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Abstract 

The 20S proteasome is a large protein complex, primarily responsible for the breakdown of 

ubiquitinated proteins. It is therefore a vital component in the ubiquitin proteasome pathway, 

disruptions of which can induce cell death. Such an effect could be targeted for cancer 

therapeutics. Some β-lactone γ-lactam scaffolds, such as the natural product omuralide (the 

biologically active form of lactacystin) have been found to inhibit the 20S proteasome. 

The discovery of several new natural 20S proteasome inhibitors such as the salinosporamides 

and cinnabaramides, have shown potential for the development of new inhibitors with 

increased potency and specificity. Development of synthetic routes to produce these targets 

and their analogues is key to developing new proteasome inhibitors with greater potency and 

reduced side effects. 

 

Figure 1. Several natural products with 20S proteasome inhibitory activity 

Our methodology involves the incorporation of amino acids into the γ-lactam core. Leucine 

and serine have been used to produce a new formal synthesis of 9-deoxy omuralide and 

omuralide respectively. Key steps include a diastereoselective acylation with Mander’s 

reagent and desulfurization. This methodology offers a flexible route allowing rapid 

generation of omuralide analogues in order to produce known and novel 20S proteasome 

inhibitors for biological testing. 

 

Figure 2. An overview of our methodology 
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In addition to our work incorporating amino acids into γ-lactam cores, we have also developed 

a new route to synthesize either diastereomer of hydroxy leucine. We hope that this valuable 

intermediate could be incorporated into the γ-lactam using our devised methodology quickly 

forming an advanced intermediate of omuralide.  
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1.0 Introduction 

1.1 Natural products and medicines 

The search for new drugs and biologically active molecules has sought inspiration from natural 

products or analogues thereof1 since the start of the study of medicine.2 Perhaps the most 

famous example is the discovery of penicillin by Alexander Fleming. As research into 

molecules derived from natural sources increased, the common and easily accessible drug 

compounds were soon discovered. This increased the difficulty of discovering new drugs and 

druglike molecules against an ever-increasing demand for new medicines. 

1.2 The discovery and early work on lactacystin 

1.2.1 The discovery of lactacystin 

In response to this problem, one method for the discovery of new bioactive compounds was 

to screen the cultured broths of numerous microbes against an assay. In 1991 Ōmura et al. 

used this method to find new compounds with neurotrophic factors (NTFs) by testing the 

broths of soil isolates.3,4 NTFs are essential for the growth and survival of neurones. A broth 

from the strain of Streptomyces sp OM-6519 was found to induce differentiation of a mouse 

neuroblastoma cell line 2A. Isolated from this broth, the active compound was characterized 

and designated lactacystin 1. Ōmura later was jointly awarded the 2015 Nobel prize for 

medicine. 

 

Figure 1: Lactacystin, discovered by Ōmura in 1991 

Lactacystin was the first microbial metabolite with neurotrophic activity; the hope of 

developing drugs to treat neurodegenerative disorders prompted several early synthetic 

efforts. The first was completed by Corey et al. in 1992,5 which was followed shortly after by 

an alternative route from Ōmura et al.6 The first insights into a mode of action for lactacystin 

were proposed by Schreiber et al.7 in an early structure activity relationship (SAR) study, it 
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was found that the most potent analogues of lactacystin had the potential to form β-lactones 

from the cysteine-derived thioester and the C6 hydroxyl group, forming compound 2, later 

named omuralide. Further modification to the cysteine had little effect on activity. Analogues 

that were unable to form the β-lactone such as the acid 3 or 6-deoxy lactacystin 4 had no 

biological activity.  

 

Figure 2: Omuralide and inactive derivatives 

In addition, the epimers at C9, C6, and an analogue with the hydroxylated iso-butyl moiety 

removed, resulted in little or no activity. Furthermore, this initial SAR study led to the 

discovery that lactacystin 1 and active analogues were able to inhibit cell cycle progression 

beyond the G1 phase in MG-63 human osteosarcoma cells. Like neurite outgrowth, the most 

active analogues of lactacystin had the structural requirements for formation of β-lactones. 

The observations of the necessity of β-lactone formation in the active compounds led 

Schreiber to hypothesize that acylation of the cellular target may occur, that is, a nucleophilic 

group on the target attacks the carbonyl of the β-lactone during the mechanism of action. 

1.3 The target and mode of action of lactacystin 

1.3.1 Discovery of the target 

The cellular target of lactacystin 1 was discovered in later work by Schreiber et al. in 1995, 

using tritium labelled forms of lactacystin and analogues.8 The target was found to be the 20S 

proteasome, for which lactacystin could inhibit specific sites at different rates. This work also 

confirmed the previous structure observations, through the testing of several analogues 

including omuralide. Omuralide associated with the 20S proteasome far faster than 

lactacystin. Several other analogues were tested, such as 6-deoxy lactacystin 4, which showed 

no inhibition. 
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1.3.2 Mode of action of lactacystin 

In 1996 Dick et al. reported the central role omuralide 2 plays in the inhibition of the 20S 

proteasome.9 These studies showed that lactacystin 1 was not the proteasome inhibitor per 

se, but only a precursor to the sole inhibitory complex omuralide 2 in a pro-drug-like form. 

Lactacystin 1, at pH 8 in an aqueous solution, undergoes reversible cyclization to omuralide 

2, then hydrolysis to the inactive compound 3. Under these basic conditions, 20S proteasome 

inhibition occurred. At a pH of 6.3, however, where cyclization of lactacystin 1 to omuralide 

does not occur, no inhibition was observed, whereas omuralide retained inhibitory activity 

under the same conditions. Dick expanded these results in a further paper10 with in vitro 

studies on mammalian cells. Lactacystin 1 is unable to enter cells until lactonization to 

omuralide 2 has occurred. In the cell omuralide can either inhibit the proteasome or form 

lactathione 5, a compound analogous to lactacystin 1, through a reversible reaction with 

glutathione (GSH). Lactathione 5 was presumed to act as a reservoir of omuralide 2, 

concentrating the inhibitor in the cell and allowing prolonged release (Scheme 1). 

 

Scheme 1: The mode of action and relationship between 1 and 2 
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1.3.3 The 20S proteasome 

The 20S proteasome is a large (around 700 KD) cylindrical multisubunit enzyme complex. The 

crystal structure of the yeast proteasome was obtained by Groll et al. in 1997.11 The shape of 

the proteasome is comparable to a barrel with a hollow core (Figure 3). 

 

 

 

Figure 3: The crystal structure of the 20S proteasome of yeast 

The 20S proteasome is a vital component of the ubiquitin proteasome pathway, the process 

by which proteins are labelled for degradation by ubiquitination and then destroyed. The 

proteasome is key in the second part of this process. Ubiquitinated proteins are fed into the 

proteasome and digested into short peptide chains ranging from 2-25 amino acids in length.12  

The structure is comprised of 4 rings, two outer α-rings and two inner β-rings, each comprised 

of 7 subunits. The quaternary structure therefore can be described as α7β7β7α7.13 The 20S 

proteasome can be further “capped” to with one or two 19S proteasomes, thus forming the 

26S proteasome. The 19S proteasomes function is to control access to the proteasome core 

by recognising ubiquitinated proteins and denaturing their structure. The denatured proteins 

are fed into the narrow core created by the α-ring subunits to be degraded by the catalytic β-

rings. Of the 7 subunits in each of the 2 β-rings, 3 of these subunits contain active sites to 
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degrade proteins (Figure 4). These 3 subunits, called post-glutamyl peptidyl hydrolytic-like, 

trypsin-like and chymotrypsin-like are known to be selective to hydrolysing the peptide bond 

following from specific amino acids. 

 

Figure 4. A diagram showing a cross section of a 20S proteasome β ring 

Post-glutamyl: Acidic, a preference for peptide bonds following amino acids such as aspartic 

acid and glutamic acid 

Tryptic: Basic, a preference for peptide bonds following amino acids such as arginine or lysine 

Chymotryptic: Hydrophobic, a preference for peptide bonds following amino acids such as 

tyrosine and phenylalanine 

Tabe 1 describes the rates of association between lactacystin or omuralide and the 3 catalytic 

sites of the 20S proteasome. Schreiber identified lactacystin and omuralide as inhibiting all 

active sites of the proteasome – albeit at different concentrations.8 Both active compounds, 

however, were found to be far more specific for the chymotrypsin like active site. 

Chymotrypsin (CT) and trypsin active sites were thought to bind irreversibly, whereas the 

post-glutamyl peptidyl hydrolytic site (the slowest inhibited site) was bound reversibly.  
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Table 1: Association rates of 1 and 2 on the 20S proteasome catalytic sites 

1.3.4 Mechanism of the inhibition of the 20S proteasome by omuralide 

The mechanism for inhibition of the proteasome shown in scheme 2 was proposed by Groll 

et al., supported by crystal structures of omuralide associated with the chymotrypsin-like 

active site.14,15 

 

Scheme 2: Mechanism of inhibition of the chymotrypsin site by omuralide 

As predicted by Schreiber,7 inhibition of the proteasome occurs due to nucleophilic attack to 

the β-lactone by a threonine residue, ordinarily the amino acid responsible for the catalytic 

Kassoc = Kobs/[I] (M-1 S-1) 

Compound 

and 

concentration 

Chymotrypsin 

like 

Trypsin like Post-glutamyl 

peptidyl 

hydrolytic like 

1 (10 µM) 194 ± 15 10.1 ± 1.8  

1 (100 µM)   4.2 ± 0.6 

2 (1 µM) 3059 ± 478   

2 (5 µM)  208 ± 21  

2 (50 µM)   59 ± 17 
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hydrolysis of peptide bonds. Various interactions then stabilize the ligand, increasing binding 

affinity, primarily the C5 moiety, which fits into the hydrophobic S1 pocket of the β5 subunit, 

prolonging retention time and allowing nucleophilic attack from the threonine Thr1Oγ 

residue. 

 

Figure 5: Omuralide and spiro cyclic analogues synthesized by Jacobsen 

A more precise nature of the critical role of the C6 hydroxyl group was reported by Groll et 

al.14 through the testing of a spiro-lactone derivative of omuralide and its C6 epimer 

synthesized by Jacobsen and Balskus.16 The spiro-lactone form of omuralide 6 had 

comparable inhibition potency to omuralide, but the spiro-lactone C6 epimer 7 potency was 

greatly decreased. This result indicated that the function of the C6 hydroxyl group was not 

solely to allow formation of the β-lactone. Comparing the crystal structures of each of these 

compounds revealed that in addition to the stabilizing hydrophobic interactions between the 

C5 isobutyl group and the S1 pocket of the CT site, the C6 hydroxyl group interacts with the 

active threonine terminal amine group, further increasing stability. Another crucial role of the 

hydroxyl group was also reported; the hydroxyl group in omuralide and 6 points out along the 

path that would be required for hydrolysis of the ester linkage, blocking attack and 

subsequent dissociation of the omuralide-enzyme complex. It is therefore clear that 

omuralide is well designed for purpose. 

1.4 The ubiquitin proteasome pathway in cancer therapy 

The ubiquitin proteasome pathway (UPP) is critical for the survival and development of both 

healthy and cancerous cells, disruption of which can induce cell death. A number of studies 

have been undertaken to disrupt this pathway at any of the key stages.17,18 One of the most 

studied methods to disrupt the UPP is 20S proteasome inhibition.19,15,20,21,22 Tumour cells are 

thought to be more susceptible to cell death through this mechanism. It has been found that 

some healthy cells can survive with up to 80% inhibition of the CT site, whereas tumour cells 
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can only withstand 25% inhibition.23 The first drug to target the UPP was a 20S proteasome 

inhibitor developed by Takeda called bortezomib 8,24 and was approved for clinical use in 

2003 for treatment of multiple myeloma. 

 

Figure 6: The structure of bortezomib 

The mechanism for inhibition of the 20S proteasome occurs through binding of the active 

threonine to the boronic acid, blocking the active site in a similar manner to omuralide.15 One 

of the mechanisms for apoptosis after inhibition of the proteasome is thought to be based on 

the proteins usually responsible for inducing cell death being retained by the cell instead of 

being destroyed by the proteasome.19 Bortezomib may also cause disruption to proteasome-

dependent pathways, which increase a cell’s resistance to radiation and other drugs.19 This 

makes bortezomib particularly potent when combined with radiotherapy or other 

chemotherapy drugs. For this reason, the discovery of new proteasome inhibitors and the 

modification of known inhibitors to increase selectivity and reduce toxic side effects plays a 

vital role in research for cancer therapies. An important role of this research is the synthesis 

of various inhibitors and their derivatives for further understanding of the SAR and mode of 

action in the hope of producing inhibitors with a greater potential to become future drug 

candidates.  

1.5 Omuralide and lactacystin as targets for total synthesis 

1.5.1 Corey’s strategy for lactacystin 

1.5.1.1 The first synthesis of lactacystin 

The first total synthesis of lactacystin 1 was completed by Corey and Reichard in 1992.5 The 

total yield was 4.6%. The total number of steps was 15 (Scheme 3).  
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Reagents and conditions: (i) (CH3)3CCHO, p-TsOH, PhMe; (ii) LDA, LiBr, isobutyraldehyde, THF, 

-78 °C 8 h 51%; (iii) MeOH, TfOH, 80 °C, 6.5 h, 91%; (iv) TBSCl, imidazole, DMF, 23 °C, 3.5 h, 

97%; (v) TsOH, CH2O, C6H6, 30 m, 96%; (vi) 1. LiBH4/THF, MeOH, 23 °C, 24 h, 2. DMSO, (COCl)2, 

Et3N, CH2Cl2, -78 °C, 85%; (vii) LDA, THF, -78 °C, 2,6-dimethylphenylpropionate, 48%; (viii) H2, 

Pd/C, EtOH, 23 °C, 1 d, 87%; (ix) 1. 5% HF/CH3CN, 23 °C, 9 h, 90%; 2. DMSO, (COCl)2, Et3N, 

CH2Cl2, -78 °C, 2 h, 73%; 3. NaClO2, NaH2PO4, t-BuOH, 2-methyl-2-butene, 23 °C, 15 m, >95%; 

(x) 1,3-propanedithiol, 2% HCl in CF3CH2OH, 50 °C, 6 h, >95%; (xi) N-acetylcystine allyl ester, 

BOPCl, Et3N, CH2Cl2, 1 h, 23 °C, 79%; (xii) Pd(Ph3P)4 HCO2H, Et3N, THF, 23 °C, 1 h, 84%. 

Scheme 3: The first synthesis of lactacystin, by Corey 
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The route is remarkable by being the first synthesis of lactacystin but also by providing much 

of the material used in the early biological testing of lactacystin 1. The route also contained 

only a few instances of column chromatography. The N-benzyl serine methyl ester 9 was 

cyclized to oxazolidine 10 with pivaldehyde in acidic conditions. An aldol reaction with iso-

butyraldehyde afforded 11 in excellent diastereoisomeric purity (>98%); after a 

recrystallization from pentane, 11 was diastereoisomerically and enantiomerically pure. Acid 

cleavage of the oxazolidine ring produced 12; following a silyl-based hydroxyl protection to 

13, a second oxazolidine 14 was formed through a formaldehyde bridge in an excellent yield 

of 96%. Reduction of the methyl ester and subsequent Swern oxidation afforded aldehyde 15, 

a key intermediate. An anti-aldol reaction using 2,6 dimethylphenyl propionate under 

Pirrung-Heathcock conditions25 gave the desired isomer 16, but the yield was low at 48%. 

Hydrogenolysis of the ester produced the γ-lactam ring found in lactacystin in a bicyclic 

system with an oxazolidine (17). A deprotection of the silyl group and an oxidation of the 

resulting alcohol to a carboxylic acid yielded 18, which, on opening of the oxazolidine ring, 

afforded the dihydroxy acid 3. Addition of an allyl protected cysteine 19 and its subsequent 

deprotection yielded lactacystin 1. 

1.5.1.2 Corey’s improvement to the aldol reaction 

Corey later revisited this synthesis (Scheme 4),26 primarily improving the anti-aldol reaction 

of 15 using a chiral zirconium enolate 21.27 
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Reagents and conditions: (i) 21, THF, -20 °C, 24 h, 80%; (ii) 1) H2, Pd/C, 2) CH2N2; 3) MeOH; 

(iii) BOPCl, Et3N, CD2Cl2, Et3N, 20 min, 23 °C, >95%. 

Scheme 4: Corey’s first improvement to the anti-aldol step 

The overall yield of the desired diastereoisomer was 80% after column chromatography. 

Conversion of 22 to the bicyclic γ-lactam intermediate 17, however, was less efficient, 

proceeding in 64% yield over 3 steps. The overall yield was, however, increased. In addition 

to the improvement of the aldol reaction, Corey reported a procedure allowing the acid 3 to 

be converted to omuralide in one step using the peptide coupling reagent bis(2-oxo-3-

oxazolidinyl)phosphinic chloride (BOPCl). 

 

Figure 7: The peptide coupling reagent BOPCl 

1.5.1.3 Further improvement to the aldol reaction 

In a final improvement to the aldol reaction (Scheme 5), Corey used addition of a simple 

achiral silyl enol ether 23 catalysed by magnesium iodide to provide the desired intermediate 
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24 in 77% yield.28 This simple intermediate could be converted to the deprotected bicyclic 

lactam 25 in 76% yield over 3 steps.  

 

Reagents and conditions: (i) MgI2, CH2Cl2, 0 °C, 20 min, -10 °C, 23, 0 °C 2 h, 77%; (ii) 1) H2, 

Pd/C, EtOH, (i-pr)2NEt, 23 °C, 30 h, 2) MeOH 55 °C, 20 h, 3) 5%, HF-MeCN, 23 °C, 24 h 76%; (iii) 

1) Et3N, DMSO-(COCl)2, CH2Cl2, -78 °C, 2) NaClO2, NaH2PO4, t-BuOH, 23 °C, 3) HS(CH2)3SH, HCl, 

CF3CH2OH, 55 °C, 8 h, 77%; (iv) BOPCl, Et3N, CD2Cl2, Et3N, 1 h, 23 °C, 93%. 

Scheme 5: Corey’s second improvement to the anti-aldol step 

1.5.1.4 Corey’s second strategy to omuralide 

In 1998 Corey et al. reported a radically different approach to omuralide and lactacystin 

(Scheme 6).29 The methylsulfanyl derivative 26 was converted to the chiral monoester 27 in 

97% yield and a 95% enantiomeric excess (ee) through hydrolysis with porcine liver esterase 

(PLE). Formation of the quinine salt and recrystallization from aqueous ethanol provided 27 

in 95% ee. Treatment with oxalyl chloride provided the acid chloride, which was coupled to a 

para-methoxy benzyl (PMB)-protected glycine methyl ester. A lithium diisopropylamide 

(LDA)-induced Dieckmann cyclization formed lactam 28 in a 1:1 mix of diastereoisomers. 

Hydroxymethylation occurred using formaldehyde in a highly stereoselective (9:1) reaction, 

formaldehyde addition favouring the face opposite the SMe group to yield 29. 
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Reagents and conditions: (i) PLE, H2O, pH 7.3, 23 °C, 24 h, 97%; (ii) 1) (COCl)2, DMF (cat), 23 

°C, 1 h, 2) PMB-NHCHCO2Me, Et3N, CH2Cl2, 23 °C, 1 h, 3) LDA, THF, -78 °C, 2 h, 93%; (iii) DBU, 

THF, -78 °C, then aq. CH2O, -78 °C, 30 m, 90%; (iv) NaBH(OAc)3, HOAc, 23 °C, 1 h, 95%; (v) 1) 

PivCl, pyridine, 23 °C, 10 h, 85%, 2) TBSOTf, 2,6-lutidine, 23 °C, 12 h, 98%, 3) NaOMe, MeOH, 

23 °C, 92%; (vi) 1) Raney Ni, EtOH, 0 °C, 1 h, 82%, 2) Dess-Martin reagent, CH2Cl2 23 °C, 1 h, 

95%; (vii) H2C=C(Me)MgBr, TMSCl, THF, -40 °C, 0.5 h, 97%; (viii) 1) H2, Pd/C, EtOH, 23 °C, 12 h, 

99%, 2) TFA/H2O 4:1, 50 °C, 4 h, 87%; (ix) 1) LiOH, THF/H2O 1:1, 23 °C, 0.5 h, 2) BOPCl, Et3N, 

CH2Cl2, Et3N, 0.5 h, 23 °C, 90%; (x) CAN, CH3CN/H2O 3:1, rt, 1 h, 62%. 

Scheme 6: Corey’s alternative route to omuralide 

A stereoselective reduction with NaH(OAc)3 formed the C6 hydroxyl group in the desired 

chirality for omuralide; again, attack occurred opposite to the SMe moiety to form 30. The 

primary hydroxyl group was protected with a pivaloyl protecting group allowing a tert-

Butyldimethylsilyl (TBS) protection of the C6 hydroxyl position. Hydrolysis of the pivaloyl (Piv) 

protecting group provided 31. An unusually stereoselective (10:1) desulphurization with 

Raney® Nickel provided the C7 methyl group with the desired stereochemistry (cis to the 

hydroxyl group). Subsequent oxidation of the primary alcohol to the aldehyde with Dess-

Martin periodinane30 yielded the advanced intermediate 32. Treatment of the aldehyde with 
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a prop-2-enyl Grignard reagent incorporated the isobutyl moiety found in omuralide. 

Reduction of the alkene, formation of the β-lactone, and final protecting group removals 

furnished omuralide in a total of 18 steps from 26. 

1.5.2 The Ōmura synthesis of lactacystin 

Shortly after Corey’s seminal synthesis, Ōmura et al. published their route to lactacystin 

(Scheme 7).6 (2R,3S) Hydroxy leucine methyl ester 36 was cyclized to oxazoline 37 by 

treatment with methyl benzimidate. Hydroformylation through a lithium enolate formed 38 

in excellent diastereoselectivity (>98%). A Moffatt oxidation formed the aldehyde 39, which 

was subjected to an allylboration with 40, a method reported by Brown utilizing camphor 

derived borane 43 (Figure 7).31  

 

Reagents: (i) Ph(MeO)C=NH, 72%; (ii) LiHMDS, HCHO, 85%; (iii) DMSO, DCC, Pyridine, TFA, 

Benzene, rt, overnight; (iv) (E)-crotyl(diisopinocampheyl)borane 40, 70% (over 2 steps); (v) 1) 

O3, DMS; 2) NaClO2, NaH2PO4, 56%; (vi) 1) Pd, HCO2NH4 2) 0.1 N NaOH, 82%; (vii) 1) N-

acetylcystine allyl ester 19, BOPCl, Et3N, 79%; 2) Pd(Ph3P)4, 81%. 

Scheme 7: Ōmura’s strategy for lactacystin 
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Figure 8: The camphor derived borane 43 

The alkene was converted to the aldehyde after treatment with ozone. The resulting aldehyde 

was oxidized to provide 42. Hydrogenation formed the γ-lactam ring, which, after ester 

hydrolysis, gave 3, which was converted to lactacystin by methods identical to Corey’s 

synthesis. From 36 the overall number of steps was 10 and lactacystin was obtained in 13% 

overall yield. 

1.5.3 The Panek synthesis of lactacystin 

 

Reagents and conditions: (i) 44, TiCl4, -78 °C - -35 °C, 60% (ii) 1) O3, DMS 2) NaClO2, NaH2PO4 

90% (over the 2 steps). 

Scheme 8: Panek’s improvement to the Ōmura synthesis 

In 1999 Panek et al.32 made several improvements to the Ōmura synthesis, firstly to the 

synthesis of the starting material (R,S) hydroxy leucine 36 in a reduced number of steps (See 

chapter 2.5.1.4.4.3). In addition, improvements were made to the incorporation of the C7 

methyl and C6 hydroxyl groups to produce 42 (Scheme 8). Panek’s strategy involved a 

crotylation with TiCl4 providing the anti diasteroisomer 45 in >30:1 ratio to the syn. Ozonolysis 

of the alkene and oxidation of the resulting aldehyde formed the common intermediate 42. 

The synthesis was then completed in an analogous fashion to Ōmura. 
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1.5.4 The Adams synthesis of omuralide  

The shortest and most high yielding route to omuralide to date was completed by Adams et 

al. in 1999,33 starting in a similar manner to Ōmura using a (R,S) hydroxy leucine derivative. 

Enone 47 was synthesized using a Wittig reaction from ylide 46. Sharpless dihydroxylation of 

the enone produced 48 in good yield and >99% ee after recrystallization. Methodology 

Developed by Sharpless34 was used to brominate the alpha position of the ester; displacement 

by sodium azide gave 50. Reduction of the azide produced a mixture of the benzyl ester 51 

and benzyl amide 52, but, on treatment with p-TsOH only the Ōmura intermediate 37 was 

formed from the mixture (Scheme 9). 

 

Reagents and conditions: (i) iso-butyraldehyde, DCM, 93%; (ii) DHQ2(PHAL), K2OsO2(OH)4, 

NMO, t-BuOH:H2O 1:1, 60%; (iii) PhC(OMe)3, BF3.OEt2, DCM, then CH3COBr, NEt3, 0 °C, 93%; 

(iv) NaN3, DMSO, 85%; (v) H2, Pd(OH)2/C, 85%; (vi) p-TsOH, 89%. 

Scheme 9: The Adams synthesis of omuralide 

A chiral aldehyde, 57, was formed from 53. Saponification of 53 and subsequent construction 

of the amide with diethyl amine formed 55. Deprotection of the alcohol, followed by 

oxidation, formed 57 (Scheme 10). Treating the Ōmura intermediate 37 to an aldol reaction 

with a chiral aldehyde 57, with the correct stereochemistry of the methyl unit already 

incorporated, furnished intermediate 58. Hydrogenation and subsequent cyclization provided 

the ester 59. Saponification and formation of the β-lactone ring formed omuralide (Scheme 

10). 
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Reagents: (i) LiOH (ii) Et2NH, DIEA, TBTU, 85% (over the 2 steps); (iii) H2, Pd(OH)2/C, 100%; (iv) 

Dess-Martin oxidation, 88%; (v) LiHMDS, Me2AlCl, 57; (vi) H2, Pd(OH)2/C, 67% (over the 2 

steps); (vii) NaOH/H2O, 93%; (viii) isopropenyl chloroformate, NEt3, 79%. 

Scheme 10: Synthesis of the chiral aldehyde 57 and its use to synthesize omuralide 

1.5.5 The Poisson synthesis of omuralide 

To date, the most recent total synthesis of omuralide was completed by Poisson et al., leading 

on from their work on highly diastereoselective [2+2] cycloadditions. Using stericol as a chiral 

auxiliary, the methodology35 was applied to the synthesis of omuralide.36 Treatment of 61 

with triethylamine formed ketene 62 in situ, which underwent a [2+2] cycloaddition with 

alkene 63 to give 64. The chiral auxiliary stericol 60 was able to produce diastereoselectivities 

of >98:2 in 64. Reduction of the carbonyl group occurred in again excellent 

diastereoselectivities (>98:2) to produce a hydroxyl group which was protected as a TBS ether. 
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Removal of the stericol chiral auxiliary 60 allowed the hydroxyl group to be oxidized to 66 

(Scheme 11). 

 

Reagents: (i) Et3N, 62, Toluene 70 °C, 97%; (ii) 1) DIBAL-H 2) TBSOTf, lutidine, 95%; (iii) 1) TFA 

2) DMP, 75%. 

Scheme 11: Part 1 of the Poisson synthesis of omuralide 

An O-mesitylenesulfonylhydroxylamine (MSH) mediated Beckmann transposition formed the 

γ-lactam found in omuralide, and protection of the amide was carried out with benzyl 

bromide and sodium hydride to form 68 (Scheme 12). Removal of the TBS ether allowed 

selective opening of the oxidisilinane to a silanol and a dimethylphenylsilane. The silanol was 

oxidized using Tamao oxidation conditions, allowing addition of the iso-propyl group through 

the corresponding organolithium species. Subsequent protection of the free hydroxyl groups 

produced 72. Deprotection of the amide and oxidation of the silane produced the alcohol 73, 

which could be further oxidized to the acid 3, in turn cyclized to 2 using Corey’s 

methodology.26  

 



 

19 
 

 

Reagents: (i) MSH, 58%; (ii) NaH, BnBr, 92% (iii) 1) TBAF, 2) PhLi (iv) KF, H2O2, 54% (over the 3 

steps); (v) TEMPO, NCS, 64%; (vi) 1) iso-propylLi 2) Ac2O, Py, 51%; (vii) 1) H2 Pd/C 2) KBr, 

AcOOH, 80%; (viii) 1) Jones oxidation; 2) NaOH; (ix) BOPCl, Et3N, 90%. 

Scheme 12: Part 2 of the Poisson synthesis of omuralide 

1.6 SAR studies of omuralide 

1.6.1 Introduction to the SAR of omuralide  

Total synthesis of natural products is always a worthwhile pursuit for the exploration and 

understanding of molecules and reactivity, but when a bioactive natural product is the target, 

the most prized routes are those where the final compound can be easily modified to produce 

analogues of the natural product. This can often provide critical information about the 

mechanism of action in these compounds and occasionally improve the bioactivity, or create 

more stable versions, allowing a greater chance of using the molecule as a drug candidate. 
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The largest contribution to date on the SAR studies of omuralide was made by Corey.37 Simple, 

mid to late stage modifications of two of his total syntheses was able to produce a range of 

C5, C9 and C7 analogues. 

1.6.2 Modifications of the C5 and C9 position 

The overwhelming majority of C5 and C9 analogues Corey was able to produce were from 

simply exchanging the vinyl Gringard reagent or using organochromium reagents. Taking the 

product through methodology analogous (reduction of the alkene step was removed for 

74d,f,h) to the original route discussed in Chapter 1.4.1.4  was sufficient to produce a wide 

variety of C9 analogues. Each were tested in their inhibition rates of the chymotrypsin-like 

activity of the 20S proteasome (Table 2). 

 

Analogue  R’ = Kassoc (M-1 S-1) 

Omuralide 2 CH(CH3)2 3059 ± 478 

75a H 9.7 ± 6.2 

75b C6H5 No inhibition 

75c C2H5 290 ± 12 

75d CH=CH2 188 ± 11 

75e CH2CH2CH3 192 ± 35 

75f CH2CH=CH2 255 ± 40 

75g CH2CH(CH3)2 17.4 ± 2.4 

75h CH2CH(CH3)=CH2 64.7 ± 2.2 

Table 2: Association rates of C9 analogues on the 20S proteasome CT site 

Corey was unable to improve on activity with any of the C9 analogues. Further modification 

of 32 allowed a library of C5 analogues to be produced primarily involving modifications to 

the C5 hydroxyl group (Table 3). 
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Analogue R =  Kassoc (M-1 S-1) 

Omuralide 2 (S) CHOHCH(CH3)2 3059 ± 478 

76a (R) CHOHCH(CH3)2 No inhibition 

76b COCH(CH3)2 65 ± 9.6 

76c CH2CH(CH3)2 235 ± 16 

76d CH=C(CH3)2 98 ± 5 

Table 3: Association rates of C5 analogues on the 20S proteasome CT site 

Again, activity was not improved past that of omuralide. All modifications made to either the 

C9 or C5 position drastically reduced activity. It seemed the hydroxylated iso-butyl moiety 

was optimal for proteasome inhibition. 

1.6.3 Modifications to the C7 position 

To analyse the position at C7, Corey modified his improved original route to omuralide. Not 

only did Corey’s improved anti-aldol reaction discussed in chapter 1.5.1.3 improve yields of 

the omuralide synthesis, but the reaction was also able to tolerate various other alkyl groups 

into the C7 position to produce intermediates 77a-e. The remainder of the synthesis was 

completed in an analogous way to the original route. The C7 epimer 78f (derived from the by-

product of the anti-aldol reaction) was also tested. Also included in table 4 is an analogue 

synthesized by Adams et al.33 Like Corey’s synthesis, modification during the aldol reaction 

(in this case through the use of a different chiral aldehyde) was able to provide an n-propyl 

analogue. Analogue 78g was then elaborated to the omuralide derivative in an analogous way 

to the original Adams route discussed in chapter 1.5.4.  
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Analouge R = Kassoc (M-1 S-1) 

Omuralide 2 CH3 3059 ± 478 

78a H 450 ± 77 

78b CH2CH3 6679 ± 553 

78c (CH2)3CH3 7275 ± 466 

78d CH(CH3)2 8465 ± 1572 

78e CH2C5H6 2227 ± 180 

78f CH3 (epimer) 1250 ± 180 

PS – 519 78g  CH2CH2CH3 7127 

Table 4: Association rates of C7 analogues on the 20S proteasome CT site 

Modifications to the C7 site were not only well tolerated but in many cases also vastly 

increased rates of association. In general, larger groups improved rates of inhibition. The most 

improved analogue tested was an iso-propyl group derivative. However, if the group size was 

increased vastly, such as the benzyl group in 78e, inhibition would decrease compared to 

omuralide. 

 

Figure 9: The potent dimethylated Corey analogue  

Another important C7 analogue is the gem-dimethyl omuralide analogue 79. Despite slightly 

lower activities than omuralide, the loss of one chiral centre has made the analogue a more 

attractive target for practical purposes. Corey has undertaken several syntheses of this target 

by increasingly efficient methods.38,39,40 
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It was thought by Corey that at this point omuralide and related β-lactone, γ-lactam 

proteasome inhibitors could be improved no further, concluding these investigations. 

1.7 The salinosporamides and cinnabaramides 

1.7.1 A new generation of β-lactone, γ-lactam proteasome inhibitors 

 

Figure 10: New β-lactone, γ-lactam proteasome inhibitors 

Contrary to the belief that the β-lactone, γ-lactam core could be improved no further, in 2003 

Fenical et al. reported the discovery of a new β-lactone, γ-lactam proteasome inhibitor.41 

Salinosporamide A; isolated from the newly discovered marine actinomycete salinispora 

tropica. Salinosporamide contained the same β-lactone, γ-lactam core as omuralide, but this 

scaffold contained increasingly advanced substructures. Most unusual was the modification 

to the C7 position, which now contained a chloroethyl chain. Further modifications to the 

structure included a cyclohexene moiety at C5, and a methyl at C6.  When tested against 

omuralide for proteasome inhibition activity at the chymotrypsin-like site, salinosporamide 
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showed remarkable activity; approximately 35x more potent. Later work42,43 looking at 

salinispora tropica uncovered several more members of the salinosporamide family of 

compounds, including salinosporamide B - a dechlorinated derivative of salinosporamide A. 

The majority of these salinosporamide derivatives were found to be considerably more active 

than omuralide. 

Furthermore, in 2007 the discovery of the cinnabaramides A-G was reported.44 Containing 

the same β-lactone, γ-lactam core as omuralide, and an identical cyclohexene moiety as found 

in the salinosporamides. The cinnabaramides also displayed activities far greater than 

lactacystin. Interestingly the thioester derivatives 85 and 86, unlike lactacystin, show similar, 

even increased activities compared to their β-lactone counterpart (Table 5).  

Compound IC50 [nm] inhibition of human 

proteasome 

Lactacystin 1 259 

Cinnabaramide A 82 1 

Cinnabaramide B 83 245 

Cinnabaramide C 84 12 

Cinnabaramide F 85 6 

Cinnabaramide G 86 0.6 

Table 5: Inhibition activities of the cinnabaramides 

1.7.2 Salinosporamide A’s mechanism of action 

In 2006 Groll et al. reported a crystal structure of salinosporamide A in the 20S proteasome.45 

A key difference to omuralide was the formation of a cyclic ether between the chloroethyl 

and C6 hydroxyl group. Groll suggested this blocked hydrolysis of the ester, increasing stability 

of the salinosporamide A-proteasome complex. The cyclization was also entropically and 

enthalpically favourable. The observations led Groll to propose the mechanism of 20S 

proteasome inhibition by salinosporamide A, shown below (Scheme 13). 
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Scheme 13: The mechanism of salinosporamide A inhibiting the CT site of the 20S proteasome 

Unlike the cinnabaramides, lactacystin-like thioester derivatives of salinosporamide have not 

been discovered in nature. It is likely that this is because this could induce premature 

cyclization of the cyclic ether due to the free hydroxyl group, reducing the inhibitory potential 

of salinosporamide A.46  

1.7.3 SAR of the salinosporamides 

Extensive work has been reported on the SAR studies of salinosporamide, and reviewed.46,47 

Unlike omuralide, these studies have been unable to produce dramatic changes in the 

potency of salinosporamide, however, analogues have been produced with complementary 

inhibitory potential as salinosporamide A, and have shown the importance of several  

salinosporamide functionalities (Table 6). This provides potentially useful structural 

information for future development of β-lactone, γ-lactam 20S proteasome inhibitors. 
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Name Structure IC50 Value CT site nM 

Omuralide 2 57 ± 6 

Salinosporamide A 80 80 2.6 ± 0.2 

Salinosporamide B 81 81 27 ± 4 

Salinosporamide D 88 

 

7.7 ± 3 

Salinosporamide E 89 

 

24 ± 5 

Antiprotealide 87 

 

31 ± 5 

Iodosalinosporamide 90 

 

2.8 ± 0.5 

Table 6: SAR activity of salinosporamide analogues 

Although changes to the structure of salinosporamide A generally provide less potent 

analogues. Many of these derivatives still possess activity greater than omuralide. These 

results seem to suggest the greatest modification from omuralide to salinosporamide A for 

proteasome inhibition, is the addition of the cyclohexene unit. This can be seen clearly in the 

comparison of omuralide with salinosporamide D 88, where addition of the C6 methyl and C5 

cyclohexene ring have increased potency from omuralide by about 7x. Furthermore, 

replacement of the cyclohexene ring in salinosporamide A with an omuralide like iso-propyl 
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group (antiprotealide 87) decreases potency by 12x. Antiprotealide was first synthesized by 

Corey48 as a hybrid of omuralide and salinosporamide A then, later, found also to be a natural 

product.49 Interestingly, unlike omuralide analogues, salinosporamide B appears not to 

benefit from extension of the C7 alkyl group (salinosporamide E 89), potency even increased 

on shortening the ethyl chain to a methyl, as in salinosporamide D 88. 

Where the most promising results have been found however, is modification of the chlorine 

on the C7 alkyl chain with better leaving groups. Although IC50 values have remained relatively 

unchanged, cytotoxicity has been found to increase slightly.47  

Like omuralide, key to understanding the full activity of salinosporamide A has been aided by 

a number of syntheses, first of which was completed by Corey et al.50  
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1.7.4 Total synthesis of salinosporamide A 

1.7.4.1 The first total synthesis of salinosporamide A 

 

Reagents and conditions: (i) p-TsOH, toluene, reflux, 12 h, 80%; (ii) LDA, THF, HMPA, -78 °C, 

ClCH2OBn, 4 h, 69%; (iii) NaCNBH3, AcOH, 40 °C, 12 h, 90%; (iv) 1) TMSCl, Et2O, 23 °C, 12 h, 2) 

Acrylyl chloride, i-Pr2NEt, CH2Cl2, 1 h, 0 °C, then H+ Et2O, 23 °C, 1 h, 96%; (v) Dess-Martin 

periodinane, 96%; (vi) Quinuclidine, DME, 0 °C, 7 d, 90%, 2) BrCH2Si(CH3)2Cl, DMAP, CH2Cl2, 0 

°C, 30 m, 95%; (vii) Bu3SnH, AIBN, benzene, reflux, 8 h, 89%; (viii) 1) Pd/C, EtOH, H2, 18 h, 95%, 

2) Dess-Martin periodinane, 23 °C, 1 h, 95%; (ix) 100, -78 °C, 5 h, 88%; (x) KF, KHCO3, H2O2, 

THF-MeOH (1:1), 23 °C, 18 h, 92%; (xi) 1) CAN, MeCN-H2O (3:1), 0 °C, 1 h, 83%, 2) 3 M, LiOH-

THF (3:1), 5 °C, 4 d, 3) BOPCl, Pyridine, CH2Cl2, 23 °C, 1 h, 4) Ph3PCl2, Pyridine, MeCN, 23 °C, 1 

h, (65% over the 3 steps). 

Scheme 14: Corey’s synthesis of salinosporamide A 
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The threonine amide derivative 91 was cyclized to 92 with p-TsOH allowing a completely 

diastereoselective alkylation with a chloro methyl benzyl ether (Scheme 14). Reduction with 

NaBH3CN provided the quaternary amino acid derivative 94. Protection of the threonine 

alcohol with a trimethyl silyl (TMS) protecting group allowed clean acylation of the amine, 

subsequent deprotection of the alcohol provided 95 in 96% yield over the whole sequence. 

The threonine alcohol was then oxidized with Dess-Martin periodinane. Cyclization to the γ-

lactam proceeded through a Baylis-Hillman aldol with quinuclidine in a highly 

diastereoselective manner (9:1). Protection of the hydroxyl group with a 

bromomethyldimethylsilyl chloride to 97 allowed a radical cyclization to 98. Cleavage of the 

benzyl ether and oxidation of the resulting alcohol proceeded in excellent yield to 99. The 

resulting aldehyde was used to incorporate the cyclohexene unit found in salinosporamide 

using 2-cyclohexene zinc chloride 100 in excellent diasteroselectivity (20:1). Tamo-Fleming 

oxidation provided 102 in excellent yield (92%). Removal of the PMB protecting group and 

saponification of the methyl ester was followed by formation of the β-lactone. Finally, 

chlorination of the alcohol provided salinosporamide A. 

1.7.4.2 The Romo synthesis of salinosporamide A and (±)-cinnabaramide A 

1.7.4.2.1 Introduction 

Romo et al. utilized methodology previously devised in the group51 which allowed a 1-pot 

production of β-lactone, γ-lactam scaffolds to great effect, applying this to both the synthesis 

of salinosporamide A and cinnabaramide A.52  

1.7.4.2.2 Romo’s synthesis of (±)-salinosporamide A 

Benzyl protected serine 103 was protected with PMB on the amine and an allyl protecting 

group for the carboxylic acid to product 104. The β-Lactone 105 was coupled to the protected 

serine derivative 104 in good yield (80%) using 115. The pyridine derivative 114 opens the 

lactone 105 through attack of the carbonyl, forming an activated ester which is attacked by 

amine 104. Amide 106 was deprotected to produce the cyclization precursor 107. The bis-

cyclization (Scheme 16) proceeded in low yields (up to 35%) and produced 2 diasteroisomers 

in up to a 3:1 ratio. Removal of the benzyl ether protecting group and oxidation of the 

resulting aldehyde provided 110. Using Corey’s methodology to install the cyclohexene ring 

(Scheme 14), which was surprisingly tolerant to the β-lactone, produced a 3.5:1 ratio of 
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diastereoisomers which, after PMB removal by ceric ammonium nitrate (CAN), produced 

salinosporamide A (Scheme 15). 

 

Reagents and conditions: (i) 1) p-methoxy benzaldehyde, MeOH, NaBH4, 2) p-TsOH, allyl 

alcohol, (2 steps, 74%); (ii) 105, 112, THF, 60 °C, 36 h, 80%; (iii) (Pd(PPh3)4, morpholine, 75%; 

(iv) 114, i-Pr2NEt, 113, CH2Cl2, -10 °C, 6 h, up to 35%; (v) 1) H2 Pd/C, THF, 25 °C, 98%; 2) 

EDAC.HCl, DMSO, Cl2CHCO2H; (vi) 100, THF, -78 °C, 33% over the 2 steps; (vii) CAN, 

MeCN/H2O, 49%. 

Scheme 15: Romo’s synthesis of salinosporamide A 
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1.7.4.2.3 The key bis-cyclization in Romo’s synthesis of salinosporamide A 

The bis-cyclization reported by Romo first requires activation of the acid 107 by 112. 

Substitution of this by the 4-dimethylaminopyridine (DMAP)-like derivative 113 further 

activated the acid, providing the intermediate 117 with an excellent leaving group. 

Deprotonation to the pyridinium enolate allows an aldol reaction, to form the γ-lactam (119). 

Attack from the newly formed alkoxylate on the pyridinium-activated-carbonyl forms the β-

lactone (Scheme 16). 

 

Scheme 16: The mechanism for the bis-cyclization reported by Romo 
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Despite several steps with decreased yields, Romo synthesized salinosporamide A in a 

remarkably short number of steps. In addition, modification of the lactone 105 allowed the 

methodology to be expanded further. 

1.7.4.2.4 The first synthesis of (±)-cinnabaramide A by Romo 

The methodology designed by Romo was then applied to cinnabaramide A (Scheme 17). Like 

the route to salinosporamide A, benzyl protected serine 103 was used, and protected with a 

PMB group and a methyl ester. Coupling of this to 120 produced the bis-cyclization precursor 

after deprotection of the ester to the acid with trimethyltin hydroxide. The cyclization 

proceeded in slightly better yield than the route to salinosporamide A, and better 

diastereoselectivity - (4.7:1) 123:124. The final steps occurred in an analogous fashion to 

Romo’s synthesis of salinosporamide A. 
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Reagents and conditions: (i) 1) p-methoxy benzaldehyde, MeOH, NaBH4, 2) TMSCHN2, 

MeOH/Et2O, (2 steps, 58%); (ii) 120, 114, THF, 50 °C, 48 h, 85%; (iii) Me3SnOH, 69%; (iv) 112, 

i-Pr2NEt, 113, CH2Cl2, 0 °C, up to 45%; (v) 1) H2 Pd/C, THF, 25 °C, 79%; 2) SO3.pyridine, DMSO; 

vi) 100, THF, -78 °C, 57% over the 2 steps; (vii) CAN, MeCN/H2O, 48%. 

Scheme 17: Romo’s synthesis of cinnabaramide A 

Later variants of this synthesis, primarily the separation of the 107 diastereoisomers, allowed 

an enantioselective route to salinosporamide A, including the production of new analogues 

of this valuable compound.53  

1.8 Similar γ-lactam cores in other natural products 

Similar γ-lactam cores are found in other natural products which are currently not known to 

have proteasome inhibiting potential. Although our primary focus is omuralide and related 
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derivatives, such compounds further highlight the importance of developing methodology to 

access these biologically relevant cores. 

 

Figure 11: A selection of γ-lactam natural products 

Monascutin 127 was discovered in 2016 after being isolated from red yeast rice.54 

Streptopyrrolidine 128 was discovered in 2008 after isolation from deep sea sediment.55 

Interest in this molecule stems from its ability to inhibit angiogenesis, which could provide 

promising anti-tumour drugs. Oxazolomycin 129 is particularly interesting, not only due to its 

γ-lactam core but also the spiro β-lactone ring.56 Oxazolomycin 129 exhibits antibacterial 

activity and is under investigation by several groups.57,58 The lajollamycins are another related 

family of compounds which share similar structural features to oxazolomycin.59  

Hoshinolactam 130 was recently discovered as an isolate from a marine cyanobacterium 

which displays potent anti-parasitic properties.60 (-)-L-755,807 131 was originally discovered 
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by Merk,61 interestingly, under investigation for its ability to induce neurite outgrowth, which 

studies into omuralide have shown can be a consequence of proteasome inhibition. The 

absolute configuration was later reported using total synthesis by Kogen et al.62 Dysidamide 

C 132 belongs to a family of compounds isolated from marine sponges.63 Finally, L-tenuazonic 

acid64 133 was one of the first tetramic acid natural product to be isolated, since discovery, 

numerous additions to this class of natural products have been isolated, characterized and 

synthesized.65,66 Such compounds have been found to exhibit a wide range of biological 

activities, such as anti-microbial, anti-viral, and anti-tumour properties.  

1.9 Previous work in the Page group 

1.9.1 Previous work using glycine as the starting material 

1.9.1.1 Synthesis of an advanced intermediate from glycine 

Initial work in the Page group focussed of the synthesis of functionalized lactam cores related 

to omuralide.67 The lactam core was derived from glycine, with no original chirality, the cores 

were racemic.  

The key step was the Dieckmann cyclization (Scheme 18), allowing formation of the lactam 

core 136, then the alkylation of the tetramic acid like position with tetra-N-butylammonium 

fluoride (TBAF) and MeI. Further optimization of this step allowed a 1 pot procedure to be 

developed, where TBAF induced cyclization of 135, then, after MeI addition, facilitated 

alkylation (Scheme 19). 

 

Reagents and conditions: (i) BnOCOCH2COCl, py, DMAP, CH2Cl2, rt, 24 h, 83%; (ii) NaH, PhH, 

6 h, 63%. 

Scheme 18: Cyclization of glycine to a functionalized γ-lactam core 
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Reagents and conditions: (i) TBAF, MeI, THF, 24 h, 70%; (ii) TBAF, Et2O, rt, MeI, THF, 24 h, 

53%. 

Scheme 19: Alkylation of the γ-lactam core and the 1-pot cyclization/alkylation 

A further key step in the synthesis of the functionalized lactam core, was the addition of a 

methyl ester using Mander’s reagent.68 This allowed acetylation at the carbon, with no 

competing O-acetylation, in a diastereoselective manner (5:1). Finally, removal of the benzyl 

ester produced the advanced intermediate of omuralide (Scheme 20). 

 

Reagents and conditions: (i) LiHMDS, NCCO2Me, DMPU, THF, -78 °C, 2 h, 75%; (ii) H2, Pd(OH)2, 

THF, rt, 20 min, 95%. 

Scheme 20: Acylation of 137 leading to the advanced intermediate of omuralide 139 

1.9.1.2 Synthesis of the full carbon skeleton of omuralide from glycine 

Later work by the Page group built on this, allowing elaboration of intermediate 138 to the 

full carbon skeleton of omuralide.69 Initial work to install the C9 hydroxyl group with the iso-

butyl moiety through an acylation, was thwarted by formation of the O- acetylated product 

140. However, alkylation at this position was successful, forming the full carbon skeleton. 
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Reduction of the alkene and hydrogenolysis of the benzyl ester was achieved in one step, 

providing the advanced intermediate of C9-deoxy omuralide 142 (Scheme 21). 

 

Reagents and conditions: (i) (CH3)2CHCOCl, py, CH2Cl2 24 h, 68%; (ii) NaH, DMF, 

CH2=CCH3CH2Br, rt, 24 h, 75%; (iii) H2, Pd/C (cat), 90% (1:1 mix of diastereoisomers by NMR). 

Scheme 21: Elaboration of 138 to the full carbon skeleton of omuralide 

1.9.2 Studies towards the synthesis of C9-deoxy omuralide from L-leucine 

1.9.2.1 Synthesis of the γ-lactam core  

Later work in the Page group has concentrated on the use of chiral amino acids as starting 

materials.70 Not only does this allow the carbon skeleton of omuralide to be synthesized in a 

much more efficient manner (the iso-butyl does not need to be incorporated later), but the 

initial chirality should also be able to direct the synthesis, providing a route to enantiopure 

compounds. Varying the amino acid starting material should also be able to produce new 

analogues of omuralide. Currently, the majority of this work has focused on leucine, which, 

once fully elaborated, could produce C9-deoxy omuralide (Scheme 22). 

 

Scheme 22: Using leucine to form an omuralide analogue 
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Reagents and conditions (i) 1) para-Methoxy benzaldehyde, acetic acid, toluene, reflux 2) 

NaBH3CN, acetic acid, MeOH, 93%. (ii) 146, EDAC.HCl, DMAP, N-methyl morpholine, CH2Cl2, 

72%. 

Scheme 23: Synthesis of a leucine derived Dieckmann cyclization precursor 147 

 

Figure 12: EDAC.HCl in straight chain and cyclized form 

Leucine methyl ester 144 was protected with PMB using an acid catalysed reductive 

amination procedure. Coupling to 146 with peptide coupling reagent 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide HCl  (EDAC.HCl) provided a Dieckmann cyclization 

precursor 147 similar to 135 (Scheme 23). 

 

Reagents and conditions: (i) TBAF (1M in THF), THF, MeI, rt, overnight, 59%. 

Scheme 24: The Dieckmann cyclization incorporation leucine into the γ-lactam core 
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Dieckmann cyclization precursor 147 was treated to a comparable reaction developed for the 

glycine route, producing a 1:2 mixture of diastereoisomers. Unfortunately, however, the 

material was found to be racemic (Scheme 24). This was assumed to have occurred during 

the Dieckmann cyclization by fluoride mediated deprotonation of the α-ketone position. 

1.9.2.2 The acylation using Mander’s reagent 

Each of the diastereoisomers were found to undergo acetylation diastereoselectivly using 

Mander’s reagent (Scheme 25).  

 

Reagents and conditions: (i) LiHMDS, DMPU, methyl cyanoformate, THF, -78 °C, using (±)-

148a: 73%, using (±)-148b 79%, using (±)-148a and (±)-148b 86%. 

Scheme 25: The acylation using Mander’s reagent of the diasteroisomers (±)-148a and (±)-

148b 
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Addition of the methyl ester occurred opposite the bulky benzyl ester. Because both 

diastereoisomers were racemic, and the reaction was diastereoselective, separation of the 

diasteroisomers (±)-148a and (±)-148b was not necessary, as both would go through the same 

racemic intermediate (±)-150. 

1.9.2.3 Elaboration of the γ-lactam core to C9-deoxyomuralide 

1.9.2.3.1 Strategy and reduction of the C6 ketone 

Following from the success of the construction of the γ-lactam core, work focused on the 

functional group manipulations required for the synthesis of C9-deoxy omuralide. The 

strategy developed involved reduction of the C6 ketone, followed by removal of the benzyl 

ester (Scheme 26). 

 

Scheme 26: Strategy consisting of reduction and removal of the benzyl ester to produce 

advanced intermediate (±)-152 

This should produce the advanced intermediate (±)-152. Reduction of (±)-149 using sodium 

borohydride occurred in surprisingly high diastereoselectivity with the hydride adding on the 

same face as both the iso-butyl and the benzyl ester (Scheme 27). 

 

Reagents and conditions: (i) NaBH4, EtOH, 0 °C to rt, 30 min, up to 57%. 

Scheme 27: Reduction of (±)-152 with NaBH4 producing (±)-151 
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1.9.2.3.2 Attempts at removal of the benzyl ester 

1.9.2.3.2.1 Removal using an acyl selenium decarboxylation 

The first decarboxylation strategy attempted was via the acyl selenium (±)-154 through a 

radical mediated pathway (Scheme 28). 

 

Scheme 28: Strategy for the formation of an acyl selenium derivative (±)-154 for 

decarboxylation 

An example by Allin et al.71 shows decarboxylation can occur in similar functionalities. 

Removal of the benzyl ester proceeded in good yield, providing the acid (±)-153 (Scheme 29). 

Formation of the acyl selenide however failed, instead producing the β-lactone (±)-155 

(scheme 30). Various methods to protect the C6 hydroxyl group were then attempted, 

however, this was surprisingly difficult. The most effective group was found to be a 

trifluoroacetate. 

 

Reagents and conditions: (i) H2, Pd(OH)2, THF, quant. 

Scheme 29: Removal of the benzyl providing acid (±)-153 
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Reagents and conditions: (i) Bu3P, (PhSe)2, CH2Cl2, 24 h, 66%. 

Scheme 30: Attempt at forming the acyl selenide (±)-154 

Trifluoroacetate protection proceeded in good yield allowing the acyl selenide (±)-154 to be 

formed, unfortunately however, subjecting this to the conditions required for 

decarboxylation resulted in a complicated mixture of products (Scheme 31). 

 

Reagents and conditions: (i) (CF3CO)2O, pyridine, Et2O, 81%; (ii) Bu3P, (PhSe)2, CH2Cl2, 24 h, 

31%; (iii) n-Bu3SnH, AIBN, toluene, 80 °C, 2 h. 

Scheme 31: Formation of acyl selenide (±)-154 and attempts at decarboxylation 

1.9.2.3.2.2 Removal using Barton decarboxylation 
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Following on from the failed decarboxylation attempts with the acyl selenide. Formation of a 

Barton ester was pursued. In the correct conditions, this should undergo Barton 

decarboxylation.  

 

Scheme 32: Decarboxylation strategy via Barton ester (±)-160 

Unfortunately, attempts to form the Barton ester (±)-157 all resulted in the β-lactone by-

product (±)-155 (Scheme 33). Both (±)-153 and the trifluoroacetic acid (TFA) ester protected 

derivative (±)-156 were treated with coupling conditions, using peptide coupling EDAC.HCl 

and 2-mercaptopyridine N-oxide sodium salt. (±)-157 was also attempted to be synthesized 

through an acyl chloride (Scheme 33) but again this resulted in β-lactone (±)-155. 

 

Reagents and conditions: (i) (±)-153, oxalyl chloride, and 2-mercaptopyridine N-oxide sodium 

salt, DMF, CHCl3; (ii) (±)-153 or (±)-156, EDAC.HCl, N-MM, DMAP, 2-mercaptopyridine N-oxide 

sodium salt, THF. 

Scheme 33: Attempts to form the Barton ester 
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1.9.2.3.2.3 Removal using a Krapcho decarboxylation 

A final attempt at decarboxylation was attempted using Krapcho72 conditions, unfortunately 

this resulted in removal of both the methyl ester and the benzyl ester (Scheme 34).  

A potential approach to future work on decarboxylation strategies of (±)-153 may find success 

using the reagent by Garner73 S-(1-Oxido-2-pyridinyl)-1,1,3,3-tetramethyl-thiouronium 

Hexafluorophosphate (HOTT). Which has been found to decarboxylate particularly hindered 

esters. 

 

Reagents and conditions: LiCl, DMF, 135 °C, 4 h, (±)-158 49% and (±)-159 38%. 

Scheme 34: Treatment of (±)-151 with Krapcho decarboxylation conditions 

With all strategies for decarboxylation failing, a new approach was undertaken. 

1.9.2.3.3 New strategy to reach intermediate (±)-152 

The new strategy involved first removing the benzyl ester, then reducing the C6 carbonyl 

(Scheme 35). 

 

Scheme 35: New strategy to (±)-152 involving removal of the benzyl ester followed by 

reduction  

Removal of the benzyl ester was achieved using hydrogenolysis conditions (Scheme 36). 

Despite a number of methods attempted however (Table 7), (±)-152 was unable to be 
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synthesized (Scheme 36). This is perhaps due to the readily enolizable nature of the ketone, 

a new strategy was devised based on a procedure used by Pattenden74,74 where a thiomethyl 

group would be installed, the ketone reduced, then the thiomethylated compound 

desulfurized. This strategy is explained in more detail in chapter 2.2.3.1. 

 

Reagents and conditions: (i) H2, Pd(OH)2/C, THF, 30 °C, > 90%; (ii) See table 7. 

Scheme 36: Hydrogenolysis followed by reduction strategy 

 

 

 

 

 

 

Table 7: Reduction conditions attempted for formation of (±)-152 

  

Reducing 
reagent 

Conditions Result 

NaBH4 EtOH 0 °C, 30 m Complex mixture 

NaBH3CN MeOH 0 °C - rt, 2 h SM 

NaBH(OAc)3 Acetic acid, rt, 1 h Unidentified compound 

LAH THF, 0 °C, 2 h Decomposition 

LAH THF, -78 °C, 1-2 h Complex mixture 

DIBAL THF, 0 °C, 2 h Complex mixture 

DIBAL THF, -78 °C, 1-2 h Complex mixture 

Red-Al® DCM, -78 °C, 1-2 h Complex mixture 

Noyori catalyst IPA/THF 5:1, 3-6 days Unidentified compound 
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1.9.3 Studies towards the synthesis of omuralide from L-serine 

1.9.3.1 Overview of route using serine 

Previous work in the group has also focussed on incorporating serine into the γ-lactam core. 

Using the previously developed Dieckmann cyclization/alkylation methodology. Once 

incorporated, with the C5 hydroxyl group in place, elaboration to omuralide should be 

achievable (Scheme 37). 

 

Scheme 37: Incorporation of 161 into the lactam core and elaboration to omuralide 

1.9.3.2 Studies toward the synthesis of omuralide from serine 

Protection of serine proved more difficult compared to the leucine route. Methods previously 

developed failed (Scheme 23), however formation of the imine, and its subsequent reduction 

under an atmosphere of hydrogen, afforded 163 in fair yield. Unfortunately, however, 

coupling to 146 under the standard conditions produced only a small quantity of desired 

product 165. This is primarily down to the disubstituted by-product 164 being formed 

(Scheme 38). 
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Reagents and conditions: (i) para-methoxybenzaldehyde, triethylamine, H2, Pd/C, MeOH, 

64%; (ii) 146, EDAC.HCl, DMAP, N-methyl morpholine, CH2Cl2, 165: 14%, 164: 31 %. 

Scheme 38: PMB protection of serine and coupling of the product to 168 

Due to these problems, a protection strategy was devised, protecting the hydroxyl group with 

protecting group triisopropyl silyl (TIPS). The Dieckmann cyclization precursor 167 was then 

obtained in excellent yields (Scheme 39). 

 

Reagents and conditions: TIPSCl, imidazole, DMF, reflux, 90%; (ii) 146, EDAC.HCl, DMAP, N-

methyl morpholine, CH2Cl2, 91%. 

Scheme 39: The formation of the TIPS protected cyclization precursor 167 

Unfortunately, however, when treated to the cyclization/alkylation conditions the γ-lactam 

162ab was not isolated. It was thought there could be too many competing reactions between 

cyclization and TBAF induced deprotection of the TIPS group (Scheme 40). 
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Reagents and conditions: TBAF, MeI, THF, overnight. 

Scheme 40: Treatment of 167 with the Dieckmann cyclization/alkylation conditions 

1.9.3.3 Starting from a benzyl ether serine derivative 

To avoid these problems, a benzyl ether protected version of serine was acquired (168). 

Protection of the amine again proved difficult and so 168 was coupled to 146 forming the 

Dieckmann cyclization precursor 169 as a secondary amide. Treating this to the Dieckmann 

cyclization conditions, however, failed to cyclize 169 to the lactam 170, instead, alkylating the 

malonic position twice forming 171 (Scheme 41). 

 

Reagents and conditions: 146, EDAC.HCl, DMAP, N-methyl morpholine, CH2Cl2, 69%; (ii) TBAF, 

MeI, THF, overnight, 30%. 

Scheme 41: Attempted cyclization of 170 with the Dieckmann cyclization/alkylation 

conditions 

  



 

49 
 

2.0 Results and discussion 

2.1 Retrosynthetic analysis of omuralide and related γ-lactam materials 

We aim to develop a flexible route to a highly functionalized γ-lactam core. This route, 

modified appropriately, should be able to produce known natural products such as omuralide 

and the salinosporamides, and known and novel analogues of these compounds. Scheme 1 

shows the general retrosynthetic analysis used to produce the β-lactone, γ-lactam 

proteasome inhibitors and analogues. The β-lactone γ-lactam core could be formed through 

saponification of the corresponding methyl ester to the acid, followed by lactonization to the 

C6 reduced, acylated β-lactam core. The C6 alcohol, which would also become the β-lactone, 

could be formed either through hydride reduction or alkylation of the ketone, depending on 

the analogue required. Previous work in the group had shown that the methyl ester could be 

inserted diastereo- and chemoselectivly using Mander’s reagent directed by a benzyl ester 

leading to the acylated γ lactam core. The lactam core would be produced through a tandem 

Dieckmann cyclization/alkylation leading to the Dieckmann cyclization precursor. 

Modification of the alkylating agent should produce lactam cores with various C7 alkyl groups, 

allowing further modification of the route. The Dieckmann precursor could be coupled to a 

half malonic benzyl ester through a peptide coupling, leading to the N-protected amino acid 

methyl ester. Modification of the amino acid starting material provides a final degree of 

flexibility allowing various different moieties at the C9 position. Amino acids were used as the 

starting material due to their inherent chirality, allowing the synthesis to be stereochemically 

directed. 
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Scheme 1. Retrosynthetic analysis of the β-lactone, γ-lactam core 

The work presented here describes our synthetic route from L-leucine. Fully elaborated, L-

leucine would form C9-deoxy-omuralide, which possesses the full carbon skeleton of 

omuralide. Also discussed is our work using L-serine as starting material, with the C9 hydroxyl 

group in place from the beginning. Fully elaborated, this could form omuralide. Modification 

of the L-serine route could also be used to produce other related natural products such as the 

cinnabaramides, salinosporamides and antiprotealide. 

 

Figure 1. Various β-lactone, γ-lactam natural products 

2.2 Elaboration of L-Leucine methyl ester HCl to (+)-C9-deoxy-omuralide 

2.2.1 Outline of the general procedure 

The proposed route to C9-deoxy-omuralide (Scheme 2) followed the outline of the route in 

Scheme 1. Building on previous work in the Page group,67,69,75 leading to 149, following 
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removal of the benzyl ester, the thiomethyl blocking group strategy first used by Corey29 and 

later by Pattenden76,74 would be followed to allow reduction of the C6 ketone (173). 

Desulphurization followed by protecting group removal should provide the substituted 

pyroglutamate 174, which has been cyclized to C9-deoxy-omuralide by Mereddy et al.77 

 

Scheme 2: Plan for the synthesis of 9-deoxy-Omuralide from L-Leucine 

2.2.2 Formation of the full carbon skeleton of omuralide 

2.2.2.1 N-Protection of leucine 

Corey had shown in previous syntheses that the PMB protecting group could be removed 

from late stage intermediates and analogues of omuralide and lactacystin. This result has led 

PMB to be a common protecting group in lactacystin synthesize and hence PMB was utilized 

in our route.  

Para-methoxy benzaldehyde and L-leucine were heated under reflux in acidic conditions 

using a Dean-Stark apparatus to form the corresponding imine 175. The resulting imine could 

be reduced with sodium cyanoborohydride to afford the amine 145 in excellent yield (Scheme 

3). 



 

52 
 

 

Reagents and conditions: i) 4-methoxybenzaldehyde (1.1 equiv), acetic acid (0.6 equiv), 

toluene, reflux, quant; ii) NaBH3CN (2 equiv), acetic acid (0.9 equiv), MeOH, 96%. 

Scheme 3: Two step, one pot reductive amination 

However, during further characterization, discrepancies were found between the optical 

rotation value of the amine and the literature value.78 To our surprise, it was found that the 

leucine chirality had been completely lost under the reaction conditions. Although previous 

work in the Page group had observed racemization in the synthetic route, this was assumed 

to have been much later in the synthesis. Very similar findings have been observed in the 

comprehensive study by Yamada et al.,79 where various amino acids were racemized at high 

temperatures in the presence of aldehydes and acetic acid due to the formation of a Schiff 

base, lowering the pKa of the alpha ester proton (Scheme 4). A similar racemization involving 

piridoxal phosphate (PLP) (the active form of vitamin B6) is a common occurrence in metabolic 

pathways,80 one key use being the formation of D-serine from L-serine in conjunction with 

serine racemase.81 

 

Scheme 4: Racemization of leucine and the structure of PLP 
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Due to the racemization occurring in the acidic conditions during imine formation the 

procedure was modified to a 1-pot reaction in basic conditions. A similar racemization has 

also been observed under basic conditions,82 therefore, DL-Leucine (176) was also acquired, 

esterified and subject to the same conditions. The reductive amination proceeded with good 

yield in both cases, but, more importantly, comparison of the known racemate and the N-

protected amino acid from L-leucine using high performance liquid chromatography (HPLC) 

with a chiral stationary phase, showed there had been no observable racemization using the 

new procedure (Scheme 5). 

 

Reagents and conditions: i) p-methoxybenzaldehyde (1.1 equiv), Et3N (1 equiv), MeOH, 

NaBH4 (1.9 equiv), 0 °C to rt, 76% from L-leucine, 68% from DL-leucine; ii) acetyl chloride (3 

equiv), MeOH, 0 °C – reflux, 16 h, quant. 

Scheme 5: Esterification and one step reductive amination 

2.2.2.2 Synthesis of 146 and coupling to the N-protected leucine ester 

The Dieckmann cyclization precursor 147 was synthesized from the corresponding acid 146 

and the PMB protected leucine ester 145 (Scheme 6) 

 

Scheme 6: Formation of the Dieckmann cyclization precursor 
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Synthesis of the half malonic ester was achieved by forming the dibenzyl malonic ester 

through acidic (para-toluene sulphonic acid monohydrate) (p-TSOH) esterification of malonic 

acid 146 with benzyl alcohol (BnOH) in a Dean-Stark apparatus (Scheme 7). Mono-

saponification of the di-ester 177 induced precipitation of the potassium salt in excellent 

yield. EDAC.HCl, a common peptide coupling reagent, was used to form the peptide bond 

along with catalytic quantities of DMAP and N-methyl morpholine (N-MM). After purification 

by column chromatography, the Dieckmann cyclization precursor 147 was observed as a pair 

of rotamers in 13C and 1H nuclear magnetic resonance (NMR) experiments in an 

approximately 4:1 ratio. Variable temperature experiments in dimethyl sulphoxide (DMSO) 

found that peak coalescence occurred at 100 °C. Analysis of 147 by chiral stationary phase 

HPLC in comparison to a synthesized racemate showed that no observable racemization had 

occurred at this point. 

 

Reagents and conditions: i) Benzyl alcohol (2.1 equiv), p-TsOH (0.01 equiv), toluene, reflux 

(Dean-Stark), 16 h; ii) KOH in BnOH, 74%; iii) EDAC.HCl (2.6 equiv), DMAP (0.25 equiv), N-MM 

(2.3 equiv), DCM, 93%. 

Scheme 7: Formation of 146 and its coupling to 145 

2.2.2.3.1 The Dieckmann cyclization/alkylation 

The previously developed cyclization/alkylation occurs through deprotonation of the malonic 

position in the Dieckmann precursor 147 using TBAF as the base. Nucleophilic attack of the 

malonate at the leucine ester group forms the gamma lactam as a tetramic acid. A second 

deprotonation at the C7 position forms a highly stabilized enolate; addition of iodomethane 

in situ then provides the alkylated gamma lactam with the methyl group required for 

omuralide. The tetramic acid intermediate was assumed to be planar and therefore we hoped 
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to see diastereoselective control with the methyl iodide adding opposite the leucine’s bulky 

iso-butyl group (Scheme 8). 

 

Scheme 8: The first and second steps of the cyclization/alkylation 

Compound 147 was dissolved in tetrahydrofuran (THF) and treated with TBAF. After 30 m, 

iodomethane was added at 0 °C. After work-up and purification by column chromatography, 

separable diastereoisomers 148a and 148b were isolated in a 1:2 ratio (Scheme 9).  

 

Reagents and conditions: TBAF in THF (3.6 equiv), THF, rt, 0.5 h, then MeI (4 equiv), 0 °C to 

rt, 16 h, 57 %, Ratio 2:1 by crude NMR analysis 

Scheme 9: The tandem Dieckmann cyclization/alkylation 

Unfortunately, analysis of each diastereoisomer and a synthesized racemate by HPLC using a 

chiral stationary phase showed that a loss of enantiopurity had occurred in both 

diastereoisomers, providing the first eluting diastereoisomer in 9% ee and the second in 79% 

ee. 

2.2.2.3.2 Confirmation of the relative stereochemistry 

Each diastereoisomer was subject to analysis by nuclear Overhauser effect spectroscopy 

(NOESY) NMR experiments. It was hoped that interactions would be seen between the iso-

butyl and the C7 methyl group in one of the diastereoisomers and interactions between the 

methyl and C5 proton in the other. Perhaps similar to the interactions seen on page 66 in 
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compounds 172ab. Unfortunately however, no clear interactions could be seen that could 

suggest which diastereoisomer was isolated in excess.  

 

Reagents and conditions: (i) CAN (5 equiv), 3:1 MeCN/Water, 63% for 148b, 84% for 148a. 

Scheme 10: Removal of the PMB group in compounds 148a and 148b 

Both diastereoisomers 148a and 148b were isolated as oils, and we were therefore unable to 

obtain a single crystal X-ray structure. Removal of the PMB protecting group in the major 

second eluting fraction 148b with CAN provided the deprotected lactam as an oil, but PMB 

removal from the minor, first eluting, diastereoisomer 148a provided 179 as a colourless 

crystalline solid of which a crystal of racemic material was obtained (Scheme 10). 

The crystal structure (Figure 2) shows the methyl group cis to the bulky iso-butyl group, 

meaning that our major diastereoisomer 148b has the methyl group trans. Although the 

diastereoselectivity was not as high as hoped, we expected this to be the major 

diastereoisomer due to the steric hindrance of the iso-butyl moiety. 
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Figure 2: The x-ray crystal structure of (±)-179 (hydrogen atoms and the two other structure 

conformations removed for clarity) 

2.2.2.3.3 Loss of enantiopurity 

Loss of enantiopurity has been observed before in similar cyclizations. In 1990 Poncet et al.83 

studied C5 epimerization rates in various tetramic acid derivatives in sodium methoxide and 

methanol under reflux (Scheme 11). 

 

Reagents and conditions: MeONa, MeOH, reflux, 2 h, 97%. 

Scheme 11: Poncet’s Dieckmann cyclization epimerization 

A mechanism where epimerization occurs before alkylation seems likely as double 

deprotonation of the tetramic acid core could produce a stabilized, aromatic, pyrrole-like 

intermediate (Scheme 12). 
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Scheme 12: Potential driving force for epimerization before alkylation 

However, in-depth analysis of the reaction mixture shows this cannot be the case, or at least 

not the sole reason. The intermediate necessary for racemization to occur before alkylation 

would be achiral. This intermediate would, therefore, once protonated for alkylation to occur, 

be a 50/50 mix of enantiomers. The enolate would now undergo the diastereoselective 

alkylation. Our reaction has shown that the alkylation is diastereoselective, the methyl 

preferentially adding opposite the isobutyl group in a 1:2 ratio. Scheme 13 shows the 

outcome of this mode of racemization assuming the diastereoselectivity is 1:2, favouring the 

methyl group adding opposite the iso-butyl group. This model should produce 34% of the 

racemic material in diastereoisomer 148a and 66% of the racemic material in diastereoisomer 

148b, but we find 81% of the racemic material in diastereoisomer 148a and 19% in 

diastereoisomer 148b. For a mechanism where epimerization occurs before alkylation, the 

ratio between the diastereoisomers in the racemic material should match the total 

diastereoselectivity of the reaction. However, not only did the diastereoisomer ratio not 

match, more racemic material was found in the unfavoured diastereoisomer 148a. We can 

therefore assume the material must be racemizing predominantly after alkylation. 
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Scheme 13: Diastereoisomeric outcome assuming an epimerization before alkylation 

Because of this discrepancy we believe the primary cause of loss in enantiopurity is an 

epimerization of the diastereoisomers 148a and 148b, scrambling the stereochemistry. This 

could also explain why the first eluting diastereoisomer has a lower ee. The second eluting 

diastereoisomer has the iso-butyl and the benzyl ester on the same side. Both are quite bulky 

groups, and would presumably produce considerable steric interaction. The release of this 

steric strain by enolate formation could mean 148b is more susceptible to epimerization than 

the more thermodynamically stable 148a (Scheme 14). 
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Scheme 14: Possible explanation for the partial racemization of 148a and 148b 

To provide some evidence for this hypothesis, each diastereoisomer was stirred in TBAF in an 

attempt to induce epimerization, potentially showing 148b epimerized to 148a faster than 

148a to 148b. Unfortunately, however, both decomposed to a complex mixture of products 

on addition of TBAF (Scheme 15). Nevertheless the major and more enantiopure (79% ee) 

diastereoisomer 148b was used in the next step. 
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Reagents and conditions: (i) TBAF (1 M in THF) (3.4 equiv), rt, THF. 

Scheme 15: Epimerization studies on 148a and 148b 

2.2.2.4 Acylation of C5 using Mander’s reagent 

To provide the methyl ester which would later form the β-lactone found in omuralide, an 

acylation was required at the C5 α-keto position. Mander’s reagent was chosen due to its high 

chemo-selectivity for C-acylation of enolates over addition at the O nucleophile.68  

 

Reagents and conditions: LiHMDS (2.1 equiv), DMPU (2.2 equiv), THF, −78 °C, 0.5 h, then 

NCCO2Me (3.2 equiv), −78 °C, 4 h, 70%. 

Scheme 16: Acylation using Mander’s reagent 

Enolate formation followed by addition of Mander’s reagent proceeded with good yield 

(Scheme 16). No competing O-acylation was seen and furthermore the reaction was highly 

diastereoselective, with no minor diastereoisomer observed in NMR. The acylation had 

occurred opposite the benzyl ester as expected due to the bulky nature of the group forming 

149. 
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Figure 3: The acylated lactam core 149 and omuralide 

Although at this stage we have the correct relative stereochemistry for omuralide analogues, 

the absolute stereochemistry is that of the opposite enantiomer to natural omuralide (Figure 

3). Completing the synthetic scheme with the unnatural enantiomer of leucine (D) should 

therefore produce the correct enantiomer for omuralide analogues. Although commercially 

available, the unnatural enantiomer is far more expensive, and therefore we decided not to 

complete the synthesis with this starting material unless biological testing was required. 

Comparison with a synthesized racemate of 149 by chiral phase HPLC showed no further 

racemization had taken place. With the full carbon skeleton of omuralide completed we 

started the functional group manipulations required to produce C9-deoxy-omuralide. 

2.2.3 Manipulation of the C7 and C6 stereogenic centres 

2.2.3.1 Strategy for the construction of the C7 and C6 stereogenic centres 

Our strategy for the construction of the cis C6 hydroxyl and C7 methyl was based on a blocking 

group tactic originally used by Corey29 and later by Pattenden76,74 in their respective syntheses 

of omuralide. Corey’s approach incorporated a thiomethyl group from the beginning of the 

route. The C6 ketone could be reduced with complete diastereoselectivity using NaBH(OAc)3. 

Removal of the thiomethyl group with Raney® nickel occurred with high diastereoselectivity 

(10:1), leaving the methyl group in the position cis to the alcohol as required for omuralide 

(180). Pattenden installed the thiomethyl later using a thiosulphonate reagent with good 

diastereoselectivity (182), where addition favoured the face opposite the TBS group, and then 

reduced the C6 ketone in a similar fashion, also using NaBH(OAc)3 or Zn(BH4)2 to provide the 

sulphated Corey intermediates 30 and 183 (Scheme 17). 
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Reagents and conditions: (i) NaBH(OAc)3, AcOH, 23 °C, 1 h, recrystallization, 95%; (ii) 1) PivCl, 

Pyridine, 23 °C, 10 h 85%; 2) TBSOTf, 2,6-lutidine, 23 °C, 12 h, 98%; 3) NaOMe, MeOH, 23 °C, 

5 h, 92%; (iii) Raney-Nickel, EtOH, 0 °C, 1 h, 82%; (iv) MePhSO2SMe, Et3N, DCM, rt, 78%; (v) 

PMBBr, NaH, DMF, THF, 0 °C to rt; 2) HF, pyridine, THF, rt, 40% (two steps); (vi) NaBH(OAc)3, 

AcOH, rt, 90%; (vii) Zn(BH4)2 (4.4 M in THF), THF, 0 °C, 79%; viii) 1) TBSOTf, 2,6-lutidine, DCM, 

0 °C to rt, 80%; 2) PMBBr, NaH, DMF, 0 °C to rt, 73%; viii) HF–pyridine, pyridine, THF, rt - 40 

°C, 89%. 

Scheme 17: The Corey and Pattenden approach to C6 reduction 

We decided to follow a similar strategy to Pattenden; removal of the benzyl ester would 

provide 160ab, a similar intermediate to 181, allowing addition of the thiomethyl group 

(Scheme 18). We hoped that the bulky nature of the iso-butyl group could direct the addition 

opposite the lactam ring. With the thiomethyl blocking group in place we envisaged a similarly 

diastereoselective reduction of the C6 ketone analogous to both Corey and Pattenden. 

Diastereoselective desulphurization of the thiomethyl group would then provide all the 

stereogenic centres required to produce the C9-deoxy-omuralide analogue. 
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Scheme 18: Planned approach to the functional group manipulations to provide 7 

2.2.3.2 Removal of the benzyl ester and addition of the thiomethyl group 

2.2.3.2.1 Hydrogenolysis of the benzyl ester 

Removal of the benzyl ester was achieved through a hydrogenolysis using Pearlman’s 

catalyst84 (Pd(OH)2/C) and hydrogen in THF at 35 °C (Scheme 19). Unfortunately, proper 

characterization of this compound could not be achieved due to decomposition on silica gel, 

presumably due to the readily enolizable centre. Although the no starting material could be 

seen on thin layer chromatography (TLC), a mixture of compounds was seen in 1H NMR 

spectrum. In the most abundant compounds, however, a doublet was seen in place of the 

singlet that corresponded to the methyl group, indicating that the benzyl ester had been 

removed. As it could be possible for 160ab to be in equilibrium with each of the C7 

diastereoisomers and the ketone and lactam enolates, we decided to use the compound the 

next step without further purification. 

 

Reagents and conditions: (i) Pd(OH)2/C (cat), THF, 35 °C, overnight, quant. 

Scheme 19: Removal of the benzyl ester 

2.2.3.2.2 Synthesis of the thiosulphonate reagent and use with lactam 160ab 
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Like Pattenden, we decided to synthesize 186 as an electrophilic source of thiomethyl through 

the use of p-toluene sulphinate leaving group ability. The method used for synthesizing the 

reagent was developed by Fujiki,85 who produced thiosulphonates with differing R groups in 

good yield with a wide substrate scope through oxidation of the sulphinate with iodine. 

(Scheme 20). 

 

Reagents and conditions: (i) (MeS)2 (1 equiv), I2 (2 equiv), CH2Cl2, rt, 76%, (ii) Pd(OH)2/C (cat), 

THF, 35 °C, overnight, (iii) MePhSO2SMe (1.7 equiv), Et3N (1.2 equiv), CH2Cl2, rt, 6 h mixture 

of 172ab, 68% over the 2 steps. 

Scheme 20: Synthesis of the thiomethylating reagent 186 and its use with lactam 160ab 

The conditions used by Pattenden (Table 1 entry 3) gave a disappointing yield of 48%, a short 

optimization was carried out, changing reaction time and temperature, increasing the yield 

to 68%. The isomers were obtained after column chromatography as a 1:2 mixture of 

inseparable diastereoisomers (ratio obtained by 1H NMR spectroscopy). 
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 Time Temp °C Yield %* 

1 36 h 16-18 33 

2 Overnight 0 34 

3 Overnight 25 48 

4 Overnight 35 38 

5 Overnight 20 54 

6 6 h 25 52 

7 6 h 20 68 

Table 1: Optimization of the thiomethyl addition (step (iii) scheme 20). 

*Yields shown over the 2 steps (ii) and (iii) of scheme 20. 

Unfortunately, NOESY NMR experiments on the inseparable mixture showed that the isomer 

in excess was the undesired 172b, showing that the thiomethyl group preferentially adds 

opposite the methyl ester. Although we hoped the iso-butyl would be the predominant 

directing group, it is possible that the bulky head sits too far from the lactam ring to effectively 

direct attack of the thiomethyl unit, whereas the methyl ester is in closer proximity to the ring 

(Figure 4). 

 

Figure 4: NOESY correlations of 172ab 

2.2.3.3 Reduction of the C6 ketone 

Following Corey’s strategy and Pattenden’s experimental conditions, reduction of the C6 

ketone on was attempted with NaBH(OAc)3 using the mixture of diastereoisomers 172ab. 

Unfortunately, no reaction was seen and only starting material could be isolated. It is possible 

that the increased size of the boron complex decreases accessibility to the ketone in our 

system. Fortunately, however, the stronger reducing agent sodium borohydride was able to 

reduce the ketone, and, like Corey’s reaction, was found to be stereoselective. Hydride attack 

occurred opposite the thiomethyl group. Due to the poor diastereoselectivity of the 
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thiomethyl addition, our desired isomer 173a could only be isolated in 17% yield. Recovered 

starting material indicated that the ratio of diastereoisomers had changed from 2:1 to 6:1, 

showing that the desired diastereoisomer reacted much faster than the major one. This 

potentially shows again that the ester is effectively the bulkier group, slowing down hydride 

attack more than the iso-butyl group. Both isomers were analysed by NOESY experiments, 

showing that hydride attack had occurred opposite the thioether, and again indicating that 

the major product was our undesired diastereoisomer (Scheme 21). 

 

Reagents and conditions: (i) NaBH(OAc)3 (2 equiv), AcOH, 40 °C, 16 h; (ii) NaBH4 (0.6 equiv), 

EtOH, 30 m, -10 °C, 173a 17 %, 173b 46%. 

Scheme 21: Reduction of 173ab 

2.2.3.4 Desulphurization of C7 

2.2.3.4.1 Raney® Nickel and uses 

Raney® nickel was developed by Murry Raney in 1926 as a method of hydrogenation of 

vegetable oils. The catalyst is formed by sodium hydroxide dissolution of aluminium from a 

nickel/aluminium amalgam, providing nickel with a large surface area.86 Raney® nickel’s use 

in desulphurization was observed in 1939,87 and a more comprehensive analysis was carried 

out in 194388 with a wide variety of aliphatic and aromatic compounds. Perhaps the most 

famous use of Raney® nickel’s desulphurizing ability is the Mozingo reduction, whereby a 

thioketal is formed from a carbonyl and then hydrogenolysed to an alkane through treatment 

with Raney® nickel. Despite its wide use, however, the mechanism of action of Raney® nickel 

desulphurization is under debate. The prevailing theory involves a free radical mechanism, 
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where sulphur is chemisorbed on the surface of the nickel inducing homolytic bond fission. 

Hydrogen associated with the catalyst surface can then add to the radical species. Evidence 

for this theory includes the observation of dimers89 and the racemization of chiral sulphides.90 

Although beyond the scope of this chapter, more evidence pointing to a radical mechanism 

and the counter-theories can be found in the literature.91 

2.2.3.4.2 Diastereoselective uses of Raney® nickel 

Despite the unpredictability of Raney® nickel desulphurizations, diastereoselective 

desulphurizations have been used efficiently in the synthesis of several natural products. One 

example is the synthesis of 7α-eremophilane, where reduction/desulphurization of the 

thiophene yields the alpha anomer with greater than 95% diastereoselectivity (scheme 22). 

 

Reagents and conditions: (i) W-7 Raney Nickel, hexanes, 85%. 

Scheme 22: Synthesis of 7α-eremophilane using a diastereoselective desulphurization 

Not only has Raney® nickel been used for diastereoselective reactions, but modification of 

the catalyst surface originally by glucose92 and later tartaric acid93 has provided 

enantioselective reductions. 

2.2.3.4.3 Desulphurization of the thiomethyl group with Raney® nickel 

Treatment of compound 173a with Raney® nickel under Corey’s conditions (0 °C) only 

provided starting material, as did a room temperature reaction. Heating to reflux, however, 

did produce the desulphurized compound as a 3:1 mixture of diastereoisomers, but, in a very 

disappointing yield of 7% (Scheme 23). These decreased yields meant we were unable at this 

stage to properly analyse the product to conclude whether the desired diastereoisomer was 

in excess. This result combined with the low yields and poor stereoselectivity of the previous 

two steps led us to abandon our work with the thiomethyl derivative. 
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Reagents and conditions: (i) Raney® nickel, ethanol, reflux, 4 h, 152ab (3:1), 7%. 

Scheme 23: Raney® nickel desulphurization of 173a 

2.2.3.4.4 Replacement of the thiomethyl with a thiophenyl group 

2.2.3.4.4.1 Strategy 

We decided to exchange the thiomethyl group for a thiophenyl in the hope the thiophenyl 

would be more labile (Scheme 24). Although we were unable to find examples in the literature 

of the use Raney® nickel to remove thiophenyl more efficiently than thiomethyl, examples 

showing this with azobisisobutyronitrile (AIBN)-initiated radical-based removals have been 

well studied.94,95 Because the mechanism for Raney® nickel desulphurization was potentially 

also radical based, we thought this approach worth attempting. The bulkier phenyl group 

would also mean that desulphurization could be favoured by the release of strain in the 

system. 

 

Scheme 24: Strategy for the incorporation of thiophenyl and its removal 

2.2.3.4.4.2 Hydrogenolysis and insertion of the thiophenyl 

The thiophenylating reagent was synthesized in an analogous way to the thiomethylating 

reagent, and could be used without purification.96,85 
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Reagents and conditions: (i) (PhS)2 (0.5 equiv), I2 (0.5 equiv), CH2Cl2, rt, overnight, 67%, (ii) 

Pd(OH)2/C, THF, 35 °C, overnight, (iii) MePhSO2SPh 189 (2.9 equiv), Et3N (1.6 equiv), CH2Cl2, 

rt, mixture of 187ab, 67% over the 2 steps. 

Scheme 25: Synthesis of the thiophenylating reagent 189 and its incorporation into the 

lactam core 

After hydrogenolysis, the lactam 160ab was treated with reagent 189 (Scheme 25). Using 

Pattenden’s conditions gave only moderate yields, but a slight improvement was seen using 

our optimized conditions (Table 2, entry 2) and reducing the time further provided a good 

yield of 67%. Furthermore, the diastereoselectivity was now found to be 1:0.9 and although 

this was still disappointingly low, as the thiomethyl analogue had provided the unwanted 

diastereoisomer in 2:1 excess, this was a vast improvement. Although the diastereoisomers 

were inseparable, NOESY analysis gave evidence suggesting the unwanted diastereoisomer 

was still in excess, albeit only moderately. 
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Table 2: Optimization of the thiophenylation of 160ab 

2.2.3.4.4.3 C6 reduction of compound 187ab 

The thiophenyl analogue was reduced using the same conditions as the thiomethyl and the 

reaction occurred with comparable yields and selectivity (Scheme 26). The diastereoisomers 

were easily separable by column chromatography. Led by NOESY analysis, we concluded, as 

before, that the first eluting diastereoisomer was the required stereochemistry, with the C6 

hydroxyl cis to the methyl ester. Analysis of 188a by chiral stationary phase HPLC indicated 

that the ee had decreased slightly from 79% to 77%. We believe this to be due to trace 

amounts of the unwanted diastereoisomer being produced in the acylation with Mander’s 

reagent. This would form trace amounts of the opposite enantiomer and therefore lower the 

ee. 

 

Reagents and conditions: (i) NaBH4 (0.7 equiv), EtOH, −10 °C, 0.5 h, 30% 188a and 35% 188b. 

Scheme 26: Reduction of the C6 position of 187ab 

  

Experiment Time Temp °C Yield 

1 overnight 25 49% 

2 6 h 20 56% 

3 6 h 17-18 57% 

4 5 h 20 67% 
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2.2.3.4.5 Raney nickel desulphurization with thiophenyl analogue 188a 

Compound 188a was treated with Corey’s conditions using Raney® nickel in ethanol at 0 °C, 

however once again an NMR of the crude material showed no product was formed. Increasing 

the temperature gave a trace of desired product but not enough to isolate. When increasing 

the temperature to 50 °C we were pleased to see that the same mixture of diastereoisomers 

could be isolated in 37% yield. The same diastereoisomer was in excess, however the ratio 

was now 2:1. Finally, heating to reflux as previously used for the thiomethyl analogue 173a 

provided the mixture of diastereoisomers in a 3:1 ratio and a 42% yield allowing us to separate 

and properly analyse each diastereoisomer. Separation allowed each of the diastereoisomers 

to be more accurately assigned. The first and major eluting diastereoisomer was found to 

have a J value of 9.7 Hz between the C7 and C6 protons (Scheme 27). Our minor second 

eluting diastereoisomer, however, had a value of 7.5 Hz between the same positions. The 

higher J value of our first eluting diastereoisomer suggests that the protons are trans to each 

other, and therefore the undesired diastereoisomer was in excess. Although our yield was still 

low, we had succeeded in dramatically increasing the yield by replacement of the thiomethyl 

group by the thiophenyl group. However, due to the incorrect diastereoisomer being formed 

in excess, we decided to abandon our work using Raney® nickel for the desulphurization. 

 

Reagents and conditions: (i) Raney nickel, ethanol, reflux, 4 h, 152ab (3:1), 42%. 

Scheme 27: Treatment of 188a with Raney® nickel and assignment of the diastereoisomers 

through J values 
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2.2.3.4.6 AIBN initiated radical desulphurizations 

2.2.3.4.6.1 Introduction to radical mediated desulphurizations 

Along with Raney® nickel, one of the more common methods of desulfurization is through 

use of an organotin hydride radical propagator and AIBN as a radical initiator. Such reactions 

have been comprehensively reviewed97 and have found use in natural product synthesis, 

most notably in Nicolaou’s synthesis of brevitoxin B (scheme 28).98 

 

Reagents and conditions: (i) Ph3SnH, AIBN, toluene, 100 °C, 2 h, 100% 

Scheme 28: Use of an organotin hydride desulphurization in the synthesis of brevitoxn B 
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Study of the literature revealed examples where desulphurizations using Raney® nickel had 

been compared to AIBN initiated, organotin hydride/organosilane propagated 

desulphurizations. These examples ranged from Raney® nickel providing: 

1) The same stereochemical outcome as an organo-tin hydride: 

During the preparation of functionalized β-lactams (Scheme 29), both Raney® nickel and 

tributyltin hydride were used to desulphurize thiophenyl groups. β-Lactam 189 provided the 

propyl/propenyl cis to the phenyl in both experiments (albeit with the propyl reduced in the 

Raney® nickel experiment to provide 191.)99  

 

Reagents and conditions: (i) n-Butyl tin hydride, AIBN, toluene, reflux, 50%; (ii) Raney® nickel, 

acetone, reflux, 45%. 

Scheme 29: A comparison of the stereochemical outcome between Raney® nickel and n-

butyltin-hydride mediated desulphurization 

2) No stereochemical preference: 

During the preparation of a library of functionalized γ-lactams (Scheme 30), Raney® nickel 

desulphurization of 192 was found to be completely unselective, providing a 50:50 mix of 

diastereoisomers 193a and 193b. An AIBN, tris(trimethylsilyl)silane (TTMS) radical-

propagated desulphurization, however, was highly selective (>95:5). As before, the AIBN-

initiated desulphurized position was left cis to the bulky phenyl group.100  
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Reagents and conditions: (i) TTMS, AIBN, toluene, 90 °C, 93% (>95:5); (ii) Raney® nickel, 

THF/Ethanol (1:2), rt, 96%, (1:1 ratio of diastereoisomers). 

Scheme 30: A comparison of the stereochemical outcome between Raney® nickel and TTMS 

mediated desulphurization 

3) The opposite stereochemical outcome: 

Most importantly for our scenario, the opposite selectivity has also been observed (Scheme 

31). During the preparation of carbapenem antibiotic analogues, switching the method of 

desulphurization completely changed the observed diastereoselectivity between 195 and 

196. Previous examples have shown that the AIBN-mediated method gave the more 

thermodynamically stable product, while Raney® nickel favoured the opposite 

diastereoisomer (scheme 31).95 

 

Reagents and conditions: (i) n-butyl tin hydride, AIBN, acetone, reflux, 16 h, 195-22% 196-

72%; (ii) Raney® nickel, acetone, reflux, 2 m, 195-47%, 196-21%. 

Scheme 31: A comparison of the stereochemical outcome between Raney® nickel and n-

butyltin-hydride mediated desulphurization. 
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2.2.3.4.6.2 Tributyltin hydride desulphurization of 188a 

Due to this final positive finding, 188a was heated to reflux with AIBN and tributyltin hydride 

overnight. Crude NMR spectroscopic analysis proved very difficult due to the tin residues left 

in the reaction mixture. Following the work by Harrowven, we decided to purify this complex 

mixture using a mixed silica stationary phase. Harrowven found that 10% finely ground 

potassium fluoride mixed with silica could remove tin residues to below 30 ppm.101 Later work 

found that 10% ground potassium carbonate in silica could reduce levels to as low as 15 

ppm.102 We decided to use the potassium carbonate method due to the increased 

effectiveness. To our delight, after purification by column chromatography, we found that the 

organotin method vastly increased yields to 93% providing 152ab in a 1:2 ratio of 

diastereoisomers. Most importantly however, the desired diastereoisomer was now the 

major product (Scheme 32). 

 

Reagents and conditions: Tributyltin hydride (3.4 equiv), AIBN (0.2 equiv), acetone, reflux, 16 

h, 152a/152b (1:2), 93%. 

Scheme 32: Desulphurization of 188a with tributyltin hydride 

2.2.3.4.6.3 Exchange of the organotin radical propagator to TTMS 

Although the desulphurization had been greatly improved from our initial reactions, we 

decided to modify the reaction to see if the diastereoselectivity could be further improved. 

We theorized that a bulkier radical propagator could increase the selectivity of our desired 

diastereoisomer. The bulkiest radical propagator we could find commonly available was 

TTMS. Si-H bonds are not common radical propagators due to the relatively high bond 

dissociation energy, however, due to the steric repulsion of the TMS groups, bond 

dissociation enthalpy falls about 17 kJ/Mol per TMS bond replacement from (Me)3SiH. The 

use and scope of TTMS have been recently reviewed.103 
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When applied to our system we were delighted to find that the diastereoselectivities 

increased greatly from 1:2 to 1:5 solely on exchange of the radical propagator and our desired 

diastereoisomer was still the major product. The reaction also took place in an excellent yield 

of 88%. Part of the reason for this high yield is the stabilization of our radical intermediate 

(Scheme 33). 

 

Reagents and conditions: TTMS (3.2 equiv), AIBN (0.3 equiv), acetone, reflux, 16 h, 152a-14 

%, 152b-74%. 

Scheme 33: Desulphurization of 188a with TTMS and the resonance stabilized radical 

intermediate 
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2.2.3.4.7 Summary of the desulphurization conditions 

For clarity all the desulphurization optimizations are presented in the following table 3. 

 

Entry R =  Method Temperature 

°C 

Yield 

% 

Diastereoselectivity 

7a:7b 

1 Me Raney® nickel 0 0 N/a 

2 Me Raney® nickel 18 0 N/a 

3 Me Raney® nickel Reflux 7 3:1 

4 Ph Raney® nickel 0 0 N/a 

5 Ph Raney® nickel 18 Trace N/a 

6 Ph Raney® nickel 50 37 2:1 

7 Ph Raney® nickel Reflux 42 3:1 

8 Ph AIBN, acetone, Bu3SnH Reflux 93 1:2 

9 Ph AIBN, acetone, TTMS Reflux 88 1:5 

Table 3: Summary of the desulphurization experiments 

2.2.3.4.8 The origin of the desulphurization diastereoselectivity 

Radical intermediates are not planar per se. The unpaired electron is held in a p orbital. The 

conformation of the intermediate adopts an orientation somewhere between an sp2 trigonal 

planar orientation and an sp3 pyramidal; this conformation is known as a shallow based 

pyramid (scheme 34). 

 

Scheme 34: Representation of the conformation of a carbon centred radical 

The energy required to invert this is so small, that rapid interconversion between the two 

states takes place. The radical species can therefore be considered planar, like an sp2 centre. 
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Radical insertion will therefore take place equally at the top or bottom face in achiral 

intermediates. If the radical has another stereocenter however, attack will usually occur from 

the least hindered face. 

Insertion of the thioether groups (scheme 20 and 25) favoured the face opposite the methyl 

ester in each case rather than the iso-butyl. It seems reasonable therefore to assume that the 

methyl ester is the primary directing moiety in our system. This could explain the selectivity 

observed if hydrogen is inserted from the face opposite the methyl ester in our AIBN-initiated 

reactions.  

The factors involved in Raney® nickel desulphurization are far more complex as shown in the 

previous examples (schemes 29, 30 and 31). Although general trends tend to show that 

hydrogen will insert from the least hindered face, the stereochemical outcome is far less 

predictable. Polar groups have been shown to disrupt selectivity104 potentially by 

coordination to the catalyst surface. Both the C5 ester and the C6 hydroxyl could contribute 

to this. 

In Corey’s intermediate, the TBS group and the absence of an iso-butyl means that 

intermediate 31 has a far more well defined sterically hindered face. The TBS group could also 

block potentially competing coordination effects. This could contribute to the high 

diastereoselectivity Corey achieved. Interestingly, during our Raney® nickel thiophenyl 

removal, the selectivity changed from 2:1 to 3:1 on an increase in temperature. Corey’s 

reaction occurred at 0 °C when he obtained the desired diastereoisomer. If our analogue 

underwent epimerization at the α-amide position due to elevated temperatures, this could 

produce the more thermodynamically stable diastereoisomer (preventing hindrance from the 

C7 methyl and the C5 methyl ester) and explain the change of diastereoselectivity at different 

temperatures. Raney® nickel desulphurization can also produce metal salts which could act 

as Lewis acids potentially catalysing this process. Nevertheless, with our advanced 

intermediate 152b in hand we started on the final deprotection steps to produce the 

omuralide analogue. 
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2.2.4 Removal of the PMB and methyl ester groups 

Various methods are available for the removal of PMB groups. CAN is however the most 

commonly used in previous omuralide syntheses. The removal proceeded in fair yield 

(Scheme 35), and NOESY correlations seemed to confirm our previous experiments had 

provided the desired diastereoisomer. 

 

Reagents and conditions: CAN (5.2 equiv), MeCN/H2O (3:1), rt, 62%. 

Scheme 35: Removal of the PMB protecting group 

With all the stereocentres in place and due to the crystalline nature of the product, we 

subjected compound 197 to recrystallization. We successfully obtained a diffractable crystal 

from our racemic series, synthesized for HPLC traces (Figure 5). 
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Figure 5: The X-ray crystal structure of (±)-197 (hydrogen atoms omitted for clarity) 

We were pleased to confirm that our NOESY analysis throughout the synthesis had been 

correct. As in omuralide, the C5 ester, C6 hydroxyl, and the C7 methyl are all cis to each other. 

Our final step involved saponification of the methyl ester to the acid with NaOH. The acid was 

obtained in good yield, and NMR data matched the data from Mereddy,77 confirming that we 

had made the pyroglutamate 174. This had previously been cyclized to 9-deoxy-omuralide 

76c by Mereddy in one step, thus completing a formal synthesis (Scheme 36). 

 

Reagents and conditions: (i) NaOH (0.5 M), 0-5 °C, 86%; (ii) BOPCl, Et3N, DCM, 40%. 

Scheme 36: Saponification of the methyl ester and Mereddy’s formation of the β-lactone 
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2.3 Elaboration of L-serine methyl ester hydrochloride to omuralide 

2.3.1 Choice of amino acid starting material and retrosynthetic analysis 

For our second route we decided to start with L-serine. The primary reason for this is that the 

hydroxyl group will be in place from the beginning of the synthesis; the serine hydroxyl group 

will end up in the C9 position required for elaboration to omuralide (Scheme 37).   

 

Scheme 37: Retrosynthetic analysis of omuralide 

Our target molecule would be Corey’s advanced intermediate 30.29 Not only was this the most 

direct way to confirm that our previously developed methodology could incorporate serine, 

but also this intermediate had previously been used to produce a wide range of C9 omuralide 

analogues.105,37 A suitably protected serine derivative would be coupled to a half malonic 

benzyl ester to form the serine-derived Dieckmann precursor. After the tandem 

cyclization/alkylation procedure to form the serine-derived γ-lactam core, Mander’s reagent 

would again be used to insert the methyl ester to form the serine-derived acylated γ-lactam 

core. Removal of the benzyl ester would allow insertion of the thiomethyl group which along 

with a stereoselective reduction and protecting group removal would provide the advanced 

intermediate 30. 
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2.3.2 Choice of serine O protecting group 

Following the general reaction scheme from our previous work to synthesize 9-deoxy 

omuralide, we had to consider that any protecting group used would have to be stable to 

basic conditions from the acylation with Mander’s reagent, to fluoride sources from the TBAF 

mediated Dieckmann cyclization and potentially to conditions used for the benzyl ester 

hydrogenolysis. Because of these restrictions we decided that an acid-labile protecting group 

would be most suitable. In addition to stability, we also had to consider the steric bulk of the 

protecting group. Our synthesis is based on the amino acid directing the stereochemical 

outcome of the reaction. Serine has very little steric bulk in its structure, and we had already 

found that leucine did not direct our stereochemical outcome as much as we had hoped. We 

therefore aimed to use as bulky protecting group as possible. Two initial protecting groups 

were considered. The first was a tetrahydropyranyl ether. Although it fit all the criteria 

required for our synthesis, the protecting group would insert a second chiral centre. This 

would make full characterization of subsequent intermediates by NMR spectroscopy 

extremely difficult. We settled on a tert-butyl ether protecting strategy. Not only is the tert-

butyl protected serine methyl ester hydrochloride salt commercially available, it is also 

available as the unnatural enantiomer (Figure 6). 

 

Figure 6: Suitable groups for protection of the hydroxyl group 

2.3.3 Synthesis of the serine-derived Dieckmann cyclization precursor 

2.3.3.1 PMB protection of the tert-butyl protected serine 

PMB was once again used for the nitrogen protection. An extensive optimization was carried 

out to find acceptable conditions (Table 4). 
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Table 4: Optimization of the PMB protection of 199 

Our first reaction (Entry 1) involved formation of the imine, with triethylamine (TEA) in 

dichloromethane (DCM), and after evaporation a sodium borohydride reduction. Despite 

good yields, we decided to find an alternative method due to the possibility of racemization 

during imine formation. Reduction of the imine in situ should limit the potential for 

Entry Reagents and conditions Yield % 

1 1) PMB aldehyde (1.5 equiv), TEA (1.2 equiv), DCM 2) NaBH4 (1.6 

equiv), EtOH 

71 

2 p-TSA (1 equiv), PMB aldehyde (10 equiv), NaBH4 (1.1 equiv) N/a 

3 PMB, TEA (1 equiv), NaBH4 (1.2 equiv), MeOH 18 

4 PMB sulphite adduct (1.5 equiv), NaBH3CN (2.7 equiv), MeOH 28 

5 PMB sulphite adduct (3.3 equiv), NaBH3CN (22 equiv), TEA (1 equiv), 

EtOH 

58 

6 PMB sulphite adduct (1.6 equiv), NaBH4 (1 equiv), TEA (1 equiv), 

MeOH 

imine 

7 PMB sulphite adduct (1.6 equiv), NaBH4 (1.7 equiv), TEA (1 equiv), 

EtOH 

imine 

8 PMB sulphite adduct (1.6 equiv), NaBH4 (1.6 equiv), TEA (1 equiv), 

IPA 

N/a 

9 PMB sulphite adduct (1.2 equiv), NaBH3CN (6.3 equiv), pyridine (10 

equiv), MeOH 

24 

10 PMB sulphite adduct (1.5 equiv), NaBH3CN (6.2 equiv), TEA (1 equiv), 

MeOH 

67 

11 PMB sulphite adduct (3.2 equiv), NaBH3CN (13 equiv), TEA (1 equiv), 

MeOH 

85 
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racemization. A solvent-free reaction was attempted based on similar conditions reported by 

Cho et al.106, unfortunately, however, no reaction was observed. Entry 3 shows the yields 

obtained when using conditions analogous to the leucine route, unfortunately however the 

yield was very low. It was possible NaBH4 was reducing the aldehyde, stopping imine 

formation. 

A promising method was found in the paper ‘Direct reductive alkylation of amine 

hydrochlorides with aldehyde bisulphite adducts’107 where the methyl ester hydrochloride of 

phenyl alanine was protected with the bisulphite adduct of PMB in 95% yield. No racemization 

was mentioned, so we decided to attempt this method (Scheme 38). 

 

Reagents and conditions: Na2SO3, EtOH, rt, 16 h, 81%. 

Scheme 38: Formation of the sodium bisulphite adduct of PMB 

The sodium bisulphite adduct of PMB was prepared and isolated in good yield to be used in 

our reductive amination. Unfortunately, in our hands using standard conditions we were only 

able to isolate 28% of the protected amine (Entry 4). Yields were found to drastically increase 

when triethylamine was added. With ethanol as the solvent, yields of 58% were achieved. 

Switching the reducing agent to sodium borohydride did not produce any of the desired 

product. Only the imine could be observed by NMR spectroscopy of the crude material when 

the reaction was carried out in methanol or ethanol, and neither the amine or imine could be 

seen if the reaction was run in iso-propyl alcohol (IPA) (Entries 6,7, and 8). With sodium 

cyanoborohydride as the reducing agent, pyridine was used to catalyse imine formation as it 

has been found to induce much less racemization than triethylamine. Unfortunately, yields 

were greatly reduced (entry 9). Returning to triethylamine but switching the solvent to 

methanol vastly increased yields to 67%, and finally increasing the proportions of the 

aldehyde and reducing agent provided us with the protected amino acid in good yields of 

85%. Unfortunately, we were unable to achieve separation of a synthesized racemate of this 

compound on HPLC using a chiral stationary phase. 
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2.3.3.2 Coupling to the half malonic benzyl ester  

Coupling of the half malonic benzyl ester 146 proceeded in good yield (Scheme 39) in a 

reaction analogous to the leucine route. 

 

Reagents and conditions: i) 146 (2.5 equiv), EDAC.HCl (2.6 equiv), N-MM (2.5 equiv), DMAP 

(0.2 equiv), DCM, 16 h; 73%. ii) 146 (1.6 equiv), NaBH3CN (6.1 equiv), Et3N (0.9 equiv), MeOH, 

0 °C, 16 h (iii) 146 (2.5 equiv), EDAC.HCl (2.7 equiv), N-MM (2.5 equiv), DMAP (0.2 equiv), 

DCM, 16 h; 49% over the 2 steps. 

Scheme 39: Peptide coupling of 146 to 200 

Once again, the Dieckmann cyclization precursor was found to be a pair of rotamers in a 1:5 

ratio. Full coalescence was observed at 100 °C. Analysis on a HPLC using a chiral stationary 

phase in comparison to a synthesized racemic compound found 201 to be 94% ee. It was 

found that there was a degree of variability in this value depending on the room temperature 

at the time of the reductive amination. In light of this, we decided to modify the reductive 

amination to ensure that a cooler temperature was maintained. The crude product from this 

reaction was pure enough to be used in the peptide coupling step without purification by 

column chromatography.  The Dieckmann cyclization precursor 201 could now be isolated in 

good yield over the two steps in 49% yield and 97% ee. 

2.3.4 The Dieckmann cyclization of the serine derived analogue 
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2.3.4.1 Optimization of the Dieckmann cyclization of 201 

 

Entry Conditions Approx. 

Scale (g) 

Yield 

% 

Ratio of 

202a:202b 

ee of 

(202a) 

1 TBAF (3.4 equiv), THF 0.5 h then MeI 

(4.5 equiv) 16 h, rt 

0.1 65 10:1 - 

2 TBAF (4 equiv), THF 0.5 h then MeI (4 

equiv) 16 h 

2.5 31 10:1 - 

3 TBAF (3.7 equiv) THF 2 h then MeI (4.1 

equiv) 2 h 

0.2  62 10:1 44 

4 TBAF (3.6 equiv), THF 0.5 h, MeI (3.9 

equiv), 0 °C to rt over 16 h 

0.2  42 10:1 60 

5 TBAF (3.7 equiv), THF 0.5 h, MeI (3.9 

equiv) 1 h -10 °C 

0.1 Trace - 76 

6 TBAF (3.4 equiv), 0.5 h THF MeI (4.1 

equiv), -15 °C, 64 h 

0.3 30 3:1 76 

7 TBAF (2 equiv), Ether, 5 m, THF MeI (4.3 

equiv), -12 °C, 64 h 

0.2 56 3:1 83 

8 TBAF (2.1 equiv), Ether, 5 m, THF MeI 10 

equiv), -12 °C, 64 h 

1.6 66 3:1 79 

Table 5: Optimization of the cyclization 

Treating the serine-derived Dieckmann precursor 201 under conditions analogous to our 

leucine route provided the isomers 202a and 202b with excellent diastereoselectivity and in 

good yield (Table 5, entry 1).  Unfortunately, we found increasing the scale of this reaction 

resulted in a large drop in yield. We were also surprised to see that the major diastereoisomer 
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produced was that with the methyl and tert-butyl groups cis to each other. We assumed that, 

as we had theorised in the leucine route, the thermodynamically more unstable 

diastereoisomer (202b) was epimerizing to the more stable one (202a).  Due to this resulting 

in racemization during the leucine route, we decided to analyse our reaction further using 

HPLC with a chiral stationary phase. 

Two strategies were considered in an attempt to stop the epimerization: 

1) Epimerization could be reduced with shorter reaction times 

2) Cooling the reaction could stop the epimerization from occurring 

Decreased reaction times provided 202ab in good yield, but the diastereoselectivity remained 

unchanged. The ee was analysed and found to be only 44%, indicating that a similar 

epimerization to our leucine route was occurring. Cooling the reaction to 0 °C led to a slightly 

increased ee of 60%. Cooling to -10 °C increased the ee to 76% but only trace a amount of the 

product was isolated (entry 5). Separation of the cyclization and alkylation steps was also 

attempted along with longer reaction times and cooler temperatures. The diastereoselectivity 

then dropped to 3:1 indicating that the majority of the epimerization had been prevented. 

This was reflected in the ee, which was now 76%. The ee was not improved further at -15 °C, 

leading us to our optimal conditions. Long reaction times and cooling to -12 °C provided a 

yield of 53% and 83% ee. Once again, scaling up the reaction with these conditions decreased 

the yields. Yields could however be increased if a large excess of MeI (10 equiv) was used - 

which provided acceptable yields of up to 66% and with a comparable ee of 79% (Entry 7). 

Unfortunately, the second eluting, minor diastereoisomer 202b could not be successfully 

separated from the major diastereoisomer.  Overlapping peaks in the HPLC chromatograph 

meant accurate information about the enantiopurity could not be obtained. 

The ee could be improved further if necessary by a recrystallization from IPA, providing 

racemic solid and a filtrate of 98% ee. Although we had been able to stop the epimerization 

to a large degree, we were still surprised to find that the major diastereoisomer formed was 

still the diastereoisomer where the methyl and benzyl ester are cis to each other. This result 

is surprising because the expected diastereoselectivity was for the methyl iodide to add 

opposite the bulky amino acid-derived tert-butoxy group. The leucine analogue route had 

shown that the methyl group adds opposite the bulky iso-butyl moiety of the leucine, and we 

expected a similar outcome in our serine derivative. It is possible that the serine tert-butyl 
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group sits too far from the ring to block the top face effectively, unlike the shorter chain iso-

butyl group in leucine, allowing other factors to come into play. Further investigation of the 

cyclization was carried out in order to find a reason for this surprising diastereoselectivity. 

2.3.4.2 Investigation of the unexpected diastereoselectivity 

2.3.4.2.1 Investigation of a chiral relay effect 

2.3.4.2.1.1 Introduction to the chiral relay effect 

In 1998 Davies et al.108 showed that PMB groups, despite not being chiral themselves, were 

capable of relaying chiral information from a valine-derived iso-propyl group around a 

diketopiperazine ring, due to the rotation around the PMB methylene carbon (203). This 

effect could then be used to increase the diastereoselectivity of an alkylation compared to 

using increasingly more rigid methyl groups (205) (Scheme 40). 

 

Reagents and conditions: (i) LiHMDS, THF, -78 °C, MeI (10 equiv). 

Scheme 40: Davies investigation of a chiral relay effect to increase diastereoselectivity 
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It seemed reasonable that similar phenomenon might be occurring in our system. The bulky 

tert-butoxy group could potentially be repelling the PMB group to the opposite face of the 

ring. The methoxy benzyl could now be competing with the tert-butyl group, directing the 

methyl to the same face of the ring as the tert-butoxy group. (Figure 7) 

 

Figure 7: A conformation of our enolate which could potentially exhibit a chiral relay effect 

In order to investigate this, we decided to replace the PMB group with a methyl. The less 

flexible nature of the methyl group would be unable to relay any of the chirality from the 

serine tert-butyl group. We would then expect if this was contributing to our 

diastereoselectivity that the iodomethane might favour addition to the face opposite the tert-

butyl. (Scheme 41) 

 

Scheme 41: A planned synthetic scheme to investigate a possible chiral relay effect 

2.3.4.2.1.2 Attempts to synthesize an N-Me derivative 

Our N-protected serine derivative 206 was methylated using potassium carbonate and MeI 

achieving the product in fair yield. Basic conditions could potentially racemize the amino acid 

therefore analysis of the ee was attempted using HPLC with a chiral stationary phase. 

Unfortunately, we were unable to achieve separation of enantiomers in a synthesized 

racemate. We therefore decided it would be safer to find a non-basic method of methylation. 

Using a modified procedure from Konopelski et al.,109  formaldehyde was used to form an 
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imine, which underwent reduction with sodium cyanoborohydride. Once again, the tertiary 

amine 209 was isolated in good yield; furthermore after work up no further purification was 

necessary. Attempts were then made to cleave the PMB group leaving the methylated serine 

derivative (Scheme 42). 

 

Reagents and conditions: (i) MeI, K2CO3, DMF, rt, 1 h, 62%; (ii) para-Formaldehyde (14 equiv) 

in MeOH, after 5 h NaBH3CN (2.2 equiv), rt, 16 h, 74%; (iii) CAN (5.3 equiv), 3:1 (MeCN/H2O), 

2 h; (iv) Pd/C, H2, MeOH, 16 h; (v) paraformaldehyde (14 equiv), MeOH, NaBH3CN, 2.2 equiv, 

rt, 16 h. 

Scheme 42: Attempts to form the N-methyl serine derivative 206 

Our previous PMB removals had been effective with CAN; unfortunately, however, only traces 

of material could be recovered. Although the NMR spectrum showed promising signals, the 

material was heavily contaminated. We felt the problem could lie in the work-up procedure 

due to the basicity or solubility of the product, and we therefore modified the procedure to 

remove the PMB group with hydrogenolysis conditions, this would only require filtration and 

evaporation. After subjecting 209 to standard benzyl removal conditions however, we were 

still unable to obtain any of the desired product. Whether this is because the product is highly 

volatile or undergoes decomposition is unknown. Reductive amination of the primary amine 

199 also failed to produce the methylated derivative. With the methylated derivative proving 

surprisingly difficult, we decided to exchange the methyl group for a phenyl. This would have 

a similar effect acting as a rigid group, but we hoped would be more stable allowing for easier 

purification.  
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2.3.4.2.1.3 Synthesis of the N-phenylated serine derivative 

There are two common methods for the formation of N-Ar bonds. The Buchwald110-Hartwig111 

method is perhaps the most utilized, but along with potentially expensive ligands, a strong 

base is often required. Due to the possibility of racemization, we decided to avoid this and 

instead use a Chan-Lam coupling (Scheme 43).112 

 

Reagents and conditions: (i) PhB(OH)2 (2 equiv), Et3N (2 equiv), Cu(OAc)2 (1.1 equiv), O2 

balloon, DCM, rt, 3 days, 22%. 

Scheme 43: The Chan-Lam coupling to produce 210 

Coupling the amine hydrochloride salt 199 to benzyl boronic acid produced 210 in poor yield 

(Scheme 43). As only a small amount of material was needed, however, no further 

optimization was attempted. Due to the weakly basic conditions used we decided to check 

for racemization using HPLC with a chiral stationary phase in comparison to a separately 

synthesized racemate. We found that some racemization had occurred at this point to 72% 

ee, but fortunately however, the product could be recrystalized from petroleum ether 

providing crystals of 95% ee and a racemic supernatant. 
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2.3.4.2.1.4 Coupling of 210 to 146 and its cyclization/alkylation 

 

Reagents and conditions: 146 (2.2 equiv), EDAC.HCl (2.7 equiv), N-MM (2.3 equiv), DMAP (0.19 

equiv), DCM, 16 h, rt, 63%. 

Scheme 44: Peptide coupling to form compound 211 

Coupling of 146 to the phenylated serine derivative 211 provided the Dieckmann cyclization 

precursor in fair yield (Scheme 44). The cyclization precursor this time did not appear as a set 

of rotamers in the 1H NMR spectrum, presumably due to the increase in rigidity we had 

introduced in the system compared to the PMB analogues. Analysis of 210 against a 

synthesized racemate HPLC using a chiral stationary phase showed that no further 

racemization had occurred at this point. The phenyl derivative 211 was treated under similar 

conditions to 201 in order to induce the Dieckmann cyclization/alkylation (Scheme 45). 

 

Reagents and conditions: TBAF (2.1 equiv), Ether, 5 m, THF, MeI (4.7 equiv), -12 °C, 64 h, 8%. 

Scheme 45: The Dieckmann cyclization of 211 

Analysis of the 1H NMR spectrum of the crude material showed that poor levels of alkylation 

were observed. There did appear to be a set of diastereoisomers, however, which were 

observed in a 1:5 ratio. Purification by column chromatography allowed isolation of the major 

diastereoisomer as a colourless crystalline solid. Analysis by HPLC using a chiral stationary 

phase in comparison with a synthesized racemate showed that minor amounts of 
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epimerization had occurred during the cyclization, providing 212a with an ee of 87%. NOESY 

experiments were inconclusive as to which diastereoisomer this was, fortunately a crystal was 

able to be obtained of 212a suitable for analysis by X-ray diffraction (Figure 8).  

 

 

Figure 8: The X-ray structure of 212a (hydrogens omitted for clarity) 
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To our surprise, however, we found that once again the major product was the 

diastereoisomer with the methyl and tert-butoxy group cis. This showed that the PMB group 

was not causing a chiral relay as we had expected. Furthermore, the diastereoisomeric ratio 

had even increased. 

2.3.4.2.1.5 Investigation into the effect of the benzyl ester 

Our observations suggested that the PMB group was not the primary reason for the observed 

diastereoselectivity. A chiral relay effect could still be the cause, but instead of the PMB group 

rotating away from the tert-butoxy group, it could be the benzyl ester. This could then hinder 

attack of the methyl iodide at the face opposite the tert-butoxy group accounting for the 

unexpected diastereoselectivity (Figure 9).  

 

Figure 9: A conformation of the benzyl ester which could hinder attack of the methyl iodide 

on the face opposite the tert-butyl group 

In order to test this, we decided to once again to replace the potentially rotatable group due 

to the methylene with a rigid group. We chose a methyl group due to this being the smallest 

possible group to limit other potential steric effects (Scheme 46). 

 

Scheme 46: Planned route for investigation of the effect of the benzyl ester on 

diastereoselectivity 
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2.3.4.2.1.6 Synthesis of a methyl ester Dieckmann cyclization precursor 

The mono potassium salt 215 of dimalonic methyl ester was formed through a saponification 

with potassium hydroxide (Scheme 47). 

 

Reagents and conditions: (i) KOH (1.2 equiv), MeOH, rt, 51%; (ii) 215 (2.4 equiv), EDAC.HCl 

(2.9 equiv), DMAP (0.18 equiv), N-MM (2.4 equiv), rt, 24 h, 73%. 

Scheme 47: Synthesis of the half malonic methyl ester salt and its coupling to amine 200 

Using once again EDAC.HCl to couple the salt to the secondary amine, the Dieckmann 

cyclization precursor 213 was produced, appearing on 1H NMR spectroscopy as a set of 

rotamers. Unfortunately, we were unable to check for possible epimerization as we were 

unable to separate the enantiomers of a synthesized racemate of 213 by HPLC using a chiral 

stationary phase. However, because we had previously not observed racemization during the 

coupling, we assumed that 213 was unlikely to have lost any enantiopurity and remained at 

97% ee. 

2.3.4.2.1.7 The Dieckmann cyclization and identification of products 

Treatment of Dieckmann precursor 213 under our optimized conditions provided a 3:1 

mixture of diastereoisomers as observed in 1H NMR spectroscopic analysis of the crude 

material (Scheme 48). 
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Reagents and conditions: (i) TBAF (1 M in THF), ether, 5 m, then MeI, THF, 58 h, -12 °C, 87% 

3:1 mixture of diastereoisomers (by crude 1H NMR analysis); (ii) CAN (5 equiv), 3:1 

(MeCN/H2O), 1.5h, 57%. 

Scheme 48: The cyclization of 213 and removal of the PMB groups 

We found, however, that upon column chromatography the diastereoisomers 214ab could 

degrade into a complicated mixture of products. Furthermore the diastereoisomers were 

obtained as an inseparable oil from which no NOESY correlations could be used to assign 

relative stereochemistry. We found that acceptable levels of purification could be achieved 

by pouring the crude reaction mixture onto a silica gel column and rapidly washing through 

with ethyl acetate until the product stopped eluting. This technique provided the inseparable 

mix of diastereoisomers in acceptable levels of purity. Removal of the PMB group with CAN 

seemed to increase stability, allowing for the major isomer 216a to be partially separated 

from the minor isomer 216b. The major diastereoisomer was isolated as a solid from which a 

crystal could be obtained, allowing for structure determination through X-ray diffraction 

(Figure 10). 
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Figure 10: X-ray crystal structure of 216a 

Once again, the methyl group was introduced at the face opposite the tert-butoxy. It 

appeared therefore that rotation around the methylene carbon of the benzyl ester was also 

not a cause of the unusual diastereoselectivity. However, the increased yield of our cyclization 

step does indicate that the benzyl ester hinders attack to an extent. 

2.3.4.2.2 Pyramidalization of the amide 

Our original stereochemical reasoning, where methyl iodide would add opposite the bulky 

tert-butoxy group was based on the assumption that the gamma lactam intermediate (figure 

11) would be planar. This seemed plausible due to the sp2 hybridized nature of the C6 ketone 
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and C8 carbonyl groups inducing planarity in the nitrogen in the form of an amide. 

Furthermore, once the C7 position was deprotonated to the enolate, four out of the five 

atoms of the lactam ring would be planar. 

 

Figure 11: The pre-alkylated cyclization intermediate 

However, on further contemplation we felt it was possible that this would not always be the 

case. Amides are planar due to the resonance of the nitrogen lone pair with the carbonyl, 

forming the imidic acid form (or lactim in a lactam). Once C7 deprotonation had occurred 

however, the amide would be partially in the enolate form, meaning that the nitrogen lone 

pair is less available to be involved in resonance (scheme 49). The result of this could be that 

the nitrogen becomes partially pyramidal. This has been observed computationally and in 

crystal structures of amide enol ethers.113 

 

Scheme 49: Restricted resonance in amide enolates 

The increase in flexibility in the lactam ring could allow the PMB group on the nitrogen to 

orientate away from the tert-butoxy group to release steric strain, again, hindering the face 

opposite the tert-butoxy group (figure 12). This could explain not only the outcome for the 

major diastereoisomer but also the increase in diastereoselectivity when the PMB group was 

replaced with a phenyl.  
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Figure 12: Potential conformations of the pre-alkylated cyclized intermediate from 201 and 

211 showing a pyramidalized amide 

Similar systems have been studied both computationally and experimentally.114,115 

Calculations performed by Mayers et al. on simple pyrrolidone enolates have shown that 

pyramidalization of the nitrogen does occur in enolate formation, and that 1,2 interaction 

from the methyl substituent favours the second conformation shown in Figure 13, directing 

the N substituent away from the methyl group. Although Mayers used this to rationalize the 

unusually high trans diastereoselectivity observed in enolate alkylation, it is possible that the 

increased size of our nitrogen substituent could overpower the electronic effect observed by 

Mayers. 

 

Figure 13: Favourable enolate conformations in a simple substituted pyrrolidone 

2.3.4.2.3 Diastereoselectivity reasoning due to transition state 

Another potential cause could be based on the transition states in the approach of the methyl 

iodide from the top or bottom face. An approach from the bottom face could potentially form 

a higher energy transition state compared to a top face approach due to an unfavourable 

clash between the tert-butyl group and the benzyl ester (Scheme 50).  
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Scheme 50: Higher energy transition states affecting diastereoselectivity 

Similar phenomena avoiding high energy transition states are well known, for instance in the 

Fürst-Plattner rule (or trans-diaxial effect) (Scheme 51).116 
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Scheme 51: The Fürst Plattner effect 

The nucleophile could attack either the C3 or C4 position. However, attack at position 3 shown 

by path 1 would mean that the transition state would adopt an unfavourable twist boat 

conformation. Path 2 is therefore dominant. 

2.3.4.2.4 Summary of the investigation into observed diastereoselectivity 

Although we were not able to find a single reason for the unusual diastereoselectivity 

observed, we believe there are several possible plausible explanations and have been able to 

exclude some of the more well-known reasons. Fortunately, however, this unplanned 

stereoselectivity works as an advantage in our synthesis. Whereas in our leucine route we 

synthesized the opposite enantiomer of the analogue with respect to omuralide, the benzyl 

ester should now direct acylation with Mander’s reagent to the face opposite, providing the 

correct stereochemistry (Scheme 52).   
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Scheme 52: Prediction of absolute stereochemistry after acylation with Mander’s reagent 
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2.3.5 Acylation with Mander’s reagent 

 

Reagents and conditions: LiHMDS (2.2 equiv), DMPU (3 equiv), THF. 

Scheme 53: Acylation of 202a with Mander’s reagent 

Entry Equiv of 

Methyl 

cyanoformate 

Time 

h 

Temperature 

°C 

Yield 

% 

1 3 4 -78 1.7:1 Sm:P 

2 5 4 -78 1.7:1 Sm:P 

3 5 2 -78 1.5:1 Sm:P 

4 5 4 -40 54% 

5 4.5 3 -40 49% 

6 4.5 3 -40 69% (new work 

up) 

Table 6: Optimization of the acylation of 202a with Mander’s reagent 

With the lactam core formed, the next step was to insert the methyl ester moiety, we hoped 

using the benzyl ester to direct the stereochemical course of the reaction (Scheme 53). 

Treatment of lactam 202a under analogous conditions to the leucine route provided a 

complex mixture of products. Analysis of the 1H NMR spectrum of the crude material showed 

the presence of both diastereoisomers 202a and 202b from the previous step along with a 

new compound that we assumed to be the desired acylated lactam 217, in an approximately 

1.7:1 mixture of starting material to product. The observation of an approximately equal 

quantity of the two diastereoisomers despite only starting with one suggested that the 

lithium bis(trimethylsilyl)amide (LiHMDS) was successfully forming the enolate, the problem 

appeared to be with enolate attack at the methyl cyanoformate. Attempted purification of 

crude material was not able to separate the product from the starting material. Increase of 
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the equivalents of methyl cyanoformate from three to five (Table 6, entry 2) provided a 

cleaner crude 1H NMR spectrum of the product mixture, but, the ratio of starting material to 

product was still approximately the same (1.7:1). Retaining the increased number of 

equivalents and reducing the reaction time also led to a cleaner crude 1H NMR spectrum and 

slightly increased the ratio of product (now at 1.5:1). Although still no pure material could be 

recovered, this indicated that the product could be decomposing with longer reaction times 

(Entry 3). 

Running the reaction at increased temperatures (-40 °C) (entry 4) showed complete 

consumption of starting material, allowing the product to be purified and characterized in 

moderate yield. Further optimization of the reaction and modification of the workup 

procedure by removing an evaporation of the quenched reaction mixture led to good yields 

of 217 (69%) (entry 6). The ee of the material was measured at this stage against a synthesized 

racemic compound by HPLC using a chiral stationary phase. We found that a slight drop in 

enantiopurity had occurred during the acylation. We do not believe this is due to racemization 

of the product but rather impurities of the cyclization diastereoisomer 202b in our starting 

material. When using the enriched recrystallized material from the cyclization, an ee of 84% 

was obtained (from 98% ee). Using the non-recrystallized material from the cyclization, the 

ee was 69% (from 79% ee). The product was isolated as a crystalline solid, and therefore we 

attempted to obtain a crystal suitable for X-ray analysis. Even with enantio-enriched material, 

racemic crystals would be preferentially produced over enantiopure crystals. The material 

could therefore be recrystallized from IPA to remove racemic material leading to the 

supernatant containing material of up to 93% ee. The recovery from this was, however, poor, 

but it did allow us to obtain an enantiopure crystal for X-ray analysis. 

Racemic crystals are sometimes more stable and can have an increased density over their 

enantiopure counterparts (Wallach’s rule).117 Our crystals follow this observation due to the 

preferential formation of racemic crystals, and analysis of both crystal structures show that 

the racemate volume is about 3% smaller than that of the enantiopure crystal. This 

phenomenon was found not to be due to any specific interaction between the enantiomers 

of molecules but rather due the increased number of space groups available to racemic 

molecules.118 
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Our enantiopure crystal (Figure 14) confirmed our findings that the methyl group adds to the 

same face as the tert-butoxy group. The methyl ester once again adds opposite the benzyl 

ester, providing the C5 stereochemistry as that required for the natural enantiomer of 

omuralide. 

 

 

Figure 14: X-ray crystal structure of 217 hydrogen atoms removed for clarity (carbonyls 

removed for clarity in chemdraw structure) 
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2.3.6 Hydrogenolysis and thiomethylation of 217 

The acylated product 217 was hydrogenolysed in an identical way to the leucine derivative to 

remove the benzyl ester. Once again, the product was isolated as a mixture of isomers 218ab 

and therefore subjected to the thiomethylation conditions optimized in the leucine route 

without purification (Scheme 54). The inseparable mixture of diastereoisomers 219ab were 

isolated in a 4:1 mixture. Fortunately, the bulkier residue on the amino acid directed the 

thiomethylation far more effectively than in our leucine derivative. NOESY analysis provided 

evidence that the major diastereoisomer was the one required to elaborate to Corey’s 

intermediate 29a. 

 

Reagents and conditions: (i) 1) Pd(OH)2/C (cat), H2, 35 °C, 16 h; ii) 186 (1.7 equiv), Et3N (1.1 

equiv), DCM, 4 h (70% over 2 steps). 

Scheme 54: Benzyl ester removal and thiomethylation of 219ab 
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2.3.7 Removal of the tert-butyl protecting group from compound 219ab 

 

Reagents and conditions: TFA/DCM, 1:1, 1.5h, 76%. 

Scheme 55: Removal of the tert-butyl group 

The mixture of diastereoisomers was treated with ZnBr2, a methodology reported by Wu et 

al.,119 chosen due to an example given of tert-butyl-O-threonine being deprotected. Also 

attempted was a method reported by Li et al.120 using 85% phosphoric acid. This method had 

also been successful for a deprotection of threonine, and other examples where methyl esters 

were unchanged. Unfortunately, both methods resulted in a complex mixture of products for 

our compound 219ab. Treatment of the mixture of diastereoisomers 219ab with a 1:1 mixture 

of TFA:DCM however resulted in the desired Corey intermediate and diastereoisomers 29ab 

in excellent yield (Scheme 55). To our surprise, the product was isolated after column 

chromatography in a 2:1 mixture of diastereoisomers rather than the original 4:1 ratio. 

Interestingly, the crude material before column chromatography appeared to still be in a 4:1 

ratio. 

2.3.8 Epimerization of the Corey intermediate 29ab 

2.3.8.1 Introduction to the investigation of the epimerization of 29ab 

The most likely reasons for the drop in diastereoisomeric ratio seemed to be either one 

diastereoisomer reacting faster than the other or, one diastereoisomer undergoing 

decomposition faster than the other. An alternative possibility is one or both 

diastereoisomers epimerizing, but this seemed unlikely as both chiral centres were 

quaternary and no obvious mechanism for epimerization could be postulated. It is perhaps 

important to note that despite Corey and Pattenden synthesizing the same compound, 

neither mentioned observing a similar result. Analysis of the 2:1 mixture in comparison with 

a synthesized racemate however showed partial racemization had occurred, the ee dropping 
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from 84% to 58% (major) and 41% (minor) for the two diastereoisomers 29ab respectively. 

This suggested that an epimerization of one of the chiral centres was the reason behind the 

change in diastereoisomer ratio (Scheme 56). 

 

Scheme 56: Summary of the drop in ee 

2.3.8.2 Logical identification of the epimerizing chiral centre 

An epimerization as a mix of diastereoisomers would not necessarily result in a drop in ee. It 

would depend on which of the chiral centres was epimerizing (Scheme 57). This can be seen 

more clearly in the following scheme. Based on the 4:1 ratio of diastereoisomers and the 

original ee of 84%, each isomer has been calculated a % abundance in the diastereoisomeric 

mixture. 

 

Scheme 57: The result of a C5 or C7 epimerization 
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If epimerization were occurring at C7, the diastereoisomeric ratio would change, but ees 

would not change. Both enantiomers would epimerize at the same rate, therefore the ratio 

of enantiomers would stay constant in each mixture, i.e. the minor enantiomer of 

diastereoisomer 1 29a’ would mix with the minor enantiomer of diastereoisomer 2 29b’ and 

the major enantiomer of diastereoisomer 1 29a would mix with the major enantiomer of 

diastereoisomer 2 29b the ee would therefore remain unchanged. If C5 were undergoing 

epimerization, however, the minor enantiomer of diastereoisomer 1 29a’ would mix with the 

major enantiomer of diastereoisomer 2 29b and the major enantiomer of diastereoisomer 1 

29a would mix with the minor enantiomer of diastereoisomer 2 29b’. This would scramble 

the enantiopurity. Using this reasoning we theorised that the C5 centre was epimerizing. 

2.3.8.3 Experimental identification and reasoning of the epimerizing centre 

2.3.8.3.1 Epimerization studies on 172ab 

Not only did we want to confirm which centre was epimerizing, but also which functional 

groups were required for the epimerization to occur, to help elucidate a mechanism. For 

evidence that the hydroxyl group was needed for the epimerization and not the thiomethyl 

we treated our thiomethylated leucine analogue 172ab under identical conditions to our tert-

butoxy deprotection (scheme 58) and purified the reaction mixture using column 

chromatography. Both the ratio of diastereoisomers and the starting material remained 

unchanged as expected. This gave us evidence that any mechanism would probably require 

the hydroxyl group. 

 

Reagents and conditions: (i) TFA:DCM (1:1), 4 h. 

Scheme 58: Attempt to induce a similar epimerization in our leucine series 
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2.3.8.3.2 Synthesis of a gem-dimethylated analogue  

For a final confirmation that the thiomethyl group is not required for the epimerization but 

the hydroxyl group is, a derivative was synthesized by replacing the thiomethylating reagent 

186 with iodomethane. This produced the di-methylated analogue 220 in 46% yield over the 

2 steps in 86% ee, as observed by HPLC using a chiral stationary phase (Scheme 59). 

 

Reagents and conditions: (i) 1) Pd(OH)2/C (cat), H2, 35 °C, 16 h 2) MeI (4 equiv), Et3N (1.8 

equiv), DCM, 4 h (46% over 2 steps). 

Scheme 59: Synthesis of the gem-dimethylated analogue 220 

If 220 racemizes under the tert-butyl deprotection conditions, with only one chiral centre at 

C5, the epimerization at C7 can be ruled out completely, furthermore we can exclude the 

possibility of the thiomethyl group being involved with any possible mechanism. 

 

Reagents and conditions: TFA:DCM, 1:1, 1.5h, 67%. 

Scheme 60: TFA-mediated deprotection of 220 

As expected, treatment of 220 with the TFA:DCM mixture led to 220 in completely racemic 

form (Scheme 60) after purification of column chromatography. Our original experiment with 

the thiomethyl analogues 219ab had shown that the crude material before column 

chromatography had retained the original 4:1 ratio, we therefore decided that the 

epimerization must not be occurring under the reaction conditions but, surprisingly, upon the 

purification. Further evidence of this was found when, instead of using a dry-load technique 

to purify 221 (dissolving the crude material in DCM, adding silica gel and evaporating, 
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adsorbing the material onto silica gel), a wet technique was used (dissolving the crude 

material in the petroleum ether/ethyl acetate solvent system and applying the solution to the 

column). The wet technique resulted in no epimerization of the C5 centre, analysis on HPLC 

using a chiral stationary phase showing the ee from compound 221 to be retained. 

With the cause, epimerizing centre, and functional groups involved known, two mechanisms 

were postulated. 

2.3.8.3.3 Potential mechanism for C5 epimerization 

2.3.8.3.3.1 Mechanism 1 

Mechanism one (Scheme 61) involves protonation of the C6 ketone, inducing nucleophilic 

attack from the now deprotected C9 hydroxyl. Reformation of the ketone could break the C6-

C5 bond due to the stabilized nature of the anion through the ester, thus losing the chirality. 

The ester enolate could then attack the newly formed ester, reforming the original 

compound. Both ring-forming reactions would be plausible according to Baldwin rules,121 the 

first being 4-exo-trig and the second 4-enolexo-exo-trig. 

 

Scheme 61: 1st Postulated mechanism for C5 epimerization 

2.3.8.3.3.2 Mechanism 2 

The second mechanism (Scheme 62) involves a retro-aldol type reaction. The removal of the 

hydroxyl group as a formaldehyde cation forms a highly stabilized anion, and thus the 

chirality is lost. Attack of the malonate back at the formaldehyde cation reforms the original 

compound. 
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Scheme 62: 2nd Postulated mechanism for C5 epimerization 

It should be noted, however that the precise role of silica gel and why DCM would induce 

epimerization but not ethyl acetate/petrol is unknown. Both mechanisms postulated would 

seem equally likely under the strong acidic conditions of the TFA:DCM mixture, if not more so 

than under the relative weak acidic conditions of silica gel. However, it is possible the 

epimerization requires a Lewis acid to occur. Trapping experiments with iodomethane were 

carried out (Scheme 63) in an attempt to isolate a possible intermediate of the reaction, such 

as 222 or 223, but unfortunately only starting material was observed. 

 

Reagents and conditions: MeI, DCM, Silica gel, rt, overnight 

Scheme 63: Attempt at trapping an intermediate with MeI 
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2.3.8.3.4 NMR experiments of the mixture in the presence of silica 

Returning to the original thiomethylated compounds, we sought further confirmation that 

silica gel was the cause of the epimerization. A 1H NMR spectrum was taken of the crude 

deprotected 29ab mixture as a control showing the 4:1 ratio of diastereoisomers. A 

microspatula of silica gel was added, and the NMR experiment ran immediately and after 16 

h. The 1H NMR spectrum after treatment with silica gel showed epimerization from 4:1 to 

3:1.3 (<5 mins). Upon being left for 16 h compound continued epimerizing, reaching a 3:2 

ratio. On further inspection, the 16 h experiment also contained a minor signal at δ = 9.73 

ppm which was absent in the control and the initial addition of silica gel experiment. Although 

this by no means confirms the mechanism, this does provide evidence for our second 

mechanism as the signal is consistent with formaldehyde. Interestingly, Dixon et al.122 and 

Massa et al.123 both reported similar observations. Both groups observed decomposition of a 

range of β-hydroxy malonates during chromatographic separation. It is perhaps surprising 

therefore that we were able to isolate the product at all. 
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Reagents and conditions: (i) Silica gel, chloroform, 16 h. 

 

 

 

Figure 15: Inducing of the epimerization with silica and the analysis with NMR 

Crude control 

Initial addition of silica 

16 h after addition of silica 

Potential 

formaldehyde 

peak 

Methyl ester CH3 
tert-Butoxy CH3 

PMB aromatic CH 
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2.3.9 Ketone reduction followed by tert-butyl deprotection strategy  

2.3.9.1 Reduction of the C6 ketone 

With the diastereoisomers of Corey’s intermediate 29ab proving inseparable, we decided to 

attempt an alternative route. Rather than removal of the tert-butyl group followed by 

reduction, we decided to reduce the mixture of diastereoisomers then use our tert-butyl 

removal procedure. Where the previous experiments had been carried out with the 

recrystallized material from the Dieckmann cyclization/alkylation (202a), the following 

procedures were carried out with the un-recrystalized material (69% ee) in the hope we could 

enrich the ee of this material only once at a later stage intermediate. 

Following either postulated mechanism for the epimerization, reduction of the C6 centre 

before deprotection of the hydroxyl group should prevent the epimerization (Scheme 64). 

 

Scheme 64: Rearrangement of the reduction and tert-butyl removal steps 

Our primary concern with the new route was that the bulky tert-butoxy group would direct 

the reduction more than the thiomethyl group. This would decrease the yield of the desired 

diastereoisomer. Reduction with sodium borohydride produced two separable 

diastereoisomers 224a and 224b in an approximately 1:4 ratio along with a small amount of 

starting material. NOESY experiments were carried out for the minor diastereoisomer 

confirming our stereochemical predictions that the hydride would add preferentially to the 

face opposite the thiomethyl group. Unfortunately, due to overlapping 1H NMR signals, the 

necessary interactions could not be seen for the major diastereoisomer. Analysis of both 

diastereoisomers on HPLC using a chiral stationary phase compared to a synthesized 

racemate showed a small drop in ee from 69 to 67% ee. We believe this to be due to minor 

quantities of the unwanted diastereoisomer being formed during the acylation with Mander’s 

reagent. 
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The major diastereoisomer 224a was isolated as a waxy oil (Scheme 65). To our delight, 

recrystallization from IPA produced a solid of 12% ee and a filtrate of 99% ee, as confirmed 

by analysis by HPLC using a chiral stationary phase compared to a synthesized racemate. 

 

Reagents and conditions: (i) 1) Pd(OH)2/C (cat), H2, 35 °C, 16 h 2) 186, Et3N, DCM, 4 h (70% 

over 2 steps) ii) NaBH4 (0.6 equiv), EtOH, 30 m 0 °C, 224a 54%, 224b 13%, 219ab 4%. 

Scheme 65: Thiomethylation and reduction of compound 217 

2.3.9.2 Deprotection of the tert-butyl group 

 

Reagents and conditions: TFA/DCM 1:1, 1.5h, 75%. 

Scheme 66: Deprotection of 224a to produce the Corey intermediate 30a 

Treatment of 224a under the same deprotection conditions as before provided the Corey 

intermediate 30a in excellent yield (Scheme 66). The compound was purified with column 

chromatography by the usual dry load method which previously epimerized the compound, 
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however with C6 now reduced, no epimerization was observed, providing the Corey 

intermediate 30a in 99% ee as confirmed by HPLC with a chiral stationary phase compared 

with a synthesized racemate. The intermediate synthesized is important in omuralide 

analogue synthesis and has been elaborated by Corey to a wide variety of C5 analogues.37  

2.4 Towards the total synthesis of salinosporamide B 

2.4.1 Strategy to salinosporamide B  

With a formal synthesis of omuralide completed and the successful incorporation of 2 amino 

acids into the lactam core using our methodology, we turned our attention to modification of 

the C7 carbon. Our aim was to incorporate longer carbon chains into the lactam core. Our 

target would be to incorporate an ethyl group into the C7 position and then elaborate the 

product to salinosporamide B.42  Although salinosporamide A41 is a more potent proteasome 

inhibitor, we decided to start on the simpler version of the salinosporamide family; there is 

currently no synthesis of salinosporamide B in the literature.  

 

Scheme 67: Retro-synthetic analysis of salinosporamide B 
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Our serine-derived Dieckmann cyclization precursor 201ab would be treated under similar 

conditions to our previous cyclization/alkylations to produce the serine-derived γ-lactam 

ethyl analogue (Scheme 67). An acylation using Mander’s reagent would be used to 

incorporate the methyl ester forming the acylated serine-derived γ-lactam ethyl analogue. 

Removal of the benzyl ester would allow incorporation of the thioether blocking group to give 

salinosporamide B intermediate C, attempts would then be made to reduce the ketone 

diastereoselectively with methyl Grignard reagent, incorporating the C6 methyl group to 

produce salinosporamide B intermediate B. Diastereoselective desulphurization and 

oxidation of the C9 hydroxyl group forming salinosporamide B intermediate A could allow 

for incorporation of the cyclohexene ring using 2-cyclohexyenylzinc chloride, a strategy 

developed by Corey,50 but also used successfully by Danishefsky,124 Hatakeyama,125 

Pattenden126,127 and Romo128 in their respective syntheses. Removal of protecting groups and 

cyclization to the β-lactone could then form salinosporamide B.  
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2.4.2 The Dieckmann cyclization/alkylation using EtI 

 

Entry Conditions Approx. 

Scale g 

Equiv of EtI Yield % 225a:b 

Ratio 

1 TBAF (3.4 equiv), THF 30 

m then EtI 16 h, rt 

0.5 4 19 (with 

inseparable by-

product) 

- 

2 TBAF (2 equiv), THF, 30 

m removal of volatiles, 

THF, 

EtI 16 h, rt 

0.1 2.2 65 1:0.72 

3 “ 1.4 2.2 26 - 

4 TBAF (2 equiv), THF, 5 m 

removal of volatiles, 

THF, 

EtI 20 h, rt 

1.5 2.2 added at 

0 h, 2.2 

added at 

16 h 

43 1:0.4 

5 TBAF (2 equiv), THF, 5 m 

removal of volatiles, 

THF, 

EtI 20 h, 0 °C to rt 

0.6 9 36 1:0.65 

Table 7: Optimization of the Dieckmann cyclization/alkylation using EtI 

Using similar conditions to our leucine cyclization/alkylation procedure (Table 7, Entry 1) 

provided 225ab as a mixture of inseparable diastereoisomers along with another inseparable 

unknown by-product. As our yield for this step was therefore less than 19%, a modification of 

the procedure was required. Using a procedure similar to the one used in our formal synthesis 

of omuralide, where the cyclization and alkylation were separated, provided the mixture of 

diastereoisomers in good yield (Entry 2). Unfortunately, scale up of this reaction to just 1.4 g 
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greatly decreased the yield (Entry 3).  Increasing the equivalents of EtI improved yields slightly 

(Entry 4). Cooling the reaction decreased the diastereoselectivity, presumably, as in our 

previous cyclization due to the cooler temperatures reducing the amount of product from 

epimerization, however, yields dropped to 36% (Entry 5). Unfortunately, at this stage we were 

unable to check to what degree our material had racemized due to the inseparable nature of 

the diastereoisomers. Furthermore, NOESY experiments were inconclusive as to which 

diastereoisomer was in excess. 

2.4.3 Attempted acylation 225ab using Mander’s reagent 

Treatment of the mixture of diastereoisomers under our acylation conditions resulted in a 

complex mixture from which no product could be isolated cleanly (Scheme 68). 

 

Reagents and conditions: LiHMDS (2.1 equiv), DMPU (3.1 equiv), THF, -78 °C, 0.5 h, then 

NCCO2Me (5.1 equiv), (-78 °C, -40 °C, -15 °C), 4 h. 

Scheme 68: Attempted acylation of 225ab with Mander’s reagent 

The high levels of diastereoselectivity we had seen in our previous routes indicated that bulky 

groups in the C7 position are highly effective at blocking addition of the Mander’s reagent. 

The exchange of the methyl group for the ethyl in our starting material could also be hindering 

attack of the methyl cyanoformate, resulting in our complex mixture. Warming the reaction, 

which had helped in our omuralide route, also resulted in complex mixtures. We therefore 

decided to attempt a different strategy to the acylation. 

2.4.4 Acylation following removal of the tert-butyl group 

2.4.4.1 Revised strategy for acylation 

Both the ethyl alkyl chain and the benzyl ester group were necessary in our synthesis and 

therefore could not be removed, but we felt that removal of the tert-butyl group would 

potentially reduce some of the steric hindrance around the C5 position, allowing insertion of 
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the methyl ester. We had previously experienced similar problems when switching from the 

leucine analogue to the tert-butoxy analogue, and we therefore felt that removal could be 

beneficial for the reaction (Scheme 69). 

 

Scheme 69: Removal of the tert-butyl protecting group 

After removal of the tert-butyl group our new strategy (Scheme 70) would involve use of an 

excess of base inducing double deprotonation of both the C5 position, forming the enolate, 

and the hydroxylate group. We theorized (Scheme 70) that addition of Mander’s reagent 

would add first at the most nucleophilic position (the C5 enolate) then at the hydroxyl group, 

re-protecting the hydroxyl group of the newly acylated compound with a methyl carbamate 

protecting group to give 228. 

 

Scheme 70: Removal of the tert-butyl group 
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2.4.4.2 Removal of the tert-butyl group 

Both the inseparable mixture of diastereoisomers from the room temperature cyclization 

(Table 7, entry 4) and the 0 °C cyclization (Entry 5) were treated with TFA under the tert-

butyl ether deprotection conditions previously used to produce 227a and 227b (Scheme 71).  

 

Reagents and conditions: (i) TFA/DCM 1:1, rt. 

Scheme 71: Removal of the tert-butyl group 

Deprotection proceeded in good yield and provided a separable mixture of diastereoisomers 

after column chromatography, furthermore, analysis using HPLC with a chiral stationary 

phase allowed ees to be determined (Table 8). Each diastereoisomer was examined against a 

synthesized racemate. Unfortunately, however, we were still unable through either NOSEY 

experiments or X-ray crystallography to determine which diastereoisomer was in excess. Our 

analysis had, however, shown that cooler temperatures during the cyclization had, as 

expected, improved ees. 

Starting 

material 

Diastereoisomeric 

ratio of starting 

material 

Yield and ee of 

the first eluting 

fraction % 

Yield and ee of the second 

eluting fraction % 

Material from 

table 7 entry 4 

1:0.4 18  

66 ee 

55 

45 ee 

Material from 

table 7 entry 5 

1:0.65 29 

78 ee 

46 

60 ee 

Table 8: Analysis of the deprotected material 227a and 227b 

2.4.4.3 Acylation with Mander’s reagent using the deprotected 227ab 

With the tert-butyl ether removed, 227ab was treated with a modified version of our original 

Mander’s acylation (Scheme 72). Firstly, the quantity of LiHMDS and N,N′-
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dimethylpropyleneurea (DMPU) were increased due to the need for two deprotonations to 

occur; secondly, the reaction required an increase in equivalents of Mander’s reagent 

because the methyl ester was now required to add twice.  

 

Reagents and conditions: (i) LiHMDS (3 equiv), DMPU (30 equiv), THF, −78 °C, 0.5 h, then 

NCCO2Me (4.6 equiv), −78 °C, 3 h, 27%. 

Scheme 72: Attempted acylation of 227ab 

1H NMR spectrum of the crude material after work-up showed a complicated mixture of 

compounds. However, one compound was observed in excess and was isolated by column 

chromatography. Unfortunately, 1H NMR spectroscopic analysis only showed one OMe peak 

corresponding to the para-methoxy benzyl group. Our desired product should have contained 

three. Further analysis by 1H NMR spectroscopy showed a doublet with a J value of 2.3 Hz. 

The chemical shift of this peak (δ-4.53) and its coupling partner (δ-5.21) combined with the 

small J value, pointed towards a terminal alkene 229. We were able to postulate a reason to 

explain the observed elimination. Lactam 227a is likely to have undergone an initial 

deprotonation from the LiHMDS at the hydroxyl position (Scheme 73). 

 

Scheme 73: Mono-deprotonation and acylation of 227a 
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If a second deprotonation does not occur before addition of Mander’s reagent, however, the 

hydroxyl group will become acylated to the carbonate 230 on addition of the reagent. This 

activates the hydroxyl group into a good leaving group, a second deprotonation at the C5 

position therefore would induce an elimination before the second acylation could take place 

(Scheme 74), hence the formation of the enone. 

 

Scheme 74: Mechanism for the formation of 230 from 229 

An analogous reaction was attempted at -40 °C in an attempt to encourage the initial double 

deprotonation but unfortunately decomposition of the starting material occurred. 

2.4.5 Attempted oxidation of the C9 hydroxyl group 

After our failure to incorporate the methyl ester with the hydroxyl group at C9, we devised a 

different approach. Oxidation of the C9 position to the aldehyde would form a malonic carbon 

centre at C5. This would lower the pKa of the C5 proton, potentially allowing a wider variety 

of acylation techniques to be used along with weaker bases, which could be less likely cause 

of decomposition of the product (Scheme 75). The resulting aldehyde could then either be 

protected or utilized to insert the cyclohexene ring earlier than originally intended (Scheme 

67).  

 

Scheme 75: Revised strategy for the insertion of the methyl ester via the malonic 

intermediate 230 
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For the oxidation, we chose to use Dess-Martin periodinane (DMP). DMP 234 is a hypervalent 

iodine species which can be bought commercially or prepared from 2-iodobenzoic acid 232 

(Scheme 76).129 

In 1983 Dess and Martin prepared this reagent and reported its use30 on a range of primary 

and secondary alcohols, oxidising them to aldehydes and ketones respectively. 

 

Scheme 76: Preparation of DMP 234 from 232 

DMP has been shown to not over-oxidize alcohols past the aldehyde and furthermore had 

been used on similar substrates in Corey’s synthesis of omuralide to great effect.29  

 

Reagents and conditions: DMP (2 equiv), DCM, 16 h, rt. 

Scheme 77: Attempted oxidation of 230ab 

Unfortunately, however, after work up, no compound could be observed in the crude 1H NMR 

spectrum or seen on TLC. It is perhaps the case that the malonic product was too unstable 

and therefore underwent decomposition. Due to the significant problems from the beginning 

of this route and time constraints we decided to stop working towards the total synthesis of 

salinosporamide B. 
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2.5 Toward the total synthesis of omuralide and analogues from hydroxy-leucine 

2.5.1 Introduction to β-hydroxy, α-amino acids 

2.5.1.1 β-hydroxy, α-amino acids in natural products 

Of the DNA-encoded 20 amino acids, only two are β-hydroxy, α-amino acids; serine and 

threonine. More unusual β-hydroxy amino acid backbones, however, are found regularly in 

natural products.  

 

Figure 16: An array of β-hydroxy, α-amino acids 

The recently reviewed guanidine-containing amino acid enduracididine has a β-hydroxy 

amino acid form 234 and its epimer, 235.130 Both are found in a group of glycopeptides called 

mannopeptimycins discovered in 2002.130 Mannopeptimycins α-ε were found to be active 

against gram-positive bacteria. Synthesis and a structural revision of the aglycone was 
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reported in 2014.131 Hydroxylated forms of isoleucine 236 and tyrosine 237 have also been 

found in the cyclic peptides ustiloxins132 isolated from false smut balls found on rice,133 and 

were found to have antimitotic properties. β-Hydroxylated forms of asparagine 238, 

phenylalanine 239 and leucine were found in the potent antibiotic lysobactin, discovered in 

1988.134 Full elucidation of the structure of lysobactin was completed in 1989.135 The anti-

cancer drug bleomycin136 contains a substituted β-hydroxy histidine 240 moiety.137 A 

hydroxylated proline derivative 241 is found in the DNA gyrase inhibitor cyclothialidine, both 

discovered138 and structurally determined139 in 1993. Substituted hydroxy-tryptophan 

derivatives 242 were also found in the cyclomarins A-C,140 which display significant anti-

inflammatory properties. The cyclomarins also contained a β-methoxylated phenylalanine. 

Perhaps most famous, however are the chlorohydroxy tyrosine derivatives 243 and 244, due 

to their occurrence in the potent antibiotic vancomycin. Discovered in 1956141 the aglycone 

245 was first synthesized by Evans et al.142 after full structure elucidation.143,144   

 

Figure 17: The aglycone of vancomycin, β-hydroxy, α -amino acids highlighted 

Vancomycin has become the last line of defence in the fight against antibiotic resistance,145,146 

and is listed on the world health organization’s (WHO) list147 of essential medicines. Several 

structural modifications over the years has retained vancomycin at the forefront of 

attention.148 
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2.5.1.2 β-Hydroxy, α-amino acids in pharmaceuticals 

 

Figure 18: β-Hydroxy, α-amino acids in pharmaceuticals 

In addition to natural products, β-hydroxy amino acids and their derivatives also are prevalent 

in drug molecules (Figure 18). ONO-4128 246 was developed by GSK for treatment of HIV.149 

The hypotension drug droxidopa 247149 developed by Sumitomo pharmaceuticals is used 

worldwide, and the antibiotic chloramphenicol 249 which is used to treat a wide variety of 

diseases including the plague. Extracted from bacteria, chloramphenicol (discovered in 

1947150 and structure elucidated151 in 1949) was the first antibiotic to be synthesized.152 Later 

the more potent analogue thiamphenicol 250 was synthesized after replacement of the nitro 

group with a methyl sulphone. Both could be derived from β-hydroxy amino esters after 

reduction. 

2.5.1.3 Hydroxy leucine in natural products 

 

Figure 19: Omuralide, with the motif for hydroxy-leucine highlighted 
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The hydroxy leucine motif is found in omuralide. (Figure 19) The β-hydroxy amino acid and its 

derivatives have been identified in a plethora of natural products, usually with anti-bacterial 

properties. These include; azinothricin153, A83586C154, citropeptin155, the papuamides A-D156, 

verucopeptin,157 kettapeptin,158 polyoxypeptins A and B,159 piplamycin,160 GE3,161 JBIR – 78,162 

JBIR – 95,162 telemycin,163 HV-toxin M,164 leucinostatin,165 scytonemin A,166 and lysobactin.134 

2.5.1.4 Strategies for the synthesis of β-hydroxy, α-amino acids 

2.5.1.4.1 Introduction to β-hydroxy, α-amino acid synthesis 

With the widespread occurrence of the β-hydroxy, α-amino acids backbone and its derivatives 

in natural and synthetic compounds. Methods for the synthesis of these valuable structures 

are important. 

2.5.1.4.2 Synthesis of hydroxy leucine utilizing an aldol reaction 

2.5.1.4.2.1 An aldol reaction employing a chiral auxiliary 

Early work in the asymmetric synthesis of β-hydroxy, α-amino acids was pioneered by Evans. 

Using an oxazolidinone chiral auxiliary attached to halo acetate or glycine derivatives, Evans 

was able to produce anti or syn β-hydroxy, α-amino acids or their derivatives. Evans’ approach 

to syn amino acids used an isocyanate attached to a chiral oxazolidinone via an amide bond 

(251).167 Using an aldehyde and stannous triflate as the Lewis acid, several β-hydroxy, α-

amino acid precursors were synthesized in excellent diastereoselectivity including a precursor 

to hydroxy leucine 252 which was synthesized in 92% yield with a diastereoisomeric ratio (dr) 

of 99:1 (Scheme 78). 
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Reagents and conditions: (i) Sn(OTf)2, iso-Butyraldehyde, N-ethyl piperidine THF, -78 °C, 92%. 

 Scheme 78: Evans approach to syn β-hydroxy, α-amino acids 

Complementary work by Evans168 showed that using an oxazolidinone bonded to a halo 

acetate 253 could produce bromo-hydrins such as 254, which, when bromine was displaced 

with sodium azide (255), could produce anti-β-hydroxy, α-amino acids. Again, hydroxy leucine 

was one of several amino acids synthesized in the work (Scheme 79). 

 

Reagents and conditions: (i) Bu2BOTf, iso-Butyraldehyde, NEt3, DCM, -78 °C – 0 °C, 63% (ii) 

NaN3, DMSO. 

Scheme 79: Evans approach to anti β-hydroxy, α-amino acids 

2.5.1.4.2.2 An aldol reaction using an organocatalyst 

Barbas169 showed in 2004 that proline could be used to catalyse aldol reactions between 

phthalimidoacetaldehyde 256 and various aldehydes. An extensive optimization using iso-
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butyraldehyde was carried out that produced 257 in 93% yield and >99% ee and >100:1 dr, 

which could be elaborated to a derivative of (S,S) hydroxy-leucine 258 (scheme 80). 

 

Reagents and conditions: (i) iso-Butyraldehyde, L-proline, NMP, 4 °C, 6 days, 93%; (ii) 1) 

NaClO2, 2-methyl-2-butene, NaH2PO4, tBuOH-H2O, rt; 2) TMSCHN2, MeOH-toluene-hexane -

20 °C, 73% over the 3 steps. 

Scheme 80: Strategy by Barbas to synthesize β-hydroxy, α-amino acids 

2.5.1.4.2.3 An aldol using a chiral Lewis acid 

Corey was able to produce bromohydrin170 260 using chiral Lewis acid 261. The bromohydrin 

260 (90% yield, 92% ee) was then elaborated to both diastereoisomers of hydroxy leucine 

(scheme 81). 

 

Reagents and conditions: 261, DCM, iso-butyraldehyde, NEt3 -78 °C, 10 h, 90%. 

Scheme 81: Corey’s strategy to produce either hydroxy-leucine diastereoisomer 
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2.5.1.4.3 Synthesis using asymmetric hydrogenation 

The groups of Genet171 and Noyori172 each published asymmetric dynamic kinetic resolutions 

through the hydrogenation of α-amino, β-keto esters using a ruthenium catalyst. This laid the 

foundation for Hamada173 to synthesize all diastereoisomers of hydroxy leucine through 

hydrogenation, producing the anti-diastereoisomer derivative 52, then inverting the β-

hydroxy to produce the syn. Genet174 was later able to report methodology allowing the 

formation of syn or anti-products depending on the nature of the starting material (Scheme 

82). 

 

Reagents and conditions: H2 (100 atm), RuCl2[(S)-binap](dmf)n, DCM, 50 °C, 48 h, 100%. 

Scheme 82: Hamada’s strategy for the synthesis of all stereoisomers of hydroxy leucine 

Later work by Genet175 and Hamada176 developed the methodology further, allowing 

asymmetric hydrogenation of the primary amine salts as opposed to further substituted 

counterparts. 

2.5.1.4.4 Synthesis using Sharpless methodology 

2.5.1.4.4.1 Asymmetric dihydroxylation 

In 1988 Sharpless reported a useful activation of 1,2 diols using a cyclic sulphate. The strategy 

activated the diol much like an epoxide, but the sulphate could undergo displacement by 

nucleophiles far more readily.177 Corey later used this methodology, in combination with the 

Sharpless dihydroxylation reaction, to synthesize the methyl ester of (S,S) hydroxy leucine 265 

(Scheme 83).39 
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Reagents and conditions: (i) (DHQ)2PHAL, K2OsO4, t-BuOH-H2O, 0 °C, 3 days, 92%; (ii) 1) SOCl2, 

Py, CH2Cl2, 0 °C, 10 m, H2SO4; 2) NaIO4, RuCl3, MeCN-CCl4, 97% over 2 steps; (iii) NaN3, 

Acetone, rt, 30 m then H+ (iv) H2, Pd/C, EtOH/EtOAc, 89% over 2 steps. 

Scheme 83: Corey’s synthesis of 265 via a cyclic sulphate 

2.5.1.4.4.2 Asymmetric epoxidation  

Ōmura178 used an asymmetric epoxidation179 to form 266 which after conversion to the cyclic 

carbamate 267 and oxidation to the acid 270, could be converted to (S,S)-hydroxy-leucine. 

Intermediate 270 could also be esterified and epimerized to 271, which could then be 

converted to (R,S)-hydroxy leucine (scheme 84). 
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Reagents and conditions: (i) 1) PhC(Me)2O2H, Ti(O-i-Pr)4, (+)-DIPT, 82%; (ii) NaH, BnNCO, 

THF; (iii) NaH, THF, 75%; (iv) CrO3, Acetone, 100%; (v) 1) KOH (2 M), 2) H2, Pd/C, 98%; (vi) 

CH2N2, Et2O, 86%; (vii) KOH, EtOH, 97%. 

Scheme 84: Ōmura’s synthesis of the hydroxy-leucine using a Sharpless epoxidation 

2.5.1.4.4.3 Asymmetric amino hydroxylation 

Another method developed by Sharpless that has been utilized in the synthesis of β-hydroxy, 

α-amino acids is the amino-hydroxylation, where a double bond can be simultaneously 

hydroxylated and nitrated. 
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Reagents and conditions: (i) p-Bromophenol, DCC, DMAP, CH2Cl2, rt, 12 h 80%; (ii) (DHQ)2-

AQN, K2OsO4, H2NCBz, NaOH, t-BuOCl, n-propanol, 4 h, rt, 60%. (iii) Ti(n-PrO)4, MeOH, 2 h, 

100%; (iv) H2, Pd/C, MeOH, 12 h, 99 %. 

Scheme 85: Panek’s synthesis of 36 

Substrate 274 was found to produce the best regio- and enantioselectivity, allowing 275 to 

be produced in 87% ee, which could be recrystallized to the single enantiomer.32 Exchange of 

the bromo-phenyl to the methyl and protecting group removal then afforded 36 in excellent 

yield. 

2.5.2 Strategy of the synthesis of omuralide from hydroxy leucine  

Although our Corey analogue 19a allowed late stage modification of the C9 position for 

omuralide, the C7 methyl group was installed early on in the synthesis. Ideally, diversification 

of the structure for the synthesis of analogues should be as late in the synthesis as possible 

to reduce the time taken and number of steps required. We therefore decided to design a 

route based around using hydroxy leucine as the starting amino acid. This would install the 

C5 moiety early on in the synthesis, providing a rapid route to omuralide. Furthermore, by 

incorporating much of the stereochemistry and carbon skeleton from the beginning, this 

could allow late stage diversification of the C7 position (Scheme 86). 



 

137 
 

 

Scheme 86: Outline of a route starting with hydroxy-leucine 

2.5.3 Diastereoisomer of hydroxy leucine required for the synthesis 

Although the synthesis of hydroxy leucine has been well studied, we felt a method where 

either diastereoisomer could be produced from a late stage intermediate would be a valuable 

addition to the literature. We also sought a method which would avoid expensive or unusual 

ligands and proceeded in as few steps as possible, preferably using column chromatography 

to purify intermediates as little as possible. 

Hydroxy leucine is commercially available, however, we were presented with two problems. 

Firstly, hydroxy leucine is very expensive, and we would need multi-gram quantities in order 

to complete our synthesis. Secondly, we were unable to predict which stereochemical course 

our route would take, as the diastereoselectivity during the Dieckmann cyclization had 

switched between the leucine and serine routes. We did know, however, that we required 

the hydroxyl group to be in the S configuration, as in omuralide. 
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*Costs shown are approximate values from Santa Cruz Biotechnology 

https://www.scbt.com/scbt 

We therefore decided to synthesize both of the diastereoisomers of hydroxy leucine. 

Our aim was to synthesize the enone 47 by a Wittig reaction, then use the Sharpless 

dihydroxylation procedure to produce diol 48. The syn diastereoisomer could be synthesized 

utilizing the Sharpless methodology for producing β-acetoxy, α-bromo esters. We would then 

attempt to displace the bromine with a nitrogen-based nucleophile in an SN2 fashion, 

inverting the stereocentre producing the syn diastereoisomer (Scheme 87). The anti-

diastereoisomer could be synthesized using Corey’s methodology as previously described 

(Scheme 83). 

 

Scheme 87: Our planned methodology to synthesize both diastereoisomers of hydroxy 

leucine 

• (S,S) Hydroxy-leucine 

• Anti 

• “Serine route” stereochemical course 

• 1 g = £1180.00* 

 

• (R,S) Hydroxy-leucine 

• Syn 

• “Leucine route” stereochemical course 

• 1 g = £18500.00* 

• Used as an inhibitor of serine protease 
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2.5.4 Synthesis of the enone precursor through a Wittig reaction 

We planned to synthesize the isobutyl enone by a Wittig reation. The methyl acetate 

phosphonium salt was prepared by triphenylphosphine substitution of methyl bromoacetate. 

Deprotonation of the salt with sodium hydroxide produced the ylide 46 in excellent yields 

(scheme 88). 

 

Reagents and conditions: (i) PPh3, EtOAc, 24 h, rt, 80% (ii) DCM, 1 M NaOH Sol, 99%. 

Scheme 88: Synthesis of the Wittig ylide 46 

The α, β-unsaturated ester was synthesized through treatment of the ylide with isobutyl-

aldehyde. The stabilized nature of the ylide provided the product as the E isomer only and 

purification could be completed by Kugelrohr distillation, avoiding the use of column 

chromatography. The ester slowly oxidized upon storage to the γ-peroxidized form through 

an auto-oxidation pathway. Storage under argon and protecting the glassware from light did, 

however, reduce conversion to the peroxidized product (Scheme 89). 

 

Reagents and conditions: (i) iso-butyraldehyde, DCM, 20 h, rt, 63%; (ii) air, hν. 

Scheme 89: Synthesis of enone 47 and its oxidation to 277 

2.5.5 Sharpless asymmetric dihydroxylation 

2.5.5.1 Introduction to the Sharpless asymmetric dihydroxylation 

The reaction between osmium tetroxide and olefins was discovered in 1908.180 Later work by 

Criegee et al. 181 found that reaction rates could be increased with the addition of pyridine. 

This work laid the foundation for Sharpless in 1980 to publish the first asymmetric 

dihydroxylation using chinchona alkaloid ligands.182 Later work by Sharpless et al.183 

developed this asymmetric procedure into a catalytic system, re-oxidizing the osmium with 



 

140 
 

tertiary amine N-oxides, a technique originally discovered by the Upjohn company.184 The 

reaction has since undergone substantial development of both the conditions and ligands 

used. The most important improvement from the previous pseudo-enantiomer ligands,  

quinine and quinidine (providing either enantiomer of the substrate), being the avoidance of 

using stoichiometric ligand through the development of the phthalazine class of ligands 

(Figure 20)185 hydroquinine 1,4-phthalazinediyl diether ((DHQ)2PHAL) and hydroquinidine 

1,4-phthalazinediyl diether ((DHQD)2PHAL), again respectively quinine- and quinidine-

derived, and now the most widely used. These commercially available ligands can be bought 

as pre-mixed powders containing potassium carbonate, potassium osmate dihydrate, the 

oxidant potassium ferricyanide and either ligand depending on the enantiomer required. 

 

Figure 20: Ligands used in asymmetric dihydroxylation 

2.5.5.2 Ligand required for the dihydroxylation 

Sharpless also developed a mnemonic allowing identification of the ligand needed depending 

on the enantiomer of the substrate required. We subjected our substrate to the analysis. As 

mentioned (Chapter 2.5.3), the β-enantiomer would need to have the S stereochemistry as 

found in the C9 position of omuralide. The substrate is orientated so the largest moiety (the 

methyl ester) points to the “southwest” corner and the second largest (the iso-propyl) to the 

“northeast” corner. Once in this position, Sharpless has shown that (DHQD)2PHAL would add 



 

141 
 

the hydroxyl groups from the top face and (DHQ)2PHAL from the bottom face (Figure 21). This 

would provide us with S,R or R,S respectively, allowing us to conclude that the (DHQ)2PHAL 

ligand found in AD-Mix α would be required. 

 

Figure 21: Sharpless mnemonic for choice of ligand required 

2.5.5.3 Asymmetric dihydroxylation of 47 

Enone 47 was treated under standard conditions for asymmetric dihydroxylation. This 

provided 48 in 90% ee, which after recrystallization from petroleum ether/ethyl acetate was 

enriched to 96% ee (Scheme 90). 

 

Reagents and conditions: AD-Mix α, t-BuOH/H2O 1:1, 68% (90% ee). Recrystallization in 

petroleum ether/ethyl acetate (50% overall yield, 96% ee). 

Scheme 90: The dihydroxylation of 47 
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2.5.6 Tandem bromination/esterification of diol 48 

In 1991, Sharpless published “Selective Transformations of threo -2,3-dihydroxy esters”, 

which contained several useful reactions for the transformation of dihydroxylated esters.34 

One of the reported transformations was an α-bromination, β-esterification of α,β diol esters. 

The reaction proceeded through the formation of a cyclic oxocarbenium ion and subsequent 

opening with bromine in an SN2 fashion (Scheme 91). 

 

Reagents and conditions: (i) HBr, AcOH, 40 °C. 

Scheme 91: Regioselective bromination of α,β diol esters 

A modified version of this methodology developed by Adams et al.33 was used for the 

bromination of our diol. A benzoyl cyclic orthoester was formed, catalysed by BF3.OEt2. 

Opening was induced by acetyl bromide, brominating the α-position and forming the benzoyl 

ester on the β-hydroxyl group (Scheme 92). 

 

Reagents and conditions: (i) PhC(MeO)3 (1.3 equiv), BF3.OEt2 (cat), Et3N (cat), DCM 2 h then 

AcBr (1 equiv), 3 h, rt, 91%. 

Scheme 92: Regioselective bromination of 48 

Bromo ester 49 was used without further purification. We decided to attempt to use para-

methoxy benzylamine 278 to displace the bromine. Not only would this provide the amine 

necessary for the amino acid, but also install the PMB protecting group (279), which would 

be required for our omuralide synthesis (Scheme 93). 
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Reagents and conditions: PMBNH2, THF, -78 °C to rt, 64 h, 25%. 

Scheme 93: Attempted displacement of bromine by 278 

To our surprise however, analysis of the 1H NMR spectrum of our product suggested that it 

was aziridine 280 instead of our desired compound. 

A reaction involving α-halo, α,β-unsaturated esters and amines to form aziridines has been 

observed before and is known as the Gabriel-Cromwell reaction.186 The proposed mechanism 

is shown in scheme 94. 

 

Scheme 94: A Gabriel-Cromwell style reaction to produce by-product 280 
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Triethylamine deprotonates the acidic alpha proton and the benzoyl ester is eliminated. A 

Michael type addition from 278 onto the α,β-unsaturated ester forms a secondary amine, 

which can inter-molecularly undergo nucleophilic substitution with the bromine, forming the 

aziridine 280. Although we were only able to isolate the cis diastereoisomer, Gabriel-

Cromwell reactions usually provide an unequal mixture of diastereoisomers187 due to the free 

rotation possible after keto – enol tautomerization.  

2.5.7 Transesterification of the β-ester 

2.5.7.1 Transesterification of the benzoyl ester 

Although substitution of the bromine with PMBNH2 278 had failed, we felt a similar reaction 

was worth pursuing. If we were able to remove the β-ester, leaving the unprotected alcohol 

as in 283, the original elimination shown in scheme 94 would presumably not occur, perhaps 

resulting in the desired substitution. Usually esters are hydrolysed under basic conditions; but 

in our system this would probably lead to the elimination product again. We therefore 

decided to attempt to hydrolyse the ester under acidic conditions. Methanol was chosen as 

the solvent so as not to interfere with the methyl ester in 49. Attempts at removing the benzyl 

ester through a methanolic transesterification failed with (±)-camphorsulphonic acid ((±)-

CSA) at room temperature, (Scheme 95, table 9), providing only starting material after 24 h. 

 

Scheme 95: Attempt at transesterification of the benzoyl ester 133 

Entry Conditions Product and yields % 

1 (±)-CSA (1.4 equiv), MeOH, rt, 24 h  49 92% 

2 p-TSOH (1.1 equiv), rt, overnight 49 

3 p-TSOH (1.1 equiv), reflux, 5 h 49 32% 284 39%. 

Table 9: Attempted acid hydrolysis of 49 
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Increasing the acidity of the organic acid by using p-TsOH also provided only starting material 

at room temperature. Heating this to reflux overnight provided starting material along with 

hydrolysed material, but the hydrolysis had occurred not at the ester but at the bromine, 

providing compound 284. Because of these problems, we decided to modify the method, 

exchanging the benzoate for an acetate in the hope that the decreased size of the ester would 

increase the likelihood of transesterification. 

2.5.7.2 Transesterification of the α-bromo, β-acetoxy ester 

The α-bromo β-acetoxy ester 285 was synthesized in an analogous way to 49 by the exchange 

of trimethoxybenzoate with trimethoxy acetate (Scheme 96). 

 

Reagents and conditions: MeC(MeO)3 (1.7 equiv), BF3.OEt2 (cat), Et3N (cat), DCM 2 h then 

AcBr (3 equiv), 3 h, 91%. 

Scheme 96: Formation of the α-bromo, β-acetoxy ester 285 

Although the compound could be isolated in crude form from the reaction mixture, under 

high vacuum, evaporation appeared to occur, causing purification to be difficult. Because of 

these problems 285 was taken onto the deprotection conditions without further purification. 

Unfortunately stirring with (±)-CSA in methanol also failed to provide the desired 

bromohydrin 283, only starting material being isolated. 

 

Reagents and conditions: i) (±)-CSA, MeOH, rt. 

Scheme 97: Attempt at transesterification of the benzoyl ester 283 

Due to the volatile nature of 285, we decided not to try further deprotection methods for the 

acetoxy group. 
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2.5.7.3 Transesterification of the α-bromo β-formate ester 

One of the most labile ester based protecting groups is a formate ester.188 Due to the difficulty 

in removing our previous esters, we decided to synthesize the α-bromo β-formate ester 286. 

Once again, the reaction proceeded cleanly, and furthermore, no loss of mass was observed 

after extended periods under vacuum (Scheme 98).  

 

Reagents and conditions: HC(MeO)3 (1.4 equiv), BF3.OEt2 (cat), Et3N (cat), DCM then AcBr (1.2 

equiv), 91%. 

Scheme 98: Formation of the α-bromo, β-formate ester 286 

The α-bromo β-formate ester was treated with the acid hydrolysis conditions at room 

temperature, and to our delight this produced the desired bromohydrin 283 in excellent 

yields. Because both our bromination and transesterification appeared to proceed well based 

on crude 1H NMR analysis, a one pot procedure was developed. After bromination, methanol 

and (±)-CSA were added, and the solution stirred vigorously (Scheme 99). The development 

of this one pot procedure only decreased overall yields slightly but removed a step from the 

synthesis. 
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Reagents and conditions: (i) (±)-CSA (1.7 equiv), MeOH, rt 89%. (ii) HC(MeO)3 (1.4 equiv), 

BF3.OEt2 (cat), Et3N (cat), DCM then AcBr (1.1 equiv), MeOH, (±)-CSA (2.6 equiv), 67%. 

Scheme 99: Deprotection of the formate ester 286 and the one pot α-bromination of diol 48 

Although only minor impurities were present, the bromohydrin 283 required purification by 

column chromatography at this stage. However, this was the first column chromotography 

required in our (R,S) hydroxy leucine synthesis. 

2.5.8 Displacement of bromine with para-methoxy benzylamine 278 

Under similar reaction conditions to our previous para-methoxy benzylamine substitution 

attempt (Scheme 93), the bromine displacement reaction was run until full consumption of 

the starting material had occurred (Scheme 100). 

 

Reagents and conditions: PMBNH2 (2 equiv), Et3N (0.9 equiv), THF, overnight, rt, 67%. 

Scheme 100: Attempt to displace the α-bromine position with 278 

One major product was observed in the crude reaction mixture. The major compound was 

active under ultraviolet (UV) light, which indicated the PMBNH2 had been added to the 

molecule, but unfortunately, after purification by column chromatography, analysis of the 1H 
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NMR spectrum indicated that the colourless crystalline compound isolated was not our 

desired product. Crucially, only one OMe peak could be observed and a characteristic amide 

peak could be seen. NMR analysis pointed toward α,β-epoxy amide 288. Triethylamine could 

induce a rapid intramolecular cyclization to the epoxide. Substitution at the methyl ester from 

278 would then form the by-product 288. 

Although not our desired product, 288 proved useful in confirming the absolute and relative 

stereochemistry. 

Firstly, the UV active nature of 288 allows measurement by HPLC, due to the method of 

detection used by the instrument. We were able to confirm the ee as 96% using HPLC with a 

chiral stationary phase in comparison with a synthesized racemate. 

Secondly, a crystal structure of the enantiopure product confirmed that the correct 

dihydroxylation ligand had been used, providing our β-hydroxyl group as the S stereocentre. 

Finally, a crystal structure was obtained, which showed the substituents had a trans 

relationship (Figure 22). This provided evidence that the bromohydrin starting material had 

an anti-conformation between the bromine and the hydroxyl group. 
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Figure 22: X-ray crystal structure of 288, hydrogen atoms removed for clarity 

2.5.9 Asymmetric reductive amination 

2.5.9.1 Introduction to asymmetric reductive amination 

With our methods to incorporate the PMB group utilizing an SN2 reaction failing, we decided 

to attempt a different approach. Secondary amines are commonly formed through reductive 

amination. In the last few decades, considerable progress has been made in the formation of 

chiral amines using asymmetric reduction of the imine. In our pursuit of finding a rapid route 

to the synthesis of hydroxy leucine we decided to utilize a method by Saxena et al.,189 who 

developed a one pot oxidation, reductive amination of alcohols. The method utilizes the 
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2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)/(diacetoxyiodo)benzene (BAIB) oxidation 

developed by Piancatelli.190 The oxidation was chosen by Saxena in part due to the release of 

acetic acid, catalysing the second step of imine formation. TEMPO-based oxidations have 

been reviewed.191 

After oxidation, the imine can be formed with the required primary amine. A chiral Brönsted-

acid, in this case the binol-derived phosphoric acid catalysts such as 290, pioneered by 

Akiyama192 and Terada,193 co-ordinates to the imine creating an environment where the bio-

mimetic reducing agent, Hantzsch ester (289), is able to reduce the imine asymmetrically 

(Scheme 101). Work on asymmetric reductive aminations with similar Brönsted acid-

catalysed systems was initiated by Macmillan.194 

 

Scheme 101: One-pot asymmetric synthesis of amines from alcohols 

We hoped with correct choice of chiral Brönsted acid, either diastereoisomer could be 

synthesized (Scheme 102); however, we needed first to develop a method allowing 

regioselective protection of the β-hydroxyl group in the diol ester 48. 



 

151 
 

 

Scheme 102: Strategy for the synthesis of protected hydroxy-leucine from 48 

2.5.9.2 Reigioselective protection of the β-alcohol 

A procedure based on the original bromination from scheme 92 was developed to 

regioselectivly mono-benzoylate the β-hydroxyl group.  Addition of water instead of acetyl 

bromide after formation of the oxocarbenium ion opened the ring, providing a free hydroxyl 

group alpha to the methyl ester and leaving the β-position protected with a benzoyl ester. 

Depending on the mechanism, the α-hydroxyl group could now be anti or syn to the β 

position. Path 1, where the hydroxyl attacks at the α-position of the methyl ester would 

produce the anti-isomer 291, whereas the syn-isomer 284 would be produced by attack at 

the benzoyl carbonyl (path 2) (Scheme 103). 
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Reagents and conditions: (i) PhC(MeO)3 (1.4 equiv), BF3.OEt2 (cat), Et3N (cat), DCM 2 h then 

H2O, rt, 70%. 

Scheme 103: Hydrolysis of the oxocarbenium ion intermediate and potential products 

formed 

Although our next step would oxidize the α-hydroxyl group making its configuration 

irrelevant, we decided to confirm the stereochemistry as the compound was novel. Removal 

of the benzoyl with potassium tert-butoxide in methanol provided our original syn-

dihydroxylated ester 48 (Scheme 104). 

 

Reagents and conditions: KOt-Bu, MeOH, 0 °C, 84%. 

Scheme 104: Removal of the benzoyl ester allowing identification of 284 

This result confirmed the stereochemistry to be syn and the product from scheme 103 to be 

284, meaning the reaction proceeds by path 2, with the hydroxide opening the ring by 

attacking the benzoyl carbonyl. 
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2.5.9.3 Synthesis of the reagents for asymmetric reductive amination 

 

Reagents and conditions: (i) POCl3, Py, 75 °C, 5 h, then H2O, 2 h, rt, 46%. 

Scheme 105: Synthesis of the chiral Brönsted acid 290 

Following a procedure by Zhou et al.195 (S)-binol was converted into the phosphoric acid 

analogue by reacting 292 with phosphoryl chloride. Quenching the mixture provided the 

chiral Brönsted acid 290 after purification by column chromatography (Scheme 105).  

Hantzsch’s ester was synthesised following a procedure by Kumar et al.196 based on the 

Hantzsch dihydropyridine synthesis. This multi-component reaction can be applied to a wide 

variety of aldehydes and malonic keto esters to provide various dihydropyridine derivatives 

(Scheme 106). 

 

Reagents and conditions: (i) Formaldehyde (aq) (1.1 equiv), CH3CO2NH4 (1 equiv), p-TSA (cat), 

16 h, rt, 23%. 

Scheme 106: The Hantzsch dihydropyridine synthesis to 293 

2.5.9.4 Asymmetric reductive amination applied to compound 284 
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Our mono-protected diol was treated under the oxidation conditions provided from the 

literature189 until TLC showed that consumption of the starting material had occurred. The 

PMB amine 278 was then added along with 289 and 290 and again left until consumption of 

the starting material had occurred (Scheme 107). Unfortunately, upon work-up we found that 

both by TLC and analysis of the crude 1H NMR spectrum, a complex mixture of products was 

formed. It is possible that the alpha ester ketone is too hindered, the bulky nature of the 

benzoyl ester protecting group in 284 preventing imine formation. Because of this, we 

decided to synthesize a less hindered analogue in the hope the imine could now be formed 

successfully. 

 

Reagents and conditions: (i) BAIB (1.2 equiv), TEMPO (0.2 equiv), DCM, 16 h then 278 (2.3 

equiv), 289 (1.9 equiv), 290 (0.18 equiv), 2.5 h, rt. 

Scheme 107: Attempt at asymmetric reductive amination of 284 

2.5.9.5 Mono-acetate protection of the diol 48 

Diol 48 was treated under an analogous procedure to our mono-benzoate protection 

(Scheme 108) to produce the acetoxy analogue 295. Unfortunately, however, the reaction 

provided two products, the major being our desired β-protected alcohol 295, but significant 

amounts of the α-protected alcohol was also isolated after column chromatography 296. 

 

Reagents and conditions: MeC(MeO)3 (1.3 equiv), BF3.OEt2 (cat), Et3N (cat), DCM 2 h then 

H2O, rt, 150 31% 151 11%. 

Scheme 108: Mono-acetate protection of diol 48 



 

155 
 

During further characterization of the α-protected diol-ester, we found that the acetate 

would migrate to the β-position upon standing in chloroform (Scheme 109), presumably to 

the more stable regioisomer via 297 this migration is potentially due to the acidic content of 

the chloroform. Analysis of the 1H NMR spectrum showed after 16 h a 0.07:1 (295:296) 

mixture would convert to a 3.55:1 mixture of regioisomers. In comparison, conversion of 295 

to 296 was almost negligible, with a 1:0.01 (295:296) mixture of regioisomers converting to a 

1:0.03 mixture after 16 h. 

 

Scheme 109: Equilibrium of 295 and 296 

2.5.9.6 Asymmetric reductive amination applied to compound 295 

The less hindered mono-protected diol ester 295 was treated under similar conditions to our 

previous benzoylated analogue 284 (Scheme 107). Unfortunately, once again a complex 

mixture of products was formed (Scheme 110). A major product was partially isolated, but it 

could not be fully characterized. It appeared that the PMB group had been incorporated, but 

not in the desired fashion. A peak in the 1H NMR spectrum appeared to correspond to an 

amide, which could correspond to a substitution of the methyl ester, suggesting 298. We had 

seen similar reactions occur previously during our attempts to displace the bromine in 

scheme 100. 
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Reagents and conditions: (i) BAIB (1.1 equiv), TEMPO (0.2 equiv), DCM, 16 h, 278 (2 equiv), 

289 (1.2 equiv), 290 (0.15 equiv), 2.5 h, rt. 

Scheme 110: Oxidation/amide formation of 298 

2.5.10 Displacement of bromine with sodium azide 

It seemed that in general PMBNH2 was quite ineffective at displacing bromine and would 

often act as a base rather than a nucleophile. We therefore decided to switch to sodium azide 

which would form 299. Reduction of the azide 299 would then produce the primary amine 

36, providing us with the amino acid for use in our synthesis (Scheme 111). 

 

Scheme 111: Revised strategy for the synthesis of hydroxy-leucine 

To our delight, sodium azide was able to displace the bromine in N,N-Dimethyl formamide 

(DMF). The obtained product appeared pure by analysis of the 1H NMR spectrum and 

therefore 299 could be used in the next step without further purification. 
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Reagents and conditions: (i) NaN3 (3.4 equiv), DMF, 20 h, 80%. 

Scheme 112: Displacement of bromine in 283 by sodium azide 

2.5.11 Reduction of azide 137 and amine HCl salt formation 

Reduction of the azide to 36 appeared to proceed as observed by TLC. Unfortunately, 

however, analysis of the crude 1H NMR spectrum showed a mixture of compounds. We 

theorized that co-ordination between the amine and various impurities (potentially from the 

celite) were forming complexes, thereby increasing the number of signals present in the 1H 

spectrum. To prevent this, the amine hydrochloride salt 300 was synthesized with methanolic 

HCl (Scheme 113). 

 

Reagents and conditions: (i) H2, Pd/C, MeOH (quant) (ii) Methanolic HCl (quant) 

Scheme 113: Reduction of the azide 

Clarity of the 1H spectrum increased dramatically, allowing proper characterization of the salt. 

In addition to the enantiomeric product, a racemic series has also been synthesized, (±)-300 

was obtained as crystalline solid from which a crystal was obtained for analysis by X-ray 

diffraction.  
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Figure 23: X-ray crystal structure of 300, hydrogen atoms removed for clarity 

2.5.12 Synthesis of anti hydroxy leucine from 283 via an epoxide 

2.5.12.1 Introduction to strategy 

With the success of our route to produce the syn amino acid ester, we decided to modify the 

route to form the anti-amino acid ester. Ideally, the routes to the hydroxy leucine 

diastereoisomer would be identical until a late stage modification which would allow either 

diastereoisomer required to be formed. The route planned involved bromohydrin 283, which 

would be subjected to conditions which would form the epoxide. Then, sodium azide would 

be added in situ in an attempt to open the epoxide. This strategy would involve 2 SN2 

inversions of the stereochemistry at the alpha position, overall retaining the original anti 

relationship in the final compound 264. 

 

Scheme 114: Strategy for the substitution of bromine by sodium azide via the epoxide  
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Although the reaction sequence appeared to be plausible, there were several possible 

outcomes that could potentially occur which we would have to control. 

Problem 1: Full epoxide conversion not achieved 

If sodium azide was added before full conversion to the epoxide, the azide would displace the 

bromine as we have already shown (Scheme 112). To control this, epoxide formation would 

be followed by TLC and excess time would be provided for epoxide formation to occur 

(Scheme 115). 

 

Scheme 115: Potential side reactions if incomplete conversion to the epoxide occurred 
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Problem 2: Regioselectivity 

After epoxide formation, the azide could potentially attack the epoxide in either the α or β 

position (Scheme 116). Both the iso-propyl and the methyl ester are approximately equal in 

size, suggesting that steric bulk is unlikely to be a factor in the regioselectivity of the reaction.  

We do envisage, however, that the electron-withdrawing properties of the ester will increase 

the δ+ charge on the α position, providing a favourable reaction at the desired α position. 

 

Scheme 116: Potential regioselectivity problems 

Problem 3: Mechanistic path of epoxide opening 

A final potential problem is that the reaction may proceed mechanistically as an SN1 reaction. 

If the epoxide opened first to produce a carbocation which the azide could attack, we would 

be unlikely to see any diastereoselectivity, producing a mixture of diastereoisomers 264 and 

299 (Scheme 117). 

 

Scheme 117: Outcome of an SN1 or SN2 mechanism 
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An SN2 reaction however would be diastereospecific, providing us with only the desired 

diastereoisomer 299. An SN2 reaction is fortunately the most likely route for this reaction. The 

SN1 mechanism would produce an unstable carbocation intermediate due to the electron-

withdrawing nature of the ester. 

2.5.12.2 Epoxide formation and azide opening experiments 

Epoxide formation was originally achieved by use of 1,8-diazabicyclo[5.4.0]undec-7-ene 

(DBU) as a non-nucleophilic base. DBU was found to achieve full epoxide formation in about 

1-2 h in most solvents used. Later experiments used triethylamine, which was also found to 

work well, but had the added benefit of volatility, allowing easier extraction from the crude 

material. Efficiency of epoxide formation between the two bases was equivalent. 
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Entry Reagents and Conditions (i) Analysis of the 1H 

NMR Spectrum 

Yield of azide 

1 DBU (2 equiv), DMF 2 h, NaN3 

(2.5 equiv), 16 h 

Only epoxide 

observed 

- 

2 DBU (1.9 equiv), DMF 2 h, 

NaN3 (2.2 equiv), 60 °C 16 h 

Complex mixture - 

3 PEG 400, Et3N (1.3 equiv) 1 h 

NaN3 (3.4 equiv) 16 h 

10:1 epoxide to 

azide ratio 

trace 

4 PEG 400, Et3N (1.4 equiv) 1 h 

NaN3 (4.1 equiv) 40 h 

0.5:1 epoxide to 

azide ratio 

9% 

5 DMF, Et3N (1.3 equiv) 4 h 

then PPTS (1.9 equiv), NaN3 

(3.3 equiv), 16 h 

1:0.25 epoxide to 

azide ratio 

- 

6 DMF, Et3N (1.3 equiv) then 

NH4Cl (2.4 equiv), NaN3, 16 h 

Azide observed in 

mixture of 

compounds 

Azide unable to be 

isolated pure from by-

products 

7 H2O/MeCN (1:9), Et3N (1.2 

equiv) then CeCl3 (0.5 equiv), 

NaN3 (1.9 equiv), reflux 3 h 

Mostly epoxide, 

trace azide 

observed 

- 

8 H2O/MeCN (1:9), Et3N (1.1 

equiv) then oxone®(1 equiv) , 

NaN3 (2.3 equiv) 

- - 

9 H2O/MeCN (1:9), Et3N (1.1 

equiv) then CeCl3, NaN3 (3 

equiv), reflux overnight 

Mostly azide 

observed 

19% 

Table 9: In situ epoxide forming/opening reactions. 
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Treatment of the epoxide with sodium azide provided 301 only (Table 1, entry 1). Heating an 

equivalent reaction resulted in a complex mixture from which nothing could be identified or 

isolated (Entry 2), potentially indicating that the epoxide was unstable at higher 

temperatures. With these two results it became clear that the epoxide would probably need 

activation in order to ring open. We had originally sought to avoid activation of the epoxide 

in case it induced an SN1 epoxide opening mechanism. In 2006 Das et al. published “Catalyst-

free highly regio- and stereoselective ring opening of epoxides and aziridines with sodium 

azide using poly(ethylene glycol) as an efficient reaction medium”.197 The authors suggest that 

hydrogen bonding between polyethylene glycol (PEG) and the reactants induces epoxide 

opening; furthermore the epoxides seemed to be shown to open diastereospecifically. After 

reacting the epoxide overnight (Entry 3), analysis of the 1H NMR spectrum of the crude 

mixture showed mostly the epoxide present, along with a small amount of the azido alcohol 

(Entry 3). Purification by column chromatography, however, provided only trace levels of 

material. Increasing reaction times and the amount of sodium azide provided a yield of 9% 

despite conversion looking positive according to the 1H NMR spectrum of the crude material 

(Entry 4). Although this result was encouraging, we decided to attempt alternative methods 

due to the low yields so attained. In 2010 Van Nieuwenhze published a synthesis of ß-hydroxy 

enduracididine in which pyridinium para-toluene sulphonate (PPTS) is used to activate the 

epoxide and induce ring opening (Scheme 118).198 

 

Reagents and conditions: NaN3, DMF, PPTS, 3d, 44%. 

Scheme 118: Opening of epoxide 303 with sodium azide and PPTS 

Unfortunately, with our substrate, we failed to isolate any product (Entry 5). Switching to 

ammonium chloride as the salt also failed to produce any of the desired product cleanly 

enough to isolate (Entry 6). In 2002, Sabitha et al. published a procedure for opening epoxides 

activated by the weakly acidic nature of oxone®.199 Although attempted, in our system no 

product was observed on TLC after 64 h (Entry 8). Finally, substoichiometric cerium chloride 
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heptahydrate was used to activate the epoxide following a procedure once again by Sabitha 

et al.200 The 3 h reflux unfortunately only provided trace amounts of the azido alcohol. Leaving 

the reaction overnight, however, produced the desired product, but unfortunately in poor 

yield (Entries 7 and 9). We believe that the epoxide is too unstable to be effectively opened 

by the azide, usually producing a complex mixture rather than our desired product, if reacting 

at all. We therefore decided to attempt an alternative procedure. 

2.5.13 Nosylation of the α-hydroxyl group 

Also developed by Sharpless, was a method for activating the alpha hydroxyl group of α,β 

dihydroxy esters with ortho-nosyl chloride.34 A range of diol esters were monosylated in the 

alpha position with nosyl chloride and triethylamine in DCM. The surprisingly high 

regioselectivity of this reaction could be due to the greater acidity of the alpha alcohol due to 

the electron withdrawing properties of the ester. The steric bulk of the sulphonate ester could 

be the reason the reaction stops at the mono-substituted product and does not react further 

to the bis. This methodology has been utilized in the synthesis of a hydroxy tyrosine 

derivative201 and ß-hydroxy enduracididine.198 Following treatment of 48 with nosyl chloride, 

the desired product 305 was obtained in fair yield (Scheme 119). 

 

Reagents and conditions: (i) ortho-Nosyl chloride (1.3 equiv), NEt3 (1 equiv), DCM, 3 h, rt, 

62%. 

Scheme 119: ortho-Nosylation of the α-position in 48 

Column chromatography was necessary in order to separate the excess nosyl chloride. 

Analysis by HPLC with a chiral stationary phase was used to ensure that no racemization had 

occurred; 305 was found to have consistent ee with by-product 288 (Scheme 100) at 96%. 

With the alpha position now activated, sodium azide should be able to efficiently displace the 

nosyl group. 
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2.5.14 Sodium azide displacement of the nosyl group 

Stirring the monosylated diol ester 305 with sodium azide produced a clean displacement. 

Analysis of the 1H NMR spectrum after work up showed that no by-products had been formed 

(Scheme 120). The 1H NMR spectra of the azide matched the 1H NMR spectra of Corey’s 

(Scheme 83), completing our route to the valuable intermediate 264.39 

 

Reagents and conditions: NaN3 (2.9 equiv), DMF, 20 h, rt, 95% 

Scheme 120: Displacement of the nosyl group with sodium azide 

2.5.15 Azide reduction and formation of the hydrochloride salt 

Although we had been able to synthesize an advanced known intermediate of anti-hydroxy 

leucine, we desired a crystal structure of the final compound for completion. Reduction of the 

azide with Pd/C produced the free amine as an oil. The hydrochloride salt was also formed in 

the hope of forming a solid, but unfortunately we were unable to produce crystallizable 

material. 

 

Reagents and conditions: (i) H2, Pd/C, MeOH, 41%; (ii) Methanolic HCl (quant). 

Scheme 121: Reduction of azide 264 and formation of the amine hydrochloride salt 306 

Due to time constraints we were unable to take the amino acids through our methodology to 

synthesize omuralide and analogues. Nevertheless, we had been able to synthesize both of 

the diastereoisomers of hydroxy leucine methyl ester through a short and simple method. 
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2.6 Conclusion and future work 

2.6.1 L-Leucine as a starting material 

We have successfully been able to incorporate leucine into a γ-lactam core, producing to date 

the shortest route to the full carbon skeleton of omuralide (4 steps). This lactam has been 

elaborated to provide a formal synthesis of the omuralide analogue C9-deoxyomuralide in 

the shortest non-racemic route to date (Scheme 122). The previous enantioselective route 

was completed by Corey in a total of 19 steps and overall yield of 10%, our synthesis took only 

11 steps, unfortunately however, the yield was lower at 0.6%. During this route, a 

diastereoselective desulphurization to 152b has been extensively studied and optimized. We 

believe this desulphurization will be an important step in our future work on the synthesis of 

omuralide and analogues. 

Although vast improvements have been made to the enantioselectivity of this route, our final 

ee of 77% could potentially be improved by either further optimization of the Dieckmann 

cyclization step, or recrystallization to enrich ee. Further improvements to our synthesis 

which could be addressed include the production of unwanted diastereoisomers such as 148a 

and the thiophenylated analogue, resulting in large quantities of 188b being isolated. 
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Reagents and conditions: (i) 1) p-Methoxybenzaldehyde (1.1 equiv), Et3N (1 equiv), MeOH, 

NaBH4 (1.9 equiv), 0 °C to rt, 76%; 2) 146, EDAC.HCl (2.6 equiv), DMAP (0.25 equiv), N-MM 

(2.3 equiv), DCM, 93%; (ii) TBAF in THF (3.6 equiv), THF, rt, 0.5 h, then MeI (4 equiv), 0 °C to 

rt, 16 h, 57 %, Ratio 1:2 by crude NMR analysis; (iii) LiHMDS (2.1 equiv), DMPU (2.2 equiv), 

THF, −78 °C, 0.5 h, then NCCO2Me (3.2 equiv), −78 °C, 4 h, 70%; (iv) 1) H2, Pd(OH)2/C, THF, 30 

°C, 12 h; 2) 189 (2.9 equiv), Et3N (1.6 equiv), CH2Cl2, rt, mixture of 187ab, 67% over the 2 steps. 

3) NaBH4 (0.7 equiv), EtOH, −10 °C, 0.5 h, 188a-30% and 188b-35%; (v) TTMS (3.2 equiv), AIBN 

(0.3 equiv), acetone, reflux, 16 h, 152a-14 %, 152b-74%; (vi) 1) CAN (5.2 equiv), MeCN/H2O 

(3:1), rt, 62%; 2) NaOH (0.5 M), 0-5 °C, 86%. 

Scheme 122: Our final route to the formal synthesis of C9-deoxy omuralide 
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2.6.2 L-Serine as a starting material 

In addition to L-leucine, L-serine has been incorporated into the lactam core in an analogous 

fashion (Scheme 123). Although some changes to our methodology were required, the overall 

procedures remained the same. Diasteroselectivity during the Dieckmann cyclization step was 

investigated due to a surprising change from our leucine route. This change, however, worked 

to our advantage, allowing the natural enantiomer of omuralide to be synthesized. 

 

Reagents and conditions: (i) 1) PMB sulphite adduct (1.6 equiv), NaBH3CN (6.1 equiv), Et3N 

(0.9 equiv), MeOH, 0 °C, 16 h 2) 146 (2.5 equiv), EDAC.HCl (2.7 equiv), N-MM (2.5 equiv), 

DMAP (0.2 equiv), DCM, 16 h; 49% over the 2 steps. (ii) TBAF (2.1 equiv), Ether, 5 m, THF, MeI 

(10 equiv), -12 °C, 64 h 66%, ratio 3:1 by crude NMR analysis; (iii) LiHMDS (2.2 equiv), DMPU 

(3 equiv), THF, -40 °C 30 m then NCCO2Me (4.5 equiv), 3 h, 69%; (iv) 1) Pd(OH)2/C (cat), H2, 35 

°C, 16 h; 2) 186 (1.7 equiv), Et3N (1.1 equiv), DCM, 4 h (70% over 2 steps); 3) NaBH4 (0.6 equiv), 

EtOH, 30 m 0 °C, 224a 54%, 224b 13%, 219ab 4%. (v) TFA/DCM 1:1, 1.5 h, 75%. 

Scheme 123: Our final route to the formal synthesis of omuralide 

The lactam core was elaborated to an advanced intermediate of the synthesis of Corey, 

completing a formal synthesis. Although synthesized in an equal number of steps (8 steps),29 

our route’s initial chirality is derived from cheap amino acid precursors. Corey required an 

enzymatic reaction with PLE, potentially providing our method with a considerable cost 

advantage. Corey’s route however was higher yielding with 47% overall yield compared to 
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our 5%. The analogue produced has been elaborated by Corey to a library of C5 and C9 

analogues.37 In recent years, this position has received renewed interest due to the discovery 

of the salinosporamides41 and cinnabaramides.44  

Work has also been initiated towards the synthesis of salinosporamide B; unfortunately it 

appeared that our lactam core was too sterically congested to allow acylation at the C5 

position, leading us to abandon our attempts. Future work should concentrate on 

modification of the serine protecting group, potentially allowing access to this position. 

2.6.3 The synthesis of hydroxy leucine 

We have also developed a new method to provide either diastereoisomer of hydroxy leucine. 

Correct choice of ligand during the dihydroxylation should also allow the opposite 

enantiomers to be synthesized. In the future, work should concentrate on the incorporation 

of these into the lactam core, potentially providing a rapid route to omuralide. We hope that 

this methodology could also be applied to other α,β unsaturated esters to synthesize other 

β-hydroxy amino acids (Scheme 124) for incorporation into the lactam to produce a wider 

array of analogues. 

 

Scheme 124: Potential method to synthesize various β-hydroxy, α-amino acids. 
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2.6.4 Application of our methodology to new natural product targets 

 

Figure 24: The structure of Hoshinolactam 

We believe our methodology is not only useful in the synthesis of omuralide analogues but 

could also be applied to other γ-lactam natural products. In 2007, the discovery and structure 

elucidation by total synthesis of hoshinolactam 133 was reported.139 Hoshinolactam was 

found to have potent antitrypanosomal activity without cytotoxicity against human fetal lung 

MRC-5 cells.  Despite these promising results, however, a SAR study has currently not yet 

been reported nor the cellular target of hoshinolactam identified. Structurally, hoshinolactam 

has a strikingly similar core to many of our intermediates, particularly in our route to C9-

deoxyomuralide. For example, intermediate 148b has the potential to be elaborated into the 

lactam core of hoshinolactam in four steps. 

 

Scheme 125: Synthesis of the lactam core of hoshinolactam from 148b 

Depending on the method used, coupling this core to the known acid 311 could produce 

either hoshinolactam or the un-synthesized epimer 312. 
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Scheme 126: Potential synthesis of hoshinolactam from lactam 310 

Modification of the amino acid starting material, and the alkylation agent during the 

Dieckmann cyclisation, should produce a wide array of analogues which could be used to 

further study the interesting properties of hoshinolactam (Scheme 127). 

 

Scheme 127: Potential route to a library of hoshinolactam analogues 

To summarize, our studies have developed methodology allowing amino acids to be 

incorporated into γ-lactam rings. This procedure has been used to produce formal syntheses 

of C9-deoxyomuralide and omuralide. The reactions developed in this not only are useful in 

the synthesis of omuralide analogues but are also applicable in other γ-lactam natural 

products. When combined with the methodology developed to produce β-hydroxy, α-amino 

acids, this should allow access to a wide variety of biologically relevant natural product cores 

and their derivatives. 
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3.0 Experimental 

3.1 General experimental 

3.1.1 Preparation of glassware, solvents and reagents 

Reactions requiring anhydrous conditions were carried out under a nitrogen atmosphere, 

unless otherwise stated, using flame-dried glassware. Reaction solvents were dried using the 

following methods: dichloromethane was distilled over calcium hydride, tetrahydrofuran and 

diethyl ether were distilled under an argon atmosphere from the sodium/benzophenone ketyl 

radical and if anhydrous acetone was required, an unopened bottle was used. 

3.1.2 Analysis of compounds 

The infrared spectra was recorded using, a PerkinElmer Spectrum 100 IR spectrophotometer 

and the sample ran as a thin film of their evaporated solution from CH2Cl2 or CHCl3 on sodium 

chloride plates. A PerkinElmer spectrum 2 was used if the data states the sample was ran as 

a solid. 1H and 13C NMR spectra were measured respectively at 500 and 126 MHz using a 

Bruker Ascend 500 or at 400 and 100 MHz using a Bruker Ultrashield 400 Plus instrument. The 

solvent used for NMR spectroscopy was deuteriated chloroform unless stated otherwise, 

using tetramethylsilane as the internal reference or the residual deuterated solvent peak. For 

13C experiments run in deuterium oxide, methanol was added and the resulting peak at δc 

49.50 was used as the reference. Chemical shifts are given in parts per million, and J values 

are given in hertz. Mass spectra were recorded by the EPSRC Mass Spectrometry Service at 

the University of Swansea; the ionization and detection technique is stated alongside the 

data. HPLC was carried out on a VWR Elite Lachrom instrument. Separation was achieved by 

either an AD-H Chiralpak column (4.6 mm × 250 mm 5 μm) or Eurocel 01 Knauer (4.6 mm × 

250 mm 5 μm) under the stated conditions. Melting points were recorded using a Büchi B-

545 melting point instrument. Optical rotation values were measured with a Bellingham and 

Stanley ADP-440 instrument, operating at λ = 589 nm, corresponding to the sodium D line, at 

the temperatures indicated. Spectrophotometric grade chloroform was used for these 

measurements unless otherwise stated; solutions for these measurements were prepared in 

a 1 mL volumetric flask for maximum accuracy of the solvent volume used. 
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3.1.3 Chromatographic techniques 

All chromatographic manipulations used silica gel as the adsorbent. Reactions were 

monitored using thin layer chromatography (TLC) on aluminum with Merck Kieselgel 60 F254 

silica gel. TLC plates were visualized by UV radiation at a wavelength of 254 nm or stained by 

exposure to an ethanolic solution of phosphomolybdic acid or aqueous potassium 

permanganate, followed by heating at 220 °C. Purification by column chromatography used 

Material Harvest silica gel 60.  
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3.2 Individual experimental procedures and characterization 

3.2.1 Experimental for procedures starting from L-leucine  

2-(4-Methoxy-benzylamino)-4-methyl-pentanoic acid methyl ester 14578,75 

 

Unintentional, racemic synthesis using the Dean-Stark apparatus: 

Leucine methyl ester hydrochloride 144 (9.96 g, 55 mmol) and p-methoxybenzaldehyde (7.4 

mL, 61 mmol, 1.1 equiv) were dissolved in toluene (100 mL). Acetic acid (2 mL, 35 mmol) was 

added and the solution heated to vigorous reflux with a well-insulated Dean−Stark apparatus 

overnight. The resulting solution was evaporated to dryness to produce a thick red/brown oil, 

which was dissolved in methanol (130 mL). Acetic acid was added (2.8 mL, 50 mmol, 0.9 equiv) 

and the reaction mixture cooled to 0 °C. Sodium cyanoborohydride (6.9 g, 110 mmol, 2 equiv) 

was added in small portions and the reaction stirred for 30 m. The solution was allowed to 

reach room temperature and stirred for a further 5 h. A few drops of water were added, and 

the solution was evaporated to dryness. The resulting oil was dissolved in dichloromethane 

(150 mL) and washed twice each with equal amounts of water, brine, and aqueous sodium 

carbonate. The organic layer was dried over magnesium sulphate, filtered, and evaporated to 

dryness to produce compound 145 as a red-brown oil (14 g, 96%), which was used without 

further purification. 

Non-racemizing synthesis: 

Leucine methyl ester hydrochloride 144 (0.19 g, 1.05 mmol) was dissolved in methanol (10 

mL). To this solution was added Et3N (0.15 mL, 1.0 mmol), and p-methoxybenzaldehyde (0.15 

mL, 1.2 mmol). The mixture was stirred for 90 m, cooled to 0 °C, and sodium borohydride 

(0.82 g, 2.0 mmol) was added in portions over 30 m. The mixture was stirred for a further 30 

m. The solvents were removed under reduced pressure and the resulting oil was dissolved in 

ethyl acetate (approximately 50 mL). The organic solution was washed twice each with equal 
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amounts of water, brine, and aqueous sodium carbonate. The aqueous layer was extracted 

with ethyl acetate, and the organic fractions were combined, dried over magnesium sulphate, 

filtered and the solvents removed under reduced pressure. The resulting residue was purified 

by column chromatography on silica gel using petroleum ether (40-60 °C)/ethyl acetate (2:1) 

as the eluent to afforded 145 as a colourless oil (0.21 g, 76%). [α]D 25 = −40.3 (c 1.3, CHCl3), 

(lit78 [α]D 27 = −31.2 (c 1.5, CHCl3)); max (neat)/cm-1: 3331 N-H (b), 2997 C-H (s), 2955 C-H (s), 

1736 C=O (s); 1H NMR (500 MHz, CDCl3) δH 7.23 (d, J = 8.5 Hz, 2H, H10), 6.84 (d, J = 8.6 Hz, 

2H, H9), 3.78 (s, 3H, H12), 3.73 (d, J = 12.7 Hz, 1H, H7), 3.71 (s, 3H, H1), 3.54 (d, J = 12.7 Hz, 

1H, H7), 3.29 (t, J = 7.3 Hz, 1H, H3), 1.81 – 1.69 (m, 2H, H3), 1.46 (td, J = 7.3, 2.0 Hz, 2H, H4), 

0.90 (d, J = 6.6 Hz, 3H, H6), 0.84 (d, J = 6.6 Hz, 3H, H6); 13C NMR (126 MHz, CDCl3) δC 176.6 C2, 

158.8 C11, 129.6 C10, 113.9 C9, 59.2 C3, 55.4, 51.7 C7, 51.7 C1, 42.9 C4, 25.0 C5, 22.9 C6, 22.3 

C6; one peak unobserved in 13C NMR spectrum. Determined by HPLC to be >99.5% ee.  

Determination of ee was found by HPLC using an AD-H Chiralpak column 95:5 hexane/IPA, 

230 nm, 0.8 mL/min, 25 °C. 

Intentional racemic synthesis:  

Acetyl chloride (3.3 mL, 46.41 mmol, 3 equiv) was added to methanol (60 mL) at 0 °C and the 

solution left for 40 m. L-D leucine (2.003 g, 15.26 mmol) was added in one portion. The 

solution was allowed to stir at 0 °C for a further 30 m, then heated to reflux overnight. The 

solvents were evaporated under reduced pressure to provide L-D leucine methyl ester 

hydrochloride 144 (2.748 g, quant) which was used without further purification. 

LD - Leucine methyl ester hydrochloride 144 (1.819 g, 10.01 mmol) was dissolved in methanol 

(71 mL). To this solution was added Et3N (1.4 mL, 9.96 mmol, 1 equiv), and p-

methoxybenzaldehyde (1.3 mL, 10.65 mmol, 1.1 equiv). The mixture was stirred for 90 m, 

cooled to 0 °C, and sodium borohydride (0.751 g, 19.85 mmol, 2 equiv) was added in portions 

over 30 m. The mixture was stirred for a further 30 m. The solvents were removed under 

reduced pressure and the resulting oil was dissolved in ethyl acetate (approximately 250 mL). 

The organic solution was washed twice each with equal amounts of water, brine, and aqueous 

sodium carbonate. The aqueous layer was extracted with ethyl acetate, and the organic 

fractions were combined, dried (magnesium sulphate), filtered, and the solvents removed 

under reduced pressure. The resulting residue was purified by column chromatography on 
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silica gel using petroleum ether (40-60 °C)/ethyl acetate (2:1) as eluent to afforded 145 as a 

colourless oil (1.806 g, 68%). 

 

Potassium benzyloxycarbonyl acetate 14667 

 

Malonic acid 176 (24.9 g, 0.24 mol, 1 equiv), benzyl alcohol (53 mL, 0.5 mol 2.1 equiv) and p-

TsOH (0.475 g, 2.75 mmol, 0.01 equiv) were dissolved in toluene (250 mL) and heated to reflux 

using a Dean-Stark apparatus overnight. The resulting solution was evaporated to produce an 

orange oil. A solution of KOH in benzyl alcohol (1 M) (240 mL) was added forming a pale-

yellow solid, which was collected by vacuum filtration. The solid was washed with ether and 

transferred to a vacuum oven to produce 146 as a white solid. (41.2 g, 74%). Mp 197-199 °C 

(lit2b 201 °C); max (solid)/cm-1 3035 CH unsaturated (s), 1721 C=O (s), 1599, 1370; 1H NMR 

(500 MHz, D2O) δH 7.51 – 7.40 (m, 5H), 5.22 (s, 2H), 3.36 (s, 2H); 13C NMR (126 MHz, D2O) δC 

173.9 C1, 171.1 C2, 135.8 Ar, 128.9 Ar, 128.6 Ar, 128.3 Ar, 67.3 C4, 44.7 C2. 
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2-{(4-Methoxy-benzyl)-[2-(benzyloxycarbonyl)-acetyl]-amino}-4-methyl-pentanoic acid 

methyl ester 14775 

 

Compound 145 (1.38 g, 5.19 mmol), N-methylmorpholine (1.3 mL, 11.82 mmol, 2.3 equiv), 

benzyl malonic half ester 146 (2.54 g, 10.95 mmol, 2.1 equiv), EDAC.HCl (2.63 g, 13.75 mmol, 

2.6 equiv) and 4-dimethylaminopyridine (0.16 g, 1.3 mmol, 0.25 equiv) were dissolved in 

anhydrous dichloromethane (40 mL). The mixture was stirred for 20 h under a nitrogen 

atmosphere. Aqueous HCl (1 M, 1.5 mL) was added, and the reaction mixture stirred for a 

further 5 m, then washed with water (2 x 50 mL), and the organic layer dried (magnesium 

sulphate), filtered, and evaporated under reduced pressure. The resulting oil residue was 

purified by column chromatography using petroleum ether (40-60 °C)/ethyl acetate as the 

eluent, to provide the product 147 as a yellow oil (2.128 g, 93%). [α]D 26 = –46.42 (c 1.12, CHCl3) 

max (neat)/cm-1: 3472, 2956 CH (s), 1740 C=O (s), 1651 C=O (s, Amide); 1H NMR (500 MHz, 

CDCl3) Major rotamer: δH 7.40 – 7.31 (m, 5H, H12, 13, 14), 7.15 (d, J = 8.7 Hz, 2H, H18), 6.85 

(d, J = 8.7 Hz, 2H, H17), 5.16 (d, J = 2.4 Hz, 2H, H10), 4.83 (t, J = 6.9 Hz, 1H, H8), 4.55 (d, J = 

17.2 Hz, 1H, H15), 4.42 (d, J = 17.2 Hz, 1H, H15), 3.79 (s, 3H, H1), 3.58 (s, 3H, H3), 3.48 (d, J = 

3.6 Hz, 2H, H3), 1.90 – 1.77 (m, 1H, H4), 1.62 – 1.49 (m, 2H, H5), 0.88 (d, J = 6.4 Hz, 3H, H6), 

0.80 (d, J = 6.4 Hz, 3H, H6); 13C NMR (126 MHz, CDCl3) δ 171.8, 167.3, 167.3, 159.3, 135.5, 

128.7, 128.5, 128.5, 128.1, 114.3, 67.3, 56.2, 55.5, 52.2, 50.1, 41.8, 38.4, 25.2, 22.7, 22.4; one 

peak unobserved in 13C NMR spectrum.  Determined by HPLC to be >99.5% ee. Determination 

of ee was found by HPLC using an AD-H Chiralpak column 90:10 hexane/IPA, 230 nm, 0.8 

mL/min, 25 °C. 
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(3S,5S)-N-(4’-Methoxybenzyl)-3-methyl-5-(2’-methylpropyl)-pyrrolidin-2,4-dione-3-

carboxylic acid benzyl ester 148a2a and (3R,5S)-N-(4’-methoxybenzyl)-3-methyl-5-(2’-

methylpropyl)-pyrrolidin-2,4-dione-3-carboxylic acid benzyl ester 148b75 

 

Tetrabutylammonium fluoride (1 M solution in THF, 11.5 mL, 11.5 mmol, 3.6 equiv) was added 

to a solution of 147 (1.442 g, 3.2 mmol) in THF (72 mL) at room temperature under a nitrogen 

atmosphere. The mixture was stirred for 30 m and cooled to 0 °C using an ice bath. 

Iodomethane (0.81 mL, 13 mmol, 4 equiv) was added and the reaction mixture stirred 

overnight being allowed to reach room temperature. Water (4 mL) was added, and the 

solvents were removed under reduced pressure. The resulting residue was dissolved in 

dichloromethane (50 mL) and washed with water (50 mL). The organic layer was dried over 

magnesium sulphate and the solvents removed under reduced pressure. The resulting residue 

was purified and partially separated by column chromatography, using petroleum ether 

(40−60 °C)/ethyl acetate (9:1) as the eluent to afford the diastereoisomers 148ab in a 1:2 ratio 

(0.78 g, 57%). Data for the minor, first eluting diasteroisomer 148a: (Yield 16%), [α]D 26 = 

+14.54 (c 0.44, CHCl3) (9% ee); max (thin film)/cm−1 2959 C-H (s), 1777 C=O (s), 1747 C=O (s), 

1696 C=O (s); 1H NMR (500 MHz, CDCl3) δH 7.37 – 7.34 (m, 3H, H18, 20), 7.24−7.21 (m, 2H, 

H19), 7.01 (d, J = 8.7 Hz, 2H, H11), 6.59 (d, J = 8.7 Hz, 2H, H10), 5.42 (d, J = 15.0 Hz, 1H, H16 or 

8), 5.19 (d, J = 12.3 Hz, 1H, H16 or 8), 5.10 (d, J = 12.3 Hz, 1H, H16 or 8), 3.84 (dd, J = 7.8, 3.9 

Hz, 1H, H4), 3.80 (d, J = 15.0 Hz, 1H, H16 or 8), 3.73 (s, 3H, H13), 1.81−1.80 (m, 1H, H6), 

1.66−1.61 (m, 1H, H5), 1.58 (s, 3H, H15), 1.54−1.50 (m, 1H, H5), 0.87 (d, J = 6.7 Hz, 3H, H7), 

0.76 (d, J = 6.5 Hz, 3H, H7); 13C NMR (126 MHz, CDCl3) δC 206.1 C3, 169.7 C14, 165.7 C1, 159.4 

Ar, 134.9 Ar, 129.5 Ar, 128.8 Ar, 128.7 Ar, 128.3 Ar, 126.3 Ar, 114.2 Ar, 68.3 C16, 62.5, 58.8, 

55.4 C13, 43.4 C8, 38.0 C5, 24.7 C6, 23.4 C7, 22.5 C7, 16.2 C15. Determined by HPLC to be 9% 

ee. Data for the major, second eluting diastereoisomer 148b: (Yield 41%), [α]D 26 = −17.14 (c 

0.98, CHCl3) (79% ee); max (thin film)/cm−1 2958 C-H (s), 1775 C=O (s), 1746 C=O (s), 1696 C=O 

(s); 1H NMR (500 MHz, CDCl3) δH 7.30−7.18 (m, 5H, H18-20 ), 7.05 (d, J = 8.7 Hz, 2H, H11), 6.76 
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(d, J = 8.7 Hz, 2H, H10), 5.18 (d, J = 12.1 Hz, 1H, H16 or 8), 5.11 (d, J = 14.9 Hz, 1H, H16 or 8), 

5.01 (d, J = 12.1 Hz, 1H, H16 or 8), 3.94 (d, J = 14.9 Hz, 1H, H16 or 8), 3.71 (s, 3H, H13), 3.60 (t, 

J = 6.9 Hz, 1H, H4), 1.71−1.63 (m, 1H, H6), 1.46 (s, 3H, H15), 1.42 (t, J = 6.7 Hz, 2H, H5), 0.65 

(d, J = 6.6 Hz, 3H, H7), 0.62 (d, J = 6.6 Hz, 3H, H7); 13C NMR (126 MHz, CDCl3) δC 205.7 C3, 

169.4 C14 or 1, 165.7 C14 or 1, 159.5 Ar, 134.8 Ar, 129.5 Ar, 128.8 Ar, 128.7 Ar, 128.5 Ar, 127.2 

Ar, 114.4 Ar, 68.3, 62.5, 58.7, 55.4 C13, 43.6 C8, 39.0 C5, 24.5 C6, 23.1 C7, 22.0 C7, 16.7 C15. 

Determined by HPLC to be 79% ee. Determination of ee was found by HPLC using an AD-H 

Chiralpak column 95:5 hexane/IPA, 230 nm, 0.8 mL/min, 25 °C. 

 

Benzyl (3S,5S)-3-methyl-5-(2-methylpropyl)-2,4-dioxopyrrolidine-3-carboxylate 179 

 

Lactam 148a (1.2023 g, 2.83 mmol) was dissolved in a MeCN/water mixture (3:1, 27.6 mL). 

CAN (8.3 g, 14.22 mmol, 5 equiv) was added and the solution stirred until complete 

consumption of the starting material had occurred (approx. 2 h). The solution was diluted 

with water (150 mL) and extracted with ethyl acetate (150 mL x 3). The organic layers were 

combined and washed with brine (100 mL x 2), dried (sodium sulphate), filtered, and the 

solvents were removed under reduced pressure. The resulting residue was purified by column 

chromatography using petroleum ether (40-60 °C)/ethyl acetate (8:2) as the eluent to 

produce 179 as a white crystalline solid. (0.725 g, 84%). Mp 118-124 °C; [α]D 24 = +11.6 (c 2.3, 

CHCl3) (9% ee); max (thin film)/cm-1:   3209, 2960 CH (s), 1781 C=O (s), 1748 C=O (s), 1705 C=O 

(s); 1H NMR (500 MHz, CDCl3) δH 7.38-7.30 (m, 3H, H14, 12), 7.29−7.23 (m, 2H, H13), 7.02 – 

6.60 (m, 1H, H15), 5.24 - 511 (m, 2H, H10), 4.18 (dd, J = 9.5, 3.5 Hz, 1H, H4), 1.78−1.68 (m, 2H, 

H5), 1.53 (s, 3H, H8), 1.43 (m, 1H, H7), 0.96 (d, J = 6.2 Hz, 3H, H7), 0.94 (d, J = 6.2 Hz, 3H, H7); 

13C NMR (126 MHz, CDCl3) δC 206.7, 171.9, 165.5, 135.0, 128.8, 128.6, 127.9, 68.1 C10, 61.4, 

58.6, 41.3 C5, 25.2 C6, 23.2 C7, 21.5 C7, 15.9 C8; HRMS (NSI-FTMS) m/z [M + NH4]+ calcd for 

[C17H25N2O4]+ 321.1809, found 321.1812. 

  



 

180 
 

Benzyl (3R,5S)-3-methyl-5-(2-methylpropyl)-2,4-dioxopyrrolidine-3-carboxylate 178 

 

Lactam 148b (0.1174 g, 0.277 mmol) was dissolved in a MeCN/water mixture (3:1, 2.8 mL). 

CAN (0.1634 g, 0.29 mmol, 1 equiv) was added and the solution stirred for 3 h. A further 

portion of CAN was added (0.6482 g, 1.18, 4.3 equiv) and the solution stirred until complete 

consumption of the starting material had occurred. The solution was diluted with water (50 

mL) and extracted with ethyl acetate (50 mL x 3). The organic layers were combined and 

washed with brine (50 mL), dried (magnesium sulphate), filtered and the solvents were 

removed under reduced pressure. The resulting residue was purified by column 

chromatography using petroleum ether (40-60 °C)/ethyl acetate (9:1 to 2:1) as the eluent to 

produce 178 as a grey oil (0.0526 g, 63%). [α]D 22 = -34.3 (c 0.7, CHCl3) (79% ee); max (thin 

film)/cm-1:  3215, 2959 C-H (s), 1779 C=O (s), 1748 C=O (s), 1703 C=O (s); 1H NMR (500 MHz, 

CDCl3) δH 7.37-7.31 (m, 3H, H14, 12), 7.28−7.25 (m, 2H, H13), 6.67 (d, J = 38.5, 1H, H15), 5.22 

(d, J = 12.2, 1H, H10), 5.10 (d, J = 12.2, 1H, H10), 4.00 (dd, J = 9.7, 4.4 Hz, 1H, H4), 1.70−1.56 

(m, 2H, H5), 1.55 (s, 3H, H8), 1.47 (m, 1H, H6), 0.87 – 0.83 (m, 6H, H7); 13C NMR (126 MHz, 

CDCl3) δC 206.8, 171.5, 165.5, 134.8, 128.8, 128.8, 128.4, 68.4 C10, 61.1 C2 or 4, 58.2 C2 or 4, 

41.7 C5, 25.2 C6, 23.0 C7, 21.5 C7, 16.3 C8; HRMS (NSI-FTMS) m/z [M + Na]+ calcd for 

[C17H21N1O4Na]+ 326.1363, found 326.1363. 
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(3R,5R)-N-(4′-Methoxybenzyl)-3-methyl-5-(2′-methylpropyl)pyrrolidin-2,4-dione-3,5 

dicarboxylic Acid 3-Benzyl Ester 5-Methyl Ester 14975 

 

Compound 148b (1.747 g, 4.125 mmol) was dissolved in anhydrous THF (70 mL) in a flame 

dried flask and the solution cooled to −78 °C. DMPU (1.5 mL, 9.2 mmol) was added followed 

by LiHMDS (1 M in THF, 8.5 mL, 8.5 mmol) and the mixture stirred at −78 °C for 30 m under 

an atmosphere of nitrogen. Methyl cyanoformate (1.1 mL, 13 mmol) was added and the 

mixture stirred for a further 4 h at −78 °C. Saturated aqueous ammonium chloride was added 

(2 mL) at −78 °C, the mixture was allowed to warm to room temperature, and the organic 

solvents were removed under reduced pressure. The residue was dissolved in ethyl acetate 

and the solution washed with water (2 × 100 mL) and brine (2 × 100 mL). The organic layer 

was dried (sodium sulphate), filtered, and evaporated under reduced pressure. The residue 

was purified by column chromatography using petroleum ether (40−60 °C)/ethyl acetate (4:1) 

as the eluent to yield 149 as a waxy solid (1.985 g, 70%). [α]D 21 = −20.35 (c 1.12, CHCl3) (79% 

ee); max (thin film)/cm−1 2959 C-H (s), 1783 C=O (s), 1752 C=O (s), 1698 C=O (s); 1H NMR (500 

MHz, CDCl3) δH 7.38 – 7.28 (m, 5H, H20, 21, 22), 7.19 (d, J = 8.7 Hz, 2H, H13), 6.77 (d, J = 8.7 

Hz, 2H, H12), 5.19 (d, J = 12.1 Hz, 1H, H18), 5.14 (d, J = 12.1 Hz, 1H, H18), 4.89 (d, J = 15.1 Hz, 

1H, H10), 4.15 (d, J = 15.1 Hz, 1H, H10), 3.77 (s, 3H, H15), 3.23 (s, 3H, H6), 2.14 (dd, J = 15.2, 

5.5 Hz, 1H, H7), 1.86 (dd, J = 15.2, 6.3 Hz, 1H, H7), 1.72 (s, 3H, H16), 1.44 (d, J = 6.5 Hz, 1H, 

H8), 0.64 (d, J = 6.6 Hz, 3H, H9), 0.52 (d, J = 6.6 Hz, 3H, H9); 13C NMR (126 MHz, CDCl3) δC 

201.9, 170.9, 167.7, 165.3 Ar, 159.3 Ar, 134.6 Ar, 130.4 Ar, 128.8 Ar, 128.7 Ar, 128.7 Ar, 127.7 

Ar, 113.9 Ar, 76.2 C18, 68.6, 58.5, 55.4 C15, 53.1 C6, 44.0 C10, 38.8 C7, 24.3 C8, 23.5 C9, 23.1 

C9, 19.1 C16.  
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S-Methyl 4-methylbenzene-1-sulfonothioate 18685 

 

Sodium p-toluenesulphinate 185 (9.930 g, 55.7 mmol, 3.1 equiv) was dissolved in DCM, 

(SMe)2 (1.6 mL, 17.7 mmol, 1 equiv) was added with iodine (8.988 g, 35 mmol, 2 equiv) and 

the reaction stirred vigorously. The reaction was left stirring overnight at room temperature. 

Saturated sodium thiosulphate solution was added until the iodine colour was removed. The 

reaction was them washed with an equal amount of water and the organic layer was dried 

(sodium sulphate), filtered and evaporated. Sulphonothioate 186 was obtained as a yellow 

crystalline solid which could be used without further purification (5.47 g, 76%). Mp 56−57 °C, 

(lit85 54-55 °C); max (thin film)/cm−1 2996 C-H (s), 2926 1593; 1H NMR (500 MHz, CDCl3) δH 

7.81 (d, J = 8.4 Hz, 2H, H3), 7.35 (d, J = 8.0 Hz, 2H, H4), 2.50 (s, 3H, H5), 2.46 (s, 3H, H1); 13C 

NMR (126 MHz, CDCl3) δC 144.9 Ar, 141.1 Ar, 130.0 Ar, 127.3 Ar, 21.8 C1, 18.2 C5. 

 

S-Phenyl 4-Methylbenzene-1-sulfonothioate 18996 

 

Sodium p-toluenesulfinate 185 (1.20 g, 6.7 mmol, 1.2 equiv) and iodine (0.74 g, 2.9 mmol, 0.5 

equiv) were dissolved in DCM (15 mL). Diphenyl disulfide (0.55 g, 2.9 mmol, 0.5 equiv) was 

added with vigorous stirring, and the mixture stirred overnight. Aqueous sodium thiosulfate 

(1 M) was added until the iodine colour was removed. The mixture was washed with water 

(100 mL x 2), dried (sodium sulphate), filtered, and the solvents were removed under reduced 

pressure to give an oil that crystallized on cooling, to afford 189 as a colourless solid (1.0 g, 

67%). Mp 71−75 °C, (lit202 74–75 °C); max (thin film)/cm−1 3063, 1594; 1H NMR (500 MHz, 

CDCl3) δH 7.50−7.30 (m, 7H, H9, 8, 7, 3), 7.20 (d, J = 8.0 Hz, 2H, H4), 2.42 (s, 3H, H1); 13C NMR 

(126 MHz, CDCl3) δC 144.8 Ar, 140.5 Ar, 136.7 Ar, 131.4 Ar, 129.5 Ar, 129.5 Ar, 128.2 Ar, 127.8 

Ar, 21.8 C1. The product was sufficiently pure to be used without further purification. 
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(2S,4S)-Methyl 2-Isobutyl-1-(4-methoxybenzyl)-4-methyl-3,5-dioxo-4-

(phenylthio)pyrrolidine-2-carboxylate 172a75 and (2S,4R)-Methyl 2-Isobutyl-1-(4-

methoxybenzyl)-4-methyl-3,5-dioxo-4-(phenylthio)pyrrolidine-2-carboxylate  172b75 

 

Lactam 149 (0.4377 g, 0.53 mmol) was dissolved in THF (1.3 mL). A catalytic amount of 

Pd(OH)2/C was added, the mixture was stirred overnight under a static pressure of hydrogen 

at 35 °C and filtered through celite. The solvents were removed under reduced pressure. The 

crude material was dissolved in anhydrous dichloromethane (1.8 mL) and heated to at 20 °C 

under a nitrogen atmosphere. Triethylamine (0.09 mL, 0.64 mmol, 1.2 equiv) and S-methyl p-

toluenethiosulfonate 186 (0.18 g, 0.89 mmol, 1.7 equiv) were added. The mixture was stirred 

overnight at room temperature. The solvent was removed under reduced pressure and the 

resulting residue purified by column chromatography on silica gel using petroleum ether 

(40−60 °C)/ethyl acetate (9:1) as the eluent, to yield diastereoisomers 172ab as an 

inseparable mixture in a 1:2 ratio (0.142 g, 68%).  Data for the minor diastereoisomer 172b: 

1H NMR (500 MHz, CDCl3) δH 7.26 (d, J = 8.5 Hz, 2H, H13), 6.83 (d, J = 8.0 Hz, 2H, H12), 4.79 

(d, J = 15.1 Hz, 1H, H10), 4.42 (d, J = 15.5 Hz, 1H, H10), 3.77 (s, 3H, H15), 3.44 (s, 3H, H6), 2.24 

(dd, J = 15.5, 7.0 Hz, 1H, H7), 2.14 (s, 3H, H17), 1.95 (dd, J = 15.5, 6.5 Hz, 1H, H7), 1.57 (s, 3H, 

H16), 1.35− 1.29 (m, 1H, H8), 0.74 (d, J = 4.5 Hz, 3H, H9), 0.73 (d, J = 4.5 Hz, 3H, H9); 13C NMR 

(126 MHz, CDCl3) δ 200.4, 171.8, 168.2, 159.2, 130.0, 128.7, 113.9, 75.5, 55.4, 53.0, 49.4, 45.0, 

40.1, 24.0, 23.9, 23.6, 17.0, 12.4. Data for the major diastereoisomer 172a: 1H NMR (500 

MHz, CDCl3) δH 7.23 (d, J = 8.7 Hz, 2H, H13), 6.81 (d, J = 8.6 Hz, 2H, H12), 4.95 (d, J = 14.9 Hz, 

1H, H10), 4.02 (d, J = 14.9 Hz, 1H, H10), 3.77 (s, 3H, H15), 3.15 (s, 3H, H6), 2.27 (s, 3H, H17), 

2.23 (dd, J = 15.2, 5.4 Hz, 1H, H7), 1.97 (dd, J = 15.2, 6.2 Hz, 1H, H1), 1.76- 1.71 (m, 1H, H8), 

1.66 (s, 3H, H16), 0.92 (d, J = 6.6 Hz, 3H, H9), 0.86 (d, J = 6.7 Hz, 3H, H9); 13C NMR (126 MHz, 

CDCl3) δC 202.7, 172.5, 168.1, 159.4, 130.8, 127.6, 113.9, 75.3, 55.4, 52.9, 48.3, 43.8, 38.4, 

24.7, 24.0, 23.8, 18.6, 11.7. Data for the mixture 172ab: max (thin film)/cm−1 2957 C-H (s), 

1767 C=O (s), 1745 C=O (s), 1698 C=O (s). 
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(3S,4S,5R)-N-(4′-Methoxybenzyl)-3-methyl-3-(methylsulfanyl)-4-hydroxy-5-(2′-

methylpropyl)pyrrolidin-2-one-5-carboxylic Acid Methyl Ester 173a75 and (3R,4R,5R)-N-(4′-

Methoxybenzyl)-3-methyl-3-(methylsulfanyl)-4-hydroxy-5-(2′-methylpropyl)pyrrolidin-2-

one-5-carboxylic Acid Methyl Ester 173b75 

 

The mixture of diastereoisomers 172ab (0.4842, 1.23 mmol) was dissolved in ethanol (25 mL) 

and the solution stirred at -10 °C. NaBH4 was added (0.026, 0.68 mmol, 0.55 equiv) and the 

mixture stirred for 30 m. The solvents were removed under reduced pressure and the residue 

dissolved in ethyl acetate (100 mL). The organic solution was washed with water (50 mL x 2) 

and brine (50 mL x 2), dried (sodium sulphate), filtered, and the solvents removed under 

reduced pressure. The resulting pale yellow residue was purified by column chromatography 

using petroleum ether (40-60 °C)/ethyl acetate (3:1) as the eluent to provide 173a as the first 

eluting diastereomer (0.0815 g, 17%) and 173b as the second (0.222 g, 46%), each as 

colourless oils. Data for the minor, first eluting diastereoisomer 173a: [α]D 22 = -2.1 (c 1.6, 

CHCl3) (77% ee); max (thin film)/cm−1 3425 O-H (b), 2957 C-H (s), 2927, 1739 C=O (s), 1697 

C=O (s); 1H NMR (500 MHz, CDCl3) δH 7.15 (d, J = 8.7 Hz, 2H, H13), 6.82 (d, J = 8.7 Hz, 2H, H12), 

4.83 (d, J = 15.9 Hz, 1H, H10), 4.46 (s, 1H, H18), 4.36 (d, J = 15.9 Hz, 1H, H10), 4.03 (s, 1H, H3) 

3.78 (s, 3H, H15), 3.65 (s, 3H, H6), 2.15 (s, 3H, H17), 1.84 (dd, J = 14.5, 6.0 Hz, 1H, H7), 1.74 (d, 

J = 6.5 Hz, 1H, H7), 1.66−1.63 (m, 1H, H8), 1.62 (s, 3H, H16), 0.81 (d, J = 6.5 Hz, 3H, H9), 0.70 

(d, J = 6.6 Hz, 3H, H9); 13C NMR (126 MHz, CDCl3) δC 173.3, 173.2, 158.6 Ar, 130.7 Ar, 128.3 

Ar, 113.9 Ar, 76.1 C3, 71.7 C2 or 4, 57.6 C2 or 4, 55.4 C15, 52.5 C6, 45.4 C10, 40.8 C7, 24.3 C9, 

24.3 C9, 23.6 C8, 22.1 C16, 12.8 C17. Determined by HPLC to be 77% ee.  Determination of ee 

was found by HPLC using an AD-H Chiralpak column 95:5 hexane/IPA, 230 nm, 0.8 mL/min, 

20 °C. Data for the major, second eluting diastereoisomer 173b: [α]D 26 = −17.3 (c 1.1, CHCl3); 

max (thin film)/cm−1 3386 O-H (s), 2957 C-H (s), 1736 C=O (s), 1679 C=O (s); 1H NMR (500 MHz, 

CDCl3) δH 7.14 (d, J = 8.7 Hz, 2H, H13), 6.81 (d, J = 8.7 Hz, 2H, H12), 4.88 (d, J = 16.0 Hz, 1H, 

H10), 4.46 (s, 1H, H3), 4.43 (d, J = 16.0 Hz, 1H, H10), 3.77 (s, 3H, H15), 3.69 (s, 3H, H6), 3.24 (s, 
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1H, H18), 2.15 (s, 3H, H17), 1.88 (dd, J = 13.7, 6.4 Hz, 1H, H7), 1.83 – 1.67 (m, 2H, H8), 1.49 (s, 

3H, H16), 0.90 (d, J = 6.6 Hz, 3H, H9), 0.76 (d, J = 6.5 Hz, 3H, H9); 13C NMR (126 MHz, CDCl3) 

δC 174.7, 173.2, 158.8, 130.3, 128.8, 113.9, 81.4 C3, 67.5 C2 or 4, 55.4 C2 or C4, 52.8 C15, 

51.6 C6, 44.9 C10, 44.1 C7, 24.5 C9, 24.0 C9, 23.6 C8, 21.9 C16, 11.6 C17. 

(2S,4S)-Methyl 2-Isobutyl-1-(4-methoxybenzyl)-4-methyl-3,5-dioxo-

4(phenylthio)pyrrolidine-2-carboxylate 187a and (2S,4R)-Methyl 2-Isobutyl-1-(4-

methoxybenzyl)-4-methyl-3,5-dioxo-4-(phenylthio)pyrrolidine-2-carboxylate 187b 

 

Lactam 149 (0.4377 g, 0.70 mmol) was dissolved in THF (2.2 mL). A catalytic amount of 

Pd(OH)2/C was added, the mixture was stirred overnight under a static pressure of hydrogen 

at 35 °C. The solution was then filtered through celite, and the solvents were removed under 

reduced pressure. The resulting oil was dissolved in anhydrous dichloromethane (3.1 mL), and 

S -phenyl 4-methylbenzene-1-sulfonothioate 189 (0.481 g, 2 mmol, 2.9 equiv) and 

triethylamine (0.15 mL, 1.1 mmol, 1.6 equiv) were added. The mixture was stirred under an 

atmosphere of nitrogen for 5 h, the solvents were removed under reduced pressure, and the 

resulting pale yellow residue was purified by column chromatography using petroleum ether 

(40−60 °C)/ethyl acetate (9:1) as the eluent, yielding diastereoisomers 187ab as an 

inseparable mixture in a 0.9:1 ratio as a pale yellow oil (0.281 g, 67% over the two steps). Data 

for the minor diastereoisomer 187a: 1H NMR (500 MHz, CDCl3) δH 7.50 (dd, J = 8.2, 1.3 Hz, 

2H, H19), 7.48−7.31 (m, 3H, H20, H18), 7.28 (d, J = 8.7 Hz, 2H, H13), 6.84 (d, J = 8.8 Hz, 2H, 

H12), 4.85 (d, J = 15.2 Hz, 1H, H10), 4.41 (d, J = 15.2 Hz, 1H, H10), 3.79 (s, 3H, H15), 3.44 (s, 

3H, H6), 2.26 (dd, J = 15.2, 6.8 Hz, 1H, H7), 1.95 (dd, J = 15.2, 5.6 Hz, 1H, H7), 1.45 (s, 3H, H16), 

1.29 (d, J = 6.7 Hz, 1H H8), 0.73 (d, J = 6.7 Hz, 3H, H9), 0.70 (d, J = 6.6 Hz, 3H, H9); 13C NMR 

(126 MHz, CDCl3) δC 200.4, 171.8, 168.0, 159.2, 137.9, 130.6, 130.1, 129.0, 128.6, 128.2, 

113.9, 75.7, 55.4, 53.1, 53.0, 45.0, 40.1, 24.0, 23.7, 18.3; one peak unobserved in 13C NMR 
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spectrum.  Data for the major diastereoisomer 187b: 1H NMR (500 MHz, CDCl3) δH 7.61 (d, J 

= 7.0 Hz, 2H, H8), 7.47−7.31 (m, 3H, H20, 18), 7.22 (d, J = 8.7 Hz, 2H, H13), 6.81 (d, J = 8.8 Hz, 

2H, H12), 4.96 (d, J = 15.0 Hz, 1H, H10), 4.04 (d, J = 15.0 Hz, 1H, H10), 3.77 (s, 3H, H15), 3.15 

(s, 3H, H6), 2.14 (dd, J = 15.0, 5.7 Hz, 1H, H7), 1.74 (d, J = 6.5 Hz, 1H, H8), 1.60 (dd, J = 15.0, 

6.5 Hz, 1H, H7), 1.54 (s, 3H, H16), 0.95 (d, J = 6.6 Hz, 3H, H9), 0.85 (d, J = 6.6 Hz, 3H, H9); 13C 

NMR (126 MHz, CDCl3) δC 204.2, 172.6, 168.0, 159.4, 137.8, 130.8, 130.4, 129.0, 128.3, 127.8, 

113.9, 74.9, 55.4, 53.2, 52.9, 43.0, 38.4, 24.6, 23.9, 20.8;  one peak unobserved in 13C NMR 

spectrum. Data for the mixture of diastereoisomers 187ab: max(thin film)/cm−1 2957 C-H (s), 

1771 C=O (s), 1745 C=O (s), 1700 C=O (s); HRMS (ASAP-TOF) m/z [M + H]+ calcd for 

[C25H30NO5S]+ 456.1845, found 456.1854. 

 

(2S,3S,4S)-Methyl 3-Hydroxy-2-isobutyl-1-(4-methoxybenzyl)-4-methyl-5-oxo-4-

(phenylthio)pyrrolidine-2-carboxylate 188a and (2S,3R,4R)-Methyl 3-Hydroxy-2-isobutyl-1-

(4-methoxybenzyl)-4-methyl-5-oxo-4-(phenylthio)-pyrrolidine-2-carboxylate 188b 

 

The mixture of diastereoisomers 187ab (0.2059 g, 0.45 mmol) was dissolved in ethanol (9 mL) 

and the solution cooled to −10 °C. Sodium borohydride (0.012 g, 0.3 mmol, 0.7 equiv) was 

added and the mixture stirred for 30 m before being quenched by addition of water (1 mL). 

The solvents were removed under reduced pressure, and the residue was dissolved in 

dichloromethane. The organic layer was washed twice each with water (20 mL) and brine (20 

mL). The organic layer was dried (sodium sulphate) and filtered, and the solvents were 

removed under reduced pressure. The resulting residue was purified by column 

chromatography using petroleum ether (40−60 °C)/ethyl acetate (6:1) as the eluent to give 

188a and 188b as colourless oils. Data for the minor, first-eluting diastereoisomer 188a: 

(yield 0.063 g, 30%) max (thin film)/cm−1 3423 O-H (b), 2957 C-H (s), 1740 C=O (s), 1701 C=O 
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(s); [α]D 22 = −60.0 (c 0.34, CHCl3); 1H NMR (500 MHz, CDCl3) δH 7.55 (d, J = 6.9 Hz, 2H, H19), 

7.40−7.28 (m, 3H, H20, 18), 7.18 (d, J = 8.7 Hz, 2H, H13), 6.81 (d, J = 8.7 Hz, 2H, H12), 4.71 (d, 

J = 15.7 Hz, 1H, H3), 4.52−4.45 (m, 2H, H21, 10), 4.09 (d, J = 10.3 Hz, 1H, H10), 3.78 (s, 3H, 

H15), 3.66 (s, 3H, H6), 1.95 (dd, J = 14.6, 6.1 Hz, 1H, H7), 1.78 (d, J = 6.4 Hz, 1H, H8), 1.66 (dd, 

J = 14.6, 5.0 Hz, 1H, H7), 1.44 (s, 3H, H16), 0.87 (d, J = 6.6 Hz, 3H, H9), 0.76 (d, J = 6.6 Hz, 3H, 

H9); 13C NMR (126 MHz, CDCl3) δC 174.1, 173.6, 158.8 Ar, 137.5 Ar, 130.0 Ar, 129.5 Ar, 129.2 

Ar, 129.1 Ar, 128.8 Ar, 113.8 Ar, 80.3 C3, 68.0 C4 or 2, 56.0 C4 or 2, 55.4 C15, 52.7 C6, 44.8 

C10, 43.7 C7, 24.5 C9, 24.1 C9, 23.6 C8, 23.2 C16; HRMS (ASAP-TOF) m/z [M + H]+ calcd for 

[C25H32NO5S]+ 458.2001, found 458.2003. Data for the major second-eluting 

diastereoisomer 188b: (yield 0.073 g, 35%); max (thin film)/cm−1 3405, 2957, 2930, 1736, 

1683; [α]D 19 = −5.8 (c 13.1, CHCl3); 1H NMR (500 MHz, CDCl3) δH 7.63 (d, J = 6.7 Hz, 2H, H19), 

7.42−7.33 (m, 3H H20, 18), 7.15 (d, J = 8.7 Hz, 2H, H13), 6.83 (d, J = 8.7 Hz, 2H, H12), 4.92 (d, 

J = 16.1 Hz, 1H, H10), 4.44 (d, J = 16.1 Hz, 1H, H10), 4.41 (d, J = 3.8 Hz, 1H, H3), 3.79 (s, 3H, 

H15), 3.67 (s, 3H, H6), 3.65 (d, J = 3.9 Hz, 1H, H21), 1.93-1.86 (m, 1H, H7), 1.81−1.72 (m, 2H, 

H7,8), 1.29 (s, 3H, H16), 0.93 (d, J = 6.5 Hz, 3H, H9), 0.76 (d, J = 6.3 Hz, 3H, H9); 13C NMR (126 

MHz, CDCl3) δ 173.4, 173.2, 158.6 Ar, 136.4 Ar, 130.5 Ar, 129.5 Ar, 129.3 Ar, 128.7 Ar, 128.3 

Ar, 113.9 Ar, 75.4 C3, 71.8 C4 or 2, 62.3 C4 or 2, 55.4 C15, 52.5 C6, 45.4 C10, 41.3 C7, 24.3 C9, 

24.2 C9, 23.7 C8, 22.4 C16; HRMS (FTMS-NSI) m/z [M + H]+ calcd for [C25H32NO5S]+ 458.1996, 

found 458.1987. 
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(2S,3R,4S)-Methyl-3-Hydroxy-2-isobutyl-1-(4-methoxybenzyl)-4-methyl-5-oxopyrrolidine-2 

carboxylate 152a and (2S,3R,4R)-Methyl 3-Hydroxy-2-isobutyl-1-(4-methoxybenzyl)-4-

methyl-5-oxopyrrolidine-2-carboxylate 152b 

 

Desulphurization by treatment with Raney® nickel where R = Me 

Raney® nickel 2800 grade was washed with ethanol and dried under an atmosphere of argon. 

A micro spatula portion was added to a solution of 173a (0.02 g, 0.05 mmol) in ethanol (2.3 

mL). The mixture was heated to reflux for 4 h. The Raney® nickel was removed by filtration, 

and solvent was removed under reduced pressure. The residue was purified by column 

chromatography on silica gel using petroleum ether (40−60 °C)/ethyl acetate (3:1) as the 

eluent, to give 152a and 152b as a 3:1 mixture of diastereoisomers (5.7 mg, 7%). 

Desulphurization by treatment with Raney® nickel where R = Ph 

Raney® nickel 2800 grade was washed with ethanol and dried under an atmosphere of argon. 

A portion was added to a solution of 188a (0.0237 g, 0.05 mmol) in ethanol (1 mL). The 

mixture was heated to reflux for 4 h. The Raney® nickel was removed by filtration, and the 

solvent was removed under reduced pressure. The residue was purified by column 

chromatography on silica gel using ethyl acetate/petroleum ether (40−60 °C) (1:1) as the 

eluent, affording 152a and 152b as a 3:1 mixture of diastereoisomers (7.4 mg, 42%). 

Desulphurization by treatment with AIBN/organotin where R = Ph 

Lactam 188a (0.057 g, 0.12 mmol) and AIBN (0.0042 g, 0.026 mmol, 0.2 equiv) were dissolved 

in anhydrous acetone (0.9 mL). Tributyl-tinhydride (0.11 mL, 0.41 mmol, 3.4 equiv) was 

added, and the mixture was heated to reflux under a nitrogen atmosphere overnight. The 

solvents were removed under reduced pressure, and the residue was purified by column 

chromatography using ethyl acetate/petroleum ether (40−60 °C) (1:3) as the eluent, and a 
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90:10 silica/potassium carbonate mix as the stationary phase, to afford 152ab as a colourless 

oil in a 1:2 mixture of diastereoisomers (0.0405 g, 93%). 

Desulphurization by treatment with AIBN/TTMS where R = Ph 

Lactam 188a (0.064 g, 0.14 mmol) and AIBN (0.007 g, 0.043 mmol) were dissolved in 

anhydrous acetone (1 mL). Tris(trimethylsilyl)silane (0.14 mL, 0.45 mmol, 3.2 equiv) was 

added, and the mixture was heated to reflux under a nitrogen atmosphere overnight. The 

solvents were removed under reduced pressure, and the residue was purified by column 

chromatography using ethyl acetate/petroleum ether (40−60 °C) (1:1) as the eluent, to afford 

152a as a colourless oil (0.007 g, 14%) and 152b as a colourless oil (0.036 g, 74%). Data for 

the first-eluting diastereoisomer 152a: [α]D 19 = +7.4 (c 0.42, CHCl3); max (thin film)/cm−1 

3356, 2957, 2918, 1741, 1673 δH 7.16 (d, J = 8.7 Hz, 2H, H13), 6.81 (d, J = 8.7 Hz, 2H, H12), 

4.69 (d, J = 15.3 Hz, 1H, H10), 4.17 (d, J = 15.3 Hz, 1H, H10), 3.90 (t, J = 9.8 Hz, 1H, H3), 3.78 (s, 

3H, H15), 3.34 (s, 3H, H6), 2.84 (d, J = 9.8 Hz, 1H, H17), 2.71 (dq, J = 9.6, 7.0 Hz, 1H, H2), 2.15 

(dd, J = 14.4, 7.5 Hz, 1H, H7), 1.92−1.81 (m, 1H, H8), 1.55 (dd, J = 14.5, 4.5 Hz, 1H, H7), 1.32 

(d, J = 7.0 Hz, 3H, H16), 0.97−0.88 (m, 6H, H9); 13C NMR (126 MHz, CDCl3) δC 175.5, 172.4, 

159.0 Ar, 129.7 Ar, 129.4 Ar, 113.9 Ar, 79.4 C3, 69.1 C4, 55.4 C2,  52.1 C15, 43.4 C6, 43.3 C10, 

41.9 C7, 24.7 C8, 24.0 C9, 23.5 C9, 13.7 C16; HRMS (NSI-FTMS) m/z [M + H]+ calcd for 

[C19H28NO5]+ 350.1962, found 350.1964. Data for the second-eluting diastereoisomer 152b: 

[α]D 22 = −27 (c 0.67, CHCl3); max (thin film)/cm−1 3374 O-H (b), 2956 C-H (s), 1742 C=O (s), 

1672 C=O (s); 1H NMR (500 MHz, CDCl3) δH 7.17 (d, J = 8.8 Hz, 2H, H13), 6.81 (d, J = 8.8 Hz, 

2H, H12), 4.67 (d, J = 15.4 Hz, 1H, H10), 4.47−4.36 (m, 2H, H10, 3), 3.77 (s, 3H, H15), 3.46 (s, 

3H, H6), 3.03 (d, J = 7.6 Hz, 1H H17), 2.76 (d, J = 7.5 Hz, 1H, H2), 1.99 (dd, J = 14.4, 6.1 Hz, 1H, 

H7), 1.77−1.67 (m, J = 12.9, 6.5 Hz, 1H, H16), 1.61 (dd, J = 14.4, 6.0 Hz, 1H, H7), 1.27 (d, J = 7.6 

Hz, 3H, H16), 0.88 (d, J = 6.6 Hz, 3H, H9), 0.84 (d, J = 6.6 Hz, 3H, H9); 13C NMR (126 MHz, CDCl3) 

δC 176.6, 172.3, 158.7 Ar, 130.1 Ar, 128.9 Ar, 113.8 Ar, 73.4 C3, 72.5 C4, 55.4 C2, 52.2 C15, 

44.7 C6, 43.3 C10, 39.9 C7, 24.3 C8, 24.1 C9, 24.0 C9, 9.5 C16; HRMS (NSI-FTMS) m/z [M + H]+ 

calcd for [C19H28NO5]+ 350.1962, found 350.1964. 
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(2S,3R,4S)-Methyl 3-Hydroxy-2-isobutyl-4-methyl-5-oxopyrrolidine-2-carboxylate 197 

 

Lactam 152b (0.036 g, 0.10 mmol) was dissolved in a 3:1 mixture of acetonitrile/water (1 mL). 

CAN (0.287 g, 0.52 mmol, 5.2 equiv) was added and the mixture stirred at room temperature 

until TLC showed the reaction was complete. The mixture was extracted with ethyl acetate (3 

× 20 mL), the combined organic layers were washed with brine (20 mL), dried (sodium 

sulphate), filtered, and the solvents were removed under reduced pressure. The residue was 

purified by column chromatography using ethyl acetate/petroleum ether (40−60 °C) (9:1) as 

the eluent, affording 197 as a colourless solid (0.023 g, 62%). Mp 147-156 °C max (thin 

film)/cm−1 3434 O-H (b), 2959 C-H (s), 2079, 1725 C=O (s), 1641 C=O (s); [α]D 23 = −2.85 (c 0.42, 

CHCl3); 1H NMR (500 MHz, CDCl3) δH 8.20 (s, 1H, H12), 5.09 (d, J = 11.6 Hz, 1H, H3), 4.06 (dd, 

J = 11.4, 5.1 Hz, 1H, H2), 3.83 (s, 3H, H6), 2.72−2.65 (m, 1H, H11), 2.00 (dd, J = 13.8, 8.7 Hz, 

1H, H7), 1.78−1.68 (m, 1H, H8), 1.51 (dd, J = 13.8, 5.1 Hz, 1H, H7), 1.18 (d, J = 7.3 Hz, 3H, H10), 

0.96 (d, J = 6.7 Hz, 3H, H9), 0.87 (d, J = 6.6 Hz, 3H, H9); 13C NMR (126 MHz, CDCl3) δC 178.1, 

174.2, 78.9 C3, 72.0 C4, 52.8 C2, 43.5 C6, 40.1 C7, 25.0 C8, 24.0 C9, 21.9 C9, 7.7 C10; HRMS 

(NSI-FTMS) m/z [M + H]+ calcd for [C11H20NO4]+ 230.1387, found 230.1388. 
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(2S,3R,4S)-3-Hydroxy-2-isobutyl-4-methyl-5-oxopyrrolidine-2-carboxylic Acid 17477 

 

Lactam 197 (0.01 g 0.04 mmol) was dissolved in aqueous sodium hydroxide (0.5 M, 0.86 mL) 

and kept at 4 °C. The progress of the reaction was monitored by TLC. When all the starting 

material was consumed (approximately 24 h), the solution was acidified to pH 3 with HCl (1 

M), and the solvents were removed under reduced pressure. The residue was dissolved in hot 

THF and filtered through cotton wool. The solvents were removed under reduced pressure. 

The residue was purified by column chromatography using a 

dichloromethane/methanol/acetic acid (90:9:1) mixture as the eluent affording 174 as a pale 

brown residue (0.078 g, 86%): max (thin film)/cm−1 3405 O-H (b), 2923 C-H (s), 1725 C=O (s), 

1686 C=O (s); [α]D 20 = −10 (c 0.28, MeOH); 1H NMR (500 MHz, CD3OD) δH 4.10 (d, J = 5.2 Hz, 

1H, H3), 2.79−2.71 (m, 1H, H2), 1.94 (dd, J = 13.8, 8.3 Hz, 1H, H7), 1.76−1.65 (m, 1H, H8), 1.57 

(dd, J = 13.8, 4.7 Hz, 1H, H7), 1.11 (d, J = 7.2 Hz, 3H, H10), 0.95 (d, J = 6.7 Hz, 3H, H9), 0.92 (d, 

J = 6.7 Hz, 3H, H9); 13C NMR (126 MHz, CD3OD) δC 180.0 C4, 175.4 C1, 78.1 C3, 45.2 C5, 41.4 

C2, 25.9 C6, 24.8 C7, 23.0 C8, 20.8 C8, 8.4 C10; HRMS (NSI-FTMS) m/z [M + H]+ calcd for 

[C10H18NO4]+ 214.1084, found 214.1085. 
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3.2.2 Experimental for procedures starting from L-serine 

3.2.2.1 Experimental toward the synthesis of omuralide 

Sodium hydroxy(4-methoxyphenyl)methanesulfonate107 

 

p-Methoxybenzaldehyde (20 mL, 0.164 mol, 1.2 equiv) was stirred in ethanol (330 mL). An 

aqueous solution of sodium sulphite (17.56 g, 0.139 mol in 34 mL) was slowly added forming 

a cloudy precipitate. This solution was stirred for 16 h at 30 °C then stirred in an ice bath for 

2 hours allowing further precipitation. The resulting suspension was filtered, washed with 

hexane and dried in a vacuum oven to yield the PMB sulphite adduct as a fluffy white solid 

(33.72 g, 81%). Mp 166-168 °C (decomp.) (lit203 155-157 °C (decomp.); max (solid)/cm-1 3226 

O-H (b), 1516, 1249; 1H NMR (500 MHz, DMSO) δH 7.34 (d, J = 8.3 Hz, 2H, Ar), 6.79 (d, J = 8.8 

Hz, 2H, Ar), 5.56 (d, J = 5.0 Hz, 1H, H1), 4.87 (d, J = 5.0 Hz, 1H, H1), 3.72 (s, 3H, H6), hydroxyl 

proton unobserved in 1H NMR spectrum; 13C NMR (126 MHz, DMSO) δC 158.6 Ar, 131.6 Ar, 

129.1 Ar, 112.6 Ar, 84.7 C1, 55.2 C6. 
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(S)-methyl 3-(tert-butoxy)-2-((4-methoxybenzyl)amino)propanoate 200 

 

t-Bu-O-Serine methyl ester hydrochloride 199 (5.00 g, 23.61 mmol) was dissolved in methanol 

(250 mL). The PMB sulphite salt (9 g, 37.46 mmol, 1.6 equiv) was added along with 

triethylamine (3 mL, 21.52 mmol 0.9 equiv). The stirred solution was cooled with an ice bath 

and sodium cyanoborohydride (9.09 g, 144 mmol, 6.1 equiv) was added in small portions. The 

suspension was left overnight and allowed to reach room temperature. The solution was 

evaporated and dissolved in ethyl acetate (200 mL). The organic solution was washed with 

equal amounts of brine, saturated sodium sulphite solution and water, then dried 

(magnesium sulphate), filtered, and evaporated under reduced pressure to produce 5.92 g of 

crude 200, which was used in the next step with no further purification. For analytical 

purposes a portion was purified by column chromatography on silica gel using petroleum 

ether (40-60 °C)/ethyl acetate (9:1) to yield 200 as a colourless oil. [α]D 24 = –23.61 (c 1.05, 

CHCl3) max (thin film)/cm-1: 3434 N-H (s), 2974 C-H (s), 1743 C=O (s); 1H NMR (500 MHz, CDCl3) 

δH 7.25 (d, J = 7.5 Hz, 2H, H10), 6.85 (d, J = 8.7 Hz, 2H, H9), 3.83 (d, J = 12.8 Hz, 1H, H7), 3.79 

(s, 3H, H12), 3.72 (s, 3H, H1), 3.65 (d, J = 12.8 Hz, 1H, H7), 3.60 (dd, J = 8.7, 5.3 Hz, 1H, H4), 

3.55 (dd, J = 8.7, 4.9 Hz, 1H, H4), 3.43 (t, J = 5.1 Hz, 1H, H3), 2.14 (s, 1H), 1.14 (s, 9H, H6); 13C 

NMR (126 MHz, CDCl3) δC 174.1 C2, 158.8 Ar, 132.1 Ar, 129.7 Ar, 113.9 Ar, 73.3 C5, 63.3 C4, 

61.1 C3, 55.4 C2, 51.8 C3, 51.5 C7, 27.5 C6; HRMS (NSI-FTMS) m/z [M+H]+ Calcd for 

[C16H26NO4]+ 296.1856 found 296.1859. 
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(S)-benzyl 3-((3-(tert-butoxy)-1-methoxy-1-oxopropan-2-yl)(4-methoxybenzyl)amino)-3-

oxopropanoate 201 

 

Crude amine 200 (5.92 g, 20.05 mmol) was dissolved in anhydrous DCM (182 mL) in a flame 

dried flask. The benzyl malonic half ester 146 (11.59 g, 49.89 mmol, 2.5 equiv) was added 

along with EDAC.HCl (10.30 g, 53.72 mmol 2.7 equiv), DMAP (0.5 g, 4.1 mmol, 0.2 equiv) and 

N-methyl morpholine (5.5 mL, 50 mmol, 2.5 equiv). The solution was stirred for 16 h under 

an atmosphere of nitrogen. HCl (1 M aq solution) (6 mL) was added, the solution transferred 

into a separating funnel, and washed with equal amounts of water and brine. The organic 

layer was dried (magnesium sulphate), filtered and evaporated under reduced pressure to 

form 201 as a yellow oil, which was purified by column chromatography on silica gel using 

petroleum ether (40-60 °C)/ethyl acetate (8:2) as the eluent, to produce a pale-yellow oil. 

(5.49 g, 49% over the 2 steps) [α]D 24 = –23.61 (c 1.05, CHCl3) (97% ee); max (neat)/cm-1: 3434, 

2974 C-H (s), 1743 C=O (s); 1H NMR (500 MHz, CDCl3) (major conformation) δH 7.40 – 7.29 (m, 

5H H12, 14, 16), 7.24 (d, J = 8.8 Hz, 2H, H20), 6.86 (d, J = 8.7 Hz, 2H, H19), 5.15 (s, 2H, H8 or 

H10), 4.69 (s, 2H, H8 or 10), 4.58 (dd, J = 7.5, 3.4 Hz, 1H, H4), 3.90 (dd, J = 9.7, 7.6 Hz, 1H, H4), 

3.80 – 3.74 (m, 4H, H22 and 3), 3.67 (s, 3H, H1), 3.51 (d, J = 15.4 Hz, 1H, H17), 3.43 (d, J = 15.4 

Hz, 1H, H17), 1.06 (s, 9H, H6); 13C NMR (126 MHz, CDCl3) δC 169.7, 167.3, 167.2, 159.1, 128.8, 

128.6, 128.4, 128.1, 114.2, 73.4, 67.1, 60.7, 59.7, 55.4, 52.3, 52.1, 41.5, 27.3, two peaks 

unobserved in 13C NMR spectrum; HRMS (NSI-FTMS) m/z [M+H]+ Calcd for [C26H34NO7]+ 

472.2330 found 472.2325. Determined by HPLC to be 97% ee. Determination of ee was found 

by HPLC using an AD-H Chiralpak column 90:10 hexane/IPA, 230 nm, 0.8 mL/min, 15 °C. 
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(3S,5S)-benzyl 5-(tert-butoxymethyl)-1-(4-methoxybenzyl)-3-methyl-2,4-dioxopyrrolidine-

3-carboxylate 202a and (3R,5S)-benzyl 5-(tert-butoxymethyl)-1-(4-methoxybenzyl)-3-

methyl-2,4-dioxopyrrolidine-3-carboxylate 202b 

 

The cyclization precursor 201 (1.605 g, 3.4 mmol) was dissolved in ether (9.8 mL), TBAF (1 M 

in THF) (7 mL, 7 mmol, 2.1 equiv) was added and the solution was stirred for 10 m, evaporated 

under reduced pressure, and placed under high vacuum for approximately 2 h. To the 

resulting white solid was added THF (9.8 mL) and the solution was cooled to -12 °C. MeI (2.1 

mL, 34 mmol, 10 equiv) was added and the solution stirred for 72 h. Water (approximately 3 

mL) was added and the solution was allowed to warm to room temperature where the 

solution was dissolved in ethyl acetate (100 mL) and washed with equal amounts of water 

and brine. The organic layer was dried (magnesium sulphate), filtered, and evaporated. The 

resulting brown oil was purified by column chromatography on silica gel using petroleum 

ether (40-60 °C)/ethyl acetate (9:1) as the eluent, to produce 202ab as a 3:1 ratio of 

diastereoisomers (1.0273 g, 67%)  as a clear oil which could be partially separated Data for 

the major, first eluting diastereoisomer 202a: (Yield 0.491 g, 32%), [α]D 19.5 = –91.3 (c 1.06, 

CHCl3) (98% ee) max (neat)/cm-1: 2934 C-H (s), 1781 C=O (s), 1749 C=O (s), 1698 C=O (s); 1H 

NMR (400 MHz, CDCl3) δH 7.39 – 7.33 (m, 3H, H13, 11), 7.28 – 7.23 (m, 2H, H12), 7.01 (d, J = 

8.4 Hz, 2H, H18), 6.60 (d, J = 8.7 Hz, 2H, H17), 5.38 (d, J = 15.1 Hz, 1H, H9), 5.21 (d, J = 12.3 Hz, 

1H, H15), 5.10 (d, J = 12.3 Hz, 1H, H15), 3.86 (t, J = 2.3 Hz, 1H, H4), 3.83 (d, J = 15.1 Hz, 1H, 

H9), 3.74 (s, 3H, H20), 3.58 (dd, J = 9.9, 2.1 Hz, 1H, H5), 3.53 (dd, J = 9.9, 2.4 Hz, 1H, H5), 1.56 

(s, 3H, H14), 1.12 (s, 9H, H7); 13C NMR (126 MHz, CDCl3) δC 205.0, 170.3, 166.0, 159.3 Ar, 

135.0 Ar, 129.3 Ar, 128.8 Ar, 128.6 Ar, 128.4 Ar, 126.7 Ar, 114.3 Ar, 73.9 C5, 68.2 C9, 65.2 C6, 

58.8 C2, 57.2 C4, 55.4 C20, 43.1 C15, 27.3 C7, 15.3 C14; HRMS (NSI-FTMS) m/z [M+H]+ Calcd 

for [C26H32NO6]+ 254.2224 found 454.2218. Determined by HPLC to be 79% ee recrystalization 

in IPA was found to have an enriched supernatent of 98% ee. Determination of ee was found 

by HPLC using an AD-H Chiralpak column 80:20 hexane/IPA, 230 nm, 0.8 mL/min, 25 °C. Data 
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for the partially purified, minor, second eluting diastereomer 202b: (Yield 0.416 g, 35%), 1H 

NMR (400 MHz, CDCl3) δH 7.38 – 7.28 (m, 5H, H16, 14, 12), 7.22 (d, J = 8.6 Hz, 2H, H20), 6.82 

(d, J = 8.7 Hz, 2H, H19), 5.25 – 5.16 (m, 2H H9-15), 5.11 (d, J = 12.2 Hz, 1H, H9-15), 4.31 (d, J = 

14.3 Hz, 1H, H9 or 15), 3.87 (dd, J = 7.2, 2.6 Hz, 1H, H5 or 4), 3.78 (s, 3H, H20), 3.59 (dd, J = 

9.7, 2.5 Hz, 1H, H5 or 4), 3.48 (dd, J = 9.7, 7.1 Hz, 1H, H5 or 4), 1.52 (s, 3H, H14), 1.02 (s, 9H, 

H7); 13C NMR (101 MHz, CDCl3) δ 204.0, 169.6, 165.6, 159.4 Ar, 135.0 Ar, 130.0 Ar, 128.8 Ar, 

128.7 Ar, 128.3 Ar, 128.0 Ar, 114.2 Ar, 74.0 C6, 68.2 C5, 65.5 C9, 62.8 C4, 58.5 C2, 55.4 C20, 

44.5 C15, 27.2 C7, 16.7 C14. 

(2R,4S)-4-benzyl 2-methyl 2-(tert-butoxymethyl)-1-(4-methoxybenzyl)-4-methyl-3,5-

dioxopyrrolidine-2,4-dicarboxylate 217 

 

Lactam 202a (0.1125 g, 0.25 mmol), in a flame dried flask, was dissolved in anhydrous THF 

(4.5 mL) and cooled to -40 °C and placed under an atmosphere of nitrogen. LiHMDS (1 M in 

THF/ethylbenzene) (0.56 mL, 0.56 mmol, 2.2 equiv) was added with DMPU (0.9 mL, 0.75 

mmol, 3 equiv) and the solution left for 0.5 h. Methyl cyanoformate was added (0.09 mL, 1.13 

mmol, 4.5 equiv) and stirring was continued for 3 h. Saturated NH4Cl solution (0.2 mL) was 

used to quench the solution, which was allowed to warm to room temperature. The crude 

solution had water added (20 mL) which was extracted with equal amounts of ethyl acetate 

twice. The combined organic extracts were washed with water (20 mL), and with brine (2 x 

20 mL) before being dried (sodium sulphate), filtered, and evaporated under reduced 

pressure. The resulting residue was purified by column chromatography using a petroleum 

ether (40-60 °C)/ethyl acetate (9:1) as the eluent to yield 217 as a white crystalline solid 

(0.0881 g, 69%). Mp 90-94 °C [α]D 25 = +2.85 (c 1.12, CHCl3) (supernatant of up to 93 % ee could 

be obtained after recrystallization from IPA) max (neat)/cm-1: 3434, 2974 C-H (s), 1743 C=O 

(s); 1H NMR (500 MHz, CDCl3) δH 7.39 – 7.30 (m, 5H, H20, 21, 22), 7.18 (d, J = 8.7 Hz, 2H, H13), 

6.70 (d, J = 8.7 Hz, 2H, H12), 5.24 (d, J = 12.5 Hz, 1H, H18 or 10), 5.16 (d, J = 12.5 Hz, 1H, H18 

or 10), 4.72 (d, J = 15.3 Hz, 1H, H18 or 10), 4.57 (d, J = 15.3 Hz, 1H, H5), 3.83 (d, J = 9.7 Hz, 1H, 
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H15), 3.75 (s, 3H, H5), 3.73 (d, J = 9.7 Hz, 1H, H9), 3.53 (s, 3H, H16), 1.66 (s, 3H, H16), 0.87 (s, 

9H, H7); 13C NMR (126 MHz, CDCl3) δC 199.7, 170.7, 166.3, 165.1 Ar, 159.0 Ar, 135.1 Ar, 129.5 

Ar, 128.7 Ar, 128.6 Ar, 128.5 Ar, 128.0 Ar, 113.7 Ar, 74.1 C5, 68.1 C18, 61.0 C2, 57.7 C4, 55.5 

C15, 53.4 C9, 44.7 C10, 26.8 C7, 18.9 C16, one carbon peak unobserved in 13C spectrum ; (NSI-

FTMS) m/z [M+H]+ Calcd for [C28H34NO8]+ 512.2279 found 512.2271. Determination of ee was 

found by HPLC using an AD-H Chiralpak column 90:10 hexane/IPA, 230 nm, 0.8 mL/min, 25 

°C. 

(S)-methyl 3-(tert-butoxy)-2-((4-methoxybenzyl)(methyl)amino)propanoate 209 

 

Alkylation method: 

Amine 200 (0.1289 g, 0.436 mmol) was dissolved in DMF (6 mL). K2CO3 (0.16 g, 1.16 mmol, 

2.7 equiv) and MeI (0.06 mL, 0.96 mmol, 2.2 equiv) were added and the solution stirred at 

room temperature until TLC showed consumption of the starting material (about 1 h). Water 

(5 mL) was added and all solvents were removed under reduced pressure. The resulting 

residue was dissolved in ethyl acetate (75 mL) and water (75 mL). The aqueous layer was 

removed and the organic washed with a further 75 mL of water and brine (2 x 75 mL). The 

organic solution was dried (magnesium sulphate), filtered, and evaporated under reduced 

pressure to provide 209 as a colourless oil. The oil was purified with column chromatography 

using petroleum ether (40-60 °C)/ethyl acetate (9:1) as the eluent to give 209 (0.0834 g, 62%). 

Reductive amination method: 

Amine 200 (0.1415 g, 0.48 mmol) and para-formaldehyde (0.072 g, 2.38 mmol, 5 equiv) were 

stirred in MeOH (6.6 mL) for 5 h. Sodium cyanoborohydride (0.072 g, 1.14 mmol, 2.4 equiv) 

was added and the solution stirred for 16 h. The solvents were evaporated under vacuum and 

the resulting crude material dissolved in ethyl acetate (75 mL) and water (75 mL). The aqueous 

layer was removed and the organic washed with a further 75 mL of water and brine (2 x 75 
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mL). The organic was dried (magnesium sulphate), filtered, and evaporated under reduced 

pressure, to provide 209 as a colourless oil which could be used without further purification 

(0.1094 g, 74%). For characterization purposes however, a small amount was purified using 

column chromatography.  [α]D 23 = –46.5 (c 1.6, CHCl3); max (neat)/cm-1: 2974 C-H (s), 2951 C-

H (s), 1736 C=O (s), 1612; 1H NMR (500 MHz, CDCl3) δH 7.25 (d, J = 9.6 Hz, 2H, H10), 6.84 (d, J 

= 8.6 Hz, 2H, H9), 3.80 (s, 3H, H10), 3.76 (d, J = 7.6 Hz, 1H, H3), 3.74 (s, 3H, H1), 3.70 (d, J = 

13.3 Hz, 1H, H7), 3.62 (m, 2H, H7 and 4), 3.51 (dd, J = 7.4, 5.7 Hz, 1H, H4), 2.29 (s, 3H, H12), 

1.17 (s, 9H, H8); 13C NMR (126 MHz, CDCl3) δC 172.0, 158.8 Ar, 131.5 Ar, 130.1 Ar, 113.8 Ar, 

73.3 C5, 66.1 C4, 61.3 C3, 58.8 C12, 55.4 C11, 51.2 C1, 39.0 C12, 27.5 C6; HRMS (NSI-FTMS) 

m/z [M + H]+ calcd for [C17H28NO4]+ 310.2013, found 310.2016. 

Methyl (2S)-2-anilino-3-tert-butoxypropanoate 210204 

 

Amine 210 (1.249 g, 5.9 mmol) was dissolved in in anhydrous DCM (40 mL). Phenyl boronic 

acid (1.447 g, 11.94 mmol, 2 equiv) was added, along with Cu(OAc)2 (1.2 g, 6.6 mmol, 1.1 

equiv). Triethylamine (1.65 mL, 11.8 mmol, 2 equiv) and molecular sieve (4 Å, 4.4 g) were also 

added and the reaction was placed under a static atmosphere of oxygen and stirred for 3 

days. Ammonium hydroxide (1 M aqueous solution, 40 mL) was added, the suspension stirred 

for 40 m, filtered through diatomaceous earth and transferred into a separating funnel. The 

organic layer was removed and the aqueous extracted again with an equal portion of DCM. 

The organic layers were combined, washed with water (80 mL) and brine (80 mL), dried 

(magnesium sulphate), filtered and evaporated under reduced pressure. The resulting residue 

was purified by column chromatography using petroleum ether (40-60 °C)/ether 18:1 as the 

eluent to yield 210 as a cream coloured solid (0.319 g, 22%). Recrystallization from petroleum 

ether yielded crystals of 95% ee and a racemic supernatant from 72% ee. Mp 52-59 °C (lit205 

47-50 °C); [α]D 22 = -13.69 (c 1.11, CHCl3) (95% ee) (lit205 [α]D 24 = -10.7 (c 1.1, CHCl3) (71% ee)); 

max (neat)/cm-1: 3398 N-H (b), 2975 C-H (s), 1751 C=O (s); 1H NMR (500 MHz, CDCl3) δH 7.20 
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– 7.14 (m, 2H, H8), 7.75 (td, J = 7.4, 0.8 Hz, 1H, H10), 6.64 (d, J = 8.2 Hz, 2H, H9), 4.62 (s, 1H, 

NH), 4.20 (t, J = 4.1 Hz, 1H, H3), 3.78 (dd, J = 8.8, 4.0 Hz, 1H, H4), 3.73 (s, 3H, H1), 3.69 (dd, J = 

8.8, 4.2 Hz, 1H, H4), 1.17 (s, 9H, H6); 13C NMR (126 MHz, CDCl3) δC 172.0 C2, 146.9 Ar, 129.40 

Ar, 118.5 Ar, 113.8 Ar, 73.70 C5, 62.60 C4, 57.4 C3, 52.3 C1, 27.5 C6. Determination of ee was 

found by HPLC using an Eurocel 01 Knauer column 90:10 hexane/IPA, 230 nm, 0.8 mL/min, 25 

°C. 

 

(S)-benzyl 3-((3-(tert-butoxy)-1-methoxy-1-oxopropan-2-yl)(phenyl)amino)-3-

oxopropanoate 211 

 

Amine 210 (0.2308 g, 0.91 mmol) was dissolved in anhydrous DCM (7 mL) in a flame dried 

flask. The benzyl malonic half ester 146 (0.47 g, 2.02 mmol, 2.2 equiv) was added along with 

EDAC.HCl (0.467 g, 2.4 mmol 2.7 equiv), DMAP (0.021 g, 0.17 mmol, 0.19 equiv) and N-

methylmorpholine (0.23 mL, 2.09 mmol, 2.3 equiv). The solution was stirred for 16 h under a 

nitrogen atmosphere. HCl (0.3 mL, 1 M solution) was added, and the solution diluted with 

DCM (50 mL). The solution was transferred into a separating funnel and washed with equal 

amounts of water and brine. The organic layer was dried (magnesium sulphate), filtered and 

evaporated under reduced pressure, to form 211 as a yellow oil which was purified by column 

chromatography using petroleum ether (40-60 °C)/ethyl acetate (9:1 to 7:3) as the eluent to 

produce clear oil (0.1136 g, 71%). [α]D 23 = +1.48 (c 0.54, CHCl3) (95 % ee); max (neat)/cm-1: 

3022 C-H (unsaturated, s), 2974 C-H (s), 1743 C=O (s), 1663 C=O (s); 1H NMR (500 MHz, CDCl3) 

δH 7.45 (s, 2H, Ar), 7.38 – 7.28 (m, 8H, Ar), 5.10 (s, 2H, H12), 4.69 – 4.64 (m, 1H H3 or 4), 3.81 

– 3.78 (m, 2H, H3 or 4), 3.75 (s, 3H, H1), 3.24 (d, J = 15.8 Hz, 1H, H14), 3.20 (d, J = 15.8 Hz, 1H, 

H14), 1.08 (s, 9H, H6); 13C NMR (126 MHz, CDCl3) δC 169.8, 167.3, 166.4, 141.5 Ar, 135.6 Ar, 

129.6 Ar, 129.5 Ar, 128.8 Ar, 128.6 Ar, 128.5 Ar, 128.4 Ar, 73.5 C14, 67.1 C5, 62.0 C4, 59.2 C12, 

52.4 C3, 42.2 C1, 27.4 C6; (NSI-FTMS) m/z [M+H]+ Calcd for [C24H30NO6]+ 428.2068 found 
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428.2065. Determined by HPLC to be 95% ee. Determination of ee was found by HPLC using 

an AD-H Chiralpak column 80:20 hexane/IPA, 230 nm, 0.8 mL/min, 25 °C. 

(3S,5S)-benzyl 5-(tert-butoxymethyl)-3-methyl-2,4-dioxo-1-phenylpyrrolidine-3-

carboxylate 212 

 

The Dieckmann cyclization precursor 211 (0.104 g, 0.24 mmol) was dissolved in ether (0.67 

mL), TBAF (1 M in THF), (0.5 mL, 0.5 mmol 2.1 equiv) was added and the solution was stirred 

for 10 m, evaporated under reduced pressure, and placed under high vacuum for 

approximately 2 h. To the resulting white solid was added THF (0.67 mL), and the reaction 

was cooled to -12 °C. MeI (0.07 mL, 1.12 mmol, 4.7 equiv) was added and the suspension 

stirred for 72 h. Water (0.1 mL) was added and the solution was allowed to warm to room 

temperature where the solution was dissolved in ethyl acetate (30 mL) and washed with an 

equal amount of water and brine. The organic layer was dried (magnesium sulphate), filtered, 

and evaporated under reduced pressure. The resulting brown oil was purified by column 

chromatography with petroleum ether (40-60 °C)/ethyl acetate (9:1) as the eluent. Only the 

major diastereoisomer 212 could be isolated (0.008 g, 8%) Mp 121-124 °C [α]D 22 = +14.2 (c 

0.81, CHCl3) (87 % ee) max (neat)/cm-1: 2977 C-H (s), 2253, 1782 C=O (s), 1752 C=O (s), 1702 

C=O (s); 1H NMR (500 MHz, CDCl3) δH 7.44 – 7.23 (m, 10H, Ar), 5.18 (s, 2H, H14), 4.57 (t, J = 

2.1 Hz, 1H, H4), 3.68 (dd, J = 9.6, 1.8 Hz, 1H, H5), 3.39 (dd, J = 9.6, 2.4 Hz, 1H, H5), 1.65 (s, 3H, 

H13), 1.02 (s, 9H, H7); 13C NMR (126 MHz, CDCl3) δC 204.5, 169.5, 165.8, 135.8 Ar, 135.2 Ar, 

129.4 Ar, 128.8 Ar, 128.5 Ar, 127.8 Ar, 127.5 Ar, 125.6 Ar, 73.9 C6, 68.8 C5, 68.0 C14, 59.7 C2, 

57.9 C4, 27.2 C7, 15.2 C13; (NSI-FTMS) m/z [M+H]+ Calcd for [C24H28NO5S]+ 410.1962 found 

410.1956. Determined by HPLC to be 87% ee. Determination of ee was found by HPLC using 

an AD-H Chiralpak column 80:20 hexane/IPA, 230 nm, 0.8 mL/min, 25 °C. 
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Potassium 3-methoxy-3-oxopropanoate 215206 

 

KOH (22.06 g, 393.18 mmol, 1.2 equiv) was dissolved in methanol (75 mL). The resulting 

solution was added to a beaker of dimethyl malonate (38 mL, 332.5 mmol) dissolved in 

methanol (85 mL). A white precipitate was formed which was collected by vacuum filtration 

and dried in a vacuum oven to provide (26.35 g 51%) of 215, collected as a white solid. Mp: 

204-209 °C (lit207 204-207 °C); max (solid)/cm-1: 1726 C=O (s), 1595, 1368; 1H NMR (500 MHz, 

D2O) δH 3.75 (s, 3H, H4), 3.34 (s, 2H, H3); 13C NMR (101 MHz, D2O) δC 174.8, 172.6, 53.2 C3, 

45.0 C4. 
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(S)-methyl 3-(tert-butoxy)-2-(3-methoxy-N-(4-methoxybenzyl)-3-

oxopropanamido)propanoate 213 

 

Amine 200 (0.5558 g, 1.88 mmol) was dissolved in anhydrous DCM (17.5 mL) in a flame dried 

flask. The methyl malonic half ester 215 (0.692 g, 4.43 mmol, 2.4 equiv) was added along with 

EDAC.HCl (1.06 g, 5.53 mmol, 2.9 equiv), DMAP (0.0405 g, 0.33 mmol, 0.18 equiv) and N-

methylmorpholine (0.5 mL, 4.54 mmol, 2.4 equiv). The solution was stirred for 24 h under an 

atmosphere of nitrogen. HCl (1 M, 0.5 mL) was added, the solution transferred into a 

separating funnel, and washed with equal amounts of water and brine. The organic layer was 

dried (magnesium sulphate), filtered, and evaporated under reduced pressure to form a 

yellow oil, which was purified by column chromatography using petroleum ether (40-60 

°C)/ethyl acetate (8:2) as the eluent to produce the desired compound 213 as a pale-yellow 

oil (0.54 g, 73%). [α]D 26 = -42.0 (c 1.13, CHCl3); max (neat)/cm-1: 2973 C-H (s), 1744 C=O (s), 

1656 C=O (s), 1514; 1H NMR (400 MHz, CDCl3) δH 7.29 (d, J = 7.5 Hz, 2H, H17), 6.91 (d, J = 8.7 

Hz, 2H, H16), 4.73 (s, 2H, H12), 4.60 (dd, J = 7.6, 3.4 Hz, 1H, H4 or 3), 3.93 (dd, J = 9.7, 7.6 Hz, 

1H, H4 or 3), 3.86 – 3.81 (m, 4H, H19, 3 or 4), 3.74 (s, 3H, H1 or 14), 3.72 (s, 3H, H1 or 14), 

3.50 (d, J = 15.3 Hz, 1H, H7), 3.40 (d, J = 15.3 Hz, 1H, H7), 1.10 (s, 9H, H6); 13C NMR (101 MHz, 

CDCl3) δC 169.7, 167.8, 167.4, 159.2 Ar, 128.8 Ar, 128.1 Ar, 114.2 Ar, 73.5 C5, 60.7 C4, 59.8 

C12, 55.4 C3, 52.5 C19, 52.3 C14 or 1, 52.2 C1 or 14, 41.3 C7, 27.3 C6; (NSI-FTMS) m/z [M+H]+ 

Calcd for [C20H30NO7]+ 396.2017 found 396.2016. 
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(3S,5S)-methyl 5-(tert-butoxymethyl)-1-(4-methoxybenzyl)-3-methyl-2,4-dioxopyrrolidine-

3-carboxylate 214a and (3R,5S)-methyl 5-(tert-butoxymethyl)-1-(4-methoxybenzyl)-3-

methyl-2,4-dioxopyrrolidine-3-carboxylate 214b 

 

The Dieckmann cyclization precursor 213 (0.2219 g, 0.56 mmol) was dissolved in ether (1.6 

mL). TBAF (1 M in THF), (1.6 mL, 1.6 mmol, 3 equiv) was added and the solution stirred for 5 

m. Solvents were removed under reduced pressure to form a brown oil. The oil was dissolved 

in THF (1.6 mL) and cooled to -12 °C, MeI (0.15 mL, 2.4 mmol, 4.3 equiv) was added and the 

suspension stirred for 58 h. The solution was quenched with water (1 mL) and the reaction 

mixture was pipetted crude onto a short silica gel column. The column was washed with ethyl 

acetate until full elution of the product had occurred. The partially purified 3:1 mixture of 

diastereoisomers 214ab was collected as a yellow oil and used onto the next step without 

further purification (0.1832 g, 87%). Data for the major diastereoisomer 214a: 1H NMR (400 

MHz, CDCl3) δH 7.21 (d, J = 8.5 Hz, 2H, H14), 6.87 (d, J = 8.6 Hz, 2H, H13), 5.35 (d, J = 15.0 Hz, 

1H, H11), 3.93 (d, J = 15.0 Hz, 1H, H11), 3.93 (t, J = 2.2 Hz, 1H, H4), 3.80 (s, 3H, H16), 3.73 (s, 

3H, H10), 3.60 (dd, J = 9.8, 2.2 Hz, 1H, H5), 3.56 (dd, J = 9.9, 2.4 Hz, 1H, H5), 1.53 (s, 3H, H8), 

1.11 (s, 9H, H7); 13C NMR (101 MHz, CDCl3) δC 205.0, 170.5, 166.7, 159.5, 129.5, 127.2, 114.4, 

73.9 C6, 65.4 C5, 58.7 C2, 57.4 C4, 55.5 C16, 53.4 C10, 43.4 C11, 27.3 C7, 15.2 C8. Data for 

the minor diastereoisomer 214b: 1H NMR (400 MHz, CDCl3) δH 7.23 (d, J = 6.6 Hz, 2H, H14), 

6.85 (d, J = 7.2 Hz, 2H, H13), 5.27 (d, J = 14.6 Hz, 1H, H11), 4.23 (d, J = 14.5 Hz, 1H, H11), 3.86 

(dd, J = 5.8, 2.7 Hz, 1H, H5), 3.79 (s, 3H, H16), 3.75 (s, 3H, H10), 3.69 (m, 2H, H5, 4), 1.52 (s, 

3H, H8), 1.17 (s, 9H, H7); 13C NMR (101 MHz, CDCl3) δC 204.0, 169.0, 166.3, 159.5, 129.0, 

127.8, 114.3, 74.0 C6, 65.1 C5, 61.3 C2, 58.3 C4, 55.4 C16, 53.4 C10, 44.2 C11, 27.4 C7, 17.4 

C8. Data for both diastereoisomers: max (neat)/cm-1: 2974 C-H (s), 1782 C=O (s), 1750 C=O 

(s), 1698 C=O (s), 1514; (NSI-FTMS) m/z [M+H]+ Calcd for [C20H28NO6]+ 378.1911 found 

378.1913. 
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(3S,5S)-methyl 5-(tert-butoxymethyl)-3-methyl-2,4-dioxopyrrolidine-3-carboxylate 216a 

and (3R,5S)-methyl 5-(tert-butoxymethyl)-3-methyl-2,4-dioxopyrrolidine-3-carboxylate 

216b 

 

The mixture of diastereoisomers 214ab (0.1251 g, 0.331 mmol) was dissolved in a MeCN/H2O 

mixture (3:1) (3.5 mL). CAN (0.9 g, 1.64 mmol, 5 equiv) was added and the solution stirred 

vigorously until consumption of the starting material had occurred (approx 1.5 h). Ethyl 

acetate (25 mL) was added and the solution washed with water (25 mL). The aqueous was re-

extracted with ethyl acetate (25 mL) and both organic layers were combined. The organic 

solution was further washed with water (25 mL) and brine (25 mL). The organic layer was 

dried (magnesium sulphate), filtered, and the solvents removed under reduced pressure. The 

crude material was purified by column chromatography with petroleum ether (40-60 

°C)/ethyl acetate (8:2 – 7:3) as the eluent to provide a mixture of partially separable 

diastereoisomers (0.0483 g, 57% total) from which only 216a could be obtained 

uncontaminated (0.01 g, 12%). Data for the major, first eluting diastereoisomer 216a: Mp 

111-116 °C; [α]D 24 = -46.2 (c 0.91, CHCl3); max (neat)/cm-1: 3234, 2976 C-H (s), 1785 C=O (s), 

1750 C=O (s), 1706 C=O (s); 1H NMR (400 MHz, CDCl3) δH 6.72 (d, J = 39.7 Hz, 1H, H11), 4.18 

(dd, J = 9.2, 3.6 Hz, 1H, H5), 3.77 – 3.69 (m, 4H, H5, 10), 3.53 (t, J = 9.1 Hz, 1H, H4), 1.55 (s, 3H, 

H8), 1.19 (s, 9H, H7); 13C NMR (101 MHz, CDCl3) δC 204.4, 171.4, 166.2 C1, 74.3 C6, 63.4 C5, 

62.4 C2, 58.5 C4, 53.6 C10, 27.5 C7, 16.7 C8; (NSI-FTMS) m/z [M+H]+ Calcd for [C12H20NO5]+ 

258.1336 found 258.1339. Data for the minor, second eluting diastereoisomer 216b: 1H NMR 

(400 MHz, CDCl3) δH 6.73 – 6.31 (m, 1H, H11), 4.31 (t, J = 3.6 Hz, 1H, H4), 3.74 (s, 3H, H10), 

3.61 (d, J = 3.6 Hz, 2H, H4), 1.51 (s, 3H, H8), 1.14 (s, 9H, H7); 13C NMR (101 MHz, CDCl3) δC 

205.2, 172.2, 166.3, 74.1 C6, 63.5 C5, 61.0 C2, 58.6 C4, 53.6 C10, 27.4 C7, 15.1 C8. 
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(2R,4R)-methyl 2-(tert-butoxymethyl)-1-(4-methoxybenzyl)-4-methyl-4-(methylthio)-3,5-

dioxopyrrolidine-2-carboxylate 219a and (2R,4S)-methyl 2-(tert-butoxymethyl)-1-(4-

methoxybenzyl)-4-methyl-4-(methylthio)-3,5-dioxopyrrolidine-2-carboxylate 219b 

 

Methyl ester 217 (0.1426 g, 0.31 mmol) was dissolved in THF (0.7 mL) and heated to 35 °C. A 

micro-spatula full of Pd(OH)2/C was added and the stirred solution was placed under a static 

atmosphere of hydrogen. After 16 h this solution was filtered through diatomaceous earth 

and washed through with DCM. The solution was evaporated to produce a crude foam which 

was dissolved in anhydrous DCM (0.5 mL). Sulphonothioate 186 (0.1090 g, 0.53 mmol, 1.7 

equiv) was added to this along with triethylamine (0.05 mL, 0.35 mmol, 1.1 equiv) in a flame 

dried flask. The solution was stirred at 20 °C for 5 h under an atmosphere of nitrogen then 

evaporated, to a crude yellow oil. Purification was achieved using column chromatography 

with petroleum ether (40-60 °C)/ethyl acetate (9:1) as the eluent to produce a 4:1 (by NMR) 

mixture of inseparable diastereoisomers 219ab as a pale-yellow oil (0.127 g, 70%). Data for 

the major diastereoisomer 219a: 1H NMR (500 MHz, CDCl3) δH 7.26 (d, J = 8.7 Hz, 2H, H13), 

6.82 (d, J = 8.7 Hz, 2H, H12), 4.74 (d, J = 15.2 Hz, 1H, H10), 4.44 (d, J = 15.2 Hz, 1H, H10), 3.89 

(d, J = 9.6 Hz, 1H, H5), 3.78 (s, 3H, H15), 3.72 (d, J = 9.6 Hz, 1H, H5), 3.47 (s, 3H, H9), 2.16 (s, 

3H, H17), 1.57 (s, 3H, H16), 1.01 (s, 9H, H7); 13C NMR (101 MHz, CDCl3) δ 201.6, 172.5, 166.2, 

159.3 Ar, 130.3 Ar, 128.4 Ar, 113.8 Ar, 76.2 C6, 74.3 C5, 60.3 C2 or 4, 55.4 C4 or 2, 52.0 C15, 

49.7 C9, 44.1 C10, 27.1 C7, 18.0 C16, 12.6 C17. Data for the minor diastereoisomer 219b: 1H 

NMR (500 MHz, CDCl3) δC 7.26 (d, J = 8.7 Hz, 2H, H13), 6.82 (d, J = 8.7 Hz, 2H, H12), 4.84 (d, J 

= 15.1 Hz, 1H, H10), 4.36 (d, J = 15.1 Hz, 1H, H10), 4.00 (d, J = 10.2 Hz, 1H, H5), 3.86 (d, J = 10.2 

Hz, 1H, H5), 3.78 (s, 3H, H15), 3.37 (s, 3H, H9), 2.20 (s, 3H, H17), 1.61 (s, 3H, H16), 1.08 (s, 9H, 

H7); 13C NMR (101 MHz, CDCl3) δ 203.4, 172.7, 166.7, 159.3 Ar, 130.4 Ar, 128.0 Ar, 113.8 Ar, 

75.8 C6, 74.4 C5, 59.7 C2 or 4, 55.4 C4 or 2, 53.1 C15, 50.7 C9, 44.2 C10, 27.1 C7, 20.7 C16, 

12.9 C17. Data for both diastereoisomers: max (neat)/cm-1: 3020, 1741 C=O (s), 1699 C=O (s); 

(NSI-FTMS) m/z [M+H]+ Calcd for [C21H30NO6S]+ 424.1788 found 424.1790. 
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(2R,4R)-methyl 2-(hydroxymethyl)-1-(4-methoxybenzyl)-4-methyl-4-(methylthio)-3,5-

dioxopyrrolidine-2-carboxylate 29a76 and (2R,4S)-methyl 2-(hydroxymethyl)-1-(4-

methoxybenzyl)-4-methyl-4-(methylthio)-3,5-dioxopyrrolidine-2-carboxylate 29b 

 

The 4:1 mixture of inseparable diastereoisomers 219ab (0.0297 g, 0.07 mmol) in a flame dried 

flask was dissolved in anhydrous DCM (0.15 mL) and TFA (0.15 mL). The solution was stirred 

under nitrogen for 1.5 h or until TLC showed complete consumption of starting material. The 

solution was diluted with DCM (50 mL), and an equal amount of water was carefully added 

and used to wash the organic layer. The organic solution was further washed with an equal 

amount of a NaHCO3 solution. The organic layer was dried (sodium sulphate), filtered, and 

evaporated to a brown residue. The residue was purified by column chromatography using 

petroleum ether (40-60 °C)/ethyl acetate (2:1) as the eluent to produce 29ab as a 2:1 mixture 

of inseparable isomers (0.0195 g, 76%). Data for the major diastereomer 29a: 1H NMR (400 

MHz, CDCl3) δH 7.33 (d, J = 8.6 Hz, 2H, H9), 6.86 (d, J = 8.6 Hz, 2H, H8), 5.08 (d, J = 15.2 Hz, 1H, 

H6), 4.35 (d, J = 15.2 Hz, 1H, H6), 4.17 (d, J = 12.0 Hz, 1H, H5), 3.79 (d, J = 12.8 Hz, 4H, H5 and 

11), 3.67 (s, 3H, H13), 2.12 (s, 3H, H4), 1.54 (s, 3H, H5), hydroxyl proton unobserved in 1H NMR 

spectrum; 13C NMR (101 MHz, CDCl3) δC 199.1, 172.2, 165.7, 159.7 Ar, 129.9 Ar, 128.8 Ar, 

114.6 Ar, 77.6 C5, 61.8 C2 or 4, 55.4 C2 or 4, 53.4 C11, 49.7 C13, 44.3 C6, 16.9 C15, 12.4 C14. 

Analysis on HPLC determined ee to be 58%. Data for the minor diastereomer 29b: 1H NMR 

(400 MHz, CDCl3) δH 7.27 (d, J = 9.7 Hz, 2H, H9), 6.84 (d, J = 7.2 Hz, 2H, H8), 4.68 (d, J = 15.0 

Hz, 1H, H6), 4.60 (d, J = 15.0 Hz, 1H, H6), 4.20 (d, J = 11.8 Hz, 1H, H5), 4.07 (d, J = 12.6 Hz, 1H, 

H5), 3.77 (s, 3H, H11), 3.42 (s, 3H, H13), 2.17 (s, 3H, C15), 1.61 (s, 3H, C14), hydroxyl proton 

unobserved in 1H NMR spectrum; 13C NMR (101 MHz, CDCl3) δC 200.3, 172.2, 166.7, 159.6 Ar, 

130.3 Ar, 127.9 Ar, 114.3 Ar, 76.6 C5, 62.01 C2 or 4, 55.4 C2 or 4, 53.4 C11, 49.5 C13, 44.4 C6, 

18.1 C15, 12.2 C14. Analysis on HPLC determined ee to be 41% ee. Data for both 

diastereoisomers: max (neat)/cm-1: 3419, 3000, 2932 C-H (s), 1776 C=O (s), 1742 C=O (s), 1699 

C=O (s); (NSI-FTMS) m/z [M+H]+ Calcd for [C17H22NO6S]+ 368.1162 found 368.1165. 
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Determination of ee was found by HPLC using an AD-H Chiralpak column 80:20 hexane/IPA, 

230 nm, 0.8 mL/min, 25 °C.   

(R)-methyl 2-(tert-butoxymethyl)-1-(4-methoxybenzyl)-4,4-dimethyl-3,5-dioxopyrrolidine-

2-carboxylate 220 

 

Methyl ester 217 (0.0832 g, 0.16 mmol) was dissolved in THF (0.5 mL) and the solution heated 

to 35 °C. Pd(OH)2/C (20% nominally on water) (0.604 g) was added and the solution put under 

a static atmosphere of hydrogen. After 16 h this solution was filtered through diatomaceous 

earth and washed through with DCM. The solution was evaporated to produce a crude foam 

which was dissolved in DCM (0.6 mL). The crude compound was stirred under an atmosphere 

of nitrogen and triethylamine was added (0.04 mL, 0.29 mmol, 1.8 equiv). After 15 m MeI was 

added (0.04 mL 0.64 mmol, 4 equiv). The solution was stirred for a further 5 h, diluted with 

DCM (50 mL), and washed with water (50 mL) and brine (50 mL). The organic layer was dried 

(sodium sulphate), filtered, evaporated under reduced pressure and purified with column 

chromatography using petroleum ether (40-60 °C)/ethyl acetate (8:2) as the eluent to 

produce a pink oil. The oil was dissolved in DCM and washed with a saturated sodium 

thiosuphate solution until the organic layer became clear, then, dried with sodium sulphate, 

filtered, and evaporated under reduced pressure to produce 220 as a colourless oil. (0.0286 

g, 46% over the 2 steps). [α]D 22 = +50 (c 0.31, CHCl3) (86% ee); max (neat)/cm-1: 3019, 2978 C-

H (s), 1779 C=O (s), 1742 C=O (s); 1H NMR (500 MHz, CDCl3) δH 7.22 (d, J = 8.7 Hz, 2H, H13), 

6.81 (d, J = 8.7 Hz, 2H, H12), 4.87 (d, J = 15.1 Hz, 1H, H10), 4.19 (d, J = 15.1 Hz, 1H, H10), 3.89 

(d, J = 9.8 Hz, 1H, H5), 3.77 (s, 3H, H15), 3.75 (d, J = 9.8 Hz, 1H, H5), 3.31 (s, 3H, H9), 1.34 (s, 

3H, H16), 1.28 (s, 3H, H16), 1.05 (s, 9H, H7); 13C NMR (126 MHz, CDCl3) δC 209.1, 177.3, 166.9, 

159.3, 130.5 Ar, 128.2 Ar, 113.8 Ar, 75.8 C6, 74.1 C5, 58.9 C2 or 4, 55.4 C4 or 2, 52.8 C15, 46.1 

C9, 43.3 C10, 27.2 C7, 22.2 C16, 20.6 C16; HRMS (NSI-FTMS) m/z [M+H]+ Calcd for [C21H30NO6]+ 

392.2068 found 392.2068. Analysis on HPLC determined ee to be 86% ee.  Determination of 
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ee was found by HPLC using an Eurocel 01 Knauer column 95:5 hexane/IPA, 230 nm, 0.8 

mL/min, 25 °C. 

(R)-methyl 2-(hydroxymethyl)-1-(4-methoxybenzyl)-4,4-dimethyl-3,5-dioxopyrrolidine-2-

carboxylate 221 

 

Lactam 220 (0.0109 g, 0.027 mmol) was dissolved in dry DCM (0.1 mL) and TFA (0.1 mL). The 

solution was stirred under nitrogen for 1.5 h or until TLC showed complete consumption of 

starting material. The solution was diluted up to 50 mL with DCM and an equal amount of 

water was carefully added and used to wash the organic layer. The organic layer was further 

washed with a saturated NaHCO3 solution (50 mL). The organic layer was then dried (sodium 

sulphate), filtered, and evaporated to a white solid. This was purified by column 

chromatography using petroleum ether (40-60 °C)/ethyl acetate (2:1) as the eluent to 

produce the deprotected alcohol 221 as a gummy residue (0.0062 g, 67%). [α]D 24 = -7.74 (c 

0.62, CHCl3) (86% ee); max (neat)/cm-1: 3396 O-H (b), 2919 C-H (s), 1778 C=O (s), 1742 C=O 

(s), 1678 C=O (s); 1H NMR (500 MHz, CDCl3) δH 7.30 (d, J = 8.7 Hz, 2H, H8), 6.86 (d, J = 8.7 Hz, 

2H, H7), 4.89 (d, J = 15.1 Hz, 1H, H5), 4.31 (d, J = 15.1 Hz, 1H, H5), 4.14 (dd, J = 12.3, 8.6 Hz, 

1H, H11), 3.85 (dd, J = 12.3, 4.4 Hz, 1H, H11), 3.79 (s, 3H, H10), 3.55 (s, 3H, H13), 1.35 (s, 3H, 

H14), 1.28 (s, 3H, H14), 1.17 (dd, J = 8.6, 4.5 Hz, 1H, OH); 13C NMR (126 MHz, CDCl3) δC 208.3, 

177.3, 166.4, 159.6 , 130.1 Ar, 128.7 Ar, 114.5 Ar, 77.3 C11, 60.8 C4 or 2, 55.4 C 2 or 4, 53.2 

C10, 46.1 C13, 43.7 C5, 22.0 C14, 20.5 C14; HRMS (NSI-FTMS) m/z [M+H]+ Calcd for 

[C17H22NO6]+ 336.1442 found 336.1443. Determined by HPLC to be 86% ee. Determination of 

ee was found by HPLC using an AD-H Chiralpak column 80:20 hexane/IPA, 230 nm, 0.8 

mL/min, 25 °C. 
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(2R,3R,4R)-methyl 2-(tert-butoxymethyl)-3-hydroxy-1-(4-methoxybenzyl)-4-methyl-4-

(methylthio)-5-oxopyrrolidine-2-carboxylate 224a and (2R,3S,4S)-methyl 2-(tert-

butoxymethyl)-3-hydroxy-1-(4-methoxybenzyl)-4-methyl-4-(methylthio)-5-oxopyrrolidine-

2-carboxylate 224b 

 

The mixture of diastereoisomers 219ab (0.1407 g, 0.33 mmol) was dissolved in ethanol (9 mL) 

and the solution was cooled with an ice bath. Sodium borohydride (0.0073 g, 0.19 mmol, 0.6 

equiv) was added and the reaction was stirred for 20 m. Water (40 mL) was added to quench 

the reaction and the resulting solution was extracted with equal amounts of ethyl acetate (3 

x 40 mL). The combined organic fractions were washed with and equal amount of brine, dried 

(sodium sulphate), filtered and evaporated. The resulting residue was purified using column 

chromatography with petroleum ether (40-60 °C)/ethyl acetate (8:2 - 2:1) as the eluent to 

provide 2 separable diastereoisomers 224a and 224b as gummy oils. The first eluting 

diastereoisomer (0.0764 g, 54%) and the second (0.0181 g, 13%). Analysis on chiral HPLC 

showed the of the diastereoisomers were 67% and 66% ee respectively. Diastereomer 224a 

however upon re-crystalization from IPA gave 0.0511 g of material from the supernatant at 

99% ee. Data for major, first eluting diastereoisomer 224a: [α]D 23 = +6.2 (c 0.71, CHCl3) (99% 

ee); max (neat)/cm-1: 3418, 2973, 2926, 1743, 1697; 1H NMR (500 MHz, CDCl3) δH 7.24 (d, J = 

8.7 Hz, 2H, H13), 6.81 (d, J = 8.7 Hz, 2H, H12), 4.71 (d, J = 15.2 Hz, 1H, H10), 4.46 (d, J = 15.2 

Hz, 1H, H10), 3.99 – 3.87 (m, 2H, H3 and 18), 3.82 (d, J = 9.7 Hz, 1H, H5), 3.78 (s, 3H, H15), 

3.65 (s, 3H, H9), 3.44 (d, J = 9.7 Hz, 1H, H5), 2.12 (s, 3H, H17), 1.60 (s, 3H, H16), 1.04 (s, 9H, 

H7); 13C NMR (126 MHz, CDCl3) δC 173.0, 172.1, 158.9, 130.4 Ar, 129.6 Ar, 113.7 Ar, 77.9 C3, 

74.1 C6, 70.7 C5, 62.8 C4 or 2, 55.4 C2 or 4, 53.4 C15, 52.5 C9, 45.2 C10, 27.2 C7, 22.9 C18, 

12.3 C16; HRMS (NSI-FTMS) m/z [M+H]+ Calcd for [C21H32NO6S]+ 426.1945 found 426.1942. 

Data for the minor, second eluting diastereomer 224b: [α]D 22 = +5.26 (c 0.38, CHCl3) (66% 

ee); max (neat)/cm-1: 3385 O-H (b), 3016, 2975 C-H (s), 1743 C=O (s), 1686 C=O (s);  1H NMR 

(500 MHz, CDCl3) δ 7.18 (d, J = 8.6 Hz, 2H, H13), 6.81 (d, J = 8.7 Hz, 2H, H12), 4.77 (d, J = 15.5 
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Hz, 1H, H10), 4.43 (d, J = 15.5 Hz, 1H, H3), 4.32 (s, 1H, H3), 3.96 (d, J = 9.7 Hz, 1H, H5), 3.77 (s, 

3H, H15), 3.75 (s, 1H, H10), 3.67 (d, J = 9.7 Hz, 1H, H5), 3.64 (s, 3H, H15), 2.19 (s, 3H, H17), 

1.53 (s, 3H, H16), 1.02 (s, 9H, H7);13C NMR (126 MHz, CDCl3) δ 173.8, 171.7, 158.8 Ar, 130.3 

Ar, 128.9 Ar, 113.7 Ar, 78.0 C3, 74.4 C6, 71.6 C5, 62.1 C2 or 4, 55.7 C4 or 2, 55.4 C15, 52.7 C9, 

45.3 C10, 27.1 C7, 22.6 C17, 12.7 C16; HRMS (NSI-FTMS) m/z [M+H]+ Calcd for [C21H32NO6S]+ 

426.1945 found 426.1945. Determination of ee was found by HPLC using an AD-H Chiralpak 

column 90:10 hexane/IPA, 230 nm, 0.8 mL/min, 25 °C. 

 

(2R,3R,4R)-methyl 3-hydroxy-2-(hydroxymethyl)-1-(4-methoxybenzyl)-4-methyl-4-

(methylthio)-5-oxopyrrolidine-2-carboxylate 29a76 

 

Alcohol 224a (0.0427 g, 0.1 mmol) was dissolved in anhydrous DCM (0.21 mL) in a flame dried 

flask. TFA (0.21 mL) was added and the reaction was stirred under an atmosphere of nitrogen 

until TLC showed complete consumption of starting material (about 1.5h). The reaction 

mixture was diluted with DCM (20 mL) and quenched with water (20 mL). The organic layer 

was removed and the aqueous extracted again with DCM (20 mL). The organic layers were 

combined and washed with saturated NaHCO3 and brine (20 mL of each), dried (sodium 

sulphate), filtered, and evaporated under reduced pressure. The resulting residue was 

purified by column chromatography using petroleum ether (40-60 °C)/ethyl acetate 1:1 as the 

eluent to yield 29a as a white solid (0.0279 g, 75%). Mp 128 – 130 °C (lit29 129 °C); [α]D 23 = –

33.84 (c 0.13, CHCl3) (99% ee) (lit29 [α]D 23 = –41.8 (c 0.1, CHCl3)); max (neat)/cm-1: 3416 O-H 

(b), 2925 C-H (s), 2852, 1737 C=O (s), 1675 C=O (s); 1H NMR (500 MHz, CDCl3) δH 7.29 (d, J = 

8.5 Hz, 2H, H9), 6.85 (d, J = 8.7 Hz, 2H, H8), 5.11 (d, J = 15.3 Hz, 1H, H6), 4.13 (d, J = 7.7 Hz, 1H, 

H3 or 5), 4.05 (d, J = 15.3 Hz, 1H, H6), 3.85 – 3.77 (m, 5H, H11 and 3 or 5 or OH), 3.76 (s, 3H, 

H13), 3.67 (d, J = 8.1 Hz, 1H, H3 or 5 or OH), 2.14 (s, 3H, H14), 1.61 (s, 3H, H15); 13C NMR (126 

MHz, CDCl3) δC 173.5, 171.6, 159.5 Ar, 129.8 Ar, 129.6 Ar, 114.6 Ar, 76.8 C3, 72.4 C5, 62.5 C2 
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or 4, 55.4 C4 or 2, 53.4 C11, 52.9 C13, 44.8, 22.9 C14 12.4 C15; HRMS (NSI-FTMS) m/z [M+H]+ 

Calcd for [C17H24NO6S]+ 370.1319 found 370.1320. Analysis on HPLC determined ee to be 99%. 

Determination of ee was found by HPLC using an AD-H Chiralpak column 80:20 hexane/IPA, 

230 nm, 0.8 mL/min, 25 °C. 
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3.2.2.2 Experimental toward the synthesis of salinosporamide B 

(3S,5S)-benzyl 5-(tert-butoxymethyl)-3-ethyl-1-(4-methoxybenzyl)-2,4-dioxopyrrolidine-3-

carboxylate and (3R,5S)-benzyl 5-(tert-butoxymethyl)-3-ethyl-1-(4-methoxybenzyl)-2,4-

dioxopyrrolidine-3-carboxylate 225ab 

 

Cyclization ran at room temperature: 

The cyclization precursor 201 (1.5562 g, 3.3 mmol) was dissolved in ether (9.5 mL), TBAF (1 M 

in THF, 6.6 mL, 6.6 mmol, 2 equiv) was added until a white precipitate formed (<5 m). Solvents 

were removed under reduced pressure and the resulting white solid suspended in THF (9.5 

mL) under a nitrogen atmosphere. EtI was added (0.58 mL, 7.21 mmol, 2.2 equiv) and the 

solution stirred for 15 h. A second aliquot of EtI was added (0.58 mL, 7.21 mmol, 2.2 equiv) 

and the solution stirred for a further 5 h. Water (20 mL) was added and the resulting mixture 

was extracted with DCM (3 x 50 mL). The organic layers were combined and washed with 

water (50 mL), and brine (50 mL). The organic extractions were dried (magnesium sulphate) 

filtered, and evaporated under reduced pressure to provide the crude material as a yellow 

oil. The oil was purified by column chromatography using petroleum ether (40-60 °C)/ethyl 

acetate (9:1) as the eluent to provide 225ab as a 1:0.4 mixture of diastereoisomers through 

NMR as a pale-yellow oil (0.669 g, 43%). 

Cyclization ran at 0 °C to rt: 

The cyclization precursor 201 (0.6304 g, 1.34 mmol) was dissolved in ether (3.8 mL). TBAF (1 

M in THF, 2.7 mL, 2.7 mmol, 2 equiv) was added until a white precipitate formed (<5 m). 

Solvents were removed under reduced pressure and the resulting white solid suspended in 

THF (3.8 mL) under a nitrogen atmosphere. EtI was added at 0 °C (0.95 mL, 11.8 mmol, 8.8 

equiv) and the solution was allowed to warm slowly to room temperature over 20 h. Water 

(20 mL) was added and the resulting mixture was extracted with DCM (3 x 20 mL). The organic 
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layers were combined and washed with water (50 mL) and brine (50 mL). The organic 

extractions were dried (magnesium sulphate), filtered, and evaporated under reduced 

pressure to provide the crude material as a yellow oil. The oil was purified by column 

chromatography using petroleum ether (40-60 °C)/ethyl acetate (9:1) as the eluent to provide 

225ab as a 1:0.65 mixture of diastereoisomers from NMR as a pale yellow oil (0.2236 g, 36%). 

Data for the major diastereoisomer: 1H NMR (400 MHz, CDCl3) δH 7.39 – 7.19 (m, 5H, H21, 

20, 19), 7.03 (d, J = 8.5 Hz, 2H, H11), 6.62 (d, J = 8.7 Hz, 2H, H12), 5.41 (d, J = 15.0 Hz, 1H, H7), 

5.17 (d, J = 10.5 Hz, 1H, H8 or 17), 5.09 (d, J = 12.3 Hz, 1H, H8 or 17), 3.90 (d, J = 15.0 Hz, 1H, 

H8 or 17), 3.83 (t, J = 2.6 Hz, 1H, H4), 3.74 (s, 3H, H13), 3.66 (dd, J = 10.0, 2.5 Hz, 1H, H5), 3.54 

(dd, J = 10.0, 2.8 Hz, 1H, H5), 2.23 (m, 2H, H14), 1.12 (s, 9H, H7), 0.95 (t, J = 7.5 Hz, 3H, H15); 

13C NMR (101 MHz, CDCl3) δC 204.4, 169.2, 165.5, 159.2, 135.0, 129.4, 128.8, 128.3, 126.9, 

114.2, 73.8, 68.0, 64.9, 63.4, 55.4, 43.3, 27.2, 23.8, 8.8, two carbon peaks unobserved in 13C 

spectrum. Data for the minor diastereoisomer: 1H NMR (400 MHz, CDCl3) δH 7.42 – 7.18 (m, 

7H, C21, 20, 19), 6.81 (d, J = 8.7 Hz, 2H, H10), 5.30 – 5.16 (m, 3H, H8 or 17), 4.28 (d, J = 14.3 

Hz, 1H, H8 or 17), 3.79 – 3.74 (m, 4H, H13 and 18 or 17), 3.60 (dd, J = 9.7, 2.5 Hz, 1H, H5), 3.46 

(dd, J = 9.7, 7.1 Hz, 1H, H5), 2.30 – 2.14 (m, 2H, H14), 1.03 (s, 9H, H7), 0.72 (t, J = 7.5 Hz, 3H, 

H15). 13C NMR (101 MHz, CDCl3) δC 204.3, 168.6, 165.1, 159.2, 134.9, 130.2, 128.7, 128.5, 

127.9, 114.0, 73.9, 67.9, 66.2, 63.4, 62.6, 55.3, 44.4, 27.1, 25.5, 8.5, one carbon peak 

unobserved in 13C spectrum. Data for the mix of diastereoisomers: max (neat)/cm-1: 3450, 

2974 C-H (s), 1778 C=O (s), 1747 C=O (s), 1696 C=O (s); HRMS (NSI-FTMS) m/z [M + H]+ calcd 

for [C27H34NO6]+ 468.2381, found 468.2374. 
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(3S,5S)-benzyl 3-ethyl-5-(hydroxymethyl)-1-(4-methoxybenzyl)-2,4-dioxopyrrolidine-3-

carboxylate and (3R,5S)-benzyl 3-ethyl-5-(hydroxymethyl)-1-(4-methoxybenzyl)-2,4-

dioxopyrrolidine-3-carboxylate 

 

The inseparable mixture of diastereoisomers 225ab (0.066 g, 0.14 mmol) of the 1:0.4 mixture 

of diastereoisomers from the room temperature cyclization was dissolved in DCM (0.3 mL) 

with TFA (0.3 mL). The solution was stirred at room temperature under argon until complete 

consumption of the starting material (about 1h) had occurred. DCM (40 mL) was added and 

the organic solution was carefully washed with water (20 mL x 2) and saturated sodium 

hydrogen carbonate solution (20 mL x 2). The organic layer was dried (magnesium sulphate), 

filtered, and evaporated under reduced pressure to produce a colourless residue. The 

diastereoisomers could be separated by column chromatography using petroleum ether (40-

60 °C)/ethyl acetate (8:2) as the eluent, the first eluting diastereoisomer as a colourless oil 

(0.010 g, 18%) and the second as a colourless oil (0.032 g, 55%). The first eluting diastereomer 

was found to have an ee of 66%, the second was found to have an ee of 45%. 

 

The inseparable mixture of diastereoisomers 225ab (0.2236 g, 0.47 mmol) of the 1:0.65 

mixture of diastereoisomers from the 0 °C cyclization was dissolved in DCM (1 mL) with TFA 

(1 mL). The solution was stirred at room temperature under argon until complete 

consumption of the starting material (about 1h) had occurred. DCM (50 mL) was added and 

the organic solution was carefully washed with water (30 mL x 2) and saturated sodium 

hydrogen carbonate solution (30 mL x 2). The organic layer was dried (magnesium sulphate), 

filtered, and evaporated under reduced pressure to produce a colourless residue. The 

diastereoisomers could be separated using column chromatography with petroleum ether 

(40-60 °C)/ethyl acetate as the eluent. The first eluting diastereoisomer as a colourless oil 

(0.058 g, 29%) and the second as a colourless oil (0.0902 g, 46%). The first eluting 

diastereomer was found to have an ee of 78%, the second was found to have an ee of 60%. 
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Data for the first eluting diatereoisomer: [α]D 24 = -34 (c 0.73, CHCl3) (66% ee); max (neat)/cm-

1: 3448 O-H (s), 2939 C-H (s), 1776 C=O (s), 1744 C=O (s), 1682 C=O (s); 1H NMR (500 MHz, 

CDCl3) δH 7.40 – 7.33 (m, 3H, H22, 18, 19), 7.30 (dd, J = 7.6, 1.8 Hz, 2H, H20, 21),  7.20 (d, J = 

8.6 Hz, 2H, H10), 6.81 (d, J = 8.7 Hz, 2H, H9), 5.19 (d, J = 12.2 Hz, 1H, H7 or 16), 5.14 (d, J = 

12.2 Hz, 1H, H7 or 16), 5.13 (d, J = 14.18 Hz, 1H, H7 or 16), 4.30 (d, J = 14.8 Hz, 1H, H7 or 16), 

3.90 (dd, J = 12.2, 3.3 Hz, 1H, H5), 3.78 (s, 3H, H12), 3.75 (dd, J = 7.7, 4.5 Hz, 1H, H5), 3.67 – 

3.64 (m, 1H, H4), 2.36 – 2.18 (m, 2H, H13), 0.81 (t, J = 7.5 Hz, 3H, H14); 13C NMR (101 MHz, 

CDCl3) δC 205.7, 169.0, 165.8, 159.6 Ar, 134.7 Ar, 129.7 Ar, 128.9 Ar, 128.9 Ar, 128.4 Ar, 127.4 

Ar, 114.6 Ar, 68.5 C5, 67.5 C2 or 16, 63.9 C2 or 16, 60.3 C4, 55.4 C12, 44.2 C7, 25.4 C13, 8.7 

C14; HRMS (FTMS-NSI) m/z [M + H]+ calcd for [C23H26NO6]+ 412.1755, found 412.1753. Data 

for the second eluting diastereoisomer: [α]D 24 = -72.4 (c 1.1, CHCl3) (60% ee); max (neat)/cm-

1: 3440 O-H (s), 2940 C-H (s), 2253, 1780 C=O (s), 1747 C=O (s), 1688 C=O (s); 1H NMR (400 

MHz, CDCl3) δH 7.29 – 7.25 (m, 3H, H22, 18, 19), 7.15 – 7.12 (m, 2H, H20, 21), 7.02 (d, J = 8.6 

Hz, 2H, H10),  6.59 (d, J = 8.7 Hz, 2H, H9), 5.14 (d, J = 15 Hz, 1H, H7 or 16), 5.09 (d, J = 12.3 Hz, 

1H, H7 or 16),  5.04 (d, J = 12.3 Hz, 1H, H7 or 16), 4.10 (d, J = 15.0 Hz, 1H, H7 or 16), 3.91 (dd, 

J = 12.0, 2.7 Hz, 1H, H5) 3.81 – 3.78 (m, 1H, H4), 3.72 (dd, J = 12.0, 3.6 Hz, 1H, H5), 3.68 (s, 3H, 

H12), 2.24 – 2.10 (m, 2H, H13), 0.85 (t, J = 7.5 Hz, 3H, H14). 13C NMR (101 MHz, CDCl3) δC 

204.9, 169.2, 165.1, 159.5 Ar, 134.9 Ar, 129.5 Ar, 128.9 Ar, 128.7 Ar, 128.3 Ar, 126.9 Ar, 114.5 

Ar, 68.2 C5, 66.3 C2 or 16, 63.7 C2 or 16, 58.7 C4, 55.4 C12, 43.9 C7, 23.8 C13, 8.8 C14; HRMS 

(FTMS-NSI) m/z [M + H]+ calcd for [C23H26NO6]+ 412.1755, found 412.1752. Determination of 

ee was found by HPLC using an AD-H Chiralpak column 80:20 hexane/IPA, 230 nm, 0.8 

mL/min, 25 °C. 
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Benzyl 3-ethyl-1-(4-methoxybenzyl)-5-methylene-2,4-dioxopyrrolidine-3-carboxylate 229 

 
The racemic mixture of diastereoisomers 227ab (0.0336 g, 0.082 mmol) was dissolved in 

anhydrous THF (1.7 mL) under an atmosphere of nitrogen and cooled to -78 °C. LiHMDS (1 M 

in THF, 0.25 mL, 0.25 mmol, 3 equiv) was added along with DMPU (0.3 mL, 2.48 mmol, 30 

equiv). The solution was stirred for 30 m before methyl cyanoformate (0.03 mL, 0.377 mmol, 

4.6 equiv) was added. The solution was further stirred at -78 °C for 3 h then, saturated 

ammonium chloride solution (0.3 mL) was added and the mixture was allowed to warm to 

room temperature. Ethyl acetate was added (30 mL) and the solution was washed with water 

(30 mL). The aqueous layer was re-extracted with ethyl acetate (30 mL) and the organic 

extractions were combined. The combined organic layers were washed with water (30 mL) 

and brine (30 mL). The organic layer was dried (magnesium sulphate), filtered, and 

evaporated under reduced pressure to provide a pale brown oil. The oil was purified by 

column chromatography using petroleum ether (40-60 °C)/ethyl acetate (9:1) as the eluent 

to provide 229 as a colourless residue, which appeared green in solution (0.0085 g, 27%). max 

(neat)/cm-1: 2936 C-H (s), 1769 C=O (s), 1720 C=O (s), 1631; 1H NMR (500 MHz, CDCl3) δH 7.38 

– 7.30 (m, 3H H19, 17), 7.25 – 7.21 (m, 2H, H18), 7.08 (d, J = 8.8 Hz, 2H, H9), 6.67 (d, J = 8.7 

Hz, 2H, H8), 5.23 – 5.19 (m, 2H, H5, 15 or 6), 5.12 (d, J = 12.4 Hz, 1H, H15 or 6), 5.06 (d, J = 

15.2 Hz, 1H, H15 or 6), 4.61 (d, J = 15.3 Hz, 1H, H15 or 6), 4.53 (d, J = 2.3 Hz, 1H, H5), 3.74 (s, 

3H, H11), 2.30 (q, J = 7.5 Hz, 2H, H12), 0.85 (t, J = 7.5 Hz, 3H, H13); 13C NMR (126 MHz, CDCl3) 

δC 192.7, 169.0, 164.9, 159.3, 141.0, 134.9, 128.8, 128.6, 128.6, 128.1, 126.1, 114.3, 94.2, 

68.2, 62.3, 55.4 C11, 43.6 C6, 24.8 C12, 8.4 C13; HRMS (NSI-FTMS) m/z [M + H]+ calcd for 

[C23H24NO5]+ 394.1649, found 394.1651. 
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3.2.3 Experimental procedures toward the synthesis of hydroxy leucine 

(2-methoxy-2-oxoethyl)triphenylphosphonium bromide208 

 

To triphenylphosphine (5.11 g, 19.48 mmol) was added ethyl acetate (44 mL). Methyl 

bromoacetate (1.85 mL, 19.54 mmol, 1 equiv) was added dropwise and the solution stirred 

for 24 h. The resulting white precipitate was collected through suction filtration, washed with 

ether, and dried in a vacuum oven to provide the phosphonium salt (6.5 g, 80%). Mp 156-158 

°C (lit209 162 °C); max (neat)/cm-1: 3055, 3009, 2954 C-H (s), 2193, 1727 C=O (s); 1H NMR 

(CDCl3, 500 MHz) δH: 7.84 – 7.77 (m, 6H, Ar), 7.74 – 7.69 (m, 3H, Ar), 7.64 – 7.57 (m, 6H, Ar), 

5.45 (d, J = 13.6 Hz, 2H, H2) 3.49 (s, 3H, H4); 13C NMR (CDCl3, 100 MHz) δC 165.0 (d) C3, 135.2 

(d), 133.9 (d), 130.3 (d), 117.7 (d), 53.4 (d) C4, 32.9 (d) C4. 

 

Methyl 2-(triphenylphosphoranylidene)acetate 46208 

 

Methyl acetate phosphonium salt (6.394 g) was dissolved in DCM (40 mL). The solution was 

washed with an NaOH solution (1 M, 30 mL). The organic layer was removed and the aqueous 

re-extracted with DCM (40 mL). The organic layers were combined and washed with an equal 

amount of brine solution. The organic layer was dried (magnesium sulphate), filtered, and 

evaporated to provide 46 as an off-white solid (5.096 g, 99%). Mp 166.5-168 °C (lit209 165 °C); 

max(neat)/cm-1: 3058, 2943 C-H (s), 1619; 1H NMR (CDCl3, 400 MHz) δH: 7.70 – 7.60 (m, 6H, 

H1, Ar), 7.59 – 7.50 (m, 3H, H1, Ar), 7.50 – 7.40 (m, 6H, H1, Ar), 3.53 (bs, 3H, H4) 2.90 (bs, 1H, 

H2); 13C NMR (CDCl3, 100 MHz) δC: 133.1 (d) Ar, 132.1 (d) Ar, 128.9 (d) Ar.  
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(E)-methyl 4-methylpent-2-enoate 4733 

 

Ylid 46 (11.56 g, 34.57 mmol) was dissolved in anhydrous DCM (36 mL) and the solution was 

cooled to 0 °C using an ice bath. iso-Butyraldehyde (2.8 mL, 30.68 mmol, 1.1 equiv) was added 

and the solution stirred for 20 h being allowed to gradually warm to room temperature. The 

DCM was removed under reduced pressure, and the crude olefin was extracted from the 

resulting solid by washing with pentane. The suspension was filtered, and the pentane 

removed under reduced pressure.  The olefin was further purified using Kugelrohr distillation 

apparatus to afford 47 as a colourless liquid (2.81 g, 63%). max(neat)/cm-1: 2964 C-H (s), 2873, 

1727 C=O (s); 1H NMR (CDCl3, 500 MHz) δH: 6.95 (dd, J =  15.7, 6.7 Hz, 1H, H3) 5.77 (dd, J = 

15.7, 1.5 Hz, 1H, H3), 3.72 (s, 3H, H3), 2.50 – 2.41 (m, 1H, H1) 1.06 (d, J = 10 Hz, 6H, H6); 13C 

NMR (CDCl3, 100 MHz) δC: 167.6 C1, 155.9 C3, 118.4 C4, 51.5 C5, 31.1 C1, 21.4 C6 and 7. 

 

Peroxide (E)-methyl 4-hydroperoxy-4-methylpent-2-enoate 277 

 

Conversion of enone 47 to peroxide 277 occurred spontaneously in air and light. 

max(neat)/cm-1: 3386 O-H (b), 2985 C-H (s), 2954, 1706, C=O (s), 1660; 1H NMR (400 MHz, 

CDCl3) δH 7.03 (d, J = 16.1 Hz, 1H, H4), 5.98 (d, J = 16.1 Hz, 1H, H3), 3.75 (s, 3H, H1), 1.38 (s, 

6H, H6); 13C NMR (101 MHz, CDCl3) δC 167.3 C1, 151.5 C3, 120.5 C4, 81.9 C5, 51.9 C1, 24.1 C6 

and 7. m/z (NSI-FTMS) [M+H]+:  calcd for [C7H13O4]+ 161.0808, found 161.0806. 
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(2R,3S)-methyl 2,3-dihydroxy-4-methylpentanoate 4833 

 

Racemic synthesis: 

K2OsO4.2H2O (21.6 mg, 0.058 mmol, 0.008 equiv) was added to a flask with t-butanol (9 mL), 

H2O (5 mL) and N-methylmorpholine N-oxide (50% wt in H2O) (5 mL). Enone 47 (0.8955 g, 6.98 

mmol) was added over 24 h using a syringe pump. The solution was further stirred for 2 days, 

then, sodium sulphite (4 g) was carefully added and the solution was stirred for another hour. 

Water (20 mL) was added and the aqueous layer was extracted with ethyl acetate (20 mL x 

3). The organic layers were combined and washed with a saturated sodium sulphite solution 

(20 mL). The organic layers were dried (sodium sulphate), filtered, and evaporated to yield 

diol 48 as a clear oil which cooled to a waxy white solid (0.872 g, 77%). 

Enantioselective synthesis: 

To a flask containing AD-mix α (31.167 g), was added a t-butanol/water solution (1:1) (220 

mL). The suspension was stirred for 30 m then enone 47 (2.707 g, 21.12 mmol) was slowly 

added and the solution was stirred for 24 h. The solution was carefully quenched with 

saturated sodium sulphite solution and stirred for a further 30 m, then, extracted with ethyl 

acetate (100 mL x 3). The organic layers were combined and washed with a saturated sodium 

sulphite solution (100 mL). The organic layers were dried (magnesium sulphate), filtered and 

evaporated under reduced pressure to yield diol 48 (2.326 g, 68%) at 90% ee. The 

enantiomeric excess was enriched by dissolving the solid in 50 mL of a 9:1 petroleum 

ether/ethyl acetate solution and cooling to -20 °C to yield white waxy crystals (1.717 g, 50%) 

96% ee. max(neat)/cm-1: 3368 O-H (b), 2960 C-H (s), 2874, 1741 C=O (s); [α]D 23 = +22.92 (c 

0.72, CHCl3) (96% ee), (lit33 [α]D 23 = -10.7 (c 1, CHCl3));  1H NMR (500 MHz, CDCl3) δH 4.30 (s, 

1H, H4 or 6), 3.83 (s, 3H, H1), 3.51 (t, J = 7.7 Hz, 1H, H5), 3.01 (s, 1H, H4 or 6), 1.95 – 1.81 (m, 

2H, H7 and 3), 1.05 (d, J = 6.7 Hz, 3H, H8), 0.98 (d, J = 6.7 Hz, 3H, H8); 13C NMR (101 MHz, 

CDCl3) δC 174.8 C2, 78.0 C3, 71.5 C5, 52.9 C1, 31.2 C7, 19.2 C8, 19.1 C8.  
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(2S,3S)-2-bromo-1-methoxy-4-methyl-1-oxopentan-3-yl benzoate 4933 

 

Diol 48 (0.5335 g, 3.29 mmol) was dissolved in anhydrous DCM (7 mL). Trimethyl-

orthobenzoate (0.73 mL, 4.25 mmol, 1.3 equiv) was added with BF3.OEt2 (0.02 mL, 0.16 mmol, 

0.05 equiv) and the solution stirred at room temperature for 2 h. Triethyl amine (0.02 mL) 

was added and the solution evaporated to dryness. The residue was re-dissolved in DCM (7 

mL) and acetyl bromine (0.25 mL, 3.4 mmol, 1 equiv.) was added. After 3 h water was added 

(100 mL) and the solution extracted with DCM (100 mL x 2). The organic layers were combined 

and dried (magnesium sulphate), filtered, and evaporated. The resulting brown oil 49 (0.908 

g, 84%) was pure enough to be used without further purification, but a small portion was 

purified by column chromatography for characterization purposes using petroleum ether (40-

60 °C)/ethyl acetate as the eluent. max(neat)/cm-1: 2967 C-H (s), 1750 C=O (s), 1729 C=O (s), 

[α]D 26 = +34.43 (c 0.73, CHCl3) (94% ee) (lit33 [α]D 25 = +31.1 (c 1.01, CHCl3)); 1H NMR (CDCl3, 

400 MHz) δH: 8.06 – 8.00 (m, 2H, H11), 7.61 – 7.55 (m, 1H, H12), 7.48 – 7.41 (m, 2H, H10), 

5.57 (dd, J = 8.8, 3.9 Hz, 1H, H4) 4.48 (d, J = 8.8 Hz, 1H, H3), 3.68 (s, 3H, H1), 2.51 – 2.39 (m, 

1H, H5), 1.02 (d, J = 6.9 Hz, 6H, H6); 13C NMR (CDCl3, 100 MHz) δC 168.4, 165.4, 133.4, 129.9, 

129.6, 128.6, 77.2 C4, 53.3 C3, 44.5 C1, 29.5 C5, 19.7 C6, 15.9 C6.  
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(2R,3R)-methyl 3-isopropyl-1-(4-methoxybenzyl)aziridine-2-carboxylate 280 

 

Ester 49 0.0566 g (0.17 mmol) was dissolved in dry THF (1.6 mL). p-Methoxybenzylamine (0.03 

mL, 0.229 mmol, 1.35 equiv) was added at -78 °C and allowed to warm to room temperature 

over 3 days. The solution was evaporated and purified by column chromatography using 

petroleum ether (40-60 °C)/ethyl acetate (8:2) as the eluent, to produce (0.0113 g, 25%) of 

aziridine 280 as a clear oil. max(neat)/cm-1: 3432, 2959 C-H (s), 1747 C=O (s); 1H NMR (CDCl3, 

400 MHz) δH: 7.24 (d, J = 8.7 Hz, 2H, H10), 6.85 (d, J = 8.7 Hz, 2H, H9), 3.79 (s, 3H, H12), 3.71 

(s, 3H, H1), 3.54 (d, J = 12.9 Hz, 1H, H7), 3.43 (d, J = 12.9 Hz, 1H, H7) 2.25 (d, J = 6.4 Hz, 1H, 

H3), 1.63 – 1.52 (m, 2H, H4 and 5), 0.89 (d, J = 6.3 Hz, 3H, H6), 0.82 (d, J = 6.4 Hz, 3H, H6); 13C 

NMR (CDCl3, 100 MHz) δC: 170.6, 159.1 Ar, 129.0 Ar, 113.8 Ar, 63.8, 55.4, 53.6, 52.1, 42.7 C7, 

27.5 C5, 21.0 C6, 19.7 C6; one quaternary Ar peak unobserved in 13C NMR spectrum; m/z (NSI-

FTMS) [M+H]+: calcd for [C15H22O3N]+ 264.1594, found 264.1598. 
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(2S,3S)-methyl 3-acetoxy-2-bromo-4-methylpentanoate 285 

 

Ester 48 (0.0367 g, 0.226 mmol) was dissolved in anhydrous DCM (0.5 mL). Trimethyl-

orthoacetate (0.05 mL, 0.39 mmol, 1.7 equiv) was added with 1 drop of BF3.OEt2 and the 

solution stirred at room temperature for 2 h. Triethyl amine (1 drop) was added and the 

solution evaporated to dryness. The residue was then re-dissolved in DCM (0.5 mL) and acetyl 

bromine (0.05 mL, 0.67 mmol, 3 equiv.) was added. After 3 h the reaction was quenched with 

water (20 mL) and the solution extracted with DCM (50 mL x 2). The organic layers were 

combined and dried (magnesium sulphate), filtered, and evaporated. The resulting brown oil 

285 (0.0547 g, 91%) was characterized and used without further purification. max(neat)/cm-

1: 3021, 2970 C-H (s), 1751 C=O (s); [α]D 21 = +10.41 (c 0.48, CHCl3); 1H NMR (500 MHz, CDCl3) 

δH 5.31 (dd, J = 9.0, 3.8 Hz, 1H, H4), 4.29 (d, J = 9.0 Hz, 1H, H3), 3.75 (s, 3H, H1), 2.40 – 2.27 

(m, 1H, H5 and 3), 2.04 (s, 3H, H9), 0.93 (d, J = 6.9 Hz, 3H, H6), 0.90 (d, J = 6.9 Hz, 3H, H6); 13C 

NMR (126 MHz, CDCl3) δC 169.7, 168.4, 76.5 C4, 53.2 C1, 44.3 C3, 29.0 C9, 20.7 C5, 19.5 C6, 

15.5 C6. Unfortunately, although attempted, accurate mass data was unable to be obtained 

for this compound.  
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Two step procedure to 286 from 48: 

 (2S,3S)-methyl 2-bromo-3-(formyloxy)-4-methylpentanoate 286 

 

Ester 48 (0.0731, 0.45 mmol), was dissolved in anhydrous DCM (0.9 mL). Trimethyl-

orthoformate (0.07 mL, 0.63 mmol, 1.4 equiv) was added with 1 drop of BF3.OEt2 and the 

solution stirred at room temperature for 2 h. 1 drop of triethyl amine was added and the 

solution evaporated to dryness. The residue was re-dissolved in DCM (0.9 mL) and acetyl 

bromine (0.04 mL, 0.54 mmol, 1.2 equiv.) was added. After 2 hours water was used to quench 

the reaction (20 mL) and the solution extracted with DCM (50 mL x 2). The organic layers were 

combined and dried (magnesium sulphate), filtered, and evaporated. The resulting brown oil 

286 was purified using column chromatography with petroleum ether (40-60 °C)/ethyl 

acetate (9:1) as the eluent to provide 286 (0.0568 g, 91%). max(neat)/cm-1: 3446, 2969 C-H 

(s), 2881, 1751 C=O (s), 1732 C=O (s); [α]D 25 = −13.36 (94% ee) (c 1.01, CHCl3); 1H NMR (500 

MHz, CDCl3) δH 8.08 (s, 1H, H9), 5.40 (dd, J = 9.2, 3.3 Hz, 1H, H4), 4.32 (d, J = 9.2 Hz, 1H, H3), 

3.77 (s, 3H, H1), 2.40 (dtd, J = 13.7, 6.9, 3.6 Hz, 1H, H3), 0.97 (d, J = 6.9 Hz, 3H, H6), 0.93 (d, J 

= 6.8 Hz, 3H, H6); 13C NMR (101 MHz, CDCl3) δC 168.3, 159.8, 76.6 C4, 53.4 C1, 43.5 C3, 28.9 

C5, 19.6 C6, 15.3 C6. Unfortunately, although attempted, accurate mass data was unable to 

be obtained for this compound. 

 

(2S,3S)-methyl 2-bromo-3-hydroxy-4-methylpentanoate 286 

 

The bromo-formate ester 48 (0.2751 g, 1.09 mmol) was dissolved in MeOH (13.5 mL). (±)-CSA 

(0.338 g, 1.46 mmol, 1.3 equiv) was added, and the solution stirred for 5 h. A further portion 
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of (±)-CSA (0.1 g, 0.43 mmol, 0.4 equiv) was added and the reaction left until TLC showed 

complete consumption of the starting material had occurred. The solvents were removed 

under reduced pressure and the residue dissolved in ether (75 mL). The organic layer was 

washed with water (50 mL) and saturated NaHCO3 solution (50 mL). The organic layer was 

dried (magnesium sulphate), filtered, and evaporated under reduced pressure. To provide 

bromo-hydrin 286 (0.217 g, 89%) which could be used without further purification. 

 

Two step procedure to 286 from 48 

(2S,3S)-methyl 2-bromo-3-hydroxy-4-methylpentanoate 286 

 

Diol 48 (0.537 g, 3.31 mmol), was dissolved in anhydrous DCM (6.5 mL). Trimethyl-

orthoformate (0.5 mL, 4.57 mmol, 1.4 equiv) was added with BF3.OEt2 (0.02 mL, 0.16 mmol, 

0.05 equiv) and the solution stirred at room temperature for 2 h. Triethyl amine (0.02 mL) 

was added and the solution evaporated to dryness. The residue was re-dissolved in DCM (6.5 

mL) and acetyl bromine (0.28 mL, 3.78 mmol, 1.1 equiv) was added. After 2 h methanol (3.9 

mL) and (±)-CSA (2.00 g, 8.6 mmol, 2.6 equiv) was added and the solution was left to stir for 

a further 2 hours. The solution was diluted with DCM (50 mL). Water (50 mL) was added and 

the organic layer was separated. The aqueous later was extracted again with DCM (50 mL). 

The organic layers were combined, washed with saturated NaHCO3 solution (50 mL) and dried 

(magnesium sulphate), filtered, and evaporated. The resulting brown oil was purified using 

column chromatography with petroleum ether (40-60 °C)/ethyl acetate (9:1) as the eluent to 

provide 286 (0.4952 g, 67%). max(neat)/cm-1: 3455 O-H (b), 2962 C-H (s), 2877, 1736 C=O (s); 

[α]D 24 = −34.6 (96% ee) (c 0.75, CHCl3); 1H NMR (500 MHz, CDCl3) δH 4.22 (d, J = 8.2 Hz, 1H, 

H4), 3.87 (ddd, J = 8.3, 6.2, 3.9 Hz, 1H, H3), 3.81 (s, 3H, H1), 2.50 (d, J = 6.3 Hz, 1H, OH), 2.14 

(dtd, J = 13.7, 6.9, 3.9 Hz, 1H, H5), 1.02 (d, J = 6.9 Hz, 3H, H6), 0.92 (d, J = 6.8 Hz, 3H, H6); 13C 

NMR (126 MHz, CDCl3) δC 170.4 C2, 76.4 C4, 53.2 C1, 45.4 C3, 29.5 C5, 19.0 C6, 15.0 C6. 
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Unfortunately, although attempted, accurate mass data was unable to be obtained for this 

compound. 

(2R,3S)-3-isopropyl-N-(4-methoxybenzyl)oxirane-2-carboxamide 288 

 

Bromohydrin 283 (0.1053 g, 0.47 mmol) was dissolved in THF (4.4 mL). p-

Methoxybenzylamine (0.12 mL, 0.91 mmol, 2 equiv) was added with triethylamine (0.06 mL, 

0.43 mmol, 0.9 equiv) and the solution was stirred overnight. The solution was evaporated, 

dissolved in ethyl acetate and washed with equal amounts of water (x2) and brine (x2). The 

organic layer was dried (magnesium sulphate), filtered, and evaporated. The resulting residue 

was purified by column chromatography using petroleum ether (40-60 °C)/ethyl acetate (8:2) 

as the eluent to provide epoxy amide 288 as a white crystalline solid (0.078 g, 67%). Mp 75-

77 °C max (neat)/cm-1: 3321, 2964 C-H (s), 2934, 1655 C=O (s), 1534, 1514; [α]D 22 = −3.5 (c 1, 

CHCl3); 1H NMR (400 MHz, CDCl3) δH 7.17 (d, J = 8.8 Hz, 2H, H3), 6.86 (d, J = 8.7 Hz, 2H, H4), 

6.34 (s, 1H, H7), 4.35 (d, J = 5.9 Hz, 2H, H6), 3.80 (s, 3H, H1), 3.31 (d, J = 2.2 Hz, 1H, H9), 2.75 

(dd, J = 6.4, 2.2 Hz, 1H, H10), 1.72 – 1.60 (m, 1H, H11), 1.01 (d, J = 4.2 Hz, 3H, H12), 1.00 (d, J 

= 4.3 Hz, 3H, H12); 13C NMR (101 MHz, CDCl3) δC 168.6 C8, 159.3, 129.8, 129.3, 114.3, 64.8 

C9, 55.5 C10, 54.7 C1, 42.5 C6, 30.3 C11, 18.6 C12, 18.2 C12; m/z (NSI-FTMS) [M+H]+ calcd for 

250.1438 [C14H20NO3]+ found 250.1440. Determination of ee was found by HPLC using an AD-

H Chiralpak column 80:20 hexane/IPA, 230 nm, 0.8 mL/min, 25 °C. 
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(2R,3S)-2-hydroxy-1-methoxy-4-methyl-1-oxopentan-3-yl benzoate 284 

 

Diol 48 (0.274 g, 1.69 mmol) was dissolved in dry dichloromethane (3.4 mL). Trimethoxy 

orthobenzoate (0.4 mL, 2.3 mmol, 1.4 equiv) was added along with 1 drop of BF3.OEt2. The 

solution was stirred for 2 h. Water (1 mL) was added and the solution vigorously stirred for a 

further 1 h. The solution was diluted with water (approximately 20 mL) and extracted twice 

with equal amounts of dichloromethane. The organic was dried (magnesium sulphate), 

filtered, and evaporated. Purification using column chromatography with petroleum ether 

(40-60 °C)/ethyl acetate as the eluent provided 284 as a clear oil (0.317 g, 70%). max 

(neat)/cm-1: 3490 O-H (b), 2968 C-H (s), 1744 C=O (s), 1721 C=O (s), 1272; [α]D 19 = −45.1 (c 

0.51, CHCl3), (94 % ee); 1H NMR (CDCl3, 400 MHz) 1H NMR (500 MHz, CDCl3) δH 8.01 (dd, J = 

8.4, 1.3 Hz, 2H, H13 and 14), 7.61 – 7.52 (m, 1H, H15), 7.43 (t, J = 7.8 Hz, 2H, H12 and 11), 5.14 

(dd, J = 9.1, 2.0 Hz, 1H, H5), 4.46 (dd, J = 7.9, 1.9 Hz, 1H, H3), 3.71 (s, 3H, H1), 3.02 (d, J = 8.0 

Hz, 1H, H4), 2.40 – 2.25 (m, 1H, H6), 1.09 (d, J = 6.8 Hz, 3H, H7 or 8), 0.99 (d, J = 6.8 Hz, 3H, H8 

or 7); 13C NMR (CDCl3, 100 MHz) δC: 173.6, 166.0, 133.3, 129.9, 129.8, 128.6, 79.6 C3, 70.6 

C5, 52.9 C1, 29.3 C6, 19.0 C7 or 8, 19.0 C7 or 8; m/z (TOF-ASAP) [M+H]+ calcd for 267.1233 

[C14H19O5]+ found 267.1227. 
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(2R,3S)-methyl 2,3-dihydroxy-4-methylpentanoate 48 

 

Benzoyl ester 284 (0.036 g, 0.135 mmol) was dissolved in methanol. The solution was cooled 

with an ice bath and potassium tert-butoxide (0.019 g, 0.17 mmol, 1.3 equiv) was added. After 

1 h, the solution was neutralised with amberlite resin H+ 120. After neutralisation the solution 

was filtered, evaporated, and purified by column chromatography, using petroleum ether (40-

60 °C)/ethyl acetate as the eluent to provide diol 48 as a waxy white solid (0.018 g, 84%). 

 

(2R,3S)-methyl 3-acetoxy-2-hydroxy-4-methylpentanoate 295 and (2R,3S)-methyl 2-

acetoxy-3-hydroxy-4-methylpentanoate 296 

 

Diol 48 (0.0881 g, 0.54 mmol) was dissolved in dry dichloromethane (1.2 mL). Trimethoxy 

orthoacetate (0.09 mL, 0.7 mmol, 1.3 equiv) was added along with 1 drop of BF3.OEt2. The 

solution was stirred for 2 h. Water (0.3 mL) was added and the solution vigorously stirred for 

a further 1 h. The solution was diluted with water (approximately 20 mL) and extracted twice 

with equal amounts of dichloromethane. The organic solution was dried (magnesium 

sulphate), filtered, and evaporated. Purification by column chromatography using petroleum 

ether (40-60 °C)/ethyl acetate (9:1) as the eluent provided 295 as a clear oil (0.0344 g, 31%) 

and 296 as a clear oil (0.0125 g, 11%), which rapidly converted to 295 upon standing in 

chloroform. First eluting regioisomer 295: max(neat)/cm-1: 3491 O-H (b), 2966 C-H (s), 1748 

C=O (s), 1272; [α]D 24 = −115.1 (c 0.76, CHCl3); 1H NMR (CDCl3, 400 MHz) δH: 4.85 (dd, J = 9.3, 

1.8 Hz, 1H, H6), 4.33 (d, J = 1.6 Hz, 1H, H3), 3.73 (s, 3H, H1), 2.86 (bs, 1H, H7), 2.21 – 2.08 (m, 

1H, H8), 2.03 (s, 3H, H5), 1.01 (d, J= 6.8 Hz, 3H, H9), 0.91 (d, J= 6.7 Hz, 3H, H9); 13C NMR (CDCl3, 
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100 MHz) δC 173.7, 170.4, 79.1 C3, 70.2 C6, 52.8 C1, 28.9 C5, 20.7 C8, 19.0 C9, 18.8 C9; m/z 

(FTMS-NSI) [M+Na]+ calcd for 227.0895 [C14H19O5]+ found 227.0891. Second eluting 

regioisomer 296: 1H NMR (CDCl3, 400 MHz) δH: 5.21 (d, J = 2.6, 1H, H3), 3.77 (s, 3H, H1), (dd, 

J = 8.5, 2.6 Hz, 1H, H6), 2.18 (s, 3H, H5), 1.96 (bs, 1H, OH), 1.85 – 1.70 (m, 1H, H8), 1.05 (d, J= 

6.7 Hz, 3H, H9), 0.90 (d, J = 6.8 Hz, 3H, H9); 13C NMR (CDCl3, 100 MHz) δC 170.3, 169.5, 76.8 

C6 or 3, 73.3 C3 or 6, 52.7 C1, 31.2 C5, 20.7 C8, 19.1 C9, 18.9 C9. 

(S)-1-((4-methoxybenzyl)amino)-4-methyl-1,2-dioxopentan-3-yl benzoate 289196 

 

Formaldehyde (aqueous 37%), (0.81 mL, 10.8 mmol, 1.1 equiv), methanol (15 mL), ethyl 

acetoacetate (2.7 mL, 21.16 mmol, 2.1 equiv), ammonium acetate (0.77 g, 9.98 mmol), p-

toluenesulphonic acid monohydrate (0.049 g, 0.28 mmol, 0.028 equiv) were stirred at room 

temperature for 16 h. The resulting suspension was evaporated to a crude yellow solid which 

was recrystalized twice with methanol to provide Hantzsch’s ester 289 as a yellow solid (0.57 

g, 23%). Mp 160-167 °C  (lit210 164-166 °C); max(neat)/cm-1: 3349 N-H (b), 2987 C-H (s), 1694 

C=O (s), 1657 C=O (s);  1H NMR (400 MHz, CDCl3) δH 5.11 (s, 1H, H1), 4.17 (q, J = 7.1 Hz, 4H, 

H6), 3.26 (s, 2H, H8), 2.19 (s, 6H, H3), 1.28 (t, J = 7.1 Hz, 6H, H7); 13C NMR (101 MHz, CDCl3) 

δC 168.2 C5, 144.9 C4, 99.7 C2, 59.8 C6, 24.9 C8, 19.4 C3, 14.6 C7. 
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(11bS)-4-hydroxydinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine 4-oxide 290195 

 

S-Binol 292 (1.021 g, 3.57 mmol) was dissolved in dry pyridine (7.1 mL). POCl3 (0.67 mL, 6.43 

mmol, 1.8 equiv) was added and the mixture was heated to 75 °C. After 5 h the mixture was 

cooled and water (7.2 mL) was added and the solution was stirred for a further 2 h. DCM (150 

mL) was added and the pyridine was removed with HCl (4 M, 150 mL). The organic layer was 

dried (sodium sulphate), filtered, and evaporated under reduced pressure to afford a crude 

which was purified by column chromatography using DCM/MeOH (9:1) as the eluent to afford 

290 as a beige solid (0.576 g, 46%). Mp >300 °C (lit211 236-239 °C) [α]D 23 = +583 (c 0.18, CHCl3) 

(lit212 [α]D 20 = +607 (c 1, MeOH)); max (neat)/cm-1: 1237, 1096; 1H NMR (500 MHz, DMSO) δH 

8.05 (dd, J = 19.7, 8.1 Hz, 4H), 7.46 (d, J = 6.6 Hz, 4H), 7.38 – 7.27 (m, 2H), 7.22 (d, J = 8.1 Hz, 

2H); 13C NMR (126 MHz, DMSO) δC 146.1, 131.9, 130.5, 130.1, 128.5, 126.3, 126.1, 124.7, 

122.3, 121.6. 

(2R,3S)-methyl 2-azido-3-hydroxy-4-methylpentanoate 264 

 

Bromohydrin 283 (0.1469 g, 0.65 mmol) was dissolved in DMF (5.8 mL). Sodium azide (0.144 

g, 2.21 mmol, 3.4 equiv) was added and the solution was stirred for 20 h. The DMF was 

evaporated under reduced pressure and the resulting residue dissolved in ethyl acetate (50 

mL) and water (25 mL). The aqueous layer was removed and the organic layer washed again 

with brine (25 mL). Both aqueous layers were removed and extracted with ethyl acetate (50 

mL). The organic layers were dried (sodium sulphate), filtered, and evaporated under reduced 

pressure. The azide 264 was produced as a clear oil (0.098 g, 80%). Although the product was 

used without purification, a small portion was purified by column chromatography for 

characterization purposes using petroleum ether (40-60 °C)/ethyl acetate (8:2) as the eluent. 
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max(neat)/cm-1: 3483 O-H (b), 2963 C-H (s), 2876, 2117, 1747 C=O (s), 1438; [α]D 25 = +36.7 (c 

0.64, CHCl3); 1H NMR (500 MHz, CDCl3) δH 4.03 (d, J = 2.9 Hz, 1H, H3), 3.84 (s, 3H, H1), 3.70 

(dd, J = 8.4, 2.9 Hz, 1H, H4), 1.96 (s, 1H, H6), 1.91 – 1.81 (m, 1H, H7), 1.05 (d, J = 6.7 Hz, 3H, 

H7), 0.95 (d, J = 6.7 Hz, 3H, H7). 13C NMR (101 MHz, CDCl3) δC 170.2 C2, 78.0 C4, 64.2 C3, 53.0 

C1, 31.4 C5, 19.1 C7, 18.7 C7; m/z (ASAP-TOF) [M+H-N2]+ calcd for 160.0974 [C7H14NO3]+ found 

160.0975. 

(2R,3S)-methyl 2-amino-3-hydroxy-4-methylpentanoate 36 

 

The azido alcohol 264 (0.0853 g, 0.45 mmol) was dissolved in MeOH (0.5 mL) and the solution 

gassed with nitrogen. Pd/C (0.0210 g, 10% by weight) was added and the suspension placed 

under a static atmosphere of hydrogen. The suspension was stirred overnight, filtered 

through celite, and washed with methanol. The resulting solution was evaporated under 

reduced pressure to produce the amino ester 36, which was used onto the next step without 

further purification (0.0734 g, quant). 

 

(2R,3S)-3-hydroxy-1-methoxy-4-methyl-1-oxopentan-2-aminium chloride 300 

 

The amino acid ester 36 (0.0128 g, 0.079 mmol) was dissolved in MeOH (0.54 mL) a solution 

of methanolic HCl (3 M, 0.54 mL) was added and stirred for 3 h. The solution was evaporated 

to produce 300 as a waxy yellow residue (0.0155 g, quant). max(neat)/cm-1: 3423 O-H (b), 

2965 C-H (s), 2929, 2027, 1743 C=O (s); [α]D 24 = -4.8 (c 1.7, CHCl3); 1H NMR (400 MHz, CDCl3) 

δH 8.35 (s, 3H, H4), 4.26 (s, 1H, H5), 4.39 – 3.64 (m, 5H, H3, 1, 6), 1.99 (s, 1H, H7), 1.11 – 0.91 

(m, 6H, H8 and 9); 13C NMR (101 MHz, CDCl3) δC 169.4 C2, 75.1 C5, 56.6 C3, 53.9 C1, 30.4 C7, 

19.8 C9 or 8, 17.5 C8 or 9. 
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 (2R,3S)-methyl 3-hydroxy-4-methyl-2-(((2-nitrophenoxy)sulfonyl)oxy)pentanoate 305 

 

Diol 48 (0.4589 g, 2.83 mmol) was dissolved in anhydrous DCM (22 mL). 2-Nosyl chloride 

(0.728 g, 3.82 mmol, 1.3 equiv) was added in one portion, triethyl amine (0.4 mL, 2.86 mmol, 

1 equiv) was slowly added over 0.5 h. The solution was stirred for 3 h. HCl (1 M, 1 mL), was 

added with DCM (75 mL) and the solution was washed with an equal portion of brine. The 

organic layer was dried (magnesium sulphate), filtered, and evaporated to dryness. The 

resulting yellow oil was purified by column chromatography using petroleum ether (40-60 

°C)/ethyl acetate (7:3) as the eluent to provide 305 as a pale-yellow oil. (0.605 g, 62 %). 

max(neat)/cm-1: 3544 O-H (b), 3101, 2964 C-H (s), 1766 C=O (s), 1547; [α]D 26 = −23.3 (c 0.73, 

CHCl3) (96% ee); 1H NMR (500 MHz, CDCl3) δH 8.19 (dd, J = 7.3, 1.2 Hz, 1H, Ar), 7.85 – 7.75 (m, 

3H, Ar), 5.24 (d, J = 3.0, 1H, H3), 3.75 – 3.68 (m, 4H, H4 and 1), 2.00 – 1.80 (m, 2H, H6 and 5), 

1.05 (d, J = 6.7 Hz, 3H, H7), 0.98 (d, J = 6.7 Hz, 3H, H7); 13C NMR (126 MHz, CDCl3) δC 167.7 C2, 

148.4 Ar, 135.1 Ar, 132.5 Ar, 131.5 Ar, 130.3 Ar, 125.0 Ar, 80.9 C3, 77.3 C4, 53.0 C1, 30.7 C6, 

18.0 C7, 18.4 C7; m/z (ASAP-TOF) [M+H]+ calcd for 348.0753 [C13H18NO8S]+ found 348.0752. 

Determination of ee was found by HPLC using an AD-H Chiralpak column 25:75 hexane/IPA, 

254 nm, 0.8 mL/min, 25 °C. 
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(2S,3S)-methyl 2-azido-3-hydroxy-4-methylpentanoate 26439 

Synthesis of 264 from 283 via the epoxide 

 

Bromo-hydrin 283 (0.0285 g, 0.13 mmol) was dissolved in PEG-400 (0.23 mL). Triethylamine 

(0.025 mL, 0.18 mmol, 1.4 equiv) was added and the solution and stirred for 1 hour. Sodium 

azide (0.034 g, 0.52 mmol, 4 equiv) was added and the suspension stirred for 36 h. Water (20 

mL) was added and the solution extracted with ethyl acetate (20 mL x 2). The solution was 

dried with sodium sulphate, filtered and evaporated to a colourless oil. The crude material 

was purified by column chromatography using petroleum ether (40-60 °C)/ethyl acetate (9:1) 

as the eluent to produce azide 264 as a clear residue (2.1 mg, 9%). 
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Synthesis of 264 from the nosylated precursor 305 

 

Nosylated diol 305 (0.5933 g, 1.63 mmol) was dissolved in DMF (18 mL). Sodium azide (0.304 

g, 4.68 mmol, 2.9 equiv) was added and the mixture stirred at room temperature overnight. 

The solution was evaporated to dryness and water (50 mL) was added along with ethyl acetate 

(50 mL). The organic layer was removed, and the aqueous solution re-extracted with ethyl 

acetate (50 mL). The organic layers were combined and washed with brine (50 mL). The 

organic layer was dried (magnesium sulphate), filtered, and evaporated under reduced 

pressure. The resulting pale-yellow oil 264 (0.3051 g, 95%) could be used without further 

purification, however a small portion was purified for characterization purposes by column 

chromatography using petroleum ether (40-60 °C)/ethyl acetate (9:1) as the eluent.  

max(neat)/cm-1: 3435 O-H (b), 3020, 2966 C-H (s), 2113, 1741 C=O (s); [α]D 26 = −66 (c 1, CHCl3); 

(Lit39 [α]D 23 = -47.6 (c 1.1, CHCl3));  1H NMR (400 MHz, CDCl3) δH 3.93 (d, J = 6.5 Hz, 1H, H3), 

3.84 (s, 3H, H1), 3.68 (dd, J = 6.5, 5.5 Hz, 1H, H4), 2.00 – 1.87 (m, 1H, H6), 1.61 (bs, 1H, H5), 

1.00 (d, J = 6.8 Hz, 3H, H7), 0.97 (d, J = 6.8 Hz, 3H, H7); 13C NMR (126 MHz, CDCl3) δC 170.2 C1, 

76.6 C4, 64.0 C3, 52.9 C1, 30.30 C6, 19.4 C7, 16.6 C7. 

 

(2S,3S)-methyl 2-amino-3-hydroxy-4-methylpentanoate 265 

 

The azido alcohol 264 (0.2160 g, 1.15 mmol) was dissolved in MeOH (1.2 mL) and the solution 

gassed with nitrogen. Pd/C (0.042 g, 10% by weight) was added, and the suspension placed 

under a static atmosphere of hydrogen. The suspension was stirred overnight, filtered 

through celite, and washed with methanol. The resulting solution was evaporated under 
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reduced pressure, and purified by column chromatography using 99% Ethyl acetate 1% TEA 

to 10% MeOH/DCM as the eluent to produce amine 265 as a clear oil. (0.0737 g, 41%). max 

(neat)/cm-1: 3366 O-H (b), 2959 C-H (s), 2874, 1735 C=O (s); [α]D 25 = +31.6 (c 0.6, CHCl3); (Lit39 

[α]D 23 = +8.6 (c 0.7, CHCl3))  1H NMR (400 MHz, CDCl3) δH 3.75 (s, 3H, H1), 3.63 (d, J = 4.9 Hz, 

1H, H5), 3.47 – 3.41 (m, 1H, H3), 2.19 (s, 4H, H6 and 4), 1.78 (p, J = 6.8 Hz, 1H, H7), 0.96 (t, J = 

7.3 Hz, 6H, H8); 13C NMR (101 MHz, CDCl3) δC 174.9 C2, 78.6 C5, 56.8 C1, 52.2 C3, 30.7 C7, 

19.6 C8, 18.0 C8. HRMS (NSI-FTMS) m/z [M + H]+ calcd for [C7H16NO3]+ 162.1125, found 

162.1122. 

 

(2S,3S)-3-hydroxy-1-methoxy-4-methyl-1-oxopentan-2-aminium chloride 306 

 

The amino acid ester 265 (0.0555 g, 0.344 mmol) was dissolved in MeOH (2.4 mL) a solution 

of methanolic HCl was added (3 M, 2.4 mL) and the solution stirred for 3 h. The solution was 

evaporated to a waxy yellow residue providing the hydrochloride salt 306 (0.068 g, quant.). 

max (neat)/cm-1: 3391 O-H (b), 2965 C-H (s), 1745 C=O (s), 1618; [α]D 25 = +28.1 (c 0.48, CHCl3); 

1H NMR (500 MHz, CDCl3) δH 8.35 (s, 3H, H4), 4.88 (s, 1H, H5), 4.39 (s, 1H, H3), 3.84 (s, 4H, H1 

and 6), 1.90 (s, 1H, H7), 1.12 – 0.79 (m, 6H, H8); 13C NMR (126 MHz, CDCl3) δC 168.5 C2, 76.2 

C5, 56.4 C3, 53.6 C1, 31.1 C7, 20.1 C8, 19.1 C8. HRMS (NSI-FTMS) m/z [M - Cl]+ calcd for 

[C7H16NO3]+ 162.1125, found 162.1121. 
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3.3 X-ray crystallography data 

 

 

 

 

 

 

 

 

 

 

Compound number 179 

Space group P 21/n (14) 

Cell lengths a 15.59060(16) b 5.83233(5) c 19.3142(2) 

Cell angles  90.0000  112.9800(13)  90.0000 

Cell volume 1616.86 

Z, Z’ Z: 4 Z': 0 

R-factor % 4.11 
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Compound number 197 

Space group P 1 (2) 

Cell lengths a 10.3698(15) b 11.4667(12) c 12.0264(11) 

Cell angles  65.754(8)  80.975(12)  85.855(12) 

Cell volume 1287.69 

Z, Z’ Z: 0 Z': 0 
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Compound number 212a 

Space group P 21 21 21 (19) 

Cell lengths a 6.24701(5) b 17.78990(14) c 20.26860(16) 

Cell angles a 90.0000 b 90.0000 g 90.0000 

Cell volume 2252.52 

Z, Z’ Z: 0 Z': 0 
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Compound number 216a 

Space group P 21 (4) 

Cell lengths a 8.41466(6) b 22.42870(13) c 11.38440(9) 

Cell angles  90.0000  107.7070(8)  90.0000 

Cell volume 2046.79 

Z, Z’ Z: 0 Z': 0 
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Compound number 217 

Space group P 21 (4) 

Cell lengths a 10.3313(2) b 10.2519(2) c 26.4465(6) 

Cell angles  90.0000  98.891(2)  90.0000 

Cell volume 2767.44 

Z, Z’ Z: 0 Z': 0 

Compound number (±)-217 

Space group P 21/n (14) 

Cell lengths a 14.29830(9) b 10.41200(6) c 18.66340(11) 

Cell angles a 90.0000 b 105.0690(6) g 90.0000 

Cell volume 2682.95 

Z, Z’ Z: 0 Z': 0 
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Compound number 288 

Space group P 21 (4) 

Cell lengths a 8.19162(12) b 5.13934(7) c 15.5952(2) 

Cell angles  90.0000  92.5974(13)  90.0000 

Cell volume 655.876 

Z, Z’ Z: 0 Z': 0 



 

241 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound number 156 

Space group P 21/n (14) 

Cell lengths a 5.61665(15) b 22.0705(7) c 8.3267(3) 

Cell angles  90.0000  98.395(3)  90.0000 

Cell volume 1021.14 

Z, Z’ Z: 0 Z': 0 
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