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Abstract 
 

 

 

αVβ3 integrin is a promising target for therapy due to its upregulation in angiogenic vasculature. 

However, Cilengitide, an αVβ3 integrin inhibitor (RGD mimetic), has failed late stage clinical trials 

due to lack of overall survival benefit. We have previously shown that depleting β3-integrin 

acutely in the mouse endothelium leads to smaller tumours in vivo, whereas constitutive 

depletion of endothelial expression of this molecule causes an increase in tumour angiogenesis. 

In the context of cancer therapy, long-term depletion or inhibition of β3-integrin is subject to 

treatment escape via unknown mechanisms of resistance. At the molecular level, much of the 

regulation of endothelial cell migration and adhesion, and therefore angiogenesis, occurs via the 

‘adhesome’ – the sub-proteome present in focal adhesion complexes. We isolated and 

compared WT, β3-HET, β3-KO and αVβ3-inhibitor-treated adhesomes by mass spectrometry. 

Among approximately 300 proteins whose abundance significantly changed, three intermediate 

filament proteins were upregulated in the β3-integrin depleted adhesome, namely: nestin, 

plectin and vimentin. All three molecules are known to regulate integrins and play a role in 

angiogenesis.  

Given this upregulation of intermediate filaments in the adhesome, I set out to determine 

whether they are playing a differential role in angiogenesis depending on β3-integrin depletion. 

At first, I took an siRNA approach to determine the functional consequence of knocking down 

each target, but, overall, results from this approach were inconclusive. However, I observed that 

Withaferin A, an inhibitor of vimentin, impaired proliferation and migration of β3-HET, but not 

WT, endothelial cells. I then decided to look at the effects of Withaferin A on subcutaneous 

tumour growth in vivo, in combination with long-term endothelial-specific depletion of β3-

integrin (via the β3-floxed Tie1.Cre model). The drug did not significantly inhibit tumour growth, 

but tumour angiogenesis was significantly reduced in the Cre +ve, and not in the Cre -ve 

background. Similarly, Withaferin A inhibited microvascular sprouting of β3-floxed Tie1.Cre +ve 

aortic rings, but not of Cre -ve rings. I also utilised pSico technology as an shRNA delivery system 

and observed impaired microvascular sprouting when depleting nestin. Additionally, I generated 

tdTomato-labelled nestin constructs which could be utilised to visualise nestin in vitro. Overall, 

the findings described in this thesis suggest co-targeting β3-integrin and intermediate filaments, 

such as those made up of vimentin, as an improved anti-angiogenic strategy. 
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1 Introduction 

 

 

1.1  Preface 

One of the hallmarks of cancer – angiogenesis – is a process of new blood vessel formation from 

ones that already exist. Tumours need a continuously expanding vascular network to meet the 

nutrient demand for rapid growth. Endothelial cells are the main drivers of this process, while 

their adhesion and migration are key for angiogenesis to proceed. At the molecular level, these 

processes are mediated by the ‘adhesome’ – the sub-proteome making up the focal adhesion 

complexes. A prominent member of the adhesome is αVβ3-integrin. Due to its role in 

angiogenesis, attempts have been made to target this protein in the battle against cancer. 

Unfortunately, long-term inhibition is subject to treatment escape. This thesis describes an 

investigation of the molecular detail of this phenomenon and proposes a dual-targeting 

approach for an improved anti-angiogenic strategy. The introduction chapter begins with a 

description of tumour angiogenesis, moves onto the endothelial cell adhesome, followed by a 

discussion about the current anti-angiogenic strategies.  
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1.2  Angiogenesis and Cancer 

 

1.2.1 Vasculogenesis 

Most cell types cannot survive further than 100 μm away from an oxygen source, as the diffusion 

rate of oxygen through the tissue beyond this thickness becomes not efficient enough to satisfy 

the needs of the cells [1]. Therefore, a vast network of blood vessels that reaches every part of 

the body at the microscopic level is required to meet respiratory needs, as well as to remove 

metabolic waste products. This vascular network is laid down in the embryo before the heart 

starts beating [2]. Embryonic growth depends on the cardiovascular system, therefore this organ 

system is the first functional one in the vertebrate embryo [3]. Vasculogenesis, or de novo blood  

vessel formation is a process where mesoderm, the middle germ layer of the primary embryo, 

gives rise to the vascular plexus [4]. More specifically, the haemangioblast lineage arises from 

mesodermal precursors, which subsequently differentiates into haematopoietic stem cells 

(HSCs) and endothelial cell (EC) precursors – angioblasts. The latter give rise to vascular ECs 

which arrange into a primitive network of vessels – the vascular plexus [3]. Angioblasts can 

migrate to distant sites before creating a new vascular plexus in response to the right cues [3], 

[5]. Haemangioblast induction appears to begin with expression of Vascular Endothelial Growth 

Factor Receptor 2 (VEGFR2) [6]–[8]. HSCs subsequently turn off VEGFR2 expression at a later 

stage of differentiation, while ECs express VEGFR2 throughout their lifetime [3]. VEGF, VEGF 

receptor 1 (VEGFR1) and VEGFR2 are all necessary for vasculogenesis. 

The importance of VEGF in vasculogenesis was demonstrated by generation of the VEGF KO 

allele. The lack of one copy of the gene (in VEGF KO heterozygous mice) is enough to cause death 

in utero due to blood vessel network malformation [9], [10]. VEGF is secreted by the endoderm-

derivatives in the embryo, while the angioblasts originating from the mesoderm express the 

VEGF receptors [3]. Both VEGFR1 KO and VEGFR2 KO mice also die in utero due to inability to 

generate an organised blood vessel network [11], [12]. Upon binding VEGF, VEGFR2 tyrosine 

kinase activity results in survival, proliferation and migration, thus promoting blood vessel 

formation [13]–[15]. VEGFR1 mainly contributes to the assembly of functional vessels as a 

negative regulator of the process [16], [17]. Vasculogenesis is a process limited to the embryo, 

except one controversial postnatal mechanism, where bone-marrow-derived cells are 

incorporated into the endothelium [18]. 
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1.2.2 Angiogenesis 

Once the vascular plexus is established, further expansion of the vascular system occurs by 

generation of new blood vessels from pre-existing ones, a process termed angiogenesis. Two 

types of angiogenesis can occur: sprouting or non-sprouting (intussusception). The latter is a 

process of splitting of an existing vessels into smaller ones, a phenomenon first described in the 

development of the complex network of bronchi and bronchioles in the lung [19], [20].  

Here, the focus is on sprouting angiogenesis inducible by growth factors, such as VEGF, where 

vasculature chemotactically extends into the tissue. When a human body reaches adulthood this 

process is limited to the proliferative phase of the uteral cycle, wound healing and disease, most 

notably cancer [21]. 

Angiogenesis is a multi-step process orchestrated by a plethora of molecular players within the 

participating cells. Below, a section each of this introduction is dedicated to integrins and VEGFs 

(and their receptors). Other key players include: angiopoietins (Ang1 and Ang2) and their 

receptors (Tie1 and Tie2), CD31, CD34, fibroblast growth factors (FGFs), endothelial nitric oxide 

synthase (eNOS), ephrins, hypoxia inducible factors (HIFs), matrix metalloproteinases (MMPs), 

Neuropilin-1 (Nrp1), platelet-derived growth factor B (Pdgfb), Slits, transforming growth factor 

β (TGF-β), tissue inhibitors of metalloproteinases (TIMPs) and VE-Cadherin. 

In inflamed and hypoxic tissue, there is an accumulation of HIFs, such as HIF-1α [22]. This leads 

to an upregulation of genes encoding secreted angiogenic factors such as VEGFs, FGFs and 

angiopoietins, to initiate the ‘angiogenic switch’ [23]. VEGF is upregulated up to 30-fold in 

response to HIFs [24]. Also, Notch signalling plays an important role. Membrane-embedded 

Notch receptors in ECs are cleaved and release a fragment inside the cell, upon interaction with 

ligands from neighbouring cells, such as Delta-like or Jagged [25], [26]. The cleaved fragment 

becomes a transcription factor, which is translocated to the nucleus to promote expression of 

genes, such as CD31, VE-Cadherin, Nrp1 and VEGFR2 [27]. 

As a result of the pro-angiogenic signalling, pericytes detach from micro-vessels in response to 

Ang2, MMPs make way for the new vessels by degrading the basement membrane (BM) and EC 

junctions loosen, a consequence of endocytosis of VE-Cadherin [18], [28]. At the same time, 

VEGF leads to an induction of eNOS, which causes vasodilation of vessels, increased permeability 

and extravasation of some of the cargo [29]. Next, ECs switch to a proliferative and migratory 

phenotype, as a consequence of combined action involving VEGFs, FGFs, Ang2, Nrp1, integrins 

and other factors [30]. According to the current dogma, a tip cell emerges, which leads the way 

in the formation of a new blood vessel [31]. ECs compete for the tip cell position based on their 

expression of VEGF receptors. The cell which is best equipped to respond to VEGF, takes the 
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lead, while the neighbouring ECs follow and become the stalk cells [31]. Tip cell guidance and 

adhesion involve ephrins, Slits and integrins, while VEGFR1, PGF, FGFs, Notch and other factors 

regulate stalk elongation [30]. VEGF, VE-Cadherin and CD34 ensure lumen formation in the stalk 

of expanding vessel [32]. ECs physically migrate, to form new blood vessels, while remodelling 

the ECM in the process, in a chemotactic manner, guided by the pro-angiogenic factors [23], 

[33]. This EC migration is mediated by integrins. This continues until two sprouting vessels meet, 

leading to a process of joining, or anastomosis of the lumen, thus expanding the blood vessel 

network [34]. Finally, new vessels enter the maturation stage. EC junctions are re-established in 

response to Ang1 and VE-Cadherin, while Pdgfb, Ang1, FGF and Notch signalling ensure that 

pericytes wrap around the newly formed vessels to provide stability [35], [36]. Also, TGF-β 

induces fibronectin and collagen deposition by the surrounding cells [37]–[39]. This is aided by 

TIMPs, which inhibit BM degradation and thus enable the BM to be rebuilt [34]. 

New blood vessels reach the cells which had an insufficient oxygen supply and lack of waste 

removal. In healthy angiogenesis, when the oxygen demands are met, further VEGF, Ang1, FGF 

and Notch signalling leads to maintenance of newly built vessels. This involves further 

recruitment of supporting cells, generation of matrix, fenestration where required, as well as 

expansion, branching and pruning of vessels [30]. Vessels without a pericyte coating undergo 

regression [40]. 

Notch signalling, via receptors such as Notch-1, drives ECs towards a more angiogenic potential 

and promotes EC maturation [18]. Notch signalling is a process evolutionarily conserved from 

sea urchins to humans, fundamental in development [41]. It lies at the heart of deciding cell fate, 

with consequences in cell growth, proliferation, migration and death [42]. Malfunction leads to 

heavy repercussions including disrupted neuro-, lympho- and angiogenesis [43]. Moreover, 

Notch signalling promotes the arterial fate of ECs during the process of differentiation of 

embryonic stem cells (ESCs) into ECs and is critical for proper maintenance of arteries [27]. 
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1.2.3 Tumour Angiogenesis 

Angiogenesis within the tumour microenvironment is much more chaotic than during 

physiological angiogenesis. In the late 1800s German pathologists noticed that tumours are 

highly vascularised [44]. A prominent study from 1927 described varying vascular architecture 

in different tumour types and led to the conclusion that tumour environment must have an 

impact on blood vessel growth and morphology [45]. Cells within a tumour mass often grow at 

a rapid rate and thus use up all the resources, creating a hypoxic environment. In order for a 

tumour to grow beyond 1–2 mm in diameter it needs to recruit new vasculature to supply it with 

sufficient amount of nutrients and oxygen [46]. The prevalent characteristics, such as disrupted 

vasculature, inflammation, necrosis and thick stroma, has led tumours to be described as 

“wounds that do not heal” [47]. The interactions between integrins, growth factor receptors and 

cytokine receptors in tumour and tumour-associated host cells (ECs, pericytes, fibroblasts, 

monocytes and myeloid cells) play a major role in tumour progression [48]. 

Chaos in the genome and the gene expression profile of cancer cells is reflected at the level of 

the tumour microenvironment, including the vasculature [49]–[51]. Heightened and prolonged 

abundance of pro-angiogenic factors leads to pathological levels of sprouting and abnormally 

high fenestration of the vessel wall [52]–[54]. ECs are forced to maintain high metabolism to 

meet the demands for their migration and proliferation [55]. Constant stimulation does not 

allow for mature vessels, with proper morphology and function, to form (Fig. 1.1) [56]. As the 

tumour expands pro-angiogenic signalling continues and the vasculature expands with it. The 

vessels are tortuous, leaky, highly disorganised and fragile (Fig. 1.1) [49], [57], [58].  

Once the vascular barrier is compromised, blood perfusion is impaired and there is increased 

extravasation of leukocytes. The prominent subsets present in the tumour microenvironment 

include both myeloid cells (macrophages, eosinophils, dendritic cells) and lymphoid cells (T 

cells), although the composition varies between tumours [59], [60]. It can be said that tumours 

recruit myeloid cells, which release stimulatory factors for tumour cell survival and angiogenesis, 

including VEGF, TGF-β, MMPs, nitric oxide, but also pro-inflammatory cytokines [61], [62]. 

Typically, the extent of immune cell infiltration correlates with the progression stages of cancer. 

Indeed, the tumour microenvironment is typically in the state of inflammation, due to presence 

of immune cells attempting to fight the tumour, initially perceived as a foreign body [63], [64]. 
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Figure 1.1  Comparison of normal and tumour vasculature. 

(A) In normal tissue small blood vessels consist of highly organised layers of ECs, basement membrane 

and pericytes whereas (B) within a tumour, blood vessels are always expanding due to constant 

stimulation by angiogenic factors induced by hypoxia. This takes place too rapidly, resulting in leaky 

vessels with a very chaotic architecture. Adapted from [65]. 
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At the same time, a key cell type linked with tumour progression is the M2 macrophage: 

polarised to the anti-inflammatory phenotype, also referred to as the tumour-associated 

macrophage (TAM). Presence of M2 macrophages in the tumour promotes angiogenesis and 

correlates with reduced patient survival [66]. However, pro-inflammatory, anti-tumour M1 

macrophages are also present, and the latest understanding is that there is no clear-cut 

differentiation between M1 and M2 [67]. There is rather a spectrum of polarisation with a range 

of overlapping functions [68]. 

It has been suggested that a form of vasculogenesis can occur in the adult organism, whereby 

circulating bone-marrow-derived cells differentiate into ECs and participate in 

neovascularisation at a site of injury [69]. Others have shown that this recruitment of EC 

precursor cells also occurs in the tumour and impairing this process has the potential to inhibit 

tumour growth and angiogenesis [70]. 

Moreover, tumour angiogenesis promotes disease progression, as increased vessel permeability 

enables metastasis. In order for a primary tumour to spread, cancer cells from the primary site 

must enter the blood or lymphatic vessel by intravasation, travel to the secondary site and leave 

the vessel by extravasation [71]. Many of these cancer cells will fail to metastasise, unable to 

cross one of the barriers or unable to colonise a particular secondary site, or due to being 

captured by the immune system [71], [72]. However, as the primary tumour expands, more 

entry points in the growing vasculature are created increasing the chances of successful 

metastasis. A chaotic and dynamic angiogenesis of the tumour vascular network produces leaky 

vessels which allow tumour cells to enter much more easily than into normal vasculature. 

Angiogenesis and metastasis are both fundamental hallmarks of cancer, while metastasis can be 

viewed as the primary reason of cancer patient death [73], [74]. The fact that angiogenesis 

enables metastasis, highlights this process for targeting in the battle against cancer. The hope is 

that if we target tumour angiogenesis, tumour growth is halted at an early, benign stage.  
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1.2.4 VEGFs and Their Receptors 

In the 1980s it was observed that conditioned media from a guinea pig tumour cell line 

contained a protein which enhanced vascular permeability, EC growth and angiogenesis [75]. A 

few years later this was identified as VEGF [76], [77]. Undoubtedly, it can be described as the 

most prominent among all the pro-angiogenic factors. However, the mammalian genome 

contains four VEGF genes: VEGF-A, -B, -C and -D. These four along with placenta growth factor 

(PGF) constitute the VEGF sub-group of the platelet-derived growth factor (PDGF) family [78]. 

VEGFR1, 2 and 3 are the three type III receptor tyrosine kinases that initiate intracellular 

signalling upon binding to VEGFs [78].  

 

1.2.4.1 VEGF Types 

VEGF-A is the most studied isoform due to its involvement in both developmental and 

pathological angiogenesis. The human VEGF-A gene possesses three widely expressed splice 

variants: VEGF121, VEGF165 and VEGF189; and two rare variants VEGF145 and VEGF206 [79]. The 

numbers refer to the length of amino acids within their structures, excluding the signal sequence 

required for extracellular secretion, which is cleaved off [80]. VEGF refers to VEGF-A165 

throughout this thesis, which is the most studied isoform. VEGF binds receptors VEGFR1, 

VEGFR2, as well as co-receptors Nrp1 and Nrp2 to promote survival, proliferation, migration and 

sprouting of ECs in developmental and pathological angiogenesis [78], [81]. Also, VEGF 

upregulates expression of eNOS, which generates nitric oxide, a vasodilator contributing to 

vascular permeability [29]. The lack of a single VEGF allele is sufficient for embryonic lethality in 

mice due to the dramatic impairment of angiogenesis and blood island formation [10]. Keshet 

et al. reported that VEGF was hypoxia inducible [82]. Soon after, a region within the structure of 

VEGF (and erythropoietin) was proven to be the binding site of HIF-1α thus further elucidating 

the mechanism [83], [84]. Hypoxia in the tumour microenvironment induces angiogenic factor 

production, including VEGF, the key driver of angiogenesis, to make tumours highly vascularised 

[77], [78], [85]. Monoclonal antibody inhibition of VEGF has been shown to dramatically 

suppress tumour growth in vivo [86]. At the same time, neither VEGF nor VEGF inhibition affect 

tumour cell growth in vitro, leading to a conclusion that it is a vasculature-specific mitogen [87]. 

This portrays VEGF as an excellent vasculature-specific therapeutic target. Indeed, a number of 

VEGF-targeting agents are in use in the clinic. These will be covered in Section 1.4.2.  
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VEGF-B binds only VEGFR1 and Nrp1 [88]. One study reported VEGF-B to be needed for correct 

development of the myocardial tissue [89]. On the other hand, most studies have shown VEGF-

B KO mice are healthy and fertile under normal conditions [89]–[91]. Some argue that it may be 

a useful target in anti-angiogenic therapy, as it contributes to angiogenesis in pathological 

conditions as a survival factor [92], [93]. VEGF-C mainly stimulates vasculogenesis and 

lymphangiogenesis via VEGFR3, but it can also bind VEGFR2, although not as efficiently as VEGF-

A [94], [95]. VEGF-D has some angiogenic and lymphangiogenic potential and acts through 

VEGFR2 and VEGFR3 [81], [96]. PGF is a VEGFR1 ligand, implicated in vasculogenesis, wound 

healing and cancer [97], [98]. 

 

1.2.4.2 VEGF Receptors 

VEGFR1, also known as fms related tyrosine kinase 1 (FLT1), gene encodes a transmembrane 

receptor, but also a shorter, soluble isoform, which gets released into the extracellular space 

[99]. The membrane-bound variant can exert a weak tyrosine kinase activity upon binding its 

ligands, VEGF-A, VEGF-B and PGF [78], [100]. As a result, VEGFR1 appears to act as both a mild 

stimulator of vasculogenesis and a negative regulator of angiogenesis [101]–[103]. Its 

antagonistic role is carried out by sequestering VEGF, which would otherwise bind and activate 

VEGFR2 [16], [17]. VEGFR1 KO in mice is embryonic lethal, due to excessive proliferation of 

angioblasts [11], [16]. Interestingly, mice lacking the tyrosine kinase domain of VEGFR1 develop 

into adulthood with no overt abnormalities to the vasculature [104]. Therefore, the VEGF decoy 

function appears to be an essential step in angiogenesis for mature, functional vessels to form. 

Both the tyrosine kinase activity of VEGFR1 and sequestering VEGF can contribute to 

pathological conditions [105], [106]. 

The affinity of VEGFR2, also referred to as fetal liver kinase 1 (FLK1) and kinase domain receptor 

(KDR), to bind VEGF is two-fold weaker than that of VEGFR1, but the tyrosine kinase activity is 

estimated to be ten-fold more potent [107], [108]. This signalling potential makes it a key 

receptor in VEGF-dependent angiogenesis and hematopoiesis. Its importance was 

demonstrated by VEGFR2 KO in mice, which causes death in utero due to failure to form blood 

islands and disruption of vasculature [12]. VEGFR2 is found embedded in the membrane of early 

haemangioblasts and post-embryogenesis becomes mostly limited to ECs, although there are 

reports of its expression in a sub-population of cardiovascular stem cells and macrophages 

[109]–[111]. VEGFR2 can also weakly bind VEGF-C [112]. 
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VEGFR2 consists of seven extracellular immunoglobulin(Ig)-like domains, a transmembrane 

linker and intracellular tyrosine kinase region, followed by the C-terminal end domain (Fig 1.2) 

[113]. VEGF binds at the second and third Ig-like domains, leading to a receptor dimerisation 

and phosphorylation at multiple tyrosine (Y) sites [114]. The major phosphorylation residues are 

Y951, Y1054, Y1059, Y1175 and Y1214 [113]. The rat sarcoma (RAS)/rapidly accelerated 

fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-

regulated kinase (ERK) pathway downstream of VEGFR2 stimulates EC proliferation, while 

survival is promoted by the phosphoinositide 3-kinase (PI3K)/phosphoinositide-dependent 

kinase (PDK)/protein kinase B (PKB, Akt) pathway (Fig 1.2) [114], [115]. Multiple pathways 

downstream of VEGFR2 promote EC migration: proto-oncogene tyrosine-protein kinase 

(Src)/SH2 domain-containing adaptor protein B (SHB)/focal adhesion kinase (FAK) pathway, 

PI3K/Rac Family Small GTPase (RAC) pathway and P21 activated Kinase 2 (PAK2)/cell division 

cycle 42 (Cdc42)/p38 mitogen-activated protein kinase (p38 MAPK) pathway [114], [116]–[120]. 

VEGFR2 signalling is influenced by dimerisation, endocytosis and recycling of the receptor [121]–

[123]. Also, its co-receptors, such as integrins and neuropilins, contribute to cellular events 

downstream of VEGR2 [124]–[127]. 

VEGFR3, also knowns as fms-related tyrosine kinase 4 (FLT4), binds VEGF-C and VEGF-D to 

stimulate vasculogenesis and lymphangiogenesis [96], [128]. VEGFR3 KO mice die during 

embryogenesis due to defects in the cardiovascular system, before the lymphatic system 

emerges [129]. Post-embryogenesis its expression becomes largely restricted to lymphatic ECs 

[78]. 
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Figure 1.2  VEGF / VEGFR2 complex and downstream signalling. 

Hypoxic tissue accumulates HIFs causing an upregulation and release of VEGF. VEGFR2 is embedded in 
the cell membrane of endothelial cells and binds VEGF via the 2nd and 3rd Ig-like domain. VEGF-bound 
VEGFR2 undergoes auto- and transphorylation at multiple tyrosine (Y) sites. This initiates a number of 
signalling pathways which promote endothelial cell migration, proliferation and survival. Figure adapted 
from Koch et al. (2011) and generated with BioRender.com [114].
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1.2.5 Integrins 

Integrins are a family of cell surface glycoproteins, present in most cell types, which mediate cell 

adhesion to the ECM or immunoglobulins [130], [131]. An integrin receptor is made up of non-

covalently associated α and β subunits, forming a heterodimer (Fig 1.3 A). Typically, an α 

monomer is approximately 1000 amino acids long, while a β monomer tends to be made up of 

750 amino acids [132]. Both monomers possess a short cytoplasmic tail, a transmembrane 

helical domain and a large, multi-domain extracellular region (Fig 1.3 A) [133]. In vertebrates, 

the integrin family comprises of eighteen α and eight β monomers which pair to form at least 

24 distinct heterodimeric integrin receptors (Fig 1.3 B) [134]. The number of binding partners 

vary. For instance, β1 integrin has 12 binding partners, whereas β5 integrin can only associate 

with αV integrin (Fig 1.3 B). Pairing of different subunits ensures specificity for different ligands, 

e.g. α1β1 is a collagen receptor, αVβ3 and α5β1 are Argininine-Glycine-Aspartic acid (RGD) 

receptors, while α6β4 is a laminin receptor [135]–[137]. Integrin heterodimers assume two main 

conformational states: bent, inactive state with low affinity for ligand-binding and upright, 

active, high affinity conformation [138], [139]. The inactive state can be pro-apoptotic, while the 

active, ligand-bound state is typically stimulatory [140], [141]. 

To fulfil their role in mediating cell adhesion and movement, integrins undergo clustering and 

recruit cytoskeletal, adaptor and signaling proteins [142]–[144]. Thus, they are normally found 

complexed with many other proteins into structures named focal adhesions (FAs) to mediate 

cell attachment, migration and signaling [145]. Integrin signal transduction is bi-directional. 

External cues can be transmitted from outside of the cell to the intracellular integrin binding 

partners (‘outside-in signalling’), but integrins also change their conformational state in 

response to cytoplasmic stimuli, thus affecting their binding with the ligands in the extracellular 

space (‘inside-out’ signalling) [146], [147]. Recently, a third mode of anchorage-independent 

‘inside-in’ signalling has been proposed [148]. The authors observed β1-integrin, present on 

endosomal membranes inside the cell, to promote sustained c-Met/ERK1/2 phosphorylation, 

thus influencing cell survival, invasion and tumorigenesis. 

Integrin structure does not include an enzymatic domain. The regulatory role of integrins is 

achieved through interaction with enzymatic receptors, such as growth factor (VEGF, FGF and 

EGF) receptors with tyrosine kinase activity [149]–[151]. Integrin function is in turn regulated by 

membrane trafficking, i.e. endocytosis, recycling and degradation, which determines the 

amount present at the cell surface, available for clustering and interaction with ECM ligands 

[152]. 
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Figure 1.3  Integrin structure and domain pairing. 

(A) Cartoon representation of the heterodimeric integrin in its active state. α and β subunits interact, 

assume an upright conformation and engage with the matrix via the propeller and the βI domain. EGF – 

epidermal growth factor module, PSI – plexin-semaphorin-integrin. Adapted from [132], [153]. (B) The 

integrin family showing all known pairs of α and β subunits grouped according to the type of ligand they 

bind to, adapted from [134]. 

 



24 
 

 

Integrins are expressed in multiple cell types contributing to angiogenesis: ECs, fibroblasts, 

pericytes and BMDCs [48]. In these cells, numerous angiogenesis-contributing integrins have 

been found: α1β1, α2β1, α4β1, α5β1, α6β1, α6β4, α9β1, αvβ3, αvβ5 and αvβ8 [131]. These 

integrins stimulate angiogenic sprouting but are also able to regulate responses to pro- and anti-

angiogenic growth factors, proteases, cytokines and receptors, to influence proliferation, 

remodelling of the ECM, migration and cell-cell interactions [48], [140]. Endothelial αvβ3 

integrin, in particular, has received a lot of attention from researchers, due to its importance in 

angiogenesis. 
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1.2.6 αVβ3-integrin 

αVβ3 integrin has become a prominently-studied member of the integrin family, since it was 

found upregulated in angiogenic vasculature [154]. It is also highly expressed in many tumour 

types: breast, lung, kidney, ovary, skin and prostate [155]. When bound to its canonical ligand, 

vitronectin, αVβ3 integrin associates with platelet-derived growth factor receptor β (PdgfRβ) 

and VEGFR2, via the extracellular domain, to promote proliferation and migration in ECs [156]. 

Phosphorylation sites Y747 and Y759, within the cytoplasmic tail of the integrin, also play an 

important role in the cross-talk with VEGFR2 and subsequent downstream signalling [157], 

[158]. αVβ3 integrin will also bind to other substrates: fibronectin, von Willebrand factor (vWF), 

thrombospondin, fibrillin, tenascin, osteopontin, bone sialoprotein (BSP); crosslinkers - 

fibrinogen, lactadherin (Mfge8); as well as Del-1 and the LAP-TGF-Beta complex [159]. 

Early research on this integrin portrayed it as pro-angiogenic. Vitronectin and fibronectin, both 

recognised by αVβ3 via the RGD-motif, are typical matrices laid down for migrating ECs in 

angiogenesis [18], [160], [161]. Numerous studies revealed it to be a positive regulator of 

VEGFR2, a main angiogenic receptor. When clustered and activated, αVβ3 leads to an increase 

in p38 MAPK and FAK activation, through its interaction with VEGFR2 [162]. Similarly, the αVβ3-

VEGFR2 complex correlates with PI3K activity [124], [163]. Moreover, VEGF stimulation of 

VEGFR2, induces Src to phosphorylate β3 tyrosine residues, thus activating it and promoting the 

β3-VEGFR2 complex, which leads to VEGFR2 phosphorylation [164]. Early studies showed that 

blockade of αVβ3 integrin using RGD-mimetic compounds has the potential to inhibit 

angiogenesis-relevant processes in vitro, such as VEGF-dependent EC invasion in 3D culture and 

differentiation of progenitor cells into ECs [165], [166]. Cilengitide, a prominent inhibitor of αV 

integrins, was shown to inhibit tumour angiogenesis, progression and metastasis in pre-clinical 

models in vivo [167]–[170]. The mechanism of action behind these exciting findings involves 

dampening of FAK, Src and Akt signalling, cellular detachment and induction of apoptosis in 

angiogenic blood vessels (expressing integrin αVβ3) [167], [170], [171]. Strieth et al. observed a 

synergy in inhibition of tumour angiogenesis, growth and metastasis when using another αV 

inhibitor (EMD 270179) in combination with a VEGFR2 inhibitor (SU5416) [172]. In addition, 

Cilengitide prevented brain tumour cell lines from interacting with the surrounding matrix and 

induced apoptosis [173]. 

However, genetic manipulation of αVβ3 provided surprising results. It is important to point out 

that depleting β3-integrin is the more specific approach of targeting the αVβ3 heterodimer, as 

the only other partner of β3 is αIIb (not expressed in ECs), while αV has four additional β 

partners, including β5 (present in ECs) (Fig. 1.3 B) [174]. β3-KO mice develop into adulthood, are 

fertile, exhibit a bleeding disorder and high bone mass, but developmental angiogenesis in these 
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animals is unaffected [175]. It was later shown, using cell-lineage-specific knockouts, that the 

bleeding phenotype was due to β3 integrin deletion in platelets, while the bone phenotype was 

attributed to myeloid β3 integrin knockout [176]. Surprisingly, β3-KO mice exhibit enhanced 

pathological angiogenesis and tumour growth [177]. This may be explained by overexpression 

of VEGFR2 observed in β3-KO ECs, and as a result, elevated sensitivity to VEGF, accompanied by 

increased vascular permeability [175], [178]. Moreover, low doses of Cilengitide also promoted 

angiogenesis and tumour growth, due to increased presence of αVβ3 in FAs and enhanced 

VEGFR2 recycling [179]. Cilengitide and other αVβ3 antagonists will be discussed in detail in 

Section 1.4.3. 

Thus, the involvement of αVβ3 in angiogenesis is complex and context dependent, whilst 

efficacy of inhibitor-based anti-angiogenic targeting of this integrin is dose dependent. In the 

light of the above findings, our research group investigated the effects of endothelial-specific 

depletion of β3 integrin on angiogenesis and tumour growth in two Cre-lox mouse models: the 

inducible β3-floxed Pdgfb.CreER model and the constitutive β3-floxed Tie1.Cre model. We have 

observed that acute depletion of β3-integrin (Pdgfb.CreER) impairs pathological angiogenesis 

and tumour growth, whereas long-term depletion of the molecule from birth (Tie1.Cre) results 

in similar sized tumours between Cre -ve and +ve animals with enhanced microvascular 

sprouting [180]. Moreover, inducing β3-integrin depletion for an extended period of time in the 

Pdgfb.CreER model prior to tumour cell implantation, results in a loss of tumour growth 

inhibition, turning this into a long-term depletion mode, eliciting a phenotype much like that 

seen with Tie1.Cre mediated deletion [180]. This suggests that long-term anti-angiogenic 

depletion directed at β3-integrin is subject to an escape mechanism. Interestingly, Robinson et 

al. observed an upregulation in Nrp1 in β3-KO ECs, promoting Nrp1-VEGFR2 complex formation 

and elevated ERK signalling [181]. The same study showed that αVβ3 and Nrp1 co-

immunoprecipitate and proposed that αVβ3 sequesters Nrp1, preventing its interaction with 

VEGFR2 and downstream signalling. Furthermore, co-targeting β3 and Nrp1 is an effective way 

of inhibiting EC migration, VEGFR2 signalling, pathological angiogenesis and tumour growth 

[181], [182]. Another potential escape mechanism was identified in a study that observed a 

requirement for Rac1 in tumour angiogenesis and growth, in the absence of αVβ3 integrin only 

[183]. More answers can be found by analysing endothelial FAs, where αVβ3 integrin functions 

to mediate cell adhesion and migration. We recently characterised β3-depleted and control EC 

adhesomes, to understand the compensation mechanism further. This will be discussed in detail 

in Section 1.3.3. 
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1.3 The Endothelial Cell Adhesome 

1.3.1 General Comments 

Regulation of EC attachment and migration occurs via the integrin adhesome – a multi-molecular 

collection of proteins present at or associated with FA complexes at the cell membrane [184]–

[186]. The term ‘adhesome’ coined by Prof. Richard Hynes (MIT, Boston) refers to the 

“complement of adhesion-related genes/proteins” [187]. More specifically, it is the set of 

proteins localised to and/or able to regulate adhesion complexes on the cell surface. A pivotal 

role in these complexes is played by integrins, therefore this sub-proteome is often referred to 

as the integrin adhesome. A prominent meta-study of the integrin adhesome, combining 

findings from various mammalian cell types, identified 690 interactions between 156 

components, which belong to one of the following categories: adaptor, cytoskeletal, 

serine/threonine kinase or phosphatase, tyrosine kinases or phosphatase, actin-binding, GAP, 

GEF, receptor, adhesion protein, GTPase; and 32 other uncategorised components [188]. A more 

recent study, made possible thanks to advancements in mass spectrometry, reported over 2000 

members of the adhesome [189]. Analysis of the adhesome helps us understand angiogenesis 

and improves our chances of designing more effective anti-angiogenic therapies. 

 

1.3.2 Focal Adhesions 

There are four conventional types of adhesion complexes. Nascent adhesions are the basic, 

smallest type which rapidly disassemble or develop into slightly more complex focal contacts 

[190]. Both are capable of causing membrane protrusions. Focal contacts mature into larger, 1 

– 5μm long, FAs linked to the cytoskeleton, which allows them to mediate cell migration forces 

[191]. Fibrillar adhesions are large and stable, typically found in fibroblasts, arranged along 

fibronectin fibres, mostly containing β1 integrins as their adhesion receptors [192]. Here we are 

most interested in the FAs, containing both β1 and β3 integrins, dynamically assembling and 

disassembling to orchestrate progressive movement of the leading edge and retraction of the 

rear end of the cell [193]. Overall, FAs are the adhesion, migration and signalling hubs on the 

cell surface made up of numerous, adhesion, structural, adaptor and signalling proteins [194], 

[195]. 

Integrins are some of the key members of the FA complexes, among the 2000+ proteins that can 

be recruited there. Additional well-studied key players resident in FAs are: cytoskeletal – actin 

(Acta2); adaptor – α-actinin (Actn1), paxillin (Pxn), talin (Tln1), tensin (Tns1), vinculin (Vcl) and 

signalling –  FAK (Ptk2) and Src [196]. Fig 1.4 A represents a simplified view of a FA complex, 
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depicting the likely arrangement of these proteins. Actin assembles into stress fibres, which 

when anchored to FAs provide membrane protrusion and contraction forces in cell migration 

[197]. This process is regulated by numerous signalling pathways, including tyrosine kinases and 

Rho GTPases [196]. α-actinin was originally identified as an actin crosslinking protein, but it has 

a variety of other binding partners, e.g. vinculin, integrins and PI3K to name a few [198]. In FAs, 

it acts mainly as a scaffold for structural stability [199]. Paxillin is a multi-domain adaptor protein 

primarily present in FAs (Fig 1.4 B) [200]. It becomes phosphorylated by Src and FAK, which leads 

to recruitment of further adaptor and signalling proteins with consequences in regulating the 

dynamics of FAs [201]. Talin binds the cytoplasmic tail of β-integrins, leading to their activation, 

thus influencing integrin-dependent signalling [202]. It also mediates the interaction between 

integrins and the actin cytoskeleton [203]. Talin KO in mice is embryonic lethal [204]. Another 

FA adaptor protein, tensin is considered an anchor for actin fibres, a stabiliser of FAs and a 

mediator of signalling, phosphorylated by tyrosine kinases such as Src, FAK and protein kinase C 

(PKC) [205]. Furthermore, it has been shown to bind β-integrins and regulate cell migration 

[206]. Vinculin, another FA stabiliser, has been shown to bind talin, α-actinin, paxillin, actin and 

PKC, among other proteins, but not integrins directly [207], [208]. It is recruited to FAs under 

tension, and further tension exerted on the vinculin structure correlates with FA assembly [209]. 

FAK is considered a fundamental tyrosine kinase in angiogenesis-relevant processes, such as EC 

proliferation and migration [210]. Deletion of endothelial FAK leads to an increase in EC 

apoptosis upon VEGF stimulation and dramatically inhibits tumour angiogenesis and growth 

[211]. It associates with other kinases, such as Src and PI3K [210]. FAK and Src activity is 

stimulated by integrins and VEGFR2 and feeds into the signalling network, e.g. enhancement of 

the RAS/RAF/MEK/Erk pathway with consequences in cell proliferation and motility or PI3K/Akt 

pathway to promote survival [212]. Also, FAK and Src phosphorylate multiple proteins in FAs, 

such as paxillin and tensin, thus regulating FA stability and dynamics [201], [205]. Interestingly, 

Src was the first proto-oncogene and protein tyrosine kinase to be discovered in the vertebrate 

genome [213]. Upregulation of its expression and/or activity has been linked to many types of 

cancer [214]–[216]. 
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Figure 1.4  The focal adhesion complex, simplified. 

(A) The integrin heterodimers span the membrane and bind the extracellular matrix via their head 
domains. The integrin cytoplasmic domains interact with several other proteins, such as: FAK, paxillin, Src, 
α-actinin, vinculin, tensin and talin; thus forming a complex at the end of an actin filament. Not to scale, 
adapted from Dash et al. [217]. (B) FAs in green and actin cytoskeleton in red, in ECs adhered for 180 min 
on fibronectin (63x, scale bar = 40 μm). 

A 
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Many other members of FAs are kinases or other signalling proteins, whose activation and 

deactivation leads to modulation of a wide variety of downstream signalling pathways 

throughout the cell. For example, Rac1 and Cdc42, which can be found associated with FAs, most 

often at the leading edge of the cell, stimulate actin polymerisation to generate membrane 

protrusions during cell spreading and migration [190], [218]. 

FAs are dynamic, and the rate of their assembly and disassembly (turnover) is linked to cell 

migration, adhesion, proliferation and survival [195], [219]. A typical FA is positioned at the end 

of an actin fibre (Fig 1.4) [220]. However, microtubules (MTs) and intermediate filaments (IFs) 

have also been shown to complex with integrin-based FAs [221], [222]. We can gain further 

understanding of EC biology and angiogenesis by analysing the EC integrin adhesome. 

 

1.3.3 Endothelial Integrin Adhesome and Angiogenesis 

β1 integrins are found in both the dynamic FAs and the stable fibrillar adhesions, while the 

presence of β3 integrins in FAs is a distinguishable factor between them [190]. Fibrillar 

adhesions, typically present in fibroblasts, mostly contain β1 integrins [192]. Different affinity 

for binding ECM substrates, such as fibronectin and vitronectin, leads to different nanoscale 

organisation and dynamics of β1 and β3 integrins within FAs [223]. Additionally, there is 

differential stimulation of RhoA activity, a modulator of actin filament structure, between the 

two integrin types during FA translocation [224]. All these factors determine differential 

functionality of these two integrin types in FAs and the overall structure of FAs. α5β1 integrin 

promotes adhesion strength and more stable FAs, while αVβ3 integrin enables mechano-

transduction [225]. 

In summary, FA assembly proceeds by integrins binding the ECM and recruitment of actin with 

the help of adaptor and signalling proteins [226]. Integrin-containing FAs in ECs are the adhesion, 

migration and signalling hubs which drive angiogenesis [227]. In addition, integrins can directly 

interact with growth factor receptors to enhance their signalling. A prominent example of such 

interaction is the αVβ3-VEGFR2 partnership [124]. 

αVβ3 has been proposed as a good target for anti-angiogenic therapy [154], [170], [228]. 

However, the most prominent αVβ3 inhibitor, Cilengitide, showed promising results in early 

clinical trials in cancer patients, but failed to provide overall benefit in phase III trials (discussed 

in detail in section 1.4.3), suggesting that an escape mechanism arises upon long-term inhibition 

of the molecule [229], [230]. Similarly, long-term genetic depletion of this integrin is subject to 

a compensation mechanism [180]. This may be occurring via Nrp1 and/or Rac1, as there is an 
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increased angiogenic dependence on these proteins in the absence of β3 integrin [181]–[183]. 

The escape mechanism phenomenon could be addressed further by creating a full picture of the 

EC adhesome. Recently, we have conducted FA enrichment, using a protocol by Schiller et al. 

[231], followed by mass spectrometry to profile adhesomes of control, β3-HET, β3-KO and RGD-

mimetic-treated ECs [232]. We were then able to look for potential compensation pathways 

triggered by the depletion of β3 integrin. There was an upregulation of tubulins (building blocks 

of MTs) in the β3-depleted adhesome, associated with changes in active (GTP-bound) Rac1, 

regulator of chromosome condensation 2 (Rcc2) and annexin A2 (Anxa2) [232]. We observed 

that in the absence of αVβ3 integrin the Rac1/Anxa2/Rcc2 complex associated with α5β1 

integrin and active Rac1 promoted stable MTs. Indeed, migration became more MT-dependent 

in the β3-depleted ECs, as β3-HET and β3-KO cells were more sensitive to MT-targeting agents 

than WT cells. Furthermore, MT inhibitors were more efficacious at reducing pathological 

angiogenesis and tumour growth in endothelial β3-KO (β3-floxed Tie1Cre +ve) mice, than in the 

vehicle-treated control littermates. 

With this work, we created a comprehensive EC adhesome mass spectrometry dataset, which 

could be re-visited to further elucidate other potential pathways/molecules regulating the 

escape which accompanies β3 integrin depletion/inhibition. Indeed, the investigation of other 

pathways involved in this escape is the main thrust of this thesis. 
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1.4 Current Anti-angiogenic Therapies 

1.4.1 General Comments 

Cytotoxic strategies, i.e. chemo- and radiotherapy, effective in many cancers, come with severe 

side effects. Since the 1970s when it was officially proposed that cancer could be treated by 

targeting angiogenesis there have been enormous advances in the research field which led to 

development of continuously improving therapies [46]. When targeting angiogenesis, one can 

expect a much milder response from the body, since it is a process relatively limited to the 

tumour microenvironment [21]. There has been some success in using anti-angiogenic agents in 

the clinic. However, some are associated with side effects more severe than initially anticipated 

and some are subject to treatment escape. The most clinically effective way of targeting 

angiogenesis in the context of tumour progression is by combinatorial approach of targeting 

blood vessels in the tumour with anti-angiogenic agents alongside established chemo- and 

radiotherapy [233]. Indeed, this approach is often taken in the clinic, e.g. combining anti-VEGF 

bevacizumab and two cytotoxic drugs (fluorouracil and oxaliplatin) in patients with metastatic 

colorectal cancer [234]. 

Here, we briefly review the anti-angiogenic strategies designed to date. Paradoxically, part of 

the success with such therapies may be due to normalisation of the disturbed tumour vascular 

architecture, as a result of treatment with anti-angiogenic agents [58]. Normalised vessels may 

improve the efficiency of delivering therapeutic agents against cancer cells to the whole tumour 

mass. Currently, all the anti-angiogenic agents approved for clinical use are targeting the VEGF 

pathway [235]. Over 200 anti-integrin agents have entered clinical trials, in the hope of 

treatment of multiple sclerosis (MS), Crohn’s disease, arthritis, osteoporosis, stroke, ischaemia, 

fibrosis, thrombosis, age-related macular degeneration and cancer, as well as other 

inflammatory and autoimmune conditions [236]. The integrin antagonists approved for use in 

patients are either targeting αIIbβ3 in thrombosis or α4β1 and α4β7 in MS, Crohn’s and 

ulcerative colitis [237]. All of these prevent the integrin-ligand interaction, while most are 

remarkably safe to use in patients [237]. αVβ3 integrin remains a potential target in anti-

angiogenic therapy, with Cilengitide making it to late stage clinical trials and new promising 

agents being developed [238], [239]. 
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1.4.2 Anti-VEGF Treatments 

The first agent approved for use in the clinic that inhibits angiogenesis was a VEGF inhibitor 

bevacizumab (Avastin®). It is a monoclonal antibody that binds all soluble isoforms of VEGF-A 

and prevents their interaction with VEGF-receptors [240]. It is now used to treat a wide variety 

of cancers: colorectal, lung, kidney and glioblastoma [241]. Patients that would benefit from this 

treatment are carefully selected as there are multiple associated risks. For example, wound 

healing and collateral circulation may be affected [241]. In contrast, its use in breast cancer 

patients in combination with paclitaxel was revoked in 2011 in the USA, due to life-threatening 

side effects [242]. This strategy remains in use for breast cancer patients in Europe. It was 

concluded by the European Medicines Agency (EMEA) that there is prolonged progression-free 

survival, which outweighs the risks [243], [244]. A number of other drugs targeting the VEGF 

pathway are currently in use in a whole range of cancer types [245], [246]. Most of them inhibit 

tyrosine kinase activity: axitinib, cabozantinib, pazopanib, regorafenib, sorafenib, sunitinib and 

vandetanib [247]. The remaining two are aflibercept which, like bevacizumab, binds VEGF 

directly, and everolimus that leads to reduced VEGF production [248]. 

Unfortunately, VEGF-pathway inhibitors can all induce a wide range of unwanted severe side 

effects, including renal toxicity, bleeding, abnormal platelet and leukocyte counts, wound 

healing complications, leukopenia and gastrointestinal perforation [249]. Moreover, in some 

instances these agents may cause initial tumour shrinkage, followed by an aggravated tumour 

growth and metastasis [235]. At the same time, they sometimes prove ineffective due to 

acquired resistance via escape mechanisms. One attempt to overcome this was a clinical trial 

co-targetting VEGF and Nrp1, a VEGFR2 co-receptor, in combination with chemotherapy [250]. 

This involved bevacizumab, paclitaxel and an anti-Nrp1 monoclonal antibody that prevents it 

from binding VEGF. Unfortunately, this strategy failed due to severe proteinuria, in more than 

half of the trial participants. In comparison with VEGF-pathway blockers, integrin inhibitors are 

generally less toxic and well tolerated [251]. 
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1.4.3 αVβ3 as a Target 

The advantage of targeting αVβ3 integrin is the specificity, which limits potential adverse effects. 

It is highly expressed in very few cell types: angiogenic ECs, mature osteoclasts, some 

neutrophils, activated macrophages, migrating smooth muscle cells and tumour cells [252]–

[254]. In quiescent vasculature its expression is low [154]. The upregulation of αVβ3 expression 

in vessels undergoing angiogenesis prompted efforts to develop inhibitors against it. To date, 

several of these have been developed, while a few have made it to the clinical trials [255]. A very 

prominent inhibitor targeting αV integrin, Cilengitide (EMD 121974), effectively inhibited 

angiogenesis, tumour growth and metastasis in vivo [256]. It is an RGD-motif-mimetic, 

preventing ECM binding and capable of inducing apoptosis and downregulating the FAK/Src/AKT 

signalling pathway [167], [168]. It was taken forward for clinical trials and showed promising 

results at phase II in combination with chemo- and/or radiotherapy, with some anti-tumour 

activity, extended progression-free survival period with only sporadic toxicity [229], [257]. 

However, in phase III clinical trials no overall benefit in patient survival was observed [230]. A 

few other αVβ3 inhibitors, which were successful in inhibiting angiogenesis and tumor growth 

in animal models, should be highlighted here, namely: EMD 270179, MK-0429, vitaxin (MEDI-

523) and etaracizumab (MEDI-522) [258]–[260]. Interestingly, RGD-mimetic EMD 270179 was 

shown to improve drug delivery selectively to the tumour by transiently increasing vascular 

permeability in this microenvironment of increased αVβ3 expression [259]. MK-0429, is a non-

peptide RGD-mimetic, which has been evaluated in two clinical trials, in the context of 

osteoporosis and bone metastasis due to its role in bone resorption [261]–[263]. Monoclonal 

anti-αVβ3 antibody vitaxin and its improved derivative etaracizumab have been taken forward 

for clinical trials in patients with a variety of cancers and showed some promising ability to 

stabilise solid tumours [258], [264]. Unfortunately, the overall clinical trial outcomes with all 

these inhibitors have been disappointing, as there is a lack of long-term, meaningful 

improvements, most likely due to acquired resistance to the treatment [258]. 

Recently, a new kind of αVβ3 antagonist has been developed, also potent in inhibiting of 

angiogenesis and tumour growth and non-toxic in mice even at high doses [238], [265]. The 

novelty of ProAgio is that it binds the integrin outside the ligand binding site [238]. This 

potentially overcomes the problem of integrin activation, for instance, seen with a low dose of 

Cilengitide which elicits a pro-angiogenic effect [179]. ProAgio induces apoptosis of ECs by 

recruiting and activating caspase 8 [238]. Further research is needed to determine whether 

resistance to treatment with ProAgio arises, as is often the case with anti-angiogenic agents. 
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There were also attempts at combination therapies in mouse models to improve efficacy. Co-

targeting αVβ3 and VEGFR2 using etaracizumab and bevacizumab or EMD 270179 and SU5416 

(VEGFR2 antagonist) was more effective in reducing vessel density, tumour growth and 

metastasis than individual agents [172], [266]. Furthermore, one of the novel approaches in the 

pharmaceutical industry is to develop multi-specific drugs, such as a construct engineered to 

contain both VEGF- and RGD-mimetic region, able to bind both VEGFR2 and αVβ3 integrin 

simultaneously [267]. In a tumour growth experiment this dual-targeting agent showed 

remarkable inhibition of tumour angiogenesis and growth [267]. This type of strategy has the 

potential to improve potency and selectivity, as well as reducing the cost associated with 

production, testing and regulatory approval [267]. Similarly, vitaxin derivative (ScFv) was 

conjugated with a peptide which selectively binds human lung carcinoma cells [268]. It was 

demonstrated that this peptide-ScFv conjugate inhibited lung carcinoma xenograft growth 

significantly more than ScFv alone [268]. 

The problem of escape remains a key aspect that needs to be addressed to further understand 

the limited success of anti-angiogenic therapies. As discussed in section 1.3.3, we have recently 

undertaken a mass spectrometry approach to analyse the β3-depleted endothelial adhesome, 

in search for potential mediators of the escape from targeting αVβ3 integrin [232]. We identified 

a Rac1-dependent upregulation of MTs, as a potential mechanism of this kind, and showed that 

β3-depletion coupled with MT inhibition is more effective at inhibiting EC migration, tumour 

angiogenesis and growth then MT inhibitors alone [232]. Many more interesting targets 

emerged from the mass spectrometry data. This thesis re-visits these datasets to further 

understand the EC adhesome and the escape mechanism from anti-angiogenic targeting of 

αVβ3-integrin and pursue other candidate proteins that have emerged, which may serve as 

effective targets or co-targets. 
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1.5 Research Aims and Objectives. 

 

The overarching aims of this project were to: 

1. Further characterise the endothelial cell adhesome and how it changes upon β3-

integrin depletion. 

2. Narrow down the list of candidate genes/proteins and define a limited number of 

interesting ones that may be mediating the escape mechanism seen with long-term 

targeting of β3-integrin. 

3. Carry out comprehensive testing of chosen candidates in combination with β3-integrin 

depletion, using angiogenesis relevant assays, to test them for involvement in the 

escape mechanism. 

4. Generate molecular tools for testing chosen candidates if needed. 

5. Provided a suitable candidate emerges, assess co-targeting of β3-integrin and one of 

the chosen candidates in a tumour growth model, as a proof-of-concept improved 

anti-angiogenic strategy. 
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2 General Materials and Methods 

 

2.1 Reagents, Materials, Antibodies and General Comments 

All chemicals used were purchased from Sigma-Aldrich (Poole) unless otherwise stated. Tissue 

culture materials and cell media were acquired from Thermo Fisher Scientific group 

(Loughborough) that supplies products from Thermo Fisher, Invitrogen, Life Technologies, 

Corning and Gibco unless otherwise stated. Tables 2.1 and 2.2 contain information of all 

antibodies (Ab’s) used. 

Experimental protocols often involve steps conducted at various temperatures. Temperatures 

other than room temperature (RT) are specified in each case. If the temperature is not stated, 

the step was conducted at RT, i.e. ~20°C. 

Some methods precede or are not directly linked to the work presented here, in which case they 

are cited and explained briefly. The methods carried out to generate results for this thesis are 

explained in detail in this chapter, as well as chapter 3.2, 4.2, 5.2 and 6.2 in the case of chapter-

specific methods. 

VEGF-A164 was made in-house according to the protocol by Krilleke et al. [269]. Briefly, plasmid 

pPICZαC-VEGF164 was transformed into competent yeast using the Pichia expression kit 

(Invitrogen). High secreting colonies were chosen and grown in 500 mL of BMGY medium at 30°C 

until the culture reached an Absorbance of 3 at 600 nm. To induce expression, yeast pellets were 

then resuspended in 100 ml of BMMY and grown at 30°C for 36 hours (hrs), and methanol was 

added to a final concentration of 1% every 12 hrs to maintain induction of transgene expression. 

Supernatants were cleared, concentrated, equilibrated in nitrilotriacetic acid chromatography 

binding buffer and incubated with acid-agarose (Qiagen) for 60 min at 4°C. The beads were 

collected by centrifugation and washed with binding buffer. Bound proteins were eluted with 

NaCl / imidazole buffer and analysed by SDS-PAGE and Coomassie staining. 
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Table 2.1  List of primary antibodies 

Antigen 
Reactivity 

used 
Host Application Source Clone / Cat. # 

Akt Mouse Rabbit WB Cell Signalling Technology #9272 

β3-Integrin Mouse Rabbit WB Cell Signalling Technology #4702 

CD31 Mouse Rat ECS Abd Serotec ER-MP12 

Endomucin Mouse Rat ECS, IHC Santa Cruz Biotechnology V.7C7 

ERK1/2 (p44/42 MAPK) Mouse Rabbit WB Cell Signalling Technology 137F5 / #4695 

FAK Mouse Rabbit WB Cell Signalling Technology #3285 

GAPDH Mouse Mouse WB Sigma-Aldrich G8795 

HSC-70 Mouse Mouse WB Santa Cruz Biotechnology B-6 / sc-7298 

ICAM-2 Mouse Rat ECS AbD Serotec #MCA2295EL 

p38 MAPK Mouse Rabbit WB Cell Signalling Technology #9212 

Paxillin Mouse Rabbit ICC, WB Abcam ab32084 

Phospho Akt Mouse Rabbit WB Cell Signalling Technology #4060 

Phospho ERK1/2 Mouse Rabbit WB Cell Signalling Technology 
D13.14.4E 

#4370 

Phospho FAK (Y407) Mouse Rabbit WB Thermo Scientific #OPA1-03887 

Phospho p38 MAPK Mouse Rabbit WB Cell Signalling Technology 3D7 / #9215 

Phospho Paxillin (Y118) Mouse Rabbit ICC, WB Cell Signalling Technology #2541 

Phospho VEGFR-2 (Y1175) Mouse Rabbit WB Cell Signalling Technology 19A10 / #2478 

Phospho Vimentin (S56) Mouse Rabbit WB Cell Signalling Technology #3877 

Plectin Mouse Rabbit WB Abcam 
E398P / 
ab32528 

VEGFR2 Mouse, Human Rabbit WB Cell Signalling Technology 55B11 / #2479 

Vimentin Mouse Rabbit WB Abcam ab92547 

WB – Western blot, IHC – immunohistochemistry, ECS – endothelial cell sort, ICC – immunocytochemistry 

 

Table 2.2  List of secondary antibodies and directly labelled reagents 

Host / name Anti-  Application  Cat. #  Conjugate  Source  

Rabbit  Goat  ICC  A-21222  Alexa®-488   Invitrogen  

Rabbit  Goat  ICC  A-21223  Alexa®-594   Invitrogen  

Donkey  Mouse  WB  715-035-151  HRP  Jackson 
Immunoresearch  

Donkey  Rabbit  IHC, ICC  A-21206  Alexa®-488   Invitrogen  

Donkey  Rabbit  WB  711-035-152  HRP  Jackson 
Immunoresearch  

Donkey  Rat  IHC  A-21209  Alexa®-594   Invitrogen  

Sheep  Rat  ECS  11035 Dynabeads  Invitrogen  
      

BS1-lectin blood vessels  ARA   L2895   FITC Sigma-Aldrich 

phalloidin actin ICC A12380 Alexa®-568 Invitrogen 

WB – Western blot, IHC – immunohistochemistry, ECS – endothelial cell sort, ICC – immunocytochemistry, ARA – 
aortic ring assay 
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2.2 Immortalised Lung Endothelial Cells (IMMLECs) 

The immortalised lung ECs (IMMLECs) used extensively in this project came from in-house 

stocks. They were previously isolated from adult mice on a mixed C57BL6/129 background 

according to the protocol by Reynolds and Hodivala-Dilke [270]. Briefly, mouse lungs were 

aseptically removed and placed in Ham’s F12 medium, then rinsed in 70% ethanol, minced using 

scalpel blades and digested with 0.1% collagenase I in PBS for 1 hr at 37°C. This was followed by 

a mechanical separation using a needle and syringe, passing through a 70 µm filter and 

centrifugation at 300 g for 5 minutes (mins). Cells were resuspended in MLEC medium – a 1:1 

mixture of DMEM low glucose and Ham’s F12 medium supplemented with 20% FBS, 4 mM 

GlutaMAX™, 50 µg/mL heparin and 50 mg/L of EC growth supplement (Bio-Rad, Watford). They 

were then seeded into a tissue culture flask, previously coated with 0.1% gelatin, 30 μg/mL 

collagen I and 10 μg/mL fibronectin (FN); and incubated at 37°C 5% CO2 overnight (o/n). The 

next day, cells were washed with PBS to remove red blood cells and fed fresh MLEC medium. 

ECs were positively selected by magnetic activated cell sorting (MACS) using magnetic 

Dynabeads (Thermo Fisher, Loughborough) coated with a sheep anti-rat Ab (Invitrogen) and a 

rat anti-mouse ICAM2 Ab (endothelial marker, Invitrogen). The positively sorted cells were 

seeded onto a pre-coated tissue culture flask as above.  Once cells reached near-confluency, the 

positive sort was repeated. 

Subsequently, the cells were immortalised according to the protocol outlined by Robinson et al. 

[181]. GgP+E cells were used for virus production. Conditioned medium from these cells, 

containing the retroviral polyoma-middle-T-antigen (PyMT), was filtered (0.45 μm) and stored 

at −80°C. When required, the medium was thawed and placed on primary cells in combination 

with 8 μg/mL polybrene, which increases transduction efficiency, for 6 hrs at 37°C and changed 

back to MLEC medium o/n. PyMT conditioned medium treatment was repeated the following 

day. Subsequently, media was switched to IMMLEC – a 1:1 mixture of DMEM low glucose and 

Ham’s F12 medium supplemented with 10% FBS, 2mM GlutaMAX™ and 50 µg/mL heparin. Cells 

were passaged for 4 weeks to ensure immortalisation. Finally, frozen stocks were prepared as 

described below.  

To confirm their endothelial phenotype, IMMLECs were assessed for expression of ICAM2, CD31 

and VECAD to ensure their endothelial identity. Cells were used for experiments between 

passages 5 to 25, provided a normal endothelial morphology was maintained. 
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2.2.1 Cell Culture 

Cells were grown on tissue culture flasks pre-coated with 0.1% gelatin for 1 hr at 37°C or o/n at 

4°C to promote cell adhesion. Once cells reached confluency (2 - 4 days) they were passaged 

using 0.25% trypsin-EDTA. The cell suspension was centrifuged at 300 g for 5 min to remove the 

trypsin, cells were resuspended in culture medium and seeded into to a freshly coated flask and 

incubated at 37°C with 5% CO2. IMMLECs were cultured in IMMLEC medium, described above in 

section 2.2. Mouse lung carcinoma (CMT19T, CR-UK Cell Production) and human embryonic 

kidney cells possessing the SV40 large T antigen (HEK293FT) were cultured in DMEM high 

glucose, 10% FBS, 2 mM GlutaMAX™. Penicillin/Streptomycin (P/S, 100 units/mL) was added to 

all culture media unless otherwise stated. For most cell-culture-based assays tissue culture 

plates or dishes were pre-coated with 10 µg/mL FN at 4°C o/n. 

 

2.2.2 Freezing and Thawing Cells 

Cells were trypsinised and counted using a haemocytometer. Cells were centrifuged at 300 g for 

5 min then resuspended at 1 - 2 x 106 viable cells/mL in freezing medium. For IMMLECs the 

freezing medium was composed of 90% FBS and 10% dimethyl sulfoxide (DMSO) whilst for 

HEK293FT, CMT19T the freezing medium consisted of 50% culture medium, 40% FBS and 10% 

DMSO. Cryovials containing 1 mL aliquots were placed in a freezing container (Mr. Frosty™, 

Thermo), which was stored at −80°C o/n or longer. For long-term storage, cryovials were banked 

in a liquid nitrogen DryStore™. 

To defrost cells, cryovials were warmed in a 37°C water bath until thawed and immediately 

transferred to a falcon tube containing cold culture medium then centrifuged at 300 g for 5 min. 

The supernatant containing DMSO was removed and the cells resuspended in 5 mL of medium, 

then transferred to a T25 tissue culture flask. 
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2.3 Endothelial Cell Transfection 

The amount of plasmid DNA transfected into the cells ranged from 3 to 12 μg. For targeted gene 

knockdown, 5.6 μL of 40 μM siRNA (Dharmacon, Cambridge) was ‘nucleofected’ into the cells. 

Table 2.3 is a list of all siRNAs used. 

To transfect IMMLECs, the Amaxa™ Nucleofector™ technology (Lonza, Slough) was used. It is an 

electroporation-based method that delivers nucleic acids to the cytoplasm and the nucleus using 

a specific voltage and buffer [271]. ECs were trypsinised, counted using a Neubauer counting 

chamber (Hawksley, Lancing), centrifuged at 300 g for 5 min then resuspended at a density of 

106/ 100 μL of pre-warmed nucleofection buffer (200 mM Hepes, 137 mM NaCl, 5 mM KCl, 6 

mM D-glucose and 7 mM Na2HPO4 in nuclease-free water; filter sterilised). 100 μL of the cell 

suspension was mixed with either siRNA or DNA (depending upon the assay) transferred into an 

electroporation cuvette then ‘zapped’ with T-005 voltage. Cells recovered in 1.9 mL of culture 

medium for 10 min at 37°C and then were utilised for functional assays according to the required 

protocol. 
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Table 2.3  List of siRNA oligos used 

Gene name Gene Accession siRNA sequence Pool Cat No. Unique Cat No. 

Atp5a1 NM_007505 

GGUUGACGCCCUCGGUAAU 

L-042902-01 

J-042902-09 

UGGUGAUGGUAUUGCGCGA J-042902-10 

ACGAUGGGACCGACGAGAA J-042902-11 

GCAGCCAAGAUGAACGAUU J-042902-12 

Cltc NM_001003908 

GGAAAGCAAUCCAUACAGA 

L-063954-00 

J-063954-05 

UCAGAAGAAUUGCUGCUUA J-063954-06 

GACAAAUUCAUCUGCAUUA J-063954-07 

ACAAAGCAAUCCAGUUCUA J-063954-08 

Col4a2 NM_009932 

CGGAAAGAAAGGCGACCAA 

L-064498-01 

J-064498-09 

GGAGUUUGUGGAUCGGAUA J-064498-10 

AAACAGGAGCACCGGGAUU J-064498-11 

CAGAAAGGGGAGCGGGGAA J-064498-12 

Gvin1 NM_029000 

GAAAUUACUCCAACGUCUA 

L-063733-00 

J-063733-05 

UCUCUAAACUUUCCAUUUG J-063733-06 

CAAGGAAAGUUUGAAAUCA J-063733-07 

GUUGUAAUCUCUUGUGUGA J-063733-08 

Hspa12b NM_028306 

CCGAUGUCUUUGAGCGCUU 

L-060987-01 

J-060987-09 

GAGCGGAGGUCUAUCGACU J-060987-10 

GCGUUGUGGUCCCGCAUGA J-060987-11 

UCUGGAAACAACCGGCUAA J-060987-12 

Naa15 NM_053089 

GAAUCAAGUUCUUCGGGAA 

L-056607-01 

J-056607-09 

AGCUAAAGAAACUGCGUAA J-056607-10 

CAAUAGAGCUGGCGACAAC J-056607-11 

ACACAGAAUGAGAGGAGUA J-056607-12 

Nes NM_016701 

GCGACAACCUUGCCGAAGA 

L-057300-01 

J-057300-09 

GGAGGAAGGUCAAGCGAUU J-057300-10 

GGAACAGAAACUCGAACAA J-057300-11 

CCAAAGAGGUGUCCGAUCA J-057300-12 

Plec NM_201392 

GCACUGAACUUGCGACACA 

L-057830-01 

J-057830-09 

UGAAUAAAGUGUAUCGACA J-057830-10 

GGGAAGAUGUGUACCGGUA J-057830-11 

UGGAGGAACACGAGCGGAA J-057830-12 

Serpinh1 NM_009825 

GGUAAAGCCACCACAGCGU 

L-043051-01 

J-043051-09 

CCGUGAGCUUCGCCGAUGA J-043051-10 

AAGCUAAGUUCCAAGGCGA J-043051-11 

GCAACUCCACUGCGCGCAA J-043051-12 

Slit3 NM_011412 

GGAUCAAGGAAGUGCGGGA 

L-063651-01 

J-063651-09 

GCUCUGAGGAUUAUCGCAA J-063651-10 

AGAAUCAGAUAUCGGACAU J-063651-11 

UCUUUGAGAUUCAGAACGA J-063651-12 

Tcp1 NM_013686 

GCAAGGAAGCGGUGCGUUA 

L-040339-01 

J-040339-09 

GAUUAUUAACGCAGACGAA J-040339-10 

GAUGUUGGGACAAGCGGAA J-040339-11 

AAGUGAACCCGGAACGUAA J-040339-12 

Vim NM_011701 

CCAGAGAGAGGAAGCCGAA 

L-061596-01 

J-061596-09 

AGGAAGAGAUGGCUCGUCA J-061596-10 

GUCUUGACCUUGAACGGAA J-061596-11 

AAGCAGGAGUCAAACGAGU J-061596-12 

 

 

 



43 
 

2.4 Western Blotting 

Cells or tissue were washed in PBS and lysed in EB buffer (3% SDS, 60 mM Sucrose, 65 mM Tris-

HCL, pH 6.8), e.g. 75 μL per well for a 6-well plate. Acid-washed glass beads were added to each 

sample and lysis was aided by using a Tissue Lyser LT (Qiagen, Manchester) for 2 min at 50 Hz. 

Protein content was quantified using the DC™ protein assay kit (Bio-Rad, Watford), a 

colorimetric method whereby amino acids reduce Folin's reagent causing it to change colour. 5 

μL of protein sample was mixed with 25 μL of solution A (+S) in a 96-well plate, followed by 200 

μL of solution B. Absorbance at 670 nm was determined using a VersaMax spectrophotometer 

(Molecular Devices, San Jose, US). Concentration was determined by comparison to the 

absorbance of the standards by using linear regression.  

Protein sample (10 - 25 μg) was mixed with NuPAGE™ Sample Buffer and Reducing Agent, then 

heated to 95°C for 5 min on a heat block. Next, samples were loaded onto an 8 - 12% 

polyacrylamide gel and subjected to SDS-PAGE using the Bio-Rad Electrophoresis system for 1 

hr+, depending on the degree of separation needed, at 100 V, followed by electro-transfer of 

the protein onto Amersham™ Protran™ 0.4 μm nitrocellulose membrane (GE Healthcare, 

Amersham) using the Bio-Rad Mini Trans-Blot® Cell kit with an ice pack at 35 V for 150 min or 

115 V for 75 min. 

Protein transfer was assessed by incubating the membrane for 5 min with a 0.1% Ponceau S 

stain in 5% acetic acid. To allow immuno-blotting of different size proteins with their 

corresponding Ab’s, the membrane was cut, then blocked in 5% skimmed milk in PBS 0.1% 

Tween-20 (PBS/T) for 30 min, washed in PBS/T and incubated at 4°C o/n with primary Ab’s (Table 

2.1) made up in 5% Bovine Serum Albumin (Thermo Fisher). The membrane was washed with 

PBS/T and incubated with HRP-labelled secondary Ab (Table 2.2) in 5% milk (as above), for 2 hr 

at room temperature (RT). After washing the membrane with PBS/T, Pierce™ ECL substrate 

(Thermo Fisher) was added then the membrane was imaged using Fujifilm LAS-3000 darkroom 

(Fujifilm, Bedford).  

Image J™ software was used to perform densitometry on the Western blot (WB) images. The 

signal was normalised according to loading controls, i.e. Hsc70 or Gapdh. The signal obtained 

from phosphorylated proteins was normalised to the total amount of the protein of interest in 

the same sample.  
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2.5 Adhesion Assay 

To perform an adhesion assay, 96-well plates were pre-coated with 10 µg/mL FN at 4°C o/n. ECs 

were serum starved in minimal medium (Opti-MEM™ - Invitrogen) for 3h at 37°C, while the pre-

coated plates were blocked with 1% BSA at RT for 1 hr. Cells were trypsinised, resuspended and 

counted, then 3 x 104 cells were seeded into each well.  The plates were incubated for 90 min at 

37°C, followed by three PBS washes, fixation in 4% paraformaldehyde (PFA) for 10 min and 

another PBS wash. Cells were stained with 1% Methylene blue, 10 mM borate, 50% methanol 

(pH 8.5) solution for 30 min, then washed by submerging in distilled water. Once the plates were 

air-dried, 100 μL per well of de-stain solution (50% ethanol, 50% 0.1 M HCl) was added and 

absorbance was read using a spectrophotometer at 670nm. 

 

2.6 Wound-Closure Migration Assay 

To assess migration, 6-well plates were pre-coated with 10 µg/mL FN at 4°C o/n. ECs were 

seeded at a density of 4 x 105 per well and allowed to reach 100% confluence o/n. They were 

serum starved in Opti-MEM™ for 3 hrs at 37°C. A P200 tip was then run in a straight line across 

the centre of each well to create a ‘wound’. Medium was then supplemented with 2% FBS and 

30 ng/mL VEGF. The bottom of each well was marked using a permanent pen to aid the process 

of taking images. Using an inverted Axiovert microscope (Zeiss), phase contrast images were 

taken at time 0 (T0) at marked positions and assay plates were returned to the incubator. Cells 

were fixed 24 hrs later in 4% formaldehyde and T24 images were taken in the same marked 

positions as at T0. 

Image J™ software was used to quantify the scratch-wound closure. To analyse, three 

measurements of the gap width per image was averaged, with the difference between the time 

points calculated and expressed as % closure. 
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2.7 Proliferation Assay 

To assess cell proliferation, 96-well plates were coated with 0.1% gelatin o/n or for 1 hr at 37°C. 

Cells were seeded at a density of 7 x 103 cells per well in 100 μL of IMMLEC medium and 

incubated at 37°C for 24 - 96 hrs. To each well, 10μL of tetrazolium salt reagent (WST-1, Abcam, 

Cambridge) was added then incubated with the cells for 2 hrs at 37°C. The reagent is cleaved 

into formazan dye by metabolically active cells [272]. Absorbance at 450 nm was determined 

using a spectrophotometer to quantify the amount of dye and thus cell proliferation in each 

sample. 

 

2.8 Immunocytochemistry 

Acid-washed sterile coverslips were placed into 24-well plates (1 per well), coated with FN o/n 

at 4°C, washed with sterile PBS then blocked with filter-sterilised 1% BSA in PBS for 1 hr at RT. 

Cells were trypsinised, counted and seeded at 2 x 104 per well for 90 min. All washing steps were 

done with PBS at RT. Next, cells were washed and fixed in 4% PFA for 10 min at RT and washed 

again. Fixed cells were permeabilised with 0.5% Nonidet™ P-40 in PBS for 10min at RT. This was 

followed by two washes and a blocking step using 0.5% BSA, 2% goat serum, 0.2% Triton-X100 

in PBS and another washing step. A 15 cm dish was lined with moist filter paper (for a humid 

environment) followed by parafilm (provides a hydrophobic border) and coverslips were moved 

onto it. 60 µL of primary Ab (Table 2.1) in PBS was added to each coverslip at 4°C o/n: anti-

vimentin at 1 in 250 and anti-paxillin at 1 in 200. The dish was covered with a lid to maintain a 

humidity. Coverslips were washed three times by immersion in PBS. Secondary Ab’s or 

fluorescently labelled phalloidin (Table 2.2) made up in PBS were added onto the coverslips for 

45 min at RT in the dark: secondary Ab’s at 1 in 500 and phalloidin at 1 in 300. Once again 

coverslips were washed three times by dipping and air-dried for 5 min. They were then mounted 

using Prolong Gold + DAPI (Thermo Fisher) onto glass slides and edges were sealed using nail 

polish. Slides were stored at 4°C in the dark. Images of fluorescently-labelled cells (Section 6.2.7) 

were taken using the Axioplan Epifluorescent microscope (Zeiss, Cambridge) and the AxioCam 

MRm camera (Zeiss). The Multidimensional Acquisition tool within Axiovision software was used 

for fluorescence microscopy and imaging. Images of different colour channels were merged 

using the Image J™ software. 

 



46 
 

2.9 PCR and Agarose Gel Electrophoresis 

PCR and agarose gel electrophoresis were used to amplify and separate DNA based on size. A 

typical PCR reaction mix consisted of: 10 μL of MegaMix-Blue (Microzone, Haywards Heath, UK), 

which contains DNA polymerase, dNTPs, buffer and salts at optimal concentrations, as well as a 

loading dye for electrophoresis; 0.8 μL DNA and 0.08 μL each of Forward and Reverse primer 

(Invitrogen) at the working concentration of 0.8 μM per well in a 96-well plate (Corning®, 

Flintshire). To amplify the DNA, thermocyclers (Life Touch, Bioer Technology, Binjiang, China) 

and Veriti™ (Applied Biosystems/Thermo Fisher) were programmed as follows: an initialisation 

step at 95°C, then 35 cycles each of: denaturation at 95°C, primer annealing at 50 - 60°C and 

elongation at 72°C. At the end there was an additional, extended elongation step. 

A 1.8% agarose (Thermo Fisher) gel was prepared, as follows: 2.7 g of agarose was dissolved in 

100 mL of distilled water in a microwave for 2 – 3 min. 50 mL of a 3X TAE buffer was added to 

reach a working concentration (1X) of 10 mM Tris, 200 mM acetic acid and 1 mM EDTA, pH 8.0, 

with 7.5 μL of 10 mg/mL ethidium bromide (Thermo Fisher). 

Using the Choice Horizontal Gel System (Alpha Laboratories, Eastleigh, UK) the gel solution was 

poured into a casting tray, a comb was inserted, and the gel was left to set for 30 min. Then it 

was placed into a running tank, submerged in 1X TAE buffer and 10 μL of sample per well was 

loaded. For size reference, 3 μL of HyperLadder™ 1 kB (Bioline, London, UK) was added to a well.  

The gel was run for 1 hr+ at 100 V using a 75 W power pack (Bio-Rad, Watford) then a ChemiDoc-

It®2 imager (UVP, Cambridge, UK) was used to visualise and photograph bands on the gel under 

UV light. 

 

2.10 Graphing Data and Statistics 

GraphPad Prism 6 and Microsoft Excel were used to graph and perform Student's t-test on the 

generated data to determine statistically significant differences between conditions. Bar charts 

represent the mean + the standard error of the mean (SEM), unless otherwise stated. Asterisks 

represent P values as follows: * P < 0.05, ** P < 0.01, *** P < 0.001 and **** P < 0.0001. 
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3 The Search for Candidate Genes in the Adhesome 

 

3.1 Introduction 

Tumours cannot grow beyond 2 mm in diameter without recruitment of new blood vessels, a 

process termed angiogenesis [273]. Since αVβ3-integrin (αVβ3) was seen upregulated in 

neovasculature it became a promising target for therapy [274]. Small molecule inhibitors 

achieved impaired blood vessel formation in various models, including intratumoural [252]. 

Surprisingly, β3-integrin-KO mice exhibited enhanced angiogenesis and tumour growth [275]. 

By comparing two endothelial-specific Cre mouse models of β3-depletion, we have shown that 

acute depletion (inducible, β3-floxed Pdgfb.CreER) impairs angiogenesis and tumour growth, 

whereas in the long-term depletion model (constitutive, β3-floxed Tie1.Cre) this impairment is 

revoked [180]. Similarly, the most prominent small molecule inhibitor of αVβ3 – Cilengitide – 

promising up to early stage clinical trials, failed to provide overall benefit alongside 

chemotherapy in late stage clinical trials [276]. Both the genetic and chemical inhibition studies 

suggest that a mechanism of escape arises upon long-term depletion or inhibition of αVβ3-

integrin. We felt it was important to ‘dissect’ WT and β3-depleted endothelial cells (ECs) to 

understand what these changes are at the molecular level. Investigation of the escape 

mechanism began by observing changes which occurred alongside depletion of β3-integrin in 

the endothelial focal adhesions (FAs), where it resides. The most unbiased and in-depth way to 

dissect potential changes within FAs would be by performing mass spectrometry on FA 

complexes isolated from WT and β3-depleted cells. As previously communicated by Ellison et al. 

[182], we adapted the protocol of FA enrichment for ECs based on the work in fibroblasts by 

Schiller et al. [231]. This protocol, mass spectrometry and the analysis of the β3-depleted EC 

adhesome are extensively discussed by Atkinson S. J. [232], [277]. β3-depletion was achieved by 

genetic means (β3-HET and β3-KO ECs) as well as treatment using an αVβ3-integrin inhibitor – a 

Cilengitide-like cyclic mimetic of the RGD motif (cRGD, EMD66203, Bachem, Bubendorf, 

Switzerland). These various depletion methods were investigated to strengthen any conclusions 

(if any changes occurred in more than one β3-depletion model) and ultimately compare the 

modes of depletion. In addition, there was hope for an explanation of the disappointing 

outcomes of clinical trials testing αVβ3-integrin inhibitors. The investigation in this chapter is 

directly linked to the findings from the mass spectrometry experiments mentioned above, 

therefore it needs to be summarised here. 
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The initial mass spectrometry data set consisted of label-free quantification (LFQ) values 

assigned to 1497 proteins. Removing contaminants, false discoveries and proteins that were not 

detected by all three repeat runs of the same pooled sample (to improve stringency), reduced 

the list to 1064. Next, LFQ values were converted to log base 2 of LFQ and missing values 

generated by the log calculation of 0’s (undetected) were replaced with a low value. This was 

necessary to allow statistics to be performed on the data later. At this stage, datasets were 

arranged into unsupervised hierarchical clusters. As a result, the adhesome data was grouped 

in terms of VEGF-induction and matrix dependent enrichment, i.e. fibronectin vs. poly-L-lysine 

(PLL, a non-specific cell adhesion matrix). Unsupervised hierarchical clustering, based on 

Euclidian distance, identified 3 main groups of clusters: VEGF-induced (clusters A, B, C), 

fibronectin-enriched (D, E, F) and poly-L-lysine-enriched (G – L) (Supp. Fig. 1). Finally, the WT 

and β3-depleted adhesome data sets were compared using the significance analysis of 

microarrays (SAM) method. After eliminating false positives this method identified 143 

downregulated and 263 upregulated proteins in the β3-depleted adhesome [277]. 

In this refined data set, an upregulation of all detected tubulins was observed in the β3-depleted 

adhesome, compared with the WT control adhesome. Further experimental analysis showed 

that microtubule targeting agents are more effective at inhibiting angiogenesis in the β3-

depleted background, both in vitro and in vivo, via a Rcc2/Anxa2/Rac1-dependent mechanism 

[232]. 

The mass spectrometry of the IMMLEC adhesomes confirmed their endothelial identity, as many 

endothelial-specific proteins, such as VE-Cadherin and Tie1, were present [232]. The role of β3-

integrin is context dependent, as discussed in the first chapter of this thesis [278]. Most of the 

in vitro work in this study was performed in IMMLECs on tissue culture plastic coated with 

fibronectin – a ligand of αVβ3-integrin. This matrix is typically present in the basement 

membrane around angiogenic blood vessels, but not around quiescent vasculature [161]. 

Initially, β3-integrin inhibition in tumour angiogenesis seemed promising, but long-term 

targeting of this integrin was subject to a compensatory mechanism [180], [251]. The work 

undertaken in this chapter is a further in-depth analysis of the aforementioned mass 

spectrometry data sets. We mined the data for further proteins with altered presence in the β3-

depleted endothelial adhesomes (models of long-term inhibition) in search for other potential 

mediators of compensation. Precisely 12 out of 104 proteins that were upregulated in at least 

two of the three models of β3-depletion were followed up experimentally. These potential co-

targets all belong to the intermediate filament (IF) protein family. As a result, we discovered 

another potential avenue of targeting the cytoskeleton alongside β3-integrin. 
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3.2 Materials and Methods 

 

3.2.1 Focal Adhesion Enrichment 

This method was performed as described by Ellison et al.[182] and Atkinson et al. [232]; adapted 

from Schiller et al. [231]. First, 10 cm plates were coated with 10 µg/mL FN at 4°C o/n, then 

blocked with 1% BSA at RT for 1 hr. ECs were serum starved for 3 hrs in Opti-MEM™ prior to 

seeding 6x106 cells per plate. Cells were allowed to adhere for 90 min to allow formation of 

mature, β3-rich, adhesions. For VEGF stimulated samples, 30 ng/mL of VEGF was added to the 

plates for the last 10 min of the adhesion step. Next, plates were washed with PBS supplemented 

with 1 mM CaCl2 and 1 mM MgCl2 (PBS++), followed by treatment with 0.5 mM 

Dithiobis(succinimidyl propionate) (DSP) and 0.05 mM 1,4-Bis[3-(2-pyridyldithio)propionamido] 

butane (DPDPB) for 5 min. This reaction was stopped by addition of 1 M Tris-HCl pH 7.5 and the 

cells were lysed on ice for 30 min using RIPA buffer (20 mM Tris pH 7.4, 50 mM NaCl, 0.1% SDS, 

1% Triton, 1% Deoxycholate, 1% NP40). Lysate was collected without scraping and the plates 

were subjected to a high-sheer flow of distilled water to wash off cell debris. Dithiothereitol 

(DTT) buffer was used for 1 hr at 60°C to elute the cross-linked material in a humidified chamber. 

This was followed by 8 mL of acetone per plate and storage o/n at -20°C with 10 µl of GlycoBlue™ 

as a co-precipitant (ThemoFisher). Protein samples were spun down at 13’000 g for 40 min and 

the acetone layer was discarded. Pellets were resuspended in 30 μL EB buffer (see Section 2.4). 

2 µL of the DTT eluent and 2 µL of the total cell lysate as a control were run on a 10% SDS-PAGE 

gels. The eluents were assessed for focal adhesion enrichment by silver staining using the 

Pierce™ Silver Stain Kit (ThermoFisher). 
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3.2.2 Mass Spectrometry and Analysis 

Silver stain was used to confirm successful isolation of FA complexes. Less content and 

enrichment of bands of particular size in the crosslinked material compared to the whole cell 

lysate indicated a successful enrichment. Also, silver stain allowed to assess enrichment on FN 

compared to poly-L-lysine, an integrin independent adhesion factor. Three preferred samples 

were pooled and analysed three times by mass spectrometry, which was carried out by the 

Fingerprints Proteomics Facility (University of Dundee) as described by Schiller et al. [231]. 

Briefly, protein samples were digested using 12.5 ng/µL trypsin, dehydrated using acetonitrile 

and subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS) using LTQ 

Orbitrap mass spectrometer (Thermo Electron, Bremen, Germany). Ion spectrum data was 

analysed using MaxQuant software, linked to the Andromeda database for peptide 

identification. Subsequent analysis was done using Perseus software, a bioinformatics toolbox 

for MaxQuant [279]. GO [280] and KEGG [281] databases were used to annotate the protein 

data set. Statistically significant change between conditions was determined by using the 

significance analysis of microarrays (SAM) method [282], with a false discovery rate of 0.01, 

based on 250 data permutations and an S0 cut-off of 1. 

 

3.2.3 Network Analysis 

Protein interaction networks were illustrated using Search Tool for the Retrieval of Interacting 

Genes/Proteins (STRING), an online database of known and predicted protein-protein 

interactions, a joint project between the Swiss Institute of Bioinformatics (SIB), Novo Nordisk 

Foundation Center for Protein Research (NNFCPR) and the European Molecular Biology 

Laboratory (EMBL). These diagrams were generated using a tool built into the website with 

default parameters, i.e. medium confidence setting (0.4) and using all available active 

interaction sources for mouse proteins. 

https://string-db.org/cgi/input.pl 

 

 

 

 

https://string-db.org/cgi/input.pl
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3.3 Results 

 

3.3.1 Differential Gene Expression in the β3-integrin-depleted Adhesome 

Endothelial FAs from β3-depleted and WT/control IMMLECs were isolated and subjected to 

mass spectrometry, as described above. False discoveries were removed using Perseus 

software. The raw data and the full lists of proteins detected in each of the adhesomes has 

previously been presented in the PhD thesis by Atkinson S.J. [277]. I revisited these datasets and 

decided to focus on upregulated proteins, as these were more likely to represent members of a 

compensatory escape pathway. Also, upregulated genes/proteins could be targeted more 

readily with siRNA, while re-introducing a gene/protein into the cells is a much more complex 

strategy. Therefore, this approach was more feasible in terms of time and cost, allowing me to 

test more potential candidates. 

The DMSO- vs cRGD-treated adhesome comparison highlighted only a single significantly altered 

candidate protein, as discussed below. The WT vs β3-HET endothelial adhesome comparison 

was deemed more meaningful than the WT vs β3-KO comparison. The complete loss of β3 

integrin (in the β3-KO ECs) is subject to drastic, developmental changes, such as upregulated 

VEGFR2 expression that we felt might skew results [277]. We felt that, at least initially, focusing 

on the β3-HET EC adhesome, where β3 levels are reduced to 50%, would allow us to pinpoint 

the most β3-relevant changes. Despite this, all three comparisons were considered here, but I 

focused on the WT vs β3-HET comparison in particular. Of the 726 proteins detected in this 

comparison, 175 were upregulated and 94 were downregulated to a significant degree as 

determined by the SAM method [277]. This is depicted by the volcano plot in Fig. 3.1. All proteins 

upregulated in the β3-HET adhesome compared to the WT are listed in Table 3.1.
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Figure 3.1  WT vs. β3-HET endothelial adhesome. 

A volcano plot of t-test difference and – log of P value for each of the proteins detected by mass 

spectrometry analysis of the focal adhesion enrichment samples (n=3). Dark red lines represent the 

significance cut-off, as dictated by the significant analysis of microarrays (SAM). 12 candidate genes taken 

forward are highlighted in red and β3-integrin in blue. 
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Table 3.1  List of upregulated proteins in the β3-HET vs WT endothelial adhesome. 

    
LFQ NORMALISED TO WT β3 

  

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER WT β3-HET -LOG P VALUE DIFFERENCE 

Itgb3 O54890 Integrin beta-3 F 100.000 21.008 4.190 -2.257 

… 
      

… 

Gm4832 Q3UTE1 (pseudogene) F 0.000 139.167 5.394 6.928 

Gvin1 L7N451 Interferon-induced very large GTPase 1 I 0.000 78.046 3.083 5.354 

Copb2 O55029 Coatomer subunit beta I 0.550 37.927 2.999 5.013 

Thbs1 Q3TR40 Thrombospondin-1 F 47.229 1363.428 6.235 4.856 

Slc25a3 Q3THU8 Phosphate carrier protein, mitochondrial C 0.000 51.578 5.481 4.181 

Lmna P48678 Prelamin-A/C;Lamin-A/C F 10.750 172.698 6.756 4.006 

Rtn4 Q8BH78 Reticulon;Reticulon-4 C 8.554 116.196 3.934 3.809 

Palld K0BWC3 Palladin F 7.986 67.778 1.456 3.627 

Actc1;Acta1;Actg2;Acta2 Q9CXK3 Actin, α cardiac muscle 1;skeletal muscle;aortic/γ smooth muscle 
 

1.925 42.226 3.171 3.505 

Eprs B9EIU1 Glutamyl-Prolyl-TRNA Synthetase I 1.192 20.706 5.077 3.463 

Snrnp200 Q6P4T2 U5 small nuclear ribonucleoprotein 200 kDa helicase I 1.187 31.529 3.483 3.429 

Canx Q5SUC3 Calnexin I 2.838 28.213 2.160 3.384 

Map7d1 A2AJI0 MAP7 domain-containing protein 1 F 0.000 12.813 2.837 3.383 

Atp5b P56480 ATP synthase subunit beta, mitochondrial C 14.518 141.982 3.174 3.356 

Hspd1 P63038 60 kDa heat shock protein, mitochondrial G 0.000 26.477 3.197 3.352 

Dars Q8BK18 Aspartate--tRNA ligase, cytoplasmic I 0.000 11.786 3.397 3.333 

Rpl10a Q5XJF6 Ribosomal protein;60S ribosomal protein L10a I 2.150 17.183 1.758 3.326 

Col4a1 P02463 Collagen alpha-1(IV) chain;Arresten F 6.995 71.651 3.316 3.306 

Mcm7 Q3UDI8 DNA replication licensing factor MCM7 A 0.000 11.844 4.640 3.243 

Cad E9QAI5 CAD protein I 0.000 11.699 3.715 3.232 

Nes Q6P5H2 Nestin 
 

0.000 28.776 3.278 3.200 



54 
 

    
LFQ NORMALISED TO WT β3 

  

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER WT β3-HET -LOG P VALUE DIFFERENCE 

Bgn Q3TNY9 Biglycan I 0.108 0.962 3.202 3.191 

Prpf8 Q99PV0 Pre-mRNA-processing-splicing factor 8 I 0.000 18.620 1.959 3.175 

Lmnb1 P14733 Lamin-B1 C 0.000 14.800 2.309 3.133 

Eif4b Q3TDD8 Eukaryotic translation initiation factor 4B I 1.083 16.565 2.560 3.109 

Eftud2 Q543F1 116 kDa U5 small nuclear ribonucleoprotein component I 3.453 28.546 3.546 3.096 

Naa15 Q80UM3 N-alpha-acetyltransferase 15, NatA auxiliary subunit I 0.000 8.836 3.295 3.077 

Rpn2 Q61833 Dolichyl-di(P)oligosaccharide protein glycosyltransferase 2 I 0.000 19.257 3.731 3.053 

Eif5b Q05D44 Eukaryotic translation initiation factor 5B F 0.000 12.472 3.760 3.014 

Akap12 B2RRE0 A-kinase anchor protein 12 C 7.433 59.733 3.786 2.978 

Eef1b;Eef1b2 O70251 Elongation factor 1-beta L 0.000 13.311 2.923 2.908 

Iars Q8BU30 Isoleucine--tRNA ligase, cytoplasmic I 0.000 16.284 2.949 2.904 

Sdpr Q63918 Serum deprivation-response protein I 0.000 10.667 2.238 2.899 

Copa F8WHL2 Coatomer subunit alpha;Xenin;Proxenin I 10.490 69.800 2.624 2.845 

Hsp90b1 Q91V38 Endoplasmin I 19.258 130.649 3.359 2.806 

Rps29;Gm10126 P62274 40S ribosomal protein S29 C 0.000 9.173 3.896 2.800 

Mvp Q8C2S9 Major vault protein 
 

0.000 10.963 2.934 2.760 

Dync1i2 A2BFF7 Cytoplasmic dynein 1 intermediate chain 2 C 0.000 15.542 5.329 2.695 

Rrbp1 A2AVJ7 Ribosome-binding protein 1 I 0.000 12.119 3.607 2.652 

Copg1 Q9QZE5 Coatomer subunit gamma-1 I 2.905 26.141 4.171 2.616 

Atp2a2 J3KMM5 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 
 

0.000 7.177 4.186 2.561 

Vars Q7TPT7 Valine--tRNA ligase I 4.720 24.415 1.593 2.518 

Tmem43 Q9DBS1 Transmembrane protein 43 H 0.000 18.367 1.981 2.501 

Phb2 Q3V235 Prohibitin-2 C 1.145 13.627 2.333 2.479 

Atp1a1 Q8VDN2 Sodium/potassium-transporting ATPase subunit alpha-1 F 7.166 35.787 2.232 2.474 

Tnc Q80YX1 Tenascin F 181.642 974.847 7.423 2.424 
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LFQ NORMALISED TO WT β3 

  

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER WT β3-HET -LOG P VALUE DIFFERENCE 

Eif3f Q6IRT4 Eukaryotic translation initiation factor 3 subunit F I 1.394 12.530 1.841 2.398 

Phb;1700071K01Rik P67778 Prohibitin D 1.476 11.816 3.948 2.393 

Mcm6 Q542I2 DNA replication licensing factor MCM6 G 2.893 15.616 1.374 2.387 

Psmd3 Q8BK46 26S proteasome non-ATPase regulatory subunit 3 I 1.017 9.785 2.259 2.331 

Rpn1 Q5RKP4 Dolichyl-di(P)oligosaccharide protein glycosyltransferase 1 I 3.177 15.769 1.680 2.327 

Csnk2a1 Q61177 Casein kinase II subunit alpha I 2.225 8.849 1.292 2.320 

Tuba1a;Tuba3a P68369 Tubulin alpha-1A chain;Tubulin alpha-3 chain C 12.498 57.595 2.497 2.286 

Myof E9Q390 Myoferlin C 20.545 99.759 5.704 2.278 

Atp5a1 D3Z6F5 ATP synthase subunit alpha G 20.633 99.010 5.921 2.263 

Uba1 B9EHN0 Ubiquitin-like modifier-activating enzyme 1 F 8.123 23.382 0.787 2.260 

Nap1l1 Q3TF41 Nucleosome assembly protein 1-like 1 I 6.489 31.062 4.935 2.259 

Ctgf;fisp-12 P29268 Connective tissue growth factor I 28.427 133.287 3.676 2.239 

Trim28 Q5EBP9 Transcription intermediary factor 1-beta L 0.000 7.819 2.846 2.231 

Uso1 Q9Z1Z0 General vesicular transport factor p115 
 

0.000 9.455 2.167 2.219 

Vim Q5FWJ3 Vimentin F 340.023 1580.909 6.510 2.216 

Nid1 P10493 Nidogen-1 L 14.349 65.531 3.864 2.206 

P4ha1 Q3TN84 Prolyl 4-hydroxylase subunit alpha-1 D 0.000 13.990 3.749 2.206 

Hsp90aa1 Q80Y52 Heat shock protein HSP 90-alpha C 14.137 64.558 4.209 2.202 

Sf3b3 B2RSV4 Splicing factor 3B subunit 3 I 3.439 19.926 2.692 2.201 

Rnf213 F7A6H4 E3 ubiquitin-protein ligase RNF213 I 3.347 15.585 1.741 2.193 

Rars Q9D0I9 Arginine--tRNA ligase, cytoplasmic I 5.557 22.518 1.834 2.182 

Uggt1 Q6P5E4 UDP-glucose:glycoprotein glucosyltransferase 1 
 

0.000 10.692 1.863 2.181 

Hist1h3e/2h3b/1h3b A1L0U3 Histone H3;Histone H3.2 C 39.501 178.752 3.150 2.145 

Kars Q8C292 Lysine--tRNA ligase I 2.523 11.316 1.245 2.129 

Copb1 Q9JIF7 Coatomer subunit beta I 1.142 10.555 1.949 2.123 
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LFQ NORMALISED TO WT β3 

  

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER WT β3-HET -LOG P VALUE DIFFERENCE 

Cav1 P49817 Caveolin-1 E 7.728 33.095 3.474 2.119 

Ganab A1A4T2 Neutral alpha-glucosidase AB B 0.000 9.771 2.908 2.092 

Tinagl1 Q4FJX7 Tubulointerstitial nephritis antigen-like L 11.928 50.420 3.970 2.092 

Hist2h4;Hist1h4a B2RTM0 Histone H4 I 52.128 219.157 4.503 2.066 

Lamc1 F8VQJ3 Laminin subunit gamma-1 I 11.761 48.918 5.191 2.059 

Ctps1 P70698 CTP synthase 1 I 6.293 25.524 3.288 2.047 

Lamb1 Q3UHL7 Laminin subunit beta-1 F 6.126 24.941 3.897 2.030 

Col4a2 B2RQQ8 Collagen alpha-2(IV) chain;Canstatin F 24.497 98.623 2.289 2.017 

Vps35 Q3TRJ1 Vacuolar protein sorting-associated protein 35 I 5.001 19.956 2.326 2.015 

H2afv;H2afz B2RVP5 Histone H2A;Histone H2A.V;Histone H2A.Z I 0.000 7.210 2.515 2.012 

Rab5c Q3TJ39 Ras-related protein Rab-5C I 1.617 9.463 1.689 1.991 

Numa1 Q80Y35 Nuclear Mitotic Apparatus Protein 1 I 3.190 12.862 1.626 1.987 

Cope D3Z315 Coatomer subunit epsilon I 0.000 4.449 2.123 1.985 

Srrt Q99MR6 Serrate RNA effector molecule homolog F 0.000 10.179 2.699 1.982 

Fasn Q3UHT6 Fatty acid synthase C 9.974 38.934 3.450 1.982 

Psmd7 A1L3B8 26S proteasome non-ATPase regulatory subunit 7 I 2.740 10.181 1.378 1.935 

Hspa9 P38647 Stress-70 protein, mitochondrial  0.000 5.945 3.186 1.919 

Rpl12 Q5BLK0 60S ribosomal protein L12 I 2.801 9.398 1.363 1.893 

Myo1d Q5SYD0 Unconventional myosin-Id C 0.000 9.041 3.832 1.888 

Psmd2 Q3TXV1 26S proteasome non-ATPase regulatory subunit 2 I 8.677 31.581 3.298 1.884 

Plod3 Q9R0E1 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3  0.000 7.951 2.916 1.881 

Capns1 D3YW48 Calpain small subunit 1 I 10.225 37.310 4.608 1.870 

Colgalt1 Q8K297 Procollagen galactosyltransferase 1 G 0.000 6.795 3.714 1.863 

Plec Q6S390 Plectin F 202.740 727.958 5.146 1.842 

H2afy;H2afy2 Q9QZQ8 Core histone H2A/H2A.1/H2A.2 L 0.000 6.222 2.713 1.789 
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LFQ NORMALISED TO WT β3 

  

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER WT β3-HET -LOG P VALUE DIFFERENCE 

Rplp2 P99027 60S acidic ribosomal protein P2 I 0.000 7.242 1.884 1.750 

Top2b Q64511 DNA topoisomerase 2-beta;DNA topoisomerase 2 L 0.000 7.179 2.996 1.718 

Thbd Q543W3 Thrombomodulin I 0.000 5.856 1.431 1.711 

Anxa6 Q99JX6 Annexin;Annexin A6 C 0.000 7.691 1.534 1.708 

Dhx15 Q3UKJ6 DEAH-Box Helicase 15 C 1.898 10.203 1.285 1.706 

Sptbn1 Q62261 Spectrin beta chain, non-erythrocytic 1 I 60.755 194.138 3.604 1.689 

Usp9x Q4FE56 Ubiquitin carboxyl-terminal hydrolase  0.000 5.864 2.093 1.680 

Flnc D3YW87 Filamin-C F 35.723 114.187 3.190 1.675 

Hsp90ab1 Q71LX8 Heat shock protein HSP 90-beta C 194.174 617.413 7.252 1.669 

Cttn Q921L6 Src substrate cortactin F 4.442 14.305 1.369 1.667 

Serpinb9b Q9DAV6 Serpin Family B Member 9 I 0.000 8.357 2.068 1.657 

Rpl30 Q497D7 60S ribosomal protein L30 I 2.405 10.820 1.158 1.657 

Pdlim5 D9J2Z9 PDZ and LIM domain protein 5 F 8.745 27.454 2.760 1.656 

Capn1 Q3UF24 Calpain-1 catalytic subunit L 0.000 7.153 2.599 1.640 

Psmb3 Q545G0 Proteasome subunit beta type-3 I 6.707 20.415 2.932 1.627 

Myh10 Q5SV64 Myosin-10 I 11.520 34.481 2.475 1.623 

Cops3 Q8BX58 COP9 signalosome complex subunit 3 B 0.000 5.805 2.305 1.620 

Slit3 Q3UHN1 Slit homolog 3 protein  0.000 4.971 2.274 1.613 

Ssr1 Q3TV94 Translocon-associated protein subunit alpha I 0.000 5.108 5.034 1.584 

Arpc4 Q9D3C4 Actin-related protein 2/3 complex subunit 4 I 2.112 9.000 1.317 1.567 

Col12a1 E9PX70 Collagen alpha-1(XII) chain  0.000 6.945 3.034 1.564 

Sptan1 P16546 Spectrin alpha chain, non-erythrocytic 1 I 63.184 186.294 4.838 1.561 

Capn2 O08529 Calpain-2 catalytic subunit I 29.479 87.199 3.488 1.558 

Slk A2RRK3 STE20-like serine/threonine-protein kinase L 0.000 5.894 1.967 1.556 

Tpm4 Q6IRU2 Tropomyosin alpha-4 chain F 8.625 25.024 4.342 1.541 
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LFQ NORMALISED TO WT β3 

  

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER WT β3-HET -LOG P VALUE DIFFERENCE 

Eif3l Q8QZY1 Eukaryotic translation initiation factor 3 subunit L I 10.820 31.941 2.537 1.535 

Ddost Q3UG68 Dolichyl-di(P)oligosaccharide glycosyltransferase 48 kDa C 0.000 5.563 3.137 1.530 

Nop58 Q6DFW4 Nucleolar protein 58 I 2.478 6.942 1.124 1.526 

Upf1 Q9EPU0 Regulator of nonsense transcripts 1 L 0.000 6.683 2.141 1.515 

Dpysl3 E9PWE8 Dihydropyrimidinase-related protein 3 C 37.671 105.735 3.516 1.497 

Set;BC085271 A2BE93 Protein SET I 4.258 13.483 1.551 1.496 

Actn1 Q7TPR4 Alpha-actinin-1 F 163.561 454.165 4.273 1.477 

Tubb2a Q7TMM9 Tubulin beta-2A chain C 14.716 37.932 1.196 1.476 

Hspa5 Q3U9G2 78 kDa glucose-regulated protein I 42.654 118.472 5.620 1.474 

Rpsa B2CY77 40S ribosomal protein SA I 51.357 142.264 4.385 1.473 

Eef1d E9QN08 Elongation factor 1-delta I 11.109 30.672 5.162 1.465 

Ptrf O54724 Polymerase I and transcript release factor I 17.614 48.468 5.013 1.459 

Mcm2 Q3UK39 DNA replication licensing factor MCM2 I 0.000 7.520 1.656 1.458 

Hras;Kras;Nras Q71SW8 GTPase HRas;GTPase Kras;GTPase Nras F 0.000 6.002 1.527 1.456 

Eef1g Q4FZK2 Elongation factor 1-gamma I 35.902 96.412 4.220 1.429 

Sec23a E9Q1S3 Protein transport protein Sec23A F 5.797 15.478 3.168 1.428 

P4hb Q3UDR2 Protein disulfide-isomerase A 8.150 21.413 2.686 1.418 

Tubb6 Q3UMM1 Tubulin beta-6 chain F 19.167 49.441 2.516 1.386 

Psmc2 Q3UIH5 26S protease regulatory subunit 7 I 6.540 16.835 3.466 1.373 

Rab7;Rab7a Q4FJQ0 Ras-related protein Rab-7a E 2.023 6.483 1.382 1.363 

Kpnb1 Q3TFE8 Importin subunit beta-1 I 13.084 33.499 4.054 1.361 

Psma2 Q3UWT6 Proteasome subunit alpha type-2 H 2.793 7.173 4.033 1.357 

Tuba1b;Tuba4a P05213 Tubulin alpha-1B chain;Tubulin alpha-4A chain C 467.223 1194.949 4.989 1.356 

Pdia6 Q3THH1 Protein disulfide-isomerase A6 I 11.955 29.981 2.501 1.354 

Myadm Q0VE46 Myeloid-associated differentiation marker F 20.796 52.891 4.164 1.347 
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LFQ NORMALISED TO WT β3 

  

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER WT β3-HET -LOG P VALUE DIFFERENCE 

Rplp0 Q5M8R8 60S acidic ribosomal protein P0 I 23.489 58.974 4.042 1.332 

Csnk2b N0E4C0 Casein kinase II subunit beta I 0.000 3.998 1.732 1.331 

Hspa12b Q9CZJ2 Heat shock 70 kDa protein 12B C 11.458 28.569 3.156 1.331 

Htra1 Q9R118 Serine protease HTRA1 F 36.808 91.134 3.684 1.307 

Anxa5 P48036 Annexin A5 I 9.502 23.306 3.371 1.303 

Tubb5 P99024 Tubulin beta-5 chain C 95.502 231.405 3.456 1.284 

Tagln2 Q9WVA4 Transgelin-2 E 8.208 19.747 3.135 1.270 

Eif3a P23116 Eukaryotic translation initiation factor 3 subunit A I 37.211 87.588 3.973 1.239 

Eif3k Q9DBZ5 Eukaryotic translation initiation factor 3 subunit K I 1.338 6.676 1.923 1.232 

Eif3c Q8R1B4 Eukaryotic translation initiation factor 3 subunit C I 16.043 36.177 1.892 1.229 

Kif5b Q61768 Kinesin-1 heavy chain I 8.925 20.724 4.328 1.218 

Pcna Q91ZH2 Proliferating cell nuclear antigen  0.000 4.629 2.622 1.216 

Csde1 Q8JZN2 Cold shock domain-containing protein E1 I 4.322 9.958 2.797 1.214 

Gsn Q6PAC1 Gelsolin F 24.718 56.962 3.004 1.195 

Tubb4b;Tubb4a P68372 Tubulin beta-4B chain;Tubulin beta-4A chain C 303.360 686.271 4.785 1.179 

Dhx9 A0A087 ATP-dependent RNA helicase A L 17.786 39.696 2.687 1.170 

Anxa7 Q922A2 Annexin;Annexin A7 I 6.376 14.115 3.175 1.154 

Vdac2 G3UX26 Voltage-dependent anion-selective channel protein 2 C 7.169 15.793 3.059 1.132 

Flna B7FAU9 Filamin-A F 549.006 1199.381 5.635 1.127 

Psmc6 Q14AQ1 26S protease regulatory subunit 10B I 5.809 12.528 2.604 1.124 

Ipo7 Q9EPL8 Importin-7 I 14.741 31.896 2.871 1.114 

Vcp Q01853 Transitional endoplasmic reticulum ATPase F 108.664 234.660 4.711 1.109 

Cltc; mKIAA0034 Q5SXR6 Clathrin heavy chain 1 I 172.585 369.487 4.786 1.098 

Rangap1 Q91YS2 Ran GTPase-activating protein 1 I 0.000 4.355 2.614 1.094 

Cand1 Q6ZQ38 Cullin-associated NEDD8-dissociated protein 1 I 4.544 9.444 3.122 1.050 
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LFQ NORMALISED TO WT β3 

  

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER WT β3-HET -LOG P VALUE DIFFERENCE 

Myo1c Q9WTI7 Unconventional myosin-Ic F 104.111 215.457 5.039 1.050 

Actn4 Q3ULT2 Alpha-actinin-4 F 491.279 988.789 4.899 1.009 

Rps5 Q91V55 40S ribosomal protein S5 I 21.348 42.866 3.586 1.006 

Tcp1 P11983 T-complex protein 1 subunit alpha I 35.550 71.295 3.883 1.002 

 

The second column contains one of the corresponding peptide IDs identified for each gene using the Andromeda database. The fourth column informs on inclusion to a particular 

cluster, as identified by unsupervised hierarchical clustering: A, B, C – VEGF-enriched; D, E, F – fibronectin-enriched and clusters G, H, I, J, K, L – poly-L-lysine enriched. LFQ – label 

free quantification value obtained from the mass spectrometer. The LFQ values presented here are averages from 3 runs of FA enrichment samples expressed relative to the average 

LFQ detected for β3-integrin in WT condition. The last 2 columns report the -log P value and the t-test difference from the Significance Analysis of Microarrays (SAM) carried out in 

Perseus. The table was sorted in descending order based on the last column. Chosen candidate genes taken forward for further analysis are highlighted and in bold. Adapted from 

Atkinson et al. (2018) [232].
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In addition, FA enrichment comparison was performed on β3-KO and WT IMMLECs. Here, we 

detected 961 proteins of which 88 were upregulated and 49 were downregulated according to 

SAM [277]. More proteins were detected than in the β3-HET experiment, but significant change 

in their abundance was much less prevalent, ~15% compared to ~35%. Upregulated proteins in 

the β3-KO background compared to WT are listed in Supp. Table 1. 

To further complement this analysis, we isolated FAs from Cilengitide-like αVβ3-integrin-

inhibitor-treated (cRGD, EMD66203, Bachem, Bubendorf, Switzerland) WT IMMLECs. For these 

experiments, the 90 min adhesion step was carried out in the presence of cRGD (made up in 

DMSO) at 20 μM or DMSO as a control. β3-integrin appeared downregulated in cRGD treated 

cells, but not to a significant degree. Significance analysis of microarrays (SAM) analysis 

identified only a single protein that had changed significantly in response to cRGD treatment – 

Ncbp1, a protein required for mRNA processing and translocation [283]. We were uninterested 

in following up this nuclear protein as it is likely a false positive. Instead, we chose to search the 

list of detected proteins showing an upregulation trend for more angiogenesis-relevant 

candidates. To sum up the data set, 912 proteins were detected, of which 406 experienced a 

fold change of more than 1, these were considered upregulated, and the remaining 506 had a 

fold of less than 1, i.e. downregulated. Most of the upregulated proteins in the cRGD vs DMSO 

WT IMMLEC adhesome were listed in Supp. Table 2. This time the data was presented 

differently, because of the lack of statistical significance. Proteins were sorted according to their 

fold-change in the cRGD vs DMSO WT adhesome, and the top 150 proteins were included in 

Supp. Table 2. The last two genes on this list were Gvin1 and Tcp1, both significantly upregulated 

in the β3-HET and β3-KO adhesomes.  
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3.3.2 Candidate Search 

An unbiased approach was taken to narrow down the resulting lists of candidate genes. The lists 

of upregulated proteins (Table 3.1, Supp. Table 1 and 2) were cross-referenced to generate a 

shorter list of candidate proteins that were upregulated in at least two of the three conditions 

of β3-depletion, and thus a list of candidates in which we had the most confidence (Table 3.2). 

The list of proteins upregulated in the cRGD adhesome used in this step consisted of the hits 

with fold change of 1.1 or above (292 out of the 406 with fold change of 1 or above). Thus, the 

pool of potential candidate genes could be reduced as follows (in comparison to WT/DMSO 

adhesome): (1) 23 proteins were upregulated in both β3-HET and β3-KO adhesomes; (2) 75 

proteins were upregulated in both β3-HET and cRGD-treated adhesomes; (3) 36 proteins were 

upregulated in both β3-KO and cRGD-treated adhesomes (Table 3.2). This cross-referencing 

exercise left us with 104 unique proteins, while 15 of these were upregulated in all three β3-

depleted adhesomes. 

Several factors determined the outcome of the next stage of narrowing candidates. We searched 

the GO and KEGG annotations assigned to our gene lists for relevance in angiogenesis and EC 

biology, by using ‘angiogenesis’ and ‘endothelial’ as database search queries. Annotations 

reported which molecular function (GOMF) or biological process (GOBP) the genes/proteins 

participate in and which biological system are they part of (KEGG) [280], [281]. We also checked 

which cellular component (GOCC) does a given protein reside in [280]. These steps were further 

aided by using publication search engines to look for established links to angiogenesis and EC 

biology. At the same time, we preferred genes that were near the top of our lists, as they were 

the most significantly upregulated. Thus, the list shortened, and 12 candidate genes were 

chosen for further analysis (Table 3.3). ATP Synthase, subunit α (Atp5a1) and Interferon-induced 

very large GTPase 1 (Gvin1) were highly upregulated in all three β3-depleted EC adhesomes. N-

α-acetyltransferase 15 (Naa15) and T-Complex 1 (Tcp1) were also upregulated in all three 

conditions. Naa15 has been previously seen expressed by ECs and has been suggested to 

regulate blood vessel development [284]. Mutations in Tcp1 disrupted actin and microtubule 

structure and function [285]. Collagen type IV α 2 (Col4a2) and Slit Homolog 3 (Slit3) were up in 

both genetically β3-depleted adhesomes. Collagen derived anti-angiogenic inhibitors have been 

designed, including Canstatin, which binds αVβ3 and αVβ5 integrins, and is based on a domain 

within Col4a2 [286]. Slit3 activation has been implicated in angiogenesis in vivo and in vascular 

network formation in engineered tissue [287]. Serpin Family H Member 1 (Serpinh1), also known 

as Heat Shock Protein 47, was up in β3-KO and the cRGD-treated adhesomes. It is a collagen-

specific chaperone, shown to promote angiogenesis in gliomas [288]. The remaining five chosen 

candidates were upregulated in the β3-HET and the cRGD-treated adhesomes, namely: Heat 
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Shock 70kD 12b (Hspa12b), Clathrin heavy chain 1 (Cltc), nestin (Nes), plectin (Plec) and vimentin 

(Vim). Hspa12b is a predominantly endothelial, stress-response chaperone shown to be required 

for angiogenesis [289]. Cltc plays a role in endocytosis and intracellular trafficking, also shown 

to bind HIF-1α and promotes VEGF expression [290]. Nestin, plectin and vimentin are all 

intermediate filament (IF) proteins. Nestin forms type VI IFs and is a novel player in angiogenesis 

[291]. Plectin is a giant linker protein which binds all the major of types of cytoskeleton, i.e. actin 

filaments, IFs and microtubules [292]. It can also form a complex with β3-intergin and vimentin 

[293]. Vimentin forms type III IFs, which are the most abundant kind in this family [294]. In 

summary, the 12 chosen candidates were either highly upregulated in all three β3-depletions 

(Atp5a1 and Gvin1), or upregulated in all three β3-depletions and possess proven links to EC 

biology (Naa15 and Tcp1), or upregulated in at least two β3-depletions with links to angiogenesis 

or EC biology (Col4a2, Slit3, Hspa12b, Cltc, Serpinh1, Nes, Plec and Vim) (Table 3.3). 

We focused on the proteins upregulated in β3-depleted adhesomes, but we also made other 

notable discoveries, which we did not pursue at this time. Some of the proteins significantly 

downregulated in both the β3-HET and the β3-KO endothelial adhesome that we observed were 

A Disintegrin And Metalloproteinase 10 (Adam10), ADAM with thrombospondin motifs 1 

(Adamts1), Adamts4 and tissue inhibitor of metalloproteinase inhibitor 3 (Timp3). Notable 

examples of proteins decreased in both the β3-HET and the cRGD-treated (downregulation 

trend) adhesions were radixin (Rdx), moesin (Msn) and the Guanine nucleotide-binding protein 

subunit beta-1 (GNB1). Proteins downregulated in the β3-KO and cRGD-treated (trend) 

adhesome included the melanoma cell adhesion molecule (MCAM) and Vasohibin-1 (Vash-1). 

Another notable result seen was that β4-integrin, VEGF receptor 1 (VEGFR1 / Flt1) and ezrin (Ezr) 

were significantly decreased in the β3-HET adhesome but remained unchanged in the other two 

models of depletion. Also, von Willebrand factor (vWF) was significantly down in the β3-HET 

background and up in the β3-KO one, whilst Thrombospodin 1 (Thbs1) exhibited the reverse 

trend. 
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Table 3.2  Proteins upregulated in more than one type of β3-depleted EC adhesomes, 
compared to the WT EC adhesome. 

HET and KO HET and cRGD KO and cRGD HET, KO and cRGD 

Atp2a2 Actn1 Lmnb1 Abcf2 Atp5a1 

Atp5a1 Actn4 Myadm Actg1 Canx 

Canx Anxa6 Myh10 Atp5a1 Ctps1 

Col4a2 Atp1a1 Myo1c Canx Eif3f 

Ctps1 Atp5a1 Myo1d Cars Gsn 

Eif3f Atp5b Naa15 Cct5 Gvin1 

Gsn Cand1 Nes Cct6a H2afv 

Gvin1 Canx Pdia6 Cct7 Hsp90ab1 

H2afv Capn2 Pdlim5 Cd55 Hspd1 

Hsp90ab1 Cav1 Phb Ctps1 Naa15 

Hspa9 Cltc Phb2 Ddx58 Psmd3 

Hspd1 Col4a1 Plec Dnaja1 Rnf213 

Htra1 Copb1 Psmd3 Drg2 Sdpr 

Iars Ctps1 Ptrf Ehd4 Slc25a3 

Naa15 Cttn Rars Eif3e Tcp1 

Psmd3 Dars Rnf213 Eif3f 
 

Rnf213 Dpysl3 Rpl12 Gsn 
 

Rpn2 Eef1b;Eef1b2 Rpn1 Gvin1 
 

Sdpr Eef1d Rps5 H2afv 
 

Slc25a3 Eef1g Rtn4 Hsp90ab1 
 

Slit3 Eif3a Sdpr Hspd1 
 

Tagln2 Eif3c Sec23a Impdh2 
 

Tcp1 Eif3f Slc25a3 Lbr 
 

 
Eif3k Sptan1 Mdh2 

 

 
Eif3l Sptbn1 Naa15 

 

 
Eprs Tcp1 Ncbp1 

 

 
Fasn Tinagl1 Paics 

 

 
Flnc Tpm4 Prr11 

 

 
Gsn Tuba1a;Tuba3a Psmd3 

 

 
Gvin1 Tuba1b;Tuba4a Rnf213 

 

 
H2afv Tubb2a Sdpr 

 

 
Hist1h3b;1h3e;

2h3b 
Tubb4b;Tubb4a Serpinh1 

 

 
Hsp90ab1 Tubb5 Slc25a3 

 

 
Hspa12b Tubb6 Snx9 

 

 
Hspd1 Vdac2 Surf4 

 

 
Kars Vim Tcp1 

 

 
Kif5b Vps35 

  

 
Lamb1 

   

 

This table is a result of comparison of upregulated proteins shown in Table 3.1, Supp. Table 1 and 2. For 

the cRGD condition, proteins increased at least 1.1-fold (the first 292) in the cRGD vs DMSO sample were 

deemed upregulated. 12 chosen candidate genes taken forward for further analysis are highlighted and 

in bold. Adapted from Atkinson S.J. [277]. 
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Table 3.3  Summary of the 12 chosen candidate genes. 

 

  Gene name Protein name Function Upregulated in 

1 Atp5a1 ATP Synthase, subunit α ATP synthesis HET, KO and cRGD 

2 Gvin1 Interferon-induced very 
large GTPase 1 

Unknown HET, KO and cRGD 

3 Naa15 N-α-acetyltransferase 15 Acetyltransferase, implicated in 
vascular development [284] 

HET, KO and cRGD 

4 Tcp1 T-Complex 1 Actin and tubulin chaperone 
[285] 

HET, KO and cRGD 

5 Col4a2 Collagen type IV α 2 One of the six subunits of type IV 
collagen [295] 

HET and KO 

6 Slit3 Slit Homolog 3 Neurogenesis signalling, also 
implicated in angiogenesis [296] 

HET and KO 

7 Hspa12b Heat Shock 70kD 12B Predominantly-endothelial, 
specific stress response 

chaperone [297] 

HET and cRGD 

8 Cltc Clathrin heavy chain 1 Endocytosis, shown to promote 
angiogenesis [298] 

HET and cRGD 

9 Nes Nestin Regulation of assembly and 
disassembly of intermediate 

filaments [299] 

HET and cRGD 

10 Plec Plectin Giant cytoskeletal linker [300] HET and cRGD 

11 Vim Vimentin Class III intermediate filaments 
[294] 

HET and cRGD 

12 Serpinh1 Serpin Family H Member 1 Collagen-specific chaperone, 
promotes angiogenesis [301] 

KO and cRGD 



66 
 

3.3.3 Further Narrowing Candidates Using a Semi-high-throughput 

Approach 

To further narrow the condensed list of twelve candidates, and cherry-pick the most interesting 

for further analysis, we took an experimental approach. As discussed in Section 3.3.1, using β3-

HET ECs, as a model of β3-depletion, overcomes the potential complications associated with 

higher order changes seen in β3-KO ECs, keeping the experiments more directly relevant to β3 

integrin. At the same time, cRGD-treatment was less effective at inducing detectable changes 

than genetic depletion, as we saw only one statistically significant change in the DMSO vs cRGD-

treated adhesome comparison. Therefore, we performed angiogenesis-relevant assays in WT 

and β3-HET IMMLECs, post-transfection with siRNAs directed against the 12 candidate genes, to 

test their involvement in compensation which accompanies β3-depletion. Each time, one million 

cells were transfected with target-specific siRNA. Fourty-eight hours post transfection, cells 

were split between an adhesion (protocol in Section 2.5) and a scratch-wound migration assay 

(Section 2.6).  

In WT cells siRNA-mediated silencing of Col4a2 impaired adhesion, while silencing Gvin1, Nes, 

Plec, Serpinh1, Slit3, Tcp1 and Vim siRNA enhanced adhesion (Fig 3.2). In β3-HET cells, siRNAs 

directed against Cltc, Col4a2, Hspa12b, Naa15, Nes, Plec and Vim impaired adhesion, while 

siRNAs directed against Atp5a1, Gvin1, Serpinh1, Slit3 and Tcp1 enhanced adhesion (Fig 3.2). 

In WT cells, scratch wound migration was inhibited with siRNAs directed against Col4a2, Nes, 

Plec, Slit3, Tcp1 and Vim, and enhanced with siRNAs against Atp5a1 and Gvin1 (Fig 3.3).  In β3-

HET ECs, migration was inhibited when Hspa12b, Naa15, Nes, Plec, and Vim were targeted (Fig 

3.3). 

This work needs to be caveated with two technical notes: (1) both assays have only been 

performed with 1 biological repeat, so results were interpreted only as trends, rather than hard 

statistical significance; (2) at this stage, we did not test knockdown efficiency – thus, where no 

biological response was observed, we cannot rule out the possibility that the intended target 

was not silenced. Nevertheless, we were particularly intrigued by the response of cells to the 

silencing of intermediate filament (IF) proteins. Collective migration in monolayer was impaired 

both in WT and β3-HET ECs transfected with siRNAs against IF proteins (Nes, Plec, Vim) (Fig 3.3). 

Moreover, we observed a differential response between WT and β3-HET cells to IF silencing with 

respect to adhesion (Fig 3.2). Adhesion in WT cells was moderately enhanced, whilst in β3-HET 

cells it was impaired. This suggests that IFs play more of a role in adhesion when β3 levels are 

reduced, and therefore co-targeting these IF proteins alongside αVβ3 is a potential 

improvement on the current anti-angiogenic strategies. 
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Figure 3.2  Adhesion assays of WT and β3-HET IMMLECs transfected with siRNA against candidate 
genes. 

48 hrs post-transfection with siRNA against 12 chosen candidate genes, adhesion assay of (A) WT and (B) 

β3-HET ECs on FN was performed. Absorbance values were normalised to the CP (control pool of non-

targeting siRNA) sample average. Therefore, bar charts represent % adhesion +SD of the control sample 

(4+ technical repeats). BSA only (no FN) control was included on the left. 
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Figure 3.3  siRNA against IF proteins impairs directional migration in WT and β3-HET IMMLECs. 

(A) 48 hrs post-transfection with siRNA against 12 chosen candidate genes, a 24-hr wound-closure 
migration assay on FN was performed on WT and β3-HET ECs. Bar chart represents % wound closure +SEM 
(6 technical repeats). * indicates P<0.05; ** P<0.01, *** P<0.001 and **** P<0.0001, as determined by an 
unpaired student’s t-test. (B) Images corresponding to chosen conditions at T0 and T24 are shown. Scale 
bar = 200μm, CP – control pool of non-targeting siRNA. 
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3.3.4 Visualising Interactions of Intermediate Filament Proteins and Known 

Players of the Adhesome 

We were interested whether the candidate genes that we have identified by mass spectrometry 

in the endothelial FAs, have been previously shown to be present there. One way to test this, is 

to check for interaction with known FA residents. Some of the well-studied ones, that are 

regarded as canonical FA proteins, are: β3-integrin (Itgb3), actin (Acta2), FAK (Ptk2), paxillin 

(Pxn), talin (Tln1), tensin (Tns1), vinculin (Vcl) and tyrosine-protein kinase Src. A list of 12 

candidate proteins (Table 3.3) and the canonical FA residents mentioned above (described in 

more detail in Section 1.3.2) were analysed by the Search Tool for the Retrieval of Interacting 

Genes/Proteins (STRING). Interestingly, an interaction loop was identified between heat shock 

12b (Hspa12b), T-complex 1 (Tcp1), ATP synthase α (Atp5a1), clathrin heavy chain 1 (Cltc) and 

tensin-1, which has been suggested to link the actin cytoskeleton to integrins thus enhancing 

pro-angiogenic signalling (Figure 3.4 A) [302]. Slit Homolog 3 (Slit3) was shown to interact with 

Src, a prominent proto-oncogene and tyrosine kinase shown to regulate angiogenesis and 

vascular permeability [303]. Another interaction chain – FAK - Col4a2 - Serpinh1 - Vim - Itgb3 – 

emerged from the network map. According to the STRING database, Gvin1, Naa15 and Nes had 

no known interactions within this pool of proteins. 

Migration and adhesion data described in Section 3.3.3 guided us towards the IF proteins. The 

network maps in Figure 3.4 A and B illustrate known interactions of nestin, plectin and vimentin, 

but also other IF proteins: desmin (Des), syncoilin (Sync), synemin (Synm), lamin (Lmna) and Glial 

fibrillary acidic protein (Gfap); with the canonical FA players named above. The STRING database 

pointed out binding interactions of plectin with FA proteins, namely: actin, FAK (Ptk2), paxillin, 

vinculin, a putative interaction with talin and most interestingly, β3-integrin (Figure 3.4 B). No 

direct link was identified for nestin, although STRING suggested a link to the FAs via caspase-3, 

an apoptotic protease [304]. Gfap was shown to interact with Src, while desmin has links to actin 

and vinculin. Overall, the evidence for interactions observed between IF and FA proteins is 

sporadic, suggesting that further research on this subject is required. 
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Figure 3.4  Visualisation of protein interaction networks of candidate genes using STRING. 

(A) The canonical members of FAs: Itgb3 (β3-integrin), Ptk2 (FAK), Src, Vcl, Pxn, Tns1, Acta2, Actn2, Tln1; 

were tested for interaction with the 12 candidate genes that were seen upregulated in the β3-integrin 

adhesome. The width of the line correlates with confidence of interaction according to STRING mouse 

database. No interactions were identified for Gvin1, Naa15 and Nes in this pool of proteins. (B) IF proteins, 

namely: Nes, Plec, Vim, Des, GFAP, Lmna, Synm and Sync1 were tested for interaction with FA players. 

Casp3 was added, as it was identified by STRING as a link for Nes to this network. Blue link – binding, pink 

– post-translational modification, black – reaction and grey – unspecified. Green arrow indicates positive 

interaction, red line – negative and beaded end – unspecified. There is no indication here whether the 

interactions are direct or indirect. Diagrams were generated using STRING’s built-in online tool with the 

default parameters, i.e. medium confidence setting (0.4) and using all available active interaction sources. 

A 

B
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3.4 Discussion 

In this chapter, we directed the most focus towards the changes observed in the endothelial 

adhesome induced by the genetic depletion of β3-integrin in the heterozygous background. 

Atkinson S. J. dissected both β3-HET and β3-KO endothelial adhesome in his thesis but eluded 

to a few problems which suggest a direct comparison between the two datasets should be 

interpreted with caution [277]. Firstly, the β3-HET and the β3-KO adhesome samples were 

collected on different days which could produce variations in the biological repeats leading to 

possible false discoveries. Many unexpected differences were observed by Atkinson between 

β3-HET and the β3-KO. Neither nestin, plectin nor vimentin were upregulated in the β3-KO 

adhesome, although the latter two were at least detected. It is also important to add, β3-KO 

studies have previously been criticised as not being physiologically relevant, thus not mimicking 

a treatment setting where depletion/inhibition of β3-integrin would be incomplete [180]. 

Nevertheless, β3-KO cells remain a useful tool. The power of our observations may be increased, 

if their phenotype is in agreement with that of β3-HET cells. 

Surprisingly, out of the 912 proteins detected in the DMSO vs cRGD-treated adhesome 

comparison, only one protein (Ncbp1) significantly changed in abundance. This suggests that 

RGD-mimetics may not have a strong effect on the β3-dependent adhesome on fibronectin. 

However, there were some substantial fold changes in abundance of the detected proteins in 

this comparison, which were approaching significance, and these were used here for guidance 

in narrowing down candidates. 

Here, we first identified 104 proteins upregulated in two or all three endothelial β3-depleted 

adhesomes. Then, guided by mass spectrometry data, GO and KEGG annotations, as well as 

publication searches, we identified 12 candidates that we felt could be the most promising β3-

integrin partners for dual targeting. We tested them in that context, in the 90-min adhesion 

assay and the scratch-wound migration assay. We observed that targeting nestin, plectin and 

vimentin with siRNA in ECs inhibited both processes alongside β3-integrin depletion. Thus, they 

became the targets that we will pursue further. It is interesting and reassuring that they all 

belong to the same protein family – intermediate filaments. This class of proteins will be 

discussed in detail in the next chapter. Briefly, due to their roles as cytoskeletal proteins 

interacting with FAs and β3-integrin, plectin and vimentin have previously been implicated a role 

in angiogenesis [293], [305], [306]. In comparison, nestin is an emerging player in angiogenesis 

[291]. 

Other candidates that stood out were Col4a2 and Naa15. siRNA against the former inhibited 

migration in the WT but not in the β3-HET cells, as well as adhesion in both cell types. Collagens 
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are components of the basement membrane and integrin ligands [307]. They are present in 

almost all basement membranes and a plethora of vascular defects are associated with Col4a2 

mutations [308]. Canstatin, an inhibitor based on a domain within Col4a2, binds αVβ3 and αVβ5 

integrins and inhibits angiogenesis in vitro and in vivo [286].  A similar peptide, endostatin, based 

on collagen type XVIII, has been tested in clinical trials. At phase II, in patients with 

neuroendocrine tumours it did not result in significant tumour regression [309]. However, in 

stage III clinical trials, for patients with advanced Non-Small-Cell Lung Carcinoma, in combination 

with conventional chemotherapy it offered some improvement in response rate and progression 

time over chemotherapy alone [310]. It would be interesting to know if combining Canstatin and 

chemotherapy, and perhaps Cilengitide, could lead to better outcomes in patients. Interestingly, 

siRNA against Naa15 impaired adhesion and migration in the β3-HET but not in the WT cells. 

Naa15 carries out post-translational modifications of other proteins as part of a complex at the 

ribosomes [311]. It is surprising to see it in the adhesome of ECs, although it has been reported 

at non-ribosomal sites, as a potential regulator of actin polymerisation [312]. Also, it has been 

associated with blood vessel development and EC permeability [284], [313]. 

We also tested our 12 candidates for interaction with known endothelial proteins that reside in 

the FAs, as another way of testing their potential involvement in EC biology (Fig. 3.4). We saw 

numerous interactions of Plec and Vim with the canonical members of the EC adhesome. This 

increased our confidence in the IF proteins as targets for further testing in this study. Casp3 

provides a link for Nes to the rest of the network in Fig. 3.4 B, an indirect link to β3-integrin and 

Vim. The evidence for the Nes-Casp3 interaction comes from a study of brain tissue injury, 

therefore it is likely not relevant here [314]. 

Cells respond to both internal and external forces, with FAs playing a central role of the 

mechanotransduction hub [315], [316]. This hub contains and links up to the members of the 

signalling network of the cell, leading to a diverse range of downstream actions [174], [317], 

[318]. Thus, the composition and regulation of FAs modulates a very wide range of cellular 

processes, i.e. metabolism, proliferation, migration, cell cycle regulation and cell division. The 

meta-adhesome on FN, which includes 2400+ proteins, has been defined using data from 

multiple cell types, mostly fibroblasts, and refined to identify the ‘consensus adhesome’ that 

consists 60 proteins [319]. This includes a number of confirmed complexes of integrin, actin, 

signalling and adaptor proteins, for example αVβ3 integrin, talin, paxillin and FAK [320], [321]. 

Neither Nes, Plec or Vim are considered as members of the ‘consensus adhesome’, but they 

have all been detected in multiple studies contributing to the meta-adhesome [319]. Morever, 

Plec has been shown to be a link between Vim and β3 integrin in FAs [293], [322]. 
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As reviewed by Humphries et al., FA enrichments in the adhesome studies to date comprise of 

various types of FAs from thousands of cells [323]. Efforts are made to be able to isolate uniform 

FA preparations, such as using a specific adhesion matrix, uniform cell culture conditions and 

length of adhesion, as we have done [323]. In the future, improvements in sensitivity of mass 

spectrometry and high-throughput analysis are likely to unravel adhesome composition and 

regulation further [323]. Also, novel techniques for researching FAs, such as the proximity-

dependent biotinylation technique (BioID) hold promise for improved understanding of the 

adhesome [324]. FAs are dynamic structures, many proteins transiently interact with these 

complexes [322]. Also, the canonical FA players are found elsewhere in the cell, as a result of 

events, such as internalisation and recycling [325], [326]. The design of the protocol by Schiller 

et al. ensured capture of transient interactions, as it included the FA crosslinking step [231]. It 

also allows one to focus on what is present at the FAs specifically, as the non-crosslinked 

material was lysed and removed. We have adopted this protocol for ECs and, for the first time, 

defined the mature mouse EC adhesome on FN consisting of 1064 proteins [232]. 

We focused on the proteins that were upregulated in the β3-integrin-depleted EC adhesome. 

The rationale for this approach was as follows. One can confirm a role of an upregulated protein 

by siRNA knockdown or using an inhibitor. In this setting, we looked for inhibition of 

angiogenesis-relevant processes, i.e. impaired adhesion or migration. In addition, this already 

takes us one step ahead, as it stages a double-targeting treatment situation, if we carry out the 

KD or inhibition experiments in WT and β3-integrin-depleted cell models. A downregulated 

protein is more problematic in that sense. KD only has the potential to reproduce what we saw 

in the mass spectrometry, while overexpression (to stage a treatment situation, counter-acting 

the potential escape mechanism) is likely a more complex undertaking, too complex for the 

initial stages of narrowing candidates. Focusing only on the genes/proteins upregulated in the 

adhesome is limiting from the start. However, most cellular functions are not carried out by a 

single protein. They are part of a bigger complex or network of proteins. Indeed, this 

phenomenon is embedded in the very core of this project. When β3-integrin is targeted in the 

long-term, other players carry out its function in angiogenesis and tumour progression. 

Although, only looking at the upregulated proteins might lead to omission of some of the 

candidates of interest, which were downregulated, one can assume that their partners, agonists 

or antagonists, from the same complex or network, will be picked up by analysing ‘the other 

half’. 

Indeed, we have made several intriguing discoveries that we chose not to follow up 

experimentally at this time. Three members of the metalloproteinase family – Adam10, 

Adamts1, Adamts4 and Timp3 were seen downregulated in the β3-depleted EC adhesome. 
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Adam’s are family of cell surface glycoproteins with metalloprotease potential [327]. In addition, 

their disintegrin-like domains are ligands for various integrins [328]. Adam10 cleaves 

ectodomains of proteins on the cell surface, which can have various consequences. It activates 

cell surface receptors, such as Notch-1 a driver of tumour and embryonic angiogenesis and Tie-

1, necessary for developmental angiogenesis [329], [330]. On the other hand, it cleaves ephrins 

to release fragments which inhibit tumour angiogenesis in mice [331]. Adamts proteins possess 

the thrombospondin motif in addition to the disintegrin and metalloproteinase domains that 

Adam’s have. Adamts1 inhibits angiogenesis in vitro and in vivo as result of binding and 

sequestering VEGF [332], [333]. Its family member, Adamts4 can be both pro- and anti-

angiogenic [334]. Its upregulation in numerous cancers suggest its role in tumour progression 

by cleavage of extracellular proteoglycans to make way for the expanding tumour and blood 

vessels [335], [336]. However, it can also sequester VEGF and thus inhibit VEGFR2 signalling 

[337]. Timp3 regulates ECM composition by inhibiting matrix metalloproteinases, and thus 

influences cell migration, invasion and angiogenesis [338]. Interestingly, it inhibits a wide variety 

of Adam’s and Adamts’ including Adam10, Adamts1 and Adamts4 [339]–[341]. It suppresses 

tumour growth because of its potent pro-angiostatic mode of action [342]. It has also been 

suggested that it inhibits angiogenesis more directly, by preventing VEGF from binding VEGFR2 

[343]. It is interesting to see a downregulation in a group of proteins that carry out similar 

functions and all have been previously linked to angiogenesis. 

In addition, we noticed a decrease in the abundance of ezrin, moesin and radixin in the β3-

depleted EC adhesome. These three proteins constitute the whole ERM family of paralogs. They 

provide the link between the cytoskeleton and the plasma membrane and thus play a role in 

adhesion and motility [344]. They do this via the FERM domain, also present in talin, a prominent 

member of the focal adhesions and neurofibromatosis 2 (NF2/merlin) a known tumour 

suppressor [345]. 

We also noticed Gnb1 was decreased in the β3-depleted adhesome. Downregulation of human 

Gnb1, as reported by a study in 500+ patients, correlates with worsened prognosis of clear-cell 

renal cell carcinoma [346]. The same study suggested an association of Gnb1 and the VEGF 

signalling pathway. 

Two of EC markers, MCAM and Vash-1 were downregulated in the β3-KO and cRGD-treated 

adhesions. Research shows that MCAM is a pro-angiogenic co-receptor of VEGFR2 [347]. On the 

other hand, it has also been shown to inhibit breast cancer progression [348]. It would be 

interesting to investigate how it affects angiogenesis in further detail. Endothelial Vash-1 is an 

agonist of tumour angiogenesis. In a tumour growth experiment, Vash-1 KO mice exhibited 

tumour angiogenesis inhibition compared to the WT controls [349]. Further experiments in the 
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same study showed that supplying high levels of Vash-1 alongside chemotherapy (cisplatin) 

improved the outcome due to improved drug delivery, because of improved vessel maturation 

and inhibition of sprouting angiogenesis. It is therefore interesting to see it downregulated in 

our β3-depletion models. 

It was surprising to see Integrin β4 and VEGFR1 (Flt1) also reduced, although only in the β3-HET 

adhesome. β4 normally partners with integrin α6 as a laminin receptor. Its signalling has been 

linked to pathological angiogenesis [350]. VEGFR1, like VEGFR2, is a tyrosine kinase that binds 

VEGF is a capable of proliferative signalling, but it is much weaker in doing so [100]. It has been 

suggested that it can be a negative regulator of angiogenesis by sequestering VEGF [351]. 

Perhaps the most intriguing findings from the mass spectrometry analysis are the changes we 

saw in vWF and Thbs1. The former was down in the β3-HET and up in the β3-KO adhesome, 

compared to the WT. vWF is a blood plasma clotting factor secreted by endothelium and 

megakaryocytes, but fraction of it is stored in ECs in the form of Weibel-Palade bodies [352], 

[353]. Moreover, vWF is a ligand of integrin αVβ3 [354].  ECs deficient in vWF had increased 

VEGFR2-dependent proliferation and increased release of angiopoietin-2, suggesting an 

inhibitory role of vWF in angiogenesis [354]. Interestingly, the same study found integrin αVβ3 

downregulated in those cells. Thbs1 was up in the β3-HET and down in the β3-KO adhesome. 

Thbs1 inhibits neovascularization by sequestering VEGF and thus inhibiting VEGFR2 signalling 

[355], [356]. It was surprising to see such a potent inhibitor of angiogenesis downregulated in 

the adhesome of the β3-HET cells, our in vitro model of upregulated angiogenesis. Abundance 

of vWF and Thbs1 was altered in both directions depending on the β3 genotype. This highlights 

the difference between the β3-HET and the β3-KO cells. It served as a reminder that the 

compensatory changes due to total loss of β3-integrin may be different to those that we see in 

the partial depletion model (β3-HET) [277]. Explanation of the differential presence of vWF and 

Thbs1 in the β3-HET and the β3-KO remains to be determined. 

Another limitation to our approach of targeting the candidate genes (or proteins) was with the 

siRNA knockdown, which at this point, had not been confirmed by means of RNA (qRT-PCR) or 

protein (WB) analysis. Therefore, it is possible that no migratory or adhesion phenotype was 

observed following siRNA transfection against some of the targets due to a lack of successful 

targeting by the siRNA pool used. In our multi-gene approach, it was more efficient to follow the 

phenotype rather than start with a confirmed knockdown and then investigate the phenotype. 
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The obvious improvement is that the experimental work could be corroborated by increasing 

the number of migration and adhesion assays repeats to a statistically significant degree. 

Overall, we trust the data presented in this chapter could be utilized to indicate the way forward. 

From here onwards, our efforts focused on investigating nestin, plectin and vimentin and their 

relationship with αVβ3 integrin in ECs in the context of angiogenesis. 
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4 Targeting the Adhesome In Vitro 

 

4.1 Introduction 

4.1.1 General Comments 

Targeting β3 integrin as an anti-angiogenic strategy was initially promising but encountered a 

problem. However, there exists an escape when this molecule is targeted long-term. In the 

previous chapter, we identified three intermediate filament (IF) proteins that are upregulated 

in β3-depleted endothelial focal adhesions (FAs) (Section 3.3), and therefore may be a part of 

this mechanism of escape, namely: nestin (Nes), plectin (Plec) and vimentin (Vim). More 

specifically, we revealed by mass spectrometry an increase in the abundance of Plec, Nes and 

Vim in both β3-HET and cRGD-treated EC adhesomes. In the β3-KO EC adhesome, there was no 

upregulation of Vim, Nes or Plec. The potential reasons for these differences were discussed in 

detail in the previous chapter. β3-KO ECs differ from the β3-HET and cRGD-treated ECs in that 

‘higher order’ changes are expected to have occurred in them, due to complete absence of β3-

integrin, rather than a depletion, where changes are arguably more closely β3-dependent [A], 

[275], [357]. Here, we have chosen to focus on β3-HET ECs. The reasons for doing so are 

summarised below, at the beginning of the Results section. 

We hypothesised that Nes, Plec and Vim may be upregulated in β3-depleted adhesomes as part 

of the mechanism of pro-angiogenic compensation observed in tumour vasculature with long-

term depletion of β3. Furthermore, we propose that these may be good candidates for a dual-

targeted anti-angiogenic strategy, in combination with β3-integrin inhibition. This chapter 

describes the efforts to conduct an in vitro experimental assessment of this proposal. In the first 

part we describe experiments conducted using siRNA knockdown of IF proteins in WT and β3-

HET IMMLECs. The second part discusses experiments in which we investigated the effect of 

Withaferin A, an inhibitor of Vim, in WT and β3-depleted ECs. We begin with an overview of IFs 

and their roles in ECs and angiogenesis. 
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4.1.2 Intermediate Filament Types and Their Roles 

The cytoskeleton of animal cells is made up of three major types of networks: microtubules 

(MTs), actin-microfilaments (MFs) and intermediate filaments (IFs). The latter, as the name 

suggests, are of intermediate size (10-12 nm), narrower than MTs (25 nm), but wider than MFs 

(5-8 nm) [358], [359]. MFs and MTs tend to break more readily than IFs under shear stress [360]. 

The IF structure is more irregular and adjusts in response to mechanical impact. Their monomers 

possess a long, central α-helical domain (coil) (Fig. 4.1) and assemble into dimers by co-

translation [361]. The coil at the core of the filaments and irregular nature of chemical bonds 

between the dimers ensure viscoelastic properties, compared to a more defined and organised 

structure of MFs and MTs [359]. This elasticity points to the role of IFs in protecting the cell 

against stress and strain. There are 65 functional IF genes encoding protein monomers, which 

assemble into filaments [362]. Based on the building blocks and the roles, IFs are divided into 6 

major types. In humans, the majority of IF genes (54) encode keratins, the structural 

components of hair, nails and outer layer of human skin that arrange into type I and type II IFs 

[363]. The monomers of type III IFs, found across multiple cell types, are: peripherin, syncoilin, 

desmin, glial fibrillary acidic protein (GFAP) and the most abundant – vimentin (Vim) [364], [365]. 

Type IV IFs include the muscular synemin-based filaments and a number of neuro-filaments 

[366], [367]. Type V are the structural filaments of the cell nucleus and they are made up of 

lamin monomers [10]. Finally, type VI IFs (related to type IV) are based on nestin (Nes), normally 

expressed in nerve cells [368]. Other proteins in the IF family include phakinin and filensin, which 

are expressed exclusively in the eye lens and form beaded-type filaments, instead of the 

classical-type IFs [369]. Also, several IF-associated proteins (IFAPs) exist. A prominent member 

of this group is plectin (Plec), initially identified as a general, giant cytoplasmic crosslinker of IFs 

[370]. Our interest was drawn towards Vim (type III), Nes (type VI) and Plec (IFAP), since we 

observed that they were upregulated in the β3-depleted endothelial FAs (Section 3.3). 
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Figure 4.1  Intermediate filament structure. 

(A) Intermediate filament monomers polymerise into a chain, pair up to form dimers, tetramers and are 
finally arranged into a 10-μm-wide filament. Summary of the structure of the (B) vimentin and the (C) 
nestin monomer. Figure adapted from Herrmann et al. (2007), Svachova et al. (2013) and Michalczyk 
and Ziman (2005), and generated using BioRender.com [299], [371], [372].
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Type III IFs made up of Vim can be found in a variety of cell types including leukocytes, fibroblasts 

and ECs. It is the most widely distributed of all the IF proteins and a major IF type in ECs [373]. 

Vim monomers have the typical IF protein structure, i.e. a central α-helix coil domain and non-

helical head and tail domains (Fig. 4.1 B) [374]. They arrange into dimers, which then assemble 

into tetramers, filaments (Fig. 4.1 A) and finally a network that spans the entire cell cytoplasm 

[358]. This network of Vim plays the classical IF type role of protecting cells from stress and 

strain, as well as the positioning of organelles inside the cell [375], [376]. Vim-IF cleavage 

amplifies pro-apoptotic signalling which suggests an important role in cell biology [377]. 

Surprisingly, Vim-KO mice develop into adulthood and breed normally, without exhibiting any 

drastic phenotype, except an impairment in wound healing [305]. Vim-KO cells have 

abnormalities in their MF and MT networks, which demonstrates that Vim interacts and acts 

together with actin and tubulin [375]. Together, all the three types of cytoskeleton regulate cell 

structure, shape and movement. Vim is a marker of the epithelial (settled, tightly adhered) to 

mesenchymal (migratory) transition (EMT) in development [378]. Also, Vim tends to be 

upregulated in migratory and invasive cancer cells, and for this reason it is used in the laboratory 

as a marker of metastasis [379]–[381]. We were interested in Vim in the context of ECs and FAs. 

The classical FA is positioned at the end of an actin MF, but FAs can also to be located at the 

sites of MT polymerization [220], [221]. Interestingly, the Vim-IF cytoskeleton also associates 

with integrins in the FAs [222], [382]. This interaction may be mediated by Plec, or direct, with 

the N-terminal head domain of Vim binding the cytoplasmic tail of β3-integrin [222], [383], [384]. 

Moreover, Tyr747 and Tyr759 within the tail of β3-integrin are essential for creating the link 

between Vim-IFs and FAs [383]. In β3-Y747F and β3-Y759F mutant CHO cells, Vim collapses 

around the nucleus and adhesion strength of the cells is compromised. Vim head fragment, 

which competes with Vim-IFs for binding to β3-integrin in the FAs led to reduced cancer cell 

migration and invasiveness in mice [384]. The metastatic potential of the triple-negative model 

of breast cancer in mice was significantly reduced, using 4T1 cells expressing the Vim head 

fragment. This is an exciting finding. It suggests that targeting the integrin-Vim interaction is a 

potential therapeutic approach against cell-adhesion-relevant disorders, such as pathological 

angiogenesis and cancer. In ECs, an association between Vim and αVβ3-integrin in the FAs was 

first observed in cells cultured on laminin [222]. It was suggested that this interaction was most 

likely mediated by Plec. Since then, it has been demonstrated that the recruitment of Vim-IFs to 

bind β3-integrin in the FAs requires Plec, and is a MT (kinesin) dependent process [383]. ECs 

under shear stress (subjected to flow) recruit an increased number of Vim-IFs to β3-integrin-FAs, 

which stabilises them for greater adhesion strength, needed to remain attached [385]. Vim 

knockdown ECs under flow conditions have smaller and less stable FAs, and as a consequence, 

their adhesion is impaired [385]. These findings demonstrate the importance of the IF-FA 
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interactions in cell-matrix adhesion strength, more specifically the interaction of Vim and β3-

integrin; and highlight this interaction as a target in anti-angiogenic strategies. 

The Nes monomer resembles Vim, as it also possesses a similar α-helical rod domain near the 

N-terminus, but in addition contains a very long C-terminal tail (Fig. 4.1 C) R. Nes homodimers 

and homotetramers have been observed, however they do not assemble into IF structures in 

vitro  [386].  Instead, Nes co-assembles with a range of IF proteins, but preferentially with Vim 

(type III) or internexin (type IV) to form heterodimers, which constitute type VI IFs [387], [388]. 

Nes’ role was initially implicated in the development of the central nervous system [387], [389]. 

Nes KO mice show embryonic lethality due to severe anomalies in the development of the neural 

tube [390]. In the adult, Nes expression appears to be restricted to defined locations or sites of 

injury [391]–[393]. Nes has a role in remodelling of IF network structure and correlates with 

proliferation and cell migration [391], [394]. Recently, Nes has been reported to be expressed in 

proliferating angiogenic vasculature, including that within tumours (glioma, hemangioblastoma, 

adenocarcinoma), whereas its expression in mature human ECs is sporadic [395]–[397]. Indeed, 

smaller, proliferating blood vessels within HCT-15 human colorectal tumours implanted into 

nude mice express Nes, whereas larger vessels do not [396]. Endothelial Nes has not been well 

studied beyond the observations of vascular expression. However, some of the cancer research 

findings provide information relevant to EC biology. One cancer study reported, that much like 

Vim, Nes can also be the driver of invasion and metastasis [398], [399]. On the other hand, it has 

been shown that Nes-depleted prostate cancer cells are more invasive due to FAK activation, 

increased α5-integrin clustering, regulation P-FAK and altered FA turnover [400]. The classical 

FA is positioned at the end of an actin MF [220]. However synemin, structurally similar to Nes, 

has been shown to bind two of the classical members of FAs (alpha-actinin and vinculin) [401]. 

Overall, Nes has become an emerging player in angiogenesis and a novel marker of 

neovasculature in the light of recent findings. Morever, Nes may be a promising target in the 

clinic, as a potential driver of proliferative and invasive phenotype, whilst its expression in the 

adult organism is limited to the sites of injury and regeneration. 
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Plec is a very large (500 kDa) protein, consisting of an actin binding site, plakin domain, rod 

domain and six plecin repear domains (Fig. 4.2 A) [402]. It is potentially the most versatile 

cytolinker, often classified as an IFAP (Fig. 4.2 B) [370]. Plec KO in mice causes blistering of the 

skin, heart and skeletal muscle defects, and death within the first few days after birth [403]. This 

demonstrates that it is required for structural reinforcement in cells and tissue under mechanical 

stress, which is often the role of IF proteins. As a cytolinker protein, Plec has a variety of 

interaction partners. This includes all three major types of cytoskeleton: IFs, MTs and MFs, as 

well as FA players: vinculin, β4- and β3-integrin (Fig. 4.2 B) [293], [404]–[406]. In ECs, this protein 

plays a role in connecting Vim-IFs and the laminin-binding α6β4-integrin  [404], [406], [407]. 

Seifert et al. observed that Plec colocalised with actin stress fibres, vinculin and Vim in the FAs 

of rat fibroblasts and glioma cells [408]. Its interaction with Vim appears to be direct [409]. 

Moreover, it is required for the recruitment of Vim-IFs to FAs in a kinase- and MT-dependent 

manner, but not to maintain this link [383]. The same study also demonstrated that the 

cytoplasmic tail of β3-integrin is on the other side of this interaction, but it remains to be 

determined whether it is direct. Others have showed that Plec has a role in vascular integrity, as 

a link between Vim and Actin, needed for normal function of FAs and tight junctions [410]. 

Interestingly, Plec was suggested as a novel marker of pancreatic cancer [409], [411]. 
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Figure 4.2  Plectin is versatile a cytolinker. 

(A) Summary of plectin protein structure. ABD – actin binding site, IFBD – intermediate filament binding 
site, P – phosphorylation site, PRD – plectin repeat domain. (B) Plectin can provide a physical link between 
microtubules (MT), actin microfilaments (MF), intermediate filaments (IF) and focal adhesions (FA). ECM 
– extra-cellular matrix. Adapted from Winter and Wiche (2013) and Fuchs and Karakesisoglou (2001), and 
generated using BioRender.com [402], [412].
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4.1.3 Withaferin A, an Inhibitor of Vimentin 

Withaferin A (WFA) is one of 50+ chemicals identified in the extract of a medicinal plant Withania 

somnifera (also called ashwagandha or winter cherry) [413]. WFA is a steroidal lactone belonging 

to the withanolide family of compounds. The plant extract has been used in traditional Indian 

(ayurvedic) medicine for centuries to prevent and treat a wide range of conditions including 

stress, anxiety, inflammation, autoimmunity, cancer and aging [414]. Within the last two 

decades, WFA has been of interest to many research groups in context of diabetes, arthritis, 

cancer and angiogenesis [415]–[419]. Sub-cytotoxic levels of WFA showed promising anti-cancer 

effects in aggressive breast cancer cell lines [420]. Also, WFA was suggested as a preventative 

measure against mammary cancer due to its ability to suppress breast cancer stem cells [421]. 

Moreover, it was suggested as a potential drug for managing chronic inflammation in cystic 

fibrosis [416]. The anti-inflammatory and anti-tumour growth activity of WFA comes from the 

inhibition of NF-κB activation [417], [422]. NF-κB is a rapidly-acting transcription factor and 

known inducer of effectors in cell proliferation and cell survival [423], [424]. When de-coupled 

from its partner and inhibitor IκBα, as a result of IκBα phosphorylation or ubiquitination, it is 

activated and translocated into the nucleus, to regulate gene expression [425], [426]. One study 

proposes that WFA treatment interferes with the ubiquitin-mediated proteasome pathway to 

achieve NF-κB inhibition [417]. Another study proposes a different mechanism involving 

hyperphosphorylation of IKKB [422]. This prevents the phosphorylation of IκBα, which remains 

coupled to NF-κB, thus preventing NF-κB activation. However, the aspect of WFA which received 

the most interest from researchers is that it disrupts the Vim filament network [427]–[429]. 

It was demonstrated that WFA binds Vim at the cysteine 328 residue, which is normally the site 

of a disulphide bridge between two Vim dimers [428]. In this scenario, a WFA molecule physically 

prevents Vim filament cross-linking, thus disrupting the Vim network. A recent study has 

revisited this proposal for WFA’s mechanism of action with respect to Vim. It showed that Vim 

lacking cysteine 328, not only assembles into networks but also responds to WFA as normal, 

suggesting that further investigation is required to determine putative (or other) WFA binding 

sites within the structure of Vim [427]. There is evidence that numerous kinases, including Akt, 

Cdk1 and PKA, phosphorylate one or more of 40+ Vim residues, which may regulate Vim-IF 

organisation [430]–[432]. Also, it has been shown that, through an unknown mechanism, WFA 

leads to phosphorylation of serine-38 of Vim, a target site for many kinases [427], [429]. It can 

be suggested that Vim phosphorylation, which prevents filament polymerisation, is a 

consequence of WFA-induced activity of these kinases [433]. However, clarification is needed 

since WFA has also been shown to downregulate some of these, e.g. Akt and Cdk1 [434], [435].  
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Furthermore, WFA-induced changes in Vim-IFs are accompanied by alterations in MFs and MTs 

[427]. This is not surprising, because there is evidence of direct interaction of Vim with the other 

two cytoskeletons [436], [437]. Also, WFA may bind actin and tubulin, although it remains to be 

determined whether this interaction is direct [428]. WFA also alters organisation of other IFs 

such as keratin and peripherin [427]. WFA at high concentrations may cause aggregation of 

various IFs in the perinuclear region which could have various unwanted, most likely 

neurological, consequences [438], [439]. However, finding a dose for targeted approach without 

disruption to the normal tissue function may be possible, as different IFs show different 

sensitivities to WFA [427].  

Here, we are most interested in the anti-angiogenic properties of WFA. Indeed, WFA inhibits 

proliferation (12 nM) and sprouting in HUVECs (0.5 μM), as well as angiogenesis in vivo at a dose 

as low as 7 μg/kg/day [417]. This is most likely caused by the disruption of the Vim-IF network 

as a consequence of WFA-induced phosphorylation of Vim [428]. In Summary, WFA treatment 

has a wide range of implications on cellular processes but at the same time remains a valuable 

tool for researching the role of Vim and a promising compound for anti-cancer and anti-

angiogenic strategies. Thus, it became a valuable tool for us, as we exploited its Vim-targeting 

properties in the context of αVβ3-integrin dependent angiogenesis. 

 

 



86 
 

4.2 Materials and Methods 

 

4.2.1 General Comments 

Some of the Materials and Methods used for the experiments in this chapter were previously 

described in Chapter 2, the General Materials and Methods. IMMLEC culture was done as 

described in Section 2.2 and nucleofection performed as in 2.3. WB protocol was outlined in 

Section 2.4. The scratch-wound migration assay was described in 2.6, the proliferation assay in 

2.7 and ICC in 2.8. Data was graphed, and Student t-tests performed as described in Section 2.10. 

The Ab’s used can be found in Table 2.1 and 2.2. siRNA used can be found in Table 2.3. Also, the 

focal adhesion enrichment protocol was conducted as described in Chapter 3, Section 3.2.1. 

WFA was made up in 100% DMSO. The amount of DMSO used to treat cells (as the control 

condition) was equivalent to the amount needed in delivering the highest WFA dose in a given 

experiment, which was 0.1% v/v or less to avoid any DMSO toxicity. 

Frozen stocks, of immortalised mouse lung ECs (IMMLEC), used here were isolated (protocol in 

Section 2.2) prior to the start of the project. Not surprisingly, some variability in cell morphology 

and behaviour were observed within any one genotype. All the available variants were assessed 

for β3-integrin expression, migration speed, adhesiveness and rate of cell division, i.e. how 

quickly 100% confluency was reached after a passage (data not shown). The most representative 

cell preps were selected and used in the majority the experiments in this project. Occasionally, 

when appropriate, other cell preps were used, for example in the VEGF-signaling assay. 

 

4.2.2 RNA Isolation, cDNA Synthesis and Quantitative Real-Time PCR 

Total cell RNA was extracted using the SV Total RNA Isolation Kit (Promega, Southampton) 

according to the manufacturer’s protocol. RNA concentration and purity were determined using 

a NanoDrop™ 2000 spectrophotometer (Thermo Fisher). The 260/230 absorbance ratio 

reported any organic solvent contamination while the 260/280 ratio notified of protein 

contamination. cDNA was generated from RNA samples using the MMLV-Superscript reverse-

transcriptase set (Sigma-Aldrich) resulting in a final concentration of 0.5 ng/μL. Quantitative 

real-time polymerase chain reaction (qRT-PCR) TaqMan™ was carried out using 5 ng cDNA for 

Vim and 1 ng cDNA for the 18S ribosomal RNA control gene.  The cycle conditions in the 7500 

Fast Real Time PCR System (Applied Biosciences, Thermo Fisher) were: 2 min at 50°C, 10 min at 

95°C, then 40 cycles of 15 sec at 95°C and 1 min at 60°C. The primer/probe sets used were 

obtained from Applied Biosciences: 18S - Mm03928990_g1 and Vim - Mm01333430_m1. 
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4.2.3 Random Migration 

ECs were trypsinised, counted and seeded at 104 cells per well onto 24-well plates, pre-coated 

with 10 µg/ml FN o/n and incubated at 37°C for 24 or 48 hours. The following day, cells were 

starved for 3 hours in serum-free Opti-MEM™, before replacing it with Opti-MEM™ 

supplemented with 2.5% FBS and 30 ng/mL VEGF. The plate was moved into an incubation 

chamber (37°C and 5% CO2) mounted on an Axiovert (Zeiss, Cambridge) microscope where 

phase contrast images were taken at the same coordinates in each well every 20 min for 15 

hours. This was done using the Multidimensional Acquisition tool in Axiovision software. Nuclei 

of single cells were manually tracked with the aid of the MTrackJ plugin for ImageJ software, 

which then allowed to calculate the speed of random cell migration. 

 

4.2.4 Directional Migration 

Information on directionality of EC migration was extracted from data generated during the 

random migration assay with the use of MTrackJ. The directionality of migration was quantified 

by dividing the maximum displacement value of a track (Max D2S) by the length of the track at 

that point (Len). Picking out D2S and Len values from data tables was aided by a Perl script. 

 

4.2.5 VEGF Stimulation Assay 

6-well plates were coated with 10 µg/mL FN o/n. IMMLECs were seeded at 2.5 x 105 cells per 

well and incubated o/n at 37°C. The following day the cells were washed with PBS and serum 

starved for 3 hours in Opti-MEM™. VEGF was added at for 0, 5 or 15 min and cells were lysed 

using buffer EB and protein samples were analysed using a WB (Section 2.4). Rabbit primary Ab’s 

against P-ERK followed by total-ERK (Table 2.1) were used at 1 in 1000.
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4.3 Results 

In the previous chapter, I described our approach for narrowing the study of candidates present 

in the endothelial adhesome that might be responsible for mediating elevated angiogenic 

responses that occur in β3-integrin depleted cells (e.g. “resistance” in response to the long-term 

genetic deletion of the molecule). Having decided to focus on IFs (as described in chapter 3), in 

this chapter I further explore the consequences of siRNA-mediated knockdown of Nes, Vim and 

Plec in both WT and β3-depleted cells. Whilst β3-KO cells and RGD mimetic-treated cells were 

very useful in narrowing the list of targets to follow-up, we decided that subsequent studies 

should only profile responses in β3-HET ECs, which carry one wild-type allele of β3-integrin, and 

one knockout allele. These cells express 50% wild-type levels of β3-integrin.  As in previous 

studies, we decided to use β3-HET cells for further analyses (rather than β3-KO cells, for 

example) because they circumvent potential developmental changes arising from the complete 

loss of the protein, which we felt might confound downstream quantitative interpretations. For 

example, we have shown these cells are a good model for studying the role of β3-integrin in cell 

migration, whilst evading changes arising from the complete loss of the integrin on both alleles 

(e.g. upregulated total VEGFR2 expression) [277].  

 

4.3.1 siRNA Knockdown of Intermediate Filament Proteins Impairs 

Angiogenesis-Relevant Processes In Vitro in β3-depleted IMMLECs 

I first set out to determine how effective siRNA-mediated knockdown of each IF target was.  The 

fold decrease in Vim mRNA content was 20-fold in the WT cells and 17-fold in the β3-HET cells 

at 24 hours post-transfection (Fig 4.3 A). At 48 hours, this reduction in mRNA was ameliorated 

to about 5-fold in the WT and appeared to be abolished in β3-HET cells. Overall, Vim RNA 

expression shows signs of returning to baseline (untargeted) levels 48 hours post-transfection 

(Fig 4.3 A). I also measured Vim levels by WB (Fig 4.3 B and C), surmising that the turnover of 

Vim protein would be slower than its mRNA turnover, such that knockdown at the protein level 

would persist for longer than what was observed at the transcript levels. On average, 48 hours 

post-transfection, a 40% decrease in Vim protein level was detected in both WT and β3-HET 

cells. For this reason, alongside our empirical observation that for most targets the Robinson lab 

has examined, siRNA-mediated silencing begins to recover after 48 hours, I decided, wherever 

possible, to conduct knockdown experiments 48 hours post-transfection. 
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Figure 4.3  Vimentin knockdown in WT and β3-HET IMMLECs. 

Vim siRNA-mediated KD in WT and β3-HET ECs was assessed by (A) real-time PCR 24- and 48-hrs post-

transfection and (B) WB 48-hrs post-transfection. (C) Densitometry over 5 independent WBs relative to 

WT nt, error bars represent SEM, ** indicates P<0.01, as determined by an unpaired student’s t-test. V – 

Vim siRNA, nt – non-targeting control siRNA. 
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I was able to efficiently knock down Plec, as measured by WB. On average, there was a 60% 

reduction of Plec in WT cells and 90% in β3-HETs 48 hours post-transfection (Fig. 4.4 A and B). I 

was intrigued by the observation that both Vim and Plec appeared to be overexpressed in β3-

HET cells, compared to WT.  One could speculate that the adhesome findings presented in 

chapter 3, which demonstrated the increased localisation of these proteins in the β3-HET 

adhesome was simply a consequence of the increased expression of the two proteins in these 

cells, rather than a consequence of increased recruitment to the adhesome when β3-integrin is 

depleted. Therefore, I examined the expression of Plec by WB in FA enriched samples. Here, I 

focused on Plec, as its increased expression in β3-HET total cell lysates was more dramatic than 

that of Vim. On average, the amount of Plec present in the β3-HET EC adhesome was 

approximately 2.5-fold more than that in the WT adhesome (Fig. 4.4 C and D); more than the 

approximate 1.3-fold difference noted in total cell lysates, suggesting more Plec is recruited to 

FAs upon β3-depletion. 

Unfortunately, all attempts at assessing Nes knockdown were unsuccessful. I tested three anti-

Nes Ab’s by WB, which resulted either in many unspecific bands or no signal. However, given 

encouraging findings with Nes in chapter 3, I decided to continue to pursue this target, at least 

in the random migration assay presented below. 
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Figure 4.4  Plectin in WT and β3-HET IMMLECs. 

(A) Plec siRNA-mediated KD in WT and β3-HET ECs was assessed by WB. (B) Densitometry representative 

of 3 WBs (5 samples per condition), P – Plec siRNA, nt – non-targeting control siRNA. (C) WT and β3-HET 

samples of FA enrichment on FN were subjected to WB to examine the levels of Plec in the EC adhesome. 

(D) Densitometry representative of 6 WBs (6 samples per condition) relative to the WT. Error bars 

represent SEM, * indicates P<0.05 and ** P<0.01, as determined by an unpaired student’s t-test.  
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EC migration is a process that is crucial for angiogenesis. ECs sprout and migrate in response to 

pro-angiogenic factors to form new blood vessels [440]. In an attempt to corroborate 

preliminary studies (see chapter 3) showing changes in collective cell migration in response to 

Vim, Nes, and Plec knockdown, we decided to conduct random migration assays (for protocol 

see Section 4.2.3) following siRNA depletion of these targets. These assays were performed in 

the presence and absence of VEGF for all conditions, however minimal differences were 

observed between conditions with and without VEGF (Fig. 4.5 A). This lack of difference may be 

due to the long timespan (15 hours) of the assay, while most of VEGF’s impact occurs within the 

first 1 hour of addition to the cell media; the half-life of VEGF, after administration in vivo, is 

approximately 1 hour [441]. Therefore, I chose not to include VEGF in subsequent random 

migration assays. To our surprise, the only significant noted change in random migration was 

following Nes knockdown in WT cells (Fig 4.5 B – D). Whilst this was a disappointing result with 

regards to Vim and Plec, I was at least reassured that Nes siRNA can elicit a biological response, 

even though I could not prove knockdown by WB. 

Impaired directional migration in ECs could be correlated with impaired responsiveness to pro-

angiogenic cues from within the tumour microenvironment or chaotic dysregulated 

angiogenesis, therefore we also investigated migration directionality (protocol - Section 4.2.4), 

using the data collected in the random migration assays. Similarly, few notable changes were 

observed (Fig. 4.5 E). There was a decrease in directionality of Plec siRNA transfected WT ECs, a 

trend in β3-HET cells for a less directional trajectory upon Vim knockdown and a trend in the WT 

cells for a more directional migration upon Nes knockdown. Representative tracks used to 

calculate random migration speed and migration directionality with Vim, Nes and Plec 

knockdown are shown in Figure 4.5 F. 
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Figure 4.5  Vim, Nes and Plec knockdown has little or no effect on random or directional migration of 
WT and β3-HET IMMLECs. 

Cells were transfected with non-targeting (nt), Vim (V), Nes (N) or Plec (P) siRNA and seeded into FN-

coated 24-well plates for a random migration assay. Nuclei were tracked, using MTrackJ plug-in in ImageJ 

software, to quantify random migration. (A) shows random migration speed of WT cells +/- VEGF. (B), (C) 

and (D) summarise the effects of Vim, Nes and Plec siRNA, respectively, on random migration speed in 

WT and β3-HET cells relative to nt controls (no VEGF, n=20+). (E) Track data also allowed the quantification 

of migration directionality. Error bars represent SEM. * indicates P<0.05 and ** P<0.01, as determined by 

an unpaired student’s t-test. (F) Representative cell tracks for each condition, scale bar = 100μm. 
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It was unexpected that knocking down Vim, Plec and Nes did not, in general, slow random 

migration, in a manner similar to the effects of these knockdowns on collective cell migration 

(see Chapter 3). However, these are two different assays. The random migration assay measures 

migration speed of individual cells, which rarely interact with one another, with no spatial 

constraints. In the wound-closure assay cells are migrating as a collective of closely interacting 

cells, in a defined direction to close the ‘wound’, which is more like angiogenesis in vivo. 

Therefore, I decided to investigate whether IF knockdown influenced VEGF-mediated signalling 

by performing WBs examining ERK1/2 phosphorylation. ERK1/2 sits at the bottom of the VEGF 

signalling cascade and is often used as a functional readout of overall VEGF-responses [114], 

[115], [442]. At this stage, I decided to exclude Nes, as I was not able to confirm knockdown. 

In order to test whether Vim knockdown affects angiogenic signalling in ECs a VEGF time-course 

experiment was performed, according to the protocol described in Section 4.2.5, followed by a 

WB for phospho-ERK1/2. Briefly, WT and β3-HET ECs were transfected with Vim siRNA and 

incubated for 48 hours. They were then serum-starved, stimulated with VEGF and lysed for a 

WB. No augmentation to the normal pattern of ERK phosphorylation was observed with Vim 

knockdown (Fig. 4.6). Likewise, Plec knockdown did not impair ERK phosphorylation in either 

WT or β3-HET ECs (Fig. 4.7). 
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Figure 4.6  Knocking-down vimentin in IMMLECs has no effect on ERK1/2 phosphorylation. 

(A) Cells were transfected with non-targeting (nt) or Vim (V) siRNA and seeded on FN. 48-hrs post-

transfection, cells were stimulated with VEGF for 0, 5 or 15 min and lysed. 20 μg from each sample was 

used in a WB to compare ERK1/2 phosphorylation (P-ERK) patterns. (B) Densitometry values were 

normalised to the Hsc70 signal and shown relative to average WT nt 0 control. This figure is representative 

of 2 independent repeats. 
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Figure 4.7  Plectin knockdown has no effect on ERK1/2 phosphorylation. 

(A) Cells were transfected with non-targeting (nt) or Plec (P) siRNA and seeded on FN. 48-hrs post-

transfection, cells were stimulated with VEGF for 0, 5 or 15 min and lysed. 20 μg from each sample was 

used in a WB to compare ERK1/2 phosphorylation (P-ERK) patterns. (B) Densitometry values were 

normalised to the Hsc70 signal and total ERK (ERK) and shown relative to average WT nt 0 control. 
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4.3.2 Vimentin Inhibition Using Withaferin A in Combination with β3-

integrin Genetic Depletion. 
Given the promising results shown in chapter 3, whereby siRNA depletion of IFs inhibited 

migration in both WT and β3-HET ECs, we were quite dismayed over the findings presented in 

the previous sections of this chapter. In my hands, it looks as if IFs play little, if any role in 

regulating EC migration, at least as assessed by siRNA-mediated target depletion. Whilst it is 

possible that IFs play a role in collective cell migration, but not random migration, the findings 

presented so far in this chapter go against a large body of evidence. As summarised by Leduc 

and Etienne-Manneville (2015), Nes, Plec and Vim all contribute to cell migration and invasion 

[443]. Overall, experiments utilising siRNA knockdown of IFs in the previous section were 

disappointing. Therefore, we decided to turn to chemical inhibition of IFs, rather than siRNA-

mediated depletion, theorising that this approach would lead to more immediate and long-

lasting effects. However, unlike microtubules and actin filaments, few destabilising drugs exist 

that target IFs specifically [443]. However, we did come across a generally non-toxic inhibitor, 

Withaferin A (WFA), which leads to Vim filament fragmentation, by inducing phosphorylation of 

Vim [428], [433]. From here onwards, much of the project became focused on Vim, as WFA 

proved to be a very useful tool. 

Prior to using Withaferin A (WFA) in our experiments, a dose response curve needed to be 

established to determine an optimal, physiologically relevant dose for use in vitro.  Suggestions 

can be found in the literature, but it was important to determine the right dose that works in 

our hands [444]. We wanted to find a concentration of the drug that would just inhibit 

proliferation of our IMMLECs. We conducted a proliferation assay (Section 2.7) in WT IMMLECs 

using a wide range of WFA doses (Fig. 4.8 A) and observed a sharp drop in the proliferation rate 

between the concentrations of 0.1 μM and 1.0μM. In order to tease out the optimal dose 

further, we performed another proliferation assay using WFA between 0 and 1.0 μM (Fig. 4.8 

B). Thus, a working concentration of 0.5 μM was identified (Figure 4.8 B), which is also an 

experimental dose cited in the literature [444]. At this concentration, the proliferation rate of 

the WT IMMLECs is 90% of that at its highest, which is at 0.2 μM. It is worth noting that we 

observed an induction in proliferation between 0.1 and 0.6 μM. Therefore, at a concentration 

of 0.5 μM the drug is affecting biological processes of the cells but is not too detrimental to the 

rate of proliferation. Next, we conducted a time-course proliferation assay using the WT and β3-

HET IMMLECs at 24, 48, 72 and 96 hours after the addition of 0.5 μM WFA to the cells. We saw 

a significantly lower rate of proliferation in the WFA-treated β3-HET cells compared to the WT 

cells, at 48 and 72 hours, while re-treating the cells daily with WFA (Fig. 4.8 C).  
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Figure 4.8  WFA dose and the impact of WFA on WT and β3-HET IMMLECs. 

(A) Wide and (B) narrow dose range of Withaferin A (WFA) was used in the WST-1 proliferation assay of 

WT ECs to find an optimal experimental dose. (C) 96-hour WST-1 proliferation assay, with daily time-

points, was carried out in WT and β3-HET ECs in the presence of 0.5 μM WFA. Absorbance values were 

normalised to the 0 μM value in A, 0.2 μM value in B and WT 24-hour value in C. Error bars represent SEM 

(N=1, n=4+ technical repeats), * indicates P<0.05, ** P<0.01 and *** P<0.001, as determined by an 

unpaired student’s t-test. 
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We were interested to investigate how dual targeting of IFs using WFA and β3-integrin (by 

genetic depletion) affects migration of ECs, a process crucial for angiogenesis. In a 24-hour 

wound-closure assay, we observed that the WT cells collectively migrate faster when treated 

with WFA, whereas β3-HET ECs migrate slower upon WFA treatment (Fig. 4.9). It was interesting 

to observe a differential response in WT vs β3-HET ECs. In comparison, random cell migration 

speed was impaired in both cell types upon WFA treatment, although not significantly in the β3-

HET ECs when compared to their DMSO controls (Fig. 4.10 A and C). WFA did not affect 

migration directionality in either of the cell types (Fig. 4.10 B).
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Figure 4.9  Withaferin A has a differential effect on migration of WT and β3-HET IMMLEC monolayers. 

(A) Cells were pre-treated with DMSO (d) or 0.5 μM WFA (W) for 5 hours and subjected to a 24-hr 
wound-closure migration assay (+SEM; n=9+). * indicates P<0.05 and *** P<0.001, as determined by an 
unpaired student’s t-test. (B) Representative images at T0 and T24, scale bar = 200 μm. 
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Figure 4.10  The effect of Withaferin A on random migration of WT and β3-HET IMMLECs.  

(A) Cells were seeded into FN-coated plates and treated with DMSO (d) or 0.5 μM WFA (W) and subjected 

to a random migration assay. Individual cell nuclei (n=50+) were tracked using MTrackJ plug-in in ImageJ. 

Random migration speed of WT and β3-HET + DMSO/WFA is shown relative to the DMSO controls. (B) 

The same tracking data was used to quantify migration directionality. (C) 5 representative tracks from 

each of the conditions, scale bar = 100 μm.
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WFA treatment leads to an increase in soluble, phosphorylated Vim in fibroblasts, which does 

not efficiently incorporate into filaments [445]. Therefore, we wanted to determine if there was 

a change in phosphorylated Vim (P-Vim) in ECs upon WFA treatment, using a WB. As shown in 

Figure 4.11 A, increasing the concentration of WFA (between 0 and 2 μM) appears to cause a 

continuous increase in the level of P-Vim. Quantitation of the signal by densitometry, whereby 

the P-Vim values were normalised to total Vim (Vim) and Hsc70 (housekeeping gene) appears 

to corroborate with the WB image (Fig 4.11 B). However, this is n of 1 and requires further 

repeats to confirm. 

Vim-containing complexes have been shown to regulate focal adhesion kinase (FAK) in ECs [446]. 

Therefore, we were interested to determine whether WFA treatment of ECs affected FAK 

expression and phosphorylation. At first glance, the WB image in Figure 4.11 C suggested that 

there is a decrease in total levels of FAK (FAK) and phosphorylated FAK (P-FAK) with WFA 

treatment. However, having done this WB twice and performing densitometry with 

normalisation to Gapdh (housekeeping gene) this was no longer the case. On average, there was 

no decrease in P-FAK relative to total FAK (Fig 4.11 E). There is a trend for a decrease in total 

FAK levels as a result of WFA treatment, as cells treated with 0.2 μM and 1 μM WFA appear to 

have less total FAK than untreated cells (Fig. 4.11 D). Further repeats are needed to determine 

any changes in FAK with confidence. 
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Figure 4.11  WFA treatment in ECs causes an increase in phospho-Vim and a decrease in FAK levels. 

WT IMMLECs were treated with DMSO (d) or WFA o/n. Fresh full media + d or WFA was added the 

following day for 1 hour and the cells were lysed. 20 μg was used in a WB to determine the levels of total 

and (A) phospho-Vim (P-Vim), (C) total FAK (FAK) and phospho-FAK (P-FAK) upon WFA treatment. WB 

images were subjected to densitometry using ImageJ to quantify the signal. (B) P-Vim values were 

normalised to total Vim (Vim) and Hsc70 signal (n = 1). (D) FAK values were normalised to Gapdh, while 

(E) P-FAK signal was normalised to FAK and Gapdh (n = 2, +SEM). All values in B, D and E were expressed 

relative to the untreated sample (ut) in the same WB. 
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To visualise if and how WFA is affecting the Vim network in our ECs, we performed ICC. Indeed, 

WFA had a dramatic effect on the Vim filament structure. The Vim network collapsed towards 

the centre of the cell, unable to reach the cell membrane, in the horizontal plane, in both WT 

and β3-HETs ECs (Fig. 4.12).  

Actin microfilaments (MFs) and actin stress fibres play a role in many cellular processes including 

adhesion and motility. Actin is a major component of FAs and interacts with Vim [186], [447]. 

Therefore, we hypothesised that Vim network collapse upon WFA treatment might have an 

influence on the actin network. Therefore, we also stained for F-Actin using directly-labelled 

phalloidin in ICC. We observed that actin was more concentrated around the nucleus, less so at 

the periphery, as if following the collapse of Vim to an extent, when the cells are treated with 

WFA (Fig. 4.12). Also, the actin fibres appeared to be shorter in the β3-HET WFA-treated ECs 

compared to their DMSO control, whereas this was less apparent in WT ECs. Classical FAs 

assemble at the end of actin stress fibres, while Vim has been shown to stabilise FAs [220], [385]. 

WFA is likely causing a de-stabilisation of FAs due to the impact that it has on IFs, but perhaps 

also on MFs. This reiterates its efficacy as an anti-angiogenic compound [417]. 

The images from the ICC illustrated in Figure 4.12 were analysed further. By lowering the upper 

limit of the image display range in the green (Vim) channel in ImageJ, the peripheral Vim 

fragments were displayed, which are not visible with the normal settings (Fig 4.13 A). These 

fragments were counted. Their number was dramatically increased in both WT and β3-HET ECs 

upon WFA treatment, thus visually reiterating that the drug leads to the disruption of the Vim 

filament network (Fig 4.13 B). Integrity of the Vim network appears to be more affected by WFA 

in the β3-HET ECs then in the WT ECs (more fragments). It can be deduced that there is more 

phosphorylated and soluble Vim present in WFA-treated cells, which does not efficiently 

incorporate into the filament network [445]. We saw an indication that the amount of phospho-

Vim in WFA-treated cells increases (Fig. 4.11) although, given the ICC results, it is surprising that 

this is not more apparent by WB.
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Figure 4.12  WFA disrupts peripheral Vim filaments and remodels actin network in IMMLECs. 

WT and β3-HET ECs, pre-treated with DMSO or 0.5μM WFA, were adhered on FN-coated coverslips for 90 

min in the presence of DMSO or WFA, then fixed and stained: actin (red), Vim (green) and DAPI (blue). 

Representative ICC images (63x) of stained cells are shown. Images were taken using the Axioplan 

epifluorescent microscope (Zeiss, Cambridge) and the AxioCam MRm camera (Zeiss). Scale bar = 50 μm. 
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Figure 4.13  Quantification of vimentin filament integrity in WFA-treated IMMLECs. 

(A) As in Fig 4.10, WT and β3-HET ECs were pre-treated with DMSO (d) or WFA (W) and seeded on FN in 
the presence of DMSO or WFA for 90 min, then fixed and stained: Vim (green). ICC images (63x) of these 
cells were taken and the maximum display range limit was decreased to enhance the peripheral 
fragments. (B) Average number of Vim fragments per cell (n=10+ cells per condition). * indicates P<0.05, 
** P<0.01 and *** P<0.001, as determined by an unpaired student’s t-test.  Scale bar = 50 μm. 
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4.4 Discussion 

Results of experiments with WFA, presented in this chapter, suggest that angiogenesis-relevant 

processes can be inhibited in vitro when co-targeting β3-integrin and IF proteins. We saw that 

WFA impaired proliferation and migration of β3-HET ECs more than that of WT ECs. We also 

visualised the effect WFA has on the Vim IF network, which may be accompanied by actin 

remodelling. However, additional experiments (e.g. VEGF-induced signalling) would benefit this 

study to give a more complete picture. 

The abundance of Plec was assessed at the whole cell lysate and the FA level by WB. Plec was 

upregulated in the β3-HET cells compared to WT at both levels, in agreement with the mass 

spectrometry data discussed in Chapter 3. We achieved an effective Plec knockdown of 60 - 90%. 

In the literature Plec’s influence on ERK signalling is cell-type and context dependent [448], 

[449]. In ECs Plec plays a pro-angiogenic role in connecting Vim-IFs to integrins, promoting 

adhesion and migration [383], [406], [443]. Therefore, we were disappointed not to see a 

decrease in random migration or ERK phosphorylation upon siRNA-mediated knockdown of Plec. 

Unfortunately, none of the antibodies against Nes worked in my hands in ICC or WB. As a result, 

we decided to build tdTomato-labelled Nes constructs for use in ICC. This work constitutes the 

second half of the next chapter of this thesis. However, we were able to look at random 

migration WT and β3-depleted ECs transfected with Nes siRNA. Random migration was impaired 

only in WT ECs. Literature suggest that Nes expression correlates with cells proliferation and 

migration [391], [394]. The latter is in agreement with our observations. Lack of working Ab’s 

prevented us from assessing Nes knockdown in our cells. With more time, we could also assess 

this using qRT-PCR. 

Vim has been (successfully) looked at by WB only at the whole cell level. Analysing FA enriched 

samples would further complement the findings resulting from the mass spectrometry 

described in the previous chapter. With the limited level of Vim knockdown that we achieved 

here, we did not observe many changes in migration or VEGF-dependent (ERK) signalling. We 

attempted adhesion and proliferation assays post Vim siRNA transfection. Unfortunately, results 

from these tended to be confusingly inconsistent. Others have observed that Vim RNAi led to 

smaller FAs and decreased cell adhesion in ECs under shear stress, suggesting that Vim 

knockdown disrupts cell-matrix interaction [385]. 
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We saw more dramatic changes when we used WFA in IMMLECs. Therefore, from then onwards, 

much of the project became focused on Vim, as WFA proved to be such a useful tool. There was 

a dose-dependent modulation of cell proliferation in WT ECs, an upregulation between 0.1 and 

0.6 μM WFA and inhibition at 1.0 μM or above. We treated our cells with 0.5 μM WFA in most 

of our experiments. The increase in proliferation at low concentration of WFA may be the 

explanation for the increase in migration of WT IMMLECs in the wound-closure assay. We 

attempted adhesion assays in WT and β3-HET ECs with WFA treatment. Unfortunately, results 

from these tended to be inconsistent, and were not shown here. Random migration was 

impaired in WT, but not β3-HET ECs treated with WFA. However, in the more angiogenesis-

relevant, wound-closure migration assay, we saw a decrease in cell migration with the WFA-

treatment in the β3-HET, but not in the WT ECs. This is an interesting finding in favour of dual 

targeting of Vim and β3-integrin, as an anti-angiogenic strategy. Furthermore, we visualised 

disassembly of Vim-IFs in ECs treated with WFA by ICC. This appeared to be more dramatic in 

the β3-HET cells (more fragments) than the WTs. Not only did the Vim-IFs collapse to the 

perinuclear region, but also the actin MFs appeared to be following in a similar pattern, although 

to a smaller degree. Indeed, Vim-IFs and MFs have been shown to cross-link directly, as well as 

being linked by Plec [436], [450]. In addition, WFA may be a binding partner of MFs (and MTs) 

exerting a more direct influence on them rather than via Vim [428]. The collapse of IFs following 

WFA treatment is in line with published findings and further illustrates the anti-angiogenic 

potential of this compound [428], [444]. Indeed, low dose WFA holds promise for the clinic with 

few adverse effects [420]. The impact of WFA on Vim disassembly has interesting implications 

in the context of angiogenesis. Vim-IFs bind integrins and regulate FA structure and function 

[385], [451], [452]. Endothelial Vim promotes adhesion strength by stabilising cell-ECM 

interactions [383]. This contributes to the proliferative and migratory characteristics of ECs 

participating in angiogenesis. In the WFA-treated cells Vim filaments do not reach the FAs and 

angiogenic processes are impaired [427], [453]. The literature suggests Vim (together with 

RACK1) promote angiogenesis via FAK upregulation and activation [446]. We saw an indication 

of that by WB, as there appeared to be less total FAK in the WFA-treated cells. If we had more 

time, we would explore FAK signalling in both WT and β3-HET IMMLECs post WFA treatment.  
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We observed a 40% depletion of Vim using siRNA by WB and a 20-fold decrease by qRT-PCR. The 

level of Vim knockdown observed by WB appears ineffective. This could explain a lack of 

phenotype in some of the random migration, VEGF-signalling assay and ICC experiments (not 

shown). A pool of 4 siRNAs was used to achieve Vim knockdown, which increases the chances 

of using the correct one. On the other hand, we have not deconstructed the pool and made sure 

whether all the siRNAs are working. With that in mind, we may be diluting the effective ones 

with the ineffective when using the pool. There are two other factors which could have 

contributed to this outcome – low transfection efficiency and high abundance of Vim filaments. 

On one hand, it is surprising not to see a phenotype when knocking-down such a ubiquitous 

protein, on the other, there may be substantial levels of this protein remaining in the cell after 

siRNA silencing. 

This highlights the importance of researching a chosen candidate gene using multiple 

approaches. In our case, the use of Withaferin A (WFA) treatment, an inhibitor of Vim. Not 

surprisingly, experiments with WFA are more conclusive, as we can presume that all the treated 

cells are exposed to it, which is not necessarily the case with siRNA which needs to be 

successfully delivered to the nucleus. The caveat that we needed to consider when using WFA, 

is that it does not only target Vim-IFs, which has been extensively reviewed by Vanden Berghe 

et al. [454]. Briefly, it regulates MFs, MTs and a number of IFs, including Vim [427], [428]. It also 

impacts kinase activity, targets the proteasome complex, as well as regulating acetylcholine 

(neurotransmitter) availability [417], [455]–[457]. These actions have potential to regulate 

angiogenesis, inflammation, cell cycle and apoptosis [454]. All these effects are dose-dependent 

and there is hope for clinical use at the right dose, as an anti-inflammatory or anti-tumour 

growth agent. Indeed, the use of WFA-containing extracts in traditional Indian medicine for 

centuries suggests so. At the same time, it remains a good tool for studying Vim-IFs in the 

laboratory. 

A number of additional experiments to complement this study could be conducted. Firstly, 

adhesion assays using WFA and cells with confirmed Vim, Nes and Plec knockdown. During 

angiogenesis, ECs sprout into and invade the surrounding tissue forming new blood vessels. 

Therefore, a more angiogenesis-relevant assay than the migration assays conducted here, would 

be the invasion assay. The assessment of migration directionality that we have attempted here 

is limited. A chemotactic assay could provide additional data on the subject. Similarly, the tube-

formation assay, which relates to the blood vessel formation in angiogenesis could be used 

[458], [459]. Further analysis of VEGF-dependent-signalling, such as Akt, ERK, FAK, Pax and 

VEGFR2 phosphorylation patterns, especially with WFA in β3-integrin depleted cells, would 

greatly contribute to this study. Moreover, all these experiments could be repeated with double 
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heterozygous or double knockout EC lines, e.g. β3-HET Vim-HET, which we did not have the 

chance to do. Although, it could be argued that siRNA transfection and treatment with a 

compound (WFA) is a more-clinically relevant approach than a genetic depletion, as they are 

active forms of targeting, like administering a drug. 

Endothelial Nes, Plec and Vim have been investigated by others in the context of angiogenesis. 

The novelty of our research is that we co-target these three IF proteins (individually) alongside 

β3-integrin. Some evidence has been provided here that co-targeting β3-integrin and Vim is a 

valid in vitro anti-angiogenic strategy. Some exciting observations have been made. WFA 

differentially inhibited migration and proliferation in the WT and β3-HET cells, more so in the 

latter. Disruption of the Vim network appeared to be more pronounced in the β3-HET ECs (a 

trend for more Vim fragments) compared to the WTs. These observations suggest that IFs in the 

β3-depleted cells are more sensitive to targeting than in the WTs in the context of angiogenesis. 

Targeting β3-integrin alone is subject to an escape mechanism. A part of that mechanism is the 

upregulation of the IF proteins – Nes, Plec and Vim, as discussed in the previous chapter. The 

data presented in this chapter is largely in favour of dual targeting of β3-integrin and IFs, a 

possible route to overcome this escape mechanism. However, more definitive proof is needed. 

To investigate this further, we needed additional tools and more sophisticated models and 

assays of angiogenesis. 
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5 Building and Use of Molecular Tools for Studying 

Intermediate Filament Proteins 

 

5.1 Introduction 

In Chapter 3, we identified three IF type proteins, namely nestin, plectin and vimentin, as 

potential mediators of the escape observed with long-term anti-angiogenic depletion of β3-

integrin [275], [276]. All three IF proteins appear to play a role in angiogenesis [222], [410], [460]. 

We described our investigation of these IF proteins in vitro in WT and β3-HET ECs in the context 

of angiogenesis, in Chapter 4. Our focus was drawn towards vimentin, while Withaferin A (WFA), 

an inhibitor of vimentin, proved to be an invaluable tool for our experiments [428]. 

We wanted to go beyond in vitro models and conduct experiments that are more clinically 

relevant than the work discussed in Chapter 4. Given our disappointing results with siRNA-

mediated targeting of the proteins (chapter 4), we hypothesised we might achieve a more long-

lasting depletion of each IF, if we took an shRNA approach. At the same time, we wanted to keep 

our focus on the endothelium. We realised we could do this by combining the endothelial-

specific Pdgfb.Cre mouse model with the pSico technology of target depletion in the ex vivo 

aortic ring sprouting assay [461], [462]. First, we needed to build the pSico constructs, by 

inserting shRNA-encoding sequences against our genes of interest into the pSico backbone 

[463]. We then packaged these constructs into lentiviral particles for use in the Cre-inducible 

background. Also, we generated pSicoR plasmids, corresponding to some of the pSico 

constructs, i.e. containing the same shRNA. These could be utilised for testing the efficacy of the 

shRNA in easy-to-use cell lines, without the presence of Cre recombinase [463]. The first part of 

this chapter describes our efforts in generating and testing pSico and pSicoR constructs. The use 

of these constructs in the aortic ring assay is covered in the next chapter, section 6.3.1. 

In addition, we wanted to investigate nestin in ECs and its interaction with FAs. We were 

unsuccessful with all the commercially available antibodies against nestin that we attempted in 

WB and ICC. Therefore, we also set out to generate constructs expressing dsTomato-labelled 

nestin that we planned to utilise in ICC. Our efforts in making, testing and using nestin constructs 

are described in the second part of this chapter. Thus, this chapter’s focus is on the work related 

to molecular tools, which we generated in-house, for studying IF proteins in the endothelium. 
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5.2 Materials and Methods 

 

5.2.1 General Molecular Biology Methods 

 

5.2.1.1  Transformation of Plasmid DNA 

Plasmid DNA was introduced into either One Shot™ Stbl3™ (pSico cloning) or One Shot™ 

OmniMAX™ 2-T1 (Nestin-Tomato) chemically competent E. coli (Invitrogen) by the heat-shock 

method according to manufacturer’s protocol. Bacterial vials were thawed on ice, 20 – 50 ng of 

plasmid DNA was added, and the vials were incubated for 30 min on ice. The bacterial cells were 

subjected to heat-shock at 42°C for 45 secs and placed back on ice for 2 min. Next, the vials were 

incubated on a shaker for 1 hour at 37°C at 225 rpm with 250 μL of S.O.C. medium. 100 μL of 

the transformation mix was spread onto 1.5% agar plates (including selection pressure), such 

that a few sequential levels dilution of bacterial suspension were achieved. Plates were inverted 

and incubated and 37°C o/n. 

 

5.2.1.2  Bacterial Culture 

Single bacterial colonies were picked, using a sterile pipette tip, and grown in sterile lysogeny 

broth (LB) inside a shaking incubator (Innova 4330, New Brunswick Scientific, Cambridge) at 37°C 

at 180 rpm o/n.  

LB broth was prepared by dissolving 25 g of high salt broth mix (Melford Laboratories, Ipswich), 

which consists of tryptone, NaCl and yeast extract at a 2:2:1 ratio, in 1 L of distilled water 

sterilised by autoclaving. To prepare agar plates, 15 g/L of agar (Thermo Fisher) was added to 

the broth then autoclaved. It was cooled down to approximately 60°C, poured into petri dishes 

and allowed to set for 30 min inside a laminar flow hood.  Plates were covered and stored in air-

sealed containers at 4°C. When required, ampicillin was used for selection by adding 100 μg/mL 

to either the growth medium or to the agar solution prior pouring into plates. 

 

5.2.1.3  Plasmid Preps 

Plasmids were isolated from bacterial cultures using kits from Qiagen® (Manchester). To 

generate a Mini prep, 2.5 mL of an o/n bacterial culture was centrifuged at 8000 g for 3 min and 

the pellet was resuspended in buffer containing RNase A. SDS-based lysis buffer was then added 

to the pellet, followed by a neutralization buffer, which precipitates SDS-bound cell debris. After 
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centrifugation at 18’000 g, the supernatant was applied to a plasmid-DNA-binding spin column. 

The column was then washed with isopropanol- and ethanol-based buffers. Finally, the column 

was dried by brief centrifugation and plasmid DNA eluted using 30 – 50 μL 10 mM Tris-HCl pH 

8.5 buffer. 

As recommended by the manufacturer’s protocol, for high-copy plasmids, 25 mL of an o/n 

bacterial culture was used for a Midi prep and 100 mL for a Maxi prep. The transformed bacteria 

were spun down at 6000 g at 4°C for 15 min then lysed in the same way as a plasmid mini prep. 

The lysate was centrifuged at 14’000 g for 45 min. The supernatant was filtered through an 

equilibrated DNA binding tip, which was washed, and the plasmid DNA was eluted in a pre-

warmed buffer containing 1.25 M NaCl, 50mM Tris-Cl pH 8.5 and 15% isopropanol. DNA was 

precipitated by adding 0.7 volumes of isopropanol and centrifuged. To purify the prep, the 

precipitation and centrifugation steps were repeated with 70% ethanol. The pellet was dried 

and resuspended in 200 – 1000 μL of TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA). 

Plasmid DNA concentration and quality was determined using a NanoDrop™ 1000 

spectrophotometer (Section 4.2.2). 

 

5.2.1.4  Restriction Digests 

Restriction enzymes used are listed in Table 5.1 below. All enzymes and buffers were obtained 

from New England Biolabs (Hitchin), except buffer D (Promega, Southampton). 0.2 – 1 μg of DNA 

was digested in the presence of an appropriate buffer for 1 hour at 37°C. The reaction was 

inactived by heating to 65°C for 15 min or by the addition of 6X gel loading dye (New England 

Biolabs).
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Table 5.1  List of restriction enzymes 

Enzyme cut site working conc. (U/μL) buffer plasmid catalogue number 

HpaI GTT^_AAC 0.3 CutSmart pSico, pSicoR R0105S 

XhoI C^TCGA_G 0.4 CutSmart pSico, pSicoR R0146S 

SacII CC_GC^GG 0.8 D pSico R0157S 

NotI GC^GGCC_GC 0.2 D pSico R0189S 

XbaI T^CTAG_A 0.4 CutSmart pSicoR R0145S 

      

KpnI G_GTAC^C 0.75 2.1 Tomato-Nestin R0142S 

SalI-HF G^TCGA_C 1 2.1 Tomato-Nestin R3138S 

HindIII A^AGCT_T 0.5 2.1 Tomato-Nestin R0104S 

“^” indicates the cut site, “_”is the cut site on the complementary strand 

 

5.2.1.5  Sequencing 

As recommended by Ventura et al., the pSico sequencing primer used was: 5’-

CAAACACAGTGCACACCACGC and the pSicoR primer was:  5’-TGCAGGGGAAAGAATAGTAGAC 

[463].  

The nestin construct sequencing was initiated from within the cDNA insert outwards to confirm 

if ligations were successful. A forward primer Nes3’seqF (5’-AGCAAGTGAATGGGAGGATG) which 

bound ~170 bp upstream of the 3’ end of the insert and a reverse primer Nes5’seqR (5’-

ACCTCAGCCTCGTGCTTCT) ~250 bp downstream of the start codon were used. Primers 

Nes3’seqF and Nes5’seqR were picked using Primer3Plus online software (Andreas Untergasser 

and Harm Nijveen). 

Sanger sequencing was carried out by Cambridge BioScience (Cambridge) and Eurofins 

(Ebersberg, Germany). Samples were prepared according to the specific requirements of each 

company. 
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5.2.2 Building shRNA Constructs against Nestin, Plectin and Vimentin 

 

5.2.2.1  Oligo Design and Annealing 

shRNA oligos were designed using pSicoOligomaker 1.5 [463]. The target sequence was inserted 

into the “sequence” window and a cut-off value of 6 (on a scale of -2 to 9) was selected. The 

score was based on criteria according to Reynolds et al. [464]. An oligo with a score of 7 or higher 

has a 90% chance of silencing the target mRNA [464]. Highest scoring 19-mers found by the 

program were selected and used to generate sense and anti-sense oligos, according to the 

following formula: sense – 5’-T-19mer-TTCAAGAGA-19merRevComp-TTTTTTC and anti-sense – 

5’-TCGAGAAAAAA-19mer-TCTCTTGAA-19merRC-A, where ‘19merRC’ means reverse 

complement of the 19-mer. 

Oligos were annealed as described by Ventura et al. [463]. 23 μL of 2X Annealing buffer (200 

mM potassium acetate, 60 mM HEPES-KOH pH 7.4 and 4 mM magnesium acetate) was 

combined with 25 μL nuclease-free water and 1 μL of sense, and 1 μL anti-sense oligos (both 

100 μM). The reaction on the thermocycler was as follows: denaturation at 95°C, annealing at 

70°C for 10 min and slow cooling to 4°C. 

 

5.2.2.2  Plasmid Generation 

Molecular cloning strategy was performed according to Ventura et al.’s [463] guidelines. 

Backbone plasmids pSico and pSicoR, based on the pLL3.7 Lentilox created by Rubinson et al. 

[465], were obtained from (Addgene, Cambridge, US). HpaI-XhoI digested plasmids were ligated 

with annealed oligos (Section 5.2.2.1) using T4 DNA ligase (New England Biolabs, Hitchin) for 3 

hours at RT or 16°C o/n and transformed into One Shot™ Stbl3™ competent bacteria, as 

described in Section 5.2.1.1. Transformations were plated, with single colonies picked aseptically 

and expanded in 3 mL ampicillin-containing-LB o/n for plasmid mini preps. Once isolated, 

plasmids underwent SacII-NotI (pSico) or XhoI-XbaI (pSicoR) test digest. Successful cloning 

resulted in a 50 bp larger fragment when run a 2% agarose gel (Section 2.9). To verify insertions 

were correct, Sanger sequencing was performed. Once insertions were verified, cultures were 

set up for Midi or Maxi plasmid preps as outlined in Section 5.2.1.3. 
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5.2.2.3  Lentivirus Production 

Lentivirus was generated using Invitrogen’s ViraPower™ Packaging Mix in HEK293FT cells 

according to manufacturer’s protocol. HEK293FT cells were seeded at a density of 5 x 106 into a 

10 cm plate and incubated o/n at 37°C.  Prior to transfection, cell culture medium was replaced 

with serum-containing Opti-MEM™ without antibiotics. A lipofection mixture was prepared 

containing 9 μg ViraPower™ (from where), 3 μg shRNA construct (from where) and 36 μL of 

Lipofectamine™ 2000 (Invitrogen) in Opti-MEM™, which was added dropwise to the cells, 

followed by an o/n incubation at 37°C. Medium was replaced with complete culture medium 

without antibiotics then the cells were incubated for a further 48 – 72 hours. Virus was harvested 

and filtered through a 0.45 μm syringe filter. Clarified viral suspension was combined with the 

Lenti-X™ Concentrator (ClonTech, Saint-Germain-en-Laye, France) at a 3:1 ratio and incubated 

at 4°C o/n. This was followed by a centrifugation at 1500 g for 45 min at 4°C. The supernatant 

was discarded, and the lentiviral pellet resuspended in 1 mL of Opti-MEM™ and stored at -80°C 

until required for IF protein depletion. 

 

5.2.2.4  Lentiviral Transfection into Cells 

The lentiviral prep as described in Section 5.2.2.3 was pseudo-titrated based on its efficacy of 

infecting HEK293FT cells, as reported by the presence of GFP positive cells. Cells were seeded at 

2 x 104 per well in 6-well plates, incubated at 37°C o/n then infected with 2, 4, 8, 16, 32 or 64 μL 

of concentrated virus in the presence of 8 μg/mL polybrene, to increase transduction efficiency. 

Wells were photographed 48 hours post-transfection in the FITC channel and the percentage of 

green cells was calculated. 

As described in Section 2.2, MLECs were isolated then grown in tissue culture flask coated with 

gelatin, collagen I and FN. To positively sort the ECs by MACS, the rat anti-mouse endomucin Ab 

(clone V.7C7, Santa Cruz Biotechnology, Dallas, US) was used.  Cells were cultured in MLEC 

medium (Section 2.2). 

Pdgfb+ primary lung ECs were seeded at 2 x 105 cells per well into 6-well plates in 2mL MLEC 

medium and incubated at 37°C for 24 hours. These were infected with 100 μL of inducible-shRNA 

lentivirus in the presence of 8 μg/mL polybrene and incubated o/n. Medium was changed back 

to MLEC and cells were incubated for a further 48 hours. At this point, cells were checked for 

GFP expression and medium was supplemented with 1 μM 4-hydroxytamoxifen (OHT) to induce 

Cre recombinase and thus activate shRNA expression, which is reported by the loss of green 

fluorescence in the Pdgfb+ cells. Cells were lysed 72 hours later in EB buffer for WB analysis, as 

described in Section 2.4. 
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5.2.3 Nestin Overexpression Plasmids 

 

5.2.3.1  Primer Design 

Primers were picked based on the nestin cDNA sequence Nes-201 (ENSMUST00000090973.11) 

obtained from the online e!Ensembl (EMBI-EBI, Hinxton) database using Primer3Plus online 

software. The primers consisted of 6 random nucleotides, followed by a restriction site and a 

Nestin target sequence (6R-RS-NesSeq). The SalI restriction site (GTCGAC) was embedded in the 

forward primer for the pTom-C-Nes construct (F.C1) and the common reverse primer (R), 

whereas the forward pNes-N-Tom primer contained a HindIII site (AAGCTT). The forward 

primers spanned the Nestin ATG start codon, while the reverse primer was bound 25 bp 

upstream of the stop codon. The resulting primers were as follows: 

F.C1: 5’-ATCGTA-GTCGAC-AGCGACATGGAGGGTTGC 

F.N1: 5’-ATCGTA-AAGCTT-AGCGACATGGAGGGTTGC 

R: 5'-ACTGTA-GTCGAC-TCTCCATCTACCCCACTCAGA 

 

5.2.3.2  Nestin PCR 

All PCR reagents for the nestin work were obtained from Invitrogen. The PCR and 

electrophoresis were run according to Section 2.9 however, the reaction mixture for nestin PCR 

contained 25 μL of Platinum SuperFi Green PCR Master Mix (2X), 9 μL of nuclease-free water, 10 

μL of SuperFiGC Enhancer (5X), 1 μL of neat cDNA, primer R and either primer F.C1 or F.N1. All 

three primers were used at a final concentration of 0.5 μM and both PCRs gave rise to a 5588 

bp DNA fragment. The PCR program used was as follows: 98°C for 30 sec; 35 cycles of 98°C for 

10 sec, 62°C for 10 sec and 72°C for 3 min; and 72°C for 5 min. 

 

5.2.3.3  Nestin Plasmid generation 

The majority of this work was done using the TOPO™ XL-2 PCR Cloning kit (Invitrogen). RNA was 

isolated from IMMLECs and mRNA was reverse-transcribed into cDNA (Section 4.2.2). Primers 

were designed (Section 5.2.3.1) then used to amplify nestin cDNA by PCR (Section 5.2.3.2). 

Nestin DNA was purified from the PCR reaction using the PureLink Clean-up kit (Invitrogen). 

Backbone plasmids tdTomato-C1 and tdTomato-N1 were obtained from Addgene (Cambridge, 

US). At this stage, we made use of a naturally occurring KpnI site, which resides 63 bp upstream 

of the R primer within the nestin sequence. The C1 plasmid and F.C1-amplified nestin cDNA were 
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digested with SalI-HF and KpnI restriction enzymes (New England Biolabs, Hitchin) and 

subsequently ligated together using T4 DNA ligase (New England Biolabs). Similarly, the N1 

vector and the F.N1-amplified cDNA were cut with HindIII and SalI-HF (New England Biolabs), 

and ligated. The resulting pTom-C-Nes and pNes-N-Tom plasmids were transformed into One 

Shot™ OmniMAX™ competent bacteria (Invitrogen). This was followed by plating out on 

kanamycin-selective agar; and single resistant colonies were picked and expanded for plasmid 

mini preps (as in Section 5.2.1.3). The latter were HindIII digested then run on a 1% agarose gel 

(as in Section 2.9), where a doubling in size from 5.5 to 11 kbp reported a successful 

recombination. Plasmids with insertions were purified from the PCR reaction as the nestin DNA 

(above) and sequenced, as described above (Section 5.2.1.5). Small cultures were then 

expanded for maxi preps and used for nestin localisation studies. 

 

5.2.3.4  Immunocytochemistry with Labelled Nestin and Vimentin 

We transfected the IMMLECs with 10 μg of plasmid DNA, as described in Section 2.3. For ICC 

with the pTom-C-Nes and pNes-N-Tom plasmids, transfected cells were fixed 48 hours post-

transfection and all other steps were carried out as described in Section 2.8. For ICC using the 

pmCherry-Vim plasmid, 48 hours post-transfection, cells were treated with 0.5 μM WFA or 

DMSO for 5 hours and adhered in the presence of WFA or DMSO. All other steps were as in the 

protocol in Section 2.8.
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5.3 Results 

 

5.3.1 Generation of pSico and pSicoR plasmids 

As explained in the previous chapters, nestin, plectin and vimentin were our chosen targets to 

pursue, as potential mediators of the escape mechanism arising due to long-term depletion of 

β3-integrin. Guided by Ventura et al., we set out to generate pSico shRNA constructs against the 

three IF proteins (Section 5.2.2) [463]. To increase our chances of successfully depleting 

expression of the targets, we generated two constructs per target.  

All three genes have multiple protein-coding splice variants of different lengths. Mouse Nes gene 

encodes two of these, Vim encodes 3, while Plec encodes 20 (Table 5.2). Every effort was made 

to ensure the shRNA oligos targeted as many variants as possible. The shRNA oligo pairs Nes1 

and Nes2 bind within both Nes gene splice variants (Table 5.3). The Plec shRNA oligo pairs (Plec1 

and Plec2) target 18 out of 20 variants, while omitting only 2, very short splice variants, i.e. Plec-

219 and 220 (Table 5.3). The Vim1 oligo pair targets the 5’ untranslated region (UTR), whereas 

the Vim2 pair binds within exon 3. These both bind two of the three variants as shown in Table 

5.3. In the case of the Vim shRNA target sequences, we had to compromise on the number of 

variants targeted in exchange for a higher oligo score. 

The shRNA oligos were generated using the pSicoOligomaker software and aligned, as described 

in Section 5.2.2.1. Target sequences chosen for shRNA generation all scored 7 or higher (Table 

5.3), while the location of the target sequence was also considered, as described above. The full, 

final oligo sequences used are presented in Table 5.4, with the target sequences underlined.  
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Table 5.2  Summary of protein coding splice variants of the genes of interest 

 

Gene name Ensembl Gene Ref. Splice Variant 
Number of 

exons 
Length in 

amino acids 

Nes ENSMUSG00000004891 
Nes-201 4 1864 

Nes-203 5 1820 

Plec ENSMUSG00000022565 

Plec-201 32 4543 

Plec-202 33 4548 

Plec-203 32 4521 

Plec-204 32 4550 

Plec-205 33 4691 

Plec-206 32 4534 

Plec-207 32 4686 

Plec-208 34 4386 

Plec-209 34 4589 

Plec-212 17 661 

Plec-213 19 676 

Plec-214 19 702 

Plec-215 32 4511 

Plec-216 18 499 

Plec-217 32 4386 

Plec-218 32 4543 

Plec-219 4 43 

Plec-220 4 53 

Plec-221 32 4386 

Plec-222 21 964 

Vim ENSMUSG00000026728 

Vim-201 9 466 

Vim-202 1 134 

Vim-206 8 427 

Adapted from e!Ensembl © EMBL-EBI 

 

 

 

Table 5.3  shRNA oligos for pSico constructs 

 

shRNA Target sequence Score 
Target 
region 

Targeted splice variants 
Omitted splice 

variants 

Nes1 GTCTGGAAGTGGCTACATA 7 Exon 2 Nes-201 and 203 none 

Nes2 GGAAGAAGATGCTGATGAA 8 Exon 4 Nes-201 and 203 none 

Plec1 GGCCTCATCTGGACAATCA 7 Exon 5 
Plec-201-209, 212-218, 

221 and 222 
Plec-219 and -220 

Plec2 GGAGAACCAGCGTCGAATA 7 Exon 14 
Plec-201-209, 212-218, 

221 and 222 
Plec-219 and -220 

Vim1 GGATCGCTTTACTCAACTT 7 5’UTR Vim-201 and -202 Vim-206 

Vim2 GAAGAAACTGCACGATGAA 7 Exon 3 Vim-201 and -206 Vim-202 

5’UTR – 5’ untranslated region. Adapted from e!Ensembl © EMBL-EBI 
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Table 5.4  Full sequences of shRNA oligos for pSico constructs 

 

oligo Sequence 

Nes1 Fwd TGTCTGGAAGTGGCTACATATTCAAGAGATATGTAGCCACTTCCAGACTTTTTTC 

Nes1 Rev TCGAGAAAAAAGTCTGGAAGTGGCTACATATCTCTTGAATATGTAGCCACTTCCAGACA 

Nes2 Fwd TGGAAGAAGATGCTGATGAATTCAAGAGATTCATCAGCATCTTCTTCCTTTTTTC 

Nes2 Rev TCGAGAAAAAAGGAAGAAGATGCTGATGAATCTCTTGAATTCATCAGCATCTTCTTCCA 

Plec1 Fwd TGGCCTCATCTGGACAATCATTCAAGAGATGATTGTCCAGATGAGGCCTTTTTTC 

Plec1 Rev TCGAGAAAAAAGGCCTCATCTGGACAATCATCTCTTGAATGATTGTCCAGATGAGGCCA 

Plec2 Fwd TGGAGAACCAGCGTCGAATATTCAAGAGATATTCGACGCTGGTTCTCCTTTTTTC 

Plec2 Rev TCGAGAAAAAAGGAGAACCAGCGTCGAATATCTCTTGAATATTCGACGCTGGTTCTCCA 

Vim1 Fwd TGGATCGCTTTACTCAACTTTTCAAGAGAAAGTTGAGTAAAGCGATCCTTTTTTC 

Vim1 Rev TCGAGAAAAAAGGATCGCTTTACTCAACTTTCTCTTGAAAAGTTGAGTAAAGCGATCCA 

Vim2 Fwd TGAAGAAACTGCACGATGAATTCAAGAGATTCATCGTGCAGTTTCTTCTTTTTTC 

Vim2 Rev TCGAGAAAAAAGAAGAAACTGCACGATGAATCTCTTGAATTCATCGTGCAGTTTCTTCA 

Target sequences and their complementary sequences are in bold and underlined. 
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Aligned oligo pairs (Nes1, Nes2, Plec1 etc.) were ligated with the pSico (Fig 5.1A) and pSicoR 

backbone plasmids cut with the HpaI and XhoI restriction enzymes (Fig. 5.1 B and C). In both 

cases the HpaI site is lost, as this enzyme leaves a blunt end, whereas the XhoI site (the sticky 

end) is reconstituted after insertion of the oligo. The pSico backbone plasmid contains an 

ampicillin resistance gene for selection of transformed bacterial colonies and cytomegalovirus 

(CMV)-promoter-driven enhanced green fluorescent protein (EGFP) gene (Fig 5.1A). The CMV-

EGFP fragment is flanked by two loxP sites (floxed) followed immediately by the shRNA-insertion 

site (Fig. 5.1B) and a U6 promoter upstream of the first loxP site. The pSicoR plasmid differs from 

the pSico with respect to the position of the shRNA-insertion site. It resides within the floxed 

region (Fig 5.1C). Induction of Cre activity in the pSico plasmid results in the removal of the 

floxed region (the EGFP gene) which brings the shRNA insert within reach of the U6 promoter, 

thus allowing for its expression (Fig 5.2 A). Induction of Cre activity in the pSicoR plasmid 

removes both the EGFP gene and the shRNA.  However, we did not plan to use pSicoR in 

combination with the Cre recombinase, only in its full form (Fig 5.2 B), as a means of testing the 

efficiency of the shRNA constructs, without a need for Cre activity.
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Figure 5.1  Engineering pSico and pSicoR plasmids. 

(A) pSico backbone contains an ampicillin resistance cassette (AmpR), and a floxed (loxP511) CMV-driven 

EGFP gene. (B) The shRNA sequence was inserted in the pSico and (C) pSicoR plasmids using HpaI and XhoI 

restriction enzymes. Plasmid map in A was downloaded from the Addgene Plasmid Repository (Plasmid 

#11578) website and adjusted using SnapGene Viewer and used to generate sequence maps in B and C.  

pSico  

pSicoR  
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Figure 5.2  Cre activity in the pSico and pSicoR plasmids. 

(A) The shRNA sequence is inserted into the pSico plasmid outside of the floxed region, while Cre activity 
removes EGFP and brings shRNA near the U6 promoter, thus activating it. (B) In the pSicoR plasmid, the 
shRNA sequence is inserted into the floxed region with Cre activity removing both EGFP and shRNA. 
Adapted from Ventura et al [463]. 

pSico 

pSicoR 
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The backbone plasmids were digested with HpaI and XhoI (double digest, DD) in preparation for 

accepting the insert. Single digests of the pSico plasmid (HpaI only or XhoI only) were conducted 

alongside, to ensure both enzymes were cutting. Both DD and single digests were run on a 1% 

agarose gel to confirm cutting (Fig. 5.3 A). Linearised (cut) plasmid appears smaller than an open 

circular (nicked) plasmid, but larger than a supercoiled plasmid in agarose gel electrophoresis. 

As a method for screening ampicillin resistant colonies and identifying those colonies producing 

a plasmid with the correct insertion, we conducted test digests on plasmid Mini preps post-

ligation. These were SacII + NotI digests for the pSico plasmids or XhoI + XbaI for the pSicoR 

plasmids. The correct insertions resulted in a ~40bp-longer DNA fragment, when run on a 2% 

agarose gel (Fig. 5.3 B and C). Plasmids containing insertions were sequenced for confirmation. 

Examples of desired sequencing reads are shown in Fig. 5.4 (pSico) and Fig. 5.5 (pSicoR). 

Approximately eighty pSico colonies were screened with a test digest, fourteen of which 

contained an insert, resulting in a 20% success rate at this stage. In the process of making of the 

pSicoR plasmids the accuracy at this stage was 25%. On average, 65% of plasmids seen in the 

test digest to contain an insertion were shown to be correct by sequencing. In summary, six 

pSico plasmids were generated, using all the shRNA oligo pairs (Nes1, Nes2, Plec1, Plec2, Vim1 

and Vim2), as well as two pSicoR plasmids (Nes1-R and Vim1-R). The corresponding colonies 

were expanded for Maxi Preps. pSicoR constructs were intended for transfection into cells in the 

plasmid form. pSico plasmids were taken forward for lentiviral packaging in HEK293FT cells as 

described in Section 5.2.2.3. 
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Figure 5.3  Restriction digests in the process of generation of pSico and pSicoR Plasmids. 

(A) 1% agarose gel of a backbone digest using HpaI and XhoI, in preparation for the insert. (B) Example 2% 

agarose gel of a colony screen using a NotI + SacII test digest of pSico plasmids. Controls are shown on the 

left of the ladder and 8 putative nestin shRNA pSico plasmid DD’s to the right, with an insertion in the 2nd 

to last lane. (C) An example 2% agarose gel showing a test digest of pSicoR plasmids using XhoI and XbaI: 

3 control lanes, followed by 9 putative plectin shRNA pSicoR plasmids, with 2nd and 5th colony containing 

and insertion (higher band). DNA ladder used – HyperLadder™ I, Bioline, London. DD – double digest.
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Figure 5.4  Confirmation of shRNA Insertions into pSico Plasmids by Sequencing. 

(A) pSico backbone sequence near the insertion site, with the fragment removed by HpaI + XhoI digest highlighted. (B) pSico plasmid preps were sequenced using a reverse primer 
that bound downstream of the insertion site. Sequencing reads are showing the anti-sense strand, with shRNA oligos highlighted in grey. Generated using SnapGene Viewer.
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Figure 5.5  Confirmation of shRNA Insertions into pSicoR Plasmids by Sequencing. 

(A) pSicoR backbone sequence near the insertion site, with the fragment removed by HpaI + XhoI double digest, highlighted in blue. (B) pSicoR plasmids were sequenced using a 

forward primer, thus the sense strand is shown. shRNA oligos are highlighted in grey. Generated using SnapGene Viewer.

pSicoR  

  

   



130 
 

 

5.3.2 Testing shRNA constructs 

Upon completion of the pSico lentiviral preps, the next step was to determine the optimal 

experimental dose. Therefore, a pseudo-titration in HEK293 cells was carried out. We infected 

HEK cells as described in Section 5.2.2.4. The preps were identical in the amounts of reagents 

used and we did not observe a significant variation in the percentage of infected (green) HEK293 

cells in the pseudo-titration, except for VEGFR2 which had a lower transduction efficiency (55% 

with 64 μL) compared to the rest of the preps that were tested (70 – 90% with 64 μL) (Fig 5.6). 

At 72 hours post-transfection the majority of HEK cells transfected with 16 μL of any of the virus 

prep were green, while at 96 hours, 8 μL was enough the turn most of the cells green (data not 

shown). Primary cells can be expected to be more difficult to infect than HEK cells. Therefore, 

taking all of the above in to account, we decided that using 100 μL of concentrated virus prep 

per well in a 6-well plate was an appropriate amount to use in the experiments that were to 

follow. Although the preps exhibited some variation in transduction efficiency (VEGFR2), they 

were all deemed equivalent, including the preps that were not pseudo-titrated (Nes2, Plec1 and 

Vim1). 

We went on to assess the efficiency of the lentiviral preps on primary ECs by their ability to turn 

the cells green and achieve knock-down of the desired targets at the protein level. Primary 

mouse lung ECs (MLECs) were isolated, as described Section 2.2 from Pdgfb.Cre (OHT inducible 

Cre) mice and infected with the lentiviral pSico preps, as outlined in Section 5.2.2.4. Images of 

cells were taken at 48 hours post-infection to observe the EGFP signal, as a confirmation for 

successful introduction and expression of the pSico constructs. Indeed, many of the primary cells 

turned green, but many did not (Fig. 5.7 A). The isolation protocol includes cell sorting using 

magnetic beads to sort for ECs. The magnetic beads used for cell sorting were still attached to 

the EGFP expressing cells at 48 hours post-transfection, which suggests their endothelial 

identity. At this point, we induced Cre expression by the addition of OHT to activate shRNA 

expression (Fig. 5.2 A). Cells were cultured for a further 72 hours. At the point of lysis (T120), 

some of the cells were still green. Cells were then lysed, and target depletion was assessed by 

WB (Fig. 5.7 B). Unfortunately, we did not observe Plec, Vim or VEGFR2 depletion in the primary 

cells by WB. We were unable to assess Nes depletion by WB, as the three Abs we used showed 

either non-specific bands or no bands at all.
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Figure 5.6  Pseudo-titration of pSico Lentiviral Preps in HEK cells. 

105 HEK293 cells were seeded in 6-well plates and incubated o/n. On day 2, cells were infected with 2, 4, 

8, 16, 32 or 64 μL of neat, concentrated virus prep per well. 48 hours later, a representative image of each 

well was taken in the brightfield and green channel at same coordinates. (A) The two channels were 

subsequently merged, green cells counted and % infected (green) cells was calculated for each condition. 

(B) Representative images of HEK293 cells infected with Nes1 pSico lentivirus. Scale bar = 100 μm. 
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Figure 5.7  Introducing shRNA constructs into Primary ECs. 

Primary lung ECs were isolated and infected with lentivirus containing pSico shRNA constructs against 

VEGFR2, Plec, Vim or non-targeting (NT). (A) After 48 hours, images were taken at 20x magnification in 

both the brightfield and green channel, then merged. Scale bar = 50 μm. (B) To induce shRNA expression, 

OHT was added to the cells, for a further 72 hours post-transfection at which point cells were lysed and 

the lysate subjected to WB to check for shRNA-mediated target depletion. Gapdh and Hsc70 were used 

as loading controls. 
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5.3.3 Building Nestin-Tomato labelled constructs 

In order to further investigate nestin’s role in angiogenesis-relevant processes, we needed a tool 

to study it in vitro. The three commercially available antibodies against nestin that we attempted 

to use did not work in our hands. Therefore, we decided to generate a DNA construct that would 

encode a directly-labelled nestin protein, which could be utilised in ICC to provide us with 

information regarding the localisation and architecture of nestin in ECs, as well as its presence 

in and/or interaction with FAs. The fluorescent protein that we chose to work with was the very 

bright, red and photostable tandem Tomato (tdTomato) [466]. Proper folding and function of 

nestin could potentially be affected by addition of the tdTomato onto it. Therefore, we decided 

to build two nestin constructs, one where nestin was joined to the C-terminal end of tdTomato 

(pTom-C-Nes) and one with nestin attached to the N-terminus of tdTomato (pNes-N-Tom), thus 

increasing our chances of generating a structurally and functionally normal labelled nestin. 

Generation of the pTom-C-Nes and pNes-N-Tom plasmids were performed, as described in 

Section 5.2.3, using the tdTomato-C1 and tdTomato-N1 plasmids (Addgene) as backbones (Fig. 

5.8). The tdTomato-C1 plasmid contains a CMV-driven tdTomato coding sequence followed by 

a multiple cloning site (MCS) (Fig. 5.8 A), whereas the MCS in the tdTomato-N1 plasmid is 

adjacent to the 5’ end of the tdTomato sequence (Fig. 5.8 B). Both backbones are approximately 

5.5 kbp in size and possess a neomycin/kanamycin resistance cassette for selection in culture. 

The cloning strategy has been outlined in Figure 5.9. Briefly, SalI and KpnI digested tdTomato-

C1 and nestin cDNA are ligated to give rise to the pTom-C-Nes construct (Fig 5.9 A), while HindIII 

and SalI digested tdTomato-N1 and nestin cDNA are combined to generate pNes-N-Tom (Fig 5.9 

B). In these designs, the pTom-C-Nes construct uses the Tomato start codon and the stop codon 

at the end of the MCS fragment, present immediately downstream of the nestin sequence, as 

the boundaries of the amplicon (Fig 5.9 A). In the pNes-N-Tom plasmid, the nestin start codon 

and the Tomato stop codon are used (Fig 5.9 B).
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B 

 

 

Figure 5.8  tdTomato backbone plasmid maps. 

(A) tdTomato-C1 plasmid contains the multiple cloning site (MCS) immediately downstream of the 

Tomato coding sequence driven by the CMV promoter, whereas (B) the MCS within the tdTomato-N1 

plasmid is downstream of the promoter and immediately upstream of the Tomato sequence. Both 

plasmids contain the neomycin/kanamycin (NeoR/KanR) resistance cassette for selection of transformed 

colonies. 

 



135 
 

A   tdTomato-C1 

pTom-C-Nes 

 

B   tdTomato-N1 

 pNes-N-Tom 

 

Figure 5.9  Cloning strategy for generating Tomato-labelled nestin constructs. 

(A) tdTomato-C1 backbone plasmid was cut using SalI + KpnI restriction enzyme pair, while (B) tdTomato-

N1 by HindIII + SalI. Cut plasmids were then ligated to the nestin cDNA sequence digested with the 

correspoding enzyme pairs. Thus, pTom-C-Nes and pNes-N-Tom plasmids were generated. MCS – multiple 

cloning site. 
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From the start to the stop codon (excluding the latter), the nestin transcript Nes-201 

(ENSMUST00000090973.11) is 5592 nucleotides long and translates to 1864 Amino Acids (Fig. 

5.10). We designed primers to amplify Nestin cDNA, then added restriction sites on both ends 

(Section 5.2.3.1). These sites were utilised for inserting the nestin sequence into the backbone 

plasmid. The nestin target sequence for the forward primers (F.C1 and F.N1) was 18 nucleotides 

(nt) long, starting 6 nt upstream of the start codon, whereas for the reverse (R) primer was 21 

nt long, ending 22 nt upstream of the stop codon (Fig. 5.10). We used Primer-BLAST (NCBI) to 

check the parameters of the primers [467]. GC content for the reverse primer (recommended 

40-60%) was correct, however it was marginally too high for the forward primer (see Table 5.5 

below). Melting temperatures (Tm) of the primers need to be between 45°C and 65°C, and within 

5°C of one another. The optimal primer length to ensure binding specificity and ease of 

annealing is between 18 to 25 bps. The Tm and length guidelines were met for both primers 

(Table 5.5). Also, the self-complementarity (self-binding) scores were acceptable. These are 

more qualitative rather than quantitative and there is not a defined cut-off value, but the lower 

the self-complementary score the better, to minimise the likelihood of the primer forming a 

secondary structure rather than binding the template DNA. Primer-BLAST also reported how 

specific the primer pair was against the mouse transcriptome. The only PCR product of less than 

15 kbp, identified by Primer-BLAST, using the Refseq mRNA database of Mus musculus (taxid: 

10090) was a transcript of the Nes gene (>NM_016701.3). 

 

 

Table 5.5  Parameters of the Primers Used for the Nestin cDNA Amplicon. 
 

Sequence (5'->3') Length Tm GC% 
Self 

complement. 
Self 3' 

complement. 

Fwd 
primer 

AGCGACATGGAGGGTTGC 18 60.05 61.11 4.00 2.00 

Rev 
primer 

TCTCCATCTACCCCACTCAGA 21 59.07 52.38 3.00 3.00 
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>ENSMUST00000090973 cdna:KNOWN_protein_coding 

CGCTGGGTCACTGTCGCCGCTACTCCCTTTCTCCCCCTTAAAAGCTCCAAGGGCCACTCC 

CTTCTCTAGTGCTCCACGTCCGCTTGCCCTCGGGGGGCCAGACCAGCGACATGGAGGGTT 

GCGTCGGGGAAGAATCTTTTCAGATGTGGGAGCTCAATCGACGCCTGGAGGCCTACCTGA 

CCCGGGTCAAGACGCTGGAGGAGCAGAACCAGCTGCTCAGTGCCGAGCTTGGGGGACTCC 

GGGCGCAGTCCGGGGACGCCTCCTGGCGAGCCCGAGCCGACGACGAGCTGGCAGCCCTGC 

GGGTCCTCGTCGATCAGCGCTGGCGGGAGAAGCACGAGGCTGAGGTGCAGCGCGACAACC 

TTGCCGAAGAGCTGGAGAGCGTGGCGGGCCGGTGCCAGCAGGTGCGGCTCGCCCGGGAGC 

GGACCATCGAGGAGGCGGCCTGCAGCCGGCGCGCGCTCGAGGCGGAGAAGAATGCGCGGG 

GCTGGCTGAGCACCCAGGCTGCCGAGCTGGAGCGCGAGTTAGAGGCTCTGCGAGCGTCGC 

ACGAGGAGGAGCGCGCGCACCTGAACGCCCAGGCCGCCTGTACGCCGCGCCGACCCCCCG 

CGCCGGCCCACGCATCCCCCATCCGGGCCCCTGAAGTCGAGGAGCTGGCCAGGCGCCTAG 

GCGAAGTGTGGCGCGGGGCGGTGCGTGACTACCAGGAGCGCGTGGCTCACATGGAGAGCT 

CGCTGGGCCAGGCCCGCGAGCGTCTGGGCCAAGCCGTGCGGGGCGCTCGGGAGAGTCGCT 

TAGAGGTGCAGCAGCTGCAGGCTGATCGCGACAGCCTCCAGGAGCGCAGAGAGGCGCTGG 

AACAGAGATTGGAAGGCCGCTGGCAGGACCGGCTGCAGGCCACTGAAAAGTTCCAGCTGG 

CTGTGGAAGCCCTGGAGCAGGAGAAGCAGGGTCTACAGAGTCAGATCGCTCAGATCCTGG 

AAGGTGGGCAGCAACTGGCACACCTCAAGATGTCCCTTAGTCTGGAAGTGGCTACATACA 

GGACTCTGCTGGAGGCTGAGAACTCTCGCTTGCAGACACCTGGAAGAAGTTCCCAGGCTT 

CTCTTGGCTTTCCTGACCCCAAGCTGAAGCTGCATTTCCTTGGGATACCAGAGGACCAGC 

ACCTGGGATCTGTGCTCCCTGTCCTCAGCCCAACATCCTTCTCTTCCCCCTTGCCTAATA 

CCCTTGAGACTCCTGTGACAGCCTTTCTGAAGACACAGGAATTCCTTAAGGCCAGAACCC 

CCACCTTGGCCAGCACTCCCATCCCACCTATGTCTGAGGCTCCCTATCCTAAAAATGCAG 

AGGTCAGAGCCCAGGATGTCCCCCATTCCCTGCTCCAGGGTGGGAGGCAACAGGCTCCAG 

AGCCTCTTTGGGCTGAGGCCACAGTGCCCAGTTCTACTGGTGTCCTCCCAGAGCTGGAGG 

AGCCTGGGGGCGAGCAGCCGGACCACTTCCCTGATGATCCAACCTCCTTAGCCCCACCCC 

TCAACCCTCACCACTCTATTTTAGAGGCTAAAGATAGAGAATCCAGTGAGTCTAGAGTTT 

CTAGCATATTCCAGGAAGAAGAAGGGCAAATCTGGGAACTTGTAAAGAAAGAAGCAGCCA 

CAGAGGTAAAAGTAGAAAACAGCTTAGCACAGGAAATACAAGAAAGTGGTCTGGACACAG 

AAGAAATCCAGGATTCCCAGGGACCTTTGCAGATGGAAACCCTGGAGGCTCTAGGAGATG 

AGCCACTGATGTCTCTGAAAACCCAGAACCATGAGACCCCAGGAAAGGAGAATTGCAATT 

CATCTATAGAAGAGAACTCGGGGACAGTAAAAAGCCCAGAAAAAGAAAAACAAACACCAC 

TGAAGTCTTTAGAAGAAAAGAATGTAGAGGCAGAGAAAACTCTAGAAAATGGGGTTCTTG 

AACTATCTAAACCTTTAGGAGAAGAAGAACCAAGAATGGAGGATCAAGAATTAATGTCTC 

CTGAACACACACTAGAGACAGTTTCATTTCTAGGAAAGGAAAATCAGGAAGTAGTGAGGT 

CTTCAGAAGAACAGAACTTAGAATCATTGATAACTTTTAAAGAGGAGAGCCAATACCCAC 

TGGGAGGTCCAGAAGCCGAGGACCAGATGCTTGAAAGACTGGTAGAGAAAGAGGATCAGA 

GGTTCCCAAGGTCTCCAGAAGAAGACCAGCAGGCGTTTAGACCTCTGGAGAAAGAGAATC 

AGGAGCCACTAAGATTTGAAGAAGCAGAGGACCAGGTGCTTGAGAGACTGATAGAAAAGG 

AAAGGCAGGAGTCCCTGAAGTCTCCAGAAGAAGAGGACCAGCAGGCATTTAGACTTCTGG 

AGAAAGAGAATCAAGAACCACTAAGGTTTGAAGACGCAGAGGACCAGGTGCTTGAGAGAC 

TGATAGAAAAGGAAAGACAGGAGTCCCTGAAGTCTCCAGAAGAAGAGGACCAGCAGGCAT 

TTAGACTTCTGGAGAAAGAGAATCAAGAACCACTAAGGTTTGAAGAAGCAGAGGACCAGG 

TGCTTGAGAGACTGGTAGAAAAGGAAAGTCAGGAGTCCCTGAAGTCTCCAGAAGAGGAGG 

ACCAGAGGACTGGGAAGCCTCTAGAAAAAGAAAATCAGGAATCTCTGAGGTCTCTTGATG 

AAAACCAGGAGACAATTGTACTGCTAGAAAGCAAGAACCAGAGGCCACTGAGATCTCTAG 

AAGTAGAAGAGGAGGAGCAGAGAATTGTGAAACCTCTAGAAAAAGTGAGCCAGGTCTCCC 

TCGAATCTCTCGAAAAAGAGAATGTGCAGTCACCAAGGTATCTGGAAGAAGATGACCACA 

TGATTAAGAGCCTGCTAGAAGACAAGACTCATGAGATCCTGGGATCTCTTGAAGATAGAA 

ATGGGGAGAACTTTATACCACCTGAAAATGAGACCCAGGGTTCATTGAGGCCTCCAGAAG 

AAGAGGACCAGAGGATTGTGAACCATCTAGAAAAAGAAAGCCAGGAGTTCCTGAGGTCTC 

CAGAAGCAGAGGAAGAAGAAGAGCAGGTGATGGTGAGATCTCTAGAAGGAGAGAACCACG 

ACCCACTGAGCTCTGTGGTGAAAGAGGAGCAGATGGCTGAGAGCAAGCTAGAGAACGAGA 

GTCAGGACTCCAGGAAGTCTCTTGAAGATGAGAGCCAGGAGACCTTTGGGTCTCTGGAAA 

AAGAGAATCTAGAGTCCCTGAGGTCTCTAGCAGGACAGGACCAAGAGGAACAGAAACTCG 

AACAAGAGACCCAGCAGCCACTGAGGGCTGTAGAAGATGAGCAGATGACAGTGAACCCTC 

CAGAAAAGGTGGATCCAGAGTTACCAAAGCCTCTTAGAAATGACCAGGAAGTAGTCAGAT 

CTCTTGACAAGGAGAATCAAGAGTCACTAGTGTCACTGAATGAAGGAGGTATGGAGACAG 

TGAAGTCTTCAGAAACAGAGAACATAGAATCACTGGAGACTGTGGGAGAGTGCCTGGGAA 

GAAGGAAGTCTGTAGATACTCAAGAGCCATTGTGGTCTACGGAAGTGACTAGTGAGACAA 

TAGAACCTCTAGAAGATGAGACCCAAGAACCACTGGGGTGTGTGGATGAGAACCAAGAGG 

TGCTGACACCCCTTGAAAGGGAGAGTCAAGAACTGAGATCTCTGGGCAAGTGGAACCCAG 

AGACTGTGGAATCACCAGGAGGGGTGGAGGACAGTCAGCAGTGCCTGGAAGTGGAAGAGG 
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GCCCGGAGAGGGAGCAGCACCAAGAGTCTCTGAGGTCTCTGGGAGAGGTGGAATGGGAGC 

TGCCTGGATCTGGAAGTCAACAGAGGTGGGAGGATGTGGTGGAGGATGGAGAAGGTCAGG 

AAGCATCCCTGGGGGCTACAGGAGTGGAAACTGAGGATAAGGCAGAGTTGCATCTGAGGG 

GCCAAGGTGGGGAGGAGAAAGCTGTAGAGGAGGGAGAGCTGCTGCAGGATGCTGTGGGGG 

AGGCCTGGAGTCTGGGGAGCTCGGAGCCCAAGGAGCAGAGGGTCCCTGCTGAGCCCCTCG 

ATGACCTGGAGGGACAACCAGAGCAGACGGGAACCCTAGAGGTCCCAGTTGCTCAGGGAA 

TGCCAGAGGCAACAGAGCAAGATGAGGACAGAGCCCAAGCAGGTGAACAAGACTCCGTAG 

AGGTGACCCTTGGGTTAGAGGCTGCCAGAGCTGGACTGGAACTCGAGCAGGAAGTGGTAG 

GGCTAGAGGACCCAAGGCATTTCGCCAGGGAGGAGGCCATTCACCCATCCCTGGGGGAGG 

AAAGTGTGAAGGCAAAGATAGATCAGGGCTTGGAAGAGCCTGGAAAGGAACCAAAAGAGG 

CAGGTGCTCTGGACTCAGGCATCCCTGAATTACCCAAGACTAGCAGTGAGACTCTGGAAT 

GCAAGGGCTGGGAAGAGTCTGGGGAGGGCTGGGGAGAAGAGGAGGCCTCGCTGGAGACCT 

CAGACCATGAGGGCAGCCATGCCCCTCAGCCCAGGCCCCCTAAGACAGAGGAAGATGAGG 

GTCTACAGGCAGCGCTAACAGTCCCTGGTCCCAAGCTCCTGGAACCCTGTTCACCCATCC 

CGATCTTGACAGATGCCCATGAGCTGCAGCCCCAAGCTGAGGGGATCCAGGAGGCTGGGT 

GGCAGCCGGAAGCTGGGACTGAAGCACTGGGAAGAGTAGAAGATGAGCCAGAGTTTGGTC 

GTGGGGAGATTCCTGAGGGCCTCCAGGATTGGGAGGAGGGCAGAGAAGACAGTGAGGCAG 

ATGAGTTAGGGGAAACTCTCCCTGACTCTACTCCCTTGGGCCTCTACCTGAAGTCTCCTG 

CCTCCCCAAAGTGGGAGCAAGCTGGAGAACAGAGGCTTTTCCCTCAAGGGGAGGCCAGGA 

AGGAAGGCTGGAGTCCTGCTGCCCTGGCTGCCCAGGGTCTCAGTGACCCACCAGAGGAAG 

AGCAGCAAGGCCATGACTCTGACCTCTCATCTGAGGAATTTGAGGACCTAGGGACTGAGG 

CCTCTCTTCTTCCAGGGGTTCCCAAAGAGGTGTCCGATCATCTGGGCCAAGAGCCCCCCG 

TACTGCAGCCTGCATGCTGGGATCAGGGTGGGGAGTCTGATGGGTTTGCTGATGAGGAAG 

AGAGTGGGGAAGAGGGAGAGGAAGAAGATGCTGATGAAGAAGAAGGAGCAGAGTCAGGGA 

CTCAGTGGTGGGGGCCAGGGCCCTCTGGTGGAGGTGTCAAGGTCCAGGATGTCACCCAGA 

GAGGGGACCTGGAACATGAATCTGTGGGTGACAGTGGCCTCTGGGATGATGGCTTGAGTG 

GGGCTGCAGCTAATGTTCTTGTAACTGCCCTAGAGACGGTGTCTCAGGACAGTGCTGAGC 

CTTCCGGGTCAGAGGGGTCTGAGTCTGCTTCCTTGGAGGGGGAGGAAGGTCAAGCGATTG 

ACCATTTAGATGCCCCCCAAGAGGTGACTAGCGTGGTCCCAGGGGCAGGAGACACCTTTG 

ATATCAGTGGCCAGGGCCCCAACCTGGAGTCAGAGCAAGTGAATGGGAGGATGGAGAATG 

GACTAGAGCAGGCTGAGGGTCAGGTGGTTCTGCATGGGGACGAGGATCAAGGCATCCCTT 

TACAGGAACAGGGTACCCTCAAGGCCCCTTTAGTAGGGTCTCCTGTGCATCTAGGCCCAA 

GCCAGCCGCTGAAGTTCACTCTGAGTGGGGTAGATGGAGACTCCTGGTCCTCAGGGGAAG 

ATTAGAAACTGCCCCTCTGGCACTGAGGACTTAGTGGGGGGTGGGGGGAATGTCCCTCCC 

TGCTCTGGGCCAGCACTCTTAGCTTTGATAACTTGACCTGTGGTATCTCTCGTGGAGAGG 

TGTGGCTGGCTGAGACAGGTGAGATCCTGCCTGGATCACCCTGAAGGCTCAGGTCAGCTG 

AGCCTATAGTTCAACGCCCCCTTTCTTCTGTGGCTCACCTGCTGGAAGAGGCTTGGGCCC 

AGAGCTTTCCCACGAGACTGCTCTGGCCAGAGCTTGCTAGCCCTGCCTGTCTACAGTAGC 

ACCACCTGCACAGGGTCTGGTGCATGCCCAGAGGAGCAGCAATGATGAGTGACTCTCATC 

ATCTCAGCCTGCTGAGATCTTGTTTCTCTCTTCCTCCCTTGAATAAAGCTGTATCCCTAC 

 

 F.C1 / F.N1 primer     start codon     Nes5’seqR     Nes3’seqF  l 

 KpnI site    R primer    stop codon l 

 

Figure 5.10  Nestin cDNA sequence. 

Nestin transcript Nes-201 (ENSMUST00000090973.11) of the nestin mouse gene 

(ENSMUSG00000004891) results in the cDNA sequence presented above. It has been obtained from the 

Ensembl online database. From the start to the stop codon (excluding the stop), the sequence is 5592 

nucleotides long and translates to 1864 Amino Acids. Features relevant in the generation of our nestin 

constructs have been highlighted in various colours here. 
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We attempted a series of PCR reactions to amplify the Nes cDNA from total mouse cDNA and 

analysed those by agarose gel electrophoresis (Section 2.9). Fig. 5.11 A shows four of the 

unsuccessful PCR attempts with a number of unspecific bands in lanes 2 to 5, as well as two 

successful reactions resulting in one band, at the correct size of approximately 5.5 kbp, in lanes 

6 and 7. These two positive reactions were carried out using F.C1 + R and F.N1 + R primer pairs, 

while the annealing temperature in the PCR was 62°C. 

Next, the backbone plasmids and the PCR-amplified, purified nestin cDNA were digested using 

matching pairs of restriction enzymes. We utilised a naturally occurring KpnI site 62 nt upstream 

of the R primer target sequence (Fig. 5.10) in the making of the pTom-C-Nes. Therefore, the 

tdTomato-C1 backbone and nestin cDNA were cut using SalI and KpnI enzymes then ligated to 

result in the plasmid pTom-C-Nes, while pNes-N-Tom was generated by digesting the tdTomato-

N1 backbone and nestin cDNA, using Hind III and SalI (Fig. 5.9). 

After ligation, transformation into E. coli and a MiniPrep we conducted a test digest of pTom-C-

Nes and pNes-N-Tom using the HindIII restriction enzyme (for protocols, see Section 5.2.3). The 

digest confirmed an insertion of approximately 5.5 kbp in both constructs (Fig. 5.11 B). 
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Figure 5.11  Generating Tomato-Nestin DNA constructs. 

(A) Several primer pairs were tested for amplification of nestin cDNA by PCR. 1uL of neat mouse cDNA 
(100 ng) was subjected to PCR using a number of combinations of primer pairs and run on a 1% agarose 
gel: 4 unsuccessful nestin PCR attempts, then cDNA amplified using primer pair F.N1 + R and F.C1 +R. 
Ladder – HyperLadder™ I (Bioline). (B) Also, ~250 ng of plasmid preps (0.5 μL) were digested with HindIII 
and run on a 1 % agarose gel to verify insertion of the nestin sequence. Ladder – GeneRuler™ 1 kb Plus 
DNA ladder (Thermo).
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Finally, we sequenced pTom-C-Nes and pNes-N-Tom using primers binding within the nestin 

cDNA sequence, near the ends and initiating sequence reads outwards, i.e. primer Nes5’seqR – 

a reverse primer which binds near the 5’ end, and Nes3’seqF – a forward primer near the 3’ end 

(Fig. 5.10). Figure 5.12 contains the sequences of the backbones and nestin cDNA near the ends. 

It can be used for reference when looking at the sequencing results in Fig. 5.13, which 

demonstrates that the recombination events occurred. Thus, we successfully generated the 

pTom-C-Nes and the pNes-N-Tom constructs as planned (Fig. 5.9). 
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A  

 tdTomato-C1 

 

B 

tdTomato-N1 

 

       

C C-Nes 

5’-GTCGACAGCGACATGGAGGGTTGC…(nestin)…TTACAGGAACAGGGTACC 

 

Nes-N 

5’-AAGCTTAGCGACATGGAGGGTTGC…(nestin)…TCTGAGTGGGGTAGATGGAGAGTCGAC 

 

SalI, KpnI, HindIII, start codon, F.C1, F.N1 and R primers 

 

 

Figure 5.12  Reference sequence near the recombination site.  

(A) and (B) tdTomato backbone plasmids were ligated with nestin cDNA, following matching restriction 

digests. (C) Nestin cDNA was inserted into tdTomato-C1 using SalI and KpnI enzymes, whereas the 

insertion into tdTomato-N1 was done using HindIII and SalI. The KpnI site naturally occurrs near the 3’ end 

of the Nes gene, while SalI and HindIII restriction sites were added onto the ends of the cDNA using 

primers F.C1, F.N1 and R. 
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pTom-C-Nes, primer Nes5’seqR 

 

pTom-C-Nes, primer Nes3’seqF 

 

pNes-N-Tom, primer Nes5’seqR 

 

pNes-N-Tom, primer Nes3’seqF 

 

 

Figure 5.13  Confirmation of Nestin Constructs by Sequencing. 

pTom-C-Nes and pNes-N-Tom plasmid DNA were sequenced using primers Nes3’seqF and Nes5’seqR over the recombination sites. For the latter primer, the reverse 

complement of the sequencing read is shown. Restriction sites are highlighted in blue: GTCGAC – SalI, GGTACC – KpnI and AAGCTT – HindIII.
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5.3.3 ICC using Nestin-Tomato and Vim-Cherry 

We wanted to investigate nestin localisation in ECs, to determine whether nestin is associated 

with FAs and if this association changes between different IMMLEC β3-genotypes. We were able 

to transfect our IMMLEC cells with the Tomato-labelled nestin constructs made in-house and 

use ICC to assess localization of nestin. With the protocol used (Section 5.2.3.4) we exhibited a 

problem with the tdTomato signal bleaching quite readily and the images obtained do not reflect 

the full intensity of the red signal as observed down the microscope. However, examples of ICC 

images are shown in Figure 5.14 A. We saw filament-like structures with both constructs, most 

likely type VI IFs [468]. The interaction between nestin and FA complexes is likely, given the 

extension of nestin structures to the periphery of the cell and the overlap of the nestin (red) and 

paxillin (green) signals (Fig. 5.14 A). We did not observe any changes in nestin-FAs interactions 

between WT, β3-HET and β3-KO cells, although this remains to be concluded with more in-depth 

analysis. 

In Chapter 4 (Section 4.3.2), we discussed disrupting Vim using WFA in ECs and presented ICC 

images of WFA-treated cells (Fig. 4.11). We also attempted to determine how WFA affects Vim 

interactions with FAs by ICC in WT IMMLECs. To do this, we transfected the cells with a Vim 

construct directly-labelled with a C-terminal mCherry (red fluorescent) protein. We achieved a 

transfection efficiency of approximately 20% with 10 μg of plasmid per 1 million cells (protocol 

in Section 5.2.3.4). We conducted a limited ICC analysis of ~10 cells per condition. There 

appeared to be fewer Vim-FA associations in the WFA-treated cells then in the DMSO-treated 

cells (Fig 5.14 B), although we did not carry out a detailed analysis or quantification. Also, we 

observed that the Vim filaments were less spread-out within the WFA-treated ECs than in the 

DMSO-treated, but to a lesser degree than previously, when we performed ICC with the anti-

Vim Ab, rather than using a labelled Vim construct (Fig 4.11). The Vim-FA interaction was closer 

to the centre of the cell in the WFA-treated condition, as the filament network was retracted 

(Fig 5.14 B). When using the Vim-Cherry plasmid we encountered a technical problem in ICC. 

The red (Vim) signal was bleaching rapidly, similar to that of tdTomato-Nestin. 
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B 

 

 

Figure 5.14  Investigation of the IF and FA association in WT IMMLECs by ICC. 

(A) To investigate Nes-FA interaction, cells were transfected with pNes-N-Tom or pTom-C-Nes construct, 

then adhered for 90 min on FN, fixed, stained for paxillin (Pax) and imaged at 100x. Scale bar = 20 μm. (B) 

ECs were transfected with pmCherry-Vim, then pre-treated with 0.5 μM Withaferin A (WFA) or DMSO and 

adhered for 90 min on FN in the presence of DMSO or WFA. Next, they were fixed and stained for Pax and 

imaged at 63x to investigate Vim-FA associations. Scale bar = 50 μm. White arrows point out the likely IF-

FA associations. 
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5.4  Discussion 

We generated six pSico constructs (two per target) encapsulated by lentivirus, an shRNA delivery 

technology designed by Ventura [463]. We pseudo-titrated the viral preps and tested them in 

primary cells. Unfortunately, we do not possess clear proof of target depletion by these pSico 

shRNA constructs made in-house. The shRNA oligo insertion was confirmed by a test digest and 

sequencing that span the insertion. The EGFP signal, originating from the backbone, was present 

in both tests, in HEK293 and primary cells. EGFP in these constructs is CMV-driven, which is a 

strong mammalian expression promoter from the human cytomegalovirus [469]. We 

successfully achieved all the steps until this point. Unfortunately, we were unable to 

demonstrate target depletion by WB. Our lab has previously been successful with this 

technology, therefore we were disappointed about potentially failing to achieve the main aim 

of generating the constructs – stable target knockdown. 

One explanation for the lack of success, is that Cre expression was insufficient in the cells 

transfected with the constructs. The Cre recombinase is driven by a Pdgfb promoter in the 

animals from which we isolated the cells. An insufficient Cre expression could be due a mixed 

cell population or cells reaching senescence. An impure cell prep could have resulted in a mixed 

cell population, including those that do not express Pdgfb and thus Cre as well. This would 

impact what we see by WB and any changes in protein levels could be overshadowed. Also, 

senescent cells have an altered gene expression profile and it this case they may have stopped 

expressing Pdgfb and thus Cre [470], [471]. Since we are confident in our cell isolation protocol, 

involving two rounds of a positive cell sort, senescence is the more likely explanation. Cells could 

be tested by β-galactosidase staining, a biomarker of senescent cells [472]. This could be done 

in a number of ways using commercially available kits, if we had more time [473]. 

Another possibility could be an insufficient transfection efficiency. Once again, this would affect 

what we observed by WB, as our analysis would be of a lysate from a mixed population. We 

demonstrated that the virus preps transfect nearly all of the HEK293 cells exposed to it, but it 

can be expected that the transfection efficiency of primary ECs was lower.  

One way to investigate this further would be by qRT-PCR, using RNA from additional lentivirus-

transfected primary cells, although the problems mentioned above would still apply. We also 

generated pSicoR plasmids (pSicoR_Nes1 and pSicoR_Vim1) corresponding to the pSico_Nes1 

and pSico_Vim1. Another, more straightforward way of testing the shRNA constructs, as it does 

not require isolating primary cells, would be to transfect the pSicoR into a mouse cell line, e.g. 

Mouse Embryonic Fibroblasts (MEFs) and check target depletion by WB or qRT-PCR. This is 

something that we planned and would attempt, if we had more time. 
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In the case of the Vim shRNA target sequences, we were forced to compromise on the number 

of variants targeted in exchange for a higher oligo score. Having one of the splice variants 

unaffected by the shRNA could be a potential lack of depletion. However, the main splice variant 

Vim-201 (UniProt – P20152) is targeted by both Vim shRNA oligo pairs. In addition, there is very 

little evidence of the existence of splice variants Vim-202 (UniProt – A2AKJ2) and 206 (UniProt 

– A0A0A6YWC8), while the former splice variant encodes a considerably truncated form of the 

Vim protein. We were confident that the location of the target sequences of the Nes and Plec is 

optimal. Both protein-coding Nes splice variants are targeted with both of our oligo pairs. Also, 

most of the Plec splice variants are targeted. Only two very short Plec fragments (~50aa) did not 

contain shRNA target sequence, i.e. Plec-219 (UniProt – A0A0B4J1M7) and 220 (UniProt – 

A0A0B4J1M3) with very little evidence of existence, while the full plectin protein is 4691 aa long 

(UniProt – Q9QXS1). In summary, we have confidence in the shRNA oligo design. 

There are more accurate methods of titrating viral preps than we have done, such as the Lenti-

X™ qRT-PCR Titration Kit (Takara Bio Group). However, we believe that the pseudo-titration we 

conducted was the most time and cost efficient, and sufficient for our application. It provided 

us with a dose of virus which delivers the shRNA construct to the majority of transfected cells 

(HEK293). Although, we do not possess a definite proof of target depletion, we attempted to 

use our pSico lentiviruses in the ex vivo aortic ring assay, for which we intended them from the 

beginning. This work will be discussed in the next chapter. 

We successfully generated two plasmids of 11 kbp in size, containing an insert of 5.6 kbp, which 

encode a construct for expression of a directly-labelled Nes gene, where the Nes protein is 

merged with tdTomato via either the N-terminal (pTom-C-Nes) or C-terminal end (pNes-N-Tom). 

It is possible that extending the protein structure of Nes, through the addition of tdTomato onto 

it could affect its folding and function. Fortunately, we did not observe any interference of this 

kind, when we carried out proof-of-concept ICC in WT IMMMLECs. Red-labelled nestin arranged 

into filament-like structures, as seen previously in ECs [474]. Moreover, these filaments reached 

FAs, including those at the cell periphery. 

Also, we investigated how WFA affected Vim filaments in IMMLECs, using a mCherry-labelled 

Vim construct and ICC. We saw a similar phenotype as previously when we stained Vim using an 

Ab, a restricted extension of the Vim filaments in the WFA-treated cells. There was an indication 

of less Vim-FA association in the WFA-treated cells. This interaction promotes integrin 

adhesiveness, a pro-angiogenic phenotype [475]. Therefore, inhibition of Vim-FA interaction is 

a way forward for anti-angiogenic strategy. 
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tdTomato and mCherry compare well with other fluorophore-containing proteins. Due to being 

a tandem dimer, tdTomato is not small in size (54 kDa), but possesses two fluorophore 

sequences, thus making it very bright [476]. The advantages of using the mCherry in comparison 

to other fluorophore-containing protein, is its small size (29 kDa) and bright signal [466]. The 

mCherry has been reported to be more photo-stable than RedStar, RFP and tdTomato [477]. 

However, in our hands tdTomato and mCherry were subject to a similar level of photo-bleaching, 

starting seconds after illuminating the slides with the excitation laser. 

This chapter’s focus was on describing our efforts to build and test tools that we could utilise in 

the investigation of nestin, plectin and vimentin in angiogenesis. Next, we will move on to 

describing our work with pSico constructs and WFA in the ex vivo aortic ring assay, as well as the 

use of WFA in vivo in tumour growth experiments. 
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6 Co-targeting β3-Integrin and Vimentin 

Intermediate Filaments Ex Vivo and In Vivo 

 

6.1 Introduction 

Previous work in the Robinson lab (as discussed in the introduction chapter), has employed two 

endothelial-specific models of β3-integrin depletion, the Pdgfb.CreER inducible model and the 

Tie1.Cre constitutive model where the integrin is missing from birth [180]. We have observed 

that acute depletion of β3-integrin impairs pathological angiogenesis and tumour growth 

(Pdgfb.CreER model), whereas long-term depletion of the molecule (Tie1.Cre model) results in 

similar sized tumours between Cre -ve and +ve animals with enhanced microvascular sprouting. 

Importantly, inducing β3-integrin depletion for an extended period of time in the Pdgfb.CreER 

model results in a loss of tumour growth inhibition, turning this into a long-term depletion mode, 

similar to the Tie1.Cre phenotype. The work described in this chapter utilises both of these Cre 

models. 

Firstly, I combined the inducible Pdgfb.CreER model with the pSico technology (described in the 

previous chapter) to target Nes, Plec and Vim in the ex vivo aortic ring assay to further 

investigate their involvement in angiogenesis. My endeavours of generating and testing pSico 

constructs has already been described in the first part of Chapter 5. 

Secondly, I employed the β3-integrin/Tie1.Cre model both in vivo and ex vivo, in combination 

with the use of Withaferin A (WFA), as a dual-targeting strategy directed against both 

endothelial β3-integrin and Vim. Since we had interesting findings with WFA in vitro, a dramatic 

effect of WFA on migration and disassembly of Vim IFs in β3-HET cells compared to WT cells 

(Chapter 4), we were eager to test WFA in an in vivo tumour growth experiment in combination 

with the endothelial-specific depletion of β3-integrin. For this purpose, we chose the β3-floxed 

Tie1.Cre model, as we felt it is a better reflection of the adhesome changes occurring in β3-HET 

cells, where β3-integrin is constitutively depleted. We hypothesised that the upregulation of 

Nes, Plec and Vim in the β3-HET endothelial adhesome occurs in compensation for the loss of 

β3-integrin, and that a similar mechanism would be operating in ECs in vivo in the β3-integrin 

floxed Tie1.Cre mice. 
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A significant decrease in tumour growth in WFA-treated mouse models was observed [418]. Stan 

et al. have seen this using a dose of 4 mg/kg [419]. Thaiparambil et al. have used a range of 

doses from 0.1 to 4 mg/kg [444]. A dose as low as 0.1 mg/kg inhibited metastasis, but significant 

reduction in primary tumour burden was achieved only at 4 mg/kg. Guided by these studies, we 

also used the dose of 4 mg/kg for our tumour growth experiment. Before moving on to the next 

section, it is important to summarise in vivo and clinical studies to date which involved the use 

of WFA. 

6.1.1 WFA dosage, toxicity and clinical studies 

An important aspect of WFA as an anti-angiogenic strategy is its toxicity. A dose of 4 mg/kg in 

mice is equivalent to approximately 0.325 mg/kg in humans (12.3 fold less per kg) using a scale 

factor calculation, taking into account body surface area and metabolic rate [478]. It is difficult 

to determine how this amount compares to that present in health supplements or used in 

studies in humans. This is because, to our knowledge, there have been no documented studies 

in humans using pure WFA from which we could draw conclusions about its toxicity. 

WFA is a steroidal lactone, most commonly isolated from the root of the Withania somnifera 

plant [479], [480]. A number of studies involving arthritis patients and healthy participants 

investigated the effects of the Withania somnifera extract (WSE), containing WFA and other 

bioactive compounds [414]. The amount administered to human volunteers in these studies was 

between 1.5 and 3 g of WSE per day, which is equivalent to 25 – 50 mg/kg for a 60 kg person 

[481]–[483]. Some mild adverse effects were seen, namely nausea, dermatitis, sleepiness and 

pain in the abdomen, but they did not necessitate withdrawal from the study. However, WFA is 

only a fraction of the content of the WSE, which can vary from 0.003 to 0.066%, on average 

0.04% [484], [485]. Similarly, the specifications of WSE available for purchase as a health 

supplement state that WFA constitutes less than 0.1% of the content. Therefore, the amount of 

WFA administered to volunteers in these studies, as part of the WSE, was 0.01 – 0.02 mg/kg, i.e. 

at least 10-fold lower than (0.325 mg/kg) the equivalent dose of that used in mice in vivo (4 

mg/kg). At the same time, there are other bio-actives present in the WSE, alkaloids and other 

steroidal lactones, adding to the difficulty of drawing conclusions about the toxicity of WFA 

specifically. More recently, several other clinical studies in India and the USA showed positive 

effects of 0.3 – 1 g of WSE per day in periodontitis, athletic performance, vascular disease, as 

well as bipolar disorder and schizophrenia [486]–[489]. Those who ingested WSE exhibited 

improved cognition, cardiorespiratory endurance, and a reduction in stress and anxiety, 

compared to the individuals in the placebo control groups [487]–[489]. In addition, WSE 

improved sexual function in women (600 mg per day) and caused spermatogenic activity (675 

mg per day) in men with deficient sperm counts [490], [491]. WFA induces apoptosis of cancer 
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cells in vitro at 1 μM or higher [418], [444]. We have observed that this dose also inhibits growth 

of our IMMLEC cells (Fig. 4.6 A and B). Others have seen that WFA shows signs of cytotoxicity in 

HUVECs at 12 nM [417]. An IP injection of 4 mg/kg in mice results in a peak concentration of 2 

μM of WFA in the blood plasma, which has a half-life of 1.4 hours [444]. Studies in mice reported 

minimal toxicity (negligible weight loss) with WFA even at 6 mg/kg [418], [444]. Toxicity studies 

in rats involved oral gavage of 500, 1000 and 2000 mg/kg of WSE for up to 28 days and no 

adverse effects were observed [485], [492]. 2000 mg of WSE contains approximately 0.8 mg of 

WFA [485]. Using 2000 mg/kg of WSE in rats corresponds to approximately 1.6 mg/kg of WFA in 

mice, accompanied by other bio-actives [478]. 

In summary, the highest safe and active dose of WFA in humans is not yet known and we would 

need to administer pure WFA in a clinical trial to be fully clear about this. In a hypothetical clinical 

trial in cancer patients a recommended, active dose would likely be approximately 0.2 

mg/kg/day, an equivalent of 2.5 mg/kg/day in mice. This dose could be delivered as 500 

mg/kg/day of WSE, as WFA typically constitutes 0.04%, and this has been the only documented 

way in clinical studies [485]. 
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6.2 Materials and Methods 

 

6.2.1 Animals 

All animals were on a mixed C57BL6/129 background. Littermate controls were used for all in 

vivo experiments. All animal experiments were performed in accordance with UK Home Office 

regulations and the European Legal Framework for the Protection of animals used for Scientific 

Purposes (European Directive 86/609/EEC) under Project Licence SDR70/8722 and Personal 

Licence I44412839. 

 

6.2.2 Genotyping 

Ear snips of recently weaned animals (3 weeks old) or post-mortem tail snips from experimental 

animals were placed in individual wells of a 96-well plate. These were digested in 100 μL of 

ear/tail snip lysis buffer (50 mM Tris-HCl pH 8.5, 10 mM EDTA pH 8.0, 100 mM NaCl, 0.2% SDS), 

containing 100 μg/mL proteinase K (Thermo Fisher), at 56°C o/n. 100 μL of isopropanol was 

added to each well to precipitate DNA, which was pelleted by centrifugation at 1400 g for 30 

min. Supernatant was decanted gently and the pellet dried at 37°C for 1 hour. DNA was 

resuspended in 200 μL TE buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA) and incubated at 37°C o/n 

to aid this process. 

The genotyping PCR and electrophoresis were run according to Section 2.9. The unique details 

are described below. 

 

6.2.2.1  β3-Integrin-floxed PCR 

The β3-Integrin-floxed allele was generated with exon 1 and PGK-neo cassette flanked by 2 loxP 

sites by Morgan et al. [176]. The sequence of the forward genotyping primer was 5’-

TTGTTGGAGGTGAGCGAGTC and the reverse: 5’-CCCAGCGGATCTCCATCT. The PCR program used 

was: 95°C for 2 min; followed by 35 cycles of 95°C for 30 sec, 56°C for 30 sec and 72°C for 30 sec; 

and 72°C for 8 min. The β3-WT allele resulted in a 182-bp DNA fragment, while the floxed allele 

gave rise to a 272-bp fragment. 
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6.2.2.2  Pdgfb.CreER PCR 

The tamoxifen-inducible Pdgfb-iCreERT2 allele was generated by Claxton et al. [461]. Exon I of 

the Pdgfb gene was replaced with the iCreERT2-IRES-EGFP-pA sequence. Primers used for the 

Pdgfb.CreER genotyping reaction were: forward 5’-GCCGCCGGGATCACTCTC and reverse 5’-

CCAGCCGCCGTCGCAACT. The PCR program used to detect this allele: 94°C for 4 min; then 34 

cycles of 94°C for 30 sec, 57.5°C for 45 sec and 72°C for 1 min; and a final elongation step at 72°C 

for 10 min. This PCR reaction amplified a 443-bp DNA fragment unique to the Pdgfb.CreER allele. 

 

6.2.2.3  Tie1.Cre PCR 

The Tie1.Cre allele was generated by Gustafsson et al. by insertion of a Cre construct including 

a nuclear localisation signal behind the Tie1 promoter [493]. Primers used for the genotyping 

PCR: forward 5’-GCCTGCATTACCGGTCGATGCAACGA, reverse 5’-

GTGGCAGATGGCGCGGCAACACCATT. The PCR program: 95°C for 4 min; then 34 cycles of 95°C 

for 1 min, 67°C for 90 sec and 72°C for 1 min; followed by 72°C for 10 min. The Tie1.Cre allele 

resulted in a 770-bp DNA fragment. 

 

6.2.3 Lentiviral Transfection of Aortic Rings 

Similar to Robinson et al.’s methodology, Pdgfb.CreER +ve aortic rings were incubated in Opti-

MEM with 100μL of lentiviral prep and polybrene (8 μg/mL) o/n which constituted day 0 [181]. 

From day 1 of the assay onwards, growth medium was supplemented with OHT to induce Cre 

recombinase and thus activate the constructs to express shRNA. 

 

6.2.4 Ex Vivo Aortic Ring Assay 

This assay was performed using the protocol by Baker et al. [462]. Aortas were dissected from 

of 6-8-week-old mice (young age of the mice ensures higher likelihood of sprouting) inside a 

sterile culture hood (day 0). Aortas were then stripped of the surrounding fat and connective 

tissue then cut with a scalpel into rings of about 0.5mm in width, under a dissection microscope 

inside a laminar flow hood. Approximately 20-30 rings were serum starved in 12-well plates 

(Corning®, Flintshire) in 1 mL serum-free Opti-MEM™ + P/S per well at 37°C o/n. Lentiviral 

transfection of Pdgfb.CreER +ve rings or Withaferin A (WFA - Enzo, Exeter) treatment at 0.2 

μg/mL (made up in DMSO, the final concentration of DMSO was 0.005%) of β3 fl/fl Tie1+/- rings 

occurred at this stage. On day 1, the rings were embedded in 1.1 mg/mL cold collagen with 1 
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ring per well in 96-well plates. Collagen was set at 37°C for 1h and then the rings were fed with 

Opti-MEM™ 2.5% FBS + P/S, supplemented with 30 ng/mL VEGF to induce sprouting, with the 

addition of OHT or continued WFA/DMSO treatment. Medium containing FBS, VEGF + OHT or 

WFA/DMSO was refreshed on day 4 and the rings were fixed in 4% paraformaldehyde (PFA) on 

day 7. Aortic rings were permeabilised with 0.25% Triton and stained with FITC-conjugated BS-

1 lectin for enhanced visualization of the endothelial sprouts. The FITC-labelled microvascular 

branches (not the stalks) were counted to quantify angiogenic sprouting. 

 

6.2.5 Tumour Growth Assay In Vivo 

A mouse lung carcinoma cell line CMT19T, syngenic to the mice used (C57BL6/129), was 

trypsinised and resuspended in PBS at 107 cells per mL. 8 – 10-week-old β3 fl/fl Tie1+ mice, and 

their Cre -ve littermate controls, were subcutaneously injected in the flank (1 injection per 

animal) with 100 μL (106 cells) of the cell suspension using a sterile syringe and a 26-gauge 

hypodermic needle (BD Biosciences, Wokingham). On day 7 post-injection, tumours were 

palpable and the intraperitoneal (IP) drug administration begun. Withaferin A (WFA – ENZO Life 

Sciences, Exeter) powder was reconstituted in DMSO at 5 mg/mL. A 10% WFA/DMSO, 40% 

vehicle (Kolliphor® EL), 50% PBS solution was injected at 4 mg/kg according to the individual 

weight of the animal, as previously done by Thaiparambil et al. [444]. Thus, 200 μL of 

WFA/vehicle/PBS was injected into a 25 g mouse on day 7, 9, 11, 14 and 16. On day 18, mice 

were sacrificed, tumours were excised, photographed, measured using a digital calliper and 

weighed. They were then bisected along the midline with a scalpel (Swann-Morton, Sheffield) 

and fixed in 4% PFA o/n at 4°C. 

 

6.2.6 Immunohistochemistry 

Tumours were removed from fixative into a solution of PBS, 20% sucrose, 2% PVP 

(polyvinylpyrrolidone) for 24 – 72 hours. Next, they were embedded in 8% gelatin and snap-

frozen in -40 to -50°C isopentane and stored at -80°C until cryosectioned. Using a MICROM HM 

550 cryostat (Thermo Fisher) at -20°C, 6 μm sections were cut from the sliced end of the tumour 

i.e. centre and mounted onto positively charged ColorFrost™ glass slides (Thermo Fisher). Slides 

were air-dried at RT for 10 min then the gelatin was melted in PBS at 37°C for 10 min. A 

hydrophobic circle was then drawn around the tumour sections using a PAP pen (ImmEdge™ - 

Vector Laboratories, Peterborough). Slides were placed into coplin jars and washed twice with 

in PBS 0.25% Triton-X-100 and twice with PBLEC (PBS 1% Tween-20, 1 mM MgCl2, 1 mMCaCl2, 

100 μM MnCl2). Tumour sections were then blocked with PBLEC 1% BSA, 2% goat serum for 1 
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hour at RT, incubated with a rat primary Ab against endomucin (Table 2.1) at 1 in 500 in PBLEC 

at 4°C o/n, washed in PBS 0.1% Triton three times for 15 min and incubated with secondary 

Alexa-594-conjugated anti-rat Ab (Table 2.2) in PBLEC for 2 hours at RT. This was followed by 

another two washes in PBS 0.1% Triton, a dip in PBS, then immersion in 0.1% Sudan Black for 10 

min to reduce auto-fluorescence [494] and a rinse under tap water for 3 min to wash off excess 

Sudan Black. Slides were dried briefly, mounted with Fluroromount-G™ with DAPI (Thermo 

Fisher) and the edges sealed with nail polish. 

 

6.2.7 Imaging and Blood Vessel Density 

Images of the labelled blood vessels (Section 6.2.6) were taken at 10x magnification using the 

Axioplan Epifluorescent microscope (Zeiss, Cambridge) and the AxioCam MRm camera (Zeiss). 

The software used for fluorescence microscopy and imaging was Axiovision, specifically the 

Multidimensional Acquisition tool. Images of different colour channels were merged using the 

Image J™ software. Vessel density was determined by manually counting vessels in 3 hot-spots 

per section, adjacent to and excluding the tumour border, avoiding the necrotic centre of the 

tumour. The Cell Counter Plug-in for ImageJ™ was used to aid the counting and to measure the 

area of the hot-spots. 

 

6.2.8 Hematoxylin and Eosin (H&E) staining 

Tumour sections were prepared and gelatin melted away, as described above in Section 6.2.6. 

Slides were then submerged in tap water for 30 sec, stained with Mayer’s Haematoxylin for 5 

min, rinsed in running tap water for 2 min until blue, eosin was applied to the slides for 15-20 

sec, then blotted off then very quickly rinsed in running tap water, so as not to lose excess eosin. 

Next, sections (slides) were dehydrated by agitation (approximately 20 times) in ethanol 

solutions of increasing concentration, from 50%, through 70%, 80% and 95% to 100%, followed 

by Histoclear (Thermo Fisher) #2 and Histoclear #1. Finally, slides were mounted using DPX. 

Hematoxylin stains acidic structures, such as nucleic acids, nucleus and ER, while eosin adheres 

to basic structures (proteins and cell membranes). 
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6.3 Results 

 

6.3.1 Nestin is Pro-Angiogenic in an Ex Vivo Model of Angiogenesis. 

Using the pSico constructs described in Chapter 5, we conducted aortic ring assays to investigate 

the effect of depleting endothelial Nes, Plec and Vim on angiogenesis ex vivo. Using the PCR 

protocol outlined in section 6.2.2.2, mouse litters were genotyped for the presence of the 

Pdgfb.CreER allele (Fig. 6.1 A) and the Cre +ve mice were taken forward for the assay. We 

observed a significant decrease in microvascular sprouting when using one of the two anti-Nes 

shRNA constructs (N1, 2.8 ± 0.6) compared to the negative, non-targeting control (nt, 6.4 ± 1.1), 

which achieved the same level of inhibition as the positive control, anti-VEGFR2 shRNA (VR2, 3.0 

± 0.6), expected to inhibit VEGF-dependent angiogenic sprouting of aortic rings [181]. In 

addition, all the other anti-IF constructs (N2, P1, P2, V1 and V2) showed a similar trend to N1 – 

N2, P2 and V2, more so than P1 and V1 (Fig. 6.1 B and C). Overall, the number of sprouts were 

slightly lower than expected, as in the non-targeting shRNA (nt) condition there were on average 

6.4 ± 1.1 sprouts per ring, compared to 8 ± 2 seen previously in the Pdgfb.CreER control rings 

[180]. It could be that adding the lentivirus has a detrimental effect on sprouting or proliferation 

in general. An additional negative control condition, where no virus is added to the rings, could 

help clarify this.
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Figure 6.1  Nestin KD impairs angiogenesis ex vivo.  

(A) Ear-snip DNA of mouse litters was subjected to a Pdgfb.CreER genotyping PCR, where a 440 bp band 

indicated the presence (+) of the CreER allele. Aortas from Pdgfb.CreER +ve mice were infected with pSico 

shRNA lentivirus against VEGFR2 (VR2, +ve control), Nes (N1, N2), Plec (P1, P2), Vim (V1, V2) or with a 

non-targeting (nt) control and subjected to a VEGF-dependent aortic ring assay. (B) In the final stage, the 

rings were stained with FITC-laveled IB4, a green-fluorescently-labelled EC marker and imaged at 10x, 

scale bar = 50 μm. Microvascular sprouts were counted over 3 independent experiments (30+ technical 

repeats per condition) to determine the effects of shRNA-induced depletion of Nes, Plec or Vim on 

angiogenesis ex vivo and graphed in C. * indicates P<0.05 and **** P<0.0001, as determined by an 

unpaired student’s t-test. 
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6.3.2 Withaferin A Inhibits Angiogenesis in the Absence of β3-Integrin 

Work by Stan et al. and others has shown a significant WFA-induced inhibition of tumour growth 

in mouse models [418], [419], [444]. As described in Chapter 4, we observed that WFA has a 

more pronounced anti-angiogenic effect in β3-HET cells than in WTs (e.g. a dramatic disruption 

of the Vim IFs and migration inhibition). Therefore, we wanted to investigate the effects of 

combining WFA and β3-integrin depletion on angiogenesis and tumour growth in vivo. To do 

this, we used our in-house mouse model of long-term endothelial-specific deletion of β3-

integrin, the Tie1.Cre, β3-floxed line. In this background, endothelial β3 integrin is missing from 

birth and any potential compensatory mechanisms arising from the loss of β3-integrin 

expression have taken place. 

Adolescent mice (3 – 4 weeks old) were genotyped according to Section 6.2.2.1 and 6.2.2.3 to 

ensure β3-floxing and to determine Tie1.Cre status.  As well, a tail snip for DNA extraction at the 

time of tumour harvest was obtained, to re-genotype the mice used in the experiments (Fig. 6.2 

A and B), as confirmation of their Cre and floxing status. The protocol of the tumour growth 

experiment can be found in Section 6.2.5. Briefly, 8 – 10-week-old mice were subcutaneously 

injected with 106 CMT19T mouse lung carcinoma cells (Day 0) and then IP injected 5 times (every 

2 to 3 days) between Day 7 and 18, with vehicle or WFA at 4 mg/kg, as outlined in the experiment 

schedule in Figure 6.2 C. Following our experimental design, we observed no significant 

difference between control and WFA-treated animals, either by measuring tumour volume or 

weight, though there was a trend toward WFA-treated tumours being smaller (Fig. 6.2 D and E). 

The mice were weighed at the time of every injection and there were no signs weight loss 

throughout the experiment in any of them. We also took measurements of the tumours at all 

the time-points of IP injections, except for Day 7, as the tumours were too small to measure 

accurately with a calliper. Therefore, we were able to track and assess any differences in tumour 

volume between groups at earlier stages, unfortunately there was no significant differences 

observed at any time-point (Fig.6.2 F).  
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Figure 6.2  The effect of Withaferin A on tumour growth in vivo. 

Ear-snip DNA of mouse litters was subjected to genotyping PCR. (A) 770 bp band indicates the presence 

(+) of the Tie1.Cre allele. (B) In the β3-floxed PCR a 180 bp band reports a β3-WT (w) allele, while a 270 

bp band indicated β3-floxing (f). (C) Experimental schedule of the tumour growth experiment. (D) The 

average tumour weight and (E) tumour volume at Day 18 was determined for Cre -ve and Cre +ve animals 

treated with DMSO (d) or WFA (W) (4mg/kg) (pooled data from 6-independent experiments; 11+ animals 

per group). P values from the comparison between the d and W groups appear in D and E (unpaired 

student’s t-test). Representative images of a tumour from each group were included in D, scale bar = 5 

mm. (F) Also, tumour volume was measured at the time of IP injections, average volumes were graphed 

to assess tumour growth at earlier time points. Error bars in D, E and F represent SEM.
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Given the observed trend of WFA-induced reduction in tumour growth, I was interested in 

determining the numbers required to achieve significant difference between DMSO- and WFA-

treated groups, especially in the Cre +ve background. The power calculations reported that the 

differences would reach statistical significance, when the n number is extrapolated to 

approximately 40 animals per group for tumour weight comparison and 60 animals per group 

for tumour volume comparison. I felt the numbers required to produce a potential significance 

went against “The Principles of Humane Experimental Technique” of replacement, reduction 

and refinement (the 3Rs) of in vivo experiments, so decided not to pursue this finding further 

[495]. 

However, the tumours from the in vivo experiment described above were sectioned and an H & 

E staining (protocol in Section 6.2.8) was performed to examine tumour architecture, and 

endomucin immunostaining was performed to investigate blood vessel density between the 

four experimental groups (protocol in Section 6.2.6 and 6.2.7). There were no apparent 

differences in tumour morphology between the groups (Fig 6.4 A). Tumours in all four groups 

exhibited a similar level of and variation in: density, fibrosis, necrosis and infiltration of immune 

cells. Perhaps a more detailed analysis, would identify differences, but we did not observe 

anything striking to report. Interestingly, tumours from the WFA-treated Cre +ve mice exhibited 

a significant reduction in blood vessel density (91 ± 5 vessels per mm2) compared to the other 

experimental groups: vehicle-treated Cre -ve group (114 ± 4 vessels per mm2), the WFA-treated 

Cre -ve group (106 ± 4 vessels per mm2) and Cre +ve vehicle-treated tumours (125 ± 5 vessels 

per mm2) (Fig. 6.3 B and C). The greatest significant reduction was between the Cre +ve vehicle- 

and WFA-treated mice (P < 0.0001), suggesting WFA inhibited pathological angiogenesis only in 

the absence of β3-integrin. 
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Figure 6.3  Withaferin A reduces pathological angiogenesis in vivo. 

(A) Tumour H&E sections from in vivo experiment in Fig 6.2 demonstrating tumour morphology of 

tumours implanted into Tie1.Cre -ve and Cre +ve animals, treated with DMSO or WFA, BV – blood vessel, 

N – necrotic area, RBC – red blood cell, TIL – tumour-infiltrating lymphocyte. (B) Endomucin staining on 

tumour sections comparing blood vessel density. Scale bars in A and B = 100 μm (10x). (C) Blood vessel 

counts in 3 representative fields per section in all tumours from the in vivo experiment (11+ per group) to 

determine vessel density, d = DMSO, W = WFA. * indicates P<0.05, *** P<0.001 and ****P<0.0001, as 

determined by an unpaired student’s t-test.
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We noticed that WFA reduced pathological angiogenesis in the in vivo tumour growth 

experiment, in the Tie1.Cre model of β3-integrin depletion. We wanted to complement these 

findings using the aortic ring assay (for protocol see Section 6.2.4), an ex vivo assay of 

angiogenesis. Firstly, we performed a dose response curve with WFA in WT aortic rings to 

identify the optimal dose, using a similar range as in ECs in Chapter 4 (Fig. 6.4 A). For the dual-

targeting experiment, we opted for the lowest dose that significantly inhibited VEGF-dependent 

microvascular sprouting in the test assay, 0.2 μM. As expected from previous findings in the lab, 

we saw an increase in sprouting between the Cre -ve (β3-integrin present, on average 3 ± 1 

microvascular branches per ring) and Cre +ve (β3-integrin missing, 11 ± 2) untreated (ut) aortic 

rings (Fig. 6.4 B and C) [180]. Interestingly, WFA reduced aortic ring VEGF-dependent sprouting 

in the Cre +ve background (4 ± 1), whereas it stimulated sprouting of the Cre -ve rings (5 ± 1), 

compared to their respective ut controls. This differential outcome may have occurred due to 

the proliferative effect of WFA on cells, described in the previous chapter, particularly at 0.2 μM 

(Fig. 4.7 B) and we also observed a similar pattern in the scratch migration assay with WFA in 

WT and β3-HET cells (Fig. 4.8). DMSO alone appeared to reduce sprouting of the Cre +ve rings 

(5 ± 1) although, there was no significant difference in sprouting between DMSO-treated and 

WFA-treated Cre +ve rings (Fig. 6.4 B and C). Overall, number of sprouts were lower than we 

have seen previously in the ut rings, i.e. 6 ± 1 in the Cre -ve rings and 16 ± 2 in the Cre +ve [180].
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Figure 6.4  The effect of Withaferin A on angiogenesis ex vivo. 

(A) An optimal dose of Withaferin A (WFA) for use in the aortic ring assay was determined by a dose 

response curve in WT aortas (14+ technical repeats per dose). (B) Aortas from β3-floxed Tie1.Cre -ve/+ve 

mice were used in the aortic ring assay with DMSO (d) / 0.2 μM WFA (W) treatment or untreated (ut) 

(scale bar = 100 μm). (C) Microvascular sprouts were counted (n = 5 independent experiments, 49 

technical repeats per condition), to quantify the effect of WFA on angiogenesis ex vivo. * indicates P<0.05, 

** P<0.01 and *** P<0.001, as determined by an unpaired student’s t-test. 
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6.4 Discussion 

We attempted to deplete endothelial Nes, Plec and Vim using shRNA containing lentiviruses, to 

see what effect this could have on angiogenesis ex vivo, in the aortic ring experiment. One of 

the anti-Nes shRNAs (N1) decreased aortic ring sprouting, while the other shRNAs used against 

Nes, Plec or Vim showed little or no effect. We were unable to confirm the depletion of these 

targets using the shRNA constructs that we generated (Chapter 5), therefore we cannot make 

firm conclusions based on the results of this aortic ring assay. In summary, endothelial Nes 

appears to be pro-angiogenic, whereas we do not know if depleting Vim and Plec has little or no 

effect here, or whether the shRNAs are achieving a little or no depletion. Nes has been shown 

to promote both proliferation and invasion in cancer cells [394], [398]. At the same time, it has 

been suggested as a new marker of neovasculature [460], [496]. Plec is a versatile cytolinker, 

shown to interact with Actin, Vim and β3-integrin, among other proteins [408], [475], [497]. It is 

required for vascular integrity and normal function of FAs and tight junctions [410]. Vim interacts 

with β3-integrin in ECs, most likely via Plec, and regulates FAs [222], [293]. In general, Vim-IF 

network serves to provide support in cells against shear stress and promotes greater adhesion 

strength [385]. Thus, the literature suggests all three IF proteins play a pro-angiogenic role and 

we would expect their absence to impair EC function and therefore sprouting in the aortic ring 

experiment. Perhaps their involvement in angiogenesis becomes more apparent when β3-

integrin is depleted. To our knowledge, using the aortic ring assay in the Pdgfb.CreER 

background is a unique attempt at investigating the role of endothelial Nes, Plec and Vim. 

Initially, we considered using the pSico lentiviral preps for an in vivo experiment. Theoretically, 

they could be a tool for endothelial specific depletion of candidate genes in mice in e.g. tumour 

growth experiments, when used in Cre-expressing mouse models [498], [499]. However, the lack 

of proof of achieving target depletion in primary cells (Chapter 5) and the limited effects in the 

aortic ring assay steered us away from the idea of using them in vivo. 

We were determined to take at least one of the IF proteins forward to an in vivo experiment, to 

address the hypothesis more fully. Therefore, we conducted a tumour growth assay in β3-floxed 

Tie1.Cre mice and treated them with WFA (or vehicle), as a strategy of modelling a dual-targeting 

of β3-integrin and Vim. We have previously compared the difference in tumour growth between 

β3-floxed Tie1.Cre -ve and +ve animals, while others have looked at the effect of WFA alone 

[419], [444]. The novelty of this experiment was to simultaneously look at β3-integrin 

endothelial depletion and Vim inhibition (WFA), i.e. comparing the rate of tumour growth of the 

β3-flox Tie1.Cre +ve mice when treated with WFA or vehicle alone. 
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We observed a trend in a reduction of tumour growth with WFA treatment at 4 mg/kg, while 

others saw this to a statistically significant degree [418], [419], [444]. This difference may be 

explained by two major factors – the type of cells used and the WFA treatment regime. Stan et 

al. set up human breast cancer cell (MDA-MB-231) subcutaneous xenografts in 

immunocompromised nude mice and injected WFA 5 times a week for two weeks [419]. 

Thaiparambil et al. used a mouse breast cancer cell line (4T1) implanted into the mammary fat 

pad and injected WFA daily for a month, also in immunocompromised animals [444]. We used 

subcutaneous allografts of mouse lung carcinoma cells (CMT19T), followed by less frequent IP 

injections of WFA over a shorter period, every 2 – 3 days over an 11-day time course. We were 

required to stop here, as the tumours were approaching the legal limit, stipulated by our Home 

Office Project licence (1000 mm3). Moreover, the half-life of WFA in the blood plasma is 

approximately 1.5 hours, its clearance from the blood occurs at a relatively high rate whereby it 

becomes undetectable 24 hours post-injection [444]. In our study design, there was more time 

between injections for ‘recovery’ from the effect of WFA, compared to some of the other 

studies. Therefore, if we were to inject WFA more frequently, the trend for smaller tumours in 

WFA-treated animals could become significant, especially in the Cre +ve mice. On the other 

hand, Yu et al. used an entirely different regime of treatment, initial IP injection of WFA on two 

consecutive days, then twice a week, and still observed a WFA-induced significant decrease in 

tumour volume even at 3 mg/kg, but in a long-term treatment scenario (30 days) [418]. 

Interestingly, we saw a significant decrease in blood vessel density upon WFA treatment in β3-

floxed Tie1.Cre +ve, but not in the Cre -ve, mice in the in vivo tumour growth experiment using 

our treatment schedule. Similarly, a low dose of WFA impaired microvascular sprouting in the 

β3-floxed Tie1.Cre +ve but not in the Cre -ve background. These observations imply that the 

absence of endothelial β3-integrin sensitises the vasculature to WFA-induced inhibition of 

pathological angiogenesis – an exciting finding in the context of anti-angiogenic treatment. 

We did not observe any apparent signs of weight loss, while Yu et al. observed some, but 

negligible weight loss (<10%) in the first week of treatment, which was regained in the second 

week [418]. Thaiparambil et al. also assessed necrosis and fibrosis of the lungs and livers of the 

mice used in their 30-day tumour growth experiment and did not observe any [444]. The WFA- 

and vehicle-treated mice displayed similar profiles of fibrosis and necrosis. The dose used in 

these in vivo studies in mice was much higher than the dosage used in clinical trials, yet positive 

effects are seen in both [414], [418], [444], [487], [500]. All the documented studies in humans 

involving ingestion of WFA have used WFA-containing Withania somnifera plant extract, rather 

than pure WFA. Overall, research suggests that WFA is a relatively safe substance and it may be 

possible to define an active dose, safely below toxic levels. 
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To complement the in vivo experiment, we conducted an aortic ring assay using WFA in the same 

genetic background.  We observed that WFA inhibited microvascular sprouting upon β3-integrin 

depletion (Cre +ve), compared to the untreated control, which corroborates with the vessel 

density result from the in vivo work. However, we also observed sprouting inhibition using 

DMSO alone in the Cre +ve background. DMSO appears to be having an effect almost as strong 

as WFA. This was very surprising, as the content of DMSO in the media used was only 0.01%, too 

low to cause any toxicity, while it did not have any effect on the Cre -ve rings or wild-type rings 

in the dose finding experiment. Generally, it is accepted as non-toxic, when used at less than 

0.1% (v/v) in vitro, while high doses induce apoptosis [501]. On the other hand, 0.1% DMSO 

caused genome-wide changes in DNA methylation of cardiac and hepatic cells in culture, with a 

range of implications on biological processes [501]. Others have shown substantial sprouting, in 

the presence of DMSO, in the rat aortic rings (0.5%) and in mouse spheroids (0.1%) [502], [503]. 

However, to our knowledge, a detailed analysis of the effect of DMSO on mouse aortic ring 

sprouting has not been published. In conclusion, it is unlikely that 0.01% DMSO has such a 

dramatic effect on microvascular sprouting. We believe that increasing the n numbers in this 

experiment would abolish the difference between the Cre +ve untreated and Cre +ve DMSO-

treated conditions. 

There appeared to be a marginal increase in sprouting in the presence of β3-integrin (Cre -ve) 

upon WFA treatment. The stimulation of sprouting in WFA-treated aortic rings could be 

explained by the increase in proliferation described in Chapter 4, most pronounced at 0.2 μM. 

However, it is interesting that we did not see the same effect in the dose-response test with 

WFA, perhaps due to the difference in the genetic background of the mice used. The dose-

finding experiment (Fig 6.4 A) was conducted on aortic rings isolated from wild-type pure C57 

mice, whereas the ones used in the dual-targeting experiment (Fig 6.4 B and C) were on a mixed 

C57/129 background. 

Here, we used the Tie1.Cre model of endothelial depletion of β3-integrin in the ex vivo and the 

in vivo experiments. In the Pdgfb.CreER model, when Cre activity is induced shortly before 

implantation of tumour cells (short OHT), the depletion of β3-integrin causes a significant 

decrease in tumour growth and microvascular sprouting [180]. When the induction of Cre occurs 

21 days before tumour implantation (long OHT), tumour growth and aortic sprouting are no 

longer inhibited by the loss of β3-integrin [180]. It would be interesting to see whether WFA 

leads to an additional effect of tumour growth inhibition in the short OHT model and even more 

interestingly, if WFA could restore tumour growth inhibition in the long OHT model of β3-

integrin depletion. 
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WFA treatment is a systemic method of Vim inhibition. We would need to generate Vim-floxed 

β3-floxed Pdgfb.CreER / Tie1.Cre mice in order to fully focus on the endothelial proteins. Both 

β3-KO and Vim-KO mice can reach adulthood and are fertile [175], [305]. Therefore, a double 

floxed Cre mouse of this sort would most likely be viable and could be used to expand the 

analysis done here, providing information about endothelial-specific dual-targeting of Vim and 

β3-integrin. 

In summary, we were surprised that only one of the shRNA constructs against Nes had a 

significant effect on aortic ring sprouting and disappointed that we could not confirm target 

depletion. We were excited to see a decreased blood vessel density in the Cre +ve WFA-treated 

tumours, suggesting that co-targeting Vim and β3-integrin is beneficial in the context of 

pathological angiogenesis. In the context of cancer, it is interesting to see the trend for smaller 

tumours in the β3-floxed Cre +ve mice treated with WFA, but we are slightly disappointed that 

this is not a statistically significant difference, as others have seen in different models using WFA. 



171 
 

7 Final Discussion and Future Work 

 

Anti-angiogenic agents used in the clinic all target the VEGF-pathway [247]. Unfortunately, they 

often cause significant side effects [249]. In comparison, inhibition of αVβ3 integrin, expression 

of which is turned on in angiogenic vasculature, is much less toxic, thanks to the specificity of 

the target [251], [274]. This has led to a substantial focus from the research community to 

evaluate it as an anti-angiogenic target. A prominent αVβ3 inhibitor, Cilengitide, was shown to 

effectively inhibit angiogenesis, tumour growth and metastasis in vivo and made it all the way 

to late stage clinical trials [168], [504]. Unfortunately, it failed to provide a meaningful survival 

benefit to the cancer patients participating in the trials [504], [505]. Surprisingly, β3-KO mice 

exhibit enhanced tumour growth and angiogenesis [275]. We previously investigated the 

endothelial-specific contribution of β3-integrin to angiogenesis in mice, using an inducible/acute 

model of depletion (β3-floxed Pdgfb.CreER) and a deletion from birth (β3-floxed Tie1.Cre). We 

observed impaired angiogenesis and tumour growth in the acute model but no change in tumour 

growth and enhanced VEGF-dependent angiogenesis in the long-term model, when β3-integrin 

was depleted [180]. Acquired resistance to drug treatment, as well as the observations made 

using genetic models, is indicative of an escape mechanism upon long-term inhibition and 

depletion of β3-integrin. Recently, we investigated this escape mechanism by analysis and 

comparison of the normal and β3-depleted endothelial adhesomes, through which EC adhesion 

and migration, and thus angiogenesis, are regulated. Mass spectrometry identified increased 

presence of tubulins in the β3-depleted EC adhesome compared to the control [232]. We 

followed this up with a series of experiments and identified a Rac1-dependent stabilisation of 

MTs in β3-depleted ECs [232]. Moreover, EC migration became more MT-dependent in β3-

depleted cells, while tumour growth and angiogenesis were more susceptible to MT inhibitors 

in mice depleted in β3 integrin in the endothelium [232]. The mass spectrometry identified other 

potential pathways of compensation that accompany β3-integrin depletion/inhibition. This 

thesis re-visited this dataset to investigate potential escape targets beyond MTs. 

We focused on the candidates which were upregulated in the β3-depleted EC adhesome, then 

narrowed down the candidate list to those that did so in at least two of the three β3-depletion 

models (β3-HET, β3-KO and cRGD-treated). From this list of 104 proteins, based on GO and KEGG 

annotations, with aid of publication search engines, we chose 12 candidates known to be 

involved in angiogenesis or EC biology. We investigated how their siRNA KD affects adhesion and 

migration of WT and β3-HET ECs. Interestingly, siRNA KD of Nes, Plec and Vim impaired 

migration in both WT and β3-HET cells. Adhesion was impaired only in the β3-HET cells, 
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suggesting a differential role for these proteins upon β3-depletion. These findings led us to focus 

on these three IF-type proteins and evaluate them as potential mediators of compensation upon 

β3-integrin depletion. STRING, a protein interaction search tool, highlighted previously 

identified interactions of Vim with β3-integrin and Src, as well as Plec with a number of canonical 

FA players, namely β3-integrin, FAK, paxillin and vinculin [475], [506]. 

Mass spectrometry of the adhesomes also identified numerous angiogenesis-relevant players 

that were downregulated upon β3-integrin depletion, such as Adam10, Adamts1, Adamts4 and 

the whole ERM family of FA adaptors: ezrin, moesin and radixin. Two known anti-angiogenic 

players, vWF and Thbs1, were differentially altered in the β3-HET and β3-KO adhesomes. In the 

future, it would be interesting to follow these up, as well as other proteins seen upregulated in 

the β3-depleted EC adhesome, such as Naa15 and Slit3. 

We begun testing our hypothesis that Nes, Plec and Vim were mediators of the compensation 

mechanism by further in vitro experiments using siRNA and WFA, an inhibitor of Vim. Nes KD 

impaired random migration in WT cells, but not in β3-depleted cells. However, we were unable 

to assess Nes KD. We decided to generate labelled Nes constructs that could be used to 

investigate Nes-FA interaction. We were successful in generating the constructs but were only 

able to conduct proof-of-concept ICC using these constructs, before running out of time. We 

also generated shRNA constructs, using the pSico technology, that could be used in Cre-

expressing cells/tissue for targeting endothelial Nes, Plec and Vim [463]. These were utilised in 

the aortic ring assay using aortas from Pdfb.CreER mice. In this experiment, one of the constructs 

targeting Nes led to an inhibition of microvascular sprouting. Nes has been shown to be 

upregulated in tumour vasculature, and to promote invasion and metastasis of cancer cells 

[398], [496]. On the other hand, Nes has been shown to inhibit FAK and FA turnover, so it would 

be interesting to elucidate its role in FAs and angiogenesis further [400]. Interestingly, synemin, 

structurally very similar to Nes, has been shown to bind some of the canonical members of FAs, 

α-actinin and vinculin [291]. We confirmed an upregulation of Plec in β3-HET adhesome 

compared to WT by WB of FA enrichment samples, as seen by mass spectrometry. However, in 

our hands, Plec KD had no significant effect on random migration or ERK1/2 phosphorylation of 

ECs. This is surprising, since Plec has been shown to recruit Vim IFs to FAs in ECs [293]. Others 

have concluded that it is required for vascular integrity due to its role in FAs and tight junctions 

[410]. Vim binds β3-integrin in FAs, directly and via Plec [222], [475]. This interaction serves to 

stabilise FAs and promote cell adhesion [222], [475]. Unfortunately, like Plec KD, Vim KD did not 

significantly affect EC migration or ERK1/2 phosphorylation in our hands, although it may be that 

this protein is very abundant and its turnover is rapid, resulting in an inefficient KD. Overall, we 

did not obtain any striking results in our attempts to co-target β3-integrin (β3-HET cells) and IF 
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proteins (siRNA) in angiogenesis-relevant assays. We obtained different results using the 

wound-closure and the random migration assay, likely due to the different nature of these 

assays. In the former ECs were more closely interacting with one another, which makes this 

assay more relevant to angiogenesis, while in the latter we assessed migration speed of 

individual cells. It would be interesting to attempt a triple KD (Nes, Plec and Vim) in β3-HET ECs. 

It is likely that we would see a synergistic, pro-angiogenic contribution of these three proteins, 

or redundancy, especially between Vim and Nes, which are both IF monomers. 

However, our luck changed, when we came across WFA, an inhibitor of Vim. There was a 

differential response to WFA in WT and β3-HET ECs in terms of migration and proliferation. WFA 

had an inhibitory effect on proliferation of β3-HET compared to WT ECs, and stimulated WT but 

inhibited β3-HET EC migration in the wound-closure assay. From ICC, it was evident that WFA 

disrupts the Vim IFs, especially in the periphery of ECs. We quantified the amount of Vim 

fragments with and without WFA treatment in WT and β3-HET ECs, and there appeared to be 

more of these in the WFA-treated β3-HET cells than in the WFA-treated WT cells. We utilised an 

mCherry-labelled Vim construct in ICC to look at Vim-FA associations in WT ECs. There appeared 

to be less of these associations in the WFA treated ECs compared to DMSO-control cells. This is 

a logical conclusion, given the collapsed Vim IFs around the nucleus in WFA-treated cells but 

unfortunately, we have not done extensive analysis of this, to state this with confidence. We 

followed this up with a WB of WT ECs treated with a range of concentrations of WFA. It was 

observed that the more of WFA was added to the cells the more P-Vim was detected. Dave et 

al. observed that the loss of Vim (shRNA) in ECs decreased both total and phosphorylated FAK 

[446]. This prompted us to check if WFA is influencing FAK expression and phosphorylation in 

our cells. WFA treatment is expected to disrupt Vim-FA interaction, which would imply that Vim 

would not complex with FAK to the same extent, similar to the Vim shRNA transfected cells. 

There appeared to be a decrease in both total and phosphorylated FAK in our WFA-treated WT 

ECs but densitometry from two WBs revealed no significant difference. If we had more time, we 

would further investigate FAK expression and activation in relation to WFA-treatment. Others 

have shown that WFA inhibits angiogenesis and tumour growth [417], [444]. We used an 

endothelial-specific β3-deletion model (β3-floxed Tie1.Cre) in combination with WFA treatment 

to assess co-targeting of β3-integrin and Vim in the context of tumour growth and angiogenesis. 

Whilst there was no statistically significant change in tumour growth in the WFA-treated 

animals, there was a trend for tumour growth inhibition. However, WFA treatment did inhibit 

pathological (tumour) angiogenesis and microvascular sprouting (aortic ring assay) in the Cre 

+ve (β3-depleted), but not in the Cre -ve (β3-WT) background. This is an exciting finding, 

supporting a potential benefit of co-targeting β3-integrin and Vim as an anti-angiogenic strategy. 
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Many questions remain unanswered. How does β3-depletion or inhibition lead to an 

upregulation of Nes, Plec and Vim in the FAs? Via what molecular mechanism? What other FA 

and non-FA players are involved? Is WFA definitely disrupting Vim-FA interactions? Is 

fragmented/soluble Vim able to bind and regulate FAs? How effectively? What other FA proteins 

does Vim bind in FAs? Are these contributing to the escape mechanism upon β3-integrin 

depletion or inhibition? These questions could be addressed with further experiments using 

analytical methods such as immunoprecipitation, fluorescence and FRET microscopy, if we had 

more time. 

Overall, all three IF proteins appear to play pro-angiogenic roles in ECs [385], [410], [496]. Vim 

KO mice experience much less severe consequences compared to Nes KO and Plec KO mice, 

both of which result in prenatal death [390], [403]. Vim KO mice develop into fertile adulthood, 

but exhibit a wound healing impairment [305]. This suggests that from these three, Vim 

targeting would be associated with the least severe side effects. Indeed, WFA, as part of the W. 

somnifera plant extract, is in extensive use as a food supplement and as part of clinical trials for 

a variety of conditions [486]–[489]. 

Additional work could be conducted to further investigate Nes, Plec and Vim as mediators of 

compensation which accompanies β3-integrin depletion and inhibition. Further study would 

benefit from a conclusive assessment of co-targeting β3-integrin and Nes/Plec/Vim with respect 

to EC adhesion. Certainly, the molecular mechanism of interaction of β3-integrin and 

Nes/Plec/Vim in FAs requires further investigation. Also, we could expand this study with 

additional cell models, such as β3-HET Vim-HET ECs; and additional mouse models such as β3-

floxed Vim-floxed Tie1.Cre animals. Nevertheless, our findings suggest that dual targeting of Vim 

and β3-integrin may hold promise as a novel anti-angiogenic strategy.  
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Appendix 
 

1. Supplementary figures and tables 
  

 

 

 

Supplementary Figure 1 Hierarchical clustering of the endothelial adhesome 

Unsupervised hierarchical clustering based on Euclidian distance (threshold of 3.34) of 3 FN, 3 FN with 

VEGF and 3 poly-l-lysine β3+/+ EC adhesome samples. A - L are cluster labels, red indicated high and 

green indicates low expression. Taken from [232]. 
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Supplementary Table 1  List of proteins upregulated in the β3-KO vs WT endothelial adhesome. 
    

LFQ NORMALISED TO WT β3 
  

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER WT β3-KO -LOG P VALUE DIFFERENCE 

Itgb3 O54890 Integrin beta-3  F 100.000 0.000 4.413 -4.052 

… 
      

… 

Slit3 Q3UHN1 Slit Guidance Ligand 3 
 

0.000 136.457 3.271 3.871 

H3f3a P84244 Histone H3.3 I 0.000 161.008 1.559 3.709 

Nos3 P70313 Nitric oxide synthase, endothelial F 21.839 241.674 3.616 3.512 

Cd55 Q61475 CD antigen CD55 C 0.000 53.787 3.619 3.301 

Htra1 Q9R118 Serine protease HTRA1 F 0.000 60.743 3.011 3.073 

Ifrd2 Q9D8U0 Interferon-related developmental reg. 2 
 

0.000 57.353 3.835 2.966 

Top2a Q01320 DNA topoisomerase 2-alpha 
 

0.000 56.941 3.538 2.95 

Actg1 Q9QZ83 Gamma actin-like protein F 36.251 166.814 1.218 2.679 

Oasl1 Q8VI94 2'-5'-oligoadenylate synthase-like prote 
 

0.000 39.198 2.579 2.531 

Trmt1l A2RSY6 TRMT1-like protein C 0.000 44.061 3.495 2.531 

Vwf Q2I0J8 Von Willebrand factor F 44.297 241.379 4.981 2.452 

Cars Q3U716 Cysteinyl-TRNA Synthetase 
 

4.716 43.943 2.331 2.416 

Cdc37 Q61081 Hsp90 co-chaperone Cdc37 C 0.000 32.567 4.004 2.403 

Impdh2 A0A0A6YY72 Inosine-5'-monophosphate dehydrogenase 2 I 12.555 65.606 1.88 2.353 

Col4a2 B2RQQ8 Collagen, type IV, alpha 2 F 11.833 52.608 1.855 2.303 

Vat1 Q5RKP0 Vat1 protein L 0.000 27.409 3.071 2.239 

Prr11 Q8BHE0 Proline-rich protein 11 E 22.841 113.999 2.258 2.226 

Apobec3 H3BJQ3 Apolipoprotein B MRNA Editing Enzyme 3 
 

0.000 39.876 3.018 2.218 

Dnaja1 Q5NTY0 DnaJ (Hsp40) homolog I 7.692 69.850 2.89 2.113 

Slc25a3 Q3THU8 Solute Carrier Family 25 Member 3 C 19.599 61.214 0.987 2.084 

Ctps1 P70698 CTP synthase 1 I 20.483 84.792 3.305 2.077 
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LFQ NORMALISED TO WT β3 

  

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER WT β3-KO -LOG P VALUE DIFFERENCE 

Isg15 Q4FJR9 G1p2 protein (ubiquitin-like modifier) C 8.806 37.106 2.601 2.023 

Surf4 Q545Q2 Surfeit gene 4, isoform CRA_a F 2.735 31.064 2.744 1.955 

Hspa9 P38647 Stress-70 protein, mitochondrial 
 

0.000 35.102 1.291 1.954 

Mndal D0QMC3 Myeloid cell nuclear diff. antigen-like 
 

6.897 48.364 1.827 1.915 

Dnm2 Q3T9X3 Dynamin-2 C 0.000 23.961 1.716 1.901 

Bmp1 Q570Z4 Bone Morphogenetic Protein 1 K 35.131 127.910 3.864 1.861 

Lbr Q3U9G9 Lamin-B receptor  F 816.387 2932.508 6.344 1.844 

Smc3 Q6P5E5 Structural maintenance of chromosomes 3 
 

9.402 43.884 0.878 1.816 

Hspd1 P63038 60 kDa heat shock protein, mitochondrial G 4.804 45.122 2.461 1.784 

Rrp9 Q91WM3 U3 small nucleolar RNA-interacting 
 

0.000 19.216 2.246 1.779 

Gcn1l1 Q3UHQ5 EIF2 Alpha Kinase Activator Homolog G 0.000 25.052 3.046 1.764 

Znf22 Q9ERU3 Zinc finger protein 22 
 

0.000 30.091 1.454 1.732 

Phgdh Q61753 D-3-phosphoglycerate dehydrogenase C 9.078 31.594 1.514 1.729 

Rnf213 F7A6H4 E3 ubiquitin-protein ligase RNF213  I 65.075 213.970 3.538 1.712 

Ehd4 Q3TM70 EH-domain containing 4 C 80.253 262.305 4.508 1.712 

Smc2 Q3ULS2 Structural maintenance of chromosomes 2 I 28.559 93.369 3.081 1.69 

Serpine1 D0ESZ6 Ser or Cys peptidase inhibitor cl E member 1 F 65.488 208.960 2.941 1.685 

Psmd3 Q8BK46 Proteasome 26S Subunit, Non-ATPase 3 I 14.235 45.299 4.621 1.672 

Psmc4 Q3UBF0 Proteasome 26S Subunit, ATPase 4 
 

0.000 25.258 2.135 1.671 

Fbxl6 Q9QXW0 F-box/LRR-repeat protein 6 
 

0.000 22.370 1.996 1.656 

Pdia4 P08003 Protein disulfide-isomerase A4 I 0.000 25.700 1.413 1.637 

Abcf2 Q3UVI9 ATP Binding Cassette Subfamily F Member 2 C 21.515 64.132 1.2 1.62 

Cct7 Q3UIJ0 Chaperonin Containing TCP1 Subunit 7 I 49.190 141.173 2.38 1.559 

Oas1a P11928 2'-5'-oligoadenylate synthase 1A F 29.089 89.861 1.772 1.541 

Mdh2 P08249 Malate dehydrogenase, mitochondrial C 5.836 27.645 1.149 1.532 



178 
 

    
LFQ NORMALISED TO WT β3 

  

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER WT β3-KO -LOG P VALUE DIFFERENCE 

Fscn1 Q61553 Fascin (Singed-like protein) F 54.937 156.499 3.735 1.523 

Ncbp1 Q3UYV9 Nuclear cap-binding protein subunit 1 E 0.000 35.838 3.874 1.511 

Ncapg E9PWG6 Non-SMC condensin I complex, subunit G L 17.035 47.952 4.054 1.493 

Rpn2 Q61833 Ribophorin I 3.979 24.138 1.195 1.476 

Mina Q8CD15 Ribosomal oxygenase 2  F 129.089 357.795 3.238 1.471 

Gfpt1 P47856 Glutamine-fructose-6-P aminotransferase 
 

0.000 18.715 4.498 1.462 

Paics Q9DCL9 Multifunctional protein ADE2 I 26.820 73.475 3.273 1.458 

Tagln2 Q9WVA4 Transgelin-2 (SM22-beta) E 31.300 85.470 3.785 1.452 

Iars Q8BU30 Isoleucine--tRNA ligase, cytoplasmic I 250.516 669.319 3.534 1.419 

Gvin1 L7N451 Interferon-induced very large GTPase 1 I 134.394 354.553 5.458 1.397 

Atp5a1 D3Z6F5 ATP synthase subunit alpha G 61.627 161.214 3.906 1.392 

Chd3 F7C528 Chromodomain helicase DNA-binding 3 
 

0.000 38.432 1.361 1.388 

Dimt1 Q3UK38 rRNA adenine N(6)-methyltransferase L 20.631 53.375 3.155 1.382 

Tgm2 P21981 Protein-glutamine γ-glutamyltransferase 2 F 73.504 189.508 3.193 1.367 

Serpinh1 Q3TWG9 Serpin Family H Member 1 F 365.753 940.171 4.526 1.36 

Ncapd2 Q8K2Z4 Condensin complex subunit 1 
 

0.000 13.027 1.369 1.353 

Atp2a2 J3KMM5 ATPase Reticulum Ca2+ Transporting 2 
 

0.000 21.751 1.398 1.341 

Sntb2 Q542S9 Syntrophin, basic 2 F 0.000 18.096 1.759 1.325 

Canx Q5SUC3 Calnexin, isoform CRA_a I 21.220 52.431 2.371 1.312 

Smc1a A0JLM6 Smc1a protein 
 

5.305 22.812 1.509 1.311 

Eif3e Q3UIG0 Eukaryotic translation initiation factor I 89.891 217.212 4.208 1.275 

Kpna2 Q52L97 Importin subunit alpha L 25.081 55.791 2.004 1.186 

Ddx47 Q4VBG1 Asp-Glu-Ala-Asp box polypeptide 4 F 136.752 311.229 2.947 1.174 

Sp110 Q8BVK9 Sp110 nuclear body protein F 105.217 234.895 3.338 1.163 

Tars Q99KJ4 Tars protein E 11.583 25.936 3.276 1.163 
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LFQ NORMALISED TO WT β3 

  

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER WT β3-KO -LOG P VALUE DIFFERENCE 

Naa15 Q80UM3 N-alpha-acetyltransferase 15 I 113.174 252.579 3.178 1.158 

H2afv B2RVP5 Histone H2A I 37.430 82.641 2.688 1.136 

Cct3 Q3U4U6 T-complex protein 1 subunit gamma I 110.816 241.379 3.688 1.124 

Drg2 Q9QXB9 Developmentally-regulated GTP-binding 2 C 11.052 23.873 3.204 1.116 

Cct4 Q564F4 T-complex protein 1 subunit delta I 108.164 233.422 3.236 1.114 

Gsn Q6PAC1 Gelsolin, isoform CRA_c F 35.102 75.950 3.07 1.112 

Wdr5 P61965 WD repeat-containing protein 5 F 62.629 133.215 4.025 1.09 

Cct6a Q52KG9 Chaperonin containing Tcp1, subunit 6a I 91.482 192.455 4.62 1.077 

Cct8 Q3UL22 Chaperonin subunit 8 (Theta) I 79.310 167.403 3.38 1.076 

Sdpr Q63918 Caveolae-associated protein 2 (Cavin-2)  I 33.068 68.553 2.839 1.062 

Cct5 P80316 T-complex protein 1 subunit epsilon I 91.954 192.455 3.387 1.059 

Snx9 Q9CZK0 Sorting Nexin 9 I 24.433 50.280 4.45 1.041 

Hsp90ab1 Q71LX8 Heat shock protein 84b C 1093.428 2216.328 5.163 1.019 

EG433182 Q5FW97 Enolase 1, alpha non-neuron L 274.388 553.198 5.115 1.011 

Eif3f Q6IRT4 Eukaryotic translation initiation factor I 65.105 130.563 3.681 1.01 

Ddx58 A1L0V6 Ddx58 protein I 37.047 73.976 4.155 0.996 

Tcp1 P11983 T-complex protein 1 subunit alpha I 191.276 376.953 4.767 0.979 

 

Second column contains one of the corresponding peptide IDs identified for each gene using the Andromeda database. The 4th column informs on inclusion to a particular cluster, 

as identified by unsupervised hierarchical clustering: A, B, C – VEGF-enriched; D, E, F – fibronectin-enriched and clusters G, H, I, J, K, L – poly-L-lysine enriched. LFQ – label free 

quantification value obtained from the mass spectrometer. The LFQ values presented here are averages from 3 runs of FA enrichment samples expressed relative to the average 

LFQ detected for β3-integrin in WT condition. The last 2 columns report the -log P value and the t-test difference from the Significance Analysis of Microarrays (SAM) carried out in 

Perseus. The table was sorted in descending order based on the last column. Chosen candidate genes taken forward for further analysis are highlighted and in bold. Adapted from 

Atkinson et al (2018) [232]. 
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Supplementary Table 2  List of proteins upregulated in the cRGD-treated vs WT endothelial adhesome. 
    

LFQ NORMALISED TO DMSO β3 
 

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER DMSO cRGD FOLD CHANGE 

Itgb3 O54890 Integrin beta-3 F 100.000 47.844 0.478 

… 
     

… 

Fgb Q3TGR2 Fibrinogen beta chain F 1.000 33.793 33.793 

Nes Q6P5H2 Nestin 
 

1.000 33.564 33.564 

Ncbp1 Q3UYV9 Nuclear cap-binding protein subunit 1 E 1.000 24.342 24.342 

Cd55 Q61475 Complement decay-accelerating factor, GPI-anchored C 1.000 19.898 19.898 

Cs Q0QEL9 Citrate synthase;Citrate synthase, mitochondrial F 1.000 14.525 14.525 

Aldh2 Q544B1 Aldehyde dehydrogenase, mitochondrial 
 

1.000 14.523 14.523 

Col4a1 P02463 Collagen alpha-1(IV) chain;Arresten F 1.742 13.854 7.955 

Surf4 Q545Q2 Surfeit locus protein 4 F 2.739 21.190 7.737 

Rpl36;Gm8973 Q6ZWZ4 60S ribosomal protein L36 I 28.703 154.452 5.381 

Actg1 Q9QZ83 Actin, cytoplasmic 2 F 36.384 195.195 5.365 

Mest Q07646 Mesoderm-specific transcript protein F 3.752 19.663 5.240 

Ptk2 K7Q751 Focal adhesion kinase 1 F 5.110 24.695 4.833 

Hspd1 P63038 60 kDa heat shock protein, mitochondrial G 4.807 22.107 4.599 

Fgg Q3UEM7 Fibrinogen gamma chain F 6.082 27.561 4.531 

Phb;1700071K01Rik P67778 Prohibitin D 2.075 8.850 4.265 

Dnaja1 Q5NTY0 DnaJ homolog subfamily A member 1 I 7.699 30.152 3.916 

Cttn Q921L6 Src substrate cortactin F 6.851 25.900 3.780 

Pdlim1 Q3TZ17 PDZ and LIM domain protein 1 C 5.971 21.939 3.674 

Sec23a E9Q1S3 Protein transport protein Sec23A F 6.858 25.105 3.661 

Cars Q3U716 Cysteine--tRNA ligase, cytoplasmic 
 

4.737 17.249 3.641 

Mdh2 P08249 Malate dehydrogenase, mitochondrial C 5.849 20.699 3.539 
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LFQ NORMALISED TO DMSO β3 

 

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER DMSO cRGD FOLD CHANGE 

Slc25a3 Q3THU8 Phosphate carrier protein, mitochondrial C 19.629 62.219 3.170 

Srsf7 Q3THA6 Serine/arginine-rich splicing factor 7 E 10.999 34.260 3.115 

Sept10 Q8C650 Septin-10 I 14.945 45.340 3.034 

Ppp2r2a Q9CWU3 Ser/Thr-protein P-ase 2A 55 kDa regulatory subunit B α isoform 
 

16.654 50.383 3.025 

Lamb1 Q3UHL7 Laminin subunit beta-1 F 6.387 17.250 2.701 

Anxa6 Q99JX6 Annexin;Annexin A6 C 5.892 15.876 2.695 

Cpsf7 Q8BTV2 Cleavage and polyadenylation specificity factor subunit 7 
 

4.710 12.323 2.616 

Eps15l1 Q60902 Epidermal growth factor receptor substrate 15-like 1 I 5.935 13.867 2.336 

Pdlim5 D9J2Z9 PDZ and LIM domain protein 5 F 7.362 16.647 2.261 

Cnbp Q3U935 Cellular nucleic acid-binding protein I 10.331 22.938 2.220 

Rpl28 Q5M9N5 60S ribosomal protein L28 L 67.736 148.682 2.195 

Ybx1 Q60950 Y-Box Binding Protein 1 E 1246.128 2669.949 2.143 

Rpn1 Q5RKP4 Dolichyl-di(P)oligosaccharide protein glycosyltransferase 1 I 18.924 38.905 2.056 

Trip10 Q8CJ53 Cdc42-interacting protein 4 A 11.108 22.206 1.999 

Rpl36a Q5M9P1 60S ribosomal protein L36a F 730.369 1448.200 1.983 

Vim Q5FWJ3 Vimentin F 1236.307 2409.453 1.949 

Gar1 D3YZ09 H/ACA ribonucleoprotein complex subunit 1 L 9.357 18.127 1.937 

Eprs B9EIU1 Glutamyl-Prolyl-TRNA Synthetase I 184.771 353.060 1.911 

Rpl18 Q642K1 60S ribosomal protein L18 F 940.142 1773.480 1.886 

Hist1h3b/1h3e/2h3b A1L0U3 Histone H3;Histone H3.2 C 1981.771 3665.219 1.849 

Purb O35295 Transcriptional activator protein Pur-beta I 17.168 31.651 1.844 

Sptan1 P16546 Spectrin alpha chain, non-erythrocytic 1 I 424.896 779.069 1.834 

Ctps1 P70698 CTP synthase 1 I 20.526 37.550 1.829 

Atp5a1 D3Z6F5 ATP synthase subunit alpha G 61.739 112.378 1.820 

Mars E9QB02 Methionine--tRNA ligase, cytoplasmic C 20.858 37.786 1.812 
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LFQ NORMALISED TO DMSO β3 

 

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER DMSO cRGD FOLD CHANGE 

Macf1 B1ARU1 Microtubule-actin cross-linking factor 1 G 22.221 40.206 1.809 

Elavl1 Q8BTQ1 ELAV-like protein 1 I 17.393 31.128 1.790 

Myh10 Q5SV64 Myosin-10 I 65.495 116.343 1.776 

Rpl6;Gm5428 Q3UCH0 60S ribosomal protein L6 C 2410.103 4265.228 1.770 

Sept11 Q8C1B7 Septin-11 L 162.008 286.091 1.766 

Rpl15;Gm10020 Q5M8Q0 Ribosomal protein L15;60S ribosomal protein L15 F 1545.081 2726.111 1.764 

Phb2 Q3V235 Prohibitin-2 C 9.377 16.504 1.760 

Vps35 Q3TRJ1 Vacuolar protein sorting-associated protein 35 I 14.645 25.762 1.759 

Rpl32 P62911 60S ribosomal protein L32 F 323.647 568.780 1.757 

Tpm3;Tpm3-rs7 Q58E70 Tropomyosin 3 C 91.059 159.909 1.756 

Rrs1 Q80U76 Ribosome biogenesis regulatory protein homolog C 626.418 1086.984 1.735 

Sptbn1 Q62261 Spectrin beta chain, non-erythrocytic 1 I 365.063 632.876 1.734 

Drg2 Q9QXB9 Developmentally-regulated GTP-binding protein 2 C 11.085 19.044 1.718 

Rpl34 Q9D1R9 60S ribosomal protein L34 C 75.270 128.993 1.714 

Plec Q6S390 Plectin F 410.043 696.612 1.699 

Atp5b P56480 ATP synthase subunit beta, mitochondrial C 52.870 89.123 1.686 

Flnc D3YW87 Filamin-C F 35.369 59.300 1.677 

Ahnak E9Q616 AHNAK Nucleoprotein F 541.856 906.497 1.673 

Sept2 P42208 Septin-2 C 203.338 340.047 1.672 

Coro1c Q5PPQ7 Coronin;Coronin-1C I 240.966 401.208 1.665 

Psmd3 Q8BK46 26S proteasome non-ATPase regulatory subunit 3 I 14.259 23.555 1.652 

Ywhag A8IP69 14-3-3 protein gamma, N-terminally processed I 30.305 49.878 1.646 

Dars Q8BK18 Aspartate--tRNA ligase, cytoplasmic I 143.798 233.501 1.624 

Ola1 Q3TW21 Obg-like ATPase 1 F 10.645 17.268 1.622 

Abcf2 Q3UVI9 ATP-binding cassette sub-family F member 2 C 21.561 34.862 1.617 



183 
 

    
LFQ NORMALISED TO DMSO β3 

 

GENE NAME PROTEIN ID PROTEIN NAME CLUSTER DMSO cRGD FOLD CHANGE 

Rpl29;Gm17669 Q5M8M8 60S ribosomal protein L29 C 670.448 1083.411 1.616 

Sdpr Q63918 Serum deprivation-response protein I 33.137 53.405 1.612 

Lmnb1 P14733 Lamin-B1 C 26.564 42.368 1.595 

Rpl35;Gm10269 Q6ZWV7 60S ribosomal protein L35 F 714.432 1135.764 1.590 

St13 F8WJK8 Hsc70-interacting protein L 9.701 15.409 1.588 

Sept7 E9Q1G8 Septin-7 F 260.605 412.479 1.583 

Eif3i Q9QZD9 Eukaryotic translation initiation factor 3 subunit I I 71.146 112.159 1.576 

Impdh2 A0A0A6 Inosine-5-mono(P) dehydrogenase 2 I 12.587 19.784 1.572 

Actr1a P61164 Alpha-centractin I 40.140 62.947 1.568 

Eif3e Q3UIG0 Eukaryotic translation initiation factor 3 subunit E I 89.866 140.314 1.561 

Nckap1 A1L0U6 Nck-associated protein 1 I 27.976 43.551 1.557 

Mta2 Q3UDZ8 Metastasis-associated protein MTA2 G 21.786 33.844 1.554 

Dync1h1 Q9JHU4 Cytoplasmic dynein 1 heavy chain 1 I 319.053 493.495 1.547 

Fn1 Q3UGY5 Fibronectin;Anastellin F 11450.947 17597.494 1.537 

Snx9 Q9CZK0 Sorting nexin;Sorting nexin-9 I 24.512 37.604 1.534 

Rpl13a Q5M9M0 60S ribosomal protein L13a I 310.646 476.428 1.534 

Ptrf O54724 Polymerase I and transcript release factor I 128.916 197.256 1.530 

Pura Q8C6E9 Transcriptional activator protein Pur-alpha I 9.971 15.225 1.527 

Rpl18a Q3THJ0 60S ribosomal protein L18a F 1095.192 1666.737 1.522 

Naa25 B2RQV1 N-alpha-acetyltransferase 25, NatB auxiliary subunit F 7.835 11.842 1.511 

Brix1 Q9DCA5 Ribosome biogenesis protein BRX1 homolog F 678.269 1015.231 1.497 

Rps25 Q58EA6 40S ribosomal protein S25 I 109.445 163.307 1.492 

Actg1 Q4KL81 Actin Gamma 1 F 3656.155 5406.277 1.479 

Canx Q5SUC3 Calnexin I 21.260 31.335 1.474 

Cnp Q3TYL9 2,3-cyclic-nucleotide 3-phosphodiesterase C 12.829 18.880 1.472 
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GENE NAME PROTEIN ID PROTEIN NAME CLUSTER DMSO cRGD FOLD CHANGE 

Myh9 Q8VDD5 Myosin-9 C 1953.778 2872.659 1.470 

Kif5b Q61768 Kinesin-1 heavy chain I 87.825 129.085 1.470 

Tubb6 Q3UMM1 Tubulin beta-6 chain F 27.681 40.573 1.466 

Ehd4 Q3TM70 EH domain-containing protein 4 C 80.378 117.362 1.460 

Rock2 F8VPK5 Rho-associated protein kinase;Rho-associated protein kinase 2 E 86.436 125.529 1.452 

Eif3h Q8BTX5 Eukaryotic translation initiation factor 3 subunit H I 39.924 57.709 1.445 

Rpl14;Rpl14-ps1 Q9CR57 60S ribosomal protein L14 I 471.751 681.305 1.444 

Trim25 Q5SU72 E3 ubiquitin/ISG15 ligase TRIM25 I 15.689 22.492 1.434 

Dsp E9Q557 Desmoplakin F 21.966 31.351 1.427 

Myl12a;Myl12b Q922W7 Myosin regulatory light chain 12B F 74.266 105.979 1.427 

Cltc;mKIAA0034 Q5SXR6 Clathrin heavy chain;Clathrin heavy chain 1 I 665.215 948.350 1.426 

Naa15 Q80UM3 N-alpha-acetyltransferase 15, NatA auxiliary subunit I 113.361 161.223 1.422 

Tubb2a Q7TMM9 Tubulin beta-2A chain C 21.982 31.205 1.420 

Rpl3 Q3UB15 60S ribosomal protein L3 C 7740.581 10969.349 1.417 

Tubb4b;Tubb4a P68372 Tubulin beta-4B chain;Tubulin beta-4A chain C 701.850 994.532 1.417 

Jup Q02257 Junction plakoglobin I 68.537 96.987 1.415 

Cul1 Q3UIA5 Cullin-1 C 18.940 26.784 1.414 

Serpinb6a;Serpinb6 E9Q108 Serpin B6 I 28.965 40.929 1.413 

Dnaja2 Q9QYJ0 DnaJ homolog subfamily A member 2 L 48.569 68.586 1.412 

Dab2 E9QL31 Disabled homolog 2 L 12.232 17.269 1.412 

Myl6 Q642K0 Myosin light polypeptide 6 F 99.707 140.606 1.410 

Etf1 Q3U6V5 Eukaryotic peptide chain release factor subunit 1 B 21.559 30.309 1.406 

Abce1 Q6NXX7 ATP-binding cassette sub-family E member 1 C 146.515 205.577 1.403 

Fam98b Q80VD1 Protein FAM98B I 14.527 20.374 1.402 

Serpinh1 Q3TWG9 Serpin H1 F 366.454 513.784 1.402 
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GENE NAME PROTEIN ID PROTEIN NAME CLUSTER DMSO cRGD FOLD CHANGE 

Qars Q8BU21 Glutaminyl-TRNA Synthetase I 64.888 90.913 1.401 

Itga3 Q62470 Integrin alpha-3; heavy and light chain F 9.687 13.566 1.400 

Arl6ip4 D3YWC2 ADP-ribosylation factor-like protein 6-interacting protein 4 C 33.239 46.412 1.396 

Eef1a1 Q58E64 Elongation factor 1-alpha;Elongation factor 1-alpha 1 I 3473.730 4846.573 1.395 

Ddx58 A1L0V6 Probable ATP-dependent RNA helicase DDX58 I 37.133 51.770 1.394 

Son H9KV01 Protein SON C 10.818 15.019 1.388 

Capza2 Q5DQJ3 F-actin-capping protein subunit alpha-2 I 18.498 25.624 1.385 

Rsu1 A2AUR7 Ras suppressor protein 1 A 31.929 44.141 1.382 

Hspa12b Q9CZJ2 Heat shock 70 kDa protein 12B C 86.551 119.514 1.381 

Tuba1a;Tuba3a P68369 Tubulin alpha-1A chain;Tubulin alpha-3 chain C 40.803 56.070 1.374 

Gtf2i G3UYD0 General transcription factor II-I F 20.671 28.382 1.373 

Psmc1 Q542I9 26S protease regulatory subunit 4 L 31.692 43.473 1.372 

Eif3f Q6IRT4 Eukaryotic translation initiation factor 3 subunit F I 65.217 89.426 1.371 

Eef1g Q4FZK2 Elongation factor 1-gamma I 337.827 463.143 1.371 

n/a A0A097PUG1 Beta thymosin-like protein 2 F 89.386 122.308 1.368 

Tinagl1 Q4FJX7 Tubulointerstitial nephritis antigen-like L 8.880 12.142 1.367 

Arf3;Arf1;Arf2 Q3U344 ADP-ribosylation factor 1, 2 and 3 F 76.155 103.980 1.365 

Copb1 Q9JIF7 Coatomer subunit beta I 15.219 20.774 1.365 

Cdc42 P60766 Cell division control protein 42 homolog C 88.744 120.876 1.362 

Aimp2 Q8R010 Aminoacyl tRNA synthase complex-inter. multif. protein 2 I 18.629 25.355 1.361 

Rpl12 Q5BLK0 60S ribosomal protein L12 I 42.798 58.203 1.360 

Myo1b E9QNH6 Unconventional myosin-Ib F 29.837 40.576 1.360 

Sept9 A2A6U3 Septin-9 C 107.736 146.479 1.360 
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GENE NAME PROTEIN ID PROTEIN NAME CLUSTER DMSO cRGD FOLD CHANGE 

Pds5b F8WHU5 Sister chromatid cohesion protein PDS5 homolog B  21.152 28.753 1.359 

Rps24 Q9CY61 40S ribosomal protein S24 F 1332.362 1809.562 1.358 

Cyfip1 Q7TMB8 Cytoplasmic FMR1-interacting protein 1 I 141.495 192.124 1.358 

Cald1 Q8VCQ8 Caldesmon 1 F 64.055 86.656 1.353 

Gvin1 L7N451 Interferon-induced very large GTPase 1 I 134.695 182.072 1.352 

…      … 

Tcp1 P11983 T-complex protein 1 subunit alpha I 191.811 217.234 1.133 

 

Second column contains one of the corresponding peptide IDs identified for each gene using the Andromeda database. The 4th column informs on inclusion to a particular cluster, 

as identified by unsupervised hierarchical clustering: A, B, C – VEGF-enriched; D, E, F – fibronectin-enriched and clusters G, H, I, J, K, L – poly-L-lysine enriched. LFQ – label free 

quantification value obtained from the mass spectrometer. The LFQ values presented here are averages from 3 runs of FA enrichment samples expressed relative to the average 

LFQ detected for β3-integrin in DMSO condition. The last column reports the average fold change in the cRGD condition vs the DMSO control. Chosen candidate genes taken forward 

for further analysis are highlighted and in bold. Adapted from Atkinson et al (2018) [232]. 
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“The β3-integrin endothelial adhesome regulates microtubule dependent cell migration” 

(2018) EMBO reports, e44578 

 

Abstract 

Integrin β3 is seen as a key anti-angiogenic target for cancer treatment due to its expression on 

neovasculature, but the role it plays in the process is complex; whether it is pro- or anti-

angiogenic depends on the context in which it is expressed. To understand precisely β3's role in 

regulating integrin adhesion complexes in endothelial cells, we characterised, by mass 

spectrometry, the β3-dependent adhesome. We show that depletion of β3-integrin in this cell 

type leads to changes in microtubule behaviour that control cell migration. β3-integrin regulates 

microtubule stability in endothelial cells through Rcc2/Anxa2-driven control of active Rac1 

localisation. Our findings reveal that angiogenic processes, both in vitro and in vivo, are more 

sensitive to microtubule targeting agents when β3-integrin levels are reduced. 

 

Synopsis 

Engagement of αvβ3-integrin with fibronectin at mature focal adhesions localises an 

Rcc2/Anxa2/Rac1 containing complex to these sites, preventing Rac1 from stabilising 

microtubules. When αvβ3 is not present, the complex associates with α5β1-integrin instead, 

resulting in increased microtubule stability. 

 

• β3-integrin regulates localisation of tubulin subunits to the endothelial adhesome. 

• Angiogenic processes both in vitro and in vivo, are more sensitive to microtubule targeting 

agents when β3-integrin levels are reduced. 

• Active Rac1 cellular associations change with depletion of β3-integrin.
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G Schneider, Dylan R Edwards, Marcus Fruttiger, Kairbaan M Hodivala-Dilke and Stephen D 

Robinson 

“Acute Depletion of Endothelial β3-Integrin Transiently Inhibits Tumor Growth and Angiogenesis 

in Mice” 

(2014) Circulation Research, 114:79-91 

 

Rationale: 

The dramatic upregulation of αvβ3-integrin that occurs in the vasculature during tumor growth 

has long suggested that the endothelial expression of this molecule is an ideal target for 

antiangiogenic therapy to treat cancer. This discovery led to the development of small-molecule 

inhibitors directed against αvβ3-integrin that are currently in clinical trials. In 2002, we reported 

that β3-integrin−knockout mice exhibit enhanced tumor growth and angiogenesis. However, as 

β3-integrin is expressed by a wide variety of cells, endothelial cell–specific contributions to 

tumor angiogenesis are muddied by the use of a global knockout of β3-integrin function. 

Objective: 

Our aim was to examine the endothelial-specific contribution β3-integrin makes to tumor 

growth and angiogenesis. 

Methods and Results: 

We have crossed β3-integrin–floxed (β3-floxed) mice to 2 endothelial-specific Cre models and 

examined angiogenic responses in vivo, ex vivo, and in vitro. We show that acute depletion of 

endothelial β3-integrin inhibits tumor growth and angiogenesis preventatively, but not in 

already established tumors. However, the effects are transient, and long-term depletion of the 

molecule is ineffective. Furthermore, long-term depletion of the molecule correlates with many 

molecular changes, such as reduced levels of focal adhesion kinase expression and a misbalance 

in focal adhesion kinase phosphorylation, which may lead to a release from the inhibitory effects 

of decreased endothelial β3-integrin expression. 

Conclusions: 

Our findings imply that timing and length of inhibition are critical factors that need to be 

considered when targeting the endothelial expression of β3-integrin to inhibit tumor growth 

and angiogenesis.



189 
 

Abbreviations 
 

Ab – antibody 

Acta2 – actin (mouse) 

Actn1 – α-actinin 

Akt – serine/threonine-specific protein kinase B 

Amp – ampicillin  

Ang1 – angiopoietin 1 

Ang2 – angiopoietin 2 

Anxa2 – annexin A2 

Atp5a1 – ATP synthase α 

αVβ3 – αVβ3 integrin 

β3 – β3 integrin 

BLAST – Basic Local Alignment Search Tool 

BM – basement membrane 

bp – base pair 

BSA – bovine serum albumin 

CD – cluster of differentiation / classification determinant, e.g. CD31 

CD31 – PECAM-1, Platelet EC adhesion molecule 

Cdc42 – cell division cycle 42 

cDNA – complementary DNA 

Cltc – clathrin heavy chain 1 

CMT19T – a mouse lung carcinoma cell line 

CMV – cytomegalovirus promoter 

Col4a2 – Collagen type IV α 2 

Cre-Lox – DNA engineering method based on the Cre recombinase enzyme and loxP sites 

cRGD – cyclic arginine-glycine-aspartate motif mimetic, EMD66203 

DAPI – 4′,6-Diamidino-2-phenylindole 

Des – desmin  

DMEM – Dulbecco’s modified eagle medium 

DMSO – dimethyl sulphoxide, cryopreservant 

dNTP – deoxy-nucleotide triphosphate 

EC – endothelial cell 

ECL – peroxidase substrate for enhanced chemiluminescence 

ECM – extra-cellular matrix 

EDTA – ethylenediaminetetraacetic acid 

EGF – epidermal growth factor 

EGFP – enhanced GFP 

EMBL – European Molecular Biology Laboratory 

EMEA – European Medicines Agency 

EMT – epithelial to mesenchymal transition 

eNOS – endothelial nitric oxide synthase 

ESC – embryonic stem cell 

et al. – and others 

FA – focal adhesion 

FAK – focal adhesion kinase 
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FBS – foetal bovine serum 

FGF – fibroblast growth factor 

FITC – fluorescein isothiocyanate 

fl –  floxed 

FN – fibronectin 

Fwd – forward  

Gapdh – glyceraldehyde-3-phosphate dehydrogenase 

GEF – guanine nucleotide exchange factor 

Gfap – glial fibrillary acidic protein 

GFP – green fluorescent protein 

GgP+E – mouse embryonic fibroblast cell line used for virus production 

GlutaMAX™ – a more stable L-glutamine formulation for tissue culture (Thermo) 

GO – Gene Ontology 

GTPase – guanosine triphosphatase 

Gvin1 – interferon-induced very large GTPase 1 

H & E – hematoxylin and eosin stain 

HEK293 – human embryonic kidney cell line 

HET – heterozygous 

HIF – hypoxia-inducible factor, e.g. HIF-1α 

HRP – Horseradish peroxidase 

Hsc70 – heat shock 70kDa protein 8 

Hspa12b – heat-shock 70kD 12b 

HUVEC – human umbilical vein EC 

ICAM – intercellular adhesion molecule 

ICC – Immunocytochemistry  

IF – intermediate filament 

IFAP – IF-associated protein, e.g. plectin 

IHC – immunohistochemistry 

IκBα – NF-κB inhibitor α 

IKKB – NF-κB inhibitor kinase β 

IMMLEC – immortalised lung EC 

IP – intraperitoneal  

Kan – kanamycin  

KEGG – Kyoto Encyclopedia of Genes and Genomes 

KD – siRNA knockdown 

KO – knockout 

LC-MS/MS – liquid chromatography tandem mass spectrometry 

LFQ – label-free quantification 

Lmna – lamin 

loxP – floxing / target sites for the Cre recombinase  

MACS – magnetic activated cell sorting 

MaxQuant – mass spectrometry analysis software 

MCAM – melanoma cell adhesion molecule 

MCS – multiple cloning site 

MF – actin microfilament 

MLEC medium – medium used for primary lung EC culture 
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MMP – matrix metalloproteinase 

mRNA – messenger RNA 

MT – microtubule 

Naa15 – N-α-acetyltransferase 15 

NCBI – National Center for Biotechnology Information 

Neo – neomycin  

Nes – nestin  

NF-κB – nuclear factor kappa B 

NO – nitric oxide 

Nrp-1 – neuropilin-1 

nt – non-targeting / nucleotide 

o/n – overnight 

OHT – 4-hydroxy-tamoxifen 

Opti-MEM™ - Minimum Essential Media 

P – phospho(rylated) / P value 

PBLEC – PBS, 1% Tween-20, 1 mM MgCl2, 1 mMCaCl2, 100 μM MnCl2 

PBS – phosphate buffered saline 

PBS/T – PBS 0.1% Tween-20 

PCR – polymerase chain reaction 

Pdgfb – platelet-derived growth factor B 

PFA – paraformaldehyde 

PGF – placenta growth factor 

PI3K – phosphoinositide 3-kinase 

Plec – plectin 

PLL – poly-L-lysine 

pNes-N-Tom – plasmid expressing a Nes-tdTomato construct 

pSico – conditional (Cre-Lox), stable shRNA expression system, Cre turns on shRNA 

pSicoR – conditional (Cre-Lox), stable shRNA expression system, Cre turns off shRNA 

pTom-C-Nes – plasmid expressing a tdTomato-Nes construct  

Ptk2 – gene name for FAK, focal adhesion kinase 

Pxn – paxilin 

PyMT – polyoma middle T antigen 

P/S – Pen/Strep, Penicillin/Streptomycin 

qRT-PCR – real-time PCR 

Rac1 – Rac Family Small GTPase 1 

Rcc2 – regulator of chromosome condensation 2 

Rev – reverse  

RGD – arginine-glycine-aspartate motif 

RIPA – Radioimmunoprecipitation assay (lysis) buffer 

RT – Room temperature 

SAM – significance analysis of microarrays 

SD – standard deviation 

SDS – Sodium dodecyl sulphate 

SDS-PAGE – Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SEM – standard error of the mean 

Serpinh1 – Serpin Family H Member 1 
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siRNA – small/short interfering RNA 

shRNA – short hairpin RNA 

Slit3 – Slit Homolog 3 

STRING – Search Tool for the Retrieval of Interacting Genes/Proteins 

Src – tyrosine-protein kinase, proto oncogene 

Sync – syncoilin 

Synm – synemin  

Tcp1 – T-complex 1 (protein) 

tdTomato – tandem Tomato red fluorescent protein 

TE – Tris-EDTA buffer 

TGF-β – transforming growth factor β 

Tie1 – Tyrosine kinase with immunoglobulin-like and EGF-like domains 1 

TIMP – tissue inhibitor of metalloproteinases 

Thbs1 – Thrombospondin 1 

Tln1 – talin 

Tns1 – tensin 

Tyr – Y / tyrosine 

UT – untreated 

UTR – untranslated region 

Vcl – vinculin  

VECAD – VE Cadherin / CD144 

VEGF – vascular endothelial growth factor 

WB – Western blot 

WFA – withaferin A 

WSE – Withania somnifera extract 

WT – wild-type 

Vcl – vinculin  

VEGF – vascular endothelial growth factor 

VEGFR1/2/3– vascular endothelial growth factor receptor 1 / 2 / 3 

Vim – vimentin  

vWF – von Willebrand factor 

Y – Tyr / tyrosine  
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