependent, and the method was unsatisfying (Scheme 3.48). Indeed, the cyclopropyl 

analogue was only partially reduced after 16 hours of reaction while the other compounds were 

not reacting. In our opinion, the primary explanation for the unsuccessful reduction came from 

the conditions of reaction that involved low and uncontrolled pressure of hydrogen in the flask. 

Due to the lack of a hydrogenation lab and specific equipment, it was impossible to perform the 

reaction at higher pressure safely, so we looked for another deprotective method. Our choice 

inclined toward the use of boron trichloride commonly used method for ether debenzylation which 

had also been reported to be successful for O-benzyl hydroxamic acid deprotection.455,456 



   

 

139 

 

 

 

R group Compound Product Yield 

4-fluorophenyl 3-122 3-126 - 

4-methoxyphenyl 3-123 3-127 - 

4-(trifluoromethyl)phenyl 3-124 3-128 - 

cyclopropyl 3-125 3-129 35% 

Scheme 3.48: Hydrogenation of protected triazole. 

A proposed mechanism frequently found in the literature is shown below (Scheme 3.49). In a first 

step interaction between the lone pair of the oxygen and the boron forms the zwitterion 3-130.  

Halide migration releases benzyl halide and forms the dibromo(organo)borane 3-131. Over 

aqueous workup, the intermediate is then hydrolysed to afford the hydroxyl group. However, 

recent computational studies suggest that this mechanism, and especially the migration of 

halogen, is too thermodynamically unfavourable to occur, and a bimolecular pathway is likely 

involved with an interaction between two molecules of complex 3-130.457,458  
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Scheme 3.49: Proposed unimolecular and bimolecular mechanism for BX3-ether 
cleavage.458 

Ergo, slow addition of BCl3 at -78 °C in DCM proved to be a fast and successful method for the 

deprotection of our triazoles (Scheme 3.50). Compounds 3-126, 3-127 and 3-128 were also 

synthesised by Alex Chan. 

 

R group Compound Product Yield 

4-fluorophenyl 3-122 3-126 53% 

4-methoxyphenyl 3-123 3-127 53% 

4-(trifluoromethyl)phenyl 3-124 3-128 58% 

cyclopropyl 3-125 3-129 49% 

Scheme 3.50: Deprotection of triazole with BCl3 to get final compounds. 
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Alternatively, we also tried to form the triazole in the presence of non-protected hydroxamic acid. 

Azide-L-Phe-NH2OBn intermediate 3-121 was deprotected using BCl3 in 89% yield, and the 

resulting azido-phenylalanine hydroxamic acid 3-133 was put in reaction with phenylacetylene 

under CuAAC conditions, but no reaction was observed (Scheme 3.51).  

 

Scheme 3.51: Attempt to form triazole from unprotected hydroxamic acid 3-133. 

Checking the literature, we found no example of a similar reaction. Although we didn’t explore 

further this pathway, we tried to understand what could prevent the reaction as click chemistry is 

usually very versatile and reliable. An explanation could come from the high affinity of 

hydroxamic acid for metal. Indeed, interaction with the copper catalyst could block the catalytic 

cycle necessary for the CuAAC reaction. Moreover, such coordination could be favoured by the 

possibility to form a stabilised 6-member ring due to the presence of the azide group (Figure 3.5). 

Meanwhile, protected hydroxamic acid could adequately react in the click reaction as the presence 

of the benzyl would decrease the nucleophilicity of the oxygen and impose steric hindrance that 

could prevent the interaction with the copper.  

 

Figure 3.5: Structure of potential copper interaction with 3-133. 
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2.3.ii Focus on 1,4,5-trisubstituted triazole 

Following this first generation of compounds, we decided to investigate a second generation based 

on 1,4,5-trisubstituted triazole. Several synthetic pathways could be used to form a trisubstituted 

triazole. A first possibility would be to use a disubstituted alkyne to react with the azide. However, 

this method has numerous drawbacks. In the CuAAC reaction, region selectivity and rate of 

reaction depend on the formation of the complex between the copper and the highly reacting 

terminal alkynyl. However, internal alkynes are less reactive, and the regioselectivity is more 

challenging to control. Thus, this method was not considered. 

A second method would be to introduce the substitution on the 5th position directly from our 1,4-

disubstituted triazoles. The main advantage of this method would be to directly use the previously 

established synthetic route as it would simply add a diverging step. However, this required a C-H 

activation on the 5th position of the triazole which tends to be difficult. Progress has been made 

over the last decade to activate this bond with copper or palladium, but these methods usually 

require high temperature or microwave irradiation.459,460 More recently, Wei and coworkers 

reported a one-pot strategy to synthesise trisubstituted triazole, in mild conditions, from azido 

compound, a terminal alkyne, and an aryl halide by using a mixture of copper and palladium as a 

catalyst.461 To explain the higher reactivity achieved with their method, they proposed the 

following mechanism (Scheme 3.52). The reaction starts with a copper catalytic cycle similar to 

the CuAAC reaction to form a 1,4 disubstituted triazole-copper complex 3-100. In parallel, in a 

second catalytic cycle, oxidative addition of aryl halide on palladium(0) affords 3-134. Then, 

complex 3-100 undergoes a transmetalation with the aryl halide-palladium complex 3-134 to get 

an aryl-palladium-triazole complex 3-136 and regenerate the copper halide. Reductive 

elimination then renews palladium(0) species and leads to the formation of the desired 1,4,5-

trisubstituted triazole 3-137. Notably, two side products can be produced during the reaction. 

Complex 3-100 can be protonated to afford the 1,4-disubstituted triazole 3-101 of the CuAAc 

reaction. Additionally transmetalation between palladium(II) complex 3-134 and copper(I) 

acetylide 3-97 can form the internal alkyne 3-135. 
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Scheme 3.52: Mechanism of Cu/Pd catalysed triazole formation.461 

This method was interesting as a large variety of terminal alkyne, and an aryl halide, are 

commercially available. Therefore, a broad scope of substituents on both 4th and 5th position of 

the triazole could be explored.  

We decided to try the method and set up the reaction between azide-L-phenylalanine methyl ester 

3-116, phenylacetylene, and bromobenzene in the presence of palladium(0) and copper(I) 

(Scheme 3.53). However, only the 1,4-disubstituted triazole was recovered. This suggested that 

the transmetalation step did not work, due to either kinetic or potential issues with the palladium. 

The reaction was repeated with a second batch of palladium, but similar results were observed.  
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Scheme 3.53: Attempt to form 1,4,5-trisubstituted triazole 3-138. 

Thus, we decided to reproduce one of the published compounds. Following a reported 

procedure,462 we synthetized benzyl azide 3-139 from benzyl bromide and sodium azide in 86% 

yield (Scheme 3.54) and then carried out its reaction with phenylacetylene and bromobenzene.  

 

Scheme 3.54: Attempt to synthesise 3-140. 

As showed in the following NMR spectrum, once again only disubstituted triazole was obtained 

(Figure 3.6). 
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Figure 3.6: 1H NMR spectrum of the recovered compound from 3-140 synthesis. 

It was unclear to us why the transmetalation with the palladium cycle seemed to be problematic 

but facing unsuccessful, yet consistent, results we decided to look for an alternative pathway.  

Instead of forming a precursor to our desired triazole 3-137 containing either hydrogen on the 5th 

position or a transition metal, a third possibility would be to synthesise an intermediate containing 

iodine on the same position (Scheme 3.55). This intermediate 3-141 would be stable and isolable 

and the C-I bond, much more reactive than a C-H bond, could then be used in the palladium-

catalysed coupling reaction.  

 

Scheme 3.55: Tri-substituted triazole precursors. 

This procedure was also reported by Sharpless and Vokin,463 and consists of a cycloaddition of 

organic azide and 1-iodoalkyne catalysed by copper(I). Similar to the CuAAC mechanism, two 

mechanisms are plausible and likely to coexist (Scheme 3.56). In a first catalytic cycle copper(I) 

interacts with the iodoalkyne to afford acetylide complex 3-97. Following the previously 

described mechanism copper-triazole complex 3-100 is formed and final copper exchange 
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through -bond metathesis, with a second molecule of iodoalkyne, regenerates 3-97 and releases 

the 5-iodotriazole 3-141. Alternatively, alike the dinuclear CuAAC cycle, iodoalkyne is activated 

by -complexation with copper and then proceeds to a 6-member cyclization 3-143. Final 

interaction with iodoalkyne affords 3-141 and regenerates 3-142. 

 

Scheme 3.56: Mechanism of formation of 5-iodotriazole.463 

The intermediate iodo-triazole 3-141 was reported to be reactive under a variety of coupling 

conditions such as Heck, Suzuki and Sonogashira.464–466 Although this method offered a vast 

scope of reaction and was of great potential, the rationale behind the investigation of the previous 

pathway was due to the previously mentioned trisubstituted triazole patent.447 Indeed, their 

synthetic route was based on this procedure, and we wanted to get a maximum of distance between 

our work and theirs. Importantly the patented structure contains an alkynyl group on the 5th 

position. Therefore, despite using a similar intermediate, we could still diverge from the patent 

by avoiding the Sonogashira reaction and focus on another coupling. 

Our interest in trisubstituted triazole, as well as our decision to switch to this synthetic pathway, 

was soon supported by an eminent publication. Indeed, simultaneously to our work, the authors 

of the patent disclosed the biological results of their scaffold.467 Several crucial factors were 

highlighted by their SAR studies (Scheme 3.57). First of all, the (S)-stereochemistry of the initial 

amino acid seemed to be essential for potency, as switching to (R)-configuration resulted in a loss 

of activity. Secondly, the group on the 4th position had limited impact on the potency, and the 

position was therefore tolerant to modifications. On the other hand, the size of the group attached 

to the alkynyl had a great effect on the activity, and groups bigger than phenyl should be avoided. 

Finally, the alkynyl group was crucial for the scaffold as a reduction to alkene and alkane led 

from sub-nanomolar HDAC8 activity to inactive compounds.  
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Scheme 3.57: Selection of important SAR of 5-alkynyl trisubstituted triazole scaffold.467 

This last information profoundly influenced the design of our molecule. To our understanding, 

the alkynyl fits in an enzyme groove and acts as a linker to place the R group in a hydrophobic 

pocket. Increasing the size of the group tends to decrease the potency likely because of a hindrance 

with the pocket size. Moreover, reduction of the linker changes the direction in which the R group 

is pointing. Thus, fitting in the hydrophobic pocket becomes impossible, and the disturbance 

results in a loss of potency.  

Consequently, to substitute the alkynyl linker of this patented scaffold, we looked for a small and 

flat structure that could keep a comparable alignment, in the continuity of the triazole bond, to 

bring a hydrophobic group in the enzyme’s pocket. We reckoned that an aromatic ring could 

match those factors and opt for a 2,5-disubstituted thiophene linker. 

Turning our attention to the synthesis and following Sharpless procedure,463 N-iodomorpholine 

hydrogen iodine salt 3-144 was synthesised in 88% yield by reaction of iodine on morpholine 

(Scheme 3.58). Phenylacetylene was then treated with copper(I) iodine and N-iodomorpholine to 

give 1-iodo-phenylacetylene 3-145 in 98% yield. Similarly, 1-fluoro-4-(iodoethynyl)benzene 3-

146 was synthesised in 70% yield. 
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R group Compound number Yield 

H 3-145 98% 

F 3-146 70% 

Scheme 3.58: Synthesis of Iodoalkyne. 

Following the synthesis of these compounds, we could focus on the formation of the triazole. In 

the same Sharpless publication, 1,4,5-trisubstituted triazoles were successfully prepared in a two-

steps one-pot synthesis. 5-Iodotriazoles were primarily formed by copper(I) catalysis. Then, in a 

Suzuki-Miyaura coupling, palladium(0) and boronic acid were added to afford the desired 1,4,5-

trisubstituted triazole. This procedure was interesting as several thiophene boronic acids are 

commercially available and one-pot reaction speeds up the synthesis.  

Accordingly, azide intermediate 3-121 underwent copper catalysed cyclisation by reaction with 

iodoalkyne and copper(I) iodide in the presence of triethylamine. Following consumption of 

starting material, monitored by TLC, palladium(0) acetate, thiophene-2-boronic acid, and excess 

of trimethylamine were added (Scheme 3.59). Several couplings were attempted, but each 

reaction resulted in the isolation of the corresponding 1,4-disubstituted triazole, and no desired 

compounds were obtained.   
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R1 R2 Product number Isolated Compound 

  

3-147 

 
  

3-148 

 
 

3-149 

 
 

Scheme 3.59: Attempt of synthesis of 5-thiophenyl triazole. 

These results were surprising, and the formation of the disubstituted triazole could come from 

reductive dehalogenation of the 5-iodotriazole intermediate, which has been shown to occur in 

the presence of copper salt.468 

Consequently, we decided to opt in favour of a distinct two-step synthesis and to isolate the 

intermediate 5-iodotriazole. This would not only allow us a proper control of the formation of this 

crucial intermediate but would also remove the copper salt from the media. Following the same 

procedure, 5-iodotriazole were synthesised and successfully isolated (Scheme 3.60).  
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R1 group Compound number Yield 

Phenyl 3-151 64% 

4-Fluorophenyl 3-152 34% 
 

Scheme 3.60: Synthesis of 5-iodotriazole. 

Subsequently, Suzuki couplings were tried again (Scheme 3.61). This was investigated with the 

help of Faustin Falissard, a visiting undergraduate student that I supervised, who performed the 

reaction in entry 4-6. Once more, several conditions were used,465,466,469 but no desired products 

were obtained. Instead, mixtures of starting material and 1,4-disubstituted triazole were 

recovered.  
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Entry R1 Organoborane Coupling conditions 

1 

 
 

PdCl2(PPh3)2 0.04 eq, K2CO3 1 eq, 

Organoborane 1.5 eq, 

THF, 70 °C, 16 h 

2 

 
 

Pd(OAc)2 0.04 eq, Et3N 1 eq, 

Organoborane 1.5 eq, 

THF, 65 °C, 16 h 

3 

 
 

PdCl2(PPh3)2 0.04 eq, KOH 2 eq, 

Organoborane 1.5 eq, 

THF, 75 °C, 16 h 

4 

  

Pd(PPh3)4 0.05 eq, K3PO4 2 eq, 

Organoborane 2 eq, 

Dioxane, 90 °C, 16 h 

5 

  

Pd(OAc)2 0.04 eq, K3PO4 5 eq, 

Organoborane 2 eq, 

DMF, 100 °C, 16 h 

6 

  

PdCl2(PPh3)2 0.04 eq, KOH 2 eq, 

Organoborane 1.5 eq, 

THF, 60 °C, 16 h 

Scheme 3.61: Suzuki coupling conditions. 

We could then conclude that the results of the one-pot sequence were not solely due to the 

presence of copper salt in the reaction mixture. Another example of reductive dehalogenation 

with palladium catalyst has also been reported.470 According to the authors, this could be due to 

steric hindrance at the 1st and 4th position of the triazole. This could indeed prevent the 

transmetalation process with the boronic acid. As a result, the palladium catalytic cycle would be 

blocked in the oxidative addition intermediate state. The cycle would, therefore, proceed to a -

H elimination/reductive elimination, with a ligand being the source of the -H atom, to form the 

dehalogenated 1,4-disubstituted triazole.  
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Future optimisation of conditions of reaction could potentially overcome this issue. Alternatively, 

as the 4th position seems tolerant to a variety of substitute, reduction of the size of the group on 

the 4th position could also help the reaction. Those will be part of future work for this scaffold. 

2.4 Scaffold 4: hydantoin-based inhibitors 

Hydantoins, or glycolylureas, are interesting heterocyclic structures, which have been 

successfully used in drug development, and currently, form an important class of anticonvulsant.  

In regards to their achievement, we became interested in the structure and its use in the 

development of HDAC inhibitors. Besides, hydantoin structure can be seen as a non-classical 

isoterism of the diketopiperazine derivative scaffold and the triazole scaffold previously 

described. Introduced by Langmuir in 1919,471 and later extended by Friedman,472 the concept of 

bioisoterism refers to the replacement of a group in a molecule by another group of similar 

electronic or steric arrangement. As shown below (Scheme 3.62) hydantoin does share similarities 

with both diketopiperazines and, to some extent, triazoles. 

 

Scheme 3.62: Hydantoin isoterism. 

Checking the literature, we found that several hydantoins bearing hydroxamic acid as zinc binding 

group had been reported as matrix metalloproteinase inhibitors.473–476 Surprisingly this structure 

has not been investigated for HDAC inhibition. Besides only one publication reported  the use of 

a hydantoin, in virtual screening, on Schistosoma mansoni HDAC8 inhibition.324 This validated 

our decision to explore hydantoin-based structures as HDAC inhibitors.   

Over the years, several synthetic pathways were developed to synthesise hydantoins,477 but two 

are historical of great interest. The 1st method was reported by Urech in 1873.478 Mixing an amino 

acid and potassium cyanate (Scheme 3.63), the amine proceeds to a nucleophilic attack on the 

cyanate to form an intermediate carbamide 3-153. Internal condensation of the urea and the 

carboxylic acid then leads to the formation of the cyclic intermediate 3-155. Finally, loss of water 

affords hydantoin 3-156. 
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Scheme 3.63: Urech hydantoin synthesis. 

The second method is known as the Bucherer-Bergs reaction and consists in the reaction between 

a carbonyl, potassium cyanide and ammonium carbonate (Scheme 3.64).479 In a first step, 

cyanohydrin 3-157 is formed by the nucleophilic addition of cyanide on the carbonyl. 

Nucleophilic substitution, by reaction with ammonium ion, then leads to the formation of an 

aminonitrile intermediate 3-158. Next, nucleophilic addition on carbon dioxide leads to cyano-

carbamic acid 3-159, which then undergoes an intermolecular cyclization to 5-imino-oxazolidin-

2-one 3-160. Subsequently, rearrangement briefly opens the cycle to form an isocyanate 3-161, 

which spontaneously cyclises to afford the hydantoin. 3-162.  
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Scheme 3.64: Bucherer-Bergs reaction. 

As previously mentioned, hydantoin was seen as a bioisostere of triazole. Thus, our main 

objective was to develop a class of inhibitors analogue to the triazole scaffold. Accordingly, we 

wanted to keep an amino acid core, especially phenylalanine, on the hydroxamic acid part of the 

molecule. Thus, we chose to form the hydantoin from the amine end of phenylalanine. Although 

the previously described synthetic pathways have been successfully used in the past, a more recent 

publication became of great interest to us. Liu and coworkers published in 2014 a new method 

for the synthesis of 3,5-disubstituted or 3,5,5′- trisubstituted chiral hydantoins from Boc-protected 

dipeptides (Scheme 3.65).480 Activation of the peptide bond with triflic anhydride leads to the 

formation of an intermediate salt 3-163 that then undergoes an intramolecular cyclisation to 

release both triflic acid and intermediate 3-164. Two possible mechanisms are then likely to afford 

the hydantoin 3-167. In a first pathway, the tert-butyl protecting group is then expelled to form 

an oxazolidone 3-165, which then goes through Mumm rearrangement to give 3-167. 

Alternatively, a second pathway forces ring opening to give the isocyanate 3-166 that then 

cyclizes to hydantoin.  
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Scheme 3.65: Synthesis of hydantoin from Boc-dipeptide.480 

This procedure fitted perfectly with our will to build the hydantoin structure from amino acids. 

Moreover, it also easily introduces a second chiral centre in the molecule, in the 5th position. 

We decided to introduce a protected hydroxamic acid prior to the hydantoin formation. Thus, 

starting from Boc-protected L-phenylalanine, we used CDI to activate the carboxylic acid and 

converted it to O-benzylhydroxamic acid 3-168 in 86% yield (Scheme 3.66). Boc-protection was 

then hydrolysed in acidic conditions, and the free amine 3-169 was obtained in 99% yield.  

 

Scheme 3.66: Synthesis of NH2-L-Phe-NHOBn 3-169. 

Amine 3-169 was then coupled to several Boc-protected amino acids to form the corresponding 

dipeptides using EDC/HOBt or HBTU (Scheme 3.67).  
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Boc-AA-OH Compound number Product Yield 

Boc-L-Phe-OH 3-170 

 

63% 

Boc-L-Pro-OH 3-171 

 

35% 

Boc--Ala-OH 3-172 

 

18% 

Scheme 3.67: Synthesis of Boc-dipeptide-O-benzyl hydroxamic acid. 

Following this synthesis, we applied the previous protocol for the cyclisation. The dipeptide was 

dissolved in dry acetonitrile and a base, either pyridine or 2,6-lutidine was added followed by 

dropwise addition at 0 °C of triflic anhydride (Scheme 3.68). The reaction mixture was then stirred 

at room temperature. Colour change of the reaction mixture was observed, and the reaction 

progression, checked by TLC, showed no remaining starting materials after two hours. However, 

no desired products were recovered after workup and purification by flash chromatography. 

Instead, NMR showed that only starting material was recovered.  
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Scheme 3.68: Attempt of hydantoin cyclization. 

We thought that it could be due to a kinetic issue. A rapid reaction with triflic anhydride and 

activation of amide bond could explain the visual changes we observed, but the ring closure could 

then be slower than expected, and aqueous workup could quench the activated intermediate to 

give back the starting material. Thus, we repeated the reaction and let the mixture stir overnight, 

instead of two hours, but we obtained the same result.  

Another potential explanation could be a competition between the amide and the hydroxamic acid 

during the activation step (Scheme 3.69). The reaction between the triflic anhydride and the 

hydroxamic acid, instead of amide, would prevent the formation of the hydantoin. Besides, only 

starting material was recovered and no apparent side product was formed. Applying the same 

intramolecular pathway to activated hydroxamic acid would give a complex 8-membered ring. 

This structure has not been reported, and its formation under these conditions is therefore unlikely.  
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Scheme 3.69: Activation of hydroxamic acid and resulting cyclisation. 

Consequently, we decided to change the synthetic route. In the first part, we would synthesise 

methyl ester dipeptide, and then form the hydantoins. Subsequently, they would be converted to 

hydroxamic acid. Dipeptides were synthesised by coupling L-phenylalanine methyl ester with 

Boc-protected amino-acid (Scheme 3.70).  
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Boc-AA-OH Product 
Compound 

number 
Yield 

Boc-L-Ala-OH 

 

3-174 68% 

Boc-L-Phe-OH 

 

3-175 65% 

Boc-D-Phe-OH 

 

3-176 95% 

Boc-L-Tyr(OBn)-OH 

 

3-177 82% 

Scheme 3.70: Synthesis of Boc-dipeptide methyl ester. 

 

The triflic anhydride and pyridine procedure was then applied to these dipeptides. By contrast 

with O-benzylhydroxamic acid dipeptide, hydantoins were successfully formed and isolated 

under the same conditions (Scheme 3.71).  
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Starting material Product 
Compound 

number 
Yield 

  

3-178 54% 

  

3-179 73% 

  

3-180 98% 

 
 

3-181 67% 

Scheme 3.71: Synthesis of hydantoin methyl ester. 

 

We then decided to convert these compounds to hydroxamic acid by direct nucleophilic 

substitution with hydroxylamine in methanol (Scheme 3.72). However, it turned out that 

solubility in methanol was low, and no reaction was observed. The reaction was repeated, and a 

second solvent was added to increase the solubility, but similar results were obtained by addition 

of THF and acetonitrile.  
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Scheme 3.72: Attempt of direct conversion of hydantoin methyl ester to hydroxamic acid. 

Thus, we decided to firstly form a carboxylic acid and then convert it to hydroxamic acid. 

Hydantoin methyl esters were hydrolysed using HCl in dioxane at 80 °C (Scheme 3.73). 
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Starting material Product 
Compound 

number 
Yield 

 
 

3-184 85% 

 
 

3-185 98% 

 

 

3-186 82% 

Scheme 3.73: Hydrolysis of methyl ester 

Importantly, the 1H NMR spectrum of 3-186 showed a split signal of one of the CH2 in the 3.1-

2.4 ppm region (Figure 3.7). Moreover, the signal from the four aromatic protons of the tyrosine 

was also split. Based on these observations we concluded that epimerization had occurred on the 

tyrosine.  
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Figure 3.7: 1H NMR spectrum of 3-186. 

In a subsequent step, the newly formed carboxylic acids were activated with CDI and converted 

to hydroxamic acid. We decided to investigate the use of different sources of protected 

hydroxylamine.  

Firstly, we used O-benzylhydroxylamine on 3-186. Thus, both protecting groups would be 

removed simultaneously in a final step. Surprisingly, two compounds were isolated (Scheme 

3.74). The first one corresponded to the desired product 3-187 and was the major product. 

However, the second compound only displayed 14 aromatic protons and 2 CH2 protons from an 

O-benzyl group in the 1H NMR spectrum (Figure 3.8). Our first thought was to consider it as 

remaining starting material, but a combination of 13C NMR, 2D NMR (COSY, HSQC, HMBC, 

in Appendix) and mass-spectrometry revealed the successful introduction of the protected 

hydroxylamine but the loss of tyrosine protection.  



   

 

164 

 

 

 

Scheme 3.74: Formation of 3-187 and 3-188. 

 

Figure 3.8: 1H NMR spectrum of the second compound isolated with 3-187. 

Compound 3-187 then reacted with BCl3 at low temperature over 4 hours, and the reaction was 

purified after completion. Analysis of the isolated product revealed that only the protection of the 

hydroxamic acid had been removed, while the tyrosine remained intact. Therefore, it 

corresponded to the final product 3-189.  



   

 

165 

 

 

 

Scheme 3.75: Synthesis of the final compound 3-189. 

Finally, we used TBDMS-protected hydroxylamine on 3-185 (Scheme 3.76). However, we 

observed some deprotection during the purification, and the free hydroxylamine 3-190 was 

directly isolated. 

 

Scheme 3.76: Synthesis of compound 3-190. 

2.5 Scaffold 5: Praziquantel – HDACi hybrid 

In chapter 2, we discussed the enormous potential of multitarget drugs. One of the main 

advantages of this approach is to prevent the development of resistance and the loss of potency 

of a therapy. Besides, we also mentioned that, among the epigenetic mechanisms, HDAC 

inhibition had been the preferential target in the development of dual inhibitors. Thus, we sought 

to develop a molecule with such properties. 
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Turning more specifically to our project, one of our main objectives was to work on 

schistosomiasis.  

On the one hand, HDAC inhibition with vorinostat was showed to be efficient against 

Schistosoma worms with a therapeutic effect leading to the reduction of the infectivity and an 

increase in mortality induced by the inhibitor.  

On the other hand, we have the commercially available drug praziquantel at our disposal, which 

is highly efficient in the treatment of the infection but started to experience drug resistance from 

the parasite. Thus, the idea to combine both compounds to create a potential dual-target molecule 

naturally emerged.  

Looking at the structure of the two drugs, we decided to connect them using the shared amide 

bond (Scheme 3.77). The fused tricyclic part from praziquantel would be used as the cap group 

while the hydroxamic acid alkyl chain from vorinostat would play the role of linker and zinc 

binding group. 

 

Scheme 3.77: Design of a potential multitarget compound. 

Regarding the synthesis of this praziquantel-vorinostat hybrid, it started with the synthesis of the 

praziquanamine intermediate. Following a reported procedure,481 chloroacetyl chloride 3-192 
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reacted through nucleophilic substitution with phenethylamine in the presence of NaHCO3 to give 

the chloroacetamide 3-193 in 86% yield (Scheme 3.78).  

 

Scheme 3.78: Synthesis of chloroacetamide 3-193. 

The intermediate 3-193 then reacted with amino-acetaldehyde dimethyl acetal, in a novel 

nucleophilic substitution, to give the dimethyl acetal 3-194. Without isolation, the addition of 

sulfuric acid triggered the cyclisation to form the praziquanamine 3-195 in 41% overall yield after 

two steps.    

 

Scheme 3.79: Synthesis of praziquanamine 3-195. 

The reaction of cyclisation was based on the method published by Pictet and Spengler in 1911.482 

In a successive two steps sequence, methyl-acetals are activated by the acidic condition, then 

substituted by nucleophilic attack of the nitrogen to form an iminium ion 3-197. Then a stepwise 

internal cyclisation with loss of aromaticity led to the formation of intermediate 3-201. A final 

deprotonation step restores the aromaticity and results in the substituted tetrahydroisoquinoline 

3-195. The cyclisation to form the 1,2,3,4-tetraisoquinoline derivative corresponds to a 6–endo-

trig reaction and is favoured according to Baldwin’s rules.483 However, Pictet-Spengler reaction 

is usually tricky when a non-substituted phenyl is involved, and superacids or high temperature 

are generally used to force the reaction.484 Nonetheless, in this case, the presence of the acyl group 

on the reacting nitrogen leads to the formation of an N-acyliminium ion intermediate 3-200 more 

electrophilic than a simple iminium ion and more sensitive to cyclisation.485 The reaction could, 

therefore, be done at room temperature.  
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Scheme 3.80. Pictet-Spengler reaction mechanism. 

Praziquanamine 3-195 then reacted with methyl 8-chloro-8-oxooctanoate by nucleophilic 

substitution to form a methyl ester precursor 3-202 in 88% yield (Scheme 3.81). It was later 

converted to hydroxamic acid using hydroxylamine, potassium hydroxide, and potassium cyanate 

to give the final compound 3-191 in 19% yield.  

 

Scheme 3.81: Synthesis of hybrid compound 3-191. 

Alternatively, the O-benzylhydroxamic acid linker could be prepared in a two-step reaction. 

Methyl 8-chloro-8-oxooctanoate was dissolved in THF and reacted with O-benzylhydroxylamine 

hydrochloride and DIPEA to afford compound 3-203 in 83% yield. The methyl ester was then 

hydrolyzed to carboxylic acid 3-204 with lithium hydroxide in 88% yield.     



   

 

169 

 

 

 

Scheme 3.82: Synthesis of linker 3-204. 

2.6 Scaffold 6: 4-amino-2-hydroxybutanoic acid derivative 

As mentioned in chapter 2, a crystal structure of SmHDAC8 without inhibitor has been reported, 

but a closer look at the catalytic site revealed the presence of an L-tartrate from the buffer.322  

Carboxylic acids are rather weak zinc binding groups because of their monodentate interaction 

with the metal. However, the presence of a hydroxyl group on the -position could be seen as a 

structure derived from a hydroxamic acid (Figure 3.9). Based on the crystal structure,322 

interactions are expected between this hydroxyl group and the zinc atom. Thus -hydroxyl 

carboxylic acid is a bidentate zinc binding group, and to our knowledge, HDAC inhibitors based 

on this structure have not been reported.  

 

Figure 3.9: View of the interaction of L-tartrate with SmHDAC8 catalytic zinc ion.  
Taken from Marek et al.322 
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Moreover, it is worth noting that additional hydrogen bonds were observed. Indeed, the -

hydroxyl group is forming a hydrogen bond with a close-by histidine H142, while the second 

carbonyl is bonding to a neighbouring lysine K20. These additional interactions could also be 

investigated.  

This structure piqued our curiosity, and we started investigating. However, we decided only to 

synthesise a couple of compounds to evaluate their potential interest as HDAC inhibitors and keep 

these structures as part of future work.  

The -hydroxyl-carboxylic acid compounds were obtained by nucleophilic substitution of (2S)-

4-amino-2-hydroxybutanoic acid on acyl chloride at room temperature (Scheme 3.83). The nature 

of the acyl chlorides was chosen to get a small aromatic cap group and a linker chain of 6-7 atoms. 

 

Acyl Chloride Product 
Compound 

number 
Yield 

 

 

3-205 54% 

 

 

3-206 55% 

Scheme 3.83: Synthesis of 2-hydroxybutanoic derived compound 3-205 and 3-206. 
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3. Biological evaluation 

Now that potential inhibitors had been synthesised, we were ready to evaluate their inhibitory 

activity on HDAC.  

3.1 Principle of the inhibition assays 

3.1.i HDAC enzymatic inhibition assay 

The compounds were first evaluated using an enzymatic assay following a previously described 

procedure.486 

In this two-step assay, the fluorogenic substrate, which comprises a sequence with an acetylated 

lysine, is incubated with human recombinant HDAC. Then, the substrate is treated with a lysine 

developer solution that releases a fluorophore from the substrate. The light emission, resulting 

from the excitation of the fluorophore, can then be quantified with a fluorescence reader.  

The developer consists of an enzyme called trypsin, which cleaves the peptide chain at the lysine 

residue. In the assay, the fluorophore is initially linked to the acetylated substrate in an inactive 

form (Figure 3.10). After incubation, and deacetylation by the HDAC, the trypsin recognises the 

free lysine and cleaves the peptide, releasing an activated dye. Then using a specific wavelength, 

the dye is excited, and the fluorimeter measures the resulting emission at a precise wavelength.  

 

Figure 3.10: Principle of the fluorogenic HDAC assay. 

In the evaluation of the inhibition potency of a compound, the inhibitor is added during the first 

step of the assay. The inhibition of the HDAC activity results in a reduced amount of deacetylated 

substrate. Thus, after treatment with the developer, a smaller number of active dyes are released 

in the mixture, and the fluorescence measured by the fluorimeter decreases accordingly in a dose-

dependent manner. 

The compounds activity was measured at different concentration in a dose-response experiment 

in order to determine the half maximal inhibitory concentration (IC50). To this end, six to seven 



   

 

172 

 

 

concentration points for each compound were evaluated, and the resulting percentage of activity 

was fitted in a sigmoid dose-response curve.  

An example of the sigmoidal dose-response curves obtained with the enzymatic evaluation is 

shown in Figure 3.11. 

 

Figure 3.11: Dose-response curves showing the effects of compound 3-40 on HDAC6 
enzymatic activity (n = 2). 

The X-axis is in logarithm of concentration (Molar); the Y-axis is the % of activity relative to 100% 
activity (HDAC6 + substrate, no inhibitor). 

Using similar assays, several compounds were also tested on other human HDACs as well as 

parasite HDACs.  

To determine the enzymatic activity of our compounds, we collaborated with the groups of Prof. 

M. Jung from the University of Freiburg in Germany and Prof. L. Bischoff from the Rouen 

Normandy University in France who performed the enzymatic assays. In addition, both Prof. M. 

Jung and Prof. L. Bischoff performed SmHDAC8 inhibition assays, and Prof. M. Jung carried out 

TcDAC2 inhibition assay.  

3.1.ii Cell viability assay 

In addition to the HDAC enzymatic assay, and in order to determine if the activity could be 

translated to pharmacological effects in cells, several compounds were tested in three AML 

cellular models, namely MV4-11, U937 and THP-1 cell lines. 

The CellTiter-Glo® Luminescent Cell Viability Assay is a method that detects the presence of 

metabolically active cells in culture based on quantitation of the ATP present. This assay is based 

on the established proportionality between the amount of ATP and the number of cells in the 

culture.487  
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The homogeneous assay procedure involves adding a single reagent (CellTiter-Glo® Reagent) 

directly to the cells after incubation with the HDAC inhibitors. The reagent then induces the cell 

lysis, and the action of the Ultra-Glo™ Recombinant Luciferase generates a stable luminescent 

signal proportional to the amount of ATP present in the culture. The luciferase reaction for this 

assay requires the presence of Mg2+ and oxygen to produce bioluminescence and is shown in 

Figure 3.12. 

 

Figure 3.12: CellTiter-Glo® reaction. 
Adapted from manufacturer manual. 488 

To evaluate the antitumor effect of our compounds, we collaborated with Dr M. T. Borrello from 

the French INSERM U1068 Cellular Stress Group in Marseille who carried out the cell viability 

assay. In addition, Dr M. T. Borello also performed western blot analysis. 

3.2 Results and discussion 

3.2.i Imidazole-based scaffold 

 “Closed” analogue 

As previously mentioned, Bertrand Lecointre had first investigated the imidazo-ketopiperazine 

scaffold prior to my arrival. In addition, compound 3-29, 3-36 and 3-37 had been evaluated in the 

enzymatic assay on HDAC1, HDAC6 and HDAC8.399 The results of these assays are integrated 

into this section as part of the general evaluation of the scaffold. On the other hands, further 

biological evaluations were done using the compounds that were synthesised in chapter 3. The 

molecular docking studies and the cell assays therefore fully result from this PhD work. 

The initial investigation of the inhibition activity focused on HDAC6, and the results are shown 

in Table 3.4. 
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Compound 
IC50 (nM) 

(n = 1) 

3-29 74  

3-36 1945  

3-37 333  

Table 3.4: Activity of 3-29, 3-36 and 3-37 in enzymatic inhibition assay on HDAC6.399 

The first conclusion from these results is the confirmation that the linker size has a substantial 

impact on the activity. A closer look at the imidazo-ketopiperazine scaffold with an alkyl linker 

of respectively five carbons (3-36), six carbons (3-29) and seven carbons (3-37) reveals an 

optimum size of linker. Indeed 3-29, which shares a similar linker with vorinostat, is the most 

potent inhibitor of HDAC6.  

A likely explanation of the observed SAR comes from a balance between strong hydroxamic acid 

chelation to the zinc ion in the active site of the HDAC and proper interaction of the cap group 

with the enzyme rim.  

In the case of the optimum linker size (3-29), the high activity results from the best combination 

of strong chelation to the zinc atom and enzyme rim interaction.  

Regarding the seven carbon linker (3-37), we observe a reduced activity. Yet still, the compound 

presents an interesting sub-micromolar inhibition. We hypothesise that the interaction between 

the zinc binding group and the active site is poorly affected by the extension of the linker. 

However, the elongation of the alkyl chain could disrupt the interaction with the rim, thus 

lowering the activity. 

On the other hand, with a short linker (3-36), we observe an important loss of potency. As 

mentioned before the role of the linker is not only to allow the zinc binding group to reach the 

active site of the enzyme but also to favour the interaction with the rim. Accordingly, we identified 

two potential explanations for this reduced activity. On the one hand, it could be due to a weaker 

interaction between the hydroxamic acid and the zinc ion. A five-carbon alkyl chain could be too 

short to adequately fulfil its duty as a linker and fail to enable proper chelation. The hydroxamic 

acid being unable to reach the active site, the measured activity would therefore mainly result 

from the cap-enzyme rim interaction. On the other hand, the zinc-binding could be the 

predominant interaction due to the strong affinity between the hydroxamic acid and the zinc 

cation. In this case, the linker could partially drag the cap group into the enzyme channel and 

disturb its interaction with the rim.  
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The activity of the imidazo-ketopiperazine compounds was also evaluated against other isoforms 

of HDAC (Table 3.5).  

Compound HDAC1 IC50 (nM) HDAC8 IC50 (M) 

3-29 879 0.97 

3-36 4493 N/A 

3-37 826 2.81 

Table 3.5: Activity of compound 3-29, 3-36 and 3-37 against HDAC1/8 (n = 1).399 

We were glad to observe that the compounds were all potent HDAC1 inhibitors with a micromolar 

or submicromolar IC50. However, they all presented a lower inhibition effect than against 

HDAC6. Similar to the preliminary observation, the less potent compound corresponded to the 

shortest linker, while the two other compounds shared a nanomolar activity. In contrast, a more 

significant difference was observed against HDAC8 with 3-29 maintaining a submicromolar IC50 

while the potency of 3-37 dropped to over 2.5 micromolar IC50.  

Following these preliminaries results obtained by Bertrand Lecointre, we tried to understand the 

evolution of the activity between the different isoforms of HDAC.  

We decided to model docking of the inhibitors into the enzyme active site. Figure 3.13 shows the 

results of these docking studies that were operated by Prof. W. Sippl from the Martin-Luther 

University of Halle-Wittenberg in Germany. 

In the first place, we examined the interaction of 3-29 (Figure 3.13A) and 3-37 (Figure 3.13B) 

with HDAC6. As expected, we observe bidentate chelation of the hydroxamic acid with the zinc 

cation for both compounds. Moreover, a stabilising hydrogen bonding is predicted between the 

aspartic acid residue D497 of the enzyme and the amido part of the imidazo-ketopiperazine for 

both compounds. In addition, two hydrogen bonds are predicted, in the catalytic site, between the 

hydroxamic acid and the histidines H610 and H611. On the other hand, the observed difference 

in potency between 3-29 and 3-37 could be due to the orientation of the cap group on the rim. 

Indeed, the docking of 3-29 forecast that the benzyl on the imidazo-ketopiperazine fits in a 

hydrophobic pocket created by the proline P501 and the leucine L749 residues. Meanwhile, the 

extended linker of 3-37 is predicted to force the phenyl out of the pocket and flip the cap group 

to the opposite orientation, thus slightly destabilising the interaction compared to 3-29.  
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Figure 3.13: Molecular docking of compounds (A) 3-29 and (B) 3-37 in the HDAC6 active 
site (PDB ID: 5EDU). Docking (C) of 3-37 in the HDAC1 active site (PDB ID: 5ICN) and (D) 

of 3-29 in the HDAC8 active site (PDB ID: 2V5X) are also shown.  
Hydrogen bonds are shown as orange coloured dashed lines, coordination between the hydroxamic 
acid and the zinc ion (coloured brown) is shown as green coloured dashed lines. Conserved water 
molecules in the active site are shown as red spheres. Figure supplied by Prof. Sippl. 

Then we turned our attention to the docking of 3-37 with HDAC1 (Figure 3.13C). Surprisingly, 

the chelation with the zinc cation is predicted to be only monodentate. However, the hydroxamic 

acid is still involved in two hydrogen bonds in the catalytic site. Besides, the imidazo-

ketopiperazine is still expected to interact with a surrounding amino acid residue, but with the 
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aspartic acid D99. These predictions are consistent with the experimental results. The loss of 

potency compared to HDAC6 inhibition would, therefore, result from weaker chelation to the 

metal while the multiple hydrogen bonds would help to maintain a submicromolar activity. 

Additionally, the imidazo-ketopiperazine would be now binding to the enzyme through its 

imidazole ring. This interaction could block the cap group in a single position and explain that 3-

29 and 3-37 shares similar IC50 values. 

Finally, we looked at the docking between 3-29 and HDAC8 (Figure 3.13D). In this case, the 

compound is once again chelated bidentately to the metal, but only one hydrogen bond is 

predicted. More importantly, the imidazo-ketopiperazine end of the molecule is sticking out of 

the enzyme pocket and is more exposed to the solvent than on the other isoforms. The only 

predicted interaction with the amino acid residues of the enzyme is between the phenylalanine 

F208 and the benzyl side chain of the scaffold. The relatively similar activity of 3-29 on HDAC8 

compare to HDAC1 could, therefore, be due to the recovery of stronger chelation which could 

compensate the reduction of side interactions with the enzyme. However, the extended alkyl chain 

of 3-37 could expose the compound even more to the solvent and prevent the interaction with 

F208, thus explaining the significant drop in potency.  

To sum up, the short linker of 3-36 impairs its activity against both HDAC1 and HDAC6, thus 

limiting its interest. On the other hand, both compounds 3-29 and 3-37 show significant activity 

on HDAC1, HDAC6 and HDAC8 and offer a noteworthy selectivity (Table 3.6).  

Compound HDAC1/HDAC6 HDAC8/HDAC6 

3-29 11,9 13,1 

3-36 2,3 N/A 

3-37 2,5 8,4 

Table 3.6: Selectivity of compound 3-29, 3-36 and 3-37 between HDAC1/6 and HDAC8/6.  

As our most interesting inhibitor 3-29 was displaying a selectivity between the HDAC isoforms, 

we decided to evaluate its inhibitory effect against all 11 human HDACs. The French CRO Cerep 

performed these assays, and the results are shown in Table 3.7.  

It is important to note that the tests were performed with some differences in the assay conditions. 

Therefore, the values are not directly comparable to the previously described activity.  

In this assay, compound 3-29 showed substantial inhibition of HDAC6/8 and a more limited 

activity against HDAC1. Conversely, only little inhibition was observed on the others HDACs. 

Consequently, this compound has a remarkable degree of isoform selectivity with a 13-fold 
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degree of selectivity between the two preferential targets HDAC6 and HDAC8. Moreover, the 

inhibitor is 45-fold less active against HDAC1 and has minimal activity (IC50>10 M) on the 

other HDACs isoforms. This compound, therefore, presents a higher selectivity than ricolinostat 

(Table 3.8), a selective HDAC6 inhibitor currently in clinical candidate against multiple myeloma 

and metastatic breast cancer.489,490  

  class I isoforms class IIa isoforms class IIb or IV isoforms 

HDAC1 57%, IC50: 7.3 M HDAC4 4% HDAC6 99%, IC50: 160 nM 

HDAC2 32% HDAC5 23% HDAC10 44% 

HDAC3 38% HDAC7 9% HDAC11 10% 

HDAC8 90% IC50: 2.1 M HDAC9 1%   

Table 3.7: Percentage inhibition of individual HDAC isoforms by 3-29.  
Values are the mean of two measurements. The assay was performed with a test concentration of 

10 M. IC50 values were determined for HDAC1, HDAC6 and HDAC8.  

Class Isoform 
Potency (fold) / HDAC6 

3-29 ricolinostat 

Class I 

HDAC1 45 12 

HDAC2 > 62 10 

HDAC3 > 62 11 

HDAC8 13 21 

Table 3.8: Selectivity of HDAC6 inhibitors 3-29 and ricolinostat against class I HDAC.489 

Following the evaluation of these compounds on the enzymatic isoforms of HDAC, we decided 

to move to further studies and evaluate their activity on the cellular assay for the growth inhibition 

of cancer cell lines (Table 3.9). Each test was performed in triplicate with an incubation time of 

72 and 96 hours.      
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Compound Cell line 
IC50 (M, n = 3) 72 

h 

IC50 (M, n = 3) 

96 h 

 MV4-11 4.50 ± 0.25 6.75 ± 0.40 

3-29 THP-1 10.4 ± 0.32 9.01 ± 0.30 

 U937 0.90 ± 0.23 0.46 ± 0.72 

 MV4-11 >25 >25 

3-36 THP-1 >25 >25 

 U937 >25 >25 

 MV4-11 1.66 ± 0.18 2.60 ± 0.71 

3-37 THP-1 1.72 ± 0.20 1.70 ± 0.60 

 U937 0.14 ± 0.02 0.31 ± 0.19 

Table 3.9: Cell growth inhibition by compounds 3-29, 3-36 and 3-37 in MV4-11, THP-1 and 
U937 cell lines. 

In agreement with the results of the enzymatic assay, no activity was observed with 3-36 as an 

inhibitor. By contrast, we were pleased to detect a micromolar inhibition with both 3-29 and 3-

37. Interestingly, those compounds were active on every cell line and, in particular, the U397 

lymphoma cell line was highly responsive to the treatment with the inhibitors. However, contrary 

to the enzymatic assay conclusions, the optimum linker size for this assay corresponded to the 

seven carbon alkyl chain of 3-37. In our opinion, this doesn’t result from the intrinsic activity on 

the HDAC but rather from a better cellular penetration due to the increase of lipophilicity.   

We then decided to do a western blot of the U937 cells following treatment with 3-37. This 

analysis revealed a dose-dependent effect on histone H3 and tubulin acetylation level (Figure 

3.14). This suggests that compound 3-37 is active on class I and class II HDAC isoforms.  
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Figure 3.14: Western blot analysis of acetylated H3K9 (A) and acetylated Tubulin (C) and 
their relative loading controls (H3 total and ERK2), after treatment of U937 cells with 

HDAC inhibitor 3-37.  
Western blot signals were quantified by densitometry using Image Lab 6.0 (BIORAD) and signal 

intensities plotted against the loading controls (B and D plots). 

Finally, we decided to investigate whether these compounds could inhibit HDAC in a 

Schistosoma mansoni parasite. Their activity was evaluated in an enzymatic inhibition assay on 

SmHDAC8 (Table 3.10). The reported IC50 corresponds to the mean value of two experiments in 

a dose-response assay.  

 

Compound 
SmHDAC8 IC50 

(µM) 

SmHDAC8/hHDAC8 

3-29 2.20 ± 0.33 2.27 

3-37 0.61 ± 0.03 0.22 

Table 3.10: Enzymatic inhibition of SmHDAC8 by 3-29 and 3-37 and their selectivity 
between SmHDAC8 and hHDAC8. (n = 2) 

Once more, both compounds show a micromolar to submicromolar inhibition. A pleasing 

observation was to find out that, contrary to the results obtained in the human HDAC8 enzymatic 

assay, compound 3-37 turned out to be a highly active inhibitor of SmHDAC8. Even more 

importantly, 3-37 is 4.5-fold more active against the parasite HDAC8 than on its human analogue. 

This selectivity toward the Schistosoma mansoni HDAC8, which is not observed with 3-29, could 

have a significant impact on the development of more selective inhibitors.  
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To sum up, 3-29 and 3-37 are of particular interest as HDAC inhibitors. These two compounds 

showed micromolar to submicromolar activity against different cancer cell line in the cell growth 

inhibition assay. Their effect was shown to affect the histone H3 and the -tubulin acetylation 

level in a western blot. This analysis is consistent with the enzymatic assay on the different HDAC 

which revealed a selective inhibition of HDAC1, HDAC8 and HDAC6 with the latter being the 

most potent target. This selectivity was also predicted in docking studies which correlated with 

the experimental observation. Moreover, although 3-29 corresponded to the most exciting 

compound in enzymatic inhibition assay against human HDAC, both in terms of potency and 

selectivity, the extension of the linker to 3-37 offered better results in cell assays, in all likelihood 

by increasing the cellular uptake. Finally, those compounds are not only potent inhibitors in 

human but also showed a significant effect on the Schistosoma mansoni HDAC8. Besides, 3-37 

also featured notable properties regarding the selectivity with a higher potency on the parasite 

HDAC8 than on its human equivalent.  

The results of this class of inhibitor on human HDAC and leukaemia cells were recently published 

in the Royal Society Philosophical Transaction B journal.491      

 “Open” analogue 

We then turned our attention to compounds 3-38 and 3-40 which are the “open” analogue of 

respectively 3-36 and 3-37 and evaluated their activity on HDAC6 (Table 3.11). With this 

structure, we observed an improvement of the activity. In particular, we found a significant 

difference of potency between the five-carbon linker of 3-38 compared to its analogue 3-36. 

Following the previous hypotheses on the effect of a short linker, the enhanced potency could 

result from the higher flexibility of the cap group. The strong interaction between the hydroxamic 

acid warhead and the zinc cation could drag the imidazole end in the enzyme channel, but the 

higher degree of freedom of the non-cyclized amino acids could still ensure proper interaction 

with the rim. Additionally, the presence of the Cbz-group could offer more possibilities of 

interactions with the surrounding amino acids through hydrogen bonding or -stacking, thus 

increasing the potency.  

Compound IC50 (nM) 

3-38 226 (n = 2) 

3-40 172 (n = 2) 

Table 3.11: Enzymatic inhibition of 3-38 and 3-40 on HDAC6. 

We then decided to evaluate these compounds against the Schistosoma mansoni HDAC8 and the 

Trypanosoma cruzi HDAC2 (TcDAC2). The percentage of inhibition was measured using two 

concentration of inhibitors (Table 3.12). 



   

 

182 

 

 

Compound 
Concentration 

(µM) 

SmHDAC8 

%Inhibition 

TcDAC2 

%Inhibition 

3-38 25 86.5 51.7 

 5 26.2 37.8 

3-40 25 69.5 80.2 TcDAC2 

 5 41.5 56.6  IC50: 5.4 µM 

Table 3.12: Percentage of inhibition of 3-38 and 3-40 on SmHDAC8 and TcDAC2 at 
different concentration. 

Unfortunately, only limited inhibition was observed on the parasite HDACs, so the compounds 

were not submitted to a more detail dose-response assay to determine their IC50. However, an 

exception was made for compound 3-40 on TcDAC2, and an IC50 of 5.4 µM was determined. 

This value usually corresponds to moderate activity in HDAC enzymatic assays and the 

compound would not be considered as a first-class inhibitor. However, no TcDAC2 inhibitors 

have been reported in the literature so far. This compound is, therefore, an exciting hit, and future 

optimisation of the structure could lead to one of the first class of TcDAC2 inhibitors. 

With limited effects on the parasites, we turned our attention to the activity against cancer cells, 

and the compounds were submitted for cell growth inhibition assay. The tests were done in 

triplicate with an incubation time of 72 hours and 96 hours (Table 3.13). 

Compound Cell line 
IC50 (M, n = 3) 

72 h 

IC50 (M, n = 3) 

96 h 

 MV4-11 > 25 > 25 

3-38 THP-1 3.25 ± 0.18 3.24 ± 0.41 

 U937 0.41 ± 0.19 0.33 ± 0.10 

 MV4-11 > 25 > 25 

3-40 THP-1 8.45 ± 0.47 5.05 ± 0.07 

 U937 2.71 ± 0.54 1.80 ± 0.60 

Table 3.13: Cell growth inhibition by compounds 3-38 and 3-40 in MV4-11, THP-1 and 
U937 cell lines. 

The first conclusion from these assays is to observe a selectivity between the cell lines. Contrary 

to their imidazo-ketopiperazine analogues, which are either active on every cell lines or totally 

inactive, these compounds express a cell growth inhibition only on THP-1 and U937 leukaemia 

cell lines. More biological studies would be required to fully understand the difference in activity. 

Nevertheless, we identified potential explanations. The imidazo-ketopiperazine compounds 

showed a selective inhibition against HDAC1/6/8. However, this scaffold could have a different 

profile of inhibition against the HDAC isoforms. Depending on the influence of each HDAC in 
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the cell growth of the different cell lines, the response to treatment with these inhibitors would 

thus be divergent. Additionally, as mentioned in the first two chapters, HDACs are also interacting 

with non-histone proteins, such as p53, and the three cell lines used in the assay are not equal 

regarding their p53 status. Indeed, MV4-11 has a wild-type status while THP-1 and U937 are 

mutated as most AML cells.492 This was shown to affect the antiproliferative activity of MV4-11 

compared to another cell line when treated with HDAC inhibitors.493,494  

The second conclusion from this assay comes from the effect of the linker length. In agreement 

with the enzymatic results, this scaffold is more tolerant to the number of atoms in the alkyl chain. 

Indeed, when a five-carbon linker in 3-36 led to a completely inactive compound in cells, the 

same linker in 3-38 turned out to be preferential in this scaffold and led to an active compound 

both on THP-1 and U937. On the other hand, the extension of the linker to a seven-carbon alkyl 

chain in 3-40 resulted in a loss of potency. This could be due to the high lipophilicity of the 

compound (logP = 5.95, calculated with MarvinSketch 18.19). 

To sum up, keeping the imidazole scaffold uncyclized had several effects on the properties as 

HDAC inhibitors. Both 3-38 and 3-40 are potent HDAC6 inhibitors in the enzymatic assay, and 

the difference in the linker length had limited impact on the activity. In cancer cells, the issue with 

short linkers was overcome, and nanomolar activity on U937 cell line was observed. Moreover, 

this structure is more selective than the imidazo-ketopiperazine scaffold, with strong activity on 

U937, moderate on THP-1 and low activity on MV4-11. Finally, the compounds have limited 

potency on SmHDAC8, but 3-40 was identified as an exciting hit on TcDAC2. 

3.2.ii Triazole-based scaffold 

The scaffold was first tested on enzymatic inhibition assay. Compound 3-119 and 3-130 were 

tested on HDAC6 in duplicate (Table 3.14). 

Compound IC50 (µM) 

3-119 >20 

3-130 15.5 

Table 3.14: Enzymatic inhibition of HDAC6 by 3-119 and 3-130. (n = 2). 

Although substituting the phenyl on the 4th position of the triazole (3-119) to a cyclopropyl (3-

130) slightly improved the potency, those compounds displayed low activity on HDAC6. 

We then decided to evaluate the inhibition properties of 3-119 on SmHDAC8 and TcDAC2 (Table 

3.15). Again, low activity was observed. 
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Compound 
Concentration 

(µM) 

SmHDAC8 

%Inhibition 

TcDAC2 

%Inhibition 

3-119 25 51.6 36.4 

 5 37.0 36.1 

Table 3.15: Percentage of inhibition of 3-119 on SmHDAC8 and TcDAC2 at different 
concentration. 

Despite these disappointing preliminary results, we decided to submit the different compounds of 

the scaffold to the cell growth inhibition assay (Table 3.16). Indeed, the compounds could still be 

potent on other HDAC isoforms and present antitumor effect.  

Compound Cell line 
IC50 (M, n = 3) 

72 h 

IC50 (M, n = 3) 

96 h 

 MV4-11 > 25 > 25 

3-119 THP-1 > 25 > 25 

 U937 > 25 > 25 

 MV4-11 > 25 > 25 

3-127 THP-1 > 25 > 25 

 U937 1.50 ± 0.70 0.70 ± 0.08 

 MV4-11 > 25 > 25 

3-128 THP-1 > 25 > 25 

 U937 > 25 > 25 

 MV4-11 > 25 > 25 

3-129 THP-1 24.3 ± 1.42 23.2 ± 0.78 

 U937 10.7 ± 0.15 9.04 ± 0.27 

 MV4-11 > 25 > 25 

3-130 THP-1 > 25 > 25 

 U937 > 25 > 25 

Table 3.16: Cell growth inhibition of triazole-based compound in MV4-11, THP-1 and U937 
cell lines. 

These assays mainly led to no significant activity on cancer cell growth. Nevertheless, two 

compounds displayed potent activity on the U937 leukaemia cell line. Interestingly, they both 

featured fluorine group on the 4th position of the triazole with 3-127 bearing a 4-fluorophenyl and 

3-129 bearing a 4-(trifluoromethyl)phenyl.  

The high electronegativity and the small size of the fluorine could explain these results. Indeed, 

both fluorine and trifluoromethyl groups are electron withdrawing groups, and the electron-poor 

benzyl ring could be involved in side interactions with the surrounding amino-acid residues. 

Additionally, due to its high electronegativity, fluorine is able to interact with hydrogens. The 

scientific community is still wrangling to determine if this kind of interaction should be 

considered as hydrogen bond, but weak interactions have been reported and could be 
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involved.495,496 Besides, this interaction is weaker with a CF3 group than with fluorine, and that 

would be consistent with the reduction in activity observed between 3-127 and 3-129. 

Nevertheless, a more in-depth investigation will be required to establish and understand the SAR.  

3.2.iii Praziquantel – HDACi hybrid  

As this scaffold was explicitly designed as a potential anti-parasitic agent, the compound was only 

tested in the enzymatic inhibition assay against SmHDAC8 (Table 3.17). We were pleased to 

observe a strong inhibition on the parasite, and this preliminary result validated the possibility of 

forming potent HDAC inhibitor derived from praziquantel. This compound is currently evaluated 

in phenotype assay on schistosomula and adult worms. 

Compound SmHDAC8 IC50 (nM) 

3-192 768 ± 126 

Table 3.17: Enzymatic inhibition of SmHDAC8 by 3-192. 

3.2.iv 4-amino-2-hydroxybutanoic acid scaffold 

Following the synthesis of 4-amino-2-hydroxybutanoic compounds, 3-205 was submitted to 

enzymatic inhibition assay against HDAC6 and to the cancer cell growth inhibition assay (Table 

3.18). Unfortunately, the compound showed weak inhibition in the enzymatic assay and no 

measurable effect in cancer cells.  

Compound 
HDAC6 

IC50 (µM) 

Leukaemia Cell 

line 

IC50 (M, n = 3) 

72 h 

IC50 (M, n = 3) 

96 h 

  MV4-11 > 25 > 25 

3-205 > 20 THP-1 > 25 > 25 

  U937 > 25 > 25 

Table 3.18: Evaluation of 3-205 activity in the enzymatic assay on HDAC6 and cancer cell 
growth inhibition assay. 
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Chapter 4. Development of a new class of SETD8 inhibitor.  

1. Introduction 

This chapter will present the results of a three-month project completed at the University of 

Salerno in Italy. As a member of the COST action Epichembio, the first European chemical 

biology network focused on epigenetics, I enrolled in a short-term scientific mission to develop a 

novel class of inhibitors of lysine methyltransferase SETD8 in the group of Prof. G. Sbardella. 

2. Synthetic approach 

Following the publication by Ma166 and Butler168 of potent and selective SETD8 inhibitors, we 

were interested in the development, and the evaluation, of a new class of compound, derived from 

their reported quinazoline. Our approach consisted in switching the core of the molecule from a 

fused bicyclic structure to a phenylpyrimidine (Scheme 4.1). 

 

Scheme 4.1: From published quinazoline 4-1 to phenylpyrimidine scaffold 4-2. 

Methoxy groups were shown to have great importance for the structure-activity in particular in 

the 6th position of the quinazoline.167 Thus we decided to maintain these groups on the phenyl part 

of our scaffold. On the other hand, substituents on the 2nd and 4th position were more tolerant to 

modulation. Therefore, we decided to use them as points of diversity and to explore several 

variations on these positions.  

The synthesis started with 2,4,6-trichloropyrimidine which was successfully coupled to 3,4-

dimethoxyphenylboronic acid under Suzuki conditions (Scheme 4.2) in 74% yield. This reaction 

was reported to be highly regioselective,497,498 and no formation of 2-phenylpyrimidine side 

product was observed. 
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Scheme 4.2: Formation of 3,4-dimethoxyphenylpyrimidine 4-4 by Suzuki coupling. 

The second step of the synthesis consisted of a reaction of amination at C4 of the pyrimidine. 

Direct nucleophilic displacement of 2,4-dichloropyrimidine with neutral nitrogen nucleophiles 

has been successfully reported,499,500 but those conditions led to low regioselectivity, and a 

mixture of 2-substituted and 4-substituted pyrimidine was formed. Higher regioselectivity can be 

achieved by using LiHMDS and palladium catalyst,501 but we opted in favour of the first method. 

Although the formation of regioisomers is usually undesired and tends to be avoided, the rationale 

behind this decision was to consider this reaction as an additional diverging step to expand our 

library. This lack of selectivity would allow not only to study the effect of various substituents on 

the pyrimidine core but also the impact of their positioning. 

In a first synthetic attempt, we decided to introduce a 3-dimethylamino-1-propylamine on the 

heterocycle. This reagent was commercially available, and the quinazoline SAR reported good 

potency with dimethylamino alkyl chain at the 4th position. Therefore, we considered it an 

interesting first choice of reagent to establish the synthesis. 

Amination of the 2,4-dichloropyrimidine 4-4 was successfully achieved in 63% yield by reaction 

with 3-dimethylamino-1-propylamine (Scheme 4.3). The crude was purified by flash 

chromatography on aluminium oxide with hexane and ethyl acetate, and both 4-substituted 

pyrimidine 4-5 and 2-substituted pyrimidine 4-6 were isolated in a 53:47 ratio respectively. 

 

Scheme 4.3: Synthesis of regioisomers 4-5 and 4-6. 
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Identification of the corresponding structure of the two regioisomers was achieved by NMR 

spectroscopy. In 1H NMR spectra, the chemical shift of the hydrogen at C5 was profoundly 

impacted by the nature of the substituent at C4. Chlorine is an electronegative atom with an 

electron withdrawing effect on the aromatic ring that results in a deshielding effect on the proton 

in ortho-position. Amino groups, on the other hand, have a positive mesomeric effect on the 

pyrimidine which increases the electron density of the ring and has a shielding effect on the 

proton. This difference was observed with a chemical shift for the proton on the 5th position of 

6.51 ppm in 4-5 and 6.91 ppm in 4-6 (Scheme 4.4). Similar characteristics were reported in the 

literature,501 and the regioselectivity had been confirmed by 2D NMR on a related structure before 

my arrival in the research group.  

 

Scheme 4.4: Chemical shift difference in 1H NMR of 4-5 (up) and 4-6 (down). 

In the final step, the second amination reaction was carried out on both regioisomers with 

pyrrolidine (Scheme 4.5). The resulting compounds 4-7 and 4-8 were isolated in 44% and 68% 

yield respectively.  
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Scheme 4.5: Synthesis of final compounds 4-7 and 4-8. 

Following the setup of the synthetic pathway, we identified three axes of diversity to explore in 

order to build an original series of compounds.  

First of all the length of the alkyl side chain could be modified. The reported SAR of UNC0379 

(4-1) focused on a terminal amino group linked to the quinazoline by a 5 or 6-member chain. We 

decided to investigate the impact of the linker by synthesising analogues using either a 3-carbon 

chain, as we did previously, or 5-carbon chain which was used in the UNC0379 series.  

The second point of interest was the nature of the amino groups. Modification of the pyrrolidine 

on the 2nd position resulted in a loss of potency of the compound in most examples of the SAR, 

so we decided to keep this structure in our analogues. On the other hand, the terminal amino group 

of the side chain was more tolerant to substitution. We chose to study the effect of such 

modification and to make analogues bearing either N, N-dimethylamino or pyrrolidinyl groups on 

the side chain end. 

Finally, we turned our attention to the methoxy groups. Although we had chosen not to alter their 

nature as they seemed of importance for the potency, we decided to modify their position on the 

phenyl ring to probe the effect on inhibition. We opted in favour of two combinations: a 

meta,-para disubstituted phenyl and ortho,-meta disubstituted phenyl. A summary of the planned 

modifications is shown below (Scheme 4.6). 
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Scheme 4.6: Overview of scheduled changes in the series. 

Regarding the synthesis of these analogues, most modifications directly fitted in the established 

pathway. Accordingly, Suzuki coupling of 2,4,6-trichloropyrimidine with 2,3-dimethoxyphenyl 

boronic acid successfully afforded 4-10 in 73% yield (Scheme 4.7). 

 

Scheme 4.7: Formation of 2,3-dimethoxyphenylpyrimidine 4-10 by Suzuki coupling. 

Similarly to the first synthesis, the next reaction was an amination step. However, some of the 

desired amino side chains were either not commercially available or too expensive to be 

considered. Thus we decided to modify this part of the synthetic pathway by a two-step route. 

Amination would first be performed with a terminal hydroxyl moiety on the alkyl chain, and in a 

second reaction, the alcohol would be converted to the desired amine. Although this alternative 

added one more step to the synthesis, the possibility to introduce any amine on the side chain was 

an attractive asset. 

Meta,-para substituted compound 4-4 reacted with 5-amino-1-pentanol under microwave heating 

to afford in 72% yield the regioisomers 4-11 and 4-12 in a 65:35 ratio (Scheme 4.8). Similarly, 

ortho,-meta substituted compound 4-10 gave 4-13 and 4-14 in 87% yield in a 72:28 proportion. 
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Scheme 4.8: Synthesis of isomers 4-11 to 4-14. 

These compounds then reacted with pyrrolidine in the same conditions as previously described to 

afford the corresponding 2-(1-pyrrolidinyl)-pyrimidine (Scheme 4.9) and 4-(1-pyrrolidinyl)-

pyrimidine (Scheme 4.10) 

 

R1 R2 4-XX 4-YY Yield 

OMe H 4-11 4-15 68% 

H OMe 4-13 4-16 87% 

Scheme 4.9: Synthesis of 2-pyrrolidinyl-pyrimidine intermediates 4-15 and 4-16. 
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R1 R2 4-XX 4-YY Yield 

OMe H 4-12 4-17 96% 

H OMe 4-14 4-18 89% 

Scheme 4.10: Synthesis of 4-pyrrolidinyl-pyrimidine intermediate 4-17 and 4-18. 

A first option for the conversion of alcohol to amine was to use a Mistunobu reaction. Reported 

in 1967,502 this reaction converted an alcohol to an ester using triphenylphosphine and diethyl 

azodicarboxylate (DEAD) to activate the corresponding carboxylic acid 4-20 (Scheme 4.11). This 

reaction was extensively studied, and similar results were reported with a variety of nucleophiles 

substituting the carboxylic acid.503  

 

Scheme 4.11: Mitsunobu reaction. 

We decided to try the reaction and substitute the alcohol with dimethylamine.  However one of 

the requirements of the reaction is the presence of an acidic proton. As shown in the mechanism 

(Scheme 4.12), the betaine intermediate 4-22 catches a proton to form 4-23. This step which 

requires a nucleophile with a pKa lower than 15 is a limitation in the scope of the reaction and 

usually prevents the use of amine.     
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Scheme 4.12: Mistunobu reaction mechanism. 

In 1995 Fukuyama reported a practical method for the preparation of secondary amine with 

Mitsunobu reaction504 by using sulfonyl group to increase the acidity of the amine. This reaction 

became of great importance and is now known as the Fukuyama-Mitsunobu reaction.  

However, a Mitsunobu reaction between an alcohol and dimethylamine was successfully reported 

by Laclef.505 In this example, the acidic proton was not provided by the dimethylamine but by an 

adjacent sulfinamide on the molecule. We thus performed the reaction with dimethylamine 

hydrochloride as a pronucleophile, but no reaction was observed and only starting material was 

recovered (Scheme 4.13). We, therefore, decided to use an alternative pathway. Interestingly, in 

the weeks that followed the end of this project, Huang reported a novel protocol successfully 

using amine as a nucleophile in the Mitsunobu reaction.506 

 

Scheme 4.13: Attempt of Mistunobu reaction to form 4-28. 

We opted in favour of a more common two-step sequence. The alcohol was first activated by 

reaction with a sulfonyl chloride to form a better nucleofuge which then reacted by nucleophilic 

substitution with dimethylamine to afford the desired compound. In the first instance, both tosyl 
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chloride and mesyl chloride were used. Both methods successfully provided the desired 

compounds, but higher yields were obtained with the latter sulfonyl chloride. Activation of the 

terminal alcohol with mesyl chloride followed by substitution with basic amine was therefore 

used as a preferred method. Several final compounds were then synthesised from 2-pyrrolidinyl-

pyrimidine (Scheme 4.14), and 4-pyrrolidinyl-pyrimidine (Scheme 4.15) intermediates using 

dimethylamine and pyrrolidine. 

 

R1 R2 4-XX NR3R4 4-YY Yield 

OMe H 4-15 Pyrrolidine 4-29 51% 

H OMe 4-16 Dimethylamine 4-30 20% 

H OMe 4-16 Pyrrolidine 4-31 62% 

Scheme 4.14: Synthesis of 2-pyrrolidinyl-pyrimidine final compounds 4-29 to 4-31. 

 

 

R1 R2 4-XX NR3R4 4-YY Yield 

OMe H 4-17 Dimethylamine 4-32 44% 

H OMe 4-18 Dimethylamine 4-33 19% 

H OMe 4-18 Pyrrolidine 4-34 21% 

Scheme 4.15: Synthesis of 4-pyrrolidinyl-pyrimidine final compounds 4-32 to 4-34. 
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Following the successful synthesis of these compounds, we turned our attention to the formation 

of analogues with a shorter alkyl side chain. Starting from previously synthesised intermediate 4-

4 and 4-10, reaction with 3-amino-1-propanol under microwave irradiation led to the isolation of 

four new isomers (Scheme 4.16).   

 

Scheme 4.16: Synthesis of intermediate 4-35 to 4-38. 

These intermediates then reacted with pyrrolidine under microwave irradiation to afford the 

corresponding 2-(1-pyrrolidinyl)-pyrimidine (Scheme 4.17) and 4-(1-pyrrolidinyl)-pyrimidine 

(Scheme 4.18). 

 

R1 R2 4-XX 4-YY Yield 

OMe H 4-35 4-39 73% 

H OMe 4-37 4-40 79% 

Scheme 4.17: Synthesis of 2-pyrrolidinyl-pyrimidine intermediate 4-39 and 4-40. 
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R1 R2 4-XX 4-YY Yield 

OMe H 4-36 4-41 89% 

H OMe 4-38 4-42 93% 

Scheme 4.18: Synthesis of 2-pyrrolidinyl-pyrimidine intermediate 4-41 and 4-42. 

Finally, several final compounds were synthesised using mesyl chloride activation from lastly 

formed 2-pyrrolidinyl-pyrimidine intermediate (Scheme 4.19) and 4-pyrrolidinyl-pyrimidine 

(Scheme 4.20).   

 

R1 R2 4-XX NR3R4 4-YY Yield 

OMe H 4-39 Pyrrolidine 4-43 61% 

H OMe 4-40 Dimethylamine 4-44 45% 

H OMe 4-40 Pyrrolidine 4-45 67% 

Scheme 4.19: Synthesis of 2-pyrrolidinyl-pyrimidine final compounds 4-43 to 4-45. 
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Scheme 4.20: Synthesis of 4-pyrrolidinyl-pyrimidine final compound 4-46 

Due to time constraints, some analogues were not synthesised, but during this project, a total of 

12 analogues of a new series were produced as potential SETD8 inhibitors. An overview of the 

final compounds is shown below (Figure 4.1).  

 

Figure 4.1: Overview of synthesised compounds. 

3. Biological evaluation 

3.1 Principle of the SETD8 inhibition assay 

Sbardella group developed the methyltransferase inhibition assay by adapting the general 

conditions of the AlphaLisa homogeneous proximity immunoassays provided by PerkinElmer. 
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The assay relies on the Alpha technology, which is a bead-based assay taking advantage of 

antibody specificity (Figure 4.2).  

The assay is a multi-step procedure. In the first instance, the target is incubated with AlphaLISA 

anti-analyte conjugated acceptor beads and biotinylated antibodies. As a result, the target is 

captured between the biotinylated antibodies and the acceptor beads. In a second step, the 

streptavidin donor beads are added. Following an incubation time, the donor beads couple to the 

biotinylated antibody ends, creating a structure in which the target is linked to both the acceptor 

and the donor beads. Finally, a laser emitting at specific wavelengths excites the donor beads. 

This excitation causes the release of singlet oxygen that then transfers the excitation to the 

acceptor beads in a cascade reaction. As a result, the acceptor beads radiate at a specific 

wavelength that can then be detected and quantified.  

This type of assay offers excellent versatility. Moreover, as the released singlet oxygen can only 

reach the acceptor beads that are coupled to the donor beads, the Alpha technology has a high 

sensitivity.  

 

Figure 4.2: Principle of the AlphaLISA assay. 
Adapted from the manufacturer manual.507  

To turn specifically to the SETD8 assay, the human recombinant SETD8 was first incubated with 

the potential inhibitor followed by the addition of histone H4 and SAM. After incubation, anti-

monomethyl-histone H4 lysine 20 (H4K20me1) AlphaLISA acceptor beads and the biotinylated 

anti-H4 antibodies were added, and the mixture was incubated. Finally, streptavidin donor beads 

were added, incubated in the dark, and the resulting signals were measured with a plate reader 

(excitation at 680 nm and emission at 615 nm).  

3.2 Results and discussion 

Several compounds were profiled in the SETD8 inhibition assay. They were tested by the 

Sbardella group at a single dose of 100 µM and compared to the activity resulting from the 

treatment with UNC0379 at a concentration of 5 µM. The results are shown in Figure 4.3, which 
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displays the observed percentage of activity for each compound. These results are the mean of 

triplicate experiments.  

  

Figure 4.3: Percentage of activity of SETD8 measured after treatment with a fixed dose of 
inhibitors in the AlphaLisa assay. (n = 3) 

We were disappointed to discover that the designed scaffold led to poor inhibition of SETD8 even 

at a high concentration of 100 µM.  

It is still unclear why our modification resulted in such a significant loss of potency. Wishing to 

find an explanation we looked at the reported crystal structure of SETD8 in complex with 

MS2177, an analogue of UNC0379 (Figure 4.4).168  

 

Figure 4.4: X-ray crystal structure of MS2177 in complex with SETD8. (A) MS2177 bound 
to SETD8. (B) Polar interactions between MS2177 and SETD8 are shown.  

Adapted from Butler et al.168 
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Two crucial interactions between the enzyme and the quinazoline core of the molecule were 

observed. A primary hydrogen bond is formed between the N1 of the compound and a water 

molecule, and a second hydrogen bond is detected between the cysteine C311 and the amino 

group on the C4 position. Although our scaffold also possesses a similar structure, which could 

still be involved in hydrogen bonding, our modification deeply affected the flatness of the 

scaffold. Consequently, the pyrimidine part of our molecules could be forced to adopt a different 

position to prevent a collision between the phenyl ring and the enzyme, thus making the hydrogen 

bond formation impossible.  
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Conclusion 

The primary objective of this thesis was to develop several new classes of inhibitors of the histone 

deacetylases class of enzyme and to evaluate their potential as anticancer agents. HDACs activity 

has been extensively linked to cancer development, and selective inhibitors are expected to 

become leading therapeutic agents in the coming years.  

Additionally, HDAC inhibitors could be of great interest for the development of new antiparasitic 

therapies. This thesis was partially funded by the A-ParaDDisE project, an international 

collaboration which aimed to develop new classes of epigenetic modulators to target four of the 

most important Neglected Tropical Diseases: malaria, leishmaniasis, schistosomiasis and Chagas 

disease. Those infectious diseases collectively infect more than one billion people, mainly in 

developing countries, and cause hundreds of thousands of deaths annually. The appearance of 

drug resistance and the lack of alternative therapies raise the spectre of a potential worldwide 

crisis in the future and could annihilate decades of progress in the control of these diseases.  

During this thesis, we designed and developed the synthetic route of different new classes of 

HDAC inhibitors bearing a hydroxamic acid as a zinc-binding group.   

A first scaffold was based on the imidazo-ketopiperazine. Several compounds were synthesized 

and evaluated against different targets. In enzymatic assay against human HDAC, the length of 

the linker was found to play a critical role for the potency of the inhibitor. Both compounds 3-29 

and 3-37 were potent against three HDAC isoforms: HDAC1, HDAC6 and HDAC8 with a 

micromolar to submicromolar IC50 in enzymatic inhibition assay. Following these results, the 

inhibition profile of 3-29 was evaluated against every HDAC isoforms. This compound was found 

to be selective for HDAC1/6/8 isoforms. Then, these compounds were tested in cancer-cells 

growth inhibition assays, and 3-29 and 3-37 displayed a micromolar activity on three different 

leukaemia cell lines: MV4-11, THP-1 and U937. Finally, a western blot analysis of 3-37 on U937 

revealed a significant effect both on histone H3 and -tubulin acetylation. These results indicated 

an inhibition activity against class I and class II HDACs and were consistent with selective 

inhibition of HDAC1/6/8. Compounds 3-29 and 3-37 were also tested on SmHDAC8 to evaluate 

their potential in the development of new treatment against schistosomiasis. Both compounds 

featured micromolar to nanomolar IC50 values in enzymatic inhibition of the parasite HDAC. 

Besides, a limitation of the HDACi-based antischistosomal strategy often lies behind a lack of 

selectivity against hHDAC8. On the other hand, 3-37 was 4.5-fold more active against SmHDA8 

than hHDAC8. This scaffold represents an interesting new class of HDAC inhibitors, and these 

results were recently published.491  
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Following the synthesis of this scaffold, the synthetic plan was modified to create a second 

scaffold based on imidazole, and several compounds were synthesized. This scaffold was more 

tolerant towards the size of the linker and 3-38, and 3-40 showed nanomolar activity on hHDAC6. 

These compounds were also highly active in cancer cell growth inhibition assay and displayed a 

selectivity between the different cancer cell lines. On the other hand, they only had a limited effect 

on SmHDAC8. However, 3-40 was found to have a 5 µM IC50 on Trypanosoma cruzi TcDAC2. 

To date, no inhibitors have been reported against TcDAC2. Therefore 3-40 represents an exciting 

hit and this scaffold could lead to one of the first class of TcDAC2 inhibitors. 

Thirdly, we investigated a scaffold derived from aspartic acid. A general synthetic pathway was 

established, but optimization is still required. 

Then we explored the use of a triazole core. A series of 1,4-disubstituted triazoles were 

synthesized. Two compounds, 3-127 and 3-129 selectively inhibited cancer-cell growth in the 

U937 cell line with a micromolar IC50 while the other analogues were inactive on the different 

cell lines. Next, attempts were made to introduce a thiophene group on the 5th position of the 

triazole. Several approaches were investigated to obtain 1,4,5-trisubstituted triazoles, but they 

were unsuccessful and will require further investigation. 

Next, we designed a new class based on hydantoins. The synthetic pathway was established, and 

several compounds were synthesized, but their activity has not been evaluated yet. 

Based on the structure of praziquantel, the only drug available for the treatment of 

schistosomiasis, we aimed to design a dual-target compound. Introducing a hydroxamic acid on 

the core of the molecule, we synthesized the first praziquantel-HDAC hybrid 3-192. This 

compound was found to express a nanomolar inhibition activity on SmHDAC8 and is currently 

evaluated in toxicity studies against schistosomula and adult worm. This approach carries great 

potential, and we have high expectation for this scaffold’s future. 

Finally, the discovery of an L-tartaric acid binding to the zinc cation in the crystal structure of 

SmHDAC8 led us to explore a scaffold based on 4-amino-2-hydroxybutanoic acid. However, 

almost no activity was observed against HDAC6 or in cell assays against THP-1, MV4-11 and 

U937. 

In addition to the work on HDAC inhibitors, I enrolled in a short-term scientific mission, which 

was funded by the COST action Epichembio. This side project, which took place at the University 

of Salerno in Italy in the group of Prof. Sbardella, aimed to develop a new class of inhibitors 

against SETD8, the only known methyltransferase capable of monomethylation of H4K20. 

Derived from selective SETD8 inhibitors recently reported, we designed a new scaffold and 
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synthesised a series of compounds. However, only low inhibition was observed on SETD8 in an 

enzymatic assay. 

Overall, this thesis provides the synthetic pathway of several new classes of epigenetic inhibitors 

for the prevention of cancer. Diverse scaffolds displayed cytotoxic activity on leukaemia cell lines 

and were showed to be potent and selective hHDAC inhibitors. Promising effect were also 

observed on parasitic targets with micromolar to nanomolar SmHDAC8 inhibition activity and 

up to 4.5-fold selectivity over hHDAC8. Furthermore, this project led to the identification of a 

micromolar hit on TcDAC2, a Trypanosoma cruzi HDAC without any inhibitor so far. As a result, 

each scaffold could become the topic of a future research project to establish their stucture-activity 

relationship and to design second generation inhibitors with therapeutic applications not only for 

cancer treatment benefits, but also for Schistosomiasis and Chagas disease, two parasitic diseases 

which are currently impacting over 250M people. Our novel classes of compounds may move us 

a step closer to treating these dreadful conditions.  
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Future work 

This project explored different classes of molecules and offers a range of evolution for each of 

them.  

4. Imidazole-based scaffold 

Both the “open” imidazole scaffold and the “closed” imidazo-diketopiperazine were shown to be 

valuable classes of HDAC inhibitors. Further biological studies are needed, as some compounds 

have not been tested yet. In particular, it will be interesting to evaluate the imidazo-

diketopiperazine compounds on TcDAC2. Moreover, the substitution of the alkyl linker for a 

benzyl in 3-42 could have a great impact in terms of potency and selectivity and has yet to be 

evaluated.  

Regarding the SAR perspectives, they mainly focus on two axes. The first one concerns the nature 

of the linker. In addition to bulky and rigid groups such as benzyl, we could introduce groups 

likely to form hydrogen bonding in the enzyme channel. For example, the disulfide could be 

alkylated with a short halo-acid, deprotected, and then coupled with the synthesized -alanine 

hydroxamic acid 3-96 (Scheme 6.1). Similarly, this approach could be used to make compounds 

derived from a 4-amino-2-hydroxybutanoic acid, either as free carboxylic acid or as hydroxamic 

acid, thus combining two of the scaffolds explored. 

The second main modification would be on the nature of the amino acids. Using hydrogen bond 

acceptor/donor residues, like a tyrosine instead of the phenylalanine, would explore the 

possibilities to form side interactions with the enzyme rim. 
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Scheme 6.1: Example of alternative linkers.  

5. Aspartic acid-based scaffold 

This scaffold still requires some optimization, in particular for the last step and introduction of 

hydroxamic acid. Then, a vast diversity can be explored both on the C-terminal and on N-terminal 

moieties of aspartic acid. These could include cyclic and non-cyclic aliphatic, electron-rich and 

electron-poor aromatic rings. In addition, this derived aspartic hydroxamate could be introduced 

into the cyclic-peptide or cyclic depsipeptide classes of HDACi. 

6. Triazole-based scaffold 

A couple of synthesized triazoles showed promising results in cancer cells with a specific cell 

growth inhibition of U937. Docking studies could help to understand the specific role of the 

fluorine substituents on the phenyl and offer new insights to design analogues. In addition, the 

introduction of thiophene or similar heterocycles on the 5th position of the triazole has to be 

investigated further. As steric hindrance was identified as a possible explanation of the 

unsuccessful attempts to synthesise these analogues, replacement of the phenyl on the 4th position 

by smaller or more flexible group could become beneficial. 
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7. Hydantoin-based scaffold 

Several compounds have been synthesised and still have to be tested against the different targets. 

Based on these results, future work will focus on building a SAR around the use of natural and 

non-natural amino acids on both N1 and C3 positions.  

8. Praziquantel-HDACi hybrid 

We have high expectation for this compound, or more generally for this strategic approach, 

toward the development of new therapeutic agents for schistosomiasis. If the potency is confirmed 

in the phenotype assay, further investigation will be needed to certify a dual mechanism of action 

and determine their individual impact. To this end, the methyl ester precursor is also tested.  

9. Pyrimidine series 

The pyrimidine series turned out to be mostly inactive on SETD8. As the activity of the original 

quinazoline was shown to be mainly due to the formation of hydrogen bonding from the 

pyrimidine part of the molecule, further investigation of the SAR of our series could lead to more 

potent inhibitors. In particular, the replacement of the phenyl by smaller aromatic rings or more 

flexible aliphatic groups could offer better interactions with the surrounding residues and restore 

the inhibitory potential of the scaffold. 

  



   

 

207 

 

 

Chapter 5. Experimental 

1. General procedures for Chemistry 

All chemicals and solvents were purchased from appropriate suppliers including Sigma Aldrich, 

Fluorochem, Alfa Aesar, and Novabiochem. All anhydrous solvents were purchased as 

Aldrich®sure/seal bottles. All solvents were reagent grade. TLC was used to monitor the reaction 

and performed on aluminum-backed silica gel coated plates (Merck DC, Alufolien Kieselgel 60 

F254) with spots visualized by UV-light (λ 254 nm) or stained with dyes (potassium 

permanganate solution, phosphomolybdic acid stain, Hanessian's Stain or ninhydrin), followed 

by heating. Product concentration after reactions and extractions involved the use of a rotary 

evaporator operating at reduced pressure and the term in vacuo refers to the solvent concentration 

at reduced pressure. Products were normally purified by column flash chromatography using 

TELOS® flash silica cartridge or by reverse-phase flash chromatography using RediSep Rf 

Gold® Reversed-phase C18 column. NMR spectra were recorded on a 400 MHz Brüker 

Utrashield plus spectrometer at 400 MHz for 1H NMR and 100 MHz for 13C NMR. Spectral data 

were reprocessed with MestReNova. The spectra were calibrated to the residual deuterated 

solvent peak (CDCl3, CD3OD, DMSO-d6, D2O) according to literature.508 The chemical shifts are 

reported in δ (ppm) units followed by brackets containing spectra details in this order: multiplicity 

(s: singlet, d: doublet, t: triplet, q: quartet, quint: quintuplet, m: multiplet, dd: double doublet, dt: 

doublet of triplet, dq: doublet of quadruplet, td: triplet of doublet, qd: quadruplet of doublet, br: 

broad, ABq: 2nd order quadruplet), coupling constants (reported in Hz), number of protons (from 

integration). 13C NMR were reported with chemical shifts. Mass spectra were recorded with a 

Shimadzu LCMS 2010EV or Agilent technology 6210 LC/MS Time-of-Flight using Milli-Q 

water and HPLC grade acetonitrile (0.01% TFA). Infrared spectroscopic analysis was performed 

by ATR-FTIR (attenuated total reflectance-Fourier-transform infrared spectroscopy) on a Perkin-

Elmer Spectrum 400 FTIR spectrometer. Selected IR spectroscopic peaks were reported in 

wavenumbers (cm−1). 

2. General procedure for Biological assays 

2.1 HDACs enzyme inhibition assays 

HDACs inhibition was tested in vitro by Prof. M. Jung from the University of Freiburg in 

Germany and Prof. L. Bischoff from the Rouen Normandy University in France using 

biochemical assays as previously described.325,486 
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2.2 Cell growth inhibition assays 

Dr Maria T. Borrello from INSERM U1068 Cellular Stress Group, Cancer Research Center of 

Marseille in France performed the cell inhibition assays. 

AML cell lines THP-1, MV4-11 and U937 were obtained from the DMSZ (German Collection of 

Microorganisms and Cell Cultures) and European Collection of Cell Cultures. They were 

authenticated by DNA-fingerprinting. The cell lines were used at low passage number for a 

maximum of 6 months post-resuscitation and tested regularly for mycoplasma infection. 

Cells lines were cultured in RPMI 1640 medium (GIBCO) supplemented with 10% Foetal Calf 

Serum (FCS, GIBCO) and 5% of 2 mM L-glutamine. Cells were grown at 37 ˚C with 5% CO2, 

and cell density was maintained at 25×104 cells/mL. For the assay, cells were plated in a 96-well 

clear bottomed microtitre plate at a density of 2.5×104 cells/well for U937 and 5×104 cells/well 

for THP-1 and MV4-11. Inhibitor stock solutions (20 mM in DMSO) were dissolved in cell media 

at the appropriate concentration, and 10 µL of each concentration incubated with the cells for 72 

h or 96 h. Cell viability was then measured using CellTiter-Blue® (Promega, Southampton, UK) 

and normalised to the vehicle control (DMSO) and a dose-response curve determined with 

GraphPad 6 using a non-linear regression model. 

2.3 H3K9Ac and AcTubulin Western Blotting 

Dr M. T. Borrello from INSERM U1068 Cellular Stress Group, Cancer Research Center of 

Marseille in France performed the western blots. 

Antibodies for immunoblotting were purchased from Cell Signalling (anti-Acetylated-- (Lys40) 

tubulin #9725) or Abcam (anti-H3 #ab100938, Goat anti-Rabbit IgG (HRP) #ab97080, and ERK2 

#ab32081). The antibodies from Cell Signalling were diluted to 1:1000 in 3% bovine serum 

albumin (BSA) dissolved in TBS-T (w/v); the antibodies from Abcam were diluted 1:5000 

(primary) or 1:10000 (secondary) in 3% BSA dissolved in TBS-T solution. 

Blotting procedures were performed as previously described.509 

2.4 SETD8 inhibition 

Prof. G. Sbardella from the University of Salerno in Italy performed the SETD8 inhibition assays. 

Methyltransferase activity assays were operated by taking advantage of AlphaLisa homogeneous 

proximity immunoassays developed by us by adapting the general conditions described by 

PerkinElmer. The assays were performed in white opaque OptiPlate-384 (PerkinElmer, # 

6007299) at room temperature (22 °C) in a final volume of 25 μL using the following buffer: Tris-
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HCl 50 mM pH 8.8, NaCl 50 mM, MgCl 2 5 mM, DTT 1 mM, BSA 0.01%. The compounds were 

dissolved in DMSO and diluted in assay buffer, keeping constant the concentration of DMSO 

(1%) in each well. In each assay, the 100% activity (positive control) was reached using the 

vehicle (DMSO) while the 0% activity (negative control) was obtained without the protein. For 

each incubation step, the OptiPlate was sealed with protective foil to prevent evaporation and 

contamination. 

Briefly, 2.5 µL of human recombinant SETD8 (expressed in house) (final concentration 1 µM) 

were first incubated with 5 µL of each compound for 30 min, then 2.5 µL of a mixture of Histone 

H4 (Active Motif, # 31223) (final concentration 150 nM) and of SAM (Sigma, # A7007) (final 

concentration 200 µM) were added. The reaction was incubated for 60 min then it was stopped 

by the addition of 5 µL of High Salt Buffer (50 mM Tris-HCl pH 7.4, 0.1% Tween-20, 1 M NaCl, 

0.3% poly-L-lysine). After an incubation of 15 min, 5 µL of a mixture of anti-methyl-histone H4 

lysine 20 (H4K20me1) AlphaLISA acceptor beads (PerkinElmer, # AL145) (final concentration 

20 μg/mL) diluted in Epigenetic Buffer (PerkinElmer, # AL008) and the biotinylated anti-H4 

antibody (PerkinElmer, # AL146) (final concentration 1 nM) were added in each well in subdued 

light. After an incubation of 60 min, 5 µL of streptavidin donor beads (PerkinElmer, # 6760002) 

diluted in Epigenetic Buffer were added in each well (final concentration 20 μg/mL) in subdued 

light. After incubation, in the dark, for 30 min at room temperature, signals were read in an Alpha 

mode with a PerkinElmer EnSight II multimode plate reader (excitation at 680 nm and emission 

at 615 nm).  

3. Molecular docking  

Molecular docking was done by Pr. W. Sippl at the Institute of Pharmacy at the Martin-Luther 

University of Halle-Wittenberg in Germany. 

MOE1 (version 2012.10, Chemical Computing Group, Montreal, Canada)510 was used to generate 

the molecular structures of all inhibitors under study. The inhibitor structures were subsequently 

prepared for docking using the LigPrep tool511 as implemented in Schrödinger’s software, where 

all possible tautomeric forms were generated, and energy minimized using the OPLS force field. 

Conformers of the prepared ligands were calculated with ConfGen using the default settings.  

The crystal structure of human HDAC1 (PDB ID 5ICN), HDAC6 (Catalytic Domain CD2, PDB 

ID 5EDU), HDAC8 (PDB ID 2V5X) in complex with hydroxamic acid-based inhibitors were 

retrieved from the Protein Data Bank (PDB; www.rcsb.org).512 All water molecules were deleted 

except the two water molecules occupying the catalytic pocket, which were kept in the docking 

step. The protein structure was subsequently prepared with Schrödinger’s Protein Preparation 
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Wizard513: Hydrogen atoms were added, and the H-bond network was subsequently optimized. 

The protonation states at pH 7.0 were predicted using the PROPKA tool in Schrödinger. The 

structures were finally subjected to a restrained energy minimization step using the OPLS2005 

force field (RMSD of the atom displacement for terminating the minimization was 0.3 Å).  

The receptor grid preparation for the docking procedure was carried out by assigning the co-

crystallized ligand as the centroid of the grid box. The generated 3D conformers were docked into 

the receptor model using Glide514 (Schrödinger Inc., New York, USA) in the Standard Precision 

mode. A total of 20 poses per ligand conformer were included in the post-docking minimization 

step, and a maximum of two docking poses was output for each ligand conformer. 

In a previous study, Sippl group found that rescoring the docking poses by using an MM-GB/SA 

protocol resulted in a significant correlation between calculated interaction energies and in vitro 

inhibition data.388,515 Therefore, the same protocol was applied to the compounds under study. To 

calculate the binding free energy, they used the AMBER12EHT force field implemented in the 

MOE2012.10 program together with the continuum solvation model GB/SA. The experimentally 

observed geometries of the zinc-hydroxamic acid complexes were best reproduced using this 

setup. Partial charges were fixed using the MOE Protonate3D tool according to the used force-

field followed by a short minimization. To estimate the binding free energy a minimizing of the 

protein-ligand complexes derived from the docking was carried out. During complex 

minimization the heavy atoms of the protein were tethered with a deviation of 0.5 Å (force 

constant (3/2) kT / (0.5)²). The complex showing the lowest binding free energy was chosen for 

each inhibitor and HDAC isoform. Using this docking and rescoring protocol the experimentally 

derived structures of the cocrystallized inhibitors of HDAC6 (PDB ID 5EDU), and HDAC8 (PDB 

2V5X) could be reproduced with an RMSD value below 1.00 Å.  
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4. Synthetic procedures. 

4.1 Imidazole-based scaffold 

 

Methyl N-(2-amino-2-thioxoethyl)-N-(((benzyloxy)carbonyl)-L-phenylalanyl)-L-alaninate 

To L-Ala-OMe.HCl (2.0 g, 14.33 mmol, 1 eq) in dry MeCN (20 mL) under argon atmosphere and 

at 0 °C was added iodoacetamide (3.18 g, 17.19 mmol, 1.2 eq) and dry DIPEA (6.3 mL, 35.82 

mmol, 2.5 eq). The reaction mixture was warmed up to room temperature and stirred 6 h. The 

reaction mixture was cooled to 0 °C then Z-L-Phe-OH (6.43 g, 21.49 mmol, 2.5 eq) and dry 

DIPEA (11.2 mL, 14.33 mmol, 4.5 eq) were added. T3P (50% in EtOAc, 12.8 mL, 21.49 mmol, 

1.5 eq) was then added dropwise. The reaction mixture was stirred at 0 °C for 30 min, warmed up 

to room temperature, and stirred for 16 h. The reaction mixture was then diluted with water (140 

mL) and extracted with EtOAc (2 x 200 mL). Combined organic layers were washed with a 

saturated solution of NaHCO3 (150 mL), then brine (150 mL). The organic layer was then dried 

over MgSO4, filtered and evaporated under reduced pressure to afford a sticky oil. This crude 

compound was then dissolved in a mixture of dry DME (110 mL) under argon atmosphere. At 0 

°C was added Lawesson's reagent (2.28 g, 5.64 mmol, 0.6 eq) in one portion. The reaction mixture 

was warmed up to room temperature and stirred for 6 h. The reaction mixture was then diluted 

with EtOAc (200 mL) and washed with a saturated solution of NaHCO3 (150 mL). The aqueous 

layer was back-extracted with EtOAc (3 x 150 mL). The combined organic layer was washed 

with brine (200 mL), dried over MgSO4, filtered and evaporated. The residue was then purified 

by flash chromatography (gradient Hexane/EtOAc) to afford the desired compound (2.86 g, 44% 

yield). 1H NMR (400 MHz, CDCl3) δ 9.24 (s, 1H), 7.28 – 7.21 (m, 8H), 7.15 – 7.10 (m, 2H), 5.44 

(s, 1H), 5.05 – 4.89 (m, 3H), 4.48 (q, J = 7.4 Hz, 1H), 4.11 – 4.02 (m, 2H), 3.65 (s, 3H), 2.99 – 

2.82 (m, 2H), 1.32 (d, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 201.75, 172.70, 172.47, 

156.10, 135.94, 135.07, 129.52, 128.94, 128.58, 128.28, 128.02, 127.63, 67.22, 56.81, 56.56, 

52.81, 52.75, 38.61, 13.86. IR (cm−1): 3306, 2989, 2902, 1716, 1661, 1526, 1496, 1454, 1255, 

1226, 1066, 1049, 749, 700. MS(ESI+): Calc for [C23H27N3O5S+H]+ 458.175; Found 458.171 
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Methyl 7-((2-((S)-1-(((benzyloxy)carbonyl)amino)-2-phenylethyl)-1-((S)-1-methoxy-1-

oxopropan-2-yl)-1H-imidazol-4-yl)thio)heptanoate 

To a solution of intermediate 3-9 (1.2 g, 2.62 mmol, 1 eq) in dry toluene (9 mL) and dry DCM (1 

mL) under argon atmosphere and at -78 °C were added dry Et3N (2.8 mL, 20.98 mmol, 8 eq) and 

TMSOTf (2.37 mL, 13.11 mmol, 5 eq) dropwise. The mixture was then allowed to warm up to 

room temperature and stirred 16 h. MeOH (5 mL) was then added, and the reaction mixture was 

stirred 15 min at room temperature. Volatiles were evaporated under reduce pressure. The residue 

was dissolved in toluene (20 mL) and the reaction mixture was heated at reflux for 3 h. After 

completion, toluene was evaporated under reduce pressure. The residue was dissolved in dry 

DCM (20mL) under argon atmosphere and DTT (1.62 g, 10.49 mmol, 4 eq) was added. The 

reaction mixture was stirred for 16 h at room temperature. In a separated flask, 7-chloroheptanoate 

(0.63 mL, 3.67 mmol, 1.4 eq) was added to a solution of NaI (1.65 g, 11.02 mmol, 4.2 eq) in 

acetone (10 mL) and the mixture was kept at reflux 16 h. Et2O (20 mL) was added to the acetone 

solution and the mixture was washed twice with a solution of Na2S2O3 (2 M, 2 x 30 mL). The 

organic layer was dried over MgSO4 and the solution was added to the main reaction’s flask. Then 

Et3N (0.89 mL, 6.56 mmol, 2.5 eq) was added and the reaction mixture was stirred at room 

temperature for 1 h. Afterwards 5 mL of a saturated solution of Na2CO3 was added, stirring was 

continued for 15 min, and then the aqueous layer was extracted with EtOAC (3 x 20 mL). The 

combined organic layers were dried on MgSO4 and concentrated in vacuo. The crude was purified 

by flash chromatography on silica (gradient Hexane/EtOAC) to lead to the desired product (480 

mg, 31% yield). 1H NMR (400 MHz, CDCl3) δ 7.37 – 7.27 (m, 5H), 7.22 – 7.15 (m, 3H), 7.05 – 

6.98 (m, 2H), 6.85 (s, 1H), 5.74 (d, J = 8.6 Hz, 1H), 5.12 – 5.03 (m, 2H), 4.95 (td, J = 9.3, 5.5 Hz, 

1H), 4.38 (q, J = 7.2 Hz, 1H), 3.64 (s, 3H), 3.59 (s, 3H), 3.31 (dd, J = 12.7, 5.3 Hz, 1H), 3.19 (dd, 

J = 12.7, 9.8 Hz, 1H), 2.87 – 2.73 (m, 2H), 2.29 (t, J = 7.5 Hz, 2H), 1.66 – 1.56 (m, 4H), 1.47 – 

1.38 (m, 2H), 1.37 – 1.28 (m, 2H), 1.11 (d, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 

174.29, 170.31, 155.63, 148.08, 137.00, 136.51, 132.74, 129.57, 128.65, 128.62, 128.19, 128.02, 

126.98, 119.63, 66.91, 53.07, 52.93, 51.58, 49.14, 42.53, 35.47, 34.10, 29.44, 28.82, 28.30, 24.91, 

17.61. IR (cm−1): 3334, 2930, 1714, 1524, 1455, 1244, 1163, 1030. MS(ESI+): Calc for 

[C31H39N3O6S+H]+ 581.256, Found 582.653 
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Methyl 7-(((5S,8S)-8-benzyl-5-methyl-6-oxo-5,6,7,8-tetrahydroimidazo[1,2-a] pyrazin-2-

yl)thio)heptanoate 

To a solution of 3-18 (480 mg, 0.83 mmol, 1 eq) in dry DCM (5 mL) under argon atmosphere, 

anisole (0.7 mL, 2.48 mmol, 8 eq) was added. The reaction mixture was cooled at 0 °C and a 

solution of HBr (33 % in AcOH, 2.24 mL, 12.38 mmol, 15 eq) was added dropwise. The reaction 

mixture was allowed to warm up at room temperature, and stirred for 2.5 h. Then the volatiles 

were removed under reduce pressure. The residual oil was dissolved in the minimum amount of 

dichloromethane and Et2O (10 mL) was added. The residual solid was filtered and washed three 

times with Et2O to give a solid. The intermediate salt (360 mg) was dissolved in water (5 mL) and 

a solution of NaHCO3
 (1 M) was added until pH = 8. The reaction mixture was stirred at room 

temperature for 30 min and extracted with DCM (3 x 10 mL). The organic was then washed with 

brine, dried over MgSO4 and evaporated in vacuo to afford the desired compound. (210 mg, 61%). 

1H NMR (400 MHz, CDCl3) δ 7.26 – 7.18 (m, 3H), 7.06 – 6.94 (m, 3H), 6.79 (s, 1H), 5.09 – 5.00 

(m, 1H), 4.46 (qd, J = 7.0, 1.3 Hz, 1H), 3.65 (s, 3H), 3.28 (d, J = 4.8 Hz, 2H), 2.91 – 2.80 (m, 

2H), 2.30 (t, J = 7.5 Hz, 2H), 1.69 – 1.56 (m, 4H), 1.49 – 1.39 (m, 2H), 1.38 – 1.29 (m, 2H), 1.00 

(d, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 174.29, 168.28, 141.07, 135.24, 135.13, 

130.25, 128.76, 127.50, 118.77, 53.33, 52.76, 51.60, 43.13, 35.43, 34.09, 29.55, 28.83, 28.37, 

24.92, 19.99. IR (cm−1): 2930, 1700, 1436, 1410. MS(ESI+): Calc for [C22H29N3O3S+H]+ 

416.201; Found 416.631 

 

Methyl N-(2-amino-2-oxoethyl)-N-(((benzyloxy)carbonyl)-L-phenylalanyl)-L-alaninate 

To L-Ala-OMe.HCl (12 g, 85.97 mmol, 1 eq) in dry MeCN (60 mL), under argon atmosphere and 

at 0 °C, was added iodoacetamide (19.1 g, 103.17 mmol, 1.2 eq) and dry DIPEA (37.5 mL, 214.93 

mmol, 2.5 eq). The reaction mixture was warmed up to room temperature and stirred 20 h. The 
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reaction mixture was cooled to 0 °C then Z-L-Phe-OH (38.5 g, 128.96 mmol, 1.5 eq) and dry 

DIPEA (60 mL, 343.89 mmol, 4 eq) were added. T3P (50% in EtOAC, 76.8 mL, 128.96 mmol, 

1.5 eq) was then added dropwise. The reaction mixture was stirred at 0 °C for 30 min, warmed up 

to room temperature and stirred for 16 h. Water (100 mL) was added and the aqueous layer was 

extracted with EtOAc (4 x 150 mL). The combined organic layer were washed with saturated 

NaHCO3 (100 mL), then with brine (100 mL), dried over MgSO4, filtered and concentrated under 

reduce pressure. The crude material was purified by flash chromatography on silica (gradient 

DCM/MeOH) to afford 3-8 (37.05 g, 98%). 1H NMR (400 MHz, CDCl3) δ 7.35 – 7.27 (m, 7H), 

7.24 – 7.15 (m, 3H), 5.87 (s, 1H), 5.59 (d, J = 7.7 Hz, 1H), 5.11 – 4.99 (m, 3H), 4.63 (q, J = 7.4 

Hz, 1H), 4.22 (q, J = 7.1 Hz, 1H), 3.72 (s, 3H), 3.87 – 3.57 (m, 5H), 3.04 (dd, J = 13.9, 7.3 Hz, 

1H), 2.96 (dd, J = 13.4, 6.8 Hz, 1H), 1.39 (d, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 

172.54, 172.27, 171.05, 156.08, 136.15, 135.44, 129.59, 128.95, 128.64, 128.31, 128.10, 127.57, 

67.19, 56.59, 52.78, 49.85, 47.60, 38.90, 13.91. IR (cm−1): 3315, 2970, 1732, 1673, 1264, 1216. 

MS(ESI+): Calc for [C23H27N3O6-Na]+ 464.180; Found 464.662 

 

Methyl N-(2-amino-2-thioxoethyl)-N-(((benzyloxy)carbonyl)-L-phenylalanyl)-L-alaninate 

To a solution of 3-8 (14.04 g, 13.36 mmol, 1 eq) in dry DCM (55 mL) under argon atmosphere 

was added Lawesson's reagent (3.24 g, 8.02 mmol, 0.6 eq) in one portion. The reaction mixture 

was warmed up to room temperature and stirred for 16 h. The DCM was evaporated and EtOAC 

(50 mL) was added to the residue. The solution was washed with a saturated solution of NaHCO3 

(3 x 50 mL). Organic layer was washed with brine (50 mL), dried over MgSO4, filtered and 

evaporated. The residue was then purified by flash chromatography (gradient Hexane/EtOAc) to 

afford the desired compound (5.50 g, 90% yield). 1H NMR (400 MHz, CDCl3) δ 9.24 (s, 1H), 

7.28 – 7.21 (m, 8H), 7.15 – 7.10 (m, 2H), 5.44 (s, 1H), 5.05 – 4.89 (m, 3H), 4.48 (q, J = 7.4 Hz, 

1H), 4.11 – 4.02 (m, 2H), 3.65 (s, 3H), 2.99 – 2.82 (m, 2H), 1.32 (d, J = 7.1 Hz, 3H). 13C NMR 

(101 MHz, CDCl3) δ 201.75, 172.70, 172.47, 156.10, 135.94, 135.07, 129.52, 128.94, 128.58, 

128.28, 128.02, 127.63, 67.22, 56.81, 56.56, 52.81, 52.75, 38.61, 13.86. IR (cm-1): 3306, 2989, 

2902, 1716, 1661, 1526, 1496, 1454, 1255, 1226, 1066, 1049, 749, 700. MS(ESI+): Calc for 

[C23H27N3O5S+H]+ 458.175; Found 458.171. 
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Dimethyl 2,2'-(disulfanediylbis(2-((S)-1-(((benzyloxy)carbonyl)amino)-2-phenylethyl)-1H-

imidazole-4,1-diyl))(2S,2'S)-dipropionate 

To 3-9 (6.0 g, 13,11 mmol, 1 eq) in dry toluene (30 mL) and dry DCM (3 mL) under argon 

atmosphere and at -78 °C were added dry DIPEA (18.3 mL, 104.91 mmol, 8 eq) and TMSOTf 

(11.9 mL, 104.91 mmol, 5 eq) dropwise. The mixture was then allowed to warm up to room 

temperature and stirred 16 h. MeOH (30 mL) was then added and the reaction mixture was stirred 

20 min at room temperature. Volatiles were evaporated under reduce pressure and the residue 

heated at reflux in toluene for 3 h. After completion, toluene was evaporated under reduce 

pressure. The residue was dissolved in EtOAc (20 mL) and a white precipitate appeared. After 

filtration, the filtrate was purified by flash chromatography (gradient Hexane/EtOAc) leading to 

the desired compound (3.57 g, 62%). 1H NMR (400 MHz, CDCl3) δ 7.35 – 7.27 (m, 10H), 7.22 – 

7.14 (m, 6H), 7.07 – 7.01 (m, 6H), 5.84 (d, J = 8.0 Hz, 2H), 5.05 (q, J = 12.4 Hz, 4H), 4.96 (td, 

J = 9.1, 6.2 Hz, 2H), 4.45 (q, J = 7.0 Hz, 2H), 3.54 (s, 6H), 3.33 (dd, J = 12.8, 5.7 Hz, 2H), 3.23 

(dd, J = 12.6, 9.7 Hz, 2H), 1.12 (d, J = 7.2 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 170.47, 

155.77, 148.69, 136.92, 136.44, 133.79, 129.59, 128.68, 128.58, 128.14, 127.95, 126.95, 123.09, 

66.89, 53.19, 52.81, 49.06, 42.30, 17.40. IR (cm−1): 3325, 2989, 2901, 1746, 1709, 1528, 1497, 

1454, 1255, 1232, 1077, 1050, 750, 701. MS(ESI+): Calc for [C46H48N6O8S2+H]+ 877.305, Found 

877.341 
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(5S,5'S,8S,8'S)-2,2'-Disulfanediylbis(8-benzyl-5-methyl-7,8-dihydroimidazo[1,2-a]pyrazin-

6(5H)-one) 

To 3-16 (2.0 g, 2.28 mmol, 1 eq) in dry DCM (20 mL) at 0 °C and under argon atmosphere was 

added anisole (3.72 mL, 34.21 mmol, 15 eq) and HBr (33% in AcOH, 12.39 mL, 68.41 mmol, 30 

eq). The reaction mixture was then stirred at room temperature for 2 h. Volatiles were removed 

by evaporation under reduced pressure and the residue was dissolved in a minimum of DCM. 

Et2O was added, leading to the formation of a precipitate recovered by filtration. The solid was 

then dissolved in water (5 mL) and an aqueous solution of NaHCO3 (2 M) was added until pH = 

8. The reaction mixture was stirred at room temperature 1 h. DCM (5 mL) was added and the 

reaction mixture was stirred vigorously for 16 h. The layers were separated and the aqueous layer 

was extracted with DCM (5 mL). Combined organic layer was washed with brine, filtered and 

evaporated to afford the desired compound (886 mg, 71%). 1H NMR (400 MHz, CDCl3) δ 7.23 – 

7.11 (m, 3H), 7.02 (s, 1H), 6.94 (d, J = 6.5 Hz, 2H), 5.04 (s, 1H), 4.46 (q, J = 7.0 Hz, 1H), 3.35 

(dd, J = 13.7, 5.5 Hz, 1H), 3.22 (dd, J = 13.7, 3.6 Hz, 1H), 0.91 (d, J = 7.1 Hz, 3H). 13C NMR 

(101 MHz, CDCl3) δ 168.00, 142.32, 136.52, 135.33, 130.41, 128.57, 127.22, 121.64, 53.43, 

52.24, 43.10, 20.06. IR (cm−1) 3060, 2930, 1670, 1452, 1356, 1298, 743, 700, 655, 607. 

MS(ESI+): Calc for [C28H28N6O2S2+H]+ 545.179; Found 545.203 
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Ethyl 7-(((5S,8S)-8-benzyl-5-methyl-6-oxo-5,6,7,8-tetrahydroimidazo[1,2-a]pyrazin-2-

yl)thio)heptanoate 

TCEP.HCl (355.0 mg, 1.24 mmol, 3 eq) was added in Milli-Q water (10 mL). Then aqueous 

NaOH (1M) was added until pH = 5. The solution was then added to intermediate 3-26 (225.0 

mg, 0.41 mmol, 1 eq) in a mixture of THF (5 mL) and MeOH (3 mL) and the reaction mixture 

was stirred at room temperature for 16 h. Volatiles were evaporated and the aqueous was extracted 

with CHCl3 (2 x 10 mL). Combined organic layer was dried over MgSO4, filtered and evaporated. 

The crude was dissolved in dry DCM (5 mL) under nitrogen atmosphere. Ethyl 7-

bromoheptanoate (241 L, 1.23 mmol, 3 eq) and Et3N (172 L, 1.23 mmol, 3 eq) were added. 

The reaction mixture was stirred at room temperature for 6 h. The solvent was evaporated and the 

residue purified by flash chromatography (gradient DCM/MeOH) to afford the desired product 

(63 mg, 18%). 1H NMR (400 MHz, CDCl3) δ 7.24 – 7.21 (m, 3H), 7.02 – 6.98 (m, 2H), 6.79 (s, 

1H), 5.06 – 5.02 (m, 1H), 4.46 (qd, J = 7.1, 1.4 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 3.30 – 3.24 (m, 

2H), 2.91 – 2.77 (m, 2H), 2.28 (t, J = 7.5 Hz, 2H), 1.68 – 1.58 (m, 4H), 1.49 – 1.39 (m, 2H), 1.39 

– 1.29 (m, 2H), 1.24 (t, J = 7.1 Hz, 4H), 1.01 (d, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 

173.82, 168.57, 141.02, 135.12, 134.95, 130.31, 128.51, 127.30, 118.77, 60.26, 53.14, 52.54, 

42.83, 35.39, 34.29, 29.45, 28.74, 28.29, 24.87, 19.85, 14.29. IR (cm−1) 3318, 2928, 1717, 1212, 

1028. MS(ESI+): Calc for [C23H31N3O3S+H]+ 430.216; Found 430.690  

 

7-(((5S,8S)-8-benzyl-5-methyl-6-oxo-5,6,7,8-tetrahydroimidazo[1,2-a]pyrazin-2-yl)thio)-N-

hydroxyheptanamide 

To the ethyl ester intermediate 3-27 (63 mg, 0.15 mmol, 1 eq) in a mixture of MeOH/THF (2.4 

mL, 1:1) was added KCN (1.9 mg, 0.03 mmol, 0.2 eq) followed by an aqueous solution of NH2OH 

(50%, 0.6 mL). The reaction mixture was stirred at room temperature for 2 days. The solvents 
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were evaporated and the residue purified by reverse phase flash chromatography (gradient 

water/MeCN-0.05% TFA) to afford the desired compound as an oil (18 mg, 29%).  1H NMR (400 

MHz, D2O) δ 7.52 (d, J = 7.6 Hz, 1H), 7.38 – 7.29 (m, 3H), 6.98 – 6.86 (m, 2H), 5.57 – 5.50 (m, 

1H), 4.76 – 4.70 (m, 1H), 3.37 – 3.29 (m, 2H), 3.01 – 2.85 (m, 2H), 2.16 (t, J = 7.3 Hz, 2H), 1.65 

– 1.53 (m, 4H), 1.52 – 1.41 (m, 2H), 1.37 – 1.27 (m, 2H), 0.70 (d, J = 7.2 Hz, 3H). 13C NMR (101 

MHz, D2O) δ 173.31, 168.22, 140.55, 133.07, 129.93, 129.13, 128.27, 127.43, 123.09, 53.73, 

50.37, 40.96, 35.31, 32.19, 28.30, 27.52, 26.74, 24.71, 17.94. IR (cm−1) 3151, 2927, 2851, 1668, 

1455, 1200, 1133, 701. MS(ESI+): Calc for [C21H28N4O3S+H]+ 417.196; Found 417.302 

 

7-Bromoheptanoic acid 

To a solution of ethyl 7-bromoheptanoate (3.0 g, 12.65 mmol, 1 eq) in a mixture of 

THF/H2O/EtOH 1:1:1 (30 mL), LiOH (0.39 g, 16.45 mmol, 1.3 eq) was added. The reaction 

mixture was stirred at room temperature for 3 h. The solvent was removed in vacuo, and the 

residue was dissolved in DCM (10 mL). The reaction mixture was acidified with HCl (4 M) and 

stirred 10 min at room temperature. The organic layer was separated, washed with brine (3 x10 

mL), dried over MgSO4 filtered, and concentrated in vacuo. The crude was submitted to the next 

step without additional purification (2.55 g, 96% yield). 1H NMR (400 MHz, CDCl3) δ 3.40 (t, 

J = 6.8 Hz, 2H), 2.36 (t, J = 7.4 Hz, 2H), 1.90 – 1.81 (m, 2H), 1.65 (quint, J = 7.5 Hz, 2H), 1.51 

– 1.42 (m, 2H), 1.42 – 1.33 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 180.31, 34.04, 33.84, 32.62, 

28.26, 27.89, 24.53. Consistent with reported analysis.516 

 

6-Bromo-N-hydroxyhexanamide 

To 6-bromohexanoic acid (3.0 g, 15.38 mmol, 1 eq) in dry THF (25 mL) under nitrogen 

atmosphere was added CDI (3.74 g, 23.07 mmol, 1.5 eq) and the reaction mixture was stirred at 

room temperature 1 h. Hydroxylamine hydrochloride (2.14 g, 30.76 mmol, 2 eq) was added and 

the reaction mixture was stirred at room temperature for 16 h. The reaction was stopped by 

addition of KHSO4 5% (30 mL) and the THF was evaporated. The aqueous solution was extracted 

with EtOAc (3 x20 mL) and the combined organic layer was washed with brine, dried over 

MgSO4, filtered and evaporated. The crude was purified by flash chromatography (gradient 
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DCM/MeOH) to afford the desired compound (2.56 g, 79%). 1H NMR (400 MHz, CDCl3) δ 8.75 

(br, 1H), 3.40 (t, J = 6.7 Hz, 2H), 2.17 (t, J = 7.3 Hz, 2H), 1.92 – 1.82 (m, 2H), 1.67 (quint, J = 

7.5 Hz, 2H), 1.53 – 1.42 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 171.66, 33.67, 32.85, 32.40, 

27.69, 24.61. IR (cm−1) 3205, 3048, 2921, 2863, 1622, 1545, 1462, 1061, 644.  MS(ESI+): Calc 

for [C6H12BrNO2+H]+ 210.013, Found 209.923  

 

7-Bromo-N-hydroxyheptanamide 

To 3-31 (2.5 g, 11.96 mmol, 1 eq) in dry THF (20 mL) under nitrogen atmosphere was added CDI 

(2.91 g, 17.94 mmol, 1.5 eq) and the reaction mixture was stirred at room temperature 1 h. 

Hydroxylamine hydrochloride (1.66 g, 23.91 mmol, 2 eq) was added and the reaction mixture 

was stirred at room temperature for 16 h. The reaction was stopped by addition of KHSO4 5% (30 

mL) and the THF was evaporated. The aqueous solution was extracted with EtOAc (3 x 20 mL) 

and the combined organic layer was washed with brine, dried over MgSO4, filtered and 

evaporated. The crude was purified by flash chromatography (gradient DCM/MeOH) to afford 

the desired compound (1.67 g, 62%). 1H NMR (400 MHz, CDCl3) δ 8.41 (s, 1H), 3.40 (t, J = 6.7 

Hz, 2H), 2.16 (t, J = 7.4 Hz, 2H), 1.91 – 1.79 (m, 2H), 1.66 (quint, J = 7.5 Hz, 2H), 1.50 – 1.41 

(m, 2H), 1.41 – 1.30 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 172.05, 33.99, 32.89, 32.57, 28.25, 

27.82, 25.32. IR (cm−1): 3167, 2930, 2856, 1622, 1465, 972. MS(ESI+): Calc for 

[C7H14BrNO2+H]+ 224.029; Found 223.990  

 

8-Bromo-N-hydroxyoctanamide 

To 8-bromooctannoic acid (3.0 g, 13.45 mmol, 1 eq) in dry THF (22 mL) under nitrogen 

atmosphere was added CDI (3.27 g, 20.17 mmol, 1.5 eq) and the reaction mixture was stirred at 

room temperature 1 h. Hydroxylamine hydrochlorine (1.87 g, 26.89 mmol, 2 eq) was added and 

the reaction mixture was stirred at room temperature 16 h. The reaction was stopped by addition 

of KHSO4 5% (30 mL) and the THF was evaporated. The aqueous solution was extracted with 

EtOAc (3 x 20 mL) and the combined organic layer was washed with brine, dried over MgSO4, 

filtered and evaporated. The crude was purified by flash chromatography (gradient DCM/MeOH) 

to afford the desired compound as an orange solid (2.70 g, 84%). 1H NMR (400 MHz, CDCl3) δ 
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8.69 (br, 1H), 3.40 (t, J = 6.8 Hz, 2H), 2.14 (t, J = 7.5 Hz, 2H), 1.91 – 1.78 (m, 2H), 1.68 – 1.58 

(m, 2H), 1.47 – 1.37 (m, 2H), 1.37 – 1.28 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 171.91, 34.15, 

33.15, 32.87, 29.10, 28.60, 28.15, 25.45. IR (cm−1) 3270, 2929, 2911, 2844, 1661, 1620, 1560, 

1424, 1068, 724, 642. MS(ESI+): Calc for [C8H16BrNO2+H]+ 238.044, Found 237.992  

 

6-(((5S,8S)-8-Benzyl-5-methyl-6-oxo-5,6,7,8-tetrahydroimidazo[1,2-a]pyrazin-2-yl)thio)-N-

hydroxyhexanamide 

TCEP.HCl (157.9 mg, 0.551 mmol, 3 eq) was added in Milli-Q water (10 mL). Then aqueous 

NaOH (1M) was added until pH = 5. The solution was then added to intermediate 3-26 (100.0 

mg, 0.18 mmol, 1 eq) in  MeOH (6 mL) and the reaction mixture was stirred at room temperature 

for 16 h. Volatiles were evaporated and the aqueous was extracted with CHCl3 (2 x 10 mL). 

Combined organic layer was dried over MgSO4, filtered and evaporated. The crude was dissolved 

in CHCl3 (5 mL) under nitrogen atmosphere. Compound 3-33 (115.8 mg, 0.551 mmol, 3 eq) and 

DIPEA (96.2 L, 0.551mmol, 3 eq) were added. The reaction mixture was stirred at room 

temperature for 16 h. The solvent was evaporated and the residue purified by reverse phase flash 

chromatography (gradient water/MeCN-0.05% TFA) to afford the desired compound (44 mg, 

60%). 1H NMR (400 MHz, MeOD) δ 7.35 (s, 1H), 7.17 – 7.13 (m, 3H), 6.84 – 6.76 (m, 2H), 5.21 

(td, J = 3.8, 1.7 Hz, 1H), 4.51 (qd, J = 7.2, 1.7 Hz, 1H), 3.25 – 3.22 (m, 1H), 3.13 (dd, J = 14.0, 

4.1 Hz, 1H), 2.87 – 2.76 (m, 2H), 2.01 (t, J = 7.1 Hz, 2H), 1.63 – 1.51 (m, 4H), 1.40 (q, J = 7.4 

Hz, 2H), 0.61 (d, J = 7.2 Hz, 3H). IR (cm−1): 3067, 2934, 1661, 1455, 1182, 720. 13C NMR (101 

MHz, MeOD) δ 171.36, 166.53, 141.48, 133.81, 129.94, 128.56, 127.63, 122.36, 53.76, 50.72, 

41.06, 35.22, 32.07, 28.67, 27.16, 24.69, 17.90. MS(ESI+): Calc for [C20H26N4O3S+H]+ 403.180; 

Found 403.114 
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8-(((5S,8S)-8-Benzyl-5-methyl-6-oxo-5,6,7,8-tetrahydroimidazo[1,2-a]pyrazin-2-yl)thio)-N-

hydroxyoctanamide 

To intermediate 3-26 (100 mg, 0.18 mmol, 1 eq) in DCM (2 mL) and toluene (0.25 mL) was 

added DTT (227 mg, 1.47 mmol, 8 eq). The mixture was stirred 16 h at room temperature. 

Compound 3-35 (105 mg, 0.44 mmol, 2.4 eq) and Et3N (124 L, 0.92 mmol, 5 eq) were added 

and the reaction mixture was stirred 4 h at room temperature. The reaction mixture was diluted 

with EtOAc (20 mL) and washed with saturated solution NaHCO3 (2 x 10 mL), brine (10 mL). 

Organic layer was then dried over MgSO4, filtered and evaporated. Residue was purified by flash 

chromatography (gradient DCM/MeOH) to afford the desired compound as an oil (40 mg, 51%). 

1H NMR (400 MHz, MeOD) δ 7.31 (s, 1H), 7.24 – 7.16 (m, 3H), 6.91 – 6.85 (m, 2H), 5.22 (td, 

J = 3.8, 1.7 Hz, 1H), 4.56 (qd, J = 7.1, 1.6 Hz, 1H), 3.34 (m, 1H), 3.19 (dd, J = 13.9, 4.0 Hz, 1H), 

2.96 – 2.81 (m, 2H), 2.08 (t, J = 7.4 Hz, 2H), 1.70 – 1.56 (m, 4H), 1.47 (dt, J = 14.6, 7.3 Hz, 2H), 

1.39 – 1.32 (m, 4H), 0.67 (d, J = 7.2 Hz, 3H).  13C NMR (101 MHz, MeOD) δ 172.95, 168.56, 

142.71, 135.56, 131.79, 131.41, 129.72, 128.75, 122.79, 54.80, 52.42, 42.62, 36.62, 33.65, 30.36, 

29.88, 29.77, 29.12, 26.55, 19.51. IR (cm−1): 3179, 2927, 2859, 1662, 1456, 1199, 698. 

MS(ESI+): Calc for [C22H30N4O3S+H]+ 431.212; Found 431.029 

 

Methyl (S)-2-(2-((S)-1-(((benzyloxy)carbonyl)amino)-2-phenylethyl)-4-((6-

(hydroxyamino)-6-oxohexyl)thio)-1H-imidazol-1-yl)propanoate 

To intermediate 3-16 (250 mg, 0.29 mmol, 1 eq) in DCM (1 mL) was added DTT (352 mg, 2.28 

mmol, 8 eq). The mixture was stirred 16 h at room temperature. Compound 3-33 (144 mg, 0.68 

mmol, 2.4 eq) and Et3N (190 L, 1.43 mmol, 5 eq) were added and the reaction mixture was 

stirred 16 h at room temperature. The reaction mixture was diluted with DCM (10 mL) and 
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washed with a saturated solution of NaHCO3 (2 x 10 mL), then brine (10 mL). Organic layer was 

then dried over MgSO4, filtered and evaporated. The residue was purified by reverse flash 

chromatography (gradient H2O/MeCN 0.05% TFA) to afford the desired compound (90 mg, 

56%). 1H NMR (400 MHz, CDCl3) δ 10.00 (br, 1H), 8.15 (d, J = 7.9 Hz, 1H), 7.33 – 7.27 (m, 

5H), 7.25 – 7.21 (m, 3H), 7.09 – 7.02 (m, 3H), 5.19 – 5.10 (m, 1H), 5.08, 4.97 (ABq, J = 12.5 Hz, 

2H), 4.85 (q, J = 6.8 Hz, 1H), 3.72 (s, 3H), 3.45 – 3.33 (m, 2H), 2.86 (t, J = 6.8 Hz, 2H), 2.12 (t, 

J = 6.2 Hz, 2H), 1.65 – 1.55 (m, 2H), 1.55 – 1.46 (m, 2H), 1.45 – 1.34 (m, 2H), 1.17 (d, J = 7.2 

Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 168.72, 162.26, 156.55, 149.42, 136.25, 135.20, 129.30, 

129.06, 128.56, 128.18, 127.86, 127.52, 122.07, 67.24, 55.14, 53.72, 49.00, 39.63, 35.55, 32.07, 

28.53, 27.04, 24.56, 17.54. IR (cm−1): 3193, 3061, 2928, 1670, 1453, 1230. MS(ESI+): Calc for 

[C29H36N4O6S+H]+ 569.243; Found 569.350 

 

Methyl (S)-2-(2-((S)-1-(((benzyloxy)carbonyl)amino)-2-phenylethyl)-4-((7-

(hydroxyamino)-7-oxoheptyl)thio)-1H-imidazol-1-yl)propanoate 

TCEP.HCl (196.10 mg, 0.68 mmol, 3 eq) was added in Milli-Q water (6 mL). Then aqueous 

NaOH (1M) was added until pH = 5. The solution was then added to intermediate 3-16 (200 mg, 

0.23 mmol, 1 eq) in a mixture of CHCl3 (2 mL) and MeOH (6 mL) and the reaction mixture was 

stirred at room temperature for 16 h. Volatiles were evaporated and the aqueous was extracted 

with CHCl3 (2 x 10 mL). Combined organic layer was dried over MgSO4, filtered and evaporated. 

The crude was dissolved in dry CHCl3 (4 mL) under nitrogen atmosphere. Linker 3-34 (204 mg, 

0.91 mmol, 4 eq) and DIPEA (159 L, 0.91 mmol, 4 eq) were added. The reaction mixture was 

stirred at room temperature for 16 h. The solvent was evaporated and the residue purified by flash 

chromatography (gradient DCM/MeOH) to afford the desired product (63 mg, 18%). 1H NMR 

(400 MHz, CDCl3) δ 7.36 – 7.29 (m, 5H), 7.21 – 7.14 (m, 3H), 7.01 (d, J = 7.0 Hz, 2H), 6.84 (s, 

1H), 6.00 (d, J = 8.5 Hz, 1H), 5.10, 5.05 (ABq, J = 12.4 Hz, 2H), 4.96 (td, J = 9.2, 5.7 Hz, 1H), 

4.41 (q, J = 7.1 Hz, 1H), 3.60 (s, 3H), 3.30 (dd, J = 12.6, 5.4 Hz, 1H), 3.19 (dd, J = 12.4, 10.2 Hz, 

1H), 2.88 – 2.73 (m, 2H), 2.28 (t, J = 7.5 Hz, 2H), 1.65 – 1.57 (m, 2H), 1.49 – 1.38 (m, 3H), 1.38 

– 1.29 (m, 3H), 1.10 (d, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 171.70, 170.33, 156.03, 

148.81, 136.90, 136.58, 132.05, 129.39, 128.59, 128.47, 127.97, 127.78, 126.93, 120.30, 66.70, 
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53.16, 52.97, 48.85, 41.69, 35.74, 33.95, 32.86, 28.80, 28.23, 24.99, 17.79. IR (cm−1) 3318, 2934, 

1663, 1190, 1135. MS (ESI+): Calc for [C30H38N4O6S+H]+ 583.2590; Found 583.2650  

 

Methyl (S)-2-(2-((S)-1-(((benzyloxy)carbonyl)amino)-2-phenylethyl)-4-((8-

(hydroxyamino)-8-oxooctyl)thio)-1H-imidazol-1-yl)propanoate 

To intermediate 3-16 (250 mg, 0.29 mmol, 1 eq) in DCM (1 mL) was added DTT (352 mg, 2.28 

mmol, 8 eq). The mixture was stirred 16 h at room temperature. Compound 3-35 (144 mg, 0.68 

mmol, 2.4 eq) and Et3N (190 L, 1.43 mmol, 5 eq) were added and the reaction mixture was 

stirred 16 h at room temperature. The reaction mixture was diluted with DCM (10 mL) and 

washed with a saturated solution of NaHCO3 (2 x 10 mL), then brine (10 mL). Organic layer was 

then dried over MgSO4, filtered and evaporated. The residue was purified by reverse flash 

chromatography (gradient H2O/MeCN 0.05% TFA) to afford the desired compound (135 mg, 

79%). 1H NMR (400 MHz, CDCl3) δ 8.22 (d, J = 8.0 Hz, 1H), 7.34 – 7.27 (m, 5H), 7.24 – 7.19 

(m, 3H), 7.09 – 7.02 (m, 2H), 6.98 (s, 1H), 5.17 – 5.10 (m, 1H), 5.08, 4.98 (ABq, J = 12.8 Hz, 

2H), 4.82 (q, J = 7.2 Hz, 1H), 3.70 (s, 3H), 3.46 – 3.31 (m, 2H), 2.90 (t, J = 7.2 Hz, 2H), 2.17 – 

2.04 (m, 2H), 1.62 – 1.49 (m, 4H), 1.41 – 1.32 (m, 2H), 1.32 – 1.22 (m, 4H), 1.12 (d, J = 7.1 Hz, 

3H). 13C NMR (101 MHz, CDCl3) δ 171.56, 168.70, 156.46, 149.28, 136.34, 135.44, 129.16, 

129.07, 128.50, 128.25, 128.08, 127.79, 127.71, 121.28, 67.07, 54.84, 53.53, 48.92, 39.86, 35.50, 

32.55, 28.97, 28.52, 28.27, 27.84, 25.12, 17.58. IR (cm−1): 3228, 2929, 2856, 1662, 1455, 1198. 

MS (ESI+) Calc for [C31H40N4O6S+H]+ 597.275; Found 597.876 

 

4-(Bromomethyl)-N-hydroxybenzamide 

Under argon atmosphere, SOCl2 (10 mL, 137.85 mmol, 10 eq) was added to α-Bromo-p-toluic 

acid (3.0 g, 13.95 mmol, 1 eq) and the mixture was heated at reflux for 4.5 h. Excess of SOCl2 

was then removed in vaccuo. Toluene (20 mL) was added to the residue followed by evaporation 
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to afford the acid chloride (3.26 g). The acid chloride was then dissolved in Et2O (100 mL) and 

added dropwise to a solution of NH2OH. HCl (2.13 g, 30.69 mmol, 2.2 eq) in NaOH (2 M, 15 

mL) at 0 °C. The reaction mixture was stirred 30min at room temperature. The solution was then 

acidified with HCl (2 M) until pH = 2 leading to a precipitate which was filtered and washed with 

H2O (20 mL) to afford the desired compound (2.88 g, 90 % yield). 1H NMR (400 MHz, DMSO) 

δ 11.26 (br, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.3 Hz, 2H), 4.73 (s, 2H). 13C NMR (101 

MHz, DMSO) δ 163.79, 141.08, 132.63, 129.31, 127.32, 33.58. IR (cm−1): 3341, 3050, 2685, 

1644, 1534, 1466. MS (ESI+) Calc for [C8H8BrNO2+H]+ 229.981; Found 231.455 

 

Methyl (S)-2-(2-((S)-1-(((benzyloxy)carbonyl)amino)-2-phenylethyl)-4-((4-

(hydroxycarbamoyl)benzyl)thio)-1H-imidazol-1-yl)propanoate 

To intermediate 3-16 (250 mg, 0.29 mmol, 1 eq) in dry DCM (4 mL) under argon atmosphere 

were added DTT (352 mg, 2.28 mmol, 8 eq) and Et3N (159 L, 1.14 mmol, 4 eq). The mixture 

was stirred 16 h at room temperature. Compound 3-41 (656 mg, 2.85 mmol, 10 eq) was added 

and the reaction mixture was stirred 16 h at room temperature. The reaction mixture was diluted 

with DCM (10 mL) and washed with a saturated solution of NaHCO3 (2 x 10 mL), then brine (10 

mL). Organic layer was then dried over MgSO4, filtered and evaporated. The residue was purified 

by reverse flash chromatography (gradient H2O/MeCN 0.05% TFA) to afford the desired 

compound (80 mg, 24%). 1H NMR (400 MHz, CDCl3) δ 8.11 (br, 1H), 7.42 – 7.28 (m, 7H), 7.20 

– 7.16 (m, 3H), 7.04 (d, J = 8.0 Hz, 2H), 6.99 – 6.94 (m, 2H), 6.81 (s, 1H), 5.21 (d, J = 12.4 Hz, 

1H), 5.04 (d, J = 12.4 Hz, 1H), 5.02 – 4.94 (m, 1H), 4.73 (q, J = 7.2 Hz, 1H), 4.04, 3.94 (ABq, 

J = 12.7 Hz, 2H), 3.76 (s, 3H), 3.26 (d, J = 8.5 Hz, 2H), 1.06 (d, J = 7.3 Hz, 3H). 13C NMR (101 

MHz, CDCl3) δ 173.82, 168.69, 156.55, 149.72, 140.18, 136.39, 135.21, 131.04, 129.28, 129.20, 

128.98, 128.62, 128.27, 128.07, 127.83, 127.66, 125.69, 123.76, 67.30, 54.97, 53.76, 48.85, 

40.39, 39.57, 17.57. IR (cm−1): 3209, 2926, 1662, 1456, 1197, 1135. MS (ESI+) Calc for 

[C31H32N4O6S+H]+ 589.212; Found 589.750 
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Methyl (S)-2-(2-((S)-1-(((benzyloxy)carbonyl)amino)-2-phenylethyl)-4-((3-

bromobenzyl)thio)-1H-imidazol-1-yl)propanoate 

To a mixture of 3-16 (150 mg, 0.17 mmol, 1 eq) in dry DCM (4 mL) under argon atmosphere 

were added DTT (211 mg, 0.86 mmol, 8 eq) and Et3N (116 L, 0.86 mmol, 5 eq). The reaction 

mixture was stirred for 16 h at room temperature. To the mixture was added 3-bromobenzyl 

bromide (103 mg, 0.41 mmol, 2.4 eq) the reaction mixture was stirred at room temperature for 

5 h. The reaction mixture was then diluted with DCM (10 mL) and washed with an aqueous 

solution 5% NaHSO4 (3 x 10 mL), then a saturated solution of NaHCO3 (2 x 10 mL) and then 

brine (10 mL). The organic layer was dried over MgSO4, filtered and evaporated. The crude 

material was purified by flash chromatography on silica (gradient Hexane/EtOAc) to afford the 

desired product (133mg, 64%). 1H NMR (400 MHz, CDCl3) δ 7.37 – 7.27 (m, 7H), 7.23 – 7.16 

(m, 3H), 7.11 – 7.01 (m, 4H), 6.63 (s, 1H), 5.66 (d, J = 8.6 Hz, 1H), 5.11, 5.07 (ABq, J = 12.4 

Hz, 2H), 4.95 (td, J = 9.3, 5.5 Hz, 1H), 4.35 (q, J = 7.3 Hz, 1H), 3.95, 3.88 (ABq, J = 13.2 Hz, 

2H), 3.58 (s, 3H), 3.33 (dd, J = 12.8, 5.3 Hz, 1H), 3.20 (dd, J = 12.8, 9.9 Hz, 1H), 1.06 (d, J = 7.2 

Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 170.14, 155.64, 148.51, 141.04, 136.93, 136.47, 132.03, 

130.91, 130.06, 129.91, 129.53, 128.79, 128.65, 128.25, 128.08, 127.78, 127.09, 122.25, 121.24, 

67.00, 53.57, 53.13, 49.13, 42.48, 39.65, 17.65. IR (cm−1): 3312, 3029, 2921, 1741, 1713, 1217. 

MS (ESI+) Calc for [C30H30N3O4SBr+H]+ 608.1219; Found: 608.1215 

 

3-(Bromomethyl)benzaldehyde 

To a solution of –Bromo–m–tolunitrile (1.00 g, 5.1 mmol) in dry toluene (10 mL) under argon 

atmosphere and cooled in an ice–bath was added dropwise DIBAL–H (1.0 M solution in hexane, 

6.63 ml, 6.63 mmol). The reaction mixture was stirred for 2 h in an ice-bath. After completion, 
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chloroform (15 mL) and 10% HCl (35 ml) were added. Stirring was kept for an additional hour 

at room temperature. The layers were separated and the organic layer was washed with distilled 

water (35 mL), brine (30 mL), dried over MgSO4 and filtered. Evaporation afforded the desired 

compound (886 mg, 87%). 1H NMR (400 MHz, CDCl3) δ 10.02 (s, 1H), 7.90 (t, J = 1.5 Hz, 1H), 

7.82 (dt, J = 7.6, 1.4 Hz, 1H), 7.70 – 7.63 (m, 1H), 7.53 (t, J = 7.6 Hz, 1H), 4.54 (s, 2H). 13C NMR 

(101 MHz, CDCl3) δ 191.73, 139.04, 136.95, 134.98, 129.95, 129.81, 129.68, 32.17. Consistent 

with reported analysis.418 

 

Methyl (S)-2-(2-((S)-1-(((benzyloxy)carbonyl)amino)-2-phenylethyl)-4-((3-

formylbenzyl)thio)-1H-imidazol-1-yl)propanoate 

To a mixture of 3-16 (200 mg, 0.23 mmol, 1 eq) in dry DCM (1.75 mL) under argon atmosphere 

were added DTT (141 mg, 0.91 mmol, 4 eq) and Et3N (79.5 L, 0.57 mmol, 2.5 eq). The reaction 

mixture was stirred for 16 h at room temperature. To the mixture was added 3-63 (90 mg, 0.46 

mmol, 2 eq) and the reaction mixture was stirred at room temperature for 5 h. The reaction mixture 

was then diluted with DCM (10 mL) and washed with an aqueous solution 5% NaHSO4 (3 x 10 

mL), then a saturated solution of NaHCO3 (2 x 10 mL) and then brine (10 mL). The organic layer 

was dried over MgSO4, filtered and evaporated. The crude material was purified by flash 

chromatography on silica (gradient Hexane/EtOAc) to afford the desired product (137 mg, 54%). 

1H NMR (400 MHz, CDCl3) δ 9.89 (s, 1H), 7.74 – 7.66 (m, 1H), 7.58 (s, 1H), 7.44 – 7.27 (m, 

7H), 7.23 – 7.15 (m, 3H), 7.06 – 6.99 (m, 2H), 6.62 (s, 1H), 5.67 (d, J = 8.6 Hz, 1H), 5.11, 5.07 

(ABq, J = 12.4 Hz, 2H), 4.94 (td, J = 9.2, 5.5 Hz, 1H), 4.35 (q, J = 7.2 Hz, 1H), 4.03 (s, 2H), 3.58 

(s, 3H), 3.32 (dd, J = 12.9, 5.5 Hz, 1H), 3.20 (dd, J = 12.8, 9.8 Hz, 1H), 1.04 (d, J = 7.2 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 192.34, 170.11, 155.61, 148.52, 139.91, 136.92, 136.55, 136.44, 

135.11, 130.73, 130.47, 129.50, 129.00, 128.69, 128.60, 128.20, 128.09, 128.01, 127.01, 121.28, 

66.93, 53.05, 52.94, 49.08, 42.27, 39.64, 17.60. IR (cm−1): 3311, 3030, 1703, 1525, 1247. MS 

(ESI+) Calc for [C31H31N3O5S+H]+ 558.2063; Found: 558.2173 
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(E)-3-(3-(((2-((S)-1-(((Benzyloxy)carbonyl)amino)-2-phenylethyl)-1-((S)-1-methoxy-1-

oxopropan-2-yl)-1H-imidazol-4-yl)thio)methyl)phenyl)acrylic acid 

To a mixture of 3-64 (264 mg, 0.47 mmol) in pyridine (2 mL) under argon atmosphere was added 

malonic acid (148 mg, 1.42 mmol, 3 eq) and piperidine (23 L, 0.24 mmol, 0.5 eq). The reaction 

mixture was stirred for 2 h at 100 °C.  After completion, the reaction mixture was cooled down 

to room temperature and a solution of HCl (1M, 20 mL) was added. The aqueous was extracted 

with EtOAc (2 x 20 mL). Organic layer was dried over MgSO4, filtered and evaporated. The crude 

product was purified by flash chromatography on silica (gradient DCM/MeOH (2% AcOH)) to 

afford the desired compound (274 mg, 97%). 1H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 16.0 Hz, 

1H), 7.57 (s, 1H), 7.39 – 7.29 (m, 6H), 7.20 – 7.08 (m, 4H), 7.02 – 6.92 (m, 3H), 6.86 (s, 1H), 

6.51 (d, J = 15.9 Hz, 1H), 5.12 (s, 2H), 5.01 (td, J = 9.7, 5.9 Hz, 1H), 4.57 (q, J = 7.0 Hz, 1H), 

4.00, 3.96 (ABq, J = 12.3 Hz, 2H), 3.65 (s, 3H), 3.26 (dd, J = 12.8, 5.5 Hz, 1H), 3.23 – 3.14 (m, 

1H), 1.07 (d, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 171.57, 169.97, 156.14, 149.30, 

144.12, 138.53, 136.84, 136.71, 135.09, 130.65, 129.39, 128.69, 128.49, 127.97, 127.83, 127.00, 

121.43, 120.47, 66.71, 53.33, 53.00, 48.84, 41.89, 40.73, 17.66. IR (cm−1): 3260, 2926, 1700, 

1635, 1216. MS (ESI+) Calc for [C33H33N3O6S+H]+ 600.2168; Found: 600.2155  

4.2 Aspartic acid –based scaffold 

4.2.i Solution phase synthesis 

 

(9H-Fluoren-9-yl)methyl hydroxycarbamate 
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To a solution of hydroxylamine hydrochloride (208 mg, 3.0 mmol, 1 eq) in EtOAc (20 mL) was 

added a solution of NaHCO3 (554 mg, 6.6 mmol, 2.2 eq) in H2O (10 mL). The mixture was cooled 

to 4 °C in an ice-bath and Fmoc-Cl (775 mg, 3 mmol, 1 eq) dissolved in EtOAc (2 mL) was then 

added dropwise. The biphasic mixture was let to warm up to room temperature and vigorously 

stirred for a further 4 h. The reaction mixture was then separated and the organic layer was washed 

with a saturated solution of KHSO4 (3 x 30 ml) and brine (30 mL). The organic layer was then 

dried over MgSO4, filtered and evaporated in vacuo. The residue was triturated with hexane, and 

the desired compound was then recovered by filtration (731 mg, 86 %). 1H NMR (400 MHz, 

CDCl3) δ 7.78 (d, J = 6.1 Hz, 2H), 7.59 (d, J = 7.1 Hz, 2H), 7.42 (t, J = 6.7 Hz, 2H), 7.32 (t, 

J = 8.6 Hz, 2H), 4.52 (d, J = 7.0 Hz, 2H), 4.26 (t, J = 6.4 Hz, 1H). 13C NMR (101 MHz, CDCl3) 

δ 158.79, 143.50, 141.48, 128.04, 127.30, 125.16, 120.23, 68.01, 47.09. Consistent with reported 

analysis.426 

 

tert-Butyl (S)-3-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(benzylamino)-4-

oxobutanoate 

To a solution of Fmoc-L-Asp(OtBu)-OH (5.0 g, 12.15 mmol, 1 eq), in anhydrous DCM (50 mL) 

under argon atmosphere were added HATU (5.08 g, 13.37 mmol, 1.1 eq), DIPEA (8.5 mL, 48.61 

mmol, 4 eq) and benzylamine (1.5 mL, 13.37 mmol, 1.1 eq). The reaction mixture was then stirred 

at room temperature for 4 h. The reaction was quenched by addition of a saturated solution of 

NH4Cl (50 mL). The layers were separated and the aqueous extracted with DCM (20 mL). The 

organic layer was dried over MgSO4, filtered and concentrated in vacuo. The residue was purified 

by flash chromatography (gradient Hex/EtOAc) to afford the desired compound (5.98 g, 98 %). 

1H NMR (400 MHz, CDCl3) δ 7.75 (dd, J = 7.6, 3.7 Hz, 2H), 7.57 (d, J = 7.4 Hz, 2H), 7.44 – 7.35 

(m, 2H), 7.33 – 7.26 (m, 5H), 7.26 – 7.23 (m, 2H), 6.77 (br, 1H), 5.97 (d, J = 7.5 Hz, 1H), 4.60 – 

4.50 (m, 1H), 4.50 – 4.38 (m, 4H), 4.20 (t, J = 6.8 Hz, 1H), 2.97 (dd, J = 16.6, 2.9 Hz, 1H), 2.62 

(dd, J = 17.1, 6.4 Hz, 1H), 1.43 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 171.49, 170.45, 156.18, 

143.81, 141.47, 138.00, 128.83, 127.93, 127.67, 127.24, 125.15, 120.20, 82.12, 67.29, 47.31, 

43.73, 43.60, 37.59, 28.17. IR (cm−1): 3299, 2975, 1719, 1657, 1539, 1115. MS (ESI+) Calc for 

[C30H32N2O5+Na]+ 523.221; Found: 523.741  
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(S)-3-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(benzylamino)-4-oxobutanoic acid 

To 3-75 (1.0 g, 2.0 mmol, 1 eq) in DCM (4 mL) was added TFA (1 mL, 12.98 mmol, 6.5 eq) and 

the reaction mixture was stirred at room temperature for 2 h. The volatiles were evaporated and 

Et2O (10 mL) was added. The solvent was removed in vacuo and the residue was triturated in 

hexane. The mixture was filtered to afford the desired compound (860 mg, 97 %). 1H NMR (400 

MHz, MeOD) δ 7.79 (dd, J = 7.6, 0.7 Hz, 2H), 7.65 (d, J = 7.5 Hz, 2H), 7.38 (t, J = 7.4 Hz, 2H), 

7.30 (ddd, J = 7.5, 2.5, 1.2 Hz, 2H), 7.28 – 7.24 (m, 4H), 7.23 – 7.17 (m, 1H), 4.55 (t, J = 6.6 Hz, 

1H), 4.44 – 4.32 (m, 4H), 4.21 (t, J = 6.9 Hz, 1H), 2.86 (dd, J = 16.6, 5.8 Hz, 1H), 2.71 (dd, J = 

16.7, 7.6 Hz, 1H).13C NMR (101 MHz, MeOD) δ 173.97, 173.39, 158.34, 145.21, 142.56, 139.73, 

129.47, 128.78, 128.32, 128.16, 126.23, 120.91, 68.15, 53.12, 44.11, 38.87, 37.07. IR (cm−1): 

3287, 3139, 1695, 1655, 1542. MS (ESI+) Calc for [C26H24N2O5+H]+ 445.176; Found: 445.677 

 

1-Allyl 4-(tert-butyl) (((9H-fluoren-9-yl)methoxy)carbonyl)-L-aspartate 

Fmoc-L-Asp(OtBu)-OH (15 g, 36.46 mmol, 1 eq) was added to allyl bromide (31.5 mL, 364.56 

mmol, 10 eq) under an argon atmosphere. Then DIPEA (12.7 mL, 72.91 mmol, 2 eq) was added 

to the mixture. The reaction mixture was heated under reflux and stirred for 1 h resulting in a 

cloudy yellow solution. After cooling, the solution was poured into EtOAc (200 mL). The 

diisopropylethylammonium hydrobromide precipitate was filtered off and the filtrate was washed 

with HCl (1 M, 50 mL), then NaHCO3 (0.5 M, 50 mL), and brine (50 mL). The combined organic 

layers were dried with MgSO4, filtered and concentrated in vacuo. The resulting solution was 

purified by flash chromatography on silica (gradient Hexane/EtOAc) to afford the desired 

compound (16.02 g, 97%). 1H NMR (400 MHz, CDCl3) δ 7.77 (d, J = 7.5 Hz, 2H), 7.61 (dd, J = 7.0, 4.6 

Hz, 2H), 7.41 (t, J = 7.5 Hz, 2H), 7.32 (td, J = 7.5, 1.0 Hz, 2H), 5.98 – 5.87 (m, 1H), 5.85 (d, J = 8.8 Hz, 

1H), 5.34 (dd, J = 17.2, 1.1 Hz, 1H), 5.25 (dd, J = 10.4, 1.2 Hz, 1H), 4.71 – 4.60 (m, 3H), 4.43 (dd, J = 

10.4, 7.3 Hz, 1H), 4.35 (dd, J = 10.3, 7.5 Hz, 1H), 4.26 (t, J = 7.2 Hz, 1H), 2.98 (dd, J = 16.9, 4.6 Hz, 1H), 

2.80 (dd, J = 16.9, 4.5 Hz, 1H), 1.46 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 170.74, 170.11, 156.09, 
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144.01, 143.83, 141.40, 131.61, 127.82, 127.18, 125.29, 125.24, 120.09, 118.90, 81.98, 67.38, 

66.40, 50.71, 47.20, 37.89, 28.14. IR (cm−1): 3410, 2982, 2950, 1745, 1720, 1507. MS (ESI+) 

Calc for [C26H29NO6+Na]+ 474.189; Found: 474.718 

 

(S)-3-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(allyloxy)-4-oxobutanoic acid 

Compound 3-87 (15.95 g, 35.33 mmol, 1 eq) was dissolved in DCM (30 mL), then TFA (30 mL, 

353.25 mmol, 10 eq) was added and the mixture was stirred at room temperature for 1 h. The 

mixture was then concentrated in vacuo and the residue washed with Et2O (30 mL). The residual 

solid was filtered, washed with Et2O (2 x 10 mL), and dried to afford the desired compound (11.10 

g, 79%). 1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 7.5 Hz, 2H), 7.60 (d, J = 7.4 Hz, 2H), 7.40 

(t, J = 7.4 Hz, 2H), 7.31 (td, J = 7.4, 1.0 Hz, 2H), 5.95 – 5.84 (m, 1H), 5.82 (d, J = 8.4 Hz, 1H), 

5.33 (d, J = 17.1 Hz, 1H), 5.26 (d, J = 10.5 Hz, 1H), 4.75 – 4.62 (m, 3H), 4.44 (dd, J = 10.4, 7.4 

Hz, 1H), 4.41 – 4.35 (m, 1H), 4.24 (t, J = 6.9 Hz, 1H), 3.13 (dd, J = 17.5, 4.4 Hz, 1H), 2.96 (dd, 

J = 17.5, 4.4 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 175.82, 170.38, 156.20, 143.78, 141.45, 

131.41, 127.91, 127.24, 125.25, 120.16, 119.24, 67.54, 66.76, 50.39, 47.22, 36.48. IR (cm−1): 

3322, 2960, 1685, 1535, 1274. MS (ESI+) Calc for [C22H21NO6+H]+ 396.137; Found: 396.521 

 

Allyl N
2
-(((9H-fluoren-9-yl)methoxy)carbonyl)-N

4
-(3-ethoxy-3-oxopropyl)-L-asparaginate 

To a solution of 4-88 (5.90 g, 14.92 mmol, 1 eq), in dry DCM (100 mL) under an argon 

atmosphere were added β-alanine ethyl ester hydrochloride (2.52 g, 16.41 mmol, 1.1 eq), HATU 

(6.24 g, 16.41 mmol, 1.1 eq) and DIPEA (10.4 mL, 59.68 mmol, 4 eq). The reaction mixture was 

then stirred at room temperature for 4 h. The reaction was quenched by addition of a saturated 

solution of NH4Cl (50 mL). The layers were separated and the aqueous extracted with DCM (20 

mL). The organic layer was dried over anhydrous MgSO4 and concentrated in vacuo. The residue 

was purified by flash chromatography on silica (gradient Hexane/EtOAc) to afford the desired 
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compound (6.0 g, 81 %). 1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 7.5 Hz, 2H), 7.61 (dd, J = 

7.2, 3.5 Hz, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 6.18 (br, 1H), 6.11 (d, J = 8.7 

Hz, 1H), 5.97 – 5.82 (m, 1H), 5.33 (d, J = 17.1 Hz, 1H), 5.24 (dd, J = 10.4, 0.9 Hz, 1H), 4.67 (d, 

J = 5.4 Hz, 2H), 4.65 – 4.57 (m, 1H), 4.43 (dd, J = 10.2, 7.2 Hz, 1H), 4.31 (dd, J = 10.3, 7.6 Hz, 

1H), 4.23 (t, J = 7.0 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.51 (dd, J = 11.2, 5.2 Hz, 2H), 2.95 (dd, 

J = 15.8, 4.3 Hz, 1H), 2.72 (dd, J = 15.8, 4.3 Hz, 1H), 2.51 (t, J = 5.9 Hz, 2H), 1.26 (t, J = 7.1 Hz, 

3H). 13C NMR (101 MHz, CDCl3) δ 172.63, 170.91, 169.82, 156.28, 143.97, 143.84, 141.35, 

131.70, 127.78, 127.15, 125.31, 125.25, 120.04, 118.69, 67.32, 66.35, 60.90, 50.99, 47.17, 37.75, 

34.98, 33.97, 14.23. IR (cm−1): 3311, 2952, 1727, 1689, 1541, 1206. MS (ESI+) Calc for 

[C27H30N2O7+H]+ 495.213; Found: 495.700 

 

N
2
-(((9H-fluoren-9-yl)methoxy)carbonyl)-N

4
-(3-ethoxy-3-oxopropyl)-L-asparagine 

Phenylsilane (0.75 mL, 6.07 mmol, 1 eq) and Pd(PPh3)4 (350 mg, 0.30 mmol, 0.05 eq) were added 

to a solution of 3-89 (3.0 g, 6.07 mmol, 1 eq) in dry DCM (20 mL) under argon atmosphere. The 

reaction mixture was stirred at room temperature for 16 h. The resulting mixture was filtered 

through Celite. The filtrate was evaporated and then purified by flash chromatography on silica 

(gradient DCM/MeOH) to afford the desired compound (1.59 g, 58.0 %). 1H NMR (400 MHz, 

CDCl3) δ 7.74 (d, J = 7.5 Hz, 2H), 7.58 (dd, J = 7.2, 3.0 Hz, 2H), 7.38 (t, J = 7.4 Hz, 2H), 7.29 (t, 

J = 7.4 Hz, 2H), 6.92 – 6.85 (m, 1H), 6.25 (d, J = 6.5 Hz, 1H), 4.55 – 4.48 (m, 1H), 4.40 – 4.28 

(m, 2H), 4.19 (t, J = 7.1 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 3.55 – 3.45 (m, 2H), 2.93 (dd, J = 15.8, 

2.9 Hz, 1H), 2.75 (dd, J = 15.8, 7.3 Hz, 1H), 2.51 (t, J = 5.8 Hz, 2H), 1.22 (t, J = 7.1 Hz, 3H). 13C 

NMR (101 MHz, CDCl3) δ 172.82, 172.67, 171.65, 156.29, 143.88, 143.76, 141.39, 127.88, 

127.23, 125.28, 120.11, 67.46, 61.15, 50.66, 47.15, 37.84, 35.46, 33.73, 14.22. IR (cm−1): 3313, 

2942, 1727, 1694, 1644, 1538, 1183. MS (ESI+) Calc for [C24H26N2O7+H]+ 455.182; Found: 

455.668 
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Ethyl (S)-3-(3-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(benzylamino)-4-

oxobutanamido)propanoate 

To a solution of 3-90 (300 mg, 0.66 mmol, 1 eq) in DCM (10 mL) were added EDC.HCl (152 

mg, 0.792 mmol, 1.2 eq) and HOBt.H2O (121 mg, 0.792 mmol, 1.2 eq). The mixture was stirred 

in an ice-bath for 30min. Then, benzylamine (72 L, 0.726 mmol, 1.1 eq) and DIPEA (126 L, 

0.726 mmol, 1.1 eq) were added to the reaction mixture which was then stirred at room 

temperature for 16 h. The resulting solution was diluted with DCM (30 mL), then washed with a 

solution of HCl (0.5 M, 30 mL), then NaOH (0.5 M, 30 mL) and distilled water (30 mL). The 

combined organic layers were dried with MgSO4, filtered, concentrated and purified by flash 

chromatography on silica (gradient of Hexane/EtOAc) to afford the desired compound (275 mg, 

76.6 %). 1H NMR (400 MHz, CDCl3) δ 7.75 (dd, J = 7.5, 3.8 Hz, 2H), 7.57 (d, J = 7.5 Hz, 2H), 

7.39 (dd, J = 12.5, 7.3 Hz, 2H), 7.33 – 7.25 (m, 7H), 6.49 (d, J = 6.4 Hz, 1H), 6.38 (br, 1H), 4.47 

– 4.37 (m, 3H), 4.22 – 4.09 (m, 3H), 3.49 (q, J = 6.0 Hz, 2H), 2.92 (d, J = 15.0 Hz, 1H), 2.56 (d, 

J = 6.3 Hz, 1H), 2.52 – 2.47 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 

172.47, 171.10, 170.79, 156.38, 143.84, 143.79, 141.43, 138.03, 132.27, 132.17, 128.78, 128.58, 

127.87, 127.54, 127.21, 125.19, 120.13, 67.29, 60.97, 51.78, 47.26, 43.64, 37.88, 35.09, 33.97, 

14.28. IR (cm−1): 3286, 2920, 2850, 1732, 1687, 1654, 1533. MS (ESI+) Calc for 

[C31H33N3O6+H]+ 544.245; Found: 544.723 

 

Ethyl (S)-3-(3-amino-4-(benzylamino)-4-oxobutanamido)propanoate 

Compound 3-91 (0.240 g, 0.441 mmol, 1 eq) was dissolved in DCM (4 mL) and diethylamine 

(1 mL, 9.65 mmol, 22 eq) was added. The mixture was stirred at room temperature for 16 h. Then 

the reaction mixture was diluted DCM (10 mL) and washed with a solution of HCl (1 M, 3 x 5 

mL). To the aqueous layer was added NaOH (2 M) until pH = 10 and the solution was extracted 
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with DCM (3 x 20 mL). The organic layer was dried with MgSO4, filtered, and concentrated in 

vacuo. The residue was purified by flash chromatography on silica (gradient DCM/MeOH) to 

afford the desired compound (79 mg, 44 %). 1H NMR (400 MHz, CDCl3) δ 7.78 (s, 1H), 7.36 – 

7.25 (m, 5H), 6.41 (br, 1H), 4.44 (d, J = 6.0 Hz, 2H), 4.16 (q, J = 7.1 Hz, 2H), 3.72 (dd, J = 7.3, 

4.4 Hz, 1H), 3.56 – 3.42 (m, 2H), 2.68 (dd, J = 14.9, 4.4 Hz, 1H), 2.56 (dd, J = 14.9, 7.3 Hz, 1H), 

2.49 (t, J = 6.1 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 174.01, 172.28, 

171.25, 138.32, 128.69, 127.60, 127.42, 60.76, 52.68, 43.27, 40.80, 34.97, 34.13, 14.23. IR 

(cm−1): 3288, 2919, 2850, 1723, 1630, 1548. MS (ESI+) Calc for [C16H23N3O4+H]+ 322.177; 

Found: 322.704 

 

Ethyl (S)-3-(4-(benzylamino)-3-cinnamamido-4-oxobutanamido)propanoate 

Compound 3-92 (70 mg, 0.218 mmol, 1 eq) was dissolved in dry DCM (5 mL) under argon 

atmosphere. Cinnamoyl chloride (36.3 mg, 0.218 mmol, 1 eq) and Et3N (154 L, 1.11 mmol, 5 

eq) were added and the mixture was then stirred at room temperature for 1 h. Next, the mixture 

was quenched with H2O (20 mL) and extracted with DCM (3 x 20 mL). The combined organic 

layer was washed with brine (20 mL), dried with MgSO4, filtered, and concentrated in vacuo. The 

residue was purified by flash chromatography on silica (gradient DCM/MeOH) to afford the 

desired compound (26 mg, 26.4 %). 1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 15.7 Hz, 1H), 

7.54 – 7.47 (m, 3H), 7.42 – 7.35 (m, 3H), 7.34 – 7.27 (m, 2H), 7.25 – 7.21 (m, 2H), 6.48 (d, J = 

15.7 Hz, 1H), 4.89 (td, J = 6.8, 3.1 Hz, 2H), 4.45 (d, J = 5.9 Hz, 2H), 4.16 (q, J = 7.1 Hz, 2H), 

3.58 – 3.48 (m, 2H), 2.94 (dd, J = 15.2, 3.2 Hz, 1H), 2.57 – 2.48 (m, 3H), 1.27 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, DMSO) δ 171.34, 170.90, 169.36, 164.87, 139.43, 139.04, 134.92, 129.57, 

129.00, 128.21, 127.60, 127.00, 126.67, 122.14, 59.98, 50.20, 42.16, 37.73, 34.74, 33.80, 14.09. 

IR (cm−1): 3283, 2919, 2850, 1732, 1651, 1538, 1255. MS (ESI+) Calc for [C25H29N3O5+H]+ 

452.219; Found: 452.738 
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tert-Butyl (3-(hydroxyamino)-3-oxopropyl)carbamate 

To a solution of Boc--Ala-OH (9.10 g, 48.1 mmol, 1 eq) in dry THF (120 mL) under argon 

atmosphere was added CDI (7.8 g, 48.1 mmol, 1 eq). The solution was stirred 30 min at room 

temperature and then 30 min at reflux. After cooling to room temperature, hydroxylamine 

hydrochloride (3.34 g, 48.1 mmol, 1 eq) was added and the reaction mixture was stirred 16 h. The 

reaction mixture was filtered and the filtrate was evaporated. The residue was dissolved in 

phosphate buffer (30 mL, pH = 6.2) and the aqueous was extracted with EtOAc (3 x 30 mL). The 

combined organic layer was dried with MgSO4, filtered and evaporated in vacuo to afford the 

desired compound (9.75 g, 99%) which was used in next step without further purification.  1H 

NMR (400 MHz, D2O) δ 7.88 (s, 1H), 7.16 (s, 1H), 3.32 (t, J = 6.3 Hz, 2H), 2.31 (t, J = 6.4 Hz, 

2H), 1.41 (s, 9H). 13C NMR (101 MHz, D2O) δ 170.59, 157.99, 81.09, 36.38, 32.86, 27.58. 

Consistent with reported analysis.429  

 

3-(Hydroxyamino)-3-oxopropan-1-aminium chloride 

To a solution of acetyl chloride (27 mL, 383.9 mmol, 8 eq) in EtOAc (140 mL) was slowly added 

EtOH (22.4 mL, 383.9 mmol, 8 eq). The exothermic reaction mixture was then stirred at room 

temperature for 30 min. The solution was then added to 3-95 (9.7 g, 47.5 mmol, 1 eq) and the 

reaction mixture was stirred at room temperature for 16 h. The mixture was then filtered and the 

solid washed with EtOAc (3 x 20 mL) to afford the desired product (6.54 g, 98 %). 1H NMR (400 

MHz, D2O) δ 8.67 (s, 1H), 7.45 (s, 1H), 3.26 (t, J = 6.5 Hz, 2H), 2.57 (t, J = 6.8 Hz, 2H). 13C 

NMR (101 MHz, D2O) δ 168.96, 35.60, 29.11. IR (cm−1): 2941, 2829, 1723, 1626. MS (ESI+) 

Calc for [C3H8N2O2+H]+ 105.066; Found: 105.610 
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4.2.ii Solid phase synthesis426,517 

 Swelling resin  

Dry 2-chlorotrityl chloride resin (1 g, loading 1.3 mmol/g) was placed in a SPPS reactor with a 

sintered filter and covered with three-times the bead volume using dry DCM. The resin was 

shaken in an orbital shaker for 30 min. 

 Resin loading 

To the swelled resin was added a solution of Fmoc-hydroxylamine 3-72 (2 mmol, 1.5 eq) and 

DIPEA (3.25 mmol, 2.5 eq) in DCM (2 mL). The reactor was then shaken for 48 h. Unreacted 

chloride sites were then capped by addition of MeOH (1 mL), and the shaking was kept for an 

additional 15 min. The solvent was then removed by filtration, and the resin washed with DCM 

(5 x 1 min), DCM/MeOH 1:1 (5 x 1 min) and MeOH (2 x 1 min). The resin was then dried in 

vacuo. 

 Fmoc deprotection and coupling 

The resin was swollen in DMF (2 mL) and stirred for 15 min. Then removal of the Fmoc group 

was achieved using 20% piperidine in DMF over 10 min followed by washing with DMF. The 

deprotection step was repeated to ensure completion. The resin was filtered and washed several 

times with DMF (5 x 1 min) to remove any residual piperidine. Then a solution of Fmoc-amino 

acid (3 eq), HOBt (3 eq), HBTU (3 eq) and DIPEA (6 eq) in DCM (2 mL) was added, and the 

reaction mixture was shaken for 2 h. The resin was filtered, washed with DMF, and the coupling 

step was repeated. Following washing with DMF, capping was performed by adding a solution 

of Ac2O/pyridine 1:9 (vol/vol) and a 20 min shaking. The resin was then filtered and washed with 

DMF (5 x 1 min).  

 Coupling of cinnamoyl chloride 

The resin was swollen in DMF, and the Fmoc deprotection procedure was applied. Then a solution 

of cinnamoyl chloride (3.9 mmol, 3 eq) and DIPEA (5.2 mmol, 4 eq) in DMF was added, and the 

reaction mixture was shaken 8 h. The resin was filtered, washed with DMF, and the coupling was 

repeated, then washed with DMF (5 x 1 min).  

 Cleavage from the resin 

The resin was washed with DCM (2 x 1 min) and swollen for 15 min. Resin cleavage were 

achieved by treating the resin with a cleavage cocktail composed by TFA:DCM:TIPS 95:2.5:2.5 

for 3 h with constant agitation. The TFA solution containing the crude peptide was filtered off, 

and the resin washed with neat TFA (2 mL). The TFA contained in the crude was removed by 
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rotary evaporation, and the residue precipitated in Et2O. The crude material was then purified by 

flash chromatography on a reverse phase (gradient H2O/MeCN 0.05% TFA). 

4.3 Triazole-based scaffold 

 

Methyl (S)-2-azido-3-phenylpropanoate 

To a solution of NaN3 (211 mg, 3.25 mmol, 1.4 eq) in dry MeCN (4 mL) under an argon 

atmosphere and at 0 °C was added dropwise Tf2O (468 L, 2.78 mmol, 1.2 eq). The reaction 

mixture was stirred at 0 °C for 3 h. In another flask, L-Phenylalanine methyl ester hydrochloride 

(500 mg, 2.32 mmol, 1 eq), CuSO4 (4 mg, 0.02 mmol, 0.01 eq), and Et3N (0.65 mL, 4.64 mmol, 

2 eq) were dissolved in a mixture MeCN/H2O (4 mL, 3:1). The reaction mixture was stirred at 

0 °C and the TfN3 solution previously prepared was added. The reaction mixture was then stirred 

at room temperature for 16 h. The volatiles were evaporated in vacuo and the residue was 

dissolved in EtOAc (20 mL). The organic was washed with H2O (3 x 10 mL), brine (10 mL), 

dried with MgSO4, filtered and evaporated. The residue was then purified by flash 

chromatography on silica (gradient Hexane/EtOAc) to afford the desired compound (240 mg, 

50%). 1H NMR (400 MHz, CDCl3) δ 7.36 – 7.27 (m, 3H), 7.25 – 7.21 (m, 2H), 4.07 (dd, J = 8.7, 

5.4 Hz, 1H), 3.78 (s, 3H), 3.18 (dd, J = 14.0, 5.4 Hz, 1H), 3.01 (dd, J = 14.0, 8.8 Hz, 1H). 13C 

NMR (101 MHz, CDCl3) δ 170.55, 136.06, 129.32, 128.85, 127.43, 63.43, 52.80, 37.81. IR(cm−1): 

3032, 2107, 1738. MS (ESI+) Calc for [C10H11N3O2+H]+ 206.0930, Found: 206.1157 
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Methyl (S)-3-phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)propanoate 

To a solution of 3-116 (260 mg, 1.27 mmol, 1 eq) in a mixture H2O/tBuOH (4.5 mL, 2:1) were 

added an aqueous solution of sodium ascorbate (1 M, 130 L, 0.13 mmol, 0.1 eq), an aqueous 

solution of CuSO4.5H2O (0.3 M, 42 L, 0.01 mmol, 0.01 eq), and phenylacetylene (139 L, 1.27 

mmol, 1 eq). The reaction mixture was stirred at room temperature for 16 h. The mixture was 

diluted with H2O (15 mL) and cooled to 0 °C leading to the formation of a precipitate which was 

recovered by filtration. The solid was washed with cold H2O (10 mL) and dried in vacuo giving 

the desired compound (380 mg, 98%). 1H NMR (400 MHz, CDCl3) δ 7.82 (s, 1H), 7.82 – 7.78 

(m, 2H), 7.45 – 7.39 (m, 2H), 7.35 – 7.30 (m, 1H), 7.26 – 7.21 (m, 3H), 7.09 – 7.04 (m, 2H), 5.63 

(dd, J = 8.1, 6.7 Hz, 1H), 3.77 (s, 3H), 3.56 (dd, J = 11.9, 4.4 Hz, 1H), 3.51 (dd, J = 12.0, 6.1 Hz, 

1H). 13C NMR (101 MHz, CDCl3) δ 168.86, 147.87, 134.85, 130.55, 129.09, 128.98, 128.95, 

128.36, 127.75, 125.89, 119.75, 64.18, 53.23, 39.08. IR (cm−1): 3084, 1757, 1434, 1266, 1199. 

MS (ESI+) Calc for [C18H17N3O2+H]+ 308.1399, Found: 308.1350 

 

(S)-3-Phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)propanoic acid 

Compound 3-117 (380 mg, 1.23 mmol, 1 eq) was dissolved in a solution of HCl (6 M, 10 mL). 

The reaction mixture was stirred at 70 °C for 16 h then extracted with DCM (3 x 15 mL). The 

organic was dried with MgSO4, filtered and evaporated in vacuo to afford the desired compound 

(350 mg, 97%). 1H NMR (400 MHz, CDCl3) δ 7.78 – 7.63 (m, 2H), 7.44 – 7.37 (m, 2H), 7.35 – 
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7.26 (m, 2H), 7.23 – 7.19 (m, 3H), 7.09 – 7.03 (m, 2H), 5.76 – 5.61 (m, 1H), 3.66 – 3.49 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 170.39, 147.46, 134.90, 129.85, 129.21, 129.06, 128.97, 128.64, 

127.72, 126.13, 120.98, 64.64, 38.95. IR (cm−1): 3424, 3136, 3032, 2927, 2113, 1725, 1234. MS 

(ESI+) Calc for [C17H15N3O2+H]+ 294.1243; Found: 294.1334 

 

(S)-N-hydroxy-3-phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)propanamide 

To a solution of 3-118 (330 mg, 1.12 mmol, 1 eq) in dry THF (10 mL) and under argon atmosphere 

was added CDI (274 mg, 1.69 mmol, 1.5 eq) and the reaction mixture was stirred at room 

temperature for 3 h. Then NH2OH.HCl (156 mg, 2.24 mmol, 2 eq) was added and the reaction 

mixture was stirred at room temperature for 2 days. The reaction was quenched by addition of a 

solution of 5% KHSO4 (10 mL) and the mixture was extracted with EtOAc (3 x 15 mL). The 

combine organic layer was then washed with brine (10 mL), dried with MgSO4, filtered and 

evaporated in vacuo. The residue was purified by flash chromatography on reverse phase 

(gradient H2O/MeCN 0.05% TFA) to afford the desired compound (104 mg, 30 %). 1H NMR (400 

MHz, MeOD) δ 8.56 (s, 1H), 7.86 – 7.74 (m, 2H), 7.48 – 7.40 (m, 2H), 7.39 – 7.32 (m, 1H), 7.29 

– 7.13 (m, 5H), 5.43 (t, J = 8.0 Hz, 1H), 3.58 (dd, J = 13.7, 7.7 Hz, 1H), 3.47 (dd, J = 13.7, 8.2 

Hz, 1H). 13C NMR (101 MHz, MeOD) δ 166.41, 148.85, 136.63, 131.54, 130.20, 129.97, 129.71, 

129.41, 128.34, 126.66, 121.42, 64.14, 39.26. IR (cm−1): 3283, 3085, 3032, 1756, 1680, 1435, 

1266. MS (ESI+) Calc for [C17H16N4O2+H]+ 309.135; Found: 309.640 
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(S)-2-Azido-3-phenylpropanoic acid 

Method A: 

To a solution of NaN3 (275 mg, 4.24 mmol, 1.4 eq) in dry MeCN (5 mL) under an argon 

atmosphere and at 0 °C was added dropwise Tf2O (611 L, 3.63 mmol, 1.2 eq). The reaction 

mixture was stirred at 0 °C for 3 h. In another flask, L-Phenylalanine (500 mg, 3.03 mmol, 1 eq), 

CuSO4 (5 mg, 0.03 mmol, 0.01 eq), and Et3N (844 L, 6.05 mmol, 2 eq) were dissolved in MeCN 

(5 mL). The reaction mixture was stirred at 0 °C and the TfN3 solution previously prepared was 

added. The reaction mixture was then stirred at room temperature for 16 h. The volatiles were 

evaporated in vacuo and the residue was dissolved in H2O (20 mL). The aqueous was acidified 

with HCl (1 M) and extracted with DCM (3 x 15mL). The combine organic layer was dried with 

MgSO4, filtered and concentrated in vacuo. The residue was dissolved in a solution of NaHCO3 

(2 M, 15 mL) and the aqueous was washed with Et2O (2 x 10 mL). The aqueous was then acidified 

with HCl (2 M) and extracted with DCM (3 x 10 mL). The combined organic layer was dried with 

MgSO4, filtered and evaporated. To afford the desired compound (460 mg, 79%). 1H NMR (400 

MHz, CDCl3) δ 7.39 – 7.27 (m, 5H), 4.16 (dd, J = 8.9, 5.0 Hz, 1H), 3.24 (dd, J = 14.1, 5.0 Hz, 

1H), 3.05 (dd, J = 14.1, 8.9 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 174.43, 135.79, 129.38, 

128.92, 127.57, 63.19, 37.69. IR (cm−1): 3032, 2111, 1731, 1614, 1140. MS (ESI-) Calc for 

[C9H9N3O2-H]- 190.0617; Found: 190.0640 

Method B:  

A solution of NaN3 (275 mg, 4.24 mmol; 1.4 eq) in dry MeCN (5 mL) under an argon atmosphere 

was cooled at 0 °C with an ice-bath. Then Tf2O (611 L, 3.63 mmol, 1.2 eq) was added dropwise. 

The reaction mixture was stirred at 0 °C for 2 h and was then added to a solution of 

L-Phenylalanine (500 mg, 3.03 mmol, 1 eq), K2CO3 (1.129 g, 8.17 mmol, 2.7 eq) and CuSO4.5H2O 

(8 mg, 0.03 mmol, 0.01 eq) in a MeOH/H2O co-solvent (12 mL, 5:1) at 0 °C. The reaction mixture 

was then stirred for 16 h at room temperature. The volatiles were evaporated in vacuo and the 

residue was dissolved in H2O (20 mL). The aqueous was acidified with HCl (1 M) and extracted 

with DCM (3 x 15mL). The combine organic layer was dried with MgSO4, filtered and 

concentrated in vacuo. The residue was dissolved in a solution of NaHCO3 (2 M, 15 mL) and the 

aqueous was washed with Et2O (2 x 10 mL). The aqueous was then acidified with HCl (2 M) and 
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extracted with DCM (3 x 10 mL). The combined organic layer was dried with MgSO4, filtered 

and evaporated. To afford the desired compound (503 mg, 87%). 

 

(S)-2-Azido-N-(benzyloxy)-3-phenylpropanamide 

CDI (534 mg, 3.30 mmol, 1.5 eq) was added to a solution of 3-120 (420 mg, 2.20 mmol, 1 eq) in 

dry THF (8 mL) under an argon atmosphere. Additionally, dry DMF (1 mL) was added for better 

dissolution of the starting materials. The reaction mixture was stirred for 1 h at room temperature. 

Powdered hydroxylamine hydrochloride (700 mg, 4.39 mmol, 2 eq) was added to the mixture, 

which was then stirred for 16 h at room temperature. THF was removed by evaporation. The crude 

mixture was then diluted with an aqueous solution of 5% NaHSO4 (30 mL) and extracted with 

EtOAc (2 x 30mL).The combined organic phases were washed with cold H2O (30 mL), brine (30 

mL), then dried with MgSO4, filtered and evaporated in vacuo. The residue was purified by flash 

chromatography on silica (gradient Hexane/EtOAc) to afford the desired product (463 mg, 71%). 

1H NMR (400 MHz, CDCl3) δ 8.60 (s, 1H), 7.44 – 7.23 (m, 10H), 4.84, 4.78 (ABq, J = 11.2 Hz, 

2H), 4.16 – 4.06 (m, 1H), 3.31 (dd, J = 14.0, 4.8 Hz, 1H), 3.05 (dd, J = 14.0, 7.6 Hz, 1H). 13C 

NMR (101 MHz, CDCl3) δ 165.96, 135.67, 134.74, 129.71, 129.50, 129.09, 128.88, 128.77, 

127.54, 78.66, 63.95, 38.26. IR (cm−1): 3168, 2922, 2100, 1662, 1454. MS (ESI+) Calc for 

[C16H16N4O2+H]+ 297.135; Found: 297.709 
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(S)-N-(benzyloxy)-2-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)-3-phenylpropanamide 

To a solution of 3-121 (100 mg, 0.34 mmol, 1 eq) in a mixture H2O/tBuOH (1 mL, 1:1) were 

added an aqueous solution of sodium ascorbate (1 M, 34 L, 0.03 mmol, 0.1 eq), an aqueous 

solution of CuSO4.5H2O (0.3 M, 11 L, 0.003 mmol, 0.01 eq), and 4-fluorophenylacetylene 

(39 L, 0.34 mmol, 1 eq). The reaction mixture was stirred at room temperature for 16 h. The 

mixture was diluted with H2O (15 mL) and extracted with DCM (3 x 15 mL). The combined 

organic phases were washed with brine (15 mL), then dried with MgSO4, filtered and evaporated 

in vacuo. The residue was purified by flash chromatography on silica (gradient Hexane/EtOAc) 

to afford the desired product (91 mg, 65%). 1H NMR (400 MHz, CDCl3) δ 10.96 (s, 1H), 8.31 (s, 

1H), 7.83 – 7.72 (m, 2H), 7.33 – 7.23 (m, 6H), 7.23 – 7.18 (m, 4H), 7.15 (t, J = 8.6 Hz, 2H), 5.74 

(t, J = 7.9 Hz, 1H), 4.84 (d, J = 10.9 Hz, 1H), 4.73 (d, J = 10.9 Hz, 1H), 3.63 (dd, J = 13.6, 8.3 

Hz, 1H), 3.43 (dd, J = 13.6, 7.6 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 164.76, 162.92 (d, J = 

248.0 Hz), 147.24, 134.84, 134.49, 129.45, 129.23, 128.98, 128.59, 127.70, 127.63 (d, J = 8.2 

Hz), 126.31 (d, J = 3.2 Hz), 119.42, 116.03 (d, J = 21.9 Hz), 78.57, 63.18, 39.46. IR (cm−1): 3251, 

3032, 2926, 1692. MS (ESI+) Calc for [C24H21FN4O2+H]+ 417.1727; Found: 417.1842 

 

 

 



   

 

242 

 

 

 

(S)-N-(benzyloxy)-2-(4-(4-methoxyphenyl)-1H-1,2,3-triazol-1-yl)-3-phenylpropanamide 

To a solution of 3-121 (100 mg, 0.34 mmol, 1 eq) in a mixture H2O/tBuOH (1 mL, 1:1) were 

added an aqueous solution of sodium ascorbate (1 M, 34 L, 0.03 mmol, 0.1 eq), an aqueous 

solution of CuSO4.5H2O (0.3 M, 11 L, 0.003 mmol, 0.01 eq), and 4-methoxyphenylacetylene 

(44 L, 0.34 mmol, 1 eq). The reaction mixture was stirred at room temperature for 16 h. The 

mixture was diluted with H2O (15 mL) and extracted with DCM (3 x 15 mL). The combined 

organic phases were washed with brine (15 mL), then dried with MgSO4, filtered and evaporated 

in vacuo. The residue was purified by flash chromatography on silica (gradient Hexane/EtOAc) 

to afford the desired product (110 mg, 76%). 1H NMR (400 MHz, CDCl3) δ 10.63 (s, 1H), 8.08 

(s, 1H), 7.66 (d, J = 8.8 Hz, 2H), 7.25 – 7.06 (m, 10H), 6.92 (d, J = 8.8 Hz, 2H), 5.57 (t, J = 7.9 

Hz, 1H), 4.78, 4.68 (ABq, J = 10.9 Hz, 2H), 3.83 (s, 3H), 3.54 (dd, J = 13.6, 8.1 Hz, 1H), 3.34 

(dd, J = 13.7, 7.7 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 164.76, 164.16, 161.69, 147.24, 134.84, 

134.49, 129.45, 129.23, 128.98, 128.59, 127.70, 127.67, 127.59, 126.32, 126.29, 119.42, 116.14, 

115.92, 78.57, 63.18, 39.46. IR (cm−1): 3269, 2929, 1693, 1250. MS (ESI+) Calc for 

[C25H24N4O3+H]+ 429.1927; Found: 429.1969 
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(S)-N-(Benzyloxy)-3-phenyl-2-(4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-

yl)propanamide 

To a solution of 3-121 (250 mg, 0.84 mmol, 1 eq) in a mixture H2O/tBuOH (2 mL, 1:1) were 

added an aqueous solution of sodium ascorbate (1 M, 84 L, 0.08 mmol, 0.1 eq), an aqueous 

solution of CuSO4.5H2O (0.3 M, 28 L, 0.008 mmol, 0.01 eq), and 

4-(trifluoromethyl)phenylacetylene (138 L, 0.84 mmol, 1 eq). The reaction mixture was stirred 

at room temperature for 16 h. The mixture was diluted with H2O (15 mL) and extracted with DCM 

(3 x 15 mL). The combined organic phases were washed with brine (15 mL), then dried with 

MgSO4, filtered and evaporated in vacuo. The residue was purified by flash chromatography on 

silica (gradient Hexane/EtOAc) to afford the desired product (250 mg, 64%). 1H NMR (400 MHz, 

CDCl3) δ 9.20 (d, J = 3.6 Hz, 1H), 8.09 (s, 1H), 7.89 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 8.2 Hz, 2H), 

7.33 – 7.26 (m, 6H), 7.19 – 7.11 (m, 4H), 5.26 (td, J = 7.8, 3.1 Hz, 1H), 4.84 (d, J = 11.2 Hz, 1H), 

4.71 (d, J = 11.2 Hz, 1H), 3.60 (dd, J = 13.5, 8.3 Hz, 1H), 3.35 (dd, J = 13.5, 7.5 Hz, 1H). 13C 

NMR (101 MHz, MeOD) δ 166.13, 147.40, 136.43, 136.32, 135.45, 130.71 (q, J = 32.3 Hz), 

130.48, 130.33, 129.81, 129.74, 129.45, 128.49, 127.06, 126.91 (q, J = 3.7 Hz), 125.16 (q, J = 

271.7 Hz), 122.49, 79.11, 63.94, 39.18. IR (cm−1): 3140, 2967, 1662, 1456, 1324. MS (ESI+) Calc 

for [C25H21F3N4O2+H]+ 467.169; Found: 467.658  
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(S)-N-(benzyloxy)-3-phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)propanamide 

To a solution of 3-121 (150 mg, 0.51 mmol, 1 eq) in a mixture H2O/tBuOH (2 mL, 1:1) were 

added an aqueous solution of sodium ascorbate (1 M, 51 L, 0.05 mmol, 0.1 eq), an aqueous 

solution of CuSO4.5H2O (0.3 M, 17 L, 0.005 mmol, 0.01 eq), and phenylacetylene (56 L, 0.51 

mmol, 1 eq). The reaction mixture was stirred at room temperature for 16 h. The mixture was 

diluted with H2O (15 mL) and extracted with DCM (3 x 15 mL). The combined organic phases 

were washed with brine (15 mL), then dried with MgSO4, filtered and evaporated in vacuo. The 

residue was purified by flash chromatography on silica (gradient Hexane/EtOAc) to afford the 

desired product (158 mg, 78%). 1H NMR (400 MHz, CDCl3) δ 9.52 (s, 1H), 7.99 (s, 1H), 7.77 (d, 

J = 7.2 Hz, 2H), 7.42 (t, J = 7.4 Hz, 2H), 7.39 – 7.31 (m, 2H), 7.26 – 7.22 (m, 5H), 7.21 – 7.15 

(m, 2H), 7.14 – 7.08 (m, 2H), 5.40 – 5.21 (m, 1H), 4.83 (d, J = 11.0 Hz, 1H), 4.72 (d, J = 11.0 

Hz, 1H), 3.58 (dd, J = 13.5, 7.6 Hz, 1H), 3.36 (dd, J = 13.6, 7.5 Hz, 1H). 13C NMR (101 MHz, 

DMSO) δ 164.14, 146.21, 135.83, 135.43, 130.66, 129.08, 129.02, 128.92, 128.43, 128.41, 

128.33, 127.91, 126.95, 125.13, 120.88, 77.05, 61.79, 37.09. IR (cm−1): 3267, 3086, 2900, 1700. 

MS (ESI+) Calc for [C24H22N4O2+H]+ 399.182; Found: 399.651 
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(S)-N-(Benzyloxy)-2-(4-cyclopropyl-1H-1,2,3-triazol-1-yl)-3-phenylpropanamide 

To a solution of 3-121 (58 mg, 0.20 mmol, 1 eq) in a mixture H2O/tBuOH (1 mL, 1:1) were added 

an aqueous solution of sodium ascorbate (1 M, 20 L, 0.02 mmol, 0.1 eq), an aqueous solution 

of CuSO4.5H2O (0.3 M, 7 L, 0.002 mmol, 0.01 eq), and cyclopropylacetylene (167 L, 

0.20 mmol, 1 eq). The reaction mixture was stirred at room temperature for 16 h. The mixture 

was diluted with H2O (15 mL) and extracted with DCM (3 x 15 mL). The combined organic 

phases were washed with brine (15 mL), then dried with MgSO4, filtered and evaporated in vacuo. 

The residue was purified by flash chromatography on silica (gradient Hexane/EtOAc) to afford 

the desired product (42 mg, 59%) . 1H NMR (400 MHz, CDCl3) δ 9.65 (s, 1H), 7.42 (s, 1H), 7.33 

– 7.27 (m, 3H), 7.25 – 7.16 (m, 5H), 7.13 – 7.01 (m, 2H), 5.27 – 5.12 (m, 1H), 4.81 (d, J = 11.0 

Hz, 1H), 4.70 (d, J = 11.0 Hz, 1H), 3.50 (dd, J = 13.5, 7.8 Hz, 1H), 3.26 (dd, J = 13.6, 7.8 Hz, 

1H), 1.93 – 1.80 (m, 1H), 0.96 – 0.87 (m, 2H), 0.78 – 0.70 (m, 2H). 13C NMR (101 MHz, CDCl3) 

δ 164.81, 150.48, 135.04, 134.74, 129.41, 129.20, 128.80, 128.50, 127.46, 119.68, 78.39, 62.83, 

39.33, 7.95, 7.89, 6.71. IR (cm−1): 3139, 2918, 2850, 1695, 1030. MS (ESI+) Calc for 

[C21H22N4O2+H]+ 363.182; Found: 363.816 
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(S)-2-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)-N-hydroxy-3-phenylpropanamide 

To a solution of 3-122 (60 mg, 0.14 mmol, 1.0 eq) in dry THF (1.2 mL) under an argon atmosphere 

and at -78 °C was added boron trichloride (1 M solution in DCM, 1.0 mL, 1.01 mmol, 7.0 eq). 

The reaction mixture was warm-up to room temperature and stirred for 2 h. The reaction was 

quenched by slow addition of a solution of NaHCO3 (2 M, 20 mL) and the mixture was extracted 

with DCM (3 x 20 mL). The combined organic phases were then washed with brine (15 mL), 

dried with MgSO4, filtered and evaporated in vacuo. The resulting crude mixture was purified by 

flash chromatography on reverse phase (gradient H2O/MeCN 0.05% TFA) to afford the desired 

compound (25 mg, 53%). 1H NMR (400 MHz, MeOD) δ 8.55 (s, 1H), 7.97 – 7.69 (m, 2H), 7.33 

– 7.08 (m, 8H), 5.43 (t, J = 8.0 Hz, 1H), 3.57 (dd, J = 13.7, 7.7 Hz, 1H), 3.46 (dd, J = 13.7, 8.3 

Hz, 1H). 13C NMR (101 MHz, MeOD) δ 166.41, 164.17 (d, J = 246.2 Hz), 147.96, 136.62, 130.20, 

129.73, 128.65 (d, J = 8.2 Hz), 128.36, 128.03 (d, J = 3.3 Hz), 121.32, 116.78 (d, J = 22.1 Hz), 

64.16, 39.28. IR (cm−1): 3139, 2896, 1672, 1496. MS (ESI+) Calc for [C17H15FN4O2+H]+ 327.126; 

Found: 327.637 
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(S)-N-hydroxy-2-(4-(4-methoxyphenyl)-1H-1,2,3-triazol-1-yl)-3-phenylpropanamide 

To a solution of 3-123 (60 mg, 0.14 mmol, 1.0 eq) in dry THF (1.2 mL) under an argon atmosphere 

and at -78 °C was added boron trichloride (1 M solution in DCM, 0.98 mL, 0.98 mmol, 7.0 eq). 

The reaction mixture was warm-up to room temperature and stirred for 2h. The reaction was 

quenched by slow addition of a solution of NaHCO3 (2 M, 20 mL) and the mixture was extracted 

with DCM (3 x 20 mL). The combined organic phases were then washed with brine (15 mL), 

dried with MgSO4, filtered and evaporated in vacuo. The resulting crude mixture was purified by 

flash chromatography on reverse phase (gradient H2O/MeCN 0.05% TFA) to afford the desired 

compound (25 mg, 53%). 1H NMR (400 MHz, MeOD) δ 8.44 (s, 1H), 7.72 (d, J = 8.5 Hz, 2H), 

7.29 – 7.13 (m, 5H), 6.98 (d, J = 8.6 Hz, 2H), 5.42 (t, J = 7.9 Hz, 1H), 3.81 (s, 3H), 3.56 (dd, J = 

13.7, 7.6 Hz, 1H), 3.45 (dd, J = 13.6, 8.2 Hz, 1H). 13C NMR (101 MHz, MeOD) δ 166.36, 161.33, 

148.79, 136.63, 130.19, 129.69, 128.31, 128.02, 124.04, 120.52, 115.34, 64.08, 55.76, 39.25. IR 

(cm−1): 3248, 2939, 2859, 1695, 1500. MS (ESI+) Calc for [C18H18N4O3+H]+ 339.146; Found: 

339.634 
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(S)-N-hydroxy-3-phenyl-2-(4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-

yl)propanamide 

To a solution of 3-124 (100 mg, 0.21 mmol, 1.0 eq) in dry THF (2 mL) under an argon atmosphere 

and at -78 °C was added boron trichloride (1 M solution in DCM, 1.5 mL, 1.5 mmol, 7.0 eq). The 

reaction mixture was warm-up to room temperature and stirred for 2 h. The reaction was quenched 

by slow addition of a solution of NaHCO3 (2 M, 20 mL) and the mixture was extracted with DCM 

(3 x 20 mL). The combined organic phases were then washed with brine (15 mL), dried with 

MgSO4, filtered and evaporated in vacuo. The resulting crude mixture was purified by flash 

chromatography on reverse phase (gradient H2O/MeCN 0.05% TFA) to afford the desired 

compound (56.5 mg, 58%). 1H NMR (400 MHz, MeOD) δ 8.73 (s, 1H), 8.03 (d, J = 8.1 Hz, 2H), 

7.74 (d, J = 8.2 Hz, 2H), 7.35 – 7.16 (m, 5H), 5.46 (t, J = 8.0 Hz, 1H), 3.59 (dd, J = 13.7, 7.6 Hz, 

1H), 3.48 (dd, J = 13.8, 8.3 Hz, 1H). 13C NMR (101 MHz, MeOD) δ 166.34, 147.35, 136.55, 

135.46 (d, J = 1.1 Hz), 131.01 (q, J = 32.4 Hz), 130.20, 129.73, 128.37, 127.03, 126.90 (q, J = 

4.0 Hz), 125.61 (q, J = 271.7 Hz), 122.58, 64.18, 39.27. IR (cm−1):3345, 2478, 2218, 2072, 1684, 

1327. MS (ESI+) Calc for [C18H15F3N4O2+H]+ 377.1225; Found: 377.1471  
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(S)-N-hydroxy-3-phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)propanamide 

To a solution of 3-125 (140 mg, 0.35 mmol, 1.0 eq) in dry THF (2.5 mL) under an argon 

atmosphere and at -78 °C was added boron trichloride (1 M solution in DCM, 2.46 mL, 2.46 

mmol, 7.0 eq). The reaction mixture was warm-up to room temperature and stirred for 2 h. The 

reaction was quenched by slow addition of a solution of NaHCO3 (2 M, 20 mL) and the mixture 

was extracted with DCM (3 x 20 mL). The combined organic phases were then washed with brine 

(15 mL), dried with MgSO4, filtered and evaporated in vacuo. The resulting crude mixture was 

purified by flash chromatography on a reverse phase (gradient H2O/MeCN 0.05% TFA) to afford 

the desired compound (50 mg, 46%). 

 

(S)-2-Azido-N-hydroxy-3-phenylpropanamide 

To a solution of 3-121 (205 mg, 0.69 mmol, 1.0 eq) in dry DCM (6.5 mL) under an argon 

atmosphere and at -78 °C was added boron trichloride (1 M solution in DCM, 2.08 mL, 2.08 

mmol, 3.0 eq). The reaction mixture was then stirred for 2 h at -78 °C. The reaction was quenched 

by slow addition of a solution of NaHCO3 (2 M, 20 mL) and the mixture was extracted with DCM 

(3 x 20 mL). The combined organic phases were then washed with brine (15 mL), dried with 

MgSO4, filtered and evaporated in vacuo to afford the desired compound (127 mg, 89%). 1H NMR 

(400 MHz, D2O) δ 7.54 – 7.27 (m, 5H), 4.24 (t, J = 7.1 Hz, 1H), 3.18 (dd, J = 13.8, 7.1 Hz, 1H), 

3.13 (dd, J = 13.8, 7.3 Hz, 1H). 13C NMR (101 MHz, D2O) δ 168.15, 135.74, 129.42, 128.83, 

127.39, 62.21, 37.12. IR (cm−1): 3171, 3030, 2923, 2100, 1657. 
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(Azidomethyl)benzene 

To a solution of benzyl bromide (297 L, 2.5 mmol, 1 eq) in a mixture of H2O/Acetone (50 mL, 

1:4) was added NaN3 (325 mg, 5 mmol, 2 eq). The reaction mixture was then stirred at room 

temperature for 16 h. DCM (50 mL) was added, and the layers were separated. The aqueous was 

extracted with DCM (3 x 10 mL), and the combined organic phases were dried with MgSO4, 

filtered and evaporated to afford the desired compound (285 mg, 86%). 1H NMR (400 MHz, 

CDCl3) δ 7.45 – 7.30 (m, 5H), 4.35 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 135.48, 128.94, 

128.41, 128.32, 54.89. Consistent with reported analysis.518  

 

N-iodomorpholine hydroiodide 

To a solution of iodine (1.16 g, 4.57 mmol, 1 eq) in MeOH (23 mL) was added dropwise 

morpholine (400 L, 4.57 mmol, 1 eq) leading to the formation of an orange precipitate. The 

reaction mixture was stirred 1 h at room temperature in the dark, and the precipitate was recovered 

by filtration, washed with cold MeOH (2 x 10 mL), and dried in vacuo to afford the desired 

product (1.37 g, 88%). 

 

(Iodoethynyl)benzene 

Phenylacetylene (500 L, 4.55 mmol, 1 eq) was dissolved in THF (15 mL) and CuI (43.4 mg, 

0.23 mmol, 0.05 eq) and 3-144 (1.71 g, 5.01 mmol, 1.1 eq) were added. The reaction mixture was 

stirred at room temperature 1 h after which a white precipitate had formed. The mixture was 

filtered on a pad of neutral alumina and washed with DCM (3 x 25 mL). The filtrate was 

evaporated to afford the desired compound (1.02 g, 98%). 1H NMR (400 MHz, CDCl3) δ 7.46 – 
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7.41 (m, 2H), 7.35 – 7.29 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 132.47, 128.95, 128.38, 123.53, 

94.27, 6.22. Consistent with reported analysis.463 

 

1-Fluoro-4-(iodoethynyl)benzene 

To a solution of 4-fluorophenylacetylene (150 L, 1.31 mmol, 1 eq) in THF (5 mL) were added 

CuI (12.5 mg, 0.07 mmol, 0.05 eq) and 3-144 (490.8 mg, 1.44 mmol, 1.1 eq). The reaction mixture 

was stirred at room temperature 1 h after which a white precipitate had formed. The mixture was 

filtered on a pad of neutral alumina and washed with DCM (3 x 25 mL). The filtrate was 

evaporated to afford the desired compound (225 mg, 70%). 1H NMR (400 MHz, CDCl3) δ 7.44 – 

7.38 (m, 2H), 7.00 (t, J = 8.8 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 162.92 (d, J = 250.3 Hz), 

134.41 (d, J = 8.5 Hz), 119.63 (d, J = 3.5 Hz), 115.70 (d, J = 22.2 Hz), 93.14 (s), 6.12 (d, J = 1.8 

Hz). IR (cm−1): 1599, 1503, 1229,1156. Consistent with reported analysis.519  

 

(S)-N-(Benzyloxy)-2-(5-iodo-4-phenyl-1H-1,2,3-triazol-1-yl)-3-phenylpropanamide 

To a solution of 3-121 (150 mg, 0.51 mmol, 1 eq) in THF (2.5 mL) were added 3-145 (115 mg, 

0.51 mmol, 1 eq), Et3N (141 L, 1.01 mmol, 2 eq) and CuI (5 mg, 0.03 mmol, 0.05 eq). The 

reaction mixture was stirred for 16 h and then the solvent was evaporated. The residue was 

purified by flash chromatography (gradient Hexane/EtOAC) to afford the desired compound (170 

mg, 64%). 1H NMR (400 MHz, CDCl3) δ 7.79 (d, J = 6.9 Hz, 2H), 7.49 – 7.40 (m, 3H), 7.37 – 

7.30 (m, 4H), 7.22 – 7.14 (m, 3H), 7.00 – 6.94 (m, 2H), 5.35 (dd, J = 10.9, 4.5 Hz, 1H), 4.94 (s, 

2H), 3.70 (dd, J = 14.1, 3.7 Hz, 1H), 3.55 (dd, J = 13.7, 11.4 Hz, 1H). 13C NMR (101 MHz, 

CDCl3) δ 164.48, 134.96, 134.87, 134.50, 129.51, 129.47, 129.24, 129.17, 129.12, 129.04, 

128.96, 128.82, 128.75, 128.70, 128.59, 127.67, 125.90, 78.60, 65.87, 39.83. IR (cm−1): 2971, 

1739, 1682, 1366. MS (ESI+) Calc for [C24H21IN4O2+H]+ 525.079 ; Found: 525.606 
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(S)-N-(benzyloxy)-2-(4-(4-fluorophenyl)-5-iodo-1H-1,2,3-triazol-1-yl)-3-

phenylpropanamide 

To a solution of 3-121 (300 mg, 1.01 mmol, 1 eq) in THF (15 mL) were added 3-146 (249 mg, 

1.01 mmol, 1 eq), Et3N (282 L, 2.02 mmol, 2 eq) and CuI (10 mg, 0.05 mmol, 0.05 eq). The 

reaction mixture was stirred for 16 h and then the solvent was evaporated. The residue was 

purified by flash chromatography (gradient Hexane/EtOAC) to afford the desired compound (180 

mg, 34%).1H NMR (400 MHz, CDCl3) δ 8.48 (s, 1H), 7.50 – 7.38 (m, 2H), 7.38 – 7.26 (m, 10H), 

7.00 (t, J = 8.8 Hz, 2H), 4.86, 4.79 (ABq, J = 11.2 Hz, 2H), 4.13 (t, J = 7.1 Hz, 1H), 3.33 (dd, J 

= 13.9, 4.5 Hz, 1H), 3.06 (dd, J = 14.0, 7.7 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 166.07, 

162.82 (d, J = 250.4 Hz), 135.67, 134.72, 134.33 (d, J = 8.5 Hz), 129.62, 129.44, 128.99, 128.81, 

128.68, 127.44, 125.89, 119.57 (d, J = 3.6 Hz), 115.62 (d, J = 22.2 Hz), 93.05, 78.56, 63.52, 

38.09. IR (cm−1): 3176, 2970, 1674, 1496, 1225. MS (ESI+) Calc for [C24H20IFN4O2+H]+ 

543.0693; Found: 543.0698 

4.4 Hydantoin-based scaffold 

 

tert-Butyl (S)-(1-((benzyloxy)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 

CDI (458 mg, 2.83 mmol, 1.5 eq) was added to a solution of Boc-L-Phe-OH (420 mg, 2.20 mmol, 

1 eq) in dry THF (4 mL) under an argon atmosphere. The reaction mixture was stirred for 1 h at 

room temperature. Then NH2OBn.HCl (602 mg, 3.77 mmol, 2 eq) was added to the mixture, 

which was then stirred for 16 h at room temperature. THF was removed by evaporation. The crude 
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mixture was then diluted with an aqueous solution of 5% KHSO4 (15 mL) and extracted with 

EtOAc (3 x 10 mL).The combined organic phases were washed brine (20 mL), then dried with 

MgSO4, filtered and evaporated in vacuo. The residue was purified by flash chromatography on 

silica (gradient Hexane/EtOAc) to afford the desired product (603 mg, 86%). 1H NMR (400 MHz, 

CDCl3) δ 8.42 (br, 1H), 7.38 – 7.16 (m, 10H), 5.02 (br, 1H), 4.81 (d, J = 11.1 Hz, 1H), 4.69 (d, J 

= 10.7 Hz, 1H), 4.16 (q, J = 7.4 Hz, 1H), 3.16 – 2.96 (m, 2H), 1.39 (s, 9H). 13C NMR (101 MHz, 

CDCl3) δ 168.87, 155.57, 136.43, 135.06, 129.51, 129.33, 128.79, 128.74, 128.59, 127.08, 80.53, 

78.38, 53.65, 38.50, 28.38. IR (cm−1): 3336, 3248, 2992, 1663, 1521, 1168. MS (ESI+) Calc for 

[C21H26N2O4+Na]+ 393.1790; Found: 393.1891 

 

(S)-2-Amino-N-(benzyloxy)-3-phenylpropanamide 

To a solution of 3-168 (540 mg, 1.46 mmol, 1 eq) in dry DCM (5 mL) under an argon atmosphere 

and at 0 °C was added TFA (1.12 mL, 14.58 mmol, 10 eq). The reaction mixture was then stirred 

at room temperature for 3 h. The reaction was quenched by addition of a solution of NaHCO3 

(1 M, 20 mL). The layers were separated and the organic was washed with brine (10 mL), dried 

with MgSO4, filtered and evaporated in vacuo to afford the desired compound (390 mg, 99%). 1H 

NMR (400 MHz, CDCl3) δ 7.40 – 7.08 (m, 10H), 4.84 (s, 2H), 3.70 – 3.45 (m, 1H), 3.17 (dd, 

J = 13.4, 3.4 Hz, 1H), 2.77 (dd, J = 13.4, 8.3 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 167.34, 

134.72, 133.38, 130.19, 129.58, 129.43, 129.18, 128.67, 127.83, 79.44, 56.32, 37.90. IR (cm−1): 

3031, 1661, 1454, 1203. 

 

tert-Butyl ((S)-1-(((S)-1-((benzyloxy)amino)-1-oxo-3-phenylpropan-2-yl)amino)-1-oxo-3-

phenylpropan-2-yl) carbamate 

To a solution of Boc-L-Phe-OH (100 mg, 0.38 mmol, 1 eq) in dry DMF (2 mL) at 0 °C and under 

argon atmosphere were added EDC (79 mg, 0.41 mmol, 1.1 eq), HOBt.H2O (63 mg, 0.41 mmol, 

1.1 eq) and NMM (137 L, 1.25 mmol, 3.3 eq). The reaction mixture was stirred 10 min at 0 °C 
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and 3-169 (102 mg, 0.38 mmol, 1 eq) was added. The reaction mixture was then stirred at room 

temperature for 16 h. The reaction mixture was diluted with EtOAc (20 mL) and washed with a 

5% aqueous solution of KHSO4 (20 mL), a saturated solution of NaHCO3 (20 mL) and then brine 

(20 mL). The organic layer was then dried with MgSO4, filtered and evaporated in vacuo. The 

residue was purified by flash chromatography on silica (gradient Hexane/EtOAC) to afford the 

desired compound (123 mg, 63%). 1H NMR (400 MHz, CDCl3) δ 8.95 (s, 1H), 7.35 – 7.27 (m, 

7H), 7.25 – 7.21 (m, 3H), 7.18 – 7.09 (m, 3H), 7.09 – 6.99 (m, 2H), 4.80 (d, J = 10.7 Hz, 1H), 

4.71 (d, J = 10.8 Hz, 1H), 4.62 – 4.52 (m, 1H), 4.23 (q, J = 6.1 Hz, 1H), 3.21 – 2.87 (m, 4H), 1.33 

(s, 9H). 13C NMR (101 MHz, CDCl3) δ 171.70, 167.83, 155.75, 136.43, 136.08, 135.13, 129.54, 

129.40, 129.30, 128.74, 128.69, 128.50, 127.11, 127.08, 80.48, 78.27, 55.92, 52.03, 38.25, 38.01, 

28.34. IR (cm−1): 3290, 2978, 1689, 1649, 1524. MS (ESI+) Calc for [C30H35N3O5+H]+ 518.2655; 

Found: 518.2728 

 

tert-Butyl (S)-2-(((S)-1-((benzyloxy)amino)-1-oxo-3-phenylpropan-2-

yl)carbamoyl)pyrrolidine-1-carboxylate 

To a solution of Boc-L-Pro-OH (96 mg, 0.44 mmol, 1.2 eq) in dry DCM (3 mL) at 0 °C and under 

argon atmosphere were added HBTU (168 mg, 0.44 mmol, 1.2 eq), DIPEA (226 L, 1.29 mmol, 

3.5 eq) 3-169 (100 mg, 0.38 mmol, 1 eq) was added. The reaction mixture was then stirred at 

room temperature for 16 h. The reaction mixture was diluted with DCM (20 mL) and washed with 

a 5% aqueous solution of KHSO4 (20 mL), a saturated solution of NaHCO3 (20 mL) and then 

brine (20 mL). The organic layer was then dried with MgSO4, filtered and evaporated in vacuo. 

The residue was purified by flash chromatography on silica (gradient Hexane/EtOAC) to afford 

the desired compound (60 mg, 35%). 1H NMR (400 MHz, CDCl3) δ 9.50 (s, 1H), 7.41 – 7.26 (m, 

8H), 7.16 (d, J = 6.6 Hz, 2H), 4.86 (d, J = 10.9 Hz, 1H), 4.80 (d, J = 10.6 Hz, 1H), 4.74 – 4.64 

(m, 1H), 4.11 (dd, J = 8.3, 4.0 Hz, 1H), 3.35 – 3.20 (m, 3H), 3.18 – 3.00 (m, 1H), 2.13 – 1.96 (m, 

2H), 1.85 – 1.70 (m, 2H), 1.35 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 172.07, 167.97, 155.89, 

136.27, 135.24, 129.50, 129.41, 128.81, 128.71, 128.56, 127.24, 81.24, 78.40, 60.88, 51.74, 

47.28, 37.16, 29.30, 28.41, 24.64. IR (cm−1): 3245, 2978, 1688, 1647, 1520, 1367. MS (ESI-) 

Calc for [C26H33N3O5-H]- 466.2342; Found: 466.2466  
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Methyl (tert-butoxycarbonyl)-L-alanyl-L-phenylalaninate 

To a solution of Boc-L-Ala-OH (300 mg, 1.59 mmol, 1 eq) in dry DCM (5 mL) at 0 °C and under 

argon atmosphere were added HBTU (722 mg, 1.90 mmol, 1.2 eq), L-phenylalanine methyl ester 

hydrochloride (410 mg, 1.90 mmol, 1.2 eq) and DIPEA (967 L, 5.55 mmol, 3.5 eq). Then, the 

reaction mixture was stirred at room temperature for 16 h. The reaction mixture was diluted with 

EtOAc (20 mL) and washed with a 5% aqueous solution of KHSO4 (20 mL), a saturated solution 

of NaHCO3 (20 mL) and then brine (20 mL). The organic layer was then dried with MgSO4, 

filtered and evaporated in vacuo. The residue was purified by flash chromatography on silica 

(gradient Hexane/EtOAC) to afford the desired compound (378 mg, 68%). 1H NMR (400 MHz, 

CDCl3) δ 7.31 – 7.20 (m, 3H), 7.13 – 7.04 (m, 2H), 6.51 (d, J = 7.6 Hz, 1H), 4.84 (dt, J = 7.7, 5.9 

Hz, 1H), 4.18 – 4.07 (m, 1H), 3.71 (s, 3H), 3.16 (dd, J = 13.9, 5.8 Hz, 1H), 3.08 (dd, J = 13.8, 6.0 

Hz, 1H), 1.43 (s, 9H), 1.31 (d, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 172.07, 167.97, 

155.89, 136.27, 135.24, 129.50, 129.41, 128.81, 128.71, 128.56, 127.24, 81.24, 78.40, 60.88, 

51.74, 47.28, 37.16, 29.30, 28.41, 24.64. IR (cm−1): 3317, 2979, 1742, 1663, 1498, 1164. MS 

(ESI+) Calc for [C18H26N2O5+Na]+ 373.174; Found: 373.195    

 

Methyl (tert-butoxycarbonyl)-L-phenylalanyl-L-phenylalaninate 

To a solution of Boc-L-Phe-OH (1.0 g, 3.77 mmol, 1 eq) in dry DCM (38 mL) at 0 °C and under 

argon atmosphere were added HATU (1.58 g, 4.15 mmol, 1.1 eq), L-phenylalanine methyl ester 

hydrochloride (894 mg, 4.15 mmol, 1.1 eq) and DIPEA (2.63 mL, 15.08 mmol, 4 eq). The reaction 

mixture was then stirred at room temperature for 4 h. The reaction mixture was washed with a 

saturated solution of NH4Cl (30 mL) and then brine (20 mL). The organic layer was then dried 

with MgSO4, filtered and evaporated in vacuo. The residue was purified by flash chromatography 

on silica (gradient Hexane/EtOAC) to afford the desired compound (1.05 g, 65%). 1H NMR (400 

MHz, CDCl3) δ 7.31 – 7.26 (m, 3H), 7.26 – 7.16 (m, 5H), 7.01 – 6.94 (m, 2H), 6.27 (d, J = 6.5 
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Hz, 1H), 4.94 (br, 1H), 4.78 (q, J = 6.1 Hz, 1H), 4.37 – 4.28 (m, 1H), 3.67 (s, 3H), 3.15 – 2.96 

(m, 4H), 1.40 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 171.49, 170.92, 155.42, 136.62, 135.76, 

129.50, 129.36, 128.81, 128.69, 127.26, 127.12, 80.35, 55.78, 53.41, 52.41, 38.41, 38.10, 28.37. 

IR (cm−1): 3287, 1696, 1653, 1533. MS (ESI+) Calc for [C24H30N2O5+Na]+ 449.205; 

Found: 449.740   

 

Methyl (tert-butoxycarbonyl)-D-phenylalanyl-L-phenylalaninate 

To a solution of Boc-D-Phe-OH (1.0 g, 3.77 mmol, 1 eq) in dry DCM (38 mL) at 0 °C and under 

an argon atmosphere were added HATU (1.58 g, 4.15 mmol, 1.1 eq), L-phenylalanine methyl 

ester hydrochloride (894 mg, 4.15 mmol, 1.1 eq) and DIPEA (2.63 mL, 15.08 mmol, 4 eq). The 

reaction mixture was then stirred at room temperature for 4 h. The reaction mixture was washed 

with a saturated solution of NH4Cl (30 mL) and then brine (20 mL). The organic layer was then 

dried with MgSO4, filtered and evaporated in vacuo. The residue was purified by flash 

chromatography on silica (gradient Hexane/EtOAC) to afford the desired compound (1.53 g, 

95%). 1H NMR (400 MHz, CDCl3) δ 7.35 – 7.22 (m, 6H), 7.22 – 7.16 (m, 2H), 7.02 – 6.94 (m, 

2H), 6.48 (d, J = 6.9 Hz, 1H), 5.07 – 4.98 (m, 1H), 4.87 (q, J = 5.9 Hz, 1H), 4.47 – 4.35 (m, 1H), 

3.70 (s, 3H), 3.15 – 2.95 (m, 4H), 1.42 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 171.63, 170.98, 

155.41, 136.73, 135.68, 129.44, 129.27, 128.74, 128.70, 127.24, 127.04, 80.24, 55.80, 53.15, 

52.35, 38.48, 37.99, 28.33. IR (cm−1): 3288, 1732, 1661, 1520. MS (ESI+) Calc for 

[C24H30N2O5+Na]+ 449.205; Found: 449.740  

 

Methyl ((S)-3-(4-(benzyloxy)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)-L-

phenylalaninate 

To a solution of Boc-L-Tyr(OBn)-OH (1.0 g, 2.69 mmol, 1 eq) in dry DCM (27 mL) under argon 

atmosphere and at 0 °C were added HATU (1.13 g, 2.96 mmol, 1.1 eq), L-phenylalanine methyl 
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ester hydrochloride (639 mg, 2.96 mmol, 1.1 eq) and DIPEA (1.87 mL, 10.77 mmol, 4 eq). The 

reaction mixture was then stirred at room temperature for 4 h. The reaction mixture was washed 

with a saturated solution of NH4Cl (30 mL) and then brine (20 mL). The organic layer was then 

dried with MgSO4, filtered and evaporated in vacuo. The residue was purified by flash 

chromatography on silica (gradient Hexane/EtOAC) to afford the desired compound (1.17 g, 

82%). 1H NMR (400 MHz, CDCl3) δ 7.43 – 7.28 (m, 5H), 7.25 – 7.19 (m, 3H), 7.12 – 7.01 (m, 

2H), 6.97 – 6.91 (m, 2H), 6.91 – 6.85 (m, 2H), 6.34 (d, J = 7.6 Hz, 1H), 5.03 (s, 2H), 4.90 (br, 

1H), 4.83 (q, J = 5.8 Hz, 1H), 4.36 – 4.22 (m, 1H), 3.67 (s, 3H), 3.07 – 2.89 (m, 4H), 1.39 (s, 9H). 
13C NMR (101 MHz, CDCl3) δ 171.63, 171.06, 157.96, 155.41, 137.09, 135.69, 130.49, 129.28, 

128.91, 128.71, 128.68, 128.05, 127.53, 127.26, 115.11, 80.23, 70.11, 55.90, 53.14, 52.36, 38.00, 

37.60, 28.36. IR (cm−1): 3333, 3025, 1732, 1662, 1510, 1246. MS (ESI+) Calc for 

[C31H36N2O6+Na]+ 555.247; Found: 555.780   

 

Methyl (S)-2-((S)-4-methyl-2,5-dioxoimidazolidin-1-yl)-3-phenylpropanoate 

To a solution of 3-174 (370 mg, 1.06 mmol, 1 eq) in dry DCM (5 mL) at 0 °C and under argon 

atmosphere were added pyridine (256 L, 3.17 mmol, 3 eq) and Tf2O (266 L, 1.58 mmol, 1.5 

eq) dropwise. The reaction mixture was kept stirring at 0 °C for 10 min then let to warm up to 

room temperature and stirred 3 h. The reaction was quenched by addition of a solution of NaHCO3 

(2 M, 2 mL) and the reaction mixture was diluted with EtOAc (30 mL). The organic layer was 

then washed with a saturated solution of NaHCO3 (3 x 15 mL), then brine (15 mL). The organic 

layer was dried with MgSO4, filtered and evaporated in vacuo. The residue was purified by flash 

chromatography on silica (gradient Hexane/EtOAc) to afford the desired compound (157 mg, 

54%). 1H NMR (400 MHz, CDCl3) δ 7.30 – 7.26 (m, 1H), 7.25 – 7.24 (m, 1H), 7.22 – 7.16 (m, 

3H), 5.53 (br, 1H), 4.95 (t, J = 8.6 Hz, 1H), 3.95 (qd, J = 6.9, 1.1 Hz, 1H), 3.80 (s, 3H), 3.48 (d, 

J = 8.7 Hz, 2H), 1.13 (d, J = 6.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.94, 169.19, 156.12, 

136.58, 129.19, 128.70, 127.10, 53.28, 53.04, 52.79, 34.23, 17.67. IR (cm−1): 3381, 2962, 1741, 

1709. MS (ESI+) Calc for [C14H16N2O4+H]+ 277.1188; Found: 277.1247  
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Methyl (S)-2-((S)-4-benzyl-2,5-dioxoimidazolidin-1-yl)-3-phenylpropanoate 

To a solution of 3-175 (211 mg, 1.06 mmol, 1 eq) in dry DCM (3 mL) at 0 °C and under argon 

atmosphere were added pyridine (120 L, 1.48 mmol, 3 eq) and Tf2O (125 L, 0.74 mmol, 1.5 

eq) dropwise. The reaction mixture was kept stirring at 0 °C for 10 min then let to warm-up to 

room temperature and stirred 3 h. The reaction was quenched by addition of a solution of NaHCO3 

(2 M, 2 mL), the reaction mixture was concentrated in vacuo and then diluted with EtOAc (30 

mL). The organic layer was then washed with a saturated solution of NaHCO3 (3 x 15 mL), then 

brine (15 mL). The organic layer was dried with MgSO4, filtered and evaporated in vacuo. The 

residue was purified by flash chromatography on silica (gradient Hexane/EtOAc) to afford the 

desired compound (128 mg, 73%). 1H NMR (400 MHz, CDCl3) δ 7.36 – 7.26 (m, 5H), 7.26 – 

7.19 (m, 3H), 7.14 – 7.05 (m, 2H), 5.08 (br, 1H), 4.98 (dd, J = 10.2, 7.0 Hz, 1H), 4.06 (ddd, J = 

10.7, 3.7, 1.2 Hz, 1H), 3.79 (s, 3H), 3.54 – 3.43 (m, 2H), 3.07 (dd, J = 13.9, 3.6 Hz, 1H), 2.14 

(dd, J = 13.9, 10.8 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 172.41, 169.10, 155.65, 136.63, 

135.81, 129.30, 129.20, 129.07, 128.76, 127.61, 127.18, 58.32, 53.28, 53.06, 38.35, 34.27. IR 

(cm−1): 3296, 2912, 1760, 1708, 1425. MS (ESI+) Calc for [C20H20N2O4+H]+ 353.150; Found: 

353.144 

 

Methyl (S)-2-((R)-4-benzyl-2,5-dioxoimidazolidin-1-yl)-3-phenylpropanoate 

To a solution of 3-176 (1.45 g, 3.40 mmol, 1 eq) in dry DCM (34 mL) at 0 °C and under argon 

atmosphere were added pyridine (825 L, 10.20 mmol, 3 eq) and Tf2O (858 L, 5.10 mmol, 1.5 

eq) dropwise. The reaction mixture was kept stirring at 0 °C for 10 min then let to warm-up to 

room temperature and stirred 3 h. The reaction was quenched by addition of a solution of NaHCO3 

(2 M, 2 mL), the reaction mixture was concentrated in vacuo and then diluted with EtOAc (30 

mL). The organic layer was then washed with a saturated solution of NaHCO3 (3 x 15 mL), then 

brine (15 mL). The organic layer was dried with MgSO4, filtered and evaporated in vacuo. The 

residue was purified by flash chromatography on silica (gradient Hexane/EtOAc) to afford the 
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desired compound (1.15 g, 95%). 1H NMR (400 MHz, CDCl3) δ 7.31 – 7.17 (m, 6H), 7.16 – 7.06 

(m, 4H), 5.64 (s, 1H), 4.90 (dd, J = 11.3, 5.5 Hz, 1H), 4.02 (ddd, J = 9.6, 3.7, 1.1 Hz, 1H), 3.73 

(s, 3H), 3.47 (dd, J = 14.3, 5.5 Hz, 1H), 3.39 (dd, J = 14.2, 11.4 Hz, 1H), 3.16 (dd, J = 13.9, 3.7 

Hz, 1H), 2.51 (dd, J = 13.9, 9.6 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 172.41, 169.10, 155.65, 

136.63, 135.81, 129.30, 129.20, 129.07, 128.76, 127.61, 127.18, 58.32, 53.28, 53.06, 38.35, 

34.27. IR (cm−1): 3270, 2920, 1763, 1701, 1431. MS (ESI+) Calc for [C20H20N2O4+H]+ 353.150 

; Found: 353.758 

 

Methyl (S)-2-((S)-4-(4-(benzyloxy)benzyl)-2,5-dioxoimidazolidin-1-yl)-3-phenylpropanoate 

To a solution of 3-177 (1.1 g, 2.07 mmol, 1 eq) in dry DCM (20 mL) at 0 °C and under argon 

atmosphere were added pyridine (501 L, 6.20 mmol, 3 eq) and Tf2O (521 L, 3.10 mmol, 1.5 

eq) dropwise. The reaction mixture was kept stirring at 0 °C for 10 min then let to warm-up to 

room temperature and stirred 3 h. The reaction was quenched by addition of a solution of NaHCO3 

(2 M, 2 mL) and the reaction mixture was diluted with EtOAc (30 mL). The organic layer was 

then washed with a saturated solution of NaHCO3 (3 x 15 mL), then brine (15 mL). The organic 

layer was dried with MgSO4, filtered and evaporated in vacuo. The residue was purified by flash 

chromatography on silica (gradient Hexane/EtOAc) to afford the desired compound (734 mg, 

78%). 1H NMR (400 MHz, CDCl3) δ 7.42 – 7.28 (m, 5H), 7.28 – 7.16 (m, 3H), 7.16 – 7.10 (m, 

2H), 7.01 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 5.47 (s, 1H), 5.02 (s, 2H), 4.90 (dd, J = 

11.3, 5.6 Hz, 1H), 3.98 (ddd, J = 9.6, 3.6, 0.8 Hz, 1H), 3.74 (s, 3H), 3.48 (dd, J = 14.3, 5.5 Hz, 

1H), 3.41 (dd, J = 14.2, 11.3 Hz, 1H), 3.10 (dd, J = 14.0, 3.7 Hz, 1H), 2.46 (dd, J = 14.0, 9.6 Hz, 

1H).
 13C NMR (101 MHz, CDCl3) δ 172.39, 169.10, 158.24, 156.03, 136.93, 136.67, 130.33, 

129.17, 128.74, 128.67, 128.16, 127.71, 127.55, 127.12, 115.40, 70.15, 58.26, 53.46, 52.99, 

37.24, 34.11. IR (cm−1): 3270, 2920, 1763, 1701, 1431. MS (ESI+) Calc for [C27H26N2O5+H]+ 

458.184; Found: 458.186 
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(S)-2-((S)-4-benzyl-2,5-dioxoimidazolidin-1-yl)-3-phenylpropanoic acid 

To a solution of 3-179 (130 mg, 0.37 mmol, 1 eq) in 1,4-dioxane (7 mL) was added a solution of 

HCl (6 M, 5 mL) and the reaction mixture was stirred at 80 °C for 16 h. The 1,4-dioxane was 

evaporated and the reaction mixture was extracted with DCM (3 x 10 mL). The combined organic 

layers were dried MgSO4, filtered and evaporated in vacuo to afford the desired compound (110 

mg, 88%). 1H NMR (400 MHz, CDCl3) δ 7.33 – 7.27 (m, 4H), 7.25 – 7.18 (m, 4H), 7.10 (d, J = 

6.9 Hz, 2H), 5.49 (s, 1H), 4.97 (dd, J = 10.8, 6.3 Hz, 1H), 4.07 (dd, J = 10.4, 3.3 Hz, 1H), 3.79 

(s, 3H), 3.52 – 3.39 (m, 2H), 3.05 (dd, J = 13.8, 3.4 Hz, 1H), 2.17 (dd, J = 13.8, 10.5 Hz, 1H). 13C 

NMR (101 MHz, MeOD) δ 174.99, 171.83, 158.21, 138.58, 136.89, 130.54, 130.04, 129.57, 

129.50, 128.08, 127.76, 59.08, 54.62, 38.56, 35.00. IR (cm−1): 3325, 3027, 2973, 1748, 1652, 

1430 MS(ESI-) Calc for [C19H18N2O4-H]- 337.1188; Found: 337.1163 

 

(S)-2-((R)-4-benzyl-2,5-dioxoimidazolidin-1-yl)-3-phenylpropanoic acid 

To a solution of 3-180 (967 mg, 2.74 mmol, 1 eq) in 1,4-dioxane (8 mL) was added a solution of 

HCl (6 M, 10 mL) and the reaction mixture was stirred at 80 °C for 16 h. The 1,4-dioxane was 

evaporated and the reaction mixture was extracted with DCM (3 x 10 mL). The combined organic 

layers were dried MgSO4, filtered and evaporated in vacuo to afford the desired compound (910 

mg, 98%). 1H NMR (400 MHz, CDCl3) δ 7.32 – 7.22 (m, 6H), 7.18 – 7.10 (m, 4H), 6.01 (s, 1H), 

4.96 (dd, J = 10.8, 6.1 Hz, 1H), 4.05 (ddd, J = 9.7, 3.7, 0.9 Hz, 1H), 3.50 – 3.39 (m, 2H), 3.19 

(dd, J = 13.9, 3.6 Hz, 1H), 2.53 (dd, J = 13.9, 9.8 Hz, 1H). 13C NMR (101 MHz, MeOD) δ 174.99, 

171.83, 158.21, 138.58, 136.89, 130.54, 130.04, 129.57, 129.50, 128.08, 127.76, 59.08, 54.62, 

38.56, 35.00. IR (cm−1): 3325, 3030, 2971, 1746, 1684, 1433. MS (ESI+) Calc for 

[C19H18N2O4+H]+ 339.134 ; Found: 339.634 
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(2S)-2-(4-(4-(benzyloxy)benzyl)-2,5-dioxoimidazolidin-1-yl)-3-phenylpropanoic acid 

To a solution of 3-181 (680 mg, 1.48 mmol, 1 eq) in 1,4-dioxane (5 mL) was added a solution of 

HCl (6 M, 5 mL) and the reaction mixture was stirred at 80 °C for 16 h. The 1,4-dioxane was 

evaporated and the reaction mixture was extracted with DCM (3 x 10 mL). The combined organic 

layers were dried MgSO4, filtered and evaporated in vacuo to afford the desired compound as a 

mixture of two diastereoisomers in a 2:1 ratio (910 mg, 98%).  

Major isomer: 1H NMR (400 MHz, CDCl3) δ 7.44 – 7.20 (m, 8H), 7.18 – 7.11 (m, 2H), 7.01 (d, 

J = 8.7 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 6.41 (s, 1H), 5.78 (s, 1H), 5.02 (s, 2H), 4.99 – 4.89 (m, 

1H), 4.01 (dd, J = 9.6, 3.8 Hz, 1H), 3.51 – 3.39 (m, 2H), 3.11 (dd, J = 14.0, 3.7 Hz, 1H), 2.48 (dd, 

J = 14.1, 9.5 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 172.71, 172.41, 158.18, 157.16, 136.93, 

136.48, 130.42, 129.10, 128.73, 128.16, 127.58, 127.20, 115.40, 70.15, 58.50, 53.44, 37.05, 

33.96. 

Minor isomer: 1H NMR (400 MHz, CDCl3) δ 77.44 – 7.20 (m, 8H), 7.18 – 7.11 (m, 2H), 6.92 

(d, J = 8.5 Hz, 2H), 6.64 (d, J = 8.5 Hz, 2H), 6.41 (s, 1H), 5.78 (s, 1H), 5.02 (s, 2H), 4.99 – 4.89 

(m, 1H), 4.05 (dd, J = 6.4, 4.3 Hz, 1H), 3.51 – 3.39 (m, 2H), 2.99 (dd, J = 14.2, 4.1 Hz, 1H), 2.76 

(dd, J = 14.2, 6.7 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 172.92, 172.41, 157.81, 157.16, 136.93, 

136.48, 130.86, 129.03, 128.73, 128.16, 127.58, 127.20, 115.84, 70.15, 58.42, 53.37, 36.47, 

34.14. 

IR (cm−1): 2971, 1739, 1365, 1217. MS (ESI+) Calc for [C26H24N2O5+H]+ 445.1763 ; Found: 

445.1708 
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(2S)-N-(benzyloxy)-2-(4-(4-(benzyloxy)benzyl)-2,5-dioxoimidazolidin-1-yl)-3-

phenylpropanamide 

To a solution of 3-186 (480 mg, 1.48 mmol, 1 eq) in dry THF (7 mL) under an argon atmosphere 

was added CDI (360 mg, 2.22 mmol, 1.5 eq). The reaction mixture was stirred at room 

temperature for 2 h. Then NH2OBn.HCl (473 mg, 2.96 mmol, 2 eq) was added to the mixture, 

which was then stirred for 16 h at room temperature. THF was removed by evaporation. The crude 

mixture was then diluted with an aqueous solution of 5% KHSO4 (15 mL) and extracted with 

EtOAc (3 x 10 mL).The combined organic phases were washed brine (20 mL), then dried with 

MgSO4, filtered and evaporated in vacuo. The residue was purified by flash chromatography on 

silica (gradient Hexane/EtOAc) to afford the desired product as a mixture of two diastereoisomers 

in a 1:1 ratio (220 mg, 27%). 

Isomer 1: 1H NMR (400 MHz, MeOD) δ 7.45 – 7.16 (m, 14H), 7.14 – 7.08 (m, 1H), 7.02 (d, J = 

8.7 Hz, 2H), 6.89 (d, J = 3.7 Hz, 2H), 5.01 (s, 2H), 4.82 – 4.73 (m, 3H), 4.11 – 4.04 (m, 1H), 3.40 

– 3.32 (m, 1H), 3.29 – 3.17 (m, 1H), 2.74 (dd, J = 13.9, 4.4 Hz, 1H), 2.25 (dd, J = 14.1, 8.4 Hz, 

1H). 13C NMR (101 MHz, MeOD) δ 175.16, 167.90,159.31, 157.94, 138.71, 138.09, 136.73, 

131.46, 130.58, 130.21, 129.68, 129.59, 129.46, 129.27, 128.82, 128.51,127.95, 116.03, 79.12, 

70.91, 59.63, 54.07, 38.06, 34.95. 

Isomer 2: 1H NMR (400 MHz, MeOD) δ 7.45 – 7.16 (m, 14H), 7.14 – 7.08 (m, 1H), 7.06 (d, J = 

8.6 Hz, 2H), 6.91 (d, J = 3.6 Hz, 2H), 5.01 (s, 2H), 4.82 – 4.73 (m, 2H), 4.70 (dd, J = 10.8, 5.6 

Hz, 1H), 4.11 – 4.04 (m, 1H), 3.40 – 3.32 (m, 1H), 3.29 – 3.17 (m, 1H), 2.96 (dd, J = 14.1, 4.2 

Hz, 1H), 2.59 (dd, J = 14.1, 7.5 Hz, 1H). 13C NMR (101 MHz, MeOD) δ 175.05, 167.90,159.43, 

158.09, 138.71, 138.09, 136.73, 131.68, 130.58, 130.39, 129.68, 129.59, 129.46, 129.06, 128.82, 

128.51,127.95, 116.03, 79.12, 70.91, 59.29, 54.61, 37.60, 34.84. 

IR (cm−1): 3242, 2940, 1703, 1511, 1422. MS (ESI+) Calc for [C33H31N3O5+H]+ 550.2342; Found: 

550.2236 
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(2S)-N-(benzyloxy)-2-(4-(4-hydroxybenzyl)-2,5-dioxoimidazolidin-1-yl)-3-

phenylpropanamide 

Isolated with 3-187 as a mixture of diasteroisomers in a 1:1 ratio (26 mg, 4%). 

Isomer 1: 1H NMR (400 MHz, MeOD) δ 7.44 – 7.39 (m, 2H), 7.39 – 7.33 (m, 3H), 7.25 – 7.20 

(m, 3H), 7.07 (d, J = 6.7 Hz, 2H), 6.92 (d, J = 8.6 Hz, 2H), 6.70 – 6.66 (m, 2H), 4.84 – 4.76 (m, 

3H),4.09 – 4.01 (m, 1H), 3.41 – 3.32 (m, 1H), 3.29 – 3.17 (m, 1H), 2.71 (dd, J = 14.0, 4.4 Hz, 

1H), 2.16 (dd, J = 14.0, 8.6 Hz, 1H). 13C NMR (101 MHz, MeOD) δ 175.24, 168.02, 157.97, 

157.55, 138.09, 136.75, 131.39, 130.59, 130.23, 129.68, 129.59, 129.45, 127.95, 127.79, 116.38, 

79.14, 59.82, 54.05, 38.17, 34.95. 

Isomer 2: 1H NMR (400 MHz, MeOD) δ 7.44 – 7.39 (m, 2H), 7.39 – 7.33 (m, 3H), 7.32 – 7.25 

(m, 3H), 7.18 (d, J = 7.0 Hz, 2H), 6.96 (d, J = 8.5 Hz, 2H), 6.73 – 6.70 (m, 2H), 4.84 – 4.76 (m, 

2H), 4.70 (dd, J = 10.8, 5.6 Hz, 1H), 4.09 – 4.01 (m, 1H), 3.41 – 3.32 (m, 1H), 3.29 – 3.17 (m, 

1H), 2.93 (dd, J = 14.1, 4.2 Hz, 1H), 2.53 (dd, J = 14.1, 7.6 Hz, 1H). 13C NMR (101 MHz, MeOD) 

δ 175.13, 168.02, 158.11, 157.68, 138.09, 136.75, 131.64, 130.59, 130.39, 129.68, 129.59, 

129.45, 127.95, 127.53, 116.38, 79.14, 59.44, 54.64, 37.67, 34.81. 

IR (cm−1): 3230, 2937, 1704, 1666, 1515, 1424. MS (ESI+) Calc for [C26H25N3O5+H]+ 460.1872; 

Found: 460.1949 

 

(2S)-2-(4-(4-(benzyloxy)benzyl)-2,5-dioxoimidazolidin-1-yl)-N-hydroxy-3-

phenylpropanamide 

To a solution of 3-187 (200 mg, 0.36 mmol, 1 eq) in dry THF (10 mL) under an argon atmosphere 

ant at -78 °C was added dropwise a solution of BCl3 (1 M, 2 mL, 2 mmol, 5.5 eq). The reaction 

mixture was let to warm-up to 0 °C and stirred for 4 h. The reaction was then quenched by addition 

of MeOH (3 mL) and the reaction mixture was evaporated in vacuo. The residue was purified by 
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flash chromatography on reverse phase (gradient H2O/MeCN 0.05% TFA) to afford the desired 

compound as a mixture of diastereoisomoers in a 1:1 ratio (47 mg, 35%). 

Isomer 1: 1H NMR (400 MHz, MeOD) δ 7.40 – 7.37 (m, 2H), 7.36 – 7.31 (m, 2H), 7.30 – 7.26 

(m, 2H), 7.24 – 7.17 (m, 3H), 7.10 – 7.07 (m, 1H), 7.06 – 6.99 (m, 2H), 6.90 (d, J = 8.3 Hz, 2H), 

5.01 (s, 2H), 4.83 – 4.80 (m, 1H), 4.11 – 4.05 (m, 1H), 3.44 – 3.36 (m, 1H), 3.34 – 3.26 (m, 

1H),2.72 (dd, J = 14.0, 4.3 Hz, 1H), 2.17 (dd, J = 14.0, 8.6 Hz, 1H). 13C NMR (101 MHz, MeOD) 

δ 175.32, 168.01, 159.29, 158.04, 138.69, 138.18, 131.38, 130.17, 129.58, 129.46, 128.83, 

128.52, 127.93, 116.03, 70.92, 59.67, 54.12, 38.14, 34.93. 

Isomer 2: 1H NMR (400 MHz, MeOD) δ 7.40 – 7.37 (m, 2H), 7.36 – 7.31 (m, 2H), 7.30 – 7.26 

(m, 2H), 7.24 – 7.17 (m, 3H), 7.10 – 7.07 (m, 1H), 7.06 – 6.99 (m, 2H), 6.90 (d, J = 8.3 Hz, 2H), 

5.02 (s, 2H), 4.76 (dd, J = 11.1, 5.4 Hz, 1H), 4.11 – 4.05 (m, 1H), 3.44 – 3.36 (m, 1H), 3.34 – 

3.26 (m, 1H), 2.95 (dd, J = 14.0, 4.0 Hz, 1H), 2.52 (dd, J = 14.1, 7.8 Hz, 1H). 13C NMR (101 

MHz, MeOD) δ 175.18, 167.89, 159.41, 158.20, 138.69, 138.18, 131.58, 130.35, 129.58, 129.16, 

128.83, 128.52, 127.93, 116.03, 70.92, 59.31, 54.65, 37.71, 34.73. 

IR (cm−1): 3282, 3039, 2885, 1700, 1515, 1423.  MS (ESI-) Calc for [C26H25N3O5-H]- 458,1715; 

Found: 458.1635 

 

(S)-2-(4-benzyl-2,5-dioxoimidazolidin-1-yl)-N-hydroxy-3-phenylpropanamide 

To a solution of 3-185 (840 mg, 2.48 mmol, 1 eq) in dry THF (10 mL) under an argon atmosphere 

was added CDI (403 mg, 2.48 mmol, 1 eq). The reaction mixture was stirred at room temperature 

for 1 h. Then NH2OTBDMS (366 mg, 2.48 mmol, 1 eq) was added to the mixture which was then 

stirred for 16 h at room temperature. THF was removed by evaporation. The crude mixture was 

then diluted with phosphate buffer (10 mL, pH = 6.2) and extracted with EtOAc (3 x 10 mL). The 

combined organic phases were washed brine (20 mL), then dried with MgSO4, filtered and 

evaporated in vacuo. The residue was purified by reverse flash chromatography (gradient 

H2O/MeCN (0.05% TFA) to afford the desired product as a mixture of two diastereisomers in a 

1:1 ratio (17 mg, 2 %).  

Isomer 1: 1H NMR (400 MHz, MeOD) δ 7.37 – 7.17 (m, 7H), 7.17 – 7.04 (m, 3H), 4.88 – 4.82 

(m, 1H), 4.13 (dd, J = 6.1, 2.9 Hz, 1H), 3.47 – 3.32 (m, 2H), 2.78 (dd, J = 13.9, 4.5 Hz, 1H), 2.17 
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(dd, J = 13.9, 9.1 Hz, 1H). 13C NMR (101 MHz, MeOD) δ 175.41, 168.01, 158.02, 138.02, 137.20, 

130.36, 130.18, 129.66, 129.58, 128.13, 127.99, 59.52, 54.07, 39.00, 34.88. 

Isomer 2: 1H NMR (400 MHz, MeOD) δ 7.37 – 7.17 (m, 7H), 7.17 – 7.04 (m, 3H), 4.78 (dd, J = 

11.2, 5.6 Hz, 1H), 4.10 (dd, J = 5.5, 3.0 Hz, 1H), 3.47 – 3.32 (m, 2H), 3.02 (dd, J = 13.9, 4.2 Hz, 

1H), 2.51 (dd, J = 14.0, 8.4 Hz, 1H). 13C NMR (101 MHz, MeOD) δ 175.29, 167.87, 158.20, 

138.02, 137.05, 130.43, 130.27, 129.66, 129.58, 128.13, 127.99, 59.15, 54.60, 38.62, 34.68. 

IR (cm−1): 3294, 3026, 1768, 1699, 1423. MS(ESI-) Calc for [C19H19N3O4-H]- 352.1297; Found: 

352.1274 

4.5 Praziquantel – HDACi hybrid 

 

2-Chloro-N-phenethylacetamide 

To a solution of phenethylamine (6.0 mL, 47.6 mmol, 1 eq) in dry DCM (82 mL) under argon 

atmosphere was added NaHCO3 (4.0 g, 47.6 mmol, 1 eq). The mixture was cooled to 0 °C and 

chloroacetyl chloride (4.6 mL, 57.1 mmol, 1.2 equiv.) was added. The reaction mixture was stirred 

at room temperature for 4 h, and H2O (60 mL) was slowly added. The layers were separated and 

the aqueous phase was extracted with DCM (4 x 50 mL). The organic layers were combined, 

washed with an aqueous solution of HCl (10 %, 50 mL), dried with MgSO4, filtered, and 

concentrated in vacuo to afford the desired compound (8.05 g, 86 % yield). 1H NMR (400 MHz, 

CDCl3) δ 7.39 – 7.18 (m, 5H), 6.63 (br, 1H), 4.04 (s, 2H), 3.58 (dd, J = 13.0, 7.0 Hz, 2H), 2.86 

(t, J = 7.0 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 166.12, 138.41, 128.89, 128.87, 126.88, 42.77, 

41.12, 35.59. IR (cm−1): 3338, 2929, 2861, 1736, 1644, 1540. MS (ESI+) Calc for 

[C10H12NOCl+H]+ 198,0685; Found: 198.0712 
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1,2,3,6,7,11b-hexahydro-4H-pyrazino[2,1-a]isoquinolin-4-one 

To a mixture of 3-193 (7.94 g, 40.2 mmol, 1 eq) in dry toluene (105 mL) under argon atmosphere 

was added dimethoxyethylamine (8.8 mL, 80.3 mmol, 2 eq). The reaction mixture was stirred at 

reflux for 2 h. The reaction mixture was cooled down with an ice bath and the newly formed 

precipitate was filtered and washed with cold toluene. After evaporation of the solvent, the oil 

residue was dissolved in DCM (20 mL), cooled to 0 °C and a solution of HCl in Et2O (1 M, 50 

mL, 1.25 eq) was added. The mixture was then filtered, washed with iced Et2O (50 mL) then iced 

hexane (30 mL). The brown solid was dissolved in concentrated H2SO4 (10 mL) at 0 °C. The 

reaction mixture was then stirred for 3 h at room temperature. The mixture was poured on 50 mL 

of ice and a solution of NaOH (20 %) was added until pH = 12. The aqueous was then extracted 

with DCM (3 x 30mL). Organic layer was dried over MgSO4, filtered and evaporated to give the 

desired compound (3.35 g, 41%). 1H NMR (400 MHz, CDCl3) δ 7.31 – 7.16 (m, 4H), 4.91 (ddd, 

J = 12.5, 4.7, 2.3 Hz, 1H), 4.84 (dd, J = 9.9, 4.4 Hz, 1H), 3.78 (dd, J = 13.1, 4.5 Hz, 1H), 3.71, 

3.57 (ABq, J = 17.2 Hz, 2H), 3.09 – 2.75 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 167.41, 135.08, 

134.35, 129.51, 127.14, 126.74, 124.82, 57.00, 50.19, 49.95, 38.91, 28.95. IR (cm−1): 3315, 2937, 

1634, 1440, 1102. MS (ESI+) Calc for [C12H14N2O+H]+ 203.118; Found: 203.593 

 

Methyl 8-oxo-8-(4-oxo-1,3,4,6,7,11b-hexahydro-2H-pyrazino[2,1-a]isoquinolin-2-

yl)octanoate 

To a solution of 3-195 (370 mg, 1.83 mmol, 1 eq) in dry THF (6 mL) under argon atmosphere 

was added DIPEA (637 L, 3.66 mmol, 2 eq). The mixture was cooled to 0 °C and methyl 8-

chloro-8-oxooctanoate (312 L, 2.20 mmol, 1 eq) was added. The reaction mixture was stirred at 
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room temperature for 4 h. THF was evaporated and H2O (15 mL) was added to the residue. The 

aqueous phase was extracted with DCM (3 x 15 mL). The organic layers were combined, dried 

with MgSO4, filtered, and concentrated in vacuo. The residue was purified by flash 

chromatography on silica (gradient DCM/MeOH) to afford the desired compound as a mixture of 

enantiomere (606 mg, 88%). 1H NMR (400 MHz, CDCl3) δ 7.29 – 7.13 (m, 4H), 5.11 (dd, J = 

13.4, 3.8 Hz, 0.7H), 4.90 – 4.82 (m, 0.3H), 4.81 – 4.70 (m, 2H), 4.36 (d, J = 17.4 Hz, 0.7H), 4.33 

– 4.26 (m, 0.3H), 4.03 (d, J = 17.4 Hz, 0.7H), 3.86 (d, J = 18.5 Hz, 0.3H), 3.64 (s, 3H), 3.28 – 

3.19 (m, 0.3H), 2.99 – 2.72 (m, 3.7H), 2.49 – 2.23 (m, 4H), 1.71 – 1.55 (m, 4H), 1.41 – 1.28 (m, 

4H).  

Major isomer: 13C NMR (101 MHz, MeOD) δ 174.17, 171.65, 164.27, 134.82, 132.74, 129.34, 

127.52, 127.02, 125.54, 54.97, 51.52, 49.09, 45.09, 39.10, 34.00, 33.23, 29.01, 28.91, 28.75, 

24.78, 24.72. 

Minor isomer: 13C NMR (101 MHz, MeOD) δ 174.17, 171.14, 165.47, 135.52, 132.12, 129.69, 

127.74, 127.02, 125.27, 55.57, 51.52, 49.72, 46.22, 38.70, 34.00, 33.05, 29.01, 28.91, 28.75, 

24.78, 24.72. 

IR (cm−1): 2934, 2860, 1731, 1630, 1420, 1196. MS (ESI+) Calc for [C21H28N2O4+H]+ 373.213; 

Found: 373.741 

 

N-Hydroxy-8-oxo-8-(4-oxo-1,3,4,6,7,11b-hexahydro-2H-pyrazino[2,1-a]isoquinolin-2-

yl)octanamide 

To 3-202 (560 mg, 1.50 mmol, 1 eq) in 50% aq. NH2OH/THF/MeOH (0.31 mL, 0.5:1:1) was 

added KCN (5 mg, 0.08 mmol, 0.05eq). The reaction mixture was stirred at room temperature for 

24 h. The volatiles were evaporated in vacuo and the residue was purified by flash 

chromatography on reverse phase (gradient H2O/MeCN 0.05% TFA) to afford the desired 

compound as a mixture of enantiomeres (108 mg, 19%). 1H NMR (400 MHz, CDCl3) δ 7.30 

– 7.12 (m, 4H), 5.07 (dd, J = 13.2, 3.1 Hz, 0.7H), 4.89 (d, J = 9.7 Hz, 0.3H), 4.83 – 4.63 

(m, 2H), 4.42 (d, J = 17.4 Hz, 0.7H), 4.32 (d, J = 11.9 Hz, 0.3H), 4.07 (d, J = 17.5 Hz, 
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0.7H), 3.88 (d, J = 18.3 Hz, 0.3H), 3.24 (t, J = 12.0 Hz, 0.3H), 3.02 – 2.67 (m, 3.7H), 2.49 

– 2.27 (m, 2H), 2.22 – 2.06 (m, 2H), 1.72 – 1.52 (m, 4H), 1.39 – 1.24 (m, 4H).  

Major isomer: 13C NMR (101 MHz, MeOD) δ 172.48, 171.75, 164.94, 134.76, 132.54, 129.33, 

127.63, 127.12, 125.60, 54.93, 48.98, 45.16, 39.36, 33.01, 32.56, 28.70, 28.51, 28.35, 25.07, 

24.53. 

Minor isomer: 13C NMR (101 MHz, MeOD) δ 172.48, 172.23, 165.91, 135.32, 131.90, 129.59, 

127.84, 127.12, 125.47, 55.39, 49.61, 46.17, 38.99, 32.90, 32.56, 28.70, 28.51, 28.35, 25.07, 

24.53. 

IR (cm−1): 3191, 2927, 1734, 1621, 1430, 1366, 1217. MS (ESI+) Calc for [C20H27N3O4+H]+ 

374.207; Found: 374.673 

 

Methyl 8-((benzyloxy)amino)-8-oxooctanoate 

To a solution of NH2OBn.HCl (289.6 mg, 1.81 mmol, 1.5 eq) in dry THF (6 mL) under argon 

atmosphere was added DIPEA (632 L, 3.63 mmol, 3 eq). The reaction mixture was cooled down 

to 0 °C in an ice-bath and methyl 8-chloro-8-oxooctanoate (172 L, 1.21 mmol, 1 eq) was added. 

The reaction mixture was then stirred at room temperature for 16 h. THF was evaporated, H2O 

(20 mL) was added to the residue and the aqueous was extracted with DCM (3 x 20 mL). The 

combined organic layer was dried with MgSO4, filtered and evaporated in vacuo. The residue was 

purified by flash chromatography on silica (gradient DCM/MeOH) to afford the desired 

compound (293 mg, 83%). 1H NMR (400 MHz, CDCl3) δ 8.53 (br, 1H), 7.43 – 7.29 (m, 5H), 4.88 

(s, 2H), 3.63 (s, 3H), 2.26 (t, J = 7.5 Hz, 2H), 2.10 – 1.95 (m, 2H), 1.66 – 1.50 (m, 4H), 1.36 – 

1.23 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 174.32, 171.05, 135.57, 129.27, 128.76, 128.66, 

78.19, 51.57, 34.00, 33.16, 28.75, 25.17, 24.75. IR (cm−1): 3191, 2935, 2860, 1735, 1652, 1455, 

1199, 1172. MS (ESI+) Calc for [C16H23NO4+H]+ 294.1705; Found: 294.1814 
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8-((Benzyloxy)amino)-8-oxooctanoic acid 

To a solution of 3-203 (227 mg, 0.77 mmol, 1 eq) in THF (3 mL) at 0 °C was added dropwise an 

aqueous solution of LiOH (1 M, 14 mL, 3 mmol, 3.9 eq). The reaction mixture was left to warm 

up to room temperature and the mixture was stirred for 16 h. A solution of HCl (1 M) was added 

until pH = 2 and the reaction mixture was then extracted with Et2O (3 x 10 mL). The combined 

organic layers were dried with MgSO4, filtered and evaporated in vacuo to afford the desired 

compound (191 mg, 88%). 1H NMR (400 MHz, CDCl3) δ 8.05 (br, 1H), 7.43 – 7.32 (m, 5H), 4.91 

(s, 2H), 2.33 (t, J = 7.4 Hz, 2H), 2.15 – 1.89 (m, 2H), 1.68 – 1.52 (m, 4H), 1.37 – 1.26 (m, 4H).  

13C NMR (101 MHz, CDCl3) δ 179.14, 171.20, 135.44, 129.33, 128.82, 128.71, 78.25, 34.05, 

33.12, 28.69, 25.18, 24.57. IR (cm−1): 3237, 2936, 2860, 1690, 1653, 1498, 1192. MS (ESI+) Calc 

for [C15H21NO4+H]+ 280.1549; Found: 280.1606 

4.6 4-amino-2-hydroxybutanoic acid-based scaffold 

 

(S)-4-Cinnamamido-2-hydroxybutanoic acid 

To a solution of (S)-4-amino-2-hydroxybutanoic acid (250 mg, 2.10 mmol, 1 eq) in aqueous 

NaOH (1 M, 2.1 mL) was added cinnamoyl chloride (350 mg, 2.10 mmol, 1 eq) The reaction 

mixture was stirred at room temperature for 16 h. A solution of HCl (2 M) was then added until 

pH = 1 and the mixture was extracted with EtOAc (3 x 10 mL). The combined organic layer was 

dried with MgSO4, filtered and evaporated in vacuo. The residue was purified by flash 

chromatography on reverse phase (H2O/MeCN 0.05% TFA) to afford the desired compound (282 

mg, 54%). 1H NMR (400 MHz, MeOD) δ 7.58 – 7.54 (m, 2H), 7.53 (d, J = 15.9 Hz, 1H), 7.43 – 

7.31 (m, 3H), 6.60 (d, J = 15.8 Hz, 1H), 4.20 (dd, J = 8.6, 4.1 Hz, 1H), 3.53 – 3.40 (m, 2H), 2.13 

– 2.00 (m, 1H), 1.95 – 1.82 (m, 1H). 13C NMR (101 MHz, MeOD) δ 177.52, 168.83, 141.77, 

136.26, 130.81, 129.93, 128.82, 121.75, 69.40, 37.13, 34.91. IR (cm−1): 3301, 2924, 1725, 1652, 

1579, 1564, 1450, 1220. MS (ESI+) Calc for [C13H15NO4+H]+ 250.108; Found: 250.719 
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(S)-2-Hydroxy-4-(2-phenylacetamido)butanoic acid 

To a solution of (S)-4-amino-2-hydroxybutanoic acid (250 mg, 2.10 mmol, 1 eq) in aqueous 

NaOH (1 M, 2.1 mL) was added phenylacetyl chloride (324 mg, 2.10 mmol, 1 eq) The reaction 

mixture was stirred at room temperature for 16 h. A solution of HCl (2 M) was then added until 

pH = 1, and the mixture was extracted with EtOAc (3 x 10 mL). The combined organic layer was 

dried with MgSO4, filtered and evaporated in vacuo. The residue was purified by flash 

chromatography on reverse phase (H2O/MeCN 0.05% TFA) to afford the desired compound (273 

mg, 55%). 1H NMR (400 MHz, MeOD) δ 7.39 – 7.26 (m, 4H), 7.25 – 7.20 (m, 1H), 4.12 (dd, J = 

8.7, 4.0 Hz, 1H), 3.50 (s, 2H), 3.38 – 3.31 (m, 2H), 2.07 – 1.87 (m, 1H), 1.87 – 1.69 (m, 1H). 13C 

NMR (101 MHz, MeOD) δ 177.46, 174.28, 136.87, 130.06, 129.57, 127.88, 69.37, 43.86, 37.16, 

34.75. IR (cm−1): 3292, 3063, 2948, 1737, 1694, 1634, 1548. MS (ESI+) Calc for 

[C12H15NO4+H]+ 238.108; Found: 238.723 

4.7 SETD8 inhibitors 

The following compound are not fully characterized because of a limited access to the analytical 

instrument at the University of Salerno. During my mission, the mass spectrometry was not 

available due to issues with the spectrometer. In addition, they were experiencing technical 

problems with NMR spectrometers and the access was restricted and scheduled, thus limiting the 

number of experiments. The priority was given to the final compounds that were going to be 

tested.  

 

2,4-Dichloro-6-(3,4-dimethoxyphenyl)pyrimidine 

In a microwave vessel, 2,4,6-trichloropyrimidine (376 L, 3.27 mmol, 1 eq) was added to a 

mixture of dioxane/H2O (33 mL, 2/1). Cs2O3 (3.197 g, 9.81 mmol, 3 eq), Pd(dppf)Cl2•DCM 
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complex (267 mg, 0.33 mmol, 0.1 eq) and 3,4-dimethoxyphenyl boronic acid (655 mg, 3.6 mmol, 

1.1 eq) were then added to the solution. The reaction mixture was stirred under microwave 

irradiation (80 °C, 300 W, 30 min). After completion the reaction mixture was diluted with EtOAc 

(100 mL) and separated. The aqueous was back extracted with EtOAc (2 x 10 mL) and the 

combined organic layers were washed with brined (30 mL), dried over Na2SO4, filtered and 

evaporated. The crude was purified by flash chromatography on silica (gradient Hexane/EtOAc 

with 40% DCM as additive) to afford the desired compound ( 720 mg, 77 %). 1H NMR (400 

MHz, CDCl3) δ 7.67 (dd, J = 6.0, 2.0 Hz, 1H), 7.64 (d, J = 2.1 Hz, 1H), 7.60 (s, 1H), 6.97 (d, J = 

8.4 Hz, 1H), 4.00 (s, 3H), 3.97 (s, 3H). 

 

N1-(2-Chloro-6-(3,4-dimethoxyphenyl)pyrimidin-4-yl)-N3,N3-dimethylpropane-1,3-diamine 

In a microwave vessel, 4-4 (300 mg, 1.05 mmol, 1 eq) was dissolved in THF (3 mL). Then 

3-dimethylamino-1-propylamine (397 L, 3.16 mmol, 3 eq) was added to the solution and the 

reaction mixture was carried under microwave irradiation (80 °C, 200 W, 30 min).  THF was 

evaporated and the residue was purified by flash chromatography on aluminium oxide (gradient 

Hexane/EtOAc and 2% additive MeOH) and the isomer 4-5 was isolated (110 mg, 30%). 1H NMR 

(400 MHz, CDCl3) δ 7.58 (s, 1H), 7.51 (d, J = 8.3 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.51 (s, 1H), 

4.72 (s, 1H), 3.98 (s, 3H), 3.93 (s, 3H), 3.56 – 3.41 (m, 2H), 2.44 (t, J = 6.0 Hz, 2H), 2.26 (s, 6H), 

1.80 – 1.74 (m, 2H). 

 

N1-(4-Chloro-6-(3,4-dimethoxyphenyl)pyrimidin-2-yl)-N3,N3-dimethylpropane-1,3-diamine 

Compound 4-6 was isolated with 4-5. (124 mg, 34%). 1H NMR (400 MHz, CDCl3) δ 7.66 – 7.52 

(m, 2H), 6.93 (d, J = 8.4 Hz, 1H), 6.91 (s, 1H), 5.89 (s, 1H), 3.97 (s, 3H), 3.94 (s, 3H), 3.61 – 3.54 

(m, 2H), 2.41 (t, J = 6.8 Hz, 2H), 2.25 (s, 6H), 1.85 – 1.77 (m, 2H). 
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N1-(6-(3,4-Dimethoxyphenyl)-2-(pyrrolidin-1-yl)pyrimidin-4-yl)-N3,N3-dimethylpropane-

1,3-diamine 

In a microwave vessel, 4-5 (90 mg, 0.26 mmol, 1 eq) was dissolved in THF (0.8 mL). Pyrrolidine 

(107 L, 1.29 mmol, 5 eq) was added to the solution and the reaction was carried under 

microwave irradiation (120 °C, 300 W, 30 min).  THF was evaporated and the residue purified 

by flash chromatography on silica (gradient DCM/MeOH/ 2% NH3) to afford the desired product 

(44 mg, 44%). 1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 1.3 Hz, 1H), 7.49 (dd, J = 8.4, 1.5 Hz, 

1H), 6.90 (d, J = 8.4 Hz, 1H), 6.02 (s, 1H), 3.97 (s, 3H), 3.92 (s, 3H), 3.55 – 3.47 (m, 6H), 2.42 – 

2.37 (m, 2H), 2.24 (s, 6H), 2.02 – 1.95 (m, 4H), 1.86 – 1.77 (m, 2H). 

 

N1-(4-(3,4-Dimethoxyphenyl)-6-(pyrrolidin-1-yl)pyrimidin-2-yl)-N3,N3-dimethylpropane-

1,3-diamine 

In a microwave vessel, 4-6 (90 mg, 0.26 mmol, 1 eq) was dissolved in THF (1 mL). Pyrrolidine 

(107 L, 1.29 mmol, 5 eq) was added to the solution and the reaction was carried under 

microwave irradiation (120 °C, 300 W, 30 min).  THF was evaporated and the residue purified 

by flash chromatography on silica (gradient DCM/MeOH/ 2 % NH3) to afford the desired product 

(67 mg, 68%). 1H NMR (400 MHz, CDCl3) δ 7.67 (s, 1H), 7.55 (d, J = 8.4 Hz, 1H), 6.90 (d, J = 

8.4 Hz, 1H), 6.05 (s, 1H), 5.23 (br, 1H), 3.96 (s, 3H), 3.92 (s, 3H), 3.66 – 3.60 (m, 4H), 3.45 (dd, 

J = 11.8, 5.9 Hz, 2H), 2.45 (t, J = 6.8 Hz, 2H), 2.29 (s, 6H), 1.98 – 1.92 (m, 4H), 1.82 (p, J = 6.7 

Hz, 2H). 
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2,4-Dichloro-6-(2,3-dimethoxyphenyl)pyrimidine 

In a microwave vessel, 2,4,6-trichloropyrimidine (376 L, 3.27 mmol, 1 eq) was added to a 

mixture of dioxane/H2O (33 mL, 2/1). Cs2CO3 (3.197 g, 9.81 mmol, 3 eq), Pd(dppf)Cl2•DCM 

complex (267 mg, 0.33 mmol, 0.1 eq) and 2,3-dimethoxyphenyl boronic acid (595 mg, 3.27 

mmol, 1 eq) were then added to the solution. The reaction mixture was stirred in microwave (80 

°C, 300 W, 30 min). After completion, the reaction mixture was diluted with EtOAc (30 mL) and 

separated. The aqueous was back extracted with EtOAc (10 mL) and the combined organic layers 

were washed with brine (20 mL), dried over Na2SO4, filtered and evaporated. The crude was 

purified by flash chromatography on silica (gradient Hexane/EtOAc with 40% DCM as additive) 

to afford the desired compound (680 mg, 73 %). 1H NMR (400 MHz, CDCl3) δ 8.00 (s, 1H), 7.56 

(dd, J = 7.9, 1.5 Hz, 1H), 7.19 (t, J = 8.0 Hz, 1H), 7.09 (dd, J = 8.2, 1.3 Hz, 1H), 3.93 (s, 3H), 

3.82 (s, 3H). 

 

5-((2-Chloro-6-(3,4-dimethoxyphenyl)pyrimidin-4-yl)amino)pentan-1-ol 

In a microwave vessel, 4-4 (450 mg, 1.58 mmol, 1 eq) was dissolved in THF (4.5 mL). To the 

mixture was added 5-amino-1-pentanol (489 mg, 4.73 mmol, 3 eq) and the reaction was carried 

under microwave irradiation (80 °C, 300 W, 30 min). THF was evaporated, and the residue 

purified by flash chromatography on silica (gradient DCM/MeOH/ 2% NH3) to afford the desired 

compound (256 mg, 46 %). 1H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 1.2 Hz, 1H), 7.49 (dd, J = 

8.4, 1.4 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.51 (s, 1H), 5.32 (br, 1H), 3.96 (s, 3H), 3.92 (s, 3H), 

3.66 (t, J = 6.3 Hz, 2H), 3.43 – 3.29 (m, 2H), 1.69 – 1.59 (m, 4H), 1.53 – 1.45 (m, 2H). 
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5-((4-Chloro-6-(3,4-dimethoxyphenyl)pyrimidin-2-yl)amino)pentan-1-ol 

Compound 4-12 was isolated with 4-11 (218 mg, 39 %). 1H NMR (400 MHz, CDCl3) δ 7.66 – 

7.54 (m, 2H), 6.94 (d, J = 7.4 Hz, 1H), 6.93 (s, 1H), 5.27 (br, 1H), 3.97 (s, 3H), 3.94 (s, 3H), 3.67 

(t, J = 6.1 Hz, 2H), 3.56 – 3.48 (m, 2H), 1.73 – 1.59 (m, 4H), 1.54 – 1.46 (m, 2H). 

 

5-((2-Chloro-6-(2,3-dimethoxyphenyl)pyrimidin-4-yl)amino)pentan-1-ol 

In a microwave vessel, 4-10 (190 mg, 0.67 mmol, 1 eq) was dissolved in THF (2 mL). Then 

5-amino-1-pentanol (206 mg, 2.0 mmol, 3 eq) was added to the solution and the reaction was 

carried under microwave irradiation (80 °C, 300 W, 30 min).  THF was evaporated. The residue 

was purified by flash chromatography on silica (gradient Hexane/EtOAc/ 1% MeOH additive) to 

afford the desired compound (147 mg, 63%). 1H NMR (400 MHz, CDCl3) δ 7.45 (dd, J = 7.9, 1.4 

Hz, 1H), 7.14 (t, J = 8.0 Hz, 1H), 7.00 (dd, J = 8.1, 1.1 Hz, 1H), 6.94 (s, 1H), 5.30 (br, 1H), 3.91 

(s, 3H), 3.74 (s, 3H), 3.67 (t, J = 5.8 Hz, 2H), 3.40 – 3.30 (m, 2H), 1.72 – 1.61 (m, 4H), 1.53 – 

1.43 (m, 2H). 
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5-((4-Chloro-6-(3,4-dimethoxyphenyl)pyrimidin-2-yl)amino)pentan-1-ol 

Compound 4-14 was isolated with 4-13 (56 mg, 24 %). 1H NMR (400 MHz, CDCl3) δ 7.39 (br, 

1H), 7.20 – 7.10 (m, 2H), 7.01 (d, J = 7.9 Hz, 1H), 5.28 (br, 1H), 3.91 (s, 3H), 3.79 (s, 3H), 3.66 

(t, J = 5.6 Hz, 2H), 3.49 (q, J = 6.6 Hz, 2H), 1.71 – 1.61 (m, 4H), 1.52 – 1.41 (m, 2H). 

 

5-((6-(3,4-Dimethoxyphenyl)-2-(pyrrolidin-1-yl)pyrimidin-4-yl)amino)pentan-1-ol 

In a microwave vessel, 4-11 (240 mg, 0.68 mmol, 1 eq) was dissolved in THF (2.4 mL). 

Pyrrolidine (285 L, 3.41 mmol, 5 eq) was added to the solution and the reaction was carried 

under microwave irradiation (120 °C, 300 W, 30 min). THF was evaporated and the residue 

purified by flash chromatography on silica (gradient Hexane/EtOAc/ 1% MeOH additive) to 

afford the desired product (178 mg, 68 %). 1H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 1.4 Hz, 

1H), 7.54 (dd, J = 8.3, 1.6 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.02 (s, 1H), 4.64 (br, 1H), 3.96 (s, 

3H), 3.92 (s, 3H), 3.69 – 3.61 (m, 6H), 3.37 (q, J = 6.4 Hz, 2H), 1.99 – 1.93 (m, 4H), 1.70 – 1.61 

(m, 4H), 1.53 – 1.47 (m, 2H). 
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5-((6-(2,3-Dimethoxyphenyl)-2-(pyrrolidin-1-yl)pyrimidin-4-yl)amino)pentan-1-ol 

In a microwave vessel, 4-13 (275 mg, 0.78 mmol, 1 eq) was dissolved in THF (1.2 mL). 

Pyrrolidine (326 L, 3.91 mmol, 5 eq) was added to the solution and the reaction was carried 

under microwave irradiation (120 °C, 300 W, 30 min).  THF was evaporated and the residue 

purified by flash chromatography on silica (gradient Hexane/EtOAc/ 1% MeOH additive) to 

afford the desired compound (264 mg, 87 %). 1H NMR (400 MHz, CDCl3) δ 7.43 (dd, J = 7.9, 

1.5 Hz, 1H), 7.10 (t, J = 8.0 Hz, 1H), 6.94 (dd, J = 8.1, 1.4 Hz, 1H), 6.28 (s, 1H), 4.69 (br, 1H), 

3.89 (s, 3H), 3.77 (s, 3H), 3.65 (t, J = 6.5 Hz, 2H), 3.62 – 3.56 (m, 4H), 3.32 (q, J = 6.1 Hz, 2H), 

1.96 – 1.91 (m, 4H), 1.67 – 1.58 (m, 4H), 1.50 – 1.43 (m, 2H). 

 

5-((4-(3,4-Dimethoxyphenyl)-6-(pyrrolidin-1-yl)pyrimidin-2-yl)amino)pentan-1-ol 

In a microwave vessel, 4-12 (35 mg, 0.10 mmol, 1 eq) was dissolved in THF (0.5 mL). Pyrrolidine 

(40 L, 0.50 mmol, 5 eq) was added to the solution and the reaction was carried under microwave 

irradiation (120 °C, 300 W, 30 min).  THF was evaporated and the residue purified by flash 

chromatography on silica (gradient Hexane/EtOAc/ 2% MeOH additive) to afford the desired 

product as a yellowish oil (37 mg, 96 %). 1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 1.5 Hz, 1H), 

7.49 (dd, J = 8.4, 1.7 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.03 (s, 1H), 4.86 (br, 1H), 3.97 (s, 3H), 

3.92 (s, 3H), 3.65 (t, J = 6.5 Hz, 2H), 3.56 – 3.44 (m, 6H), 2.03 – 1.94 (m, 4H), 1.71 – 1.60 (m, 

4H), 1.53 – 1.44 (m, 2H). 
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5-((4-(2,3-Dimethoxyphenyl)-6-(pyrrolidin-1-yl)pyrimidin-2-yl)amino)pentan-1-ol 

In a microwave vessel, 4-14 (120 mg, 0.34 mmol, 1 eq) was dissolved in THF (1.2 mL). 

Pyrrolidine (142 L, 1.71 mmol, 5 eq) was added to the solution and the reaction was carried 

under microwave irradiation (120 °C, 300 W, 30 min).  THF was evaporated and the residue 

purified by flash chromatography on silica (gradient Hexane/EtOAc/ 1% MeOH additive) to 

afford the desired compound (117 mg, 89 %). 1H NMR (400 MHz, CDCl3) δ 7.32 (d, J = 7.7 Hz, 

1H), 7.10 (t, J = 8.0 Hz, 1H), 6.93 (dd, J = 8.1, 1.4 Hz, 1H), 6.26 (s, 1H), 4.84 (br, 1H), 3.89 (s, 

3H), 3.74 (s, 3H), 3.65 (t, J = 6.5 Hz, 2H), 3.56 – 3.34 (m, 6H), 2.01 – 1.91 (m, 4H), 1.69 – 1.58 

(m, 4H), 1.52 – 1.44 (m, 2H). 

 

6-(3,4-Dimethoxyphenyl)-2-(pyrrolidin-1-yl)-N-(5-(pyrrolidin-1-yl)pentyl)pyrimidin-4-

amine 

To a solution of 4-15 (80 mg, 0.21 mmol, 1 eq) in dry DCM (1 mL) and dry CHCl3 (0.5 mL) at 

0 °C and under N2 atmosphere were added Et3N (35 L, 0.25 mmol, 1.2 eq) and MsCl (18 L, 

0.23 mmol, 1.1 eq). The mixture was stirred at 0 °C for 3 h. The mixture was diluted in CHCl3 

(15 mL) and washed with a saturated solution of NaHCO3 (2 x 5 mL). The organic layer was dried 

over Na2SO4, filtrated and evaporated to afford a yellowish oil residue. The residue was dissolved 

in THF (1 mL) and pyrrolidine (173 L, 2.07 mmol, 10 eq) was added. The reaction mixture was 

sealed and stirred at 80 °C for 16 h. The solvent was evaporated and the residue was purified by 

flash chromatography on silica (gradient DCM/ MeOH/ 2% NH3) to afford the desired compound 

(46 mg, 51%). 1H NMR (400 MHz, CDCl3) δ 7.67 (s, 1H), 7.54 (dd, J = 8.4, 1.3 Hz, 1H), 6.90 (d, 

J = 8.4 Hz, 1H), 6.02 (s, 1H), 4.67 (br, 1H), 3.96 (s, 3H), 3.92 (s, 3H), 3.65 – 3.60 (m, 4H), 3.36 
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(q, J = 6.5 Hz, 2H), 2.60 – 2.52 (m, 4H), 2.51 – 2.45 (m, 2H), 1.98 – 1.93 (m, 4H), 1.83 – 1.78 

(m, 4H), 1.69 – 1.57 (m, 4H), 1.49 – 1.40 (m, 2H). 13C NMR (101 MHz, CDCl3, DEPTQ) δ 164.00, 

163.03, 160.84, 150.32, 148.85, 132.15, 119.51, 110.79, 110.10, 56.41, 55.96, 55.89, 54.22, 

46.41, 41.31, 29.56, 28.54, 25.59, 25.07, 23.42. 

 

N1-(6-(2,3-Dimethoxyphenyl)-2-(pyrrolidin-1-yl)pyrimidin-4-yl)-N5,N5-dimethylpentane-

1,5-diamine 

To a solution of 4-16 (80 mg, 0.21 mmol, 1 eq) in dry DCM (1 mL) and CHCl3 (0.5 mL) at 0 °C 

were added Et3N (34.6 L, 0.25 mmol, 1.2 eq) and MsCl (17.6 L, 0.23 mmol, 1.1 eq). The 

mixture was stirred at 0 °C for 3 h. The mixture was diluted in CHCl3 (15 mL) and washed with 

a saturated solution of NaHCO3 (2 x 5 mL). The organic layer was dried over Na2SO4, filtrated 

and evaporated to afford a yellowish oil residue. The residue was dissolved in THF (1 mL) and 

dimethylamine (2 M in THF, 1.55 mL, 3.10 mmol, 15 eq) was added. The reaction was then 

carried under microwave irradiation (120 °C, 300 W, 1 h). The solvent was evaporated, and the 

residue was purified by flash chromatography on silica (gradient DCM/ MeOH/ 2 % NH3) to 

afford the desired compound (17 mg, 20%). 1H NMR (400 MHz, CDCl3) δ 7.43 (dd, J = 7.9, 1.4 

Hz, 1H), 7.10 (t, J = 8.0 Hz, 1H), 6.93 (dd, J = 8.1, 1.3 Hz, 1H), 6.28 (s, 1H), 4.71 (br, 1H), 3.89 

(s, 3H), 3.77 (s, 3H), 3.62 – 3.57 (m, 4H), 3.36 – 3.25 (m, 2H), 2.29 – 2.24 (m, 2H), 2.22 (s, 6H), 

1.94 (t, J = 6.6 Hz, 4H), 1.67 – 1.57 (m, 2H), 1.55 – 1.46 (m, 2H), 1.46 – 1.35 (m, 2H). 13C NMR 

(101 MHz, CDCl3, DEPTQ) δ 163.74, 160.74, 153.21, 147.78, 134.43, 124.18, 122.47, 112.90, 

61.29, 59.63, 56.14, 46.61, 45.36, 41.48, 29.65, 27.26, 25.71, 24.94. 
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6-(2,3-Dimethoxyphenyl)-2-(pyrrolidin-1-yl)-N-(5-(pyrrolidin-1-yl)pentyl)pyrimidin-4-

amine 

To a solution of 4-16 (80 mg, 0.21 mmol, 1 eq) in dry DCM (1 mL) and dry CHCl3 (0.5 mL) 

under N2 atmosphere at 0 °C were added Et3N (35 L, 0.25 mmol, 1.2 eq) and MsCl (18 L, 0.23 

mmol, 1.1 eq). The mixture was stirred at 0 °C for 3 h. The mixture was diluted in CHCl3 (15 mL) 

and washed with a saturated solution of NaHCO3 (2 x 5 mL). The organic layer was dried over 

Na2SO4, filtrated and evaporated to afford an oil residue. The residue was dissolved in THF (1 

mL) and pyrrolidine (173 L, 2.07 mmol, 10 eq) was added. The reaction was carried under 

microwave irradiation (120 °C, 300 W, 45 min). The solvent was evaporated and the residue was 

purified by flash chromatography on silica (gradient DCM/ MeOH/ 2% NH3) to afford the desired 

compound (56 mg, 62 %). 1H NMR (400 MHz, CDCl3) δ 7.43 (dd, J = 7.9, 1.3 Hz, 1H), 7.10 (t, 

J = 8.0 Hz, 1H), 6.93 (dd, J = 8.1, 1.1 Hz, 1H), 6.27 (s, 1H), 4.69 (br, 1H), 3.89 (s, 3H), 3.77 (s, 

3H), 3.60 (t, J = 6.4 Hz, 4H), 3.36 – 3.25 (m, 2H), 2.60 – 2.52 (m, 4H), 2.51 – 2.45 (m, 2H), 1.96 

– 1.91 (m, 4H), 1.83 – 1.77 (m, 4H), 1.69 – 1.55 (m, 4H), 1.46 – 1.38 (m, 2H). 13C NMR (101 

MHz, CDCl3, DEPTQ) δ 163.65, 160.60, 153.13, 147.64, 134.30, 124.12, 122.36, 112.85, 61.24, 

56.05, 53.99, 46.56, 41.16, 29.34, 27.45, 25.63, 24.79, 23.42. 

 

N1-(4-(3,4-dimethoxyphenyl)-6-(pyrrolidin-1-yl)pyrimidin-2-yl)-N5,N5-dimethylpentane-

1,5-diamine 

To a solution of 4-17 (60 mg, 0.16 mmol, 1 eq) in dry DCM (1 mL) and dry CHCl3 (0.5 mL) at 0 

°C were added Et3N (26 L, 0.19 mmol, 1.2 eq) and MsCl (18 L, 0.23 mmol, 1.1 eq). The 

mixture was stirred at 0 °C for 3 h. The mixture was diluted in CHCl3 (15 mL) and washed with 
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a saturated solution of NaHCO3 (2 x 5 mL). The organic layer was dried over Na2SO4, filtrated 

and evaporated to afford an oil. The residue was dissolved in THF (1 mL) and dimethylamine (2 

M in MeOH, 1.55 mL, 3.10 mmol, 20 eq) was added. The reaction mixture was stirred at 80 °C 

for 16 h. The solvent was evaporated and the residue was purified by flash chromatography on 

silica (gradient DCM/ MeOH/ 2% NH3) to afford the desired compound (28 mg, 44%). 1H NMR 

(400 MHz, CDCl3) δ 7.61 (s, 1H), 7.49 (d, J = 8.3 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.02 (s, 1H), 

4.91 (br, 1H), 3.97 (s, 3H), 3.92 (s, 3H), 3.60 – 3.41 (m, 6H), 2.30 – 2.23 (m, 2H), 2.21 (s, 6H), 

2.04-1.91 (m, 4H), 1.66 – 1.61 (m, 2H), 1.56 – 1.48 (m, 2H), 1.48 – 1.38 (m, 2H). 

 

N1-(4-(2,3-Dimethoxyphenyl)-6-(pyrrolidin-1-yl)pyrimidin-2-yl)-N5,N5-dimethylpentane-

1,5-diamine 

To a solution of 4-18 (50 mg, 0.13 mmol, 1 eq) in dry DCM (0.8 mL) and dry CHCl3 (0.4 mL) at 

0 °C were added Et3N (22 L, 0.16 mmol, 1.2 eq) and MsCl (11 L, 0.14 mmol, 1.1 eq). The 

mixture was stirred at 0 °C for 3 h. The mixture was diluted in CHCl3 (15 mL) and washed with 

a saturated solution of NaHCO3 (2 x 5 mL). The organic layer was dried over Na2SO4, filtrated 

and evaporated to afford an oil residue. The residue was dissolved in THF (1 mL) and 

dimethylamine (2 M in MeOH, 1.55 mL, 3.10 mmol, 24 eq) was added. The reaction mixture was 

sealed and stirred at 80 °C for 16 h. The solvent was evaporated and the residue was purified by 

flash chromatography on silica (gradient DCM/ MeOH/ 2% NH3) to afford the desired compound 

(10 mg, 19%). 1H NMR (400 MHz, CDCl3) δ 7.32 (d, J = 7.7 Hz, 1H), 7.10 (t, J = 8.0 Hz, 1H), 

6.93 (d, J = 8.1 Hz, 1H), 6.26 (s, 1H), 4.88 (br, 1H), 3.88 (s, 3H), 3.74 (s, 3H), 3.58 – 3.35 (m, 

6H), 2.30 – 2.23 (m, 2H), 2.21 (s, 6H), 2.01 – 1.91 (m, 4H), 1.67 – 1.59 (m, 2H), 1.55 – 1.46 (m, 

2H), 1.45 – 1.36 (m, 2H). 
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4-(2,3-Dimethoxyphenyl)-6-(pyrrolidin-1-yl)-N-(5-(pyrrolidin-1-yl)pentyl)pyrimidin-2-

amine 

To a solution of 4-18 (25 mg, 0.06 mmol, 1 eq) and in dry DCM (0.22 mL) at -78 °C were added 

pyridine (16 L, 0.19 mmol, 3 eq) and TsCl (37 mg, 0.19 mmol, 3 eq). The mixture was stirred 

at -78 °C for 3 h and pyrrolidine (108 L, 1.29 mmol, 20 eq) was added. The reaction mixture 

was stirred at -78 °C and let to warm up to room temperature over 16 h. The solvent was 

evaporated and the residue was purified by flash chromatography on silica (gradient DCM/ 

MeOH/ 2% NH3) to afford the desired compound (6 mg, 21%). 1H NMR (400 MHz, CDCl3) δ 

7.32 (d, J = 7.6 Hz, 1H), 7.10 (t, J = 8.0 Hz, 1H), 6.93 (dd, J = 8.1, 1.2 Hz, 1H), 6.26 (s, 1H), 4.97 

(br, 1H), 3.89 (s, 3H), 3.75 (s, 3H), 3.57 – 3.33 (m, 6H), 2.62 – 2.53 (m, 4H), 2.53 – 2.46 (m, 2H), 

2.00 – 1.92 (m, 4H), 1.84 – 1.78 (m, 4H), 1.69 – 1.56 (m, 4H), 1.48 – 1.38 (m, 2H). 13C NMR 

(101 MHz, CDCl3, DEPTQ) δ 162.18, 161.47, 153.15, 147.54, 124.23, 122.26, 112.92, 94.68, 

61.32, 56.64, 56.14, 54.30, 46.34, 41.47, 30.00, 28.63, 25.43, 25.27, 23.56. 

 

3-((2-Chloro-6-(3,4-dimethoxyphenyl)pyrimidin-4-yl)amino)propan-1-ol 

In a microwave vessel, 4-4 (250 mg, 0.88 mmol, 1 eq) was dissolved in THF (2.5 mL). To the 

mixture was added 3-amino-1-propanol (201 L, 2.63 mmol, 3 eq) and the reaction was carried 

under microwave irradiation (80 °C, 300 W, 30 min). THF was evaporated and the residue 

purified by flash chromatography on silica (gradient DCM/MeOH/ 2% NH3) to afford the desired 

compound (132 mg, 46 %). 1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 1.5 Hz, 1H), 7.51 (dd, J = 

8.4, 1.6 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.57 (s, 1H), 5.47 (br, 1H), 3.98 (s, 3H), 3.93 (s, 3H), 

3.80 – 3.70 (m, 2H), 3.65 – 3.53 (m, J = 4.4 Hz, 2H), 1.89 – 1.80 (m, 2H). 
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3-((4-Chloro-6-(3,4-dimethoxyphenyl)pyrimidin-2-yl)amino)propan-1-ol 

Compound 4-36 was isolated with 4-35 (106 mg, 36 %). 1H NMR (400 MHz, CDCl3) δ 7.59 – 

7.52 (m, 2H), 6.94 (s, 1H), 6.94 (d, J = 8.6 Hz, 1H), 5.48 (br, 1H), 3.97 (s, 3H), 3.94 (s, 3H), 3.75 

– 3.64 (m, 4H), 1.86 – 1.77 (m, 2H). 

 

3-((2-Chloro-6-(2,3-dimethoxyphenyl)pyrimidin-4-yl)amino)propan-1-ol 

In a microwave vessel, 4-10 (225 mg, 0.79 mmol, 1 eq) was dissolved in THF (2.5 mL). Then 3-

amino-1-propanol (181 L, 2.37 mmol, 3 eq) was added to the solution and the reaction was 

carried under microwave irradiation (80 °C, 300 W, 30 min). THF evaporated and the residue was 

purified by flash chromatography on silica (gradient Hexane/EtOAc, 1% MeOH,) to afford the 

desired compound (172 mg, 67%). 1H NMR (400 MHz, CDCl3) δ 7.44 (dd, J = 7.9, 1.2 Hz, 1H), 

7.14 (t, J = 8.0 Hz, 1H), 7.00 (dd, J = 8.1, 1.0 Hz, 1H), 6.94 (s, 1H), 5.54 (br, 1H), 3.90 (s, 3H), 

3.78 – 3.71 (m, 5H), 3.67 – 3.44 (m, 2H), 1.89 – 1.78 (m, 2H). 
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3-((4-Chloro-6-(2,3-dimethoxyphenyl)pyrimidin-2-yl)amino)propan-1-ol 

Compound 4-38 was isolated with 4-37 (62 mg, 24%). 1H NMR (400 MHz, CDCl3) δ 7.35 (d, J 

= 7.5 Hz, 1H), 7.16 (s, 1H), 7.13 (d, J = 8.0 Hz, 1H), 7.02 (d, J = 8.1 Hz, 1H), 5.55 (br, 1H), 3.90 

(s, 3H), 3.78 (s, 3H), 3.70 – 3.59 (m, 4H), 1.87 – 1.75 (m, 2H). 

 

3-((6-(3,4-Dimethoxyphenyl)-2-(pyrrolidin-1-yl)pyrimidin-4-yl)amino)propan-1-ol 

In a microwave vessel, 4-35 (120 mg, 0.37 mmol, 1 eq) was dissolved in THF (1.2 mL). 

Pyrrolidine (155 L, 1.85 mmol, 5 eq) was added to the solution and the reaction was carried 

under microwave irradiation (120 °C, 300 W, 30 min).  THF was evaporated and the residue 

purified by flash chromatography on silica (gradient Hexane/EtOAc/ 1% MeOH additive) to 

afford the desired compound (101 mg, 76 %). 1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 1.5 Hz, 

1H), 7.53 (dd, J = 8.4, 1.7 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.03 (s, 1H), 4.61 (br, 1H), 3.96 (s, 

3H), 3.92 (s, 3H), 3.73 – 3.57 (m, 8H), 1.99 – 1.91 (m, 4H), 1.80 – 1.70 (m, 2H). 
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3-((6-(2,3-Dimethoxyphenyl)-2-(pyrrolidin-1-yl)pyrimidin-4-yl)amino)propan-1-ol 

In a microwave vessel, 4-37 (160 mg, 0.49 mmol, 1 eq) was dissolved in THF (1.6 mL). 

Pyrrolidine (206 L, 0.77 mmol, 5 eq) was added to the solution and the reaction was carried 

under microwave irradiation (120 °C, 300 W, 30 min). THF was evaporated and the residue 

purified by flash chromatography on silica (gradient Hexane/EtOAc/1% MeOH additive) to 

afford the desired compound (140 mg, 79 %). 1H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 7.8 Hz, 

1H), 7.10 (t, J = 8.0 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 6.28 (s, 1H), 4.62 (br, 1H), 3.89 (s, 3H), 

3.77 (s, 3H), 3.69 – 3.59 (m, 8H), 1.99 – 1.89 (m, 4H), 1.79 – 1.68 (m, 2H). 

 

3-((4-(3,4-Dimethoxyphenyl)-6-(pyrrolidin-1-yl)pyrimidin-2-yl)amino)propan-1-ol 

In a microwave vessel, 4-36 (85 mg, 0.26 mmol, 1 eq) was dissolved in THF (1 mL). Pyrrolidine 

(110 L, 1.31 mmol, 5 eq) was added to the solution and the reaction was carried under 

microwave irradiation (120 °C, 300 W, 30 min). THF was evaporated and the residue purified by 

flash chromatography on silica (gradient Hexane/EtOAc/ 1% MeOH additive) to afford the 

desired compound (32 mg, 34 %). 1H NMR (400 MHz, CDCl3) δ 7.51 (s, 1H), 7.47 (dd, J = 8.4, 

2.0 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.03 (s, 1H), 4.98 (s, 1H), 3.96 (s, 3H), 3.91 (s, 3H), 3.68 

(q, J = 6.9 Hz, 2H), 3.65 – 3.60 (m, 2H), 3.52 (br, 2H), 2.04 – 1.94 (m, 4H), 1.75 – 1.68 (m, 2H), 

1.68 – 1.57 (m, 2H). 
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3-((4-(2,3-Dimethoxyphenyl)-6-(pyrrolidin-1-yl)pyrimidin-2-yl)amino)propan-1-ol 

In a microwave vessel, 4-38 (58 mg, 0.18 mmol, 1 eq) was dissolved in THF (0.5 mL). Pyrrolidine 

(75 L, 0.90 mmol, 5 eq) was added to the solution and the reaction was carried under microwave 

irradiation (120 °C, 300 W, 30 min). THF was evaporated and the residue purified by flash 

chromatography on silica (gradient Hexane/EtOAc/ 1% MeOH additive) to afford the desired 

compound (60 mg, 93 %). 1H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 7.9 Hz, 1H), 7.10 (t, J = 8.0 

Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 6.28 (s, 1H), 4.61 (br, 1H), 3.89 (s, 3H), 3.78 (s, 3H), 3.69 – 

3.59 (m, 8H), 2.00 – 1.87 (m, 4H), 1.80 – 1.69 (m, 2H). 

 

6-(3,4-Dimethoxyphenyl)-2-(pyrrolidin-1-yl)-N-(3-(pyrrolidin-1-yl)propyl)pyrimidin-4-

amine 

To a solution of 4-39 (40 mg, 0.11 mmol, 1 eq) in dry DCM (0.7 mL) and dry CHCl3 (0.3 mL) 

under N2 atmosphere at 0 °C were added Et3N (19 L, 0.13 mmol, 1.2 eq) and MsCl (10 L, 0.12 

mmol, 1.1 eq). The mixture was stirred at 0 °C for 3 h. The mixture was diluted in CHCl3 (15 mL) 

and washed with a saturated solution of NaHCO3 (2 x 5 mL). The organic layer was dried over 

Na2SO4, filtrated and evaporated. The residue was dissolved in THF (1 mL) and pyrrolidine (93 

L, 1.12 mmol, 10 eq) was added. The reaction mixture was stirred at 80 °C for 16 h. The solvent 

was evaporated and the residue was purified by flash chromatography on silica (gradient DCM/ 

MeOH/ 2% NH3) to afford the desired compound (28 mg, 61 %). 1H NMR (400 MHz, CDCl3) δ 7.67 

(d, J = 1.6 Hz, 1H), 7.54 (dd, J = 8.4, 1.7 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.03 (s, 1H), 5.31 (s, 1H), 3.96 

(s, 3H), 3.92 (s, 3H), 3.66 – 3.57 (m, 4H), 3.51 – 3.41 (m, 2H), 2.62 (t, J = 6.9 Hz, 2H), 2.59 – 2.51 (m, 

4H), 1.97 – 1.92 (m, 4H), 1.89 – 1.78 (m, 6H). 13C NMR (101 MHz, CDCl3, DEPTQ) δ 164.11, 
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162.94, 160.98, 150.42, 148.97, 132.27, 119.63, 110.91, 110.21, 88.22, 56.09, 56.02, 54.39, 

54.16, 46.53, 40.09, 28.19, 25.73, 23.60. 

 

N1-(6-(2,3-dimethoxyphenyl)-2-(pyrrolidin-1-yl)pyrimidin-4-yl)-N3,N3-dimethylpropane-

1,3-diamine 

To a solution of 4-40 (60 mg, 0.17 mmol, 1 eq) in dry DCM (1 mL) and dry CHCl3 (0.5 mL) 

under N2 atmosphere at 0 °C were added Et3N (28 L, 0.20 mmol, 1.2 eq) and MsCl (10 L, 0.12 

mmol, 1.1 eq). The mixture was stirred at 0 °C for 3h. The mixture was diluted in CHCl3 (15 mL) 

and washed with a saturated solution of NaHCO3 (2 x 5 mL). The organic layer was dried over 

Na2SO4, filtrated and evaporated. To the residue was added dimethylamine (2 M in THF, 1.65 

mL, 3.3 mmol, 20 eq). The reaction mixture was stirred at 80 °C for 16 h. The solvent was 

evaporated and the residue was purified by flash chromatography on silica (gradient DCM/ 

MeOH/ 2% NH3) to afford the desired compound (29 mg, 45 %). 1H NMR (400 MHz, CDCl3) δ 

7.42 (dd, J = 7.9, 1.4 Hz, 1H), 7.10 (t, J = 8.0 Hz, 1H), 6.93 (dd, J = 8.1, 1.3 Hz, 1H), 6.27 (s, 

1H), 5.22 (s, 1H), 3.89 (s, 3H), 3.77 (s, 3H), 3.66 – 3.55 (m, 4H), 3.48 – 3.34 (m, 2H), 2.38 (t, J 

= 6.9 Hz, 2H), 2.23 (s, 6H), 1.96 – 1.91 (m, 4H), 1.81 – 1.72 (m, 2H). 13C NMR (101 MHz, CDCl3, 

DEPTQ) δ 163.78, 160.91, 153.24, 147.82, 134.57, 124.17, 122.51, 112.86, 61.30, 58.13, 56.16, 

46.62, 45.67, 40.42, 27.39, 25.74. 

 

6-(2,3-Dimethoxyphenyl)-2-(pyrrolidin-1-yl)-N-(3-(pyrrolidin-1-yl)propyl)pyrimidin-4-

amine 

To a solution of 4-40 (60 mg, 0.17 mmol, 1 eq) in dry DCM (1 mL) and dry CHCl3 (0.5 mL) 

under N2 atmosphere at 0 °C were added Et3N (28 L, 0.20 mmol, 1.2 eq) and MsCl (14 L, 0.18 
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mmol, 1.1 eq). The mixture was stirred at 0 °C for 3 h. The mixture was diluted in CHCl3 (15 mL) 

and washed with a saturated solution of NaHCO3 (2 x 5 mL). The organic layer was dried over 

Na2SO4, filtrated and evaporated. The residue was dissolved in THF (1 mL) and pyrrolidine (140 

L, 1.67 mmol, 10 eq) was added. The reaction mixture was stirred at 80 °C for 16 h. The solvent 

was evaporated and the residue was purified by flash chromatography on silica (gradient DCM/ 

MeOH/ 2% NH3) to afford the desired compound (46 mg, 67 %). 1H NMR (400 MHz, CDCl3) δ 

7.42 (dd, J = 7.9, 1.4 Hz, 1H), 7.10 (t, J = 8.0 Hz, 1H), 6.93 (dd, J = 8.1, 1.1 Hz, 1H), 6.26 (s, 

1H), 5.36 (br, 1H), 3.89 (s, 3H), 3.77 (s, 3H), 3.63 – 3.56 (m, 4H), 3.50 – 3.37 (m, 2H), 2.66 – 

2.50 (m, 6H), 1.96 – 1.90 (m, 4H), 1.86 – 1.77 (m, 6H). 13C NMR (101 MHz, CDCl3, DEPTQ) δ 

163.60, 160.68, 153.14, 147.66, 134.39, 124.08, 122.39, 112.84, 92.57, 61.24, 56.08, 54.21, 

53.99, 46.56, 27.69, 25.64, 23.49. 
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Appendix 
1H NMR and 13C NMR spectra of 3-186 
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1H NMR and 13C NMR spectra of 3-187 
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COSY, HSQC and HMBC spectra of 3-187 
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1H NMR and 13C NMR spectra of 3-188 
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COSY, HSQC and HMBC spectra of 3-188
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1H NMR spectrum of 4-5
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1H NMR spectrum of 4-6

 

 


