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Abstract 

Tuberculosis is primarily a pulmonary condition caused by Mycobacterium tuberculosis, 

which causes a serious threat to human health. In 2016 more than 1.3 million people died of 

tuberculosis, meanwhile there were 10.4 million new infections worldwide. Treatment for 

tuberculosis currently takes a minimum of 6 months with a combination of four different 

antibiotics, but there is increasing resistance to the first line antibiotics. The second line 

antibiotics include the fluoroquinolones (moxifloxacin, levofloxacin and gatifloxacin), which 

target DNA gyrase, the only Type IIA topoisomerase in M. tuberculosis, of which there is 

limited structural and biochemical information available within the literature. 

 

To address these problems, we sought to increase our knowledge of mycobacterial DNA 

gyrase through biochemical mechanistic studies, inhibition studies of known and novel 

inhibitors of DNA gyrase alongside structural studies by X-ray crystallography. This led us to 

determine that a fusion of the GyrB and GyrA subunits was fully active and, in some cases, 

potentially more active than using the individual subunits. In particular, we determined that a 

detectable and greater rate of ATPase activity was present in Mtb DNA gyrase than previously 

suggested. We found this rate to be highly DNA-dependent requiring a topologically 

unconstrained DNA substrate (linear or nicked plasmid) for the highest rates. In addition, we 

cloned, expressed, purified and partially characterised DNA gyrase from the thermophilic M. 

thermoresistibile for use in structural studies. 

 

In investigating the novel tricyclic group of compounds optimised by Redx AntiInfectives, we 

determined that they act in a similar mechanism of action to novobiocin through biochemical 

studies. They differ in their binding pocket, as determined by X-ray crystallography, and 

mechanism of resistance, as determined by bacterial mutagenesis.  
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1. Introduction 

1.1 Tuberculosis 

In 2017 tuberculosis was the 9th biggest killer worldwide, and the biggest killer via an 

infectious agent (WHO, 2018a). In 2016 there were an estimated 10.4 million new cases of 

tuberculosis causing approximately 1.3 million deaths in HIV-negative patients. Within these 

cases an estimated 558,000 new cases were classified as drug-resistant with approximately 

82% of these being multidrug-resistant (resistant to 2 or more of the first line drugs). These 

were most prevalent in China, India and the Russian federation (WHO, 2018a) (Figure 1.1.1). 

 

 

Figure 1.1.1: World map of the estimated new tuberculosis cases recorded per 100,000 population in 

2017, indicating the worst affected areas to be south-east Asia and sub-Saharan Africa. Figure 

reproduced from Figure 3.4 (WHO, 2018a). 

 

Tuberculosis is caused by the bacterium Mycobacterium tuberculosis (Mtb). Primarily it 

causes a pulmonary disease which spreads as an airborne pathogen. The difficulty with Mtb 

is that it commonly infects without resulting in an active infection (Styblo, 1980, Comstock, 

1982). This non-active latent disease state is formed when the bacteria become encased in an 

immune response causing a granuloma to form in the lower respiratory tract. In this latent state 

of infection, the patient is unable to spread the disease, nor do they experience any symptoms. 

There are several different known pathologies of the granuloma but the classical caseous 

granuloma is the most widely studied. In this case the Mtb is surrounded by immune cells 
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including macrophages and dendritic cells, which are encased by both B and T cells. It is 

thought that fibroblasts encase the whole structure (Barry et al., 2009) (Figure 1.1.2). 

 

 

Figure 1.1.2: Cartoon representation of a representation of a classical granuloma containing M. 

tuberculosis typically found in the lungs. The M. tuberculosis cells are encased within or surrounded 

by macrophages which are surrounded by foam cells and dendritic cells. This layer of immune cells is 

then encapsulated by T and B cells. The M. tuberculosis inside the granuloma appear to enter a dormant 

state where they are not actively replicating, nor have they been killed. Adapted from (Ramakrishnan, 

2012) and (Cadena et al., 2017). 

 

In many cases the patient will die from other causes unaware that they were infected with 

latent tuberculosis, however, in a percentage of cases the infection will progress into an active 

disease state causing tuberculosis (Saunders and Britton, 2007). It is more common for the 

infection to progress to an active disease state in patients that become immuno-compromised, 

and especially those who are co-infected with HIV/AIDS (Selwyn et al., 1989). Currently, 

there is no clear evidence as to what causes the progression of the disease from a latent to an 

active disease state. For the most part even if a latent disease is discovered it is left untreated 

until an active infection is detected. This is largely because there is a major issue with 
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incomplete treatment of latent infections causing resistance, and complications treating any 

subsequent infections. 

 

1.2 Current treatments 

The current BCG vaccination programme was introduced in 1921, and is generally accepted 

to be only between 60-80% effective against the most severe forms of childhood meningitis 

tuberculosis infections, and less effective in pulmonary infections (Trunz et al., 2006, 

Rodrigues et al., 2011, Roy et al., 2014). As the disease burden cannot be fully prevented even 

through complete vaccination, it is important to have effective treatments for those cases that 

are able to occur. At present there is only one approved standard course of treatment against 

tuberculosis – this is known as DOTS (directly observed treatment, short course) which 

consists of treatment via isoniazid and rifampicin for 6 months and additional treatment with 

pyrazinamide and ethambutol for the first 2 months (or longer as removal requires the 

pathogenic strain to be first identified as fully drug-sensitive) (WHO, 2010). Where a person 

is deemed to have drug-resistant TB they are treated using second line anti-tuberculosis 

treatments including a fluoroquinolone such as moxifloxacin or levofloxacin (WHO, 2010). 

It is recommended wherever possible to use different drugs from unique drug classes 

depending on the sensitivity of the infection (Table 1.2.1). Where the susceptibility of a drug 

is unknown it should be assumed that the strain is susceptible, but once resistance has been 

confirmed, drugs should not be used if there is a possibility of cross-resistance (WHO, 2010). 

 

1.2.1 Treatment for co-infection with HIV/AIDS 

With an estimated 374,000 tuberculosis deaths being in the patient group that were co-infected 

with HIV/AIDS in 2016, it is highly important to keep developing new strategies for treating 

these patients (WHO, 2017). However, there are additional challenges faced when treating 

patients who are co-infected with both tuberculosis and HIV/AIDS. This is primarily due to 

drug interactions between the anti-tuberculosis and anti-viral treatments leading to decreased 

efficiency of the drugs alongside increased toxicity (Zumla et al., 2013). Currently, it is 

recommended that all patients begin a course of the DOTS tuberculosis treatments as above, 

alongside a treatment program of co-trimoxazole and anti-retroviral treatment to treat the HIV 

infection (WHO, 2010). This has led to a drive to create a novel treatment plan for those co-

infected to treat susceptible strains in this patient group. 
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Table 1.2.1: Treatment groups of drugs against tuberculosis defined to be drug-resistant. Table adapted 

from Table 2 (WHO, 2018c). 

Group Drug 

A: Include all three medicines Levofloxacin OR Moxifloxacin 

Bedaquiline 

Linezolid 

B: Add one or both medicines Clofazimine 

Cycloserine OR Terizidone 

C: Add to complete the regimen and when 

medicines from Groups A and B cannot be 

used 

Ethambutol 

Delamanid 

Pyrazinamide 

Imienem-Cilastatin OR Meropenem 

Amikacin (OR Streptomycin) 

Ethionamide OR Prothionamide 

p-aminosalicyclic acid 

 

1.2.2 Treatment of latent tuberculosis 

Recent estimates predict that approximately 23% of the world population is currently infected 

with latent tuberculosis (LBTI) (Houben and Dodd, 2016). As discussed in section 1.1, LBTI 

is an asymptomatic state where the infective agent (M. tuberculosis) is encased and non-

transmissible. In this state there is no immediate risk to the patient therefore treatment is not 

imperative. It is only recommended to treat a fraction of LTBI cases where there is a greater 

risk of developing the active disease, these include those with a HIV infection and those in 

low burden countries who are currently in prison, homeless or are illicit drug users (WHO, 

2015). The currently used programme to treat LTBI is currently a 6-9 month course of 

isoniazid or a shorter 3-month course using a combination of rifampicin or rifapentine 

alongside isoniazid (Esmail et al., 2012, Esmail et al., 2014, WHO, 2015). The major issue 

with these treatment programmes is that because isoniazid mainly kills only replicated bacilli, 

it therefore may not kill the potentially non-replicating bacteria in the granuloma (Fox et al., 

1999). 

 

1.3 Mycobacterial infections 

Apart from tuberculosis there are several other infectious species within the Mycobacteria 

genus. These include infections such as bovine tuberculosis (M. bovis) and marine tuberculosis 

(M. marinum) alongside less infective environmental mycobacteria such as M. smegmatis. 

This gives the opportunity to study less infective bacteria in the laboratory in the place of M. 

tuberculosis as they contain several unusual properties as well as giving the option to look at 

homologues of proteins and enzymes. 
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1.3.1 Mycobacterial properties 

Amongst the unusual properties of Mycobacteria is the distinctly slower growth rate than 

typical laboratory bacteria such as Escherichia coli. Typically, the doubling time for 

Mycobacteria is in the range of several hours to several days rather than around half an hour 

for E. coli (Cole et al., 2001, Cox, 2003). This has been determined for M. tuberculosis to be 

about 72 times slower whilst in log-phase (Musuka et al., 2013). Many of the Mycobacterial 

enzymes are significantly slower in their functions and reduced in redundancy than those 

found in faster growing species, however, the debate remains of whether this is result or cause 

of the slower growth rate (Harshey and Ramakrishnan, 1977, Hiriyanna and Ramakrishnan, 

1986, Stephan et al., 2005). Additionally, several traditionally essential genes, which cause 

lethal knockouts in other bacteria are found not to be present at all within the Mycobacterial 

genome (Bercovier et al., 1986, Stephan et al., 2005). One particularly noticeable example is 

in the topoisomerases where only two have been functionally annotated within the genome 

although a third was at one point postulated (Cole et al., 1998, Jain and Nagaraja, 2005). 

 

Secondly, Mycobacteria are defined as Gram-intermediate (Reynolds et al., 2009) due to the 

presence of their unusual cell wall which is made of the very hydrophobic lipid – mycolic acid 

(Figure 1.3.1). This has an extensive synthesis mechanism which has been exploited as a drug 

target. The lipidic nature of the mycolic acid cell wall structure also makes mycobacterial cells 

very hydrophobic. This unique cell wall structure, like that of the outer membrane of Gram-

negative bacteria, also provides a useful function to the cell in modulating entry of potentially 

lethal compounds to the cells (Nikaido, 2001). Although, some molecules will still make it 

across the membrane the numbers are greatly decreased, and with an effective efflux system 

it means that although some molecules may effectively kill the function of an essential protein, 

they will not be active against whole cells unless they can actively cross the membrane. 

Limiting the range of effectiveness of several compounds against TB and other mycobacterial 

infections (Nikaido, 2001). This also means that there is the possibility of making a 

mycobacterial specific inhibitor which can permeate the mycolic acid cell wall efficiently but 

possibly with a lower degree of specificity to penetrate through other bacterial membranes. 
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Figure 1.3.1: Cartoon representation of the Mycobacterial cell membrane and wall. The cytoplasmic or 

cell membrane is covered by a layer of peptidoglycan as with many other bacteria. The mycobacterial 

membrane then differs as this peptidoglycan membrane is further covered with a layer of arabinan and 

galactan which is additionally decorated with mycolic acids. This combination makes it very 

hydrophobic and difficult to penetrate. 

 

1.3.2 Latent infections and granuloma formation 

Granuloma is described by the Merrium-Webster medical dictionary (2018) as the “mass or 

nodule of chronically infected tissue with granulations that is usually associated with an 

infective process”. Although traditionally granuloma are primarily associated with 

tuberculosis infections, a wide range of bacterial and fungal species can cause them in both 

the human lungs and in other organs and species. However, they are a significant feature of 

mycobacterial infections forming in multiple different organs. For example, a M. marinum 

human infection commonly causes granuloma below the skin in what is known as “swimming 

pool granuloma”, but also causes these formations in their native fish hosts (Zumla and James, 

1996). Typically, M. tuberculosis infections are initially isolated within granuloma most 

commonly within the lungs of infected patients long before any active infection may be 

discovered. This type of infection is difficult to identify in the lungs as a granuloma type 
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infection is commonly asymptomatic, with the current best method available for identifying 

the M. tuberculosis granuloma being the tuberculin skin test where a hypersensitivity response 

is observed in those with a latent infection (Esmail et al., 2012, Lardizabal and Reichman, 

2017). 

 

Over recent years there have been developments into increasing our understanding 

classification of the granuloma and disease progression, although this is still not fully 

understood. However, the major importance of the granuloma is to provide an immune state 

in which the bacteria are surrounded by immune cells to contain the infection, but not eradicate 

the infection meaning that the infection can be induced at a later time, for example if a patient 

becomes immunocompromised in later life (Flynn and Chan, 2001). Furthermore, while the 

bacteria are contained within a granuloma it is thought that they have a significantly lower 

metabolic rate, which significantly decreases the effect of many antibiotics on them (Norton 

and Holland, 2012). Currently the preferred treatment for LBTI is a monotherapy course of 

isoniazid for 6 months, although shorter 3 months treatment courses of rifampicin or 

rifapentine with isoniazid in high TB incidence countries may be considered. These additional 

options along with a 3-4 months course of rifampicin monotherapy may be considered in low 

TB incidence countries (WHO, 2018b). 

 

1.3.3 Mycobacterium smegmatis as a homologue 

M. smegmatis was first identified in 1884, it is a common environmental mycobacterium 

which is rarely found to be a human pathogen (Tsukamura, 1976). On the few occasions when 

it has been identified as a human pathogen, it has mostly been described as forming skin 

lesions around wound sites (Newton et al., 1993, Shimizu, 2012, Saffo and Ognjan, 2016). In 

only one case it was described to be like a typical M. tuberculosis lung infection (Vonmoos et 

al., 1986) and once described as a systemic infection leading to death of an immune-deficient 

child (Pierre-Audigier et al., 1997). Interestingly, there has also been a canine case described 

within the literature (Grooters et al., 1995), although it is not normally a human or animal 

pathogen. 

 

In addition to its potential to cause tuberculosis like infections, M. smegmatis has significant 

advantages as a laboratory bacterium as a surrogate. The major difference is that M. smegmatis 

is classed as a fast-growing Mycobacterium, which means that it has a doubling time in the 

order of hours not days (Cox, 2003), whilst maintaining a similar cell wall structure and having 
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a high degree of sequence homology within essential genes. This is underlined in the fact that 

M. smegmatis is classified within group 4 of the Runyon classification of mycobacteria with 

the other rapid growers (Runyon, 1959). The combination of the decreased pathogenicity, 

pathogenicity control and increased growth rate, makes M. smegmatis an ideal laboratory 

bacterium to use to study the effect of compounds on growing mycobacteria. 

 

1.3.4 Mycobacterium thermoresistibile as a homologue 

M. thermoresistibile is a thermophilic opportunistic pathogenic bacterium first described in 

1966 (Tsukamura, 1966). Although the infection is relatively unheard of, 6 human and 2 feline 

infection reports have been described in the literature. The first human infection was described 

in 1981, within a female patient suffering from a tuberculosis-like infection with Langhans 

type granulomas which were successfully treated with rifampicin, ethambutol, and 

streptomycin (Weitzman et al., 1981). As in many of the cases that have been described, the 

bacterial growth appears like that of M. tuberculosis except much faster with growth able to 

occur at 45°C, with viable growth recorded up to 52°C (Tsukamura, 1971, Weitzman et al., 

1981). Although, the initial case seemed to occur in a healthy individual several of the other 

case reports have occurred in individuals with significant health issues including diabetes 

mellitus. Furthermore, by no means is this disease limited to the lungs, as only two cases in 

humans and one in cats have been isolated as a pulmonary disease (Weitzman et al., 1981, Liu 

et al., 1984, Foster et al., 1999). The second feline case was described primarily as having 

granuloma dermatitis, with skin lesions containing the bacterium (Willemse et al., 1985). A 

similar case to this was found 3 months post-heart transplant near to the surgical scar, and 

importantly in this case the bacterium was found to be isoniazid-resistant (Neeley and 

Denning, 1989). The final three recorded cases were all associated with external implants with 

lesions or granuloma-type structures forming around the implant sites with the implants all 

being removed retrospectively. These were a mammoplasty implant (Wolfe and Moore, 1992), 

knee replacement (LaBombardi et al., 2005) and surgical pin post tibia fracture (Suy et al., 

2013). All of these infections were successfully identified and treated using long term 

combination therapies. 

 

Recently, the advantage of using thermophilic homologues to generate more stable enzymes 

has been routinely employed to gain improved structural and biochemical data. The use of M. 

thermoresistibile as a source of mycobacterial thermophilic homologues was first described 

in 2012 (Edwards et al., 2012). Their reason for suggesting it as a homologue was due to its 

increased thermal stability due to its ability to grow at a higher temperature range than M. 
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tuberculosis while exhibiting similar infection symptoms as described above. At present, there 

are 35 entries in the protein data bank of structures of proteins from M. thermoresistibile 

including the structures of alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase (GlgE) 

(Mendes et al., 2015) and nitrilotriacetate monooxygenase component B (Zhang et al., 2011). 

 

Like M. smegmatis there is a high degree of conservation within the cell wall structure and 

good sequence homology in the essential genes with those from M. tuberculosis. Likewise, 

there is a high sequence homology between the gyrase genes with 91% identity in the GyrA 

and 88% in the GyrB protein sequences, as compared to 43% identity GyrA and 48% identity 

GyrB to the P. aeruginosa enzymes (Figure 1.3.2). This makes the M. thermoresistibile DNA 

gyrase homologues interesting candidates for both structural and mechanistic studies.  

 

 

Figure 1.3.2: Phylogenetic tree of DNA gyrase B based on sequence from M. tuberculosis H37Rv. 

Alignment and sequence comparison made using BLASTn function of NCBI webserver, with distances 

being estimated via the same server. Alignment shows very little divergence in the DNA gyrase B gene 

within the Mycobacterium genus. Gram-negative Pseudomonas aeruginosa is included as a reference 

point. 

 

1.3.5 Mycobacterial biofilms 

Although our modern understanding of biofilms was formed as recently as 1978 (Costerton et 

al., 1978), mycobacteria have been described for much longer as forming “aggregates” in 

solution, which are similar in nature to what we now think of as a biofilm (Löwenstein, 1920, 

Calmette, 1936). Furthermore, it has been known for a number of years that environmental 

mycobacteria are able to form biofilms, for example M. avium biofilms have been observed 

within the water pipes of large cities (Falkinham et al., 2001, Norton et al., 2004). Unusually, 

these mycobacterial biofilms form on both on surfaces as well as at the air-media boundary. 

This is in part due to the unique highly lipophilic mycolic acid cell wall that is present in all 

mycobacteria and allows mycobacteria to adhere to each other and surfaces (Ojha et al., 2008, 
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Richards and Ojha, 2014). These biofilms formed by mycobacteria must have different 

characteristics to biofilms produced by other bacterial species as they lack several of the key 

components that promote biofilms in other species. These include the pili and fimbriae, as 

well as exopolysaccharide components of the extracellular matrix (Menozzi et al., 1996, 

Zamora et al., 2007). 

 

The first known report of M. tuberculosis biofilms created within a laboratory system came in 

2008 (Ojha et al., 2008). There have also been historical cases presented in the literature where 

M. tuberculosis has been attributed as the cause for biofilm-like structures on implants 

(Spinner et al., 1996, Sendi and Brent, 2016). However, only recently it has been demonstrated 

that within an in vitro granuloma model, that M. tuberculosis is capable of forming biofilms 

with a requirement for the presence of MmpL (mycobacterial membrane protein large). 

Although this has not been demonstrated in vivo, it suggests that mycobacterial biofilms may 

be important in the granuloma state. Indeed, there have been reports of non-tuberculosis 

mycobacterial species colonising the lungs sights of scarring caused by previous infections in 

a biofilm type infection (Wolinsky, 1979). These infections first form a biofilm then can 

colonise the host causing repeated infections. These repeat infections are likely to be because 

of increased resistance of the biofilm phenotype to antibiotics, which has been reported to be 

up to >100,000-fold increase in the MBEC (minimum biofilm eradication concentration) value 

compared to the MIC100 value in four rapidly growing mycobacterial species (Munoz-Egea et 

al., 2015). Overall, this makes the phenomena of mycobacterial biofilms a highly interesting 

and clinically relevant target to study to find new antimycobacterial agents that can effectively 

kill biofilms in addition to whole cells. 

 

1.4 DNA topology 

DNA topology is the three-dimensional geometry of DNA, typically this is thought of on the 

level of supercoiling within the cells – the ability of DNA to over or under-wind to produce 

more compact structures. However, the topic also covers knotting and catenation – how 

different pieces of DNA are intertwined. These topics are highly relevant when considering 

repilication, transcription, and recombination of DNA, where the three-dimensional shape of 

the DNA is highly relevant in the initiation and propagation of all three processes. 

 

In the absence of topoisomerases, the process of DNA replication would not be able to occur 

as positive supercoils would build up ahead of the replication fork. As replication approaches 
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the terminus there is a decreased amount of space for the positive supercoils to form, and 

hence a build-up of precatenanes occurs after the replication fork (Figure 1.4.1) (Postow et 

al., 2001). Both of these features are highly dangerous for the cell if not resolved. In bacteria 

the relaxation of positive supercoils is processed mainly by DNA gyrase, which subsequently 

introduces negative supercoils into the DNA (Baker et al., 1986), although topo IV is also able 

to remove positive supercoils (Khodursky et al., 2000). In the absence of topo IV, DNA gyrase 

is solely responsible for this process in mycobacteria (Figure 1.4.1) (Manjunatha et al., 2002, 

Aubry et al., 2006a). On the other hand the precatenanes that are formed after the replication 

fork are commonly resolved by the type I topoisomerase topo III if there are nicks present in 

the DNA (Hiasa and Marians, 1994, Nurse et al., 2003) or alternatively by topo IV 

(Zechiedrich and Cozzarelli, 1995), but, as neither of these enzymes are present in 

mycobacteria, it is DNA gyrase and topo I that must instead work together to resolve these 

structures (Figure 1.4.1). The daughter chromosomes produced by bacterial transcription are 

often found to be catenated, and hence must be decatenated before completion of cell division 

can occur (Wasserman and Cozzarelli, 1986). These catenanes are thought to be most 

commonly decatenated by topo IV (Adams et al., 1992, Zechiedrich and Cozzarelli, 1995), 

although there is evidence that DNA gyrase is also capable of doing this as well (Steck and 

Drlica, 1984).  

 

 

Figure 1.4.1: Topology diagram at the replication fork indicating the need for topoisomerases to remove 

the positive supercoils that accumulate before the replication fork and the precatenanes that associate 

after the replication fork. As M. tuberculosis does not have topo III or topo IV it relies on its remaining 

two topoisomerases, DNA gyrase and topo I, to remove the precatenanes and solely on DNA gyrase to 

remove the positive supercoils. Figure adapted from (Postow et al., 2001) and (Higgins, 2007). 
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The second process where topoisomerases are crucial is in that of transcription. This is the 

process by which double-stranded DNA is opened to allow binding of RNA polymerase which 

allows mRNA to be transcribed for processing by the ribosome (Figure 1.4.2). When the DNA 

is opened it creates positive supercoils ahead of transcription and negative supercoils behind 

transcription as the RNA polymerase complex is unable to move around the DNA, hence the 

DNA moves around RNA polymerase; this process is known as creating “Twin Supercoiled 

Domains” (Liu and Wang, 1987, Wu et al., 1988). The twinned supercoiled domains need to 

be resolved to ensure that the plasmid maintains an optimal negative supercoiled state. The 

positive supercoils ahead of transcription are relaxed by DNA gyrase and topo IV, meanwhile 

negative supercoils are introduced by DNA gyrase. The excess negative supercoils behind 

transcription are relaxed by topo I and topo IV (Zechiedrich et al., 2000). In the absence of 

both topo III and topo IV in mycobacteria the positive supercoils are resolved by DNA gyrase 

and the excess negative supercoils by topo I and to a lesser degree DNA gyrase (Cole et al., 

1998).  

 

 

Figure 1.4.2: Topology diagram at the site of transcription where the DNA is separated to give access 

to RNAP to allow mRNA to be transcribed and proteins to be made by the ribosomes. Separation of the 

DNA strands results in negative supercoils to accumulate before the site of transcription and positive 

supercoils to be introduced after the site of transcription. Figure adapted and redrawn from (Wu et al., 

1988) 
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Finally, the process of recombination by which the chromosomes are rearranged to maintain 

genetic diversity by general and site-specific methods has important implications on topology, 

as these processes can result in catenated or knotted DNA products (Abremski et al., 1983, 

Azaro and Landy, 2002). These interlinked and knotted products are resolved by the 

topoisomerase enzymes.  

 

1.5 DNA topoisomerases 

DNA topoisomerases are found in all domains of life and can be broadly split into two 

different classes which are known as type I and type II topoisomerases, depending on whether 

they cleave one or two stands of double stranded DNA in the process of altering DNA 

topology. These classes can be further split depending on structural and mechanistic features 

of the enzymes (Table 1.5.1). 

 

1.5.1 Type IA topoisomerases 

Type I topoisomerases cause transient single-stranded breaks in DNA. The type IA enzyme 

family have a 5' phosphate attachment to DNA during the process of single-strand breakage 

(Champoux, 2002). They do this with a preference for binding to a short single-stranded region 

of DNA within negatively supercoiled DNA (Wang, 2002). This group of topoisomerases 

share a common TOPRIM domain that is also found in type II topoisomerases and in the 

DnaG-type primases (Aravind et al., 1998). This family of topoisomerases are only able to 

relax negatively-supercoiled and not positively-supercoiled DNA as they are only able to 

unpair the helix of negatively supercoiled DNA to produce a single-stranded region 

(Kirkegaard and Wang, 1985). 

 

There are several enzymes classified into this group including bacterial topoisomerase I (topo 

I), and topoisomerase III (topo III) which is found in all three life kingdoms (Wang, 2002), as 

well as reverse gyrase which is exclusively found in thermophilic and hyperthermophilic 

eubacteria (Lulchev and Klostermeier, 2014). One point of note is that topo III, which 

traditionally is a relaxing and decatenation enzyme of DNA, has also been found to have the 

ability to cleave and relax RNA, making it one of the only known RNA topoisomerases (Wang 

et al., 1996). 
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Table 1.5.1: Classification of DNA topoisomerases, with reference to reactions that each group is 

known to carry out, and where each of the topoisomerases are known to be present. Classification is 

mainly based on structural and mechanistic features. 

Classification Reactions Enzymes Species 

Type IA Relax negative supercoil 

Decatenate ssDNA 

Topo I Bacterial 

Topo III Eukaryotic, 

Prokaryotic, 

Archaeal 

Reverse gyrase Thermophilic/ 

Hyperthermophilic 

archaea 

Type IB Relax negative and 

positive supercoils 

Topo I Eukaryotes, Virus 

Type IC Relax negative and 

positive supercoils 

Topo V Hyperthermophilic 

archaea 

Type IIA Relax negative and 

positive supercoils 

Decatenate DNA 

Topo IV Bacteria 

Topo II Eukaryotes, 

Bacteriophage 

Relax negative and 

positive supercoils 

Decatenate DNA 

Negative supercoil 

DNA gyrase Bacteria, plants and 

possibly plasmodia 

Type IIB Relax positive and 

negative supercoils 

Decatenate DNA 

Topo VI Archaea, plants and 

possibly plasmodia 

Topo VIII Bacteria, Archaea 

 

Bacterial topo I, including that from M. tuberculosis, has been described to be an efficient 

drug target, however, presently there are no clinically approved drugs against this target 

(Nagaraja et al., 2017). 

 

1.5.2 Type IB topoisomerases 

The type IB topoisomerases have major differences to the type IA topoisomerases in their 

mechanism whereby the IB enzymes attach to the 3' phosphate as opposed to the 5' phosphate 

while causing single-stranded breaks allowing for alteration in the topology of DNA 

(Champoux, 2002). The IB enzymes, in contrast to the IA enzymes prefer binding to duplex 
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DNA after the cleavage of the single strand. This has led to the conclusion that the mechanism 

of action is through “controlled rotation”, by which the protein provides a controlled 

environment where a nicked piece of DNA can rotate to alter the supercoiling number in steps 

of 1 before religation of the nick (Redinbo et al., 1998). Additionally, the structures of this 

group are unique from the IA enzymes (Redinbo et al., 1998). 

 

This group of enzymes is mainly confined to eukaryotic topo I – a relaxing enzyme which can 

relax both positive and negative supercoils in DNA (Wang, 2002). In addition to the 

eukaryotic topo I enzymes, this group also contains viral topoisomerase enzymes such as that 

from the vaccinia virus (Stivers et al., 1997). This means that therapeutically the inhibition of 

this group of topoisomerases is limited to just anticancer and antiviral treatments. Presently 

Camptothecin is clinically used to inhibit human topo I for anticancer treatments (Ulukan and 

Swaan, 2002, Wethington et al., 2008) 

 

1.5.3 Type IC topoisomerases 

To our current knowledge, the type IC topoisomerase group is unique to just topoisomerase V 

from the hyperthermophilic archaea Methanopyrus kandleri (Slesarev et al., 1993, Taneja et 

al., 2006, Rajan et al., 2010). This topoisomerase is unusual due to its additional role in DNA 

repair, and high proportion of (HhH)2 folds (Belova et al., 2002, Forterre, 2006). 

Topoisomerase V is able to relax both positive and negatively supercoiled DNA through use 

of a rotational and swivel mechanism of action, utilising a single-nicked strand with a 

phosphotyrosine bond at the 3' end between the enzyme and the DNA (Slesarev et al., 1993). 

It is known that the reaction of this enzyme is independent of ATP and magnesium ions like 

the type IA enzymes, and is also active in a wide range of salt conditions and temperatures 

above 65°C (Slesarev et al., 1993). Although the mechanism of this type of topoisomerase is 

very similar to the type IB enzymes they have distinct structural features determining 

topoisomerase V to be classed as a type IC enzyme (Forterre, 2006).  

 

Due to the limited species containing this class of topoisomerases, it has not investigated for 

medicinal use as; no known pathogenic species have currently been identified to encode a type 

IC topoisomerase. 
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1.5.4 Type IIA topoisomerases 

The type IIA topoisomerases was the first discovered class of topoisomerases which alter the 

topology DNA by using double-stranded breaks (Liu et al., 1980). Classified into the type IIA 

class is eukaryotic topoisomerase II (topo II), bacterial DNA gyrase and topoisomerase IV 

(topo IV) as well as bacteriophage topo II. Structurally, all three of these enzymes have a high 

degree of homology with all the enzymes in the classification containing the same domain 

arrangement, with several conserved featured including the TOPRIM (topoisomerase primase) 

domain, also found in type IA topoisomerases, and a catalytic tyrosine (Figure 1.5.1). The 

TOPRIM domain is structurally conserved consisting of around 100 amino acids found in 

some topoisomerases as well as DnaG-type primases and small primase-like proteins in 

bacteria and archaea (Aravind et al., 1998). Although eukaryotic topo II forms dimers, 

whereas heterotetramers are formed by bacterial DNA gyrase and topo IV. Bacteriophage topo 

II has been reported to contain three subunits arranged into a heterohexomeric arrangement 

(A2B2C2) (Liu et al., 1979, Seasholtz and Greenberg, 1983). There is significant evidence that 

all of these genes have a common ancestor, although from an evolutionary perspective they 

cluster into their respective groups of eukaryotic topo IIs including eukaryotic viral 

topoisomerases, T4 bacteriophage topo II, and the final group containing the bacterial type 

IIA topoisomerases sub-divided into topo IV and DNA gyrase (Forterre et al., 2007). 

 

The type IIA topoisomerases all form three major dimer interfaces, this results in the formation 

of two DNA gates, which is important in the conserved mechanisms of these enzymes (Berger 

et al., 1996, Roca et al., 1996). The mechanism of actions of all the enzymes causes a change 

in the linking number of DNA to change by 2 units per reaction cycle or to a 

knotting/unknotting reaction of DNA through the hydrolysis of two ATP molecules depending 

on the location of the two DNA segments (Brown and Cozzarelli, 1979, Bates et al., 2011). 

The reaction mechanism is initiated by the formation of a dimeric or tetrameric enzyme in 

complex with DNA. ATP binding allows for cleavage of a gate segment of DNA and transport 

of the transport DNA segment through the gate segment. After passage of the transport 

segment of DNA religation of the gate segment occurs and release of the DNA through the C-

gate with a change in the topology (Baird et al., 1999). In addition, in the reaction cycle both 

ATP molecules are hydrolysed, although the exact timing of this is unknown (Figure 1.5.2). 

The directionality of the change in linking number (positive vs negative) may be determined 

by the wrap of the DNA around the CTDs (Kampranis and Maxwell, 1996). Eukaryotic topo 

II, bacterial topo IV and bacteriophage topo II are all relaxing enzymes of both positive and 

negative supercoils, and can decatenate DNA (Goto and Wang, 1982, Kreuzer and Jongeneel, 

1983, Kato et al., 1990). DNA gyrase is able to relax positive supercoils and introduce 
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negative supercoils in relaxed DNA (Higgins et al., 1978, Mizuuchi et al., 1978). Additionally, 

DNA gyrase can relax negative supercoils in DNA in an ATP-independent fashion (Gellert et 

al., 1977, Sugino et al., 1977). All of the type IIA topoisomerases hydrolyse ATP in a DNA-

dependent fashion, and the free energy provided by this reaction enables these enzymes to 

relax and decatenate DNA past the distribution possible by ATP-independent enzymes in a 

process known as topology simplification (Rybenkov et al., 1997, Stuchinskaya et al., 2009). 

 

 

Figure 1.5.1: Domain alignment of eukaryotic and prokaryotic type II topoisomerases. The TOPRIM 

(topoisomerase-primase) domain is highlighted in pink, the catalytic tyrosine in purple and the C-

terminal wrapping domain in yellow. The N-terminal ATPase domain is in the region between the 

protein N-termini and the TOPRIM domains of all of the proteins. All domains are to scale. The 

eukaryotic topo II proteins form active dimers, meanwhile the bacterial DNA gyrase and topo IV form 

active heterotetramers. 
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Figure 1.5.2: The likely strand-passage mechanism of action of the type IIA topoisomerases. A) The 

mechanism is initiated through the formation of a complex of two of each of the subunits with 2 ATP 

molecules in the N-terminal domains (yellow), and two segments of DNA known as the gate (G-

segment) and transport (T-segments) segments. This is followed by cleavage of the G-segment of DNA 

(green) allowing passage of the T-segment of DNA (Pink/Red) through the G-segment. Subsequent 

hydrolysis of ATP allows for the complex to be reset ready for another reaction cycle. B) There is 

considerable evidence that DNA gyrase wraps a single piece of DNA around the CTDs in a positive 

supercoiled direction to allow for the introduction of negative supercoils. C) On the other hand, topo 

IV does not appear to wrap DNA around the CTDs, instead it preferentially decatenates and relaxes 

DNA. Figure adapted from (Neuman, 2010). 

 

There is homology between the type IIA topoisomerase enzymes which is greatest at the N-

terminals of the GyrA/ParC and GyrB/ParE subunits, including the ATPase domain 

(Hammonds and Maxwell, 1997). A substantial amount of work has been conducted on the 
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DNA gyrase ATPase domain from E. coli for the most part (see section 1.6.1). In addition, 

there has been a considerable effort to characterise this domain in yeast and human topo II(α) 

and a lesser effort in bacterial topo IV. Like DNA gyrase these enzymes all have significant 

stimulation of the ATPase activity by DNA, of between 4-fold for S. pneumoniae topo IV to 

19-fold for yeast topo II (Lindsley and Wang, 1991, Hammonds and Maxwell, 1997, 

Laponogov et al., 2018). This stimulation was found to be dependent on the presence of both 

ParC and DNA for topo IV. On the other hand, the eukaryotic topo II(α) could be stimulated 

by DNA in the absence of the C-terminal portion of the enzyme, although the length of DNA 

required was much shorter for the N-terminal domain on its own (Campbell and Maxwell, 

2002). The kinetics of this mechanism appear to follow Michaelis-Menton kinetics in the 

absence of DNA, but instead have cooperative binding in the presence of DNA (Lindsley and 

Wang, 1991). In the case of S. pneumoniae the first structures of the ATPase domain bound 

to DNA has recently been shown confirming the predictions previously made for DNA gyrase 

(Wigley et al., 1991, Laponogov et al., 2018). 

 

Although commonly bacteria have genes for both DNA gyrase and topo IV there are many 

occasions in nature when bacteria have been identified to only have DNA gyrase without topo 

IV. In single-cell eukaryotes such as S. cerevisiae only one copy of topo II is present whereas 

in higher eukaryotes such as Homo sapiens (humans) there are two copies identified labelled 

as topo IIα and IIβ (Burden and Osheroff, 1998). Although DNA gyrase previously was 

thought to be predominantly a bacterial enzyme it has been recently found in plants including 

Arabidopsis thaliana and potentially some plasmodia species (Aravind et al., 2003, Wall et 

al., 2004). 

 

This class of topoisomerases has been highly exploited in terms of medicinal use. This 

includes clinical use as an antibiotic target against both DNA gyrase and topoisomerase IV 

through the fluoroquinolones (Gellert et al., 1977, Khodursky et al., 1995) and as a target for 

anticancer treatments through inhibition of the human topo II enzymes by for example 

etoposide reviewed by Nitiss (2009). Recently, there have also been investigations into plant 

DNA gyrase in relation to generating novel herbicidal compounds (Wallace et al., 2018), as 

well as the identification of DNA gyrase and topo VI plasmodium parasites having the 

potential for being a future target for anti-malarial compounds (Aravind et al., 2003). 
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1.5.5 Type IIB topoisomerases 

The type IIB topoisomerases, like the type IIA topoisomerases, also alter the topology of DNA 

through the use of double-stranded DNA breaks. These enzymes can both decatenate and relax 

negatively supercoiled DNA in an ATP-dependent reaction (Bergerat et al., 1997). The main 

enzyme characterised within this class is that of the archaeal topoisomerase VI (topo VI) 

enzyme which is primarily found in archaea such as Methanosarcina mazei (Bergerat et al., 

1997), however more recently it has been discovered within the genomes of plants such as A. 

thaliana (Hartung and Puchta, 2000) and the Plasmodium parasites (Aravind et al., 2003). 

Like the type IIA enzymes, structurally topo VI forms heterotetramers (A2B2), however, 

uniquely it only has two dimer interfaces, forming a single DNA gate (Bush et al., 2015). A 

second topoisomerase VIII (topo VIII) has recently been added to this class of topoisomerases. 

It is the smallest known type IIB topoisomerase, and like human topo II it has the subunits 

fused to form a single subunit which dimerises. Presently topo VIII has only been identified 

in a small number of bacterial genomes and on plasmids from both bacteria and archaea 

(Gadelle et al., 2014). 

 

Currently, these enzymes are not used as drug targets although there have been recent attempts 

to utilise the plasmodium and plant topo VI enzymes as targets for antimalarial and herbicidal 

compounds (Bush et al., 2018). 

 

1.5.6 Topoisomerases in mycobacteria 

It has been the wonder of the topoisomerase community since the genome of M. tuberculosis 

was published in 1998 (Cole et al., 1998) that there were only two apparent topoisomerases 

identified – these being DNA gyrase and topoisomerase I, which is unusual but not unheard 

of in other species such as Aquifex aeolicus (Tretter et al., 2010) which contains just one type 

IIa topoisomerase. Hence, there has been some suspicion that the mycobacterial DNA gyrase 

may have enhanced catalytic activities in the reactions that are traditionally thought of as topo 

IV reactions; these being enhanced relaxation and decatenation. The decatenation activity of 

DNA gyrase in M. tuberculosis has been reported as being up to 10-times more efficient that 

E. coli DNA gyrase, but still 25-times less efficient than the activity of S. pneumoniae topo 

IV (Aubry et al., 2006a). This is somewhat like the results obtained by Manjunatha et al. 

(2002) who found that the M. smegmatis homologous gyrase has 7-times greater activity in 

decatenation than its E. coli homologue. In contrast the ATP-independent relaxation activities 

of both the M. smegmatis and E. coli gyrase enzymes were comparable needing a 10-fold 

increase in enzyme (Manjunatha et al., 2002). 
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While the DNA gyrase found in Mycobacteria may appear to be slightly special in its ability 

to more effectively decatenate substrates that its Gram-negative homologues, there has also 

been a suspicion that there may possibly be further uncharacterised topoisomerases in the 

genome of these bacteria that are yet to be characterised. One potential novel topoisomerase 

was identified and somewhat characterised in M. smegmatis as a heterotetramer of two TopoN 

and two TopoM subunits (Jain and Nagaraja, 2005). Although there was little homology to 

other characterised topoisomerases, it appeared to relax negative supercoils in the presence of 

either ATP or dATP at a 10 nM concentration, as well as exhibiting decatenation activity on 

a similar level to that of M. smegmatis DNA gyrase. However, since the initial report of this 

putative type II topoisomerase it appears that there has been no further work carried out on 

this enzyme and it does not appear to have a homologue in M. tuberculosis. 

 

1.6 DNA gyrase  

DNA gyrase is a heterotetrameric enzyme first discovered in 1976 for its ability to introduce 

negative supercoils into DNA in an ATP-dependent manner (Gellert et al., 1976), and has 

been studied in depth since. Initial studies revealed it to have a heterotetrameric active form 

consisting of two proteins – GyrA (97 kDa) and GyrB (90 kDa) for the E. coli enzymes 

(Higgins et al., 1978, Mizuuchi et al., 1978). The GyrA protein is largely associated with DNA 

binding and wrapping (Reece and Maxwell, 1991a, Reece and Maxwell, 1991b), while the 

GyrB protein has a role in ATP hydrolysis (Wigley et al., 1991). Although the full-length 

DNA gyrase complex has never been solved by X-ray diffraction there have been several 

lower resolution structural studies (Costenaro et al., 2005, Costenaro et al., 2007, Baker et al., 

2011) and a recent cryo-electron microscopy structure to around 17 Å (Papillon et al., 2013). 

These have somewhat confirmed the theorised structural arrangement proposed many years 

earlier, with a GyrB dimer sitting on top of the GyrA dimer, with DNA wrapping around the 

two GyrA CTD domains. 

 

1.6.1 ATP hydrolysis and the GyrB N-terminal domain 

One of the earliest observations indicated that DNA gyrase required ATP to insert negative 

supercoils into DNA (Gellert et al., 1976). Initially it was assumed to require ATP hydrolysis 

and hence studies were carried out to confirm this. In the presence of ADPNP (non-

hydrolysable ATP), DNA gyrase is only able to carry out one reaction cycle and is not able to 

be processive as it is in the presence of ATP (Sugino et al., 1978). This is thought to be a 
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consequence of not being able to hydrolyse and hence release ADP from the enzyme; ADPNP 

remains tightly bound (Tamura et al., 1992). This means that the enzyme is trapped in a DNA-

bound form, and only limited incomplete supercoiling of a relaxed DNA substrate can be 

observed. 

 

The first structure of any part of DNA gyrase to be solved was a 2.5 Å structure of the E. coli 

N-terminal 43 kDa domain of GyrB (GyrB43) (Wigley et al., 1991). This structure was of a 

domain already known to be an ATPase (Ali et al., 1993) and confirmed that ATP binding 

causes dimerization of GyrB, resulting in a 20 Å cavity for DNA binding. Although a cavity 

has been observed for DNA binding, no evidence for interaction of GyrB43 with DNA was 

initially determined, nor did it appear to form any interactions with the GyrA subunit (Ali et 

al., 1993). Regardless of this, there is considerable evidence that DNA binding is important in 

the stimulation of the ATPase activity of GyrB (Maxwell and Gellert, 1984). It is indicated 

that in the case of the E. coli DNA gyrase heterotetramers either a fragment of 85±15 bp of 

DNA or higher concentrations of shorter fragments are needed to stimulate the ATPase 

activity, and from the data suggesting a sigmoidal dependence of short DNA fragment binding, 

it was inferred that two cooperative DNA binding sites must be occupied to stimulate ATPase 

activity (Maxwell and Gellert, 1984). Although approximately 85 bp are required to bind ATP 

is should be noted that this may not indicate the full DNA binding footprint, instead only the 

section required to induce the ATP hydrolysis reaction. No sequence specificity for induction 

of ATPase activity has been observed (Maxwell and Gellert, 1984), rather a preference for a 

substrate that appears to be a relaxed, linear or nicked form of double stranded DNA as 

opposed to one that is negatively supercoiled (Mizuuchi et al., 1978, Sugino and Cozzarelli, 

1980). Likewise, it has been shown that DNA gyrase from M. tuberculosis has a higher affinity 

for positively supercoiled DNA than other topological forms (Ashley et al., 2017), and 

although this has not been demonstrated to induce ATPase activity it can be inferred. 

 

Additional structural studies focusing on the GyrB43 domain indicate probable 

conformational changes in hydrolysis of the ATPase reaction (Stanger et al., 2014). From 

solving a series of different crystal structures in the presence of different nucleotides and 

counter ions, they observed a 12° rotation opening the domain interface on hydrolysis of ATP. 

This appears to be independent of the tertiary ɣ-phosphate in ATP but appeared to be 

dependent on the presence of Pi as an intermediate structure was obtained when BeF3 replaced 

Pi as the counter ion with ADP (Stanger et al., 2014). This is important as it appears to suggest 

that a passage is opened for DNA to move through the GyrB molecule, assisting with the 
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mechanical role of the enzyme. Furthermore, from the structural and biochemical studies it 

was interpreted that DNA strand passage occurs prior to ATP hydrolysis and hence ATP 

hydrolysis is likely to be coupled to DNA release (Wigley et al., 1991). There is still however, 

considerable doubt about the timings of ATP hydrolysis and ADP release in the mechanism 

of DNA gyrase. 

 

Due to the dimerization of GyrB it is likely that two ATP molecules bind to the heterotetramer 

cooperatively (Maxwell and Gellert, 1986). The mechanism has been studied and it is 

hypothesised that the mechanism of DNA gyrase uses sequential hydrolysis of two ATPs, with 

the rate limiting step being the slow hydrolysis of the second ATP, with the second ATP 

hydrolysis resulting in a conformational change that allows for gate opening to release the 

DNA from the enzyme (Hartmann et al., 2017). This would agree with the proposed 

mechanism for yeast topo II (Baird et al., 1999), meanwhile the structural data presented above 

(Stanger et al., 2014) and data from the B. subtillus enzyme suggest that there is significant 

reason to believe that the hydrolysis of ATP is synchronous (Gottler and Klostermeier, 2007). 

 

It is known that there are several highly conserved residues in the ATPase domain. These 

include the aspartic acid at residue 46 (E. coli) which is required to coordinate magnesium 

binding (Wigley et al., 1991, Lewis et al., 1996), E50 and R76 which form an important salt 

bridge (Gross et al., 2003).  A second aspartic acid forms a direct hydrogen bond with the 

adenosine amino group of ATP (Gross et al., 2003) which is highly specific and can only be 

mutated to a glutamic acid to retain activity (Gross et al., 2003). Two further amino acids P79 

and K103 have been further described to couple the ATPase activity to the supercoiling 

function of the enzyme as mutation is permissive to ATPase activity but not to supercoiling 

(Gross et al., 2003). The catalytic active site of the ATPase reaction has been determined to 

contain the likely catalytic residues of E42 and H38 (Jackson and Maxwell, 1993). Finally, 

T165 is highly conserved within all type II topoisomerases. Mutation of this residue to serine 

is permissible although an alanine is not (Gross et al., 2003), this may be explained due to 

direct and indirect bonding (via an ordered water molecule) to ATP (Lewis et al., 1996).  

 

The E. coli model DNA gyrase system has been used for the most part to investigate the 

mechanism of action, and relationship between ATP hydrolysis and the change in topology. 

There is however a smaller amount of data on the mycobacterial DNA gyrase ATPase domain, 

including structures of the full domain (Agrawal et al., 2013). The data presented in the 
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literature suggests that M. tuberculosis does not have an appreciable rate of ATP hydrolysis 

that can be reliably tested (Agrawal et al., 2013, Karkare et al., 2013b, Shirude et al., 2013), 

meanwhile the initial data for the M. smegmatis DNA gyrase does not suggest it to be much 

better (Manjunatha et al., 2002), although other groups have been able to generate a high 

throughput ATPase assay system for this protein (Shirude et al., 2013). As with the E. coli 

enzyme there is significant stimulation of the ATPase activity when both GyrA and DNA were 

included in the reaction, and this activity is abolished on the addition of novobiocin indicating 

specificity to DNA gyrase (Manjunatha et al., 2002, Agrawal et al., 2013). Overall, it is 

suggested that the coupling of the ATPase activity to DNA supercoiling is greater in Mtb DNA 

gyrase than in other enzymes such as E. coli, where the ATPase activity can be uncoupled 

from strand passage (Sugino and Cozzarelli, 1980, Bates et al., 1996, Fu et al., 2009, Bates et 

al., 2011). 

 

1.6.2 DNA gyrase core: GyrB C-terminal domain and GyrA N-terminal domain 

The GyrA NTD includes the essential catalytic tyrosine (Y122 E. coli) (Horowitz and Wang, 

1987, Wilkinson and Wang, 1990), meanwhile the GyrB CTD contains the TOPRIM domain. 

Results of studies carried out to probe the role of the GyrA subunit have previously 

demonstrated that all the NTD of GyrA is required to support supercoiling and decatenation, 

however weak and non-processive supercoiling is possible in the presence of just the first 572 

amino acids (E. coli) and subsequently suggesting a role of residues 523-572 in active strand 

passage (Reece and Maxwell, 1991b).  

 

The GyrB CTD contains the TOPRIM domain which has been demonstrated to be conserved 

across a wide variety of DNA-binding proteins including bacterial DnaG-type primases, types 

IA and II topoisomerases as well as RecR/M bacterial repair proteins (Aravind et al., 1998), 

in addition to the tail domain (Costenaro et al., 2007). This 47 kDa domain has a predominant 

role in interactions with both the GyrA subunit and DNA (Brown et al., 1979, Chatterji et al., 

2000, Noble and Maxwell, 2002, Schoeffler et al., 2010). 

 

1.6.3 The GyrA C-terminal domain and DNA wrapping 

The CTDs of GyrA are implicated to be involved in stabilising the DNA-protein complex 

through a sequence-independent DNA binding and wrapping mechanism (Reece and 

Maxwell, 1991a), and are essential for the process of negative supercoiling (Kampranis and 

Maxwell, 1996), indeed in their absence the protein is converted into an ATP-dependent 
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relaxing enzyme. Although they have been shown to bind stretches of double stranded DNA 

greater than 35 bp long (Reece and Maxwell, 1991a), independently the CTD is catalytically 

inactive suggesting their role to be accessory (Reece and Maxwell, 1991b). It is implied that 

the CTD preferentially binds to positively supercoiled DNA over negatively-supercoiled DNA 

in the presence of nucleotide, suggesting a topological substrate preference (Kampranis et al., 

1999a). The structure of the CTD has been solved from several species including E. coli, M. 

tuberculosis and Xanthomanas campastris (Ruthenburg et al., 2005, Hsieh et al., 2010, Tretter 

and Berger, 2012) all showing a composition of 6 blades forming a beta-pinwheel structure, 

although other structures have been demonstrated to be possible (Corbett et al., 2004). 

 

1.6.4 DNA gyrase: a proposed mechanism of action 

There is a consensus within the field that there is one recognised mechanism of action for 

DNA gyrase. This was initially postulated by Brown and Cozzarelli (1979) who suggested 

that the reaction mechanism involved using a double-strand break to decrease the linking 

number of DNA by two on each reaction cycle. 

 

It is thought that dimeric GyrA assembles together with two GyrB subunits and wrapping a 

section of DNA of ca. 128 bp around the CTDs in a positive wrap (Orphanides and Maxwell, 

1994). The reaction cycle is then initiated through the binding of two ATP molecules causing 

the closure of the two GyrB N-terminal domains to trap a T-segment of DNA (Wigley et al., 

1991, Stanger et al., 2014). This also allows for ligation of the G-segment of DNA through 

stabilisation by the two active-site tyrosine residues (Tyr-122 in E. coli DNA gyrase) 

(Horowitz and Wang, 1987, Cabral et al., 1997). The T-segment is then able to pass through 

the G-segment before it is ligated possibly with the hydrolysis of one ATP molecule. However, 

this is unclear as there is some evidence to suggest that both ATP molecules are hydrolysed 

synchronously (Gottler and Klostermeier, 2007). However, more recently it has been 

suggested that the rate-limiting step of DNA supercoiling is the hydrolysis of the second ATP 

molecule within the reaction, as the DNA is only able to be released from the exit gate of DNA 

gyrase (interaction of the two N-terminal domains of GyrA) once hydrolysis of both of the 

ATP molecules has occurred (Wigley et al., 1991, Corbett et al., 2004, Hartmann et al., 2017). 

Although this is just theory, there is considerable evidence that the reaction of DNA gyrase 

can only alter the linking number of DNA by minus 2 (Brown and Cozzarelli, 1979) giving 

considerable evidence for this mechanism (Figure 1.6.1).  
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Figure 1.6.1: Mechanism of negative supercoiling by DNA gyrase. Domains coloured as follows: Dark 

blue GyrB-NTD, red GyrB-TOPRIM, green GyrB-tail, orange GyrA-NTD, light blue GyrA-CTD. The 

transport (T) segment is coloured purple and the gate (G) segment black. From their free solution state 

(i) the active state combines to form a complex with the G segment bound between the GyrB-TOPRIM 

and GyrA-NTD (ii) and with the addition of 2x ATP molecules the GyrB clamp can close capturing the 

T segment and allowing cleavage of the G segment (iii). Hydrolysis of the first ATP molecule allows 

for a conformation change allowing the T segment to be passed through the G segment (iv) this allows 

the G segment to be religated and the T segment to be released from the C-gate (v). Hydrolysis of the 

second ATP molecule then resets the enzyme allowing for subsequent cycles to proceed (i/ii). 

Reproduced from (Costenaro et al., 2007). 

 

However, although this is the generally accepted mechanism for DNA gyrase there has been 

some conflicting evidence against this mechanism as it has been observed that a DNA gyrase 

heterotetramer with one of its active-site tyrosine residues mutated to a phenylalanine is able 

to negatively supercoil DNA in steps of 2 (Gubaev et al., 2016). As it is thought that both 

active site tyrosine residues are required to ligate the G-segment of DNA allowing for 

transport of the T-segment the authors proposed an alternative nicking and closing mechanism 

by which a single DNA stand is cleaved allowing for relaxation by rotation of the single strand 
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break. There are however, significant issues with these experiments. The first arises from the 

question of purification efficiency from the tandem affinity purification mechanism. 

Meanwhile, the second arises from the question of possible higher order multimers and 

potential subunit exchange not being fully accounted for. 

 

1.6.5 DNA gyrase from M. tuberculosis 

M. tuberculosis gyrase is encoded by the Rv006 and the Rv005 genes which are located next 

to each other in the genome (Cole et al., 1998). It was first characterised as a recombinant 

enzyme purified with a His-tag by Aubry et al. (2006a). At this time, it was explained that it 

supercoils at a similar level of activity to other gyrases, but has enhanced activity in relaxation, 

cleavage and decatenation, although it is unable to decatenate to the same degree as a true topo 

IV enzyme. Of interest was that the cleavage specificity was compared across four more active 

quinolones (Aubry et al., 2006a) alongside the DNA gyrase and topo IV from S. pneumoniae. 

This analysis demonstrated that the cleavage pattern shared the greatest similarity to that of 

other DNA gyrase enzymes as opposed to topo IV, and hence along with the information that 

the enzyme from Mtb can negatively supercoil DNA it has been classified as a DNA gyrase 

enzyme as opposed to a topo IV. 

 

One of the most important problems scientists faced working on this enzyme early on was the 

confusion over the start codon. This came about because there were initially multiple possible 

start codons which were quickly reduced to two potential sites in the coding sequence leading 

to two different possibilities for GyrB, one starting with a valine start codon, the other with 

the more traditional methionine including an additional 40 amino acids (Madhusudan et al., 

1994, Karkare et al., 2013a). In vitro it was found that no significance in activity or inhibition 

was seen regardless of the position of the start codon (Karkare et al., 2013a). In addition, it 

was demonstrated that the promotor located upstream of the valine start codon gave a 

prominent level of promotor activity while the promotor upstream of the methionine start 

codon did not (Karkare et al., 2013a). It is for these reasons that it was decided to work solely 

with the valine start codon for the work within this thesis. 

 

1.6.6 Fusion proteins of DNA gyrase 

Fusion proteins are created when two individual genes are fused together to give one open 

reading frame, resulting in the transcription of a single protein. These have been observed 

under certain conditions in nature. Equally, since the development of modern molecular 
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biology techniques it has been possible to make unnatural fusion proteins such as those with 

affinity and solubility tags for purification purposes, fluorescent tags for imaging, and most 

interestingly in this instance the combination of two proteins that dimerise for structural 

studies (Beckwith, 2000). Previously in the field of topoisomerases there have been initial 

studies on some fusion constructs of some topoisomerases (Lavasani and Hiasa, 2001, 

Trigueros and Roca, 2002, Papillon et al., 2013). Additionally, many of the structural studies 

in the Klostermeier laboratory have been carried out using a fusion construct of B. subtilus 

DNA gyrase (Klostermeier, 2018). 

 

The first recorded fusion in this field is that of the ParE-ParC fusion which was characterised 

as an active protein although it did appear to require more protein to produce the same results 

of the individual subunits (Lavasani and Hiasa, 2001). Importantly, it was demonstrated in 

vivo to complement a ParE or ParC knockout in a temperature-sensitive strain at a non-

permissible temperature. Presently there has been much less work on GyrB-GyrA fusion 

proteins, but recently there have been several papers published utilising them (Gubaev and 

Klostermeier, 2011, Gubaev and Klostermeier, 2012, Lanz and Klostermeier, 2012, Gubaev 

and Klostermeier, 2014b, Gubaev and Klostermeier, 2014a, Lanz et al., 2014, Gubaev et al., 

2016, Hartmann et al., 2017, Stelljes et al., 2018).  

 

Structural studies often drive the development of fusion proteins and this is no different in 

terms of DNA gyrase. The core-fusion is a chimeric protein of the GyrA NTD and the GyrB 

CTD with DNA (see Figure 1.5.1 this section of DNA gyrase includes the TOPRIM domain 

and catalytic tyrosine but not the N-terminal ATPase domain or C-terminal domains of GyrA) 

(Schoeffler et al., 2010, Srikannathasan et al., 2015). This gave significant insight into the 

structure of this part of the enzyme. More recent advances have used a full-length gyrase 

fusion protein to obtain a low resolution cryoEM structure at 23 Å in the presence of a 155 bp 

DNA fragment (Papillon et al., 2013). In this study it was determined that the T. thermophilus 

fusion protein that they worked with was as active in supercoiling as the native protein.  

 

One of the most intriguing studies on a GyrBA fusion protein was carried out by Trigueros 

and Roca (2002) where they concluded that gyrase is unable to fully complement a yeast topo 

II knockout, but is able to remove positive supercoils in yeast cells. These results are not 

unsurprising considering the functional divergence between eukaryotic topo II and bacterial 

DNA gyrase. 
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A considerable amount of mechanistic studies on DNA gyrase have been carried out so far 

including several studies which for reasons of convenience have used fusion proteins. These 

appear to have been initiated by work carried out by (Gubaev and Klostermeier, 2011), where 

they utilised FRET labelling to help elucidate various parts of the DNA gyrase mechanism of 

action (Lanz and Klostermeier, 2012, Gubaev et al., 2016). It has been demonstrated through 

the use of this work that a B. subtillus DNA gyrase fusion protein has equivalent activity to 

unfused subunits; therefore, it is interesting to determine if an equivalent fusion of the 

mycobacterial DNA gyrase will give the same results. 

 

1.7 Structural biology of DNA gyrase 

At present there are no full-length high-resolution structures of DNA gyrase or other type IIA 

topoisomerase from any species. There have however been many structural studies carried out 

of DNA gyrase, including a full length low-resolution cryoEM structure of Thermus 

thermophiles GyrBA fusion at around 17 Å. This structure has a 3-amino acid linker between 

the GyrB and GyrA subunits and was bound to ADPNP in the absence of DNA. However, 

within this structure the GyrA CTDs were not visible (Papillon et al., 2013). Within the same 

paper there was a further structure obtained at 23 Å. This structure contained a DNA fragment 

and ciprofloxacin, and furthermore it was possible to observe the GyrA CTDs due to the 

stabilisation from the DNA wrapping (Figure 1.7.1A) (Papillon et al., 2013). 

 

The closest structure to the full-length DNA gyrase structure is the structure of the core fusion 

containing the GyrA NTD and GyrB CTD – there are several of these structures available in 

the PDB including that of the S. aureus (Srikannathasan et al., 2015) core fusion and more 

interestingly the M. tuberculosis fusion (Figure 1.7.1B) (Blower et al., 2016). There is also a 

fusion structure of the homologous topo IV containing full length ParE fused to ParC55 from 

S. pneumonia and additionally contains two DNA molecules bound at a resolution of 3.7 Å 

(Figure 1.7.1C) (Laponogov et al., 2013). Finally, there is a structure of the first 1177 amino 

acids from Saccharomyces cerevisiae topo II which has been solved at a resolution of 4.41 Å 

in complex with nucleotide and DNA (Figure 1.7.1D) (Schmidt et al., 2012). All together 

these structures give a good indication that DNA gyrase is arranged with the GyrB subunits 

sat on top of the GyrA dimer, with the G-segment of DNA being held between the GyrA and 

GyrB dimers. This indicates that the C-terminal domains of GyrA are likely to be flexible and 

external from the rest of the structure.  
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Figure 1.7.1: Comparison of the structures of type IIA topoisomerases demonstrating the most complete 

structural knowledge known to date with DNA highlighted in grey. A) Full-length fusion structure of 

T. thermophilus DNA gyrase solved by cryo-electron microscopy (23 Å) (Papillon et al., 2013). B) 

Crystal structure of the M. tuberculosis DNA gyrase core fusion structure (5BS8) (2.4 Å) (Blower et 

al., 2016). C) ParE-ParC55 crystal structure of topo IV from S. pneumoniae (4I3H) (3.7 Å) (Laponogov 

et al., 2013). D) Crystal structure of the first 1177 residues from S. cerevisiae (yeast) topo II (4GFH) 

(4.41 Å) (Schmidt et al., 2012). PDB accession codes are given in brackets. 
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There are more than 50 structures of the GyrB N-terminal ATPase domain or sub-domain 

within the PDB. Of particular note are three structures which contain novobiocin (1KIJ, 1AJ6, 

4URO) (Holdgate et al., 1997, Lamour et al., 2002, Lu et al., 2014), two structures of other 

aminocoumarins (1KZN, Chlorobiocin) (Lafitte et al., 2002) and 4URM (Kbdelomycin) (Lu 

et al., 2014), three structures of the full length M. tuberculosis ATPase domains 3ZKB, 3ZKD 

and 3ZM7 (Agrawal et al., 2013), and finally two M. smegmatis GyrB24 drug-bound 

structures 4B6C (Shirude et al., 2013) and 4BAE (Hameed et al., 2014). The M. tuberculosis 

structures are of moderate resolution (2.9 Å) and are from two different similar constructs 

bound to non-hydrolysable ATP analogues. Again the M. smegmatis structures are solved at 

resolutions of 2.35 Å and 2.2 Å, both missing at least one flexible loop, but they do have 

inhibitors bound. 

 

Overall, presently there is a considerable knowledge of the structural features of DNA gyrase 

from M. tuberculosis. This is represented by 18 structures being available within the PDB of 

sections from M. tuberculosis (Figure 1.7.2). There is a lot of redundancy within the region 

known as the core (C-terminal domain of GyrB and N-terminal domain of GyrA) as many of 

these structures are solved with marginally different compounds (Blower et al., 2016). 
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Figure 1.7.2: Coverage of current structures of DNA gyrase from M. tuberculosis solved by X-ray 

crystallography. Blue sections represent areas where structures have been solved, grey sections indicate 

where there is missing density and the structures have not been solved. The full-length protein 

arrangement and sizes are displayed at the top. For each structure, the PDB accession code, resolution 

and reference is shown. 

 

1.8 Inhibition of DNA gyrase 

As essential enzymes DNA topoisomerases, especially the type IIA enzymes, have been well-

utilised as drug targets, including human topoisomerase II as an anti-cancer chemotherapy 

target (Liu, 1989), and DNA gyrase / topo IV from bacteria as antibiotic targets. Importantly 

the properties of human topo II cannot be replaced by DNA gyrase, indicating that there is a 

significant difference between the catalytic activity and inhibition profile of the two different 

enzymes (Trigueros and Roca, 2002). Clinically, currently only the quinolone type drugs are 

licenced antibacterial, although other inhibitors of both DNA gyrase and topoisomerase IV 
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also exist. The quinolones moxifloxacin, gatifloxacin and levofloxacin are all current second 

line anti-mycobacterial agents (WHO, 2010). 

 

Other major classes of DNA gyrase inhibitors include the aminocoumarins (Maxwell and 

Lawson, 2003), the (flouro)quinolones (Van Bambeke et al., 2005), naphthoquinones 

(Karkare et al., 2013b), and the simocyclinones (Flatman et al., 2005) (Figure 1.8.1). In 

addition to the major classes of inhibitors there are additional natural products that are known 

to inhibit DNA gyrase including albicidins (Hashimi et al., 2007) and microcin B17 (Heddle 

et al., 2001). Recently there have been several reviews of the use of DNA gyrase as a target 

for antituberculosis chemotherapy including (Nagaraja et al., 2017, Kashyap et al., 2018). 

 

Figure 1.8.1: Model of full-length DNA gyrase from M. tuberculosis based on homology modelling to 

other known structures, indicating the binding sites of inhibitors. Each subdomain is indicated in 

different colours. Yellow: GyrB N-terminal B24 sub-domain including GHKL ATP-binding domain; 

orange transducer domain in the GyrB N-terminal domain; red GyrB C-terminal domain including 

TOPRIM domain, which binds the Mg2+ ion cofactor; teal is the winged helix domain (WHD) which 

is within the GyrA NTD and includes the catalytic tyrosine; purple is the tower domain (GyrA NTD); 

blue is the coiled-coil domain which forms the exit gate within the GyrA NTD; pink is the GyrA CTD 

which is thought to be responsible for DNA wrapping. Four groups of known DNA gyrase inhibitors 

and their known binding domains are indicated. Figure was reproduced from (Bush et al., 2018). 
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1.8.1 Inhibition of DNA gyrase by (fluoro)quinolones  

The quinolones are a class of inhibitors which act to stabilise the DNA cleavage complex 

inhibiting both the ATP-dependent negative supercoiling reaction and the ATP-independent 

relaxation reaction (Gellert et al., 1977). To date there have been three generations of 

quinolone antibiotics all of which have been used clinically, these have included 

advancements in the chemical structure including the fluoro-group in generation 2 (Figure 

1.8.2). 

 

 

Figure 1.8.2: Chemical structures of examples from each of the four generations of (fluoro)quinolone 

antibiotics. Fluoroquinolones are characterised by the addition of the fluoro-group at position 8 of the 

scaffold. 

 

Over the years there has been a considerable amount of work to determine the mechanism of 

action of quinolone, as well as optimisation to work to gain better clinical efficacy. To date 

there have been studies of the activity of multiple quinolones against TB gyrase (Onodera et 

al., 2001, Aubry et al., 2004), a crystal structure of the M. tuberculosis DNA gyrase core 

bound to DNA and moxifloxacin (Blower et al., 2016), as well as multiple clinical studies of 

M. tuberculosis mutagenesis resulting in clinical resistance (Kocagoz et al., 1996, Bozeman 

et al., 2005, Aubry et al., 2006b, Matrat et al., 2006, Agrawal et al., 2009, Avalos et al., 2015, 

Rigouts et al., 2016). 
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Two quinolone molecules bind to the DNA gyrase complex to stabilise the enzyme preventing 

religation of the DNA (Critchlow and Maxwell, 1996, Heddle et al., 2000). This causes 

damage as the DNA is locked in a cleavage complex causing the cells to utilise DNA repair 

mechanisms and induce cell death (Drlica and Zhao, 1997).  

 

1.8.2 Inhibition of DNA gyrase by aminocoumarins  

Aminocoumarins are a class of antibiotics with a contrasting mechanism that includes 

novobiocin, coumermycin A1 and clorobiocin (Figure 1.8.3). Instead of inhibiting at the DNA 

gate, instead they are competitive inhibitors of ATP and bind partially across the ATP-binding 

site. This means that they inhibit only the negative supercoiling reaction of the enzyme and 

leave the ATP-independent relaxation reaction unaffected (Sugino et al., 1978). Although the 

general mechanism of action for the coumarin antibiotics was quickly deciphered, the exact 

binding site took longer to determine through bacterial mutant isolation, with mutants being 

isolated in E. coli (del Castillo et al., 1991, Contreras and Maxwell, 1992) and in S. aureus 

(Stieger et al., 1996) (Table 1.8.1) (Kampranis et al., 1999b). A further systematic study of 

the effects of mutations surrounding the ATP- and novobiocin-binding sites has further 

confirmed the crystallographic binding site through use of the ATPase reaction (Gross et al., 

2003). 

 

The aminocoumarins have whole cell activity against Gram-positive bacteria only and 

clinically only novobiocin of the coumarins has been used, but can no longer be used due to a 

combination of low solubility, toxicity and spontaneous resistance forcing it to be removed 

from clinical use (David and Burgner, 1956, Kirby et al., 1956, Colville et al., 1957, Food and 

Drug Administration, 2011). Regardless of the flaws of novobiocin, the coumarin group of 

antibiotics are interesting for continued studies.  
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Figure 1.8.3: Chemical structure of the aminocoumarin novobiocin. Clorobiocin has an identical 

chemical structure, except the methyl group at position 8 of the coumarin ring is substituted for chlorine. 

Coumermycin A1 is a dimeric aminocoumarin with additional substitutions at the termini and in the 

linker region. 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

Table 1.8.1: Novobiocin-resistant mutants in DNA gyrase GyrB and the amino acid positions in the E. 

coli, S. aureus, and M. tuberculosis enzymes. The resulting mutations are indicated for the source 

organism or where not displayed in the S. aureus column. Bacterial mutants were raised as described 

and the enzymatic studies were carried out after analysis of the crystallographic structures. 

 E. coli S. aureus M. tuberculosis Reference 

Bacterial Isolation 

E. coli 

R136C/L/H R144 R141 (del Castillo et al., 

1991, Contreras 

and Maxwell, 

1992) 

G164V G172 G168 

Bacterial Isolation 

S. aureus 

I48 I56S V54 (Stieger et al., 

1996, Fujimoto-

Nakamura et al., 

2005) 

G77 G85S G83 

G81 D89G A87 

I94 I102S/V/T V99 

V120 S128L V125 

R136 R144I/S R141 

T165 T173A/N S169 

M166 I175T T170 

Bacterial Isolation 

S. pneumoniae 

V119 S128L V125 (Munoz et al., 

1995) 

Bacterial Studies 

Resistant 

Halophilic 

archaebacterium 

G81 D89G A87 (Holmes and 

Dyallsmith, 1991) S120 S129T S126 

R136 R144H R141 

Enzymatic studies 

(SPR) 

N46D/L N54 N52 (Kampranis et al., 

1999b) D73N D81 D79 

R136C R144 R141 

Enzymatic studies 

(Sc and ATPase) 

V43A I50 V49 (Gross et al., 

2003) E50A E58 E56 

D73E D81 D79 

R76A R84 R82 

G77A/S G85 G83 

I78A/L/V I86 I84 

P79A P87 P85 

I94A I102 V99 

A100S A108 A105 

K103A K111 K108 

R136A/H/L/S R144 R141 

T165A/V T173 S169 
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1.8.3 Inhibition of DNA gyrase by naphthoquinones 

The naphthoquinones are a class of natural compounds which have been shown to have 

activity against DNA gyrase from M. tuberculosis. One of the major sources that they have 

been reported to have been isolated from Euclea natalensis, or the toothbrush tree, which has 

been associated with traditional medicine (Tannock, 1973, Khan and Rwekika, 1992). These 

compounds have a currently unknown mechanism of action, which is thought to occur through 

interaction with the GyrB N-terminal domain, but away from the site of ATP binding (Karkare 

et al., 2013b). Hence, as they act through a novel mechanism of action it makes them 

interesting to study from a mechanistic point of view. This is important because cross toxicity 

to mammalian cell including intercellular oxidative stress from menadione likely prevents 

their use in the clinic (Brown et al., 1991). The IC50 values of the naphthoquinones vary largely 

with the most active compounds against DNA gyrase reported to be diospyrin and 7-

methyljuglone (Karkare et al., 2013b) (Table 1.8.2). 

 

Two computational models predicting the binding site of diospyrin in the NTD of GyrB have 

been made independently. Between to the two models there is a large degree of agreement 

between the published model produced by Chetty and Soliman (2015) and the unpublished 

model created by Dr S. Ekins (2015) (Figure 1.8.4). The major difference is in the structural 

models that the computational models are based on; the Ekins model is based on the 3ZK7 

crystal structure (Agrawal et al., 2013), whereas the Chetty and Soliman (2015) model utilised 

three homology models at higher resolution to obtain their binding pocket. At present neither 

of the computational models has been tested against the enzyme targets. 

 

Alongside the biological analysis that these compounds have been subjected to, there has also 

been a substantial amount of work on the chemical properties of these compounds. In this area, 

several of the naphthoquinones have been described as unstable with concentration-dependent 

breakdown of these compounds often occurring (van der Kooy, 2007). In the case of 7-

methyljuglone, only 75% was found to remain in the sample at 30 mins when dissolved in 

DMSO; less than 5% remained after one week. Only the poor inhibitors of DNA gyrase such 

as menadione and plumbagin were found to pure after one week when dissolved in DMSO. 

These stability issues raise significant concerns when working with this class of compound; it 

has been reported that 7-methyljuglone is relatively stable in the mycobacterial growth media 

(Middlebrook 7H9 supplemented with 5% glycerol and 20% DMSO), albeit with decreased 

solubility. Under these conditions 92% purity was retained at 8 hours enabling inhibition 

assays to be undertaken (van der Kooy, 2007). 
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Table 1.8.2: Reported IC50 values of selected naphthoquinones against the M. tuberculosis DNA gyrase 

supercoiling reaction and their chemical structures. IC50 values as reported in Karkare et al. (2013b) 

 
Reported IC50 vs M. tuberculosis DNA 

gyrase (supercoiling)/ μM 
Chemical Structure 

Diospyrin 15 

 

 

7-Methyljuglone 30 

 

Neodiospyrin 50 

 

Isodiospyrin 100 

 

Menadione >200 
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Figure 1.8.4: Two views of the model of diospyrin docked into the 3ZM7 crystal structure of the Mtb 

ATPase domain (Agrawal et al., 2013) by Dr S. Ekins. Six amino acids of interest are shown with in 

specific interaction distances labelled. A) and B) show different orientations of the same structure. 
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1.8.4 Inhibition of DNA gyrase by simocyclinones 

Simocyclinone D8 is a Streptomyces natural product that was originally isolated from 

Streptomyces antibioticus Tü 6040 (Schimana et al., 2000, Theobald et al., 2000, Galm et al., 

2002, Trefzer et al., 2002). It is known to target DNA gyrase but unusually for a DNA gyrase 

inhibitor it does not have activity against bacterial topo IV in either E. coli or S. aureus 

(Oppegard et al., 2009). SD8 has an unusual structure combining an aminocoumarin domain 

linked with a tetraene dicarboxylic acid and D-olivose linker to the Angucyclic polyketide 

head (Figure 1.8.5). Despite the presence of the aminocoumarin domain the target of SD8 is 

not GyrB, instead it inhibits DNA binding by GyrA (Flatman et al., 2005). This has been 

proved using mutagenesis and X-ray crystallographic studies, which demonstrate that the 

binding site of SD8 is adjacent but not overlapping with that of the quinolones (Edwards et 

al., 2009, Hearnshaw et al., 2014). One major issue preventing the use of SD8 in the clinic is 

that there is considerable cross resistance to QRDR (quinolone resistance determining region) 

mutants, and as there is an increasing trend of recording cases of these in the clinic it makes it 

an impractical lead to follow further (Edwards et al., 2009). 

 

 

Figure 1.8.5: Structure of Simocyclinone D8 indicating the four different sections including the 

aminocoumarin and Angucyclic polyketide active heads. Image redrawn from (Edwards et al., 2009) 

using Marvin sketch. 

 

1.8.5 Pyrrolopyrimidine and tricyclic GyrB/ParE (TriBE) inhibitors 

Pyrrolopyrimidine derivatives are a well investigated class of compounds, which have been 

developed in a variety of different contexts including as antibacterial agents (Dave and Shah, 

2002, Hilmy et al., 2010, Tari et al., 2013b, Trzoss et al., 2013), although other reported 

activities include being antidiabetic, herbicidal, diuretic and antineoplastic (Asif, 2016). 
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Several chemical optimisation studies have been carried out on these compounds showing 

them to have low level antibacterial activity mostly via the disk diffusion method, but without 

mode of action, toxicity or resistance studies being carried out. Hilmy et al. (2010) managed 

to produce compounds with MIC values better than those for ampicillin for S. aureus; these 

compounds also exhibited antifungal activity against Candida albicans. Subsequently, this 

class of compounds was further investigated by the company Trius therapeutics who described 

them to inhibit by a dual-targeting GyrB and ParE mechanism and crystallised the compounds 

in the likely binding pocket (Tari et al., 2013b). These compounds appear to be stronger 

inhibitors of Gram-positive bacteria, with efflux pumps inhibiting their effectiveness against 

E. coli and other Gram-negative bacteria (Trzoss et al., 2013). In addition to the published 

work on these compounds, the pyrrolopyrimidine compound class has been patented to be 

potentially useful for further clinical developments (Bensen et al., 2012, Cooper et al., 2016). 

 

Further optimisations of the pyrrolopyrimidine compounds lead to the development of the 

novel TriBE class of inhibitors. These compounds have been significantly optimised to have 

significant efficacy against S. aureus, S. pneumoniae and E. faecalis, although in a mouse 

model they did not show activity as good as the clinical antibiotic levofloxacin. Equally 

against clinically-relevant bacteria they showed a range of activities, but importantly in 

antibiotic-resistant strains good activity was seen (Tari et al., 2013a). Like the 

pyrrolopyrimidine compounds the active site of the compounds has been determined by 

crystallography in both DNA gyrase and topo IV (Figure 1.8.6). The gyrase binding pocket 

appears as determined by crystallography appears to have some possible overlap to both the 

ATPase binding site as well as the novobiocin binding site, however from the literature this 

binding pocket has not been confirmed with mutagenesis. The mechanism of action for these 

compounds has been determined to be through a dual targeting mechanism to both GyrB and 

ParE, which leads to very low frequency of resistance values, leading them to be an interesting 

series of compounds to explore further. 

 

From the TriBE group of compounds Redx03863 has been further developed as an 

antimycobacterial agent by Redx AntiInfectives, from which they produced their lead 

compound of Redx04739 (Figure 1.8.7) (McGarry et al., 2018).  
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Figure 1.8.6: Image of the binding pocket of compound 4 in the Enterococcus faecalis V583 ATPase 

sub-domain (PDB entry: 4KSG). Key binding interactions and their residues shown. The residues 

correspond to the following residues in M. tuberculosis GyrB: N48 – N52; S49 – A53; E52 – E56; D75 

– D79; R78 – R82; S122 – V125; T167 – S169 (Tari et al., 2013a). 

 

 

Figure 1.8.7: Chemical structure of Redx03863 which was optimised to give the lead compound of 

Redx04739 
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1.9 Project aims 

The initial aim of the project was to crystallise and characterise the M. tuberculosis fusion 

protein (Mtb GyrBA) as, since the initial cloning of this fusion protein by Dr Fred Collin, 

there had been no comprehensive studies of its total activities, including the ATPase activity. 

Unsuccessful crystallisation trials led us to clone and perform initial characterisations on the 

DNA gyrase enzymes from M. thermoresistibile (Mth GyrA, GyrB, and GyrBA). 

 

Our aim was always to further develop Mtb DNA gyrase as a drug target for novel antibiotics, 

and along our journey we were fortunate to work on two groups of compounds. The first was 

the problematic naphthoquinones, which were eventually dropped in favour of the modified 

TriBE compounds from Redx AntiInfectives. We investigated these compounds in 

collaboration with the company where we characterised them in terms of enzymatic and 

antibacterial properties. This also gave us the novel opportunity to gain additional 

crystallographic studies on the N-terminal domain of GyrB in the absence of crystals of the 

full-length enzyme. An overall summary of the project is shown in (Figure 1.9.1) 
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Figure 1.9.1: Overview of the three pronged approach of the PhD thesis presented to obtain mechanistic 

characterisation of the M. tuberculosis fusion protein; to characterise the various constructs presented 

against known inhibitors; as well as to characterise and perform structural studies on both the full length 

protein as well as the ATPase domain in complex with novel inhibitors. 
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2. Materials and Methods 

2.1 Bacteriology 

2.1.1 Bacterial strains 

The E. coli cloning and expression strains used in this study are listed in Table 2.1.1 

Table 2.1.1: Genotypes of E. coli cloning and expression strains used 

Strain Genotype 

DH5α (NEB) F- φ80lacZ∆M15 ∆(lacZYA-argF) U169 deoR recA1 endA1 

hsdR17 (rk - , mk +) phoA supE44 λ- thi-1 gyrA96 relA1 

StellarTM (Cloantech) F–, endA1, supE44, thi-1, recA1, relA1, gyrA96, phoA, Φ80d 

lacZΔ M15, Δ (lacZYA - argF) U169, Δ (mrr - hsdRMS - 

mcrBC), ΔmcrA, λ– 

BL21 (DE3) (NEB) fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS 

λ DE3 = λ sBamHIo ∆EcoRI-B int::(lacI::PlacUV5::T7 gene1) 

i21 ∆nin5 

RosettaTM 2 (pLysS) 

(Novagen) 

F- ompT hsdSB(rB
- mB

-) gal dcm (DE3) pLysSRARE2 (CamR) 

 

Bacterial strains for genomic DNA isolation, compound and susceptibility testing are listed in 

Table 2.1.2. All bacteria are classified within group 2 of the ACDP hazard group to human 

health, which means that they have the potential to be a hazard to those working with them, 

but are unlikely to spread to the community, and effective treatment exists (HSE, 2013). 

 

2.1.2 Media and antibiotics 

For molecular biology applications the strains detailed in Table 2.1.1 were grown in LB-broth 

(Formedium: tryptone 10 g/l; yeast extract 5 g/l, sodium chloride 10 g/l) or on LB-agar 

(Formedium: tryptone 10 g/l; yeast extract 5 g/l, sodium chloride 10 g/l, agar 11 g/l) 

supplemented as appropriate with ampicillin (100 mg/l), kanamycin (30 mg/l), and 

chloramphenicol (34 mg/l). In transformation reactions, SOC medium (tryptone 20 g/l; yeast 

extract 5 g/l; sodium chloride 0.58 g/l; potassium chloride 0.186 g/l; magnesium chloride 2.03 

g/l; magnesium sulphate 2.46 g/l; glucose 3.6 g/l) was utilised.   
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Table 2.1.2: Summary of bacterial strains used for genomic DNA isolation, and compound 

susceptibility testing.  

Species name Collection number Obtained from Source 

Acinetobacter 

baumannii 

NCTC13420 RedxPharma Clinical Isolate 

Escherichia coli ATCC25922 RedxPharma/ 

HPA 

Clinical Isolate 

Mycobacterium 

smegmatis 

ATCC19420 RedxPharma Unknown source 

Mycobacterium 

thermoresistibile 

ATCC19527 DSMZ Soil isolate 

Pseudomonas 

aeruginosa 

ATCC27853 RedxPharma Clinical Isolate 

Staphylococcus 

aureus 

ATCC29213 RedxPharma Clinical Isolate 

 

All non-Mycobacterial strains in Table 2.1.2 were grown in Mueller-Hinton broth (Sigma: 

beef infusion solids 2 g/l; casein hydrolysate 17.5 g/l; starch 1.5 g/l) or on Mueller-Hinton 

agar (Sigma: beef infusion solids 2 g/l; casein hydrolysate 17.5 g/l; starch 1.5 g/l; agar 17 g/l). 

No antibiotics or supplements were added to Mueller-Hinton broth or agar. 

 

All mycobacterial strains in Table 2.1.2 were grown in Middlebrook 7H9 broth (Sigma: 

ammonium sulphate 0.5 g/l; disodium phosphate 2.5 g/l; monopotassium phosphate 1 g/l; 

sodium citrate 0.1 g/l, magnesium sulphate 50 mg/l; calcium chloride 0.5 mg/l; zinc sulphate 

1 mg/l; copper sulphate 1 mg/l; ferric ammonium citrate 40 mg/l; L-glutamic acid 0.5 g/l; 

biotin 0.5 mg/l) supplemented with Middlebrook OADC growth supplement (bovine albumin 

fraction V 5 g/l; dextrose 2 g/l; catalase 4 mg/l; oleic acid 50 mg/l; sodium chloride 0.85 g/l), 

0.2% (v/v) glycerol and 0.05% (v/v) Tween-80 or on Middlebrook 7H11 agar (Sigma: casein 

enzymatic hydrolysate 1g/l; ammonium sulphate 0.5 g/l; monopotassium phosphate 1.5 g/l; 

disodium phosphate 1.5 g/l; sodium citrate 0.4 g/l; magnesium sulphate 50 mg/l; L-glutamic 

acid 0.5 g/l; ferric ammonium citrate 40 mg/l; pyridoxine 1 mg/l; biotin 0.5 mg/l; malachite 

green 1 mg/l; agar 15 g/l) supplemented with Middlebrook OADC growth supplement and 

0.2% (v/v) glycerol. 

 



48 

 

2.1.3 Preparation of chemically competent E. coli cells 

Fifty microliters of competent cells were grown overnight in 5 ml LB-broth (37°C, 200 rpm) 

with the appropriate antibiotics. One millilitre of the overnight culture was used to inoculate 

100 ml LB-broth with the appropriate antibiotics grown at 37°C, 200 rpm until the optical 

density 600 nm (OD600) reached a value of 0.3. The cultures were cooled on ice and pelleted 

at 4°C, 3000 rpm for 12 min. The supernatant was removed, and the pellets resuspended in 

total 12 ml ice cold 100 mM calcium chloride. The resuspended bacteria were pelleted at 4°C, 

3000 rpm for 12 min. The supernatant was removed, and the pellets resuspended in 2.5 ml ice 

cold calcium chloride before supplementation with final concentration 25% (v/v) ice cold 

glycerol. 100 µl aliquots were flash-frozen in liquid nitrogen and stored at -80°C until use. 

 

2.1.4 Heat shock transformation of chemically competent cells 

Chemically competent cells (Table 2.1.1) were defrosted on ice, before supplementation with 

0.5 µl purified plasmid, 5 µl of ligation reaction or 5 µl InFusion cloning reaction. The cells 

were mixed by flicking before being returned to ice for 10-20 min. The cells were transferred 

to a 42°C heat block for 45 s, briefly returned to ice (maximum 2 min) before addition of 250 

µl SOC medium. Transformation reactions were placed in a 37°C shaking incubator (200 rpm) 

for 45-60 min before plating 50-100 µl of expression cells or the whole cloning reaction on to 

LB-agar with the appropriate antibiotics overnight at 37°C. 

 

2.2 Molecular biology methods 

2.2.1 Oligodeoxynucleotides (primers) 

Multiple sets of primers were used in this thesis for various different purposes. The initial set 

of primers was used to generate new protein constructs (Table 2.2.1), the second were used to 

generate the three sets of single point mutants (Table 2.2.2). A third set of primers were used 

for the amplification of the type IIA topoisomerase from E. coli and M. smegmatis bacterial 

mutants (Table 2.2.3). Further primers were used for sequencing reactions (Table 2.2.4).  



49 

 

 



50 

 

 
Table 2.2.1: NC 
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Table 2.2.2: P2 
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Table 2.2.3: Landscape 
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Table 2.2.4: Sequencing primers used to sequence plasmids and amplified genes. Orientation indicated 

as (F) for forwards and (R) for reverse orientated primers. 

Protein Primers 

E. coli gryA AAACTGCGCGGCTGTGTTAT (F) 

AATTCCGGACGTCATGCCAA (F) 

CTACTCCCAGACCCAGTTGC (F) 

CGCGGAACTGTTGCGTATTC (F) 

TCTTCATGGCGACCGCTAAC (F) 

CAGCCAAACTTTACCGTGCC (R) 

E. coli gyrB ACGAAAATTCGAAGATGTTTACCGT (F) 

ATCCAGCGCGAGGGTAAAAT (F) 

TGGACAAAGAAGGCTACAGCA (F) 

AGGAAGTGGCGACGCTTATC (F) 

TGAACGCCTTATCCGGCCTA (R) 

E. coli parC GGAAAAGCGTATTGTTAATCGCAAC (F) 

TCGGAAGCATCTTCAATCACCA (F) 

CTGCCTGCAGTTCTTTCTTCA (F) 

ATATCCACGCGGTTGGAACG (F) 

GCAAAGAGTTGTATATCAAGGCACA (R) 

E. coli parE AAACGTATTACACCTCTTCCATCGC (F) 

GACCGTGTTTCACCAATGCG (F) 

CCCAGATATCTTCCGCCGAC (F) 

TATTTCAACCCGATCGTCGATTTTC (R) 

M. smegmatis gyrA AAGGGTCTCGGTGAGATGGA (F) 

TGGCGATGGAGATGTTGCGTG (F) 

CAGGTGCGCGACGGCAAG (F) 

CCTCGAGCGGCAGAAGATCG (F) 

AACCTCCTGGCCTTCCAGCC (F) 

ACCTACAGCTCCTTAGCTCG (R) 

M. smegmatis gyrB ATAGGTGGAAACGCGGCTAC (F) 

GCTGGAGGCCACGGTCCTG (F) 

TCGAGATCGCGATGCAGTGGA (F) 

CGACATCGGTGGGTTGCCG (F) 

GGCAGCGTCGTATCAGTCAT (R) 
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Protein Primers 

M. tuberculosis gyrA TTGGCGATGGAGATGCTGAG (F) 

TCTGGGCGCTGGA (F) 

CCGGCATTTCCAACATTGAGGACC (F) 

ACGTCAGCGACGAGGATTTG (F) 

CATGCGGTTCAATATCGACGAC (F) 

M. tuberculosis gyrB GGATGGCGGTGTCGAGGT (F) 

ACCTTTCACTATCCGGGTGGC (F) 

ATCCGCGCAAGTCCGAACTGTATG (F) 

AAGGCCGGGAAGAAGATCAACAAG (F) 

M. thermoresistibile 

gyrA (G) 

AATCGACGAGGAGACAGTCG (F) 

CTGCGCATGGTCATCGAACT (F) 

GTGCGTGACGAGCTCAAG (F) 

M. thermoresistibile 

gyrA (CO) 

ATGCTGCGTGAAATTGATGA (F) 

ATCGTGTTGGTCTGCGTATG (F) 

GCGTGGTATTGTTCGTGATG (F) 

CAGAAGGTGATACACTGGTTGC (F) 

M. thermoresistibile 

gyrB (G) 

TTGTATTTCCAGGGCGTGGCTGCCCAGAAGAA (F) 

TATGACAAATCGGTCCCCG (F) 

CTTCCGGGCCGCGTTGAC (F) 

ATCATCAACGTCGAGAAGGC (F) 

ATGGGCGAGGACGTCGAG (F) 

CAAGCTTCGTCATCACTAAACGTCCAGGAACCGA (R) 

M. thermoresistibile 

gyrB (CO) 

TTGTATTTCCAGGGCATGGCAGCCCAGAAGAAA (F) 

TATGATAAAAGCGTTCCGGG (F) 

AGAAGGTTTTCGCGCAGC (F) 

TTAATGTTGAAAAAGCGCGTA (F) 

GAAGATGTTGAAGCACGTCG (F) 

CAAGCTTCGTCATCATTACACATCCAGAAAACGCAC (R) 

T7 Promoter TAATACGACTCACTATAGGG (F) 

T7 Terminator CTAGTTATTGCTCAGCGGT (R) 

 

2.2.2 Agarose gel electrophoresis 

Agarose gel electrophoresis was prepared typically as 1% agarose (Melford) melted in 1xTAE 

buffer (Formedium) in a microwave oven (900 W) for 3 min at 70% maximum power with 

evaporated water added back in before casting. Gels to separate topological states were 
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typically run at 60 V for 200 mins. Gels to separate linear DNA fragments were typically run 

for 1 hour at 100 V. Gels were stained in ca. 2 µg/ml ethidium bromide before imaging in a 

SynGene Gel imaging system. 

 

2.2.3 PCR and cloning 

Primers were designed for the fragments of DNA to be cloned (Table 2.2.1;Table 2.2.3). Thirty 

cycles of PCR were typically carried out in 20 µl reactions with Phusion polymerase in the 

GC buffer as per manufacturer’s instructions (Table 2.2.5; Table 2.2.6). Following successful 

amplification of the insert (confirmed by gel electrophoresis) the insert was purified by either 

gel purification or PCR clean up (see section 2.2.5). The vector was typically prepared by 

cleavage with restriction enzymes for at least 3 hours at 37°C before gel purification. The 

vector and insert were used in either a ligation reaction with T4 ligase (NEB) as per 

manufacturer’s instructions or an In-Fusion cloning reaction (Takara Bio Inc.) as per 

manufacturer’s instructions, followed by transformation into cloning cells with the appropriate 

antibiotics. Colony PCR with a primer in the vector and one in the insert (e.g. a cloning primer 

and a sequencing primer such as T7), with 2x GoTaq® Green Master Mix (Promega) to a total 

of 2.5-5 µl reactions were used to confirm positive results as par manufacturer’s instructions 

(Table 2.2.7). The thermocycling procedure used was analogous to that of the Phusion® DNA 

polymerase protocol with an alteration to 6 mins in the initial denaturation step (Table 2.2.6). 

Positive results from colony PCR were amplified through overnight culture and performing a 

mini prep. Sequence analysis (section 2.2.7) was performed to confirm the correct sequence 

before purification. 

 

Table 2.2.5: Typical reaction components for PCR reactions carried out with Phusion® DNA 

Polymerase (NEB). 

Component Final Concentration 

MilliQ water To final reaction volume 

5X Phusion HF or GC buffer 1X 

dNTPs 200 µM 

Forwards Primer 0.5 µM 

Reverse Primer 0.5 µM 

Template DNA 5 pg/µl 

DMSO 3% (v/v) 

Phusion DNA Polymerase 1.0 units / 50 µl PCR reaction 
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Table 2.2.6: Typical thermocycling reaction for a PCR reaction carried out with Phusion® DNA 

Polymerase (NEB). 

Step Temp Time 

Initial Denaturation 95-98°C 2 min 

30 Cycles 95-98°C 

Annealing Temperature 

72°C 

10-60 s 

30-40 s 

2-4 min 

Final Extension 72°C 10 min 

 

Table 2.2.7: Typical reaction components for PCR reactions carried out with 2x GoTaq® Green Master 

Mix (Promega). 

Component Final Concentration 

MilliQ water To final reaction volume 

2x GoTaq® Green Master Mix (Promega) 1X 

Forwards Primer 0.5 µM 

Reverse Primer 0.5 µM 

 

2.2.4 Site-directed mutagenesis 

Site-directed mutagenesis was performed through use of a PCR-based method by which 

primers were designed to be complementary to the base sequence around the mutants to 

change with the altered codon (Table 2.2.2). The PCR reaction was carried out using Phusion® 

DNA polymerase using the conditions previously described (Table 2.2.5; Table 2.2.6). Fifty 

picograms of the GyrB or GyrBA plasmids were used as the template DNA. After a successful 

PCR reaction, the template DNA was removed by digestion by DpnI (NEB) for 1 hour at 37°C 

in CutSmart buffer (NEB). The resulting plasmid DNA was heat-shock transformed into 

cloning cells (Table 2.1.1) with the appropriate antibiotics. Successful base change was 

confirmed by sequencing analysis of the coding sequence of the plasmid. 

 

2.2.5 DNA purification 

Linear DNA purification was either carried out by gel extraction and subsequent clean up kit 

(Qiagen Gel purification kit or NucleoSpin Gel and PCR clean up kit) or through use of a PCR 

clean-up kit (Qiagen PCR clean-up kit or NucleoSpin Gel and PCR clean up kit) following 

the manufacturer’s instructions with the following alterations as described. Gels run for gel 

purification were typically made as 0.8% agarose in TAE, and gel slices were typically melted 

in the appropriate amount of buffer over an elongated time of 1-3 hour at temperatures ranging 
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between 37-50°C. The spin columns were eluted after a prolonged period of time (15-30 min) 

with the elution buffer at an elevated temperature of 30-40°C. 

 

Plasmid DNA was purified by the Qiagen mini-prep kit following the manufacturer’s 

instructions with the following alteration that the spin columns were eluted after a prolonged 

period (15-30 min) with the elution buffer at an elevated temperature of 30-40°C. 

 

2.2.6 DNA concentration determination 

DNA concentrations were estimated through use of a Nanodrop (ThermoFisher). Two 

microliter drops of DNA solution were compared to a buffer blank to obtain an absorbance 

reading at 260 nm which was converted by the machine with the Beer-Lambert into an 

estimate of the total DNA concentration. 

 

2.2.7 DNA sequencing 

DNA sequencing was performed by either SourceBioscience (Cambridge) or EuroFins 

Genomics. 

 

2.3 Protein methods 

2.3.1 Buffers and solutions 

Buffer components were purchased from either Sigma Aldrich or Melford Chemicals. 

 

The following buffers were routinely used in protein purification: 

Lysis Buffer: 50 mM Tris-HCl pH 7.9, 400 mM NaCl, 20 mM imidazole 

His-elution buffer: 50 mM Tris-HCl pH 7.9, 400 mM NaCl, 500 mM imidazole 

TEV cleavage buffer: 50 mM Tris-HCl pH 7.9, 50 mM NaCl, 5 mM DTT 

Gel filtration buffer: 50 mM Tris-HCl pH 7.9, 50 mM NaCl, 5 mM DTT 

Mtb storage buffer: 50 mM Tris-HCl pH 7.9, 50 mM NaCl, 5 mM DTT, 20% (v/v) glycerol 
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2.3.2 Protein expression 

Approximately 30-50 ng of plasmid DNA was transformed into the RosettaTM 2 (pLysS) cell 

line via heat shock transformation (section 2.1.4). After overnight incubation on the correct 

antibiotics, single colonies were selected and grown in 100 ml LB in 250 ml conical flasks 

supplemented with the appropriate antibiotics and 0.5% (v/v) glycerol overnight (37°C, 200 

rpm). 25-35 ml of the overnight culture was used to inoculate 1 L LB supplemented with the 

appropriate antibiotics in 2 L shaker flasks and grown at 37°C 200 rpm until OD600 of c.a. 0.6 

(0.4-0.8; 1.5-2.5 hours). Cultures were induced with typically 0.8 mM IPTG (Mtb) or 0.4 mM 

IPTG (Mth) and the temperature reduced to 28-30°C for 4.5 hours for the full-length subunits 

and fusion proteins. The Mtb ATPase domain and subdomain constructs were induced with 1 

mM IPTG at 37°C for 4.5 hours, meanwhile the Msm and Mth loop deletion sub-ATPase 

domain constructs were induced at 30°C with 0.4 mM IPTG for 4.5 hours. The cultures were 

typically harvested at 5000 rpm for 8-10 mins (F8S-6x1000y or F9S 4x1000y rotor). Cells 

were resuspended in the lysis buffer except for the Mtb full ATPase domain construct (50 mM 

Tris-HCl pH 8, 400 mM sodium chloride, 20 mM imidazole) and the Msm and Mth loop 

deletion constructs (50 mM Tris-HCl pH 7.6, 400 mM sodium chloride, 20 mM imidazole). 

One EDTA-protease inhibitor tablet (Roche) was added per maximum 4 L of cells. 

Resuspended cells were stored at -80°C until purification. 

 

2.3.3 Protein purification 

Two to eight litres of resuspended cell pellets were defrosted from -80°C before lysis at 25,000 

psi in a Constant Systems cell disruptor in one-shot mode or in an Avestin EmulsiFlex-B15 

homogeniser at 40,000 psi. The lysate was centrifuged at a minimum of 17,500 rpm for 45 

mins (SS34-rotor). The supernatant was removed and filtered at 0.45 µm before application 

to a 5 ml HisTrap HP or equivalent column. The column was washed in lysis buffer 

supplemented with 2-5% His-elution buffer before elution over a gradient from 5-100% His-

elution buffer. Fractions were analysed on 8-12% SDS-PAGE gels depending on the size of 

the protein. Fractions deemed to contain the protein of interest were dialysed overnight against 

TEV cleavage buffer in the presence or absence of 1 mg TEV protease. If TEV cleavage was 

carried out, a second 5 ml HisTrap HP column was run collecting the flow-through followed 

by application to a MonoQ 10/100 column. The column was subsequently washed to a stable 

base line before eluting on a gradient 50 -1000 mM sodium chloride. If no TEV cleavage was 

carried out, the dialysed protein was directly run onto a MonoQ 10/100 column as described 

above. Fractions were analysed on 8-12% SDS-PAGE gels depending on the size of the 

protein. Fractions deemed to contain the protein of interest were pooled and concentrated to 
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less than 1 ml before application to a gel filtration column in gel filtration buffer (SuperdexTM 

75 10/300 for the GyrB24 constructs and HiPrep 16/60 Sephacryl S-400 HR for the GyrBA 

constructs). Fractions were analysed on 8-12% SDS-PAGE gels depending on the size of the 

protein. Fractions deemed to contain pure protein of interest were pooled and dialysed 

overnight against the Mtb storage buffer. Proteins were concentrated to the desired 

concentration before aliquoting and flash freezing in liquid nitrogen before storage at -80°C. 

 

The Mtb GyrA and GyrB subunits (including mutants) were purified with a single column 

strategy using the initial HisTrap HP column before dialysis into Mtb storage buffer. The Mth 

GyrA and GyrB subunits were purified with a dual column strategy using the initial HisTrap 

HP column before TEV cleavage and a reverse HisTrap HP column and dialysis into the Mtb 

storage buffer. 

 

The final preparations of the Msm and Mth GyrB sub-ATPase domains were performed at pH 

7.6 and additionally supplemented with 1 mM EDTA for the MonoQ and Gel Filtration 

columns as well as in the final storage buffer. 

 

2.3.4 Sodium dodecyl sulphate – polyacrylamide gel electrophoresis (SDS-PAGE) 

Three different types of SDS-PAGE gels were used in this project. 8% polyacrylamide Tris-

Glycine gels were used for the identification of the GyrBA fusion proteins (8% (v/v 

acrylamide, 375 mM Tris-HCl pH 8.8, 0.1% (v/v) SDS, 0.1% (v/v) APS, 0.1% (v/v) TEMED) 

with a 4% stacking gel made as per the resolving gel with 125 mM Tris-HCl pH 6.8. Gels 

were typically run in a Tris-Glycine running buffer (25 mM Tris-base, 192 mM glycine, 0.1% 

(v/v) SDS) for 1 hour at 180 V. 

 

12% acrylamide Bis-Tris gels were prepared and used for the identification of the GyrB sub-

ATPase domain. The resolving gels were prepared to contain 0.35 M Bis-Tris-HCl pH 6.8, 

12% (v/v) acrylamide, 0.1% (v/v) APS, 0.1% (v/v) TEMED, with a 0.5-1 cm of 5% (v/v) 

acrylamide stacking gel was set on top of the resolving gel to contain the wells. Gels were 

typically run in a 1x MOPS running buffer (50 mM MOPS, 50 mM Tris-HCl, 3.5 mM SDS, 

1 mM EDTA, pH 7.3) for 1 hour at 180 V. 
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TruPage precast gels (10%) (Sigma Aldrich) were used for identification of the full-length 

subunits. Samples were prepared by boiling with 1x loading buffer (50 mM Tris-HCl pH 6.8, 

2% (v/v) SDS, 100 mM DTT, 10 (v/v) glycerol and 0.05% (w/v) bromophenol blue). Gels 

were run in the TruPage running buffer for 1 hour at 180 V. 

 

Samples for SDS-PAGE analysis were prepared by boiling in final 1x sample application 

buffer (50 mM Tris-HCl pH 6.8, 10% (w/v) SDS, 100 mM DTT, 10% (v/v) glycerol, 0.05% 

(w/v) bromophenol blue) prior to loading. All SDS-PAGE gels were stained with 

InstantBlueTM stain (Expedeon) and imaged in a SynGene gel imager. 

 

2.3.5 Dialysis 

Dialysis was conducted in SnakeSkinTM (Thermo Scientific) tubing (10 kDa MWCO) clipped 

with food clips attached to polystyrene flotation devices overnight at 8°C in 2 L buffer with a 

magnetic stirrer bead stirring at a low rate. 

 

2.3.6 Protein concentration 

Protein concentration was performed in Amicon Ultra centrifugal filters (Merck) with a 

maximum molecular weight cut off (MWCO) of half the monomeric molecular weight of the 

protein of interest. Concentration was typically carried out at between 3000-4500 rpm on a 

bench top centrifuge (Sorvell Legend RT) or at 14,000 xg in a bench top microcentrifuge at 

4°C. Concentration analysis was carried out at regular intervals to determine the desired 

endpoint. 

 

Pre-concentration of samples was additionally assisted by addition of 1-2.5% (w/v) PEG 

35,000 to overnight dialysis solutions. 

 

2.3.7 Protein concentration determination 

Protein concentration was determined by taking multiple readings at 280 nm on a NanoDrop 

spectrophotometer system. Where the absorbance reading was above 1 unit, serial dilutions 

were made in the same buffer to calculate the concentration more accurately. Buffer blanks 

were carried out and subtracted from the protein readings. The protein concentration was then 

determined using the theoretical absorption co-efficient and molecular weight as calculated 



61 

 

by the ExPASy ProtParam tool (https://web.expasy.org/protparam/), via the Beer-Lambert 

Law: 

𝐴 =  ɛ𝑏𝑐 

Where A is the absorbance value (1 mm pathlength corrected to a 1 cm by the nanodrop 

software); ɛ is the absorbance co-efficient in units of M-1 cm-1 at the absorbance wavelength; 

b the path length (1 cm); and C the concentration of the protein (M). Therefore: 

𝐶 =  
𝐴

ɛ
 

To determine the concentration in units of mg/ml, the concentration in M was multiplied by 

the calculated molecular weight. 

 

2.3.8 Surface plasmon resonance 

Surface plasmon resonance was carried out in a Biacore T200 machine at 25°C with the 

assistance of Dr Rosaria Campilongo. The Mtb and E. coli GyrB sub-ATPase domains were 

bound at concentrations of 50 µg/ml in 10 mM sodium acetate pH 4.5 to CM5 sensor chips 

after activation of the surface carboxyl groups through the injection of a mixture of N-

hydroxysuccinimide (50 mM) and 1-ethyl-3-(3-diaminopropyl) carbodiimide (20 mM) from 

the Biacore amine coupling kit. Once the desired saturation was reached the active amines 

were deactivated through injection of ethanolamine. 

 

The system was primed in the SPR running buffer (10 mM HEPES-NaOH pH 7.4, 150 mM 

sodium chloride, 3 mM EDTA, 0.05 % (v/v) Tween-20, 5% (v/v) DMSO). Two-fold 

compound dilutions of Redx04739 were prepared in the SPR running buffer from a maximum 

concentration 50 µM. These compound dilutions were injected across the chips in single-cycle 

kinetics, with the reference cell (chip no protein) being subtracted for analysis. Data was 

subsequently analysed in Microsoft Excel to generate Kd values.  

  

2.4 Compounds and solvents 

Novel compounds supplied by Redx AntiInfectives were made up as stocks to 12.8 mg/ml in 

100% DMSO. Dilutions were made in broth for bacterial assays and in DMSO for enzymatic 

and crystallographic studies. 
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2.5 DNA topology assays 

2.5.1 Assay of DNA supercoiling by DNA gyrase 

Supercoiling assays were carried out in a 30 µl reaction volume at varying concentrations of 

DNA gyrase always with 0.5 µg relaxed pBR322* in 1x supercoiling assay buffer (Table 

2.5.1). A 6 µl reaction proportion was typically reserved for enzyme, dilution buffer (storage 

buffer of enzyme in the absence of enzyme (Table 2.5.1)), compounds and solvents. Reactions 

were typically incubated at 37°C in a waterbath for 30 mins unless otherwise stated. The 

reaction was stopped through addition of 30 µl 24:1 chloroform: isoamylalcohol solution and 

15 µl 2x STEB buffer (40% sucrose, 100 mM Tris-HCl pH 8.0, 100 mM EDTA, 0.5 µg/ml 

bromophenol blue), and vortexing before centrifugation (13,000 rpm 4 mins). The aqueous 

product was loaded onto native 1% (w/v) agarose in TAE gels. Gels were run as stated in 

section 2.2.2. 

 

Table 2.5.1: Typical assay and dilution buffers used in the respective E. coli and mycobacterial DNA 

gyrase supercoiling assays 

 E. coli Mycobacteria 

1x Assay buffer 35 mM Tris-HCl pH 7.5 

24 mM potassium chloride 

4 mM magnesium chloride 

2 mM dithiothreitol 

1.8 mM spermidine 

1 mM ATP 

6.5 % (w/v) glycerol 

0.1 mg/ml bovine serum albumin 

(acetylated) 

50 mM HEPES-KOH pH 7.9 

6 mM magnesium acetate 

4 mM dithiothreitol 

1 mM ATP 

100 mM potassium glutamate 

2 mM spermidine 

0.05 mg/ml bovine serum albumin 

(acetylated) 

Dilution buffer 50 mM Tris-HCl pH 7.5 

100 mM potassium chloride 

2 mM dithiothreitol 

1 mM EDTA 

50% (w/v) glycerol 

50 mM Tris-HCl pH 7.9 

50 mM sodium chloride 

5 mM dithiothreitol 

20% (v/v) glycerol 

 

2.5.2 Assay of DNA relaxation by DNA gyrase 

Relaxation assays were carried out in a 30 µl reaction volume at varying concentrations of 

DNA gyrase always with 0.4 µg supercoiled pBR322* in relaxation assay buffer (50 mM 

HEPES-KOH pH 7.9, 6 mM magnesium acetate, 4 mM dithiothreitol, 100 mM potassium 
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glutamate, 2 mM spermidine, 0.05 mg/ml bovine serum albumin (acetylated)). A 6-8 µl 

reaction proportion was typically reserved for enzyme, dilution buffer (storage buffer of 

enzyme in the absence of enzyme), compounds and solvents. Reactions were typically 

incubated at 37°C in a waterbath for 1-2 hours as stated. 0.1 mg/ml proteinase K was added to 

the reaction and incubated at 37°C for 30 mins before addition of 30 µl 24:1 chloroform: 

isoamylalcohol solution and 15 µl 2x STEB buffer (40% sucrose, 100 mM Tris-HCl pH 8.0, 

100 mM EDTA, 0.5 µg/ml bromophenol blue), vortexing and centrifugation (13,000 rpm 4 

mins). The aqueous product was loaded onto native 1% (w/v) agarose in TAE gels. Gels were 

run as stated in section 2.2.2. 

 

2.5.3 Assay of DNA decatenation by DNA gyrase 

Decatenation assays were carried out in a 30 µl reaction volume at varying concentrations of 

DNA gyrase always with 200 ng kDNA in either decatenation buffer (40 mM Tris-HCl pH 

7.5, 10 mM sodium chloride, 10 mM dithiothreitol, 1 mM ATP, 250 mM potassium glutamate, 

6 mM magnesium acetate and 0.5 mg/ml bovine serum albumin (acetylated)) or supercoiling 

assay buffer (Table 2.5.1). A 6 µl reaction proportion was typically reserved for the enzyme 

and dilution buffer (storage buffer of enzyme in the absence of enzyme (Table 2.5.1)). 

Reactions were typically incubated at 37°C in a waterbath for 30 mins. The reaction was 

stopped through addition of 30 µl 24:1 chloroform: isoamylalcohol solution and 15 µl 2x 

STEB buffer (40% sucrose, 100 mM Tris-HCl pH 8.0, 100 mM EDTA, 0.5 µg/ml 

bromophenol blue), and vortexing before centrifugation (13,000 rpm 4 mins). The aqueous 

product was loaded onto native 0.8% (w/v) agarose in TAE gels. Gels were run as stated in 

section 2.2.2. 

 

2.5.4 Assay of DNA cleavage by DNA gyrase 

Cleavage assays were carried out in a 30 µl reaction volume at 0.074 µM M. tuberculosis or 

0.25 µM M. thermoresistibile DNA gyrase with 0.3 µg supercoiled pBR322* in relaxation 

assay buffer. A 6 µl reaction proportion was typically reserved for enzyme, dilution buffer 

(storage buffer of enzyme in the absence of enzyme (Table 2.5.1)), compounds and solvents. 

Reactions were typically incubated at 37°C in a waterbath for 30 mins. To trap the linear DNA, 

0.1 mg/ml proteinase K and 0.2 (v/v) SDS were added to the reaction and further incubated at 

37°C in a waterbath for 30 mins. The reaction was stopped through addition of 30 µl 24:1 

chloroform: isoamylalcohol solution and 15 µl 2x STEB buffer (40% sucrose, 100 mM Tris-

HCl pH 8.0, 100 mM EDTA, 0.5 µg/ml bromophenol blue), and vortexing before 

centrifugation (13,000 rpm 4 mins). The aqueous product was loaded onto native 1% (w/v) 
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agarose in TAE gels. Gels were typically left for 15 mins before being run at 60 V for 200 

mins. Gels were stained in 2 µg/ml ethidium bromide solution before imaging. 

 

2.5.5 Assay of ATP turnover by DNA gyrase 

The PK/LDH (pyruvate kinase/lactate dehydrogenase) assay (Figure 2.5.1) was carried out in 

96-well flat bottomed micro-titre plates in 50 µl reaction volumes. A typical reaction contained 

10 µl 5x ATPase assay buffer (Table 2.5.2), 1-2 ng pBR322*, 0.8 mM phosphoenolpyruvate, 

0.75 µl PK/LDH solution (Sigma), 0.4 mM NADH, a 5 µl reaction volume was reserved for 

compounds, drugs and solvents, with reactions being carried out in 1% (v/v) DMSO. 

 

 

Figure 2.5.1: Cartoon representation of the PL/LDH linked ATPase assay system used. Three enzymes 

work co-operatively to convert PEP into Lactate while Relaxed DNA is negatively supercoiled, and 

ATP is continually regenerated, and NADH oxidised into NAD+ resulting in a decrease in absorbance 

at 340 nm which can be measured and using the Beer-Lambert law the number of ATP molecules 

hydrolysed by DNA gyrase can be calculated. 

 

Table 2.5.2: 1x Assay buffer used in the PK/LDH-linked ATPase assay of E. coli and mycobacterial 

gyrases. 

 E. coli Mycobacteria 

Assay buffer 50 mM Tris-HCl pH 7.5 

1 mM EDTA 

5 mM magnesium chloride 

10% (w/v) glycerol 

50 mM HEPES-KOH 7.9 

4 mM DTT 

6 mM magnesium acetate 

100 mM potassium glutamate 
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The rate of ATP turnover was calculated using the Beer-Lambert law (∆𝐴 = 𝜀𝑐𝑙). The 

extinction co-efficient (𝜀) of NADH at 340 nm of 6220 M-1cm-1, and a path length (l) of 1.37 

mm were applied with the change of absorbance (ΔA) over a minimum time period of 30 mins 

directly after the addition of ATP being measured through use of the equation for linear 

regression (𝑦 = 𝑚𝑥 + 𝑐), using an 𝑥 value of 1/60 corresponding to 1 s. The resulting 

concentration decrease in NADH directly corresponds to the total number of ATP molecules 

turned over per second. To determine the number of ATP molecules turned over per individual 

GyrB or GyrBA subunit the final value was divided by the concentration of the protein in M. 

To account for the fraction of the ATP molecules turned over per second by contaminating 

enzymes, the novobiocin-independent rate when 100-200 µM novobiocin was included in the 

reaction was subtracted from the measured rate to give the novobiocin-dependent rate. All 

trial reactions were carried out in duplicate, and the errors calculated using the linear 

regression feature in GraphPad Prism. The final error value was calculated through the 

following equation: ∆𝐾𝑑 =  √(𝐾2 + 𝐾𝑛𝑜𝑣2) . 

 

IC50 values were obtained by performing non-linear regression [log(inhibitor) vs response – 

variable slope (four parameters)] on the novobiocin independent rates (Redx03863 and 

Redx04739) or absolute rates (novobiocin).  

 

2.5.6 Assay of DNA relaxation by topo IV 

Relaxation assays were carried out in a 30 µl reaction volume at varying concentrations of 

DNA gyrase always with 0.4 µg supercoiled pBR322* in relaxation assay buffer (50 mM 

HEPES-KOH pH 7.6, 100 mM potassium glutamate, 10 mM magnesium acetate, 10 mM 

dithiothreitol, 1 mM ATP, 0.05 mg/ml bovine serum albumin (acetylated)). A 6 µl reaction 

proportion was typically reserved for enzyme, dilution buffer (40 mM HEPES-KOH pH 7.6, 

100 mM potassium glutamate, 1 mM dithiothreitol, 1 mM EDTA, 40% (v/v) glycerol), 

compounds and solvents. Reactions were typically incubated at 37°C in a waterbath for 1-2 

hours as stated. 0.1 mg/ml proteinase K was added to the reaction and incubated at 37°C for 

30 mins before addition of 30 µl 24:1 chloroform: isoamylalcohol solution and 15 µl 2x STEB 

buffer (40% sucrose, 100 mM Tris-HCl pH 8.0, 100 mM EDTA, 0.5 µg/ml bromophenol 

blue), vortexing and centrifugation (13,000 rpm 4 mins). The aqueous product was loaded 

onto native 1% (w/v) agarose in TAE gels. Gels were run as stated in section 2.2.2. 
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2.5.7 Assay to determine cleavage profile by DNA gyrase 

Three cleavage assays were carried out using either the mycobacterial supercoiling assay 

buffer containing ATP and 2 ng of relaxed pBR322* (120 µl final volume), or mycobacterial 

relaxation assay buffer (no ATP) with either 1.2 ng of negatively supercoiled pBR322* (120 

µl final volume) or 1.2 ng of EcoRI-linearised pBR322* (50 µl final volume) in the presence 

of 3.3% (v/v) DMSO, with or without DNA gyrase subunits, and 50 µM moxifloxacin. The 

assay was incubated in a waterbath at 37°C for 30 min before addition of 0.1 mg/ml proteinase 

K and 0.2% (v/v) SDS, and further incubation in a waterbath at 37°C for 30 min. The assay 

was immediately subjected to the NucleoSpin Gel and PCR clean up kit following the 

manufacturer’s instructions and being eluted in 40-50 µl of Buffer EB. A 20 µl digestion was 

performed on 10-16.5 µl of purified product with 10 units of BsaI-HF, EcoRI-HF and BsaI-

HF in a waterbath at 37°C overnight. The products were analysed on native 1.2% (w/v) agarose 

in TAE gels run as stated in section 2.2.2. 

 

2.6 Whole cell compound testing 

2.6.1 MIC determination 

A top concentration was selected to a maximum of 128 µg/ml and a two-fold dilution series 

was applied to the compound diluted in growth medium to a final concentration decrease of 

210. A maximum final concentration of 1% (v/v) DMSO was used. Bacteria grown on agar 

were suspended in assay growth media to a dilution factor of 1/100 of the 0.5 McFarland 

constant (CLSI, 2012). An equal volume of the bacterial growth suspension and the compound 

dilution series were mixed, the positive growth control contained media without drug, the 

negative control contained 100 µl media in the absence of bacteria. The OD600 was read and 

the bacteria were incubated for 20 hours for E. coli ATCC25922, A. baumannii 

NTCC13420, Pseudomonas aeruginosa ATCC 27853, and Staphylococcus aureus 

ATCC29213 at 37°C, or for 48 hours for M. smegmatis ATCC19420 at 35°C before taking 

visual and OD600 readings. All data were confirmed as a minimum of n = 2 where both repeats 

were within a 2-fold difference. 

 

2.6.2 Agar MIC determination 

A top concentration was selected (maximum 64 µg/ml), and a 10X solution was made and a 

two-fold dilution series was applied to the compound diluted in broth to a final concentration 

decrease of 210. The maximum final concentration of 1% (v/v) DMSO was used. 100 µl of 

compound dilution or plain broth (positive and negative control wells) was mixed with 900 µl 
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of Muller-Hinton agar for E. coli or Middlebrook 7H11 agar for M. smegmatis both at 50°C 

and allowed to set in the wells of a 24-well plate. Two replicates were made at each drug 

dilution. The bacteria grown on agar were suspended in broth to a dilution factor of 1/100 of 

the 0.5 McFarland constant. 20 µl of bacterial suspension was used to inoculate each well. 

The plates were incubated for 20 hours for E. coli ATCC25922 or for 72 hours M. smegmatis 

ATCC19420. All data were confirmed as a minimum of n = 2 where both repeats were within 

a 2-fold difference. All experiments were performed at a minimum of two repeats. 

 

2.6.3 Time of kill 

A single 10 ml starter culture was inoculated with a single bacterial colony grown on agar 

incubated overnight for E. coli ATCC25922 or for 2.5 days M. smegmatis ATCC19420 at 

37°C 200 rpm. 50 µl of the starter culture was subbed into 5 ml pre-heated medium and grown 

at 37°C 200 rpm until OD600 0.3. The inoculum was diluted to the 0.5 McFarland standard in 

broth and 250 µl was used to inoculate 50 ml prewarmed broth in 250 ml flasks. 100 µl was 

removed to form the T-5 plate dilutions made in sterile PBS. 200 µl of compound diluted in 

broth to form a 1000x or 4000x MIC stock was added to duplicate flasks. Duplicate flasks 

were kept aside as no drug controls. 100 µl was removed from each flask to form the T0 plate 

dilution series made in sterile PBS. All flasks were incubated at 37°C 200 rpm. Plate dilutions 

were taken at 30, 60, 120, 240, 360, 1440 min for E. coli ATCC25922 or 6, 12, 24, 48, 96, 

144 hours for M. smegmatis ATCC19420 made in sterile PBS. Colonies were counted after 

24-hour incubation at 37°C for E. coli ATCC25922 or after 3-day incubation for M. smegmatis 

ATCC19420 at 37°C. The percentage of colony forming units remaining was calculated as a 

percentage of the average number of colonies from the no drug control plates divided by those 

counted on each of the plates from the cultures treated with compound. The point at which no 

colony was counted on a plate emerging from a drug treated culture was defined as the time 

of kill. 

 

2.6.4 Disruption of biofilm assay 

Initially two 10 ml starter cultures were set up from solid medium of E. coli ATCC25922 and 

grown at 37°C. After 24 hours the culture was diluted to 1/10th of the 0.5 McFarland constant 

in broth. 200 µl was used to inoculate each well of a 96-well plate. A Calgary Biofilm device 

was attached, sealed and the plate was incubated at 37°C shaking at 400 rpm. After 24 hours 

the Calgary Biofilm device was washed twice in sterile 1x PBS for 5 min shaking at 400 rpm, 

before being incubated in a series of two-fold antibiotic and compound dilutions of 200 µl 
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starting at 1028 µg/ml for antibiotics and 64 µg/ml for compounds. The plate was incubated 

at 37°C 400 rpm. After 24 hours the bMIC was read and the Calgary Biofilm device was 

washed twice in sterile PBS for 5 min shaking at 400 rpm, before being incubated in 200 µl 

plain broth at 37°C shaking at 400 rpm. After 24 hours the MBEC was read to determine the 

lowest concentration that can effectively eradicate biofilms and inhibit shedding and growth 

in the wells. 

  

The timings were altered to 48 hours for M. smegmatis with the exception that the drug 

incubation step was 72 hours. 

 

2.7 Bacterial mutant generation 

2.7.1 Frequency of mutation experiment 

A 10 ml starter culture was inoculated with a single colony of E. coli ATCC25922 was grown 

for 24 hours or a single colony of M. smegmatis ATCC19420 was grown for 48 hours in broth. 

To generate inoculum 2 ml starter culture was concentrated to 1 ml by the pelleting of 1 ml of 

culture followed by resuspension of the pellet in a further 1 ml of culture. Fifty microlitres of 

each concentrated inoculum was used to inoculate each of four 10 ml half 90 mm Petri dishes, 

containing concentrations of the compound of interest at either 2x or 4x the agar MIC value. 

A further 50 µl of each concentrated inoculum at 100 – 10-7 were plated on 2 no-drug 

containing half 90 mm Petri dishes. Compound-free plates were incubated for 20 hours (E. 

coli) and 48 hours (M. smegmatis) at 37°C. Compound containing plates were incubated for 

48 hours (E. coli) or 5 days (M. smegmatis). 

 

Following successful isolation of mutants, a representative selection (maximum 8) was 

restreaked onto the base agar without antibiotics. After their growth period (24 hours E. coli 

or 48 hours M. smegmatis) the MIC of the parent strain was compared to the mutant strain to 

confirm mutagenesis. Two independent replicates were performed. After successful validation 

of resistance mutation, glycerol stocks of the strain were made by mixing colonies from the 

plate in a mix of 150 µl broth with 50 µl 80% (v/v) glycerol and frozen at -80°C. Mutants were 

characterised by cross-MIC testing against a panel of known antibiotics and other novel 

compounds of known mode of action. Additionally, 5 ml liquid culture was grown from each 

mutant and the genomic DNA extracted using the EdgeBio (85171) PurEluteTM Bacterial 

Genomic kit as per manufacturer’s instructions for E. coli strains. The manufacturer’s protocol 
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was altered for M. smegmatis to break open the mycolic acid cell wall through the extension 

of incubation periods and by introducing the use of BeadBugTM prefilled tubed 0.1 mm/ 2 ml 

capacity (silica) for the vortexing steps to allow for mechanical breakage of the mycolic acid 

cell wall. PCR amplification of the DNA gyrase genes (gyrA and gyrB) and the topo IV genes 

(parC and parE) was performed using primers (Table 2.2.4), and purification of fragments 

was performed with the Qiagen PCR clean-up kit as per the manufacturer’s instructions. The 

products were sent for sequencing (Eurofins) within the sequencing primers (Table 2.2.4). 

 

2.7.2 Serial passage 

Serial passage experiments were conducted by the same method as the broth MIC protocol 

(Section 2.6.1) with the following alterations. Technical duplicates were always performed. 

The plates were initially inoculated with a final dilution of 1/200 of a 10 ml starter culture of 

E. coli ATCC25922 incubated for 24 hours or M. smegmatis ATCC19420 incubated for 48-

72 hours. All subsequent passages were performed with a final dilution of 1/100 from the ¼ 

MIC well every 24 hours (E. coli) or 48-72 hours (M. smegmatis). Glycerol stocks were made 

at least every 4 passages through addition of 33 µl 80% (v/v) glycerol to the ¼ MIC well and 

frozen at -80°C. The passage could be restarted from a 1/100 final dilution from the glycerol 

stock. Glycerol stocks were additionally prepared from the ¼ and ½ MIC wells when the MIC 

approached 64 µg/ml, with a top achievable MIC concentration of 128 µg/ml. 

 

Upon an end being reached by either an MIC of greater than 64 µg/ml or a significant fold 

change in the MIC, a glycerol stock was made as described above, and an agar plate was 

streaked. Cross-resistance analysis and genomic extraction, PCR amplification of the type IIA 

topoisomerase genes with subsequent sequencing analysis was carried out as described in 

section 2.7.1. 

 

2.8 Protein crystallography: crystal methods 

2.8.1 Screening of crystallisation condition 

Forty microlitre volumes of multiple 96-well commercial sparse matrix screens were aliquoted 

into the wells of Swissci 96-well 2-drop MRC sitting drop vapour diffusion crystallisation 

plates. An Oryx8 robot (Douglas instruments) was used to dispense 600 nl drops containing 

300 nl of each protein and screen. Plates were sealed with Fortitude PCR seals and imaged at 

20°C in a MinstrelTM HT UV robot (Rigaku). 
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The commercial sparse matrix screens (JCSG-plusTM, Morpheus®, The BCS screen, SG1TM 

screen, Structure screen 1 + 2, MIDASplusTM, PACT premierTM, The PGA screenTM) were 

purchased in HT-96 format from Molecular Dimensions. The AmSO4 suite and PEGs suite 

crystallisation screens were purchased from Quiagen. In addition, the inhouse KISS (keep it 

simple screen) screen was made and aliquoted by Molecular Dimensions. The KISS screen 

combines a buffer system (sodium acetate pH 4; sodium citrate pH 5; MES pH 6, HEPES pH 

7, Tris-HCl pH 8, CHES pH 9) with PEG3350 (5-40% (w/v)) and ammonium sulphate 0.2-

3.2 M. 

 

2.8.2 Optimisation of crystallisation conditions 

Crystal hits were optimised if they showed likelihood of containing protein (including those 

which did not show UVA-fluorescence). Conditions of interest were optimised in terms of pH, 

precipitant concentration and ionic strength, and pipetted in 40 µl well volumes by an Orxy8 

robot (Douglas instruments). The wells were pipetted, sealed and the plates were imaged as 

per the method used for screening. 

 

2.8.3 Seeding of crystallisation conditions 

After semi-successful optimisation, seed stocks were made by harvesting wells of crystals in 

40-100 µl mother liquor and vortexing for 4 mins with between one and three 1 mm glass 

beads (Sigma Aldrich). Seed stocks were stored at 4°C for short term storage or -20°C for 

long-term storage. When applying seed stocks to crystallisation optimisations the drop ratio 

was altered to contain 300 nl protein solution, 200 nl well solution and 100 nl seed stock 

without dilution.  

 

2.8.4 SDS-PAGE of crystals 

A well of sub-optimal crystals was chosen, and 2 µl of the well solution was added to the drop, 

and the full well of crystals was removed to a 1.5 ml Eppendorf. The crystals were pelleted at 

2000 xg for 1 min and the supernatant was removed. The crystals were washed in 10 µl well 

solution. A total of 4 wash steps were completed. The crystals were pelleted, and the 

supernatant removed, before addition of 10 µl 5x loading buffer (250 mM Tris-HCl pH 6.8, 

10% (w/v) SDS, 0.5 M EDTA, 50% (v/v) glycerol, 0.25 (w/v) bromophenol blue). The 

samples were boiled and run on 12% SDS-PAGE with a positive control of pure protein. 
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2.8.5 Crystal soaking 

Novobiocin crystal-containing wells were selected and mother liquor supplemented with 

between 1-4% (v/v) DMSO 0.25-1 mM Redx03863 or Redx04739 and 25% (v/v) ethylene 

glycol was applied to these wells (1-2 µl per 600 nl drop). Crystal soaks of between 20 min 

and several days were tested. These wells were harvested without the need of additional 

cryoprotectants as per section 2.8.6. 

 

2.8.6 Harvesting of crystals 

Crystals were harvested in Litholoops (Molecular Dimensions) by Dr Clare Stevenson. 

Crystals were either harvested from the well before being washed in a cryoprotectant and flash 

frozen in liquid nitrogen or cryoprotectant was added to the well solution before harvesting 

the crystals which were directly flash frozen in liquid nitrogen. Cryoprotectants were typically 

made to contain the well solution supplemented with 25% ethylene glycol. 

 

2.9 Protein crystallography: data collection and structure determination 

2.9.1 X-ray data collection 

X-ray data collection was carried out on beamlines i03 and i04 under cryogenic conditions at 

the Diamond Synchrotron, Oxford, UK. X-ray data were collected for 3600 x 0.05-0.1° images 

at a wavelength of 0.97 Å (1.2782 Å for data collected at the zinc edge) to maximum resolution 

1.2-1.3 Å with a beam size of 80x20 or 54 x40 µm. All data sets were collected with a Pilatus3 

6M hybrid photon counting detector (Dectris). Auto processing was carried out on the 

Diamond computers to determine the best data sets to work with. 

 

2.9.2 DIMPLE analysis 

A partially refined structure of the Msm GyrB sub-ATPase domain without ligands was 

uploaded to the ISPyB database prior to data collection. This was used by the Difference Map 

Pipeline (DIMPLE (Winn et al., 2011)) to identify unmodeled density that could contain 

ligands of interest.  
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2.9.3 Processing of diffraction data 

The Xia2 DIALS (Winter, 2010) datasets from auto processing after integration and scaling 

were merged (without further scaling) by AIMLESS (Evans and Murshudov, 2013). Expert 

molecular replacement (PHASER (McCoy et al., 2007)) was carried out with a monomer of 

the 4B6C published structure of the M. smegmatis sub-ATPase domain (Shirude et al., 2013) 

for the M. smegmatis structure. The resultant M. smegmatis structure was used for the 

molecular replacement of the M. thermoresistibile structures by PHASER. The model was 

largely completed through use of BUCCANEER (Cowtan, 2006) before iterative rounds of 

refinement (REFMAC (Murshudov et al., 1997)) and manual model building (COOT (Emsley 

et al., 2010)) until the structure appeared complete and no further improvement in the R-

factors and geometries were observed. Structures were validated through MOLPROBITY 

(Chen et al., 2010), PDB-REDO (Joosten et al., 2009) and the PDB-validation server (Berman 

et al., 2003). 
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3. Mechanistic Studies of DNA Gyrase from M. tuberculosis 

and M. thermoresistibile 

Presently there have been several mechanistic and structural studies carried out on DNA 

gyrase from both M. tuberculosis and M. smegmatis. However, in the past these studies have 

focused on just the A2B2 heterotetramer, here we investigate if there are any mechanistic 

differences through using a (BA)2 construct where the subunits have been fused to form a 

protein that resembles eukaryotic topo II. We have also carried out preliminary analysis of 

both of these constructs from the thermophilic mycobacterium M. thermoresistibile with the 

idea that it may be a stronger candidate for structural studies. 

 

3.1 DNA gyrase from M. tuberculosis 

3.1.1 Construct development of the GyrBA fusion protein 

Three Mtb DNA gyrase constructs (GyrA, GyrB and GyrBA) were passed on from previous 

lab members Dr Steven J. Hearnshaw (SJH) and Dr Frederic Collin (FC; Figure 3.1.1). The 

GyrBA fusion construct was an idea designed and cloned by FC, expression and purification 

were optimised by SJH. The construct was initially designed to be GyrB fused N-terminally 

to GyrA, with a single lysine linker inserted as a restriction enzyme site to create the construct; 

at the C-terminus a TEV site was followed by a His-tag before the stop codon in the pET-

20b(+) vector (Figure 3.1.1). On the original construct the extra 40 amino acids that have been 

determined not to be biologically relevant were included (Karkare et al., 2013a). Both the 

GyrB and GyrBA constructs were altered initially by deleting the N-terminal 40 amino acids. 

Following this the C-terminal TEV sequence and His-tag was removed from the GyrBA 

construct and the GyrBA coding sequencing was inserted using In-Fusion cloning (Takarabio) 

into the pET28-MHL vector at the BseRI site. This inserted an N-terminal His-tag followed 

by the TEV cleavage sequence before the GyrBA coding sequence (Figure 3.1.1). The natural 

valine start codon was altered to a methionine for expression in E. coli. 



74 

 

 

Figure 3.1.1: Cartoon representation of the three Mtb DNA gyrase constructs obtained from other lab 

members. The GyrB and GyrBA constructs contained the 40 amino acids at the N-terminus that have 

been defined as not being biologically relevant. The GyrBA construct was created with a single lysine 

linker between the GyrB and GyrA subunits. The original GyrB and GyrBA constructs were altered to 

remove the biologically irrelevant 40 amino acids. The C-terminal TEV-His-tag on the GyrBA 

construct was also moved to create a construct with a N-terminal His-TEV tag. 

 

3.1.2 Protein expression and purification of the GyrBA fusion protein 

Expression of the fusion protein had been partially optimised by SJH before the construct was 

altered. To determine if these conditions were still optimal, the expression conditions 

including cell lines, induction temperatures, media, and IPTG concentrations were trialled on 

a small scale to determine the preferred conditions.  It was found that the cells expressed the 

170 kDa protein in a variety of different conditions, but optimally in the RosettaTM 2 (pLysS) 

cell line, by induction with 0.8 mM IPTG at 28-30°C, for a time greater than 4 hours (Figure 

3.1.2a). 

 

To determine if the expression conditions of the fusion protein produced active proteins the 

cell lysate assay was developed. This involved using cell lysate in a traditional supercoiling 

assay obtained on a small scale to see if activity was observed eliminating the need to purify 
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a protein before determining its activity. The method trialled included lysing 1 ml of cell pellet 

at OD600 of 0.1 in 100 µl of lysis buffer via three rounds of freeze-thaw treatment followed by 

a 30 min spin to remove cell debris at 13,200 rpm bench top centrifuge (4°C). 3 µl of the 

clarified lysate showed significantly increased supercoiling activity compared to the 

uninduced sample under standard supercoiling assay conditions (Figure 3.1.2b). 

 

 

Figure 3.1.2: Induction of the 168 kDa Mtb GyrBA fusion protein under optimal expression conditions: 

E. coli RosettaTM 2 (pLysS) cell line, before (uninduced) or after (induced) induction with 0.8 mM IPTG 

at 28°C for 4.5 hours. One millilitre of both samples was pelleted and resuspended in lysis buffer, so 

that a sample with an OD600=0.6 was resuspended in 100 µl lysis buffer. The samples were lysed by 3 

rounds of freeze-thaw treatment before centrifugation for 30 min at 13,200 rpm. A) 8% SDS-PAGE 

showing induction of a protein between 150-200 kDa likely to be the GyrBA fusion protein of 168 kDa. 

B) 1% agarose in TAE gel showing a lysate supercoiling assay carried out with 3 µl of clarified lysate 

suggesting that the GyrBA protein has increased activity in supercoiling compared to the uninduced 

sample. 

 

After optimisation of expression on a small scale, the protein was expressed on a large scale 

(4-8 L). The lysing protocol was altered to use an Avestin EmulsiFlex-B15 homogeniser at 

40,000 psi as a method of lysing the cells as use of repeated freeze-thaw cycles on a large 

scale was not found to be as efficient. After lysis and a centrifugation step (45 min, 17,500 

rpm, SS-34 rotor), purification of the clarified lysate was trialled by a variety of methods 
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(Figure 3.1.3a), before the final purification protocol was reached (Figure 3.1.3b). The 

protocol was optimised to give the optimal balance of purity and yield and hence did not give 

consistently the highest purity protein which was obtained on a very small yield. Cleavage of 

the His-tag was not found to affect activity of the protein, therefore, the TEV protease cleavage 

step followed by a reverse HisTrap was not always performed. 

 

 

Figure 3.1.3: Purification method of the Mtb GyrBA fusion protein. A) Alternative purification methods 

trialled before B) obtaining optimal purification method. Cleavage of the His-tag and subsequent 

reverse His column was found to be optional in regards to activity, and the purity yield balance was not 

found to be significantly different with or without this step. 

 

The protein obtained of the highest purity after size exclusion chromatography was judged to 

be suitable for crystallography trials and ATPase assays (Figure 3.1.4a) whereas for 

topoisomerase assays less pure fractions and including samples collected from a MonoQ 

column could be used (Figure 3.1.4b). 
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Figure 3.1.4: SDS-PAGE gels showing “Pure” GyrBA (168 kDa) for crystallography and ATPase 

assays, and “Dirty” GyrBA suitable for topoisomerase assays after S400 size exclusion 

chromatography. 

 

3.1.3 The GyrBA fusion protein is active in supercoiling 

As implied from the cell lysate assay, it was determined using purified proteins that the fusion 

construct is as active in supercoiling at the same concentration as the gyrase subunits (Figure 

3.1.5a). After initial tests of activity under the previously published conditions (Aubry et al., 

2006a), it was determined that a concentration of 74 nM was appropriate to carry out further 

optimisations of the supercoiling reaction. To determine if there was any difference in the 

speed of supercoiling activity between the two different constructs, a time course was carried 

out. This determined that both constructs behaved very similarly with a satisfactory level of 

supercoiling being observed at 30 min (Figure 3.1.5b). Hence, for future experimentation it 

was determined that a 30 min incubation at 37°C with 74 nM of each gyrase or fusion subunit 

was sufficient. In terms of specific activity, this was found to be highly variable and 

preparation dependent, varying between 0.04 x 104 and 1.7 x 104 U/mg for the fusion 

construct, with values of around 0.2-0.4 x 104 U/mg for the individual subunits, where 1 U is 

the amount of enzyme required to fully supercoil 0.5 mg relaxed pBR322* in 30 minutes at 

37°C. 
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Figure 3.1.5: Supercoiling activity comparison between the Mtb DNA gyrase subunits and fusion 

constructs. A) Supercoiling as a function of decreasing concentration (370-0.73 nM) under fixed assay 

conditions (37°C, 30 min). B) Supercoiling as a function of increasing time (0-120 min) using 74 nM 

of each enzyme at a temperature of 37°C. -ve refers to reaction conditions lacking DNA gyrase at the 

final reaction time. 

 

Potassium glutamate has been previously identified as a key factor in supercoiling activity of 

DNA gyrase, with the activity of Mtb gyrase being described as optimal in 100 mM potassium 

glutamate (Aubry et al., 2006a). To ascertain if this was the same for the fusion protein, a 

titration of potassium glutamate (0-500 mM) was carried out with both constructs. It was 

determined that both an absence of potassium glutamate as well as high concentrations 

inhibited the activity of the enzyme. Our results were slightly different to the published result 

of 100 mM, under suboptimal assay conditions (40 nM enzyme, 18 min incubation) an optimal 

concentration was determined to be 200 mM for the individual subunits, whereas the fusion 

construct appeared to show good activity in concentrations ranging from 50-500 mM 

potassium glutamate (Figure 3.1.6).  
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Figure 3.1.6: Induction of supercoiling as a function of potassium glutamate concentration in both the 

Mtb GyrA2B2 individual subunits and the GyrBA fusion construct. Forty nanomolar of each individual 

protein assayed for 18 min at 37°C with potassium glutamate concentrations ranging 0-500 mM. The 

expected positions of relaxed (Rel), linear (Lin) and negatively supercoiled (Sc) pBR322* is indicated. 

-ve control contains all assay components in the absence of DNA gyrase at the maximal potassium 

glutamate concentration. 

 

3.1.4 The GyrBA fusion protein is active in relaxation 

DNA gyrase can weakly relax negatively supercoiled DNA in the absence of ATP (Gellert et 

al., 1977). It has been reported that this relaxation ability in the Mtb enzyme is better than 

gyrase from other species (e.g. those from S. aureus or E. coli) (Aubry et al., 2006a). Hence, 

it was investigated if fusing the B and A subunits had any influence on this ability. It was 

determined that both constructs could perform relaxation, although the relaxation assay was 

tricky to work with owing to a high degree of cleavage observed making the visualisation of 

relaxation difficult to observe. However, at relatively high concentrations (>0.1 µM) and long 

incubations (2 hours), relaxation is observed (Figure 3.1.7). The reaction appears to be slow, 

as even at 0.5 µM, relaxation is not apparently observed until 30-60 min whereas at much 

lower concentrations of enzyme some supercoiling is already observed within the first 5 min 

(Figure 3.1.5). No significant differences between the behaviours of the two constructs under 

these conditions were observed.  
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Figure 3.1.7: ATP-independent relaxation activity comparison between the Mtb gyrase subunits and 

fusion constructs. A) Relaxation as a function of decreasing concentration (0.75-0.1 µM) under fixed 

conditions (37°C, 2 hours). B) Relaxation as a function of increasing time (0-120 min) at 37°C and 0.5 

µM enzyme concentration. -ve control contains all reaction components in the absence of DNA gyrase 

at the final incubation timepoint in the case of assay B. Linear bands observed are a consequence of the 

large amounts of enzyme and longer time required for this assay. 

 

It has been reported in the literature that the relaxation activity is inhibited by the presence of 

potassium glutamate (Aubry et al., 2006a). This was investigated to determine if the fusion 

protein behaves differently to the wild type. At a concentration of 0.5 mM enzyme with a 1 

hour incubation period it was determined that like the ATP-dependent supercoiling reaction, 

high concentrations of potassium glutamate inhibited the relaxation reaction. The supercoiling 

reaction did not seem to occur in the absence of potassium glutamate (Figure 3.1.6), whereas 

there does appear to be weak relaxation activity under these conditions. Optimal concentration 

of potassium glutamate was determined to be between 100-200 mM for both constructs 

(Figure 3.1.8). 
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Figure 3.1.8: Optimisation of ATP-independent relaxation as a function of potassium glutamate 

concentration in both the Mtb GyrA2B2 individual subunits and the GyrBA fusion construct. 0.5 µM of 

each monomeric protein was assayed for 1 hour at 37°C with potassium glutamate at concentrations 0-

500 mM. -ve control contained all assay component in the absence of DNA gyrase at the highest 

potassium glutamate concentration. Linear bands observed are a consequence of the large amounts of 

enzyme and longer time required for this assay. 

 

3.1.5 The GyrBA fusion protein is active in decatenation 

Decatenation, the process of unlinking plasmids is typically carried out by topo IV in bacterial 

species (Zechiedrich et al., 1997). In the absence of topo IV in mycobacteria there have been 

several reports that the decatenation activity of DNA gyrase is enhanced compared to DNA 

gyrase from other species that contain topo IV (Manjunatha et al., 2002, Aubry et al., 2006a). 

To determine if this was also true for the fusion protein, this was investigated using the 

commonly-used assay to visualise decatenation which utilises Kinetoplast DNA purified from 

Crithidia fasciculata. kDNA is a large network of entangled mini-circles which cannot enter 

an agarose gel so may be visible in the wells (Shapiro et al., 1999) (Figure 3.1.9). In a positive 

assay result the mini-circles are released into their monomers and visualised within the gel 

either as a combination of nicked and supercoiled DNA in the case of DNA gyrase or as a 

combination of nicked and relaxed DNA in the case of topo IV. A linearising or nicking 

enzyme may also be able to release the mini-circles but will not form topoisomers (Figure 

3.1.9). 
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Figure 3.1.9: Expected banding pattern of a decatenation assay carried out and imaged on a native 0.8-

1% agarose in TAE gel stained with ethidium bromide. No migration is observed in the absence of 

enzymes with the kDNA being stuck in the wells. M. tuberculosis DNA gyrase should result in a mix 

of open circular (nicked) and negatively supercoiled mini-circles entering the gel if the reaction is 

carried out. Topo IV decatenates the kDNA resulting in a mix of relaxed topoisomers and open circular 

DNA. A restriction enzyme would simply linearise the mini-circles and no other topoisomers would be 

visible. A nicking enzyme would result in open circular or nicked mini-circles. 

 

It has been published that decatenation for this enzyme is preferential in assay conditions that 

are different to those of supercoiling and are characterised by a higher potassium glutamate 

concentration, the absence of spermidine, alongside a different buffer composition and pH 

(Aubry et al., 2006a). To confirm this result for the fusion protein, the kDNA decatenation 

assay was carried out with both the supercoiling and decatenation assay buffers. Unambiguous 

evidence for some decatenation activity was demonstrated in both the constructs. This activity 

for the fusion protein was not seen to be different between the two buffer compositions. 

However, it does appear that the subunits show enhanced decatenation activity in the 

supercoiling assay buffer. The fusion protein showed enhanced decatenation activity in both 

buffers compared to the subunits (Figure 3.1.10). 
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Figure 3.1.10: Decatenation assay using the kinetoplast DNA substrate. The kDNA is unable to enter 

the gel so may be seen in the wells of the gel, the product of a positive reaction shows a combination 

of open circular and negatively supercoiled mini-circles as seen by the two bands. A) was performed 

using the decatenation assay buffer, whereas B) was performed using the supercoiling assay buffer, 

with both reactions being performed at 37°C for 30 min. 0.8% (w/v) agarose in TAE gels were run at 

60 V for 3 hours. -ve control contained all assay components in the absence of DNA gyrase in the 

appropriate assay buffer to confirm no decatenation is seen in the absence of DNA gyrase. 
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3.1.6 The ATP turnover rate of M. tuberculosis DNA gyrase is appreciable 

In the literature it is reported that the ATP turnover rate of Mtb is too low to produce 

reproducible and reliable data for inhibitor studies (Karkare et al., 2013b) (Shirude et al., 

2013). In this study this was investigated (see methods chapter 2.5.5), and it was found that 

an appreciable rate could be determined. Initial studies using relaxed pBR322* showed that 

the individual Mtb gyrase subunit complex (A2B2) at 550 nM showed a much shallower 

decrease in absorbance at 340 nm corresponding to a lower oxidation of NADH and therefore 

a lower ATP turnover rate compared to the same complex from E. coli at 222 nM (Figure 

3.1.11). This corresponded to a rate of around 0.2 s-1 per individual Mtb GyrB subunit 

compared to 1.4 s-1 for E. coli gyrase when directly compared, suggesting that as previous data 

suggested the rate is indeed low compared to that of E. coli as stated in the literature (Agrawal 

et al., 2013, Karkare et al., 2013b, Shirude et al., 2013). Interestingly, when the rate of ATP 

turnover was compared using linear, negatively supercoiled and relaxed pBR322* substrates 

on the M. tuberculosis A2B2 complex the rates were slightly higher but comparable (Table 

3.1.1). 

 

Table 3.1.1: The novobiocin-sensitive ATP turnover rate with 550 nM of the individual GyrA and GyrB 

subunits in the presence of 2 ng of pBR322* in three different topological forms measured over 48 min 

after addition of 2 mM ATP. Data is representative of minimum of two experiments with duplicate data 

for each assay. 

pBR322* Topological Form ATP Turnover per GyrB subunit / s-1 

Relaxed 0.36±0.03 

Negatively supercoiled 0.31±0.04 

Linear 0.53±0.03 
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Figure 3.1.11: Raw absorbance data for the PK/LDH linked assay carried out with (Top) E. coli DNA 

gyrase (222 nM) with 1.5 ng relaxed pBR322* or (Bottom) M. tuberculosis DNA gyrase (550 nM) 

A2B2 constructs and 2 ng relaxed pBR322*. Despite a much larger amount of enzyme being used with 

the M. tuberculosis assay the results clearly demonstrate a greater rate of E. coli DNA gyrase. Negative, 

no NADH, and ADP controls contain DNA but no DNA gyrase, positive control contained DNA gyrase 

in the absence of novobiocin. ATP was substituted for ADP in ADP control, and no NADH was added 

to the no NADH control to obtain an absolute baseline. 
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We find that the rate of ATP turnover in the GyrBA fusion protein was very variable, likely 

depending on the purity of the protein. Initially it was found to be very comparable to that of 

the individual GyrB subunit. After swapping to a purer preparation of the fusion protein stock 

at a higher concentration, the rate was found to be consistently higher and more comparable 

to that of the E. coli protein in the presence of topologically unrestrained linear or nicked 

pBR322* substrates (Table 3.1.2). Surprisingly, it was found that if topologically-constrained 

relaxed or negatively supercoiled pBR322* substrates were used as the DNA substrate the 

ATP turnover rate was low (Table 3.1.2). Additionally, preliminary data indicates that there 

is a low ATP turnover rate in the presence of positively supercoiled DNA. 

 

Table 3.1.2: The novobiocin-sensitive ATP turnover rate with 200 nM of the Mtb GyrBA fusion protein 

in the presence of 1 ng of pBR322* in four different topological forms measured over 45 min after the 

addition of 2 mM ATP. Data is representative of duplicate repeats. 

pBR322* Topological Form ATP Turnover per GyrBA subunit / s-1 

Relaxed 0.03±0.06 

Negatively supercoiled 0.16±0.04 

Nicked 1.27±0.20 

Linear 1.00±0.10 

 

 To determine if the difference in the activity of Mtb DNA gyrase was due to a lack of 

stimulation from negatively supercoiled DNA, gel samples were taken at intervals over a 45 

min time course after ATP addition, as well as following the absorbance at 340 nm to allow 

the topological state to be monitored alongside the ATP turnover rate. Unsurprisingly, at the 

high concentrations used in the topoisomerase reactions (200+ nM, compared to 74 nM in 

supercoiling reactions) it was found that the positively supercoiled and relaxed pBR322* 

substrates were rapidly converted into a plasmid that was negatively supercoiled (Figure 

3.1.12). Although it is not possible to resolve positive and negative supercoils on a native 

agarose gel, it can be assumed that due to the lack of intermediate species at any timepoints 

that the positive supercoils were rapidly removed and negative supercoils inserted into the 

plasmid.  

 

To investigate if the low rate was due to the DNA concentration being sub-optimal (i.e. not 

enough DNA was being used to stimulate the ATP reaction), DNA titrations were carried out. 

The concentration required to reach a maximal ATP turnover rate with the topologically 

restrained pBR322* substrates appears to be greater than for the topologically unrestrained 
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substrates. Despite this, it was also found that they were still unable to reach rates close to 

those reached by the unrestrained substrates (Figure 3.1.13). 
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Figure 3.1.12: Visualisation of the topological state of 1 ng A) relaxed B) negatively supercoiled C) 

positively supercoiled pBR322* at 0, 1, 5, 10, 15, 20, 30, 45 min time points after addition of 2 mM 

ATP (ADP in ADP control) during an ATPase linked assay, visualised on a native 1% agarose in TAE 

gels. 200 nM enzyme assayed. The novobiocin controls block ATP activity allowing relaxation of 

negative supercoils as observed in B. The no NADH, negative and ADP controls do not contain DNA 

gyrase. 

 

Unlike DNA gyrase from E. coli the rate of ATP hydrolysis in the absence of DNA was found 

to be negligible – the gradients obtained were very close to those of the negative and 

novobiocin controls (Figure 3.1.13a). This indicates that the ATP hydrolysis reaction is highly 

coupled to DNA binding. To confirm this the ATP hydrolysis rate for the ATPase domain 

alone in the absence of the rest of the DNA gyrase heterotetramers was analysed. The reported 

ATP turnovers of 0.02 s-1 for the E. coli GyrB43 fragment (Ali et al., 1993) and 0.002 s-1 for 

the same Mtb fragment (Agrawal et al., 2013) are equivalent to the average novobiocin-

dependent DNA-independent rate of 0.05±0.08 s-1 over a concentration range 2-64 µM. Due 

to this rate being extremely slow with the Mtb GyrB NTD it was determined to be almost 

undetectable even at the highest enzyme concentration used. 
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Figure 3.1.13: A) Plot of absorbance at 340 nm monitoring the loss of NADH in the PK/LDH-linked 

assay. Control samples (no NADH, negative without enzyme, positive with ADP not ATP) contained 

no DNA substrate or DNA gyrase. The novobiocin-independent rate was measured in the presence of 

31.1 nM linear pBR322*. DNA titration with linear pBR322* with constant 250 nM GyrBA. B) 

Novobiocin-dependent ATP turnover rate with nicked pBR322* substrate measured using 150 nM 

GyrBA and nicked pBR322* concentration range of 0-37.6 nM. C) Novobiocin-dependent ATP 

turnover with negatively supercoiled pBR322* substrate measured using 150 nM GyrBA and 

negatively supercoiled pBR322* concentration range of 0-37.5 nM. All data is representative of 

multiple repeats and duplicate data points. Linear/Nicked represent the topologically unconstrained 

DNA class whereas negatively supercoiled DNA is representative of the topologically constrained DNA 

class. Error bars represent the range of data points collected for each data point, and all data were 

collected at a minimum of two duplicates. 
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3.1.7 Preliminary cleavage profile of M. tuberculosis DNA gyrase 

In order to determine an optimal DNA fragment for structural studies of the full-length enzyme 

(X-ray crystallography and CryoEM) we investigated the cleavage specificity of Mtb DNA 

gyrase. Cleavage reactions on relaxed pBR322* in the presence of ATP and on negatively 

supercoiled and EcoRI-linearised pBR322* in the absence of ATP were carried out in the 

absence and presence of moxifloxacin. These were subsequently linearised with three 

restriction enzymes (BsaI, EcoR1 and SalI) to help identify where the cleavage was occurring 

(Figure 3.1.14). 

 

 

Figure 3.1.14: Plasmid map of pBR322 (benchling.com) showing all the single cutting restriction 

enzymes. SalI cuts at 652 bp, BsaI cuts at 3428 bp and EcoR1 at 4360 bp. Cutting with these three 

restriction enzymes from intact pBR322* results in three fragments of 2776, 932 and 653 bp. Extra 

bands may be observed if there is additional cleavage by DNA gyrase. 

 

The reaction with relaxed pBR322* was carried out in the presence of ATP. Confusingly an 

additional band of ca. 1600 bp was seen in the restricted substrate for the reaction with relaxed 

pBR322*. This can be explained as incomplete restriction by EcoRI, although it was not 

observed when DNA gyrase was added to the reaction mixture. The linearized product formed 

in the absence of moxifloxacin did not appear as prevalent as in the presence of moxifloxacin. 
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Under these reaction conditions no distinct banding pattern was observed in the presence or 

absence of moxifloxacin with or without the restriction enzymes. Instead in the presence of 

moxifloxacin a smear was seen suggesting that multiple linear cleavage was occurring but not 

at distinct positions around the plasmid (Figure 3.1.14a). 

 

Like the cleavage with relaxed pBR322* and ATP, that of negatively supercoiled pBR322* 

in the absence of ATP was observed to be much greater in the presence of moxifloxacin than 

in its absence. Similarly, no distinct banding pattern was observed, with the results displaying 

a smear of DNA down the gel indicating a variety of differently sized DNA fragments being 

formed without a significant preference for any particular cleavage sites (Figure 3.1.14b). 

 

In the absence of any enzyme in the linear substrate there is also a very faint contaminating 

band approximately 1500 bp shorter than pBR322* - this band did not appear to alter the 

cleavage profile of the substrate. In contrast to the relaxed and negatively supercoiled 

substrates, when using the linear substrate in the absence of ATP a distinct band pattern was 

observed, however no alteration to the pattern after restriction was observed, probably likely 

due to low proportions of each species being obtained (Figure 3.1.14c). Overall, further 

optimisation is needed for all the substrates in the reaction protocol to determine the cleavage 

profile in the presence of moxifloxacin.  

 

This preliminary study demonstrates that in the presence of moxifloxacin linear DNA appears 

to give a discrete banding pattern suggesting preferential cleavage sites. This preliminary 

study clearly demonstrates that with further work an optimal DNA fragment should be able to 

be determined for use in structural studies. 
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Figure 3.1.15: Preliminary cleavage profile optimisations with Mtb GyrA2B2 A) Relaxed pBR322* in 

the presence of ATP, B) Supercoiled pBR322* in the absence of ATP, C) Linear pBR322* in the 

absence of ATP. Control reactions were carried out in the absence of DNA gyrase and moxifloxacin. 

After cleavage with BsaI. EcoRI, and SalI expected cleavage bands of pBR322* are 2782, 926, 651 bp. 
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3.2 DNA gyrase from M. thermoresistibile 

3.2.1 Construct design, cloning, expression and purification 

The following sub-section of work was for the most part carried out by Mr Brandon Malone 

(BM; JIC Summer School Student, 2016) under the supervision of SRH. Constructs were 

designed based on the M. thermoresistibile ATCC19527 genomic sequence. These were 

additionally codon-optimised using the GeneArt service (Fisher Thermo Scientific). The 

constructs were cloned into the pET28-MHL expression vector with an N-terminal His-tag 

and TEV protease sequence via the InFusion cloning system (Takarabio). To make the GyrBA 

fusion construct a single amino acid linker (lysine) was added between the GyrB and GyrA. 

After the clones were confirmed as correct via sequencing (SourceBioscience) expression 

trials were carried out in a range of E. coli expression hosts and under a range of conditions. 

It was determined that the optimum conditions were the expression of the codon-optimised 

genes in the RosettaTM 2 (pLysS) E. coli strain in LB with induction at OD600 of 0.6, by addition 

of 0.4 mM IPTG at 28°C for 4-5 hours. 

 

Large-scale expression using the optimised conditions followed. Harvested cells were 

resuspended in lysis buffer and stored at -80°C. Purification of the subunits was achieved 

through a two-column strategy: application to a 5 ml His Trap (GE) in lysis buffer with elution 

in lysis buffer + 500 mM imidazole on a gradient. The semi-purified fractions were dialysed 

overnight against TEV cleavage buffer, with 1 mg of TEV protease. The flow-through was 

collected from a second 5 ml His Trap column. In addition, a Sephycryl S400 size exclusion 

column was run on the GyrBA fusion protein in Gel Filtration buffer. Pure fractions analysed 

via 8% tris-glycine SDS-PAGE were collected, concentrated and dialysed against storage 

buffer before concentration, allotting and flash freezing to -80°C for storage.  

 

3.2.2 Crystallography trials of M. thermoresistibile DNA gyrase 

BM carried out multiple crystallisation screens on the GyrBA fusion protein. After running 6 

sparse matrix screens (Table 3.2.1) and one optimisation based on conditions presenting with 

over nucleation being initially crystallised at 30°C, no crystal hits were obtained that were 

suitable for further optimisation or X-ray diffraction. 
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Table 3.2.1: Sparse matrix crystallisation conditions trialled with purified Mth GyrBA protein. No 

crystal hits suitable for optimisation or X-ray diffraction were observed at 4 weeks. 

Enzyme Concentration 

(mg/ml) 

Enzyme Conditions Sparse matrix screens 

2.8 Apo JCSG-plusTM, PACT 

premierTM 

2.4 0.118 mM 20-12p-8 doubly 

nicked oligo 

10.1 mM MnCl2 

10.1 mM MgCl2 

2.9 mM Moxifloxacin 

1.4% (v/v) DMSO 

Structure screen 1+2, KISS 

2.4 0.118 mM d20-447T doubly 

nicked oligo 

10.1 mM MnCl2 

10.1 mM MgCl2 

2.9 mM Moxifloxacin 

1.4% DMSO 

Structure screen 1+2, KISS 

2.3 5.6 mM AMP-PNP 

0.111 mM 20-12p-8 doubly 

nicked oligo 

9.7 mM MgCl2 

9.7 mM MnCl2 

Morpheus® 

2.3 5.6 mM AMP-PNP 

0.111 mM d20-447T doubly 

nicked oligo 

9.7 mM MgCl2 

9.7 mM MnCl2 

Morpheus® 

4.8 3 mM AMP-PNP 

10.6 mM MgCl2 

10.6 mM MnCl2 

JCSG-plusTM 

 

3.2.3 DNA gyrase from M. thermoresistibile supercoils DNA 

To our knowledge, we are the first people to work with DNA gyrase from M. thermoresistibile. 

From this point of view, it was important to determine its activity and possible function within 

the bacterium. Unsurprisingly, we found that the activity of the M. thermoresistibile enzymes 
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was very similar to that of the M. tuberculosis enzyme. The only significant difference 

observed was that the thermophilic enzyme bound significantly tighter to the DNA substrates 

tested and hence it was difficult to remove the protein at the end of assays. In relation to this, 

an additional incubation step with proteinase K was added prior to the addition of 24:1 

chloroform : isoamyl alcohol and 2xSTEB. 

 

Due to the high degree of homology between the Mtb and Mth enzyme sequences it was 

decided to initially assay the enzyme under the same conditions as the Mtb enzymes: 37°C for 

30 min, to confirm activity before performing further optimisations. It was found that 

supercoiling occurred under the same conditions as the Mtb enzyme, although there was a 

requirement for a greater concentration of the Mth enzymes (Figure 3.2.1). At a concentration 

of 250 nM supercoiling was observed within 30 min, whereas the Mtb enzyme required about 

15 min and a lower enzyme concentration to reach this level of supercoiling. Low levels of 

negative supercoiling were observed at lower concentrations or shorter times (Figure 3.2.1). 

It was confirmed that the fusion construct was also active to a similar level to the subunits, 

although there was a difference in the level of supercoiling that was achieved at 15 min, with 

both constructs achieving similar levels of supercoiling at 30 min. There appeared to be a 

visible amount of cleavage activity by the fusion construct when assayed at high concentration 

(750 nM) or for prolonged periods of time (>45 min), although this is likely to be due to 

impurities in the sample and did not appear to affect the interpretation of the results. In terms 

of specific activity this was determined to be similar for the subunits and fusion construct at 

0.04 x 104 U/mg and 0.08 x 104 U/mg respectively. Although this is lower than those 

determined for the Mtb enzymes, we suggest that this was only one preparation and this value 

is likely to depend on a variety of factors that were not optimised within the scope of this 

experiment. 
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Figure 3.2.1: Negative supercoiling activity comparison between the Mth gyrase subunits and fusion 

constructs. A) Negative supercoiling as a function of decreasing concentration (750-25 nM) under fixed 

assay conditions (37°C, 30 min). B) Supercoiling as a function of increasing time (0-60 min) at constant 

250 nM enzyme concentration and a temperature of 37°C. -ve controls contain DNA substrate in the 

absence of DNA gyrase. The linear bands observed are a consequence of the larger amounts of enzyme 

and longer incubation times. 

 

As Mth DNA gyrase is a previously uncharacterised enzyme the optimal reaction conditions 

were investigated. Initially a range of potassium glutamate concentrations between 0-500 mM 

were assayed at a sub-optimal concentration (250 nM) and time (15 min) to determine if more 

optimal conditions could be obtained. It was determined that when assaying the individual 

subunits, they did not present any activity in the absence of potassium glutamate (Figure 

3.2.2), increasing the concentration to 100-200 mM increased the activity of the enzyme to 

give maximal supercoiling activity. Raising the potassium glutamate concentration beyond 

300 mM led to a decrease in the activity of the enzyme. Interestingly, when performing the 

same experiment with the fusion construct, the same pattern was not seen. Instead, from the 

very poor activity obtained in the absence of potassium glutamate an increase of activity 

appeared to be observed on increasing the concentration of potassium glutamate up to 150 
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mM where the activity level plateaued. Beyond this there did not appear to be a decrease in 

activity like the subunits (Figure 3.2.2) 

 

.  

Figure 3.2.2: Induction of supercoiling as a function of potassium glutamate concentration in both the 

Mth GyrA2B2 individual subunits and the GyrBA fusion construct. 250 nM of each individual protein 

assayed for 15 min at 37°C with potassium glutamate concentrations ranging 0-500 mM. -ve control 

contains DNA substrate in the absence of DNA gyrase with 500 mM potassium glutamate. The linear 

bands observed are a consequence of the large amounts of enzyme and longer time required for this 

assay. 

 

3.2.4 DNA gyrase from M. thermoresistibile relaxes DNA 

In the absence of ATP, it was observed that Mth DNA gyrase was able to relax DNA. Like 

the supercoiling reaction it was determined that it was difficult to remove the protein from the 

DNA at the end of the reaction, potentially made more difficult by the increased protein 

concentration and time needed for this reaction to proceed. Hence, an incubation period with 

proteinase K was included to enhance the interpretability of the results. Additionally, there 

was a more prominent cleavage occurring which at points interfered with the interpretation of 

results (Figure 3.2.3). To better resolve the topoisomers from linear fragments in any future 

repeats should be additionally run on chloroquine gels. 

 

ATP-independent relaxation was performed at 37°C with a small amount of relaxation being 

observed. Assaying the time of reaction, it was clear to see that leaving the biological (A2B2) 

enzyme longer assisted with relaxation activity, as it is much poorer at carrying out this 

reaction than the ATP dependent supercoiling reaction. High concentrations of the enzymes 

(1 µM) were also needed to observe relaxation (Figure 3.2.3). 
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It was very difficult to observe any relaxation with the fusion protein as the gels of the 

reactions showed a large amount of contaminating cleavage, and hence it was difficult to 

determine if the enzyme was relaxing the DNA or if the DNA was simply being linearized 

and cut to form a smear on the gel (Figure 3.2.3). It is possible that this cleavage activity was 

because of contaminations in the protein sample, or alternatively the enzyme may simply have 

a high intrinsic cleavage activity in the absence of ATP. It is suggested that this experiment 

needs to be repeated to confirm that this enzyme can relax DNA. Overall, the Mth enzymes 

appear to be weaker at the ATP-independent relaxation reaction than their Mtb counterparts. 

 

 

Figure 3.2.3: Comparison of the two constructs of M. thermoresistibile DNA gyrase in ATP-

independent relaxation. A) Titration of the enzyme at monomeric concentration 125-1000 nM at fixed 

assay conditions (37°C for 1 hour). B) Time course 0-120 min at 37°C at a fixed enzyme concentration 

of 1 µM and 150 mM Potassium glutamate concentration. -ve control was incubated under full assay 

conditions in the absence of DNA gyrase for the longest incubation time of the reaction. The linear 

bands observed are unavoidable and a consequence of the large amounts of enzyme and longer time 

required for this assay. 
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To optimise the relaxation reaction, the concentration of potassium glutamate in the reaction 

was altered under sub-optimal reaction conditions. Again, there was a significant cleavage 

band observed throughout, and some smearing from the fusion protein. Like the supercoiling 

reaction it was obvious that when assaying with the subunits both the absence of potassium 

glutamate and an excess of potassium glutamate inhibited this reaction (Figure 3.2.4). Optimal 

conditions when the subunits were assayed were found to be around 150 mM, with significant 

relaxation being observed between 100-150 mM (Figure 3.2.4). When the reaction was carried 

out with the fusion construct the reaction was uninterpretable due to contaminating cleavage 

(Figure 3.2.4). 

 

 

Figure 3.2.4: ATP-independent relaxation as a function of potassium glutamate concentration with both 

the Mth GyrA2B2 individual subunits and the GyrBA fusion construct. 1 µM of each protein assayed 

for 1 hour at 37°C with potassium glutamate concentrations 0-500 mM. -ve control was incubated under 

full assay conditions in the absence of DNA gyrase with 500 mM potassium glutamate. The linear bands 

observed are unavoidable and a consequence of the large amounts of enzyme and longer time required 

for this assay. 

 

3.2.5 DNA gyrase from M. thermoresistibile can decatenate DNA 

Under ATP-dependent conditions it was found that Mth gyrase displayed weak decatenation 

activity. At this time ATP-independent conditions have not been trialled. The current 

decatenation assay utilising a kinetoplast DNA (kDNA) substrate can be difficult to interpret, 

as previously described, the kDNA substrate cannot enter a 1% agarose gel under native or 

intercalating conditions, with the product being observed further down the gel in supercoiled 

and nicked bands (Figure 3.1.9). The decatenation was studied under two different buffer 

conditions – the supercoiling assay conditions and a buffer recorded as a decatenation buffer 

(Aubry et al., 2006a). The individual subunits appeared to prefer the supercoiling assay buffer 

when assayed for 30 min at 37°C (Figure 3.2.5). Very little decatenation was observed when 

the same conditions were assayed in the decatenation assay buffer (Figure 3.2.5). The activity 
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of the individual subunits in supercoiling assay buffer was comparable to the fusion protein 

which gave good levels of decatenation in both assay buffers (Figure 3.2.5).  

 

 

Figure 3.2.5: Decatenation assay using kinetoplast DNA. The kDNA is unable to enter the gel so may 

be seen in the wells of the gel, the product of a positive reaction shows a combination of open circular 

and negatively supercoiled mini-circles as seen by the two bands. Assay was performed using 

decreasing enzyme concentrations (750-62.5 nM) of each construct using both the decatenation assay 

buffer and the supercoiling assay buffer (see methods section 2.5.3). Reactions were performed at 37°C 

for 30 min. 

 

3.2.6 ATPase stimulation of DNA gyrase from M. thermoresistibile by DNA 

The ATPase-linked assay was initially carried out with both the individual subunits and the 

fusion protein to determine the ATP turnover rate of the enzyme. This was determined in 

duplicate assays by giving values much lower than those found for the Mtb fusion protein, but 

more comparable to those obtained for the Mtb subunits (Table 3.2.2). As the rates were much 

slower it produced larger comparable errors in the results, which made it particularly difficult 

to tell if there was indeed a greater stimulation of the ATPase activity with topologically 
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unconstrained DNA, compared to topologically constrained DNA. There may be a small 

difference between the results when topologically constrained and unconstrained DNA were 

used as substrates, suggesting a slight preference for unconstrained DNA. 

 

Table 3.2.2: ATP turnover rate with 508 nM of Mth individual GyrB or GyrBA subunits and 2 ng of 

pBR322* plasmid of differing topologies measured over a 45 min period after the addition of 2 mM 

ATP. All rates displayed are the novobiocin sensitive rates. Data is the average of two repeats, and 

representative of multiple (more than 2) experiments. 

pBR322* Topological Form ATP Turnover / s-1 

Subunits (GyrA2GyrB2) Fusion (GyrBA2) 

Relaxed 0.16±0.14 0.13±0.06 

Negatively supercoiled 0.12±0.02 0.28±0.02 

Nicked 0.17±0.03 0.32±0.03 

Linear 0.26±0.03 0.44±0.04 

 

Using linear pBR322* and the individual subunits there was unambiguous evidence of a much 

lower ATP turnover in the absence of DNA. However, the rates obtained were inconsistent 

and low, with no obvious plateaux (Figure 3.2.6). This assay does appear to suggest that a 

DNA concentration of 2 ng, as was used with 504 nM of each of the subunits, does appear to 

be sufficient to stimulate ATPase activity, although it is unclear if this amount of DNA in the 

reaction may be sub-maximal (Figure 3.2.6). Due to the difficulties working with these 

enzymes in the ATPase linked assay, a DNA titration on any of the substrates was not 

performed with the fusion construct. 
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Figure 3.2.6: A) Plot of absorbance at 340 nm monitoring the loss of NADH in the PK/LDH linked 

assay, carried out with 508 nM of Mth GyrA and GyrB subunits. Control samples (no NADH, negative 

without enzyme, positive with ADP not ATP, novobiocin independent rate) contained no DNA 

substrate. DNA titration of 0-20 µg linear pBR322*. B) DNA titration on increasing the concentration 

of linear pBR322* from 0-20 µg when assayed with 508 nM of Mth GyrA and GyrB subunits. 

 

3.2.7 Inhibition of M. thermoresistibile DNA gyrase by known inhibitors 

To determine if Mth gyrase can be inhibited in the same way as Mtb gyrase, the inhibition 

profile of both the subunits and fusion constructs were compared to those of the Mtb subunits 

and fusion constructs. Inhibition of supercoiling was investigated by novobiocin – a 

competitive inhibitor of the ATPase reaction (Sugino et al., 1978). Inhibition of the Mtb 

constructs was analysed at 74 nM enzyme at a concentration range of 10-0.1 µM novobiocin, 

giving an approximate IC50 value of ca. 1 µM for both constructs (Figure 3.2.7). This value is 

in approximate agreement with the literature value of 0.5 µM (Aubry et al., 2006a). In 

comparison a concentration of 0.25 µM for the Mth gyrase enzymes was assayed with a 

concentration range of 10-0.1 µM, giving an approximate IC50 value of ca. 0.3 µM (Figure 

3.2.7). Accounting for a 3x higher enzyme concentration in the Mth assay, it is possible that 

there could be an order of magnitude difference in the IC50 values of the two different gyrase 

enzymes from the different species. Interestingly, there does not appear to be any difference 

regardless of whether the GyrB subunit is fused to the GyrA subunit. 
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Figure 3.2.7: Inhibition of A) M. tuberculosis DNA gyrase subunits A2B2 and BA fusion constructs (74 

nM) and B) M. thermoresistibile DNA gyrase subunits A2B2 and BA fusion constructs (250 nM) 

supercoiling activity by novobiocin (10-0.1 µM). All reactions except +ve control contained 1% 

DMSO. -ve control contained all reaction conditions except DNA gyrase, positive control contained 

DNA gyrase without DMSO, DMSO control contained all reaction conditions including 1% DMSO. 

The linear bands observed in the Mth assay are a consequence of the large amounts of enzyme required 

for this assay, and they do not affect the interpretation of this assay. 

 

As novobiocin is a known competitive inhibitor of ATP in other gyrase enzymes (Sugino et 

al., 1978), an ATPase titration was applied to determine the IC50 value in the ATPase reaction. 

Unfortunately, after duplicate experimentation it was determined that the ATP turnover rate 

was too low to generate reliable data and hence this was not obtained. Likewise, as the specific 

ATPase assay was found to be very difficult when working with the fusion construct this 

experiment was not trialled (Table 3.2.2). 

 

Inhibition of gyrase by a fluoroquinolone was also examined. Moxifloxacin was used as it has 

been reported to have a high degree of activity against Mtb gyrase (Blower et al., 2016) and 

is routinely used as a second line antibiotic against TB (WHO, 2010). To determine the 
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activity, inhibition of both supercoiling and induction of cleavage were analysed. Analysing 

the subunits, a CC50 value of ca. 2.5 µM was obtained when assaying using 0.25 µM of the 

Mth gyrase subunits. Difficulty was observed in obtaining an accurate CC50 value when using 

the fusion construct due to a prominent level of background cleavage in the no drug controls, 

however through gel analysis it was determined to be similar to that of the subunits (Figure 

3.2.8). In contrast, a CC50 value for the individual gyrase subunits from the Mtb proteins has 

a CC50 value around 0.5-1 µM when assayed at 74 nM (Figure 3.2.8). The CC50 of the Mtb 

fusion protein appears to be similar to that of the subunits (Figure 3.2.8). Accounting for 

effects of protein concentration it suggests there is unlikely to be a significant difference in 

the cleavage response to moxifloxacin. Additionally, these values appear to be similar to those 

reported within the literature of 10 µM (Aubry et al., 2004). 

 

As the fluoroquinolones inhibit the relegation of DNA and stabilise the cleavage complex they 

also stop the propagation of the supercoiling reaction (Gellert et al., 1977), hence the inhibition 

of supercoiling was compared between the four constructs. It was found that the supercoiling 

reaction was not inhibited as strongly by moxifloxacin as it was by novobiocin. Instead at 100 

µM incomplete inhibition of supercoiling was observed at an enzyme concentration of 0.25 

µM for both the Mth gyrase individual subunits and the fusion protein (Figure 3.2.8). Like the 

Mth enzyme, inhibition of Mtb gyrase was only possible at higher concentration of 

moxifloxacin at 74 nM of either construct. The IC50 values are in the order of approximately 

25 µM for all of these constructs, which is somewhat similar to the value of 11.2 µM reported 

in the literature (Aubry et al., 2004) (Figure 3.2.8). The differences in these values can likely 

be accounted for in the differences of the enzyme concentrations assayed for the two different 

source species of the proteins.  
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Figure 3.2.8: Activity of Moxifloxacin on the two alternate constructs of A/C) Mth DNA gyrase at 0.25 

µM and B/D) Mtb DNA gyrase at 0.74 µM. Induction of cleavage complex assay using A) 25-0.25 µM 

B) 25-0.25 µM moxifloxacin. C) Inhibition of supercoiling assay using C) 100-5 µM D) 100-1 µM 

moxifloxacin. All assays except positive controls contained 3.3% (v/v) DMSO -ve control contained 

all assay components without DNA gyrase, +ve control contained all assay components in the absence 

of DMSO (or moxifloxacin), DMSO control contained all assay components and 3.3% (v/v) DMSO. 

The linear bands observed in the positive control/ DMSO control were controlled for in the calculation 

of the CC50 values. The linear bands observed in supercoiling are unavoidable and a consequence of the 

large amounts of enzyme and longer time required for this assay, and do not affect the result of this 

assay. 

 

3.3 Discussion 

3.3.1 The mycobacterial DNA gyrase fusion proteins are active 

The results in this chapter clearly show that by fusing the C-terminus of GyrB to the N-

terminus of GyrA you do not lose gyrase-specific activity in the fusion protein. This is 

somewhat surprising when you consider that no significant linker was inserted to separate the 

two subunits. However, when you put this result in context of other type IIA topoisomerases 

this is somewhat unsurprising as the eukaryotic topo II contains a similar domain arrangement 

to DNA gyrase and topo IV, but, unlike the bacterial proteins topo II contains one single 

protein subunit equivalent to that of a GyrBA subunit which also dimerises (Miller et al., 

1981). 

 

Several studies, carried out in the Klostermeier laboratory, have used and described fusion 

proteins to be active (reviewed in (Klostermeier, 2018)). Additionally, the ParE-ParC fusion 

has been determined to have activity (Lavasani and Hiasa, 2001); the results here agree that 

the fusion proteins have activity in the absence of a linker between the proteins. These results 

are important in the context of structural studies which have been presented in the form of the 

core fusion protein structures (Srikannathasan et al., 2015, Blower et al., 2016) and the full-

length low resolution cryoEM structure (Papillon et al., 2013) in demonstrating the potential 

biological relevance of these structures as it implies that these structures are likely to be 

biologically active. Additionally, it is hoped that these two new GyrBA proteins will be 

subjected to further structural studies to determine the full-length structure of DNA gyrase 

from a mycobacterial species.   
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In terms of the specific activity differences between the four proteins, no major differences 

were observed (Table 3.3.1), although there were some subtle differences. These included the 

Mth proteins being less active and hence requiring more enzyme for both supercoiling and 

decatenation to occur. It is however obvious that there is some difference between the subunits 

and fusion in terms of activity at high potassium glutamate concentrations. In the subunits a 

decline in the activity is clearly observable at high potassium glutamate concentrations 

whereas this is not visible when assaying the fusion construct (Figure 3.1.5; Figure 3.2.2) 

(Table 3.3.1). This discrepancy was not observed in the ATP-independent relaxation reaction. 

Furthermore, although both fusion proteins could decatenate effectively in both the 

decatenation and supercoiling assay buffer, the Mtb protein preferred the supercoiling buffer 

and the Mth proteins the decatenation buffer (Table 3.3.1). 

 

Table 3.3.1: Table of the optimal assay conditions for the Mtb and Mth DNA gyrase proteins in both 

the subunits and the fusion proteins. Sc = supercoiling buffer; DC = decatenation buffer. 

 M. tuberculosis M. thermoresistibile 

 Subunits Fusion Subunits Fusion 

Supercoiling     

Concentration 73 nM 74 nM 250 nM 250 nM 

Time 30 min 30 min 30 min 30 min 

Potassium 

glutamate 

concentration 

150-200 mM 50-500 mM 100-200 mM 150-500 mM 

Relaxation     

Concentration 500 nM 500 nM 1000 nM 1000 nM 

Time 2 hr 2 hr 1 hr 1 hr 

Potassium 

glutamate 

concentration 

100-200 mM 100-200 mM 100-150 mM Undetermined 

Decatenation     

Concentration 217 nM 73 nM 250 nM 250 nM 

Preferred 

Buffer 

Sc Dc or Sc Dc Dc or Sc 

 

3.3.2 DNA Gyrase from M. tuberculosis can give an appreciable ATP turnover rate 

From the scope of this work it can be clearly observed that there is indeed an appreciable and 

detectable rate of ATP turnover. This rate is comparable to that of the published rate from the 

M. smegmatis enzyme of 0.39 s-1 (Manjunatha et al., 2002), which appears to support the 

published literature that the protein was unsuitable to use for a high throughput assay system 

(Agrawal et al., 2013, Karkare et al., 2013b, Shirude et al., 2013). It was however discovered 

that the GyrBA fusion protein appeared to give ATP turnover rates more comparable to those 
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from the E. coli enzyme (Table 3.1.2) (Maxwell and Gellert, 1984). It is unclear why this 

enzyme can give a much greater rate of ATP turnover; however, it is suggested that the purity 

of the enzyme stock used to obtain these rates was superior to the purity of the individual 

subunits. This could mean that the portion of the enzyme stock able to give a novobiocin-

independent rate was significantly smaller than in the fusion protein hence preventing 

artificially lowered rates. The second explanation for this enhanced rate is that by fusing the 

proteins it has enhanced the ATPase activity of the proteins perhaps by reducing the time 

needed for a GyrB to bind to a GyrA subunit before the enzyme can process the reaction. A 

final consideration to make is that it has previously been observed that the ATPase rate of the 

human topo IIα N-terminal domain is almost inactive when purified on a nickel column, but 

has much higher activity when purified on cobalt (Gardiner et al., 1998). Typically, the fusion 

protein was subjected to further purification than the subunits which were generally purified 

only on nickel, hence, it would be interesting to purify these proteins without using a nickel 

column in the future to determine if this makes a difference. 

 

It was found that like the E. coli enzyme it was difficult to obtain a rate of ATP turnover when 

the ATPase domain was used in isolation in the absence of DNA (Ali et al., 1993). The rate 

presented here of 0.05±0.08 s-1 was described to be in the same order as the published rate of 

0.02 s-1 for the E. coli B43 subunit, and similar to the value for the equivalent Mtb fragment 

of 0.002 s-1 (Agrawal et al., 2013). However, the quality of the results appeared to be 

questionable, and given that no rate could be detected for the M. smegmatis GyrB in the 

absence of GyrA and DNA it is questioned if this is simply an artefact of the experiment 

(Manjunatha et al., 2002). 

 

The full-length Mtb DNA gyrase fusion protein did not give an appreciable rate in the absence 

of DNA. This indicates a high degree of coupling between DNA binding and ATP hydrolysis. 

This phenomenon was also described for E. coli and M. smegmatis DNA gyrase, whereby a 

background rate of ATP hydrolysis by GyrB is unaffected by either addition of GyrA or 

double-stranded DNA, however the addition of both GyrA and double-stranded DNA led to 

an appreciable increase in the ATP hydrolysis (Maxwell and Gellert, 1984, Manjunatha et al., 

2002). A 1.5-2.5 fold increase in the ATPase activity of Mtb DNA gyrase in the presence of 

DNA has also been previously suggested by Agrawal et al. (2013). Previously the length of 

DNA fragment needed to stimulate ATP hydrolysis in E. coli DNA gyrase has been 

investigated (Maxwell and Gellert, 1984). This is only the second study where the effect of 

DNA topology has been compared, but the initial study was conducted with DNA plasmid 
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samples with relatively high estimated nicked contamination within the negatively supercoiled 

samples using E. coli DNA gyrase (Sugino and Cozzarelli, 1980). It was suggested in this 

paper that relaxed, linearised or nicked plasmids gave equivalent levels of ATP specificity and 

maximum velocity, although the authors do question the result of the relaxed plasmid pointing 

out that the substrates are rapidly converted into a negatively supercoiled plasmid. In the 

results presented here, we have demonstrated that there is unambiguous evidence for 

stimulation of ATPase activity in the presence of a linear or nicked plasmid as compared to 

one that is negatively supercoiled or relaxed when the fusion construct of Mtb DNA gyrase 

was used. This can be explained as we visualised samples from multiple timepoints in the 

ATPase reaction time course to determine the topological state of the DNA and found that 

there was rapid conversion of these substrates to a form which is negatively supercoiled. It is 

likely that the requirements for ATP hydrolysis of Mtb DNA gyrase require that DNA is bound 

in a right-handed orientation that negatively supercoiled DNA cannot readily adopt (Liu and 

Wang, 1978). This is not to say that there could be a significant difference between the 

enzymes from Mtb and E. coli allowing relaxed DNA to stimulate DNA gyrase and to allow 

it to remain stimulated for longer. 

 

3.3.3 Is DNA gyrase able to convert positive supercoils in to negative supercoils? 

In the scope of this work we briefly examined the rate of ATP hydrolysis in the presence of 

positively supercoiled pBR322*. To determine the topological state we ran a native agarose 

gel which showed all wells to be maximally supercoiled (Figure 3.1.12) with no apparent 

intermediate topoisomers. However, it is not possible to resolve the directionality of supercoils 

on a native agarose gel (Shure et al., 1977), hence due to the lack of intermediate topoisomers 

it was assumed that the DNA substrate was rapidly converted into a negatively supercoiled 

plasmid. This would make sense in the context of the literature where it is known that Mtb 

DNA gyrase rapidly removed positive supercoils from DNA at a rate faster than it is able to 

negatively supercoil DNA (Ashley et al., 2017). Three additional methods should be 

considered in the future to gain greater insight into point at which the plasmid is maximally 

negatively supercoiled. The first of these is to use a gel with added chloroquine, which 

increases the resolution of the topoisomers, and in combination with a native gel would 

indicate if a sample was positively or negatively supercoiled due to difference in the migration 

of the sample. The migration of DNA topoisomers is influenced by chloroquine as it 

intercalates to make DNA appear more positively supercoiled, which causes positive 

supercoiled and relaxed DNA to run faster, and negative supercoils to run slower than on gels 

performed in the absence of chloroquine (Shure et al., 1977, Clark and Leblanc, 2009). 

Although it is possible to resolve positive and negatively supercoiled DNA on a 2D gel, this 
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method is impractical with large numbers of samples as run in this experiment (Wang et al., 

1982). The final method is a new non-gel based technique known as the Qiaxcel which is able 

to both resolve topoisomers better than in a native agarose gel and resolve positive and 

negative supercoils (Mitchenall et al., 2018) (Unpublished data – Ms L.A. Mitchenall). It is 

proposed that this new method should be trialled in the future for resolving positive and 

negative supercoiling. 

 

3.3.4 What are the optimal assay conditions for a thermophilic bacterium? 

Preliminary assay conditions for the Mth proteins are described in Table 3.3.1 inferring that 

there are no significant differences between the proteins from Mth and the well-characterised 

Mtb homologues. This does not rule out alternative differences between the enzymes that have 

not yet been assayed, for example it has been reported that the M. avium DNA gyrase has been 

reported to have a low specific activity when compared with that from M. smegmatis and E. 

coli (Guillemin et al., 1999). From these studies it implies that Mth DNA gyrase may have a 

lower specific activity like M. avium. 

 

As a thermophilic bacterium one of the major considerations is the optimal operational 

temperature for proteins from this species may differ. It has been reported that growth is viable 

at temperatures up to 55°C which is significantly greater than that of M. tuberculosis (Edwards 

et al., 2012). This suggests that the Mth DNA gyrase should have activity at temperatures 

greater than that of the Mtb DNA gyrase, therefore it would be interesting to see if the optimal 

growth temperature corresponds to the optimal assay temperature for Mth DNA gyrase in the 

future. 

 

It was difficult to interpret the results of the relaxation and decatenation assays due to 

contaminating cleavage occurring. This was particularly observable when assaying the fusion 

protein in the ATP-independent relaxation assay (Figure 3.2.3; Figure 3.2.4). This is likely to 

be at least in part due to contamination in the protein purification which was not perfect. It is 

suggested that in the future the protein should be further purified to yield purer protein to 

determine if this is an intrinsic property of the protein or if it is because of a contamination. 

Additionally, it can be difficult to determine if decatenation is occurring through a cleavage 

mechanism whereby proteins are cleaved to release the mini-circles or if they are truly 

decatenated when using the current method. However, a newer alternative is currently being 

developed by Inspiralis Limited which uses a pair of intertwined plasmids of varied sizes 
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which can be unlinked in a decatenation reaction (Figure 3.3.1). If optimisation of this reaction 

can occur it is suggested that in the future this new assay should be attempted on this protein 

to determine with more certainty if decatenation is truly occurring (N. Waraich, Pers. Comm.). 

 

Figure 3.3.1: Demonstration of how an alternative decatenation assay in development by Inspiralis 

Limited using two interlinked plasmids of distinct sizes which can be resolved on a gel. Decatenation 

by DNA gyrase would result in two supercoiled bands alongside potentially two open circular nicked 

bands. Topo IV such as that from E. coli would result in two groups of relaxed topoisomers. Meanwhile 

a restriction enzyme would still be able to unlink the plasmids through a double stranded break but 

additional banding at decreased sizes should also be seen. 

 

Overall, the data obtained alongside the evidence presented by Edwards et al. (2012) indicates 

that the Mth homologue of DNA gyrase and the fusion protein is a suitable candidate for 

structural studies of mycobacterial DNA gyrase. Although, the preliminary crystallisation 

studies were not successful, it is suggested that further trials should be carried out in the future 

with a purer protein stock alongside the use of cryoEM to attempt to resolve a high-resolution 

full-length structure of this highly interesting enzyme. 

 

3.3.5 Decatenation happens in 100 mM and 250 mM potassium glutamate 

It is suggested in the literature that Mtb DNA gyrase decatenates optimally in the decatenation 

assay buffer (Aubry et al., 2006a). The results here clearly show that these conditions do not 

always result in the optimal decatenation conditions (Table 3.3.1). For some of the constructs 

this assay buffer does appear to be optimal, whereas others decatenate to a superior level in 

the assay buffer used for supercoiling. As described in section 3.3.4 it is possible that this 
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result is artificial hence it is suggested that when the substrate for the alternative decatenation 

assay substrate is commercially available the decatenation activities of these enzyme should 

be further optimised.  
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4. Inhibition of Mycobacterial DNA Gyrase 

Presently there is increasing resistance being observed in the clinic against the current DOTS 

first line regime of antibiotics for the treatment of tuberculosis (WHO, 2017). Hence, there 

have been significant advances towards further drug discovery against M. tuberculosis to 

decrease the mortality rate and treatment times in recent year; some of which are reviewed 

within (Campanico et al., 2018). We therefore investigated the inhibition of Mtb DNA gyrase 

with both previously known and unknown inhibitors, the results of which are within this 

chapter. The aim was to find a lead compound with a novel mode of action which could be 

further optimised into a compound that could be advanced to clinical use in the future. This 

was achieved initially by comparing the activity of the lesser known compound classes of the 

naphthoquinones and the tricyclic inhibitors (Redx AntiInfectives) including the novel 

Redx04739 to the known classes of DNA gyrase inhibitors of the fluoroquinolones and the 

aminocoumarins. 

 

4.1 Fluoroquinolone Antibiotics 

The quinolone antibiotics are clinically-used inhibitors targeting the bacterial type IIA 

topoisomerases DNA gyrase and topo IV though a dual-targeting mechanism in most bacteria. 

However, in the absence of topo IV only the single target of DNA gyrase is present in 

mycobacteria. Here we investigated the third-generation fluoroquinolone moxifloxacin, which 

is clinically used as a second-line antibiotic against M. tuberculosis against the two Mtb DNA 

gyrase constructs to determine if any difference in the inhibition was obtained by fusing the 

two subunits. The fluoroquinolones act through a known mechanism of action which includes 

inducing cleavage complexes via prevention of the religation reaction (Heddle et al., 2000). 

Hence, we set out to determine both the IC50 and the CC50 of moxifloxacin against both the 

Mtb individual subunits and the fusion protein (see method sections 2.5.1; 2.5.4). The CC50 of 

moxifloxacin was found to consistently be around 0.5-1 µM for both the fusion and subunit 

constructs (Figure 4.1.1A), on the other hand the IC50 values were found to be much more 

modest of around 25 µM (Figure 4.1.1B). These values appear consistent between the two 

constructs analysed hence indicating that no difference in the inhibition of DNA gyrase occurs 

when using the fusion construct. The literature values for both the CC50 and IC50 values for 

moxifloxacin are around 10 µM (Aubry et al., 2004).  
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Figure 4.1.1: Activity of Moxifloxacin on the two alternate constructs of Mtb DNA gyrase at 0.74 µM. 

A) Induction of cleavage complex assay using 25-0.25 µM moxifloxacin. B) Inhibition of supercoiling 

assay using 100-1 µM moxifloxacin. All assays except positive controls contained 3.3% (v/v) DMSO. 

-ve control contained all assay components in the absence of DNA gyrase, +ve and DMSO controls 

were carried out with all assay components in the absence of moxifloxacin. Enzyme concentration was 

chosen to be less than 100% supercoiling for better determination of the IC50 values. 

 

Overall, the data obtained here is in contrast to those in the literature as it indicates that the 

enzyme can function at higher concentrations of moxifloxacin than is required for transient 

induction of the cleavage complex. It is plausible, for instance, that the rate of supercoiling 

was simply decreased with the intermediate cleavage complex being stabilised as per the 

mechanism of action of microcin B17 (Pierrat and Maxwell, 2003). However, it is unusual 

that fluoroquinolones gives rise to such a significant difference in CC50 and IC50 values. It is 

instead suggested that as the CC50 value was obtained in an ATP-independent reaction where 

a negatively supercoiled substrate was used in the absence of ATP, whereas, the supercoiling 

reaction was carried out in the presence of ATP and a relaxed substrate to generate an IC50 

value. It is possible that the presence of ATP or topology of the DNA substrate may influence 

these values, and hence, this should be investigated more thoroughly in the future. However, 

despite any differences in the values from those presented in the literature, this work clearly 
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demonstrates that there are no significant differences in our hands between the two inhibitions 

of the subunits or fusion constructs of Mtb DNA gyrase by moxifloxacin. 

 

4.2 Aminocoumarin Antibiotics 

The aminocoumarin family of non-clinical antibiotics, including novobiocin, inhibit DNA 

gyrase through competitive inhibition of the ATPase reaction (Mizuuchi et al., 1978). To 

determine if the mechanism of action or the potency of these compounds was altered by fusing 

the DNA gyrase subunits together we investigated the IC50 values for the inhibition of the 

supercoiling reaction against both the A2B2 heterotetramer and the GyrBA dimer (see methods 

section 2.5.1). It was initially determined that the IC50 value of both constructs in the 

supercoiling reaction were determined to be approximately 1 µM when assaying against 74 

nM enzyme monomer (Figure 4.2.1a). These values appear to be of a similar order of 

magnitude to the literature value of 0.5 µM (Aubry et al., 2006a). 

 

As the inhibition of supercoiling appeared to be equivalent between the two constructs of Mtb 

DNA gyrase and the ATP turnover of the GyrBA fusion construct has been determined 

suitable for inhibitor studies in the ATPase-linked assay, with experiments trialled to 

determine an IC50 value for the ATPase reaction. An IC50 value of the ATPase reaction was 

determined to be 0.21±0.04 µM (representative of duplicate repeats; Log(IC50): -0.68±0.08) 

(Figure 4.2.1B). However, as the value obtained for the IC50 is close to the enzyme 

concentration used within this reaction (200 nM), it is possible that a true IC50 value was not 

obtained. This is because the limit of detection is defined by the enzyme concentration used 

in this reaction, therefore it is suggested from this result that the IC50 value would be better 

represented as <0.21 µM. Although the ATPase reaction has been optimised for the Mtb 

GyrBA construct the reaction is still difficult to work with at low enzyme concentrations, and 

hence it was not possible to obtain data at lower enzyme concentrations to confirm the true 

value of this reaction. 

 

Unusually the value of the IC50 for the ATPase reaction appears to be somewhat smaller than 

the IC50 value obtained in the supercoiling reaction. This is unexpected because novobiocin 

indirectly inhibits the ATP-dependent supercoiling reaction through competitively inhibiting 

the ATPase reaction that allows supercoiling to occur (Sugino et al., 1978). Therefore, it is 

suggested that the true IC50 for novobiocin is represented by the ATPase reaction, meaning 

that you would normally expect an equal or larger IC50 value to be obtained for the ATPase 
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reaction. This can potentially be explained as there is a large degree of error in the values 

obtained, and if the inhibition of supercoiling experiment were to be repeated additional data 

pointed in the range used should be taken to increase the accuracy in the interpretation of the 

IC50 value. Likewise, although the value obtained is close to the limit of detection, it may be 

found to be accurate if it were possible to assay with lower enzyme concentrations in the 

future. 

 

Figure 4.2.1: A) Inhibition of supercoiling assay against both the Mtb subunits and fusion proteins 

(protein concentration of 78 nM) by 10-0.1 µM novobiocin in 1% (v/v) DMSO. -ve control contained 

all assay components in the absence of DNA gyrase. +ve control lacked DMSO, and the DMSO control 

contained all assay components in the absence of novobiocin. Enzyme concentration was chosen to be 

less than 100% supercoiling for better determination of the IC50 values. B) Analysis of an ATPase assay 

carried out with 200 nM GyrBA enzyme over a time period of 45 minutes with duplicate repeats. Plot 

shows the number of ATP molecules turnover per GyrBA subunit per second plotted against the base 

10 logarithm of the novobiocin concentration in µM. The IC50 value was determined to be 0.21±0.04 

µM. Error bars represent the range of duplicate replicate points being plotted. 

 



119 

 

4.3 Naphthoquinone Antibiotics 

Preliminary studies of the naphthoquinones were performed by Karkare et al. (2013b) who 

determined diospyrin to be inhibiting DNA gyrase at the N-terminal domain away from the 

ATPase site. Due to difficulties in the synthesis of diospyrin, we therefore sought to determine 

the mechanism of action of these compounds using 7-methyljuglone in collaboration with Dr 

MJ Austin (UEA, Pharmacy). The 7-methyljuglone was supplied in a powder form. When 

dissolving the powder in DMSO the solution formed was orange in colour. On leaving the 

compounds at room temperature or at -20°C, the solution turned progressively to a green 

colour, which appeared to have superior activity against Mtb DNA gyrase. MJA was able to 

determine that a reaction was occurring but was unable to identify the final reaction product 

obtained. 

 

As it appeared that 7-methyljuglone dissolved in DMSO was chemically unstable resulting in 

a colour change in the solution, it was decided to investigate the stability of 7-methyljuglone 

in other solvents. Since some solvents are known to interfere with enzyme reactions a range 

of different solvents were trialled to determine which ones would be acceptable in the DNA 

gyrase supercoiling reaction (Figure 4.3.1). From this data it was determined that methanol 

would be the best alternate substitute for DMSO at concentrations less than 3.3% (v/v), but 

other possibilities included ethanol and isopropanol (at less than 1.7% (v/v)). Significant 

inhibition of the supercoiling reaction was observed when glycerol or PEG400 were added to 

the reaction (Figure 4.3.1). The unexpected result from glycerol (supercoiling was only visible 

at the 3.3% (v/v) but not 2.5 or 1.7% (v/v)) may be due to pipetting errors from the pipetting 

of viscous solutions, and as a consequence it was decided as a precaution to avoid the use of 

glycerol.  
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Figure 4.3.1: Supercoiling assay using 78 nM Mtb GyrBA to test which solvents inhibited the negative 

supercoiling reaction over a standard assay at 37°C for 30 minutes. All solvents were trialled at 3.3%, 

2.5% and 1.7% (v/v) final reaction concentration. MeOH = methanol, EtOH = ethanol, iPrOH = 

isopropanol. Data representative of multiple experiments. -ve control contained DNA substrate in the 

absence of DNA gyrase, +ve control contained no solvent. Enzyme concentration was chosen to be less 

than 100% supercoiling to better determine any enhancement or decrease in supercoiling within these 

reactions. 

 

To confirm if 7-methyljuglone was chemically stable in methanol, a 3-day time course was 

performed. This experiment involved performing a supercoiling reaction with compound 

dilutions of freshly dissolved 7-methyljuglone in methanol which was repeated with the same 

stock of dissolved compound in methanol kept at room temperature after 24 and 48 hours to 

determine if a change in the inhibition of Mtb DNA gyrase was observed. From these results 

it was clear that pure 7-methyljugone dissolved in methanol was a relatively poor inhibitor of 

DNA gyrase not resulting in full inhibition at 50 µM (Figure 4.3.2a), as per the results found 

with the compound dissolved in DMSO. After one day, inhibition of supercoiling was 

observed at concentrations >30 µM, indicating that a chemical alteration was already 

occurring (Figure 4.3.2b). The unknown product that formed after 2 days was determined to 

be a potent inhibitor of the Mtb DNA gyrase supercoiling reaction giving full inhibition of 

supercoiling at >5 µM (Figure 4.3.2c). 
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Figure 4.3.2: Three-day time course of the inhibition of Mtb DNA gyrase fusion protein supercoiling 

activity of 7-methyljuglone when dissolved in 100% methanol. A) freshly dissolved compound, B) 

compound after 1 day at room temperature, C) compound after 2 days at room temperature. 

Supercoiling assays were carried out with equivalent protein samples on three consecutive days at the 

same time of day. Enzyme concentration was chosen to be less than 100% supercoiling for better 

determination of the IC50 values. 

 

Based on the literature it appeared that the naphthoquinones were promising inhibitors of DNA 

gyrase to explore further (Karkare et al., 2013b). In this knowledge Dr S. Ekins (SE) of 

Collaborative Drug Discovery created a model of a proposed binding site of diospyrin to 



122 

 

determine the binding site and hence its mode of action. This model described a binding pocket 

in the GyrB NTD domain away from the ATPase site, as this domain was indicated previously 

to be involved in the mode of action of the diospyrin (Figure 4.3.3) (Karkare et al., 2013b). 

From the model, multiple amino acid residues including R40, W47, H121, T189, N309, and 

T373 were hypothesised to be involved in the binding of diospyrin assuming the model created 

was correct. Based on these findings site-directed mutagenesis was performed on the modified 

pET20b(+) GyrBA plasmid to result in 7 new plasmids encoding mutants in the proposed 

binding region (R40A, R40Q, W47F, H121A, T189A, N309A, T373A). Expression and 

purification of 6 of these mutants was successful, yielding active fusion proteins. 

Unfortunately, the H121A mutant did not appear to express under the optimal fusion 

expression conditions, hence purification was not possible. However, it was decided not to 

actively test the model provided by SE as MJA was unable to synthesise diospyrin. Moreover, 

the 7-methyljuglone provided by MJA proved unstable and we were unable to identify an 

appropriate stable and active compound to test against the model. As we were unable to 

determine the true active compound at this time any compound tested could not be taken 

forwards as a clinical target and therefore further developments with these compounds have 

been stopped until a time when we can determine a stable and active compound. Although 

there are more stable naphthoquinones such as menadione these are reported to be only weak 

inhibitors of DNA gyrase and hence not ideal to test the model either (van der Kooy, 2007, 

Karkare et al., 2013b). 
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Figure 4.3.3: Two views of the model of diospyrin docked into the 3ZM7 crystal structure of the Mtb 

ATPase domain (Agrawal et al., 2013) by Dr S. Ekins. Six amino acids of interest are shown with in 

specific interaction distances labelled. A) and B) show different orientations of the same structure. 
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4.4 Tricyclic GyrB ParE (TriBE) antibiotics from Redx AntiInfectives 

The TriBE antibiotics are an optimisation of pyrroloprimidine antibiotics which were 

characterised as GyrB and ParE inhibitors in 2013 (Tari et al., 2013a, Tari et al., 2013b, Trzoss 

et al., 2013). RedxAI followed up the initial work performed by Trius Therapeutic on these 

antibiotics through using a lead compound from the Trius series (Redx03863) (Bensen et al., 

2012), and performing further optimisations resulting in a new lead compound, Redx04739, 

for their mycobacterial compound series (Figure 4.1.1) (McGarry et al., 2018). We determine 

here the bacterial growth inhibition, enzyme IC50 values as well as determining the mechanism 

of action and searching for the binding pockets of both Redx03863 and Redx04739. 

 

 

Figure 4.4.1: Chemical structure of Redx03863 which was optimised to give the lead compound of 

Redx04739 

 

4.4.1 Growth Inhibition by Redx03863 and Redx04739 

Initially we needed to confirm the effectiveness of these compounds against whole cells to 

compare their use as potential TB drugs, therefore broth MIC100 testing was initially performed 

(see section 2.6.1). Additionally, it was important to determine if these compounds were broad 

spectrum or mycobacterial specific, hence these compounds were tested against a limited 

primary screen containing both Gram-positive and Gram-negative bacteria. The broth MIC100 

data demonstrated that the less potent lead antibiotic in the series (Redx04739) showed a high 

degree of selectivity towards the laboratory mycobacterial strain M. smegmatis ATCC19420 

in comparison to the other bacteria tested (Table 4.4.1). In comparison the initial lead of 

Redx03863 showed broad spectrum activity against both the Gram-positive and Gram-
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negative bacteria tested with superior activity compared to Redx04739 (Table 4.4.1). 

However, Redx04739 showed better selectivity against M. smegmatis ATCC19420 compared 

to Redx03863. Additional collaborative testing by the NIAID on behalf of RedxAI found that 

Redx04739 was highly potent against M. tuberculosis H37Ra and M. tuberculosis H37Rv 

under aerobic conditions (data not shown). This indicates that Redx04739 is an interesting 

compound to take forwards for further microbial and biochemical studies and to definitively 

determine the mode of action. 

 

Table 4.4.1: MIC100 data for the two novel RedxAI antibiotics Redx03863 and Redx04739 against a 

primary screen of bacteria containing both clinically-relevant Gram-negative and Gram-positive 

bacteria alongside the laboratory mycobacterium strain M. smegmatis ATCC19420. Data was taken at 

a minimum of 2 replicates with a maximum 2-fold difference between the two replicates. 

Bacterial Strain Redx03863 (µg/ml) Redx04739 (µg/ml) 

Acinetobacter baumannii NCTC13420 0.031 64 

Escherichia coli ATCC25922 0.016 8 

Mycobacterium smegmatis ATCC19420 0.016 0.25 

Pseudomonas aeruginosa ATCC27853 4 32 

Staphylococcus aureus ATCC29213 0.125 8 

 

4.4.2 Inhibition of Mycobacterial Biofilms by Redx03863 and Redx04739 

As it is possible for M. tuberculosis to form biofilms in clinically-relevant settings (Spinner et 

al., 1996, Sendi and Brent, 2016) it was decided to investigate the effects of Redx03863 and 

Redx04739 against biofilms in a laboratory setting. The inhibition of biofilm growth assay 

was used to determine if compounds are effective in preventing growth, or killing bacteria 

within a biofilm grown reproducibly on Calgary biofilm pegs within the laboratory setting 

was initially carried out with the E. coli ATCC25922 strain (Harrison et al., 2010) (see section 

2.6.4). In this assay the compounds of interest were compared to the known biofilm inhibitor 

of moxifloxacin as well as novobiocin, a compound known to be inefficient against biofilms 

(Dr N Ooi, Pers. Comm.). It was found that in this assay both the compounds of interest had 

activity in preventing growth of a biofilm (bMIC – biofilm MIC) with Redx03863 as expected 

presenting with better activity than Redx04739. Unexpectedly Redx03863 performed as well, 

if not better than the positive control of moxifloxacin for this assay (Table 4.4.2). At the 

concentration range tested Redx04739 was unable to prevent the regrowth of a biofilm after 
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exposure to the compound (MBEC – minimum biofilm eradication concentration). On the 

other hand, Redx03863 was not only able to outperform Redx04739 in preventing regrowth 

of a biofilm, it also appeared to be have improved activity compared to the moxifloxacin 

control used (Table 4.4.2). 

 

Table 4.4.2: Inhibition of Biofilm formation against both E. coli ATCC25922 and M. smegmatis 

ATCC19420. Novobiocin is a known not to be an inhibitor of biofilms while moxifloxacin is a known 

positive biofilm inhibitor. Both Redx03863 and Redx04739 were trialled to determine their effectivity 

at both inhibiting biofilm growth (bMIC) and preventing regrowth (MBEC). Data was taken at a 

minimum of 2 replicates with a maximum 2-fold difference, where this was not possible the two 

alternative recorded values are shown and indicated with*. 

 

bMIC (µg/ml) MBEC (µg/ml) 

 

E. coli M. smegmatis E. coli M. smegmatis 

Redx03863 <0.125 >64 4 64/0.5* 

Redx04739 16 >64 >64 16 

Novobiocin 

(negative) 128 >1024 >1024 >1024 

Moxifloxacin 

(positive) <2 >1024 32 256/32* 

 

Based on the growth rate of M. smegmatis it was necessary to increase the incubation times to 

allow a mature biofilm to grow. Consequently, the protocol for inhibition of biofilm growth 

and regrowth for M. smegmatis was optimised based on published data, to increase the biofilm 

growth and regrowth stages to 48 hours (from 24 hours) meanwhile the drug incubation stage 

before obtaining the bMIC was altered from 24 hours to 72 hours. 

 

Unusually, the bMIC values found when using this protocol with M. smegmatis were high 

throughout testing even with moxifloxacin which is known to be an inhibitor of biofilm growth 

in E. coli ATCC25922 (Table 4.4.2). It was unclear if this was an artefact of the protocol being 

used (e.g. clumps of dead cells in the wells being observed) or if this was a true result. On the 

other hand, the MBEC value for regrowth after exposure to antibiotics showed clearly that 

Redx04739 had increased selectivity towards M. smegmatis ATCC19420 with an MBEC 
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value at least 4-fold lower than against E. coli ATCC25922 (Table 4.4.2). The value obtained 

for both moxifloxacin and Redx03863 is somewhat unclear as due to time constraints a third 

repeat was needed but could not be performed leaving an extensive range for the MBEC value 

(Table 4.4.2). Regardless, Redx03863 is likely to be similar if not better than moxifloxacin at 

effectively killing a biofilm from the preliminary data. 

 

4.4.3 Time of kill for Redx03863  

To determine if Redx03863 was causing cell death and the timeframe on which this was 

happening in the presence of Redx03863, a time of kill assay was employed to determine the 

difference in the growth kinetics of a culture in the presence and absence of Redx03863. This 

assay involved plating serial dilutions of duplicate cultures exposed to multiples of the MIC100 

of a compound and duplicate cultures not exposed to any treatment to compare the colony 

forming units and percentage of the surviving colonies at multiple timepoints to identify the 

time to kill the bacteria being tested. Unfortunately, due to the MIC100 of Redx04739 against 

E. coli ATCC25922 being 8 µg/ml it was not possible to carry this experiment out with 

Redx04739 due to the concentration of DMSO within the growth media. Furthermore, because 

Redx04739 was not tested against E. coli ATCC25922 it was decided not to test it against M. 

smegmatis ATCC19420 as no direct comparison to E. coli was possible.  

 

In the presence of Redx03863 it was determined that at 4x MIC100 the percentage of colony 

forming units of E. coli was below 0.1% within 120 minutes of plating and 0.0001% (less than 

30 colonies per culture compared to an excess of 109 in the no drug control flasks) within 240 

minutes. No colonies were found to be surviving after 24 hours (Figure 4.4.2). Overall, this 

suggests effective killing of E. coli ATCC25922 is occurring in the presence of Redx03863. 

 

In contrast when the experiment was scaled for M. smegmatis no colonies were found to be 

surviving after 2 days in the presence of 16x MIC100 Redx03863, with just two surviving 

colonies at 4x MIC100. By 4 days no colonies were surviving in either culture. In general, the 

CFU count for both 4x and 16x MIC100 had a similar percentage of the cultures containing no 

drugs, with there being less than 0.01% colonies surviving at 24 hours for both the 4x and 16x 

MIC100 samples (Figure 4.4.3). Overall, this indicates that the drug is highly active against M. 

smegmatis grown in a laboratory setting, implying it would be suitable to take on to further 

studies, including animal models, depending on toxicity data not examined here. 
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Figure 4.4.2: Percentage of colony forming units of E. coli ATCC25922 remaining when treated with 

4x broth MIC100 Redx03863 compared to untreated bacterium over 6 hours. Data recorded as two 

technical replicates, and representative of 2 experimental replicates. Error bar represent range of 

individual replicates. 

 

 

Figure 4.4.3: Percentage of colony forming units of M. smegmatis ATCC19420 remaining when treated 

with 4x or 16x broth MIC100 Redx03863 compared to untreated bacterium over 2 days. No colonies 

were obtained at 2 days in the presence of 16x MIC100 and from one of the 4x MIC100 cultures and hence 

data could not be plotted. Data recorded as two technical replicates, and representative of duplicate 

experiments. Error bar represent range of individual replicates. 
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4.4.4 Inhibition of DNA Gyrase by Redx03863 and Redx04739 

As the TriBE compound series was previously optimised from known DNA gyrase and topo 

IV inhibitors with some crystallographic data on other compounds in the same series, it was 

assumed that the molecular target would also be the type II topoisomerases for these two 

compounds (Bensen et al., 2012, Tari et al., 2013a). To confirm this, initially the compounds 

were tested against DNA gyrase from M. tuberculosis as they showed superior specificity for 

whole cell activity against mycobacterial species M. smegmatis (see section 2.5.1). It was 

observed that Redx03863 and Redx04739 inhibited the supercoiling reaction of Mtb DNA 

gyrase with nanomolar affinity (Figure 4.4.4) implying that, as suggested, the target of these 

novel drugs was DNA gyrase in M. tuberculosis. The compounds were additionally tested 

against the E. coli type II topoisomerase enzymes which they were found to inhibit, confirming 

a dual targeting mechanism within E. coli. Surprisingly the inhibition of E. coli DNA gyrase 

was found to be at least equal to that of Mtb DNA gyrase (Figure 4.4.5). The inhibition of topo 

IV was found to not be as potent but was still an inhibitor at a sub-micromolar level (Figure 

4.4.5). 
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Figure 4.4.4: Inhibition of supercoiling assay carried out with 74 nM of each gyrase subunit against A) 

Redx03863 and B) Redx04739 (1000 nM – 1 nM in 1% DMSO). Controls included -ve (no enzyme), 

+ve (enzyme no compound), DMSO (enzyme in 1% DMSO), 10 µM novobiocin in 1% DMSO. 

Apparent IC50 values of 10 nM for Redx03863 and 30 nM for Redx04739. Enzyme concentration was 

chosen to be less than 100% supercoiling for better determination of the IC50 values. C) A plot of the 

intensity of the supercoiled peak as determined with ImageJ plotted by GraphPadPrism to determine 

IC50 values - 9.025 nM Redx03863 and 30.01 nM Redx04739. 



131 

 

 

Figure 4.4.5: Inhibition of the E. coli Type II topoisomerases by Redx03863 and Redx04739. A) 

Inhibition of DNA gyrase supercoiling assay. Compound concentrations 100-0.01 µM. Assay run with 

10 nM GyrA and 9 nM GyrB. IC50 of <10 nM Redx03863 and 10-30 nM Redx04739. A alone and B 

alone controls only contained one subunits in the absence of the other subunit. B) Inhibition of 

topoisomerase IV relaxation assay. Compound concentrations 10-0.01 µM. Assay run with 16 nM of 

ParC in an excess of ParE. IC50 100-300 nM Redx03863 and 300-1000 nM Redx04739. -ve controls 

contained the DNA substrate in the absence of protein, positive controls contained both DNA substrate 

and protein in the absence of DMSO. DMSO controls contained the same solvent content as the 

reactions in the presence of DNA substrate and proteins. Enzyme concentration was chosen to be less 

than 100% supercoiling for better determination of the IC50 values. 
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4.4.5 Redx03863 and Redx04739 competitively inhibit the ATPase reaction of DNA 

gyrase 

The binding pocket of the original TriBE compounds is within the ATPase domain (Tari et 

al., 2013a), therefore experiments were carried out to determine if the mechanism of action 

involved inhibiting the ATPase reaction. Initially, the ATP-independent relaxation assay was 

conducted to determine if either of the compounds showed efficacy against this reaction. It 

was shown that there was little or no inhibition of the relaxation reaction at 300 nM (Figure 

4.4.6), whereas full inhibition of supercoiling was observed at <100 nM for both compounds. 

It is found that at the high concentrations of DNA gyrase required to observe ATP-independent 

relaxation a cleavage band is also observed likely due to contamination in the enzyme 

purification as previously discussed in Chapter 3. Overall, because the compounds do not 

inhibit the ATP-independent relaxation assay it is suggested that their mode of action involves 

inhibition of the ATPase reaction. 

 

 

Figure 4.4.6: Inhibition of ATP-independent relaxation assay carried out with 0.5 µM of each gyrase 

subunit. Controls included negative (no enzyme), positive (enzyme no compound), DMSO (enzyme in 

1% DMSO), 10 µM novobiocin in 1% DMSO and 50 µM moxifloxacin in 1% DMSO. Concentration 

range of Redx03863 300 nM to 3 nM, Redx04739 1000 nM to 10 nM all in 1% DMSO. IC50 could not 

be determined in the concentration range tested. The linear cleavage band is because of the large 

amounts of enzyme and increased times required for this assay, and do not affect the results of the assay. 

 

To further determine if the compounds were inhibiting the ATPase reaction competitively, 

two independent experiments were carried out. The first of these was an ATP-competition 

supercoiling reaction where ATP was titrated into the reaction under constant enzyme and 

compound concentrations. In this assay a control with the enzyme in 1% DMSO was used to 

demonstrate that no significant variation in the level of supercoiling occurred as the 

concentration of ATP was increased. Likewise, the negative drug control Simocyclinone D8 
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was used to demonstrate that inhibitors of DNA gyrase that are known to have a mode of 

action other than competitively inhibiting the ATPase reaction cannot be out competed by 

ATP (Flatman et al., 2005). Novobiocin, a known competitive ATP inhibitor, showed a 

significant increase in supercoiling activity as the concentration of ATP was increased. 

Likewise, the level of supercoiling appears to increase with increased levels of ATP in the 

presence of either Redx03863 or Redx04739 (Figure 4.4.7). Overall, this suggests that the 

mechanism of action of these compounds is to competitively inhibit the ATPase reaction. 

 

 

Figure 4.4.7: ATP competition assay. Assay run with 150 nM of M. tuberculosis DNA gyrase. All 

reactions were carried out in final DMSO concentration of 1% (v/v). The ATP concentration range of 

0.2 mM to 2 mM was used. 1% DMSO, Novobiocin (Novo) at 1 µM, Simocyclinone D8 (SD8) at 4 

µM, Redx03863 at 20 nM and Redx04739 at 100 nM were all assayed. -ve control contained all assay 

components in the absence of protein at 2 mM ATP. 

 

The second experiment to confirm that the Redx compounds are competitive ATPase 

inhibitors was a titration of the compounds into the ATPase-linked assay with the Mtb fusion 

construct, which was determined to be optimal for use in this reaction (Chapter 3.1). As the 

limit of detection for the linked ATPase assay is determined by the concentration of the 

enzyme used in the assay, true values of the IC50 could not be determined as 200 nM enzyme 
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was assayed. It was possible however, to observe that these compounds are very tight binders 

resulting in apparent IC50 values comparable to that of novobiocin (Table 4.4.3, Figure 4.4.8). 

The raw data shown for Redx03863 supports the calculated rates indicating that greater 

oxidation of NADH in the coupled reaction occurs in the assays with less than 0.2 µM 

Redx03863, whereas there is little to no difference in the assays carried out with between 0.4 

– 62.5 µM Redx03863 or 100 µM novobiocin (Figure 4.4.8A). Similar raw data was observed 

when the assay was run with Redx04739 (data not shown). Overall, it can be clearly 

determined from these biochemical experiments that both Redx03863 and Redx04739 are 

competitive ATPase inhibitors like novobiocin. 

 

Table 4.4.3: IC50 values for novobiocin, Redx03863 and Redx04739 against the novobiocin sensitive 

rate in the ATPase-linked assay run with 200 nM GyrBA stimulated with 1 ng linear pBR322. IC50 

values generated by GraphPad Prism with non-linear regression (log(inhibitor) vs response – variable 

slope (four parameters)). Error given is the standard error in the IC50 value as obtained from GraphPad 

Prism. 

Compound Apparent ATPase IC50 (nM) 

Novobiocin 208±41 

Redx03863 166±67 

Redx04739 211±60 
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Figure 4.4.8: A) Plot of the absorbance at 340 nm over time in the presence of varying amounts of 

Redx03863 within an ATPase PK/LDH linked assay. B, C) Plots of the rate of the novobiocin-sensitive 

ATP turnover per GyrB subunit per second were plotted against the base 10 logarithm of the 

concentration in µM to determine the IC50 value. B) Redx03863, C) Redx04739. Graphs are 

representative of multiple replicates, with all data points being carried out in duplicate. GyrBA protein 

at concentration of 200 nM with a substrate of 1 ng of linear pBR322 was used to obtain all data sets. 

Non-linear regression (log(inhibitor) vs response – variable slope (four parameters)) was performed to 

obtain IC50 values of 166±41 nM Redx03863 and 211±60 nM Redx04739. 

 

4.4.6 Surface plasmon resonance analysis of the binding kinetics of Redx03863 and 

Redx04739 

As we had determined that both Redx03863 and Redx04739 to be competitive inhibitors of 

the ATPase domain, hence it implied that both of these compounds bound at the ATP-binding 
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domain of GyrB. We hence sought to investigate the binding interactions between these 

compounds and the sub-ATPase domain of GyrB. For these studies we choose the technique 

of surface plasmon resonance (SPR), which can measure the interactions of immobilised 

proteins with a binding partner such as an inhibitor, cofactor or binding partner without the 

need for labels; as reviewed by Nguyen et al. (2015). Typically, SPR experiments work better 

with larger binding partners, however advancements in the technique have led to smaller 

molecules <300 Da being detected (Rich et al., 2002). Therefore, with this knowledge and as 

previous groups had had good experiences with compounds of similar sizes on our Biocore 

T200 machine, we chose to trial our compounds which have molecular masses of 420 and 

424. As we knew that both compounds were effective against Mtb and E. coli DNA gyrase 

we investigated the binding interactions of the ATPase sub-domains from both species. The 

proteins were successfully bound to CM5 sensor chips and subsequently singe cycle kinetics 

were performed.  

 

The protocol used for single cycle kinetics involved measuring the binding response in 

response to increasing concentrations of both compounds with intermediate intervals where 

the compounds were washed off the chips. It was however found that Redx03863 bound with 

very high affinity that saturated the chip and did not allow for washing and reusing of the chips 

and hence it was not possible to measure any kinetic data for Redx03863. This however, did 

strongly suggest that we were looking at the correct binding domain for Redx03863. 

 

On the other hand, it was found that Redx04739 bound with lesser affinity to the chips and 

could be partially removed and hence some kinetic data could be obtained. However, there 

was significant background binding to the control chip meaning that the readings obtained 

were very low. Regardless, a Kd value of 12.11±0.92 µM was obtained for the E. coli sub-

ATPase domain (Figure 4.4.9). Unfortunately, although it was clear that there was binding to 

the Mtb chip, it was not possible to generate a Kd value due to unusually high binding to the 

reference cell resulting in very high error values (Figure 4.4.10). Overall, although the data 

obtained for the SPR experiments were not ideal it did demonstrate that the GyrB sub-ATPase 

domain was likely to be the binding domain of both Redx03863 and Redx04739, suggesting 

this domain to be the correct domain to carry out any mutagenesis studies and crystallographic 

studies on. 
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Figure 4.4.9: Single cycle kinetics SPR results from the CM5 chip bound to the ATPase sub-domain 

from E. coli. A) Sensorgram obtained from the Biocore shows that binding appears in a similar pattern 

to the reference (no protein bound chip) as to the active chip. B) Binding of Redx04739 is increased on 

increasing concentration of compound, but the baseline is not reached between concentrations. C) Plot 

of concentration of Redex04739 against the response. The blue line is a best fit curve to fit the data, 

indicating an estimated Kd = 12.11±0.92 µM. 
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Figure 4.4.10: Single cycle kinetics SPR results from the CM5 chip bound to the Mtb ATPase sub-

domain. A) Sensorgram obtained from the Biocore shows that binding appears in a similar pattern to 

the reference (no protein bound chip) as to the active chip. B) Binding of Redx04739 is increased on 

increasing concentration of compound, but the baseline is not reached between concentrations. C) Plot 

of concentration of Redex04739 against the response. The blue line is a best fit line of the data. No Kd 

value could be obtained. 
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4.4.7 Bacterial mutant generation by Redx03863 and Redx04739 by serial passage 

To further identify the binding location of both Redx03863 and Redx04739, bacterial mutants 

were raised against Redx03863 and Redx04739 in E. coli ATCC25922 and M. smegmatis 

ATCC1940 by two independent methods. The first of these methods was the serial passage 

method whereby bacteria were passaged from cultures continually exposed to a quarter of the 

MIC100 value until a resistant strain was isolated. This method is based on continual exposure 

to low levels of the compounds leading to accumulating mutations which confer partial 

resistance to the compound of interest and hence leading to increases in the MIC100 values. 

 

The established method used by RedxAI for serial passages with E. coli ATCC25922 was 

adapted for M. smegmatis ATCC19420 to increase the time between passages from 24 hours 

to between 2-3 days. In the assays carried out we attempted to obtain a strain with a MIC100 

value of ≥64 µg/ml. If this was not achieved in 50 passages but a significantly increased 

MIC100 was obtained it was also considered to be successful and the resulting strain would be 

analysed for mutants. 

 

It was found that the MIC100 value of E. coli ATCC25922 increased steadily over the first 20 

passages from an initial value of 0.016 µg/ml to 1 µg/ml (a 64-fold increase in MIC100). The 

maximal MIC100 value was found to be 4 µg/ml at passage 49. The final strain E. coli 03863 

SP(50) has a MIC100 value of 2 µg/ml resulting in an increase of 128-fold in the MIC100 value 

from the initial starting value of 0.016 µg/ml. An additional intermediate strain E. coli 03863 

SP(25) was taken after the 25th passage with an MIC100 of 0.5 µg/ml, which was 32 times more 

resistant to Redx03863 than the wild type strain (Figure 4.4.11). 

 

On the other hand, it was found that after 33 passages no meaningful change in the starting 

MIC100 value was obtained in the M. smegmatis ATCC19420 starting strain, with many of the 

passages recording MIC100 values below that of the starting culture (Figure 4.4.11). As no 

obvious increase was observed the technique was terminated with no further characterisation 

being performed. 
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Figure 4.4.11: Plot showing the change in MIC100 values (µg/ml) for E. coli ATCC25922 (closed circle) 

and M. smegmatis ATCC1940 (closed square) when raised against Redx03863. E. coli ATCC25922 

was passaged every 24 hours, M. smegmatis ATCC19420 was passaged every 2-3 days. Passages were 

performed with a 1/100 dilution the ¼ MIC100 well. 

 

A strain of E. coli ATCC25922 with an MIC100 value greater than 128 µg/ml could be raised 

in as little as 7 days against Redx04739. It was not possible to raise a strain that had resistance 

greater than 128 µg/ml due to the concentration of DMSO in the media being limiting. 

Regardless of this, the E. coli 04739 SP(7) strain had a 32-fold increase from the starting 

MIC100 value (Figure 4.4.12).  

 

Like E. coli ATCC25922 it was found that a resistant strain of M. smegmatis ATCC19420 

raised against Redx04739 was generated at a much faster rate than Redx03863. After 29 

passages an MIC100 value of 128 µg/ml was achieved resulting in a 256-fold increase in the 

starting MIC100 value. Like the other strains generated, the final strain M. smegmatis 04739 

SP(29) was further analysed to determine differences to the wild-type strain (Figure 4.4.12). 

Interestingly, in terms of fold-change in the MIC100 value for Redx04739 against M. 

smegmatis ATCC14920 and Redx03863 against E. coli ATCC25922 increased at very similar 

rates, with Redx04739 against E. coli ATCC25922 generated resistance marginally faster. 
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Figure 4.4.12: Plot showing the change in MIC100 values (µg/ml) for E. coli ATCC25922 (closed circle) 

and M. smegmatis ATCC1940 (closed square) when raised against Redx04739. E. coli ATCC25922 

was passaged every 24 hours, M. smegmatis ATCC19420 was passaged every 2-3 days. Passages were 

performed with a 1/100 dilution of the ¼ MIC100 well. It was not possible to measure MIC100 above 

128 µg/ml. 

 

Cross-resistance testing to other known DNA gyrase inhibitors was performed to determine if 

resistance mutants to the novel compounds induced resistance to known antibiotics. This 

information is important in determining if these compounds have common mechanisms of 

resistance which is important when considering their potential in the clinic. The M. smegmatis 

04739 SP(29) strain was found to be a very sickly strain and after 4 days on a Middlebrook 

7H11 plate supplemented with glycerol and OADC supplement only a single colony was 

found to have grown. Unfortunately, this precluded cross-resistance MIC100 analysis from 

being carried out. It was however possible to gain this information about the three E. coli 

strains generated. Both of the strains raised against Redx03863 showed significant cross 

resistance to Redx04739, likewise the E. coli 04739 SP(7) showed 8-fold cross resistance to 

Redx03863 (Table 4.4.4). As the MIC100 for novobiocin was found to be 64 µg/ml for 

novobiocin it was not possible to determine to what degree there was cross resistance to it for 

the E. coli 03863 SP(25) and E. coli 03863 SP(50) strains, but both of these strains gave rise 

to partially increased resistance to novobiocin (Table 4.4.4).  
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Table 4.4.4: Cross-resistance MIC100 values for the E. coli mutant strains raised against Redx03863 and 

Redx04739 through use of the serial passage method. Compound dilutions above 64 µg/ml were not 

tested. 

 

Redx03863 

(µg/ml) 

Redx04739

(µg/ml) 

Moxifloxacin

(µg/ml) 

Novobiocin

(µg/ml) 

Escherichia coli ATCC25922 

(WT) 0.016 8 0.016 64 

Escherichia coli 03863 SP(25) 0.5 64 0.125 >64 

Escherichia coli 03863 SP(50) 2 >64 0.5 >64 

Escherichia coli 04739 SP(7) 0.125 >64 0.016 64 

 

In addition to cross resistance MIC100 testing, the mutants and wild type strains were further 

characterised through extraction of genomic DNA, PCR amplification and sequencing of the 

known type II topoisomerase genes to locate resistance mutants in the known targets. There 

were initial problems with obtaining the genomic DNA from the M. smegmatis strains due to 

problems with breaking open the mycolic acid cell wall. After including a mechanical step to 

break open the cell wall by vigorously vortexing the bacterial suspension with glass beads, 

high yields of genomic DNA suitable for PCR were obtained. 

 

In the E. coli strains two mutations were seen within the GyrB gene (Table 4.4.5; Figure 

4.4.13). The first of these was the F182Y mutation which corresponds to the Y185 position in 

the Mtb protein, meanwhile the second was that of T175N, which aligns with V179 in the Mtb 

protein, hence no further action was taken as the hydrophobic properties of valine are quite 

different to that of a threonine. As E. coli also contains topo IV and it has been confirmed that 

the compounds act via a dual targeting mechanism in E. coli, the topo IV genes were 

additionally sequenced. Two-point mutations were observed in the ATPase containing ParE 

subunit, however as both were found in a region that did not show good homology to the Mtb 

GyrB subunit no further action was taken. One single point mutation was found in each of the 

GyrA and ParC subunits although as the compounds are known to be competitive ATPase 

inhibitors no further action was taken at this time (Table 4.4.5). 
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Table 4.4.5: Single point mutants identified from sequencing of the DNA gyrase genes (gyrA and gyrB) 

and topo IV (parC and parE) genes from the E. coli serial passage mutants. Sequence alignment using 

Clustal Omega was performed to locate the comparable mutations in the wildtype Mtb gyrase proteins. 

Strain Protein Mutation Mutation in Mtb 

E. coli 03863 SP(25) GyrA V501M I478 

 ParE S338F Non-conserved 

E. coli 03863 SP(50) GyrB T175N V179 

  F182Y Y185 

 ParE V84G Non-conserved 

E. coli 04739 SP(7) ParC W143L F152 

 ParE S338F Non-conserved 

 

 

Figure 4.4.13: Visualisation of the mutant locations of the locations of the mutants generated by serial 

passage on a model made from 3 structures of M. tuberculosis DNA gyrase. The GyrB N-terminal 

domain is coloured pink and cyan; the GyrB CTD is coloured gold and grey; the GyrA NTD is coloured 

blue and coral; the GyrA CTD is coloured purple and brown. Mutants from the E. coli 03863 SP(25) 

strain are cyan (I478); from the E. coli 03863 SP(50) stain are blue (V179, Y185); from the E. coli 

04739 SP(7) strain are pink (F152); from the M. smegmatis 04739 SP(29) strain are green (E258; D340). 

The mutants that did not demonstrate good conservation in the region on the Mtb DNA gyrase proteins 

are not shown. Model reproduced from with adaptation (Nagaraja et al., 2017). 
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Two mutations were found in GyrA and one in GyrB of the M. smegmatis 04739 SP(29) strain. 

Like the E. coli strains none of these were found to be in the ATPase domain hence no further 

action was taken (Table 4.4.6; Figure 4.4.13). 

 

Table 4.4.6: Single point mutants identified from sequencing the DNA gyrase genes gyrA and gyrB 

isolated from the M. smegmatis serial passage mutant M. smegmatis 04739 SP(29). Sequence alignment 

using Clustal Omega was performed to locate the comparable mutations in the wildtype Mtb proteins. 

Protein Mutation Mutation in Mtb 

GyrB D340E D340E 

GyrA E259K E258K 

 S839L Non-conserved 

 

4.4.8 Bacterial mutant generation by Redx03863 and Redx04739 by frequency of 

resistance 

The second method by which bacterial mutants were obtained by was that of the frequency of 

resistance experiment - a plate-based method of mutant generation whereby wild type bacteria 

were exposed to concentrations of the compound of interest at multiples of their agar-MIC100 

values. As this method is agar-plate based we first conducted experimentation to generate the 

agar-MIC100 values as these are often found to differ from their broth counterparts. An agar 

MIC100 value of ≤16 µg/ml is required to enable the frequency of resistance experiment to be 

viable at 4xMIC100 due to the amount of compound the experiment required and the DMSO 

concentrations in the reaction. Unfortunately, this precluded Redx04739 being used in this 

experiment against E. coli ATCC25922 (Table 4.4.7). 

 

Table 4.4.7: Agar MIC100 values recorded against E. coli ATCC25922 and M. smegmatis ATCC19420 

for Redx03863, Redx04739 and novobiocin. Values taken as a minimum of two data repeats with two 

technical replicates. The agar MIC100 of novobiocin against E. coli ATCC25922 was not tested. It was 

not possible to test values above 64 µg/ml in this method. Values marked with * indicates values 

previously made by an employee of Redx AntiInfectives. 

Bacterial Strain Redx03863 Redx04739 Novobiocin 

E. coli ATCC25922 0.125* >64 - 

M. smegmatis ATCC19420 0.002 0.5 32* 

 

It was found that no mutants were obtained when E. coli ATCC25922 was plated onto 4x 

MIC100 Redx03863 leading to a very low frequency of resistance value despite increasing the 
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concentration of the inoculum used. The consequence of this was a decrease in the FoR value 

from <2.25x10-8 to <2.94x10-11 (Table 4.4.8). To try and obtain mutants the experiment was 

therefore repeated at 2x MIC100, where a single mutant colony was obtained over two 

experimental repeats (Table 4.4.8). This mutant strain (E. coli 2x03863 FoR) was confirmed 

to be a true mutant through testing of the broth MIC100 which was found to be 32 µg/ml, a 

2096-fold increase in the MIC100 value (Table 4.4.9). It was determined that E. coli 2x03863 

FoR exhibited cross resistance with Redx04739 but interestingly increased sensitivity to 

novobiocin, indicating differences in the resistance mechanisms between these compounds 

(Table 4.4.9). When the type II topoisomerase genes were sequenced for this mutant strain 

only one mutation (S338F) was observed in the ParE gene which is not within the ATPase 

domain, hence at this time no further experimentation on this mutant was performed. 

 

In contrast with the E. coli experiments, a high number of colony forming units were observed 

on 4x agar-MIC100 plates when using this method with M. smegmatis ATCC19420 resulting 

in unusually high frequency of resistance values (Table 4.4.8). To confirm if this was an 

artefact of the assay when working with M. smegmatis ATCC19420, we carried out the assay 

with novobiocin which resulted in comparable results. 

Table 4.4.8: Frequency of Resistance values. Measurements made at 2x and 4x agar MIC100 of 

Redx03863 against E. coli ATCC25922 and at 4x agar MIC100 of Redx03863, Redx04739 and 

Novobiocin against M. smegmatis ATCC19420. Control plates without compounds were measured at 

1/3 days (E. coli/M. smegmatis), compound containing plates were counted at 2/5 days (E. coli/M. 

smegmatis).  < indicates no resistant colonies were obtained. 

 E. coli ATCC25922 M. smegmatis ATCC19420 

 Redx03863 Redx03863 Redx04739 Novobiocin 

2x MIC100 <1.65x10-9    

8.20x10-10    

4x MIC100 <3.94x10-11 4.52x10-5 6.82x10-4 2.89x10-5 

<2.25x10-8 5.31x10-5 5.81x10-4 2.95x10-5 
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Table 4.4.9: Cross-resistance MIC100 values for mutants raised via frequency of resistance experiments. 

M. smegmatis mutants raised against Redx03863 at 4x agar MIC100 and E. coli mutants raised against 

Redx03863 at 2x agar MIC100. A concentration range of drugs of 0.125-64 µg/ml was tested. 

 

Redx03863 

(µg/ml) 

Redx04739 

(µg/ml) 

Moxifloxacin 

(µg/ml) 

Novobiocin 

(µg/ml) 

Isoniazid 

(µg/ml) 

Mycobacterium smegmatis 

ATCC19420 (WT) 0.016 0.5 0.125 2 32 

Mycobacterium smegmatis 

4x03863 FoR 1a 0.25 4 <0.125 4 32 

Mycobacterium smegmatis 

4x03863 FoR 1b 0.25 4 <0.125 64 32 

Mycobacterium smegmatis 

4x03863 FoR 2a 0.125 4 <0.125 8 16 

Mycobacterium smegmatis 

4x03863 FoR 2b 0.25 2 <0.125 4 32 

Escherichia coli 

ATCC25922 (WT) 0.016 8 0.016 64 - 

Escherichia coli    

2x03863 FoR 32 >64 0.016 0.5 - 

 

When looking into a sub-selection of the mutants raised against Redx04739 it was not possible 

to confirm resistance using broth MIC100 testing. On the other hand, the mutant strains raised 

against Redx03863 (M. smegmatis 4x03863 1a, 1b, 2a, 2b) all demonstrated at least 8-fold 

resistance in broth MIC100 testing (Table 4.4.9). These four strains like the other mutants raised 

also exhibited cross resistance to Redx04739 with some indication for cross resistance to 

novobiocin, especially in M. smegmatis 4x03863 1b where a 32-fold increase was observed. 

The results observed indicate that there may be increased sensitivity to moxifloxacin as the 

MIC100 value is decreased. However, the extent of this is unclear as testing was not carried out 

at a standard concentration range (64 – 0.125 µg/ml) preventing a true MIC100 value of 

moxifloxacin from being obtained in this assay, and hence it is not possible to determine if a 

true decrease in the MIC100 was observed in the M. smegmatis 4x03863 FoR strains (Table 

4.4.9). 
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Interestingly, sequencing of the DNA gyrase genes from the M. smegmatis 4x03863 FoR 

1a,1b,2a,2b strains revealed an unexpectedly high number of mutations – 5 in GyrA and 13 in 

GyrB (Table 4.4.10). The only one of these that was found in all four of the strains but not the 

wild type was the D340 mutant in GyrB and was also found in the M. smegmatis 04739 SP(29) 

strain. Most interestingly in three of these strains a point mutation of T167 to alanine was 

obtained which is located within the GyrB NTD. Furthermore, in the M. smegmatis 4x03863 

FoR 2a strain there were K159R and K202R mutations and the M. smegmatis 4x03863 1b 

strain had a mutation at G83S, all of which are the GyrB NTD (Table 4.4.10; Figure 4.4.14). 

As there is a high degree of homology between the GyrB N terminal domains of the Mtb and 

Msm proteins it was decided to test these four positions to determine if they generated 

resistance to either of the compounds in the ATP-dependent supercoiling reaction of DNA 

gyrase. 

 

 

Figure 4.4.14: Locations of the mutations located in the GyrB NTD raised and identified by frequency 

of resistance mutagenesis. Residues shown on the known M. tuberculosis ATPase domain structure 

3ZKB, indicating the AMP-PNP binding site as shown. 
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Table 4.4.10: Single point mutants identified from sequencing the DNA gyrase genes gyrA and gyrB 

isolated from the M. smegmatis frequency of resistance mutants raised against Redx03863. Sequence 

alignment using Clustal Omega was performed to locate the comparable mutations in the wildtype Mtb 

proteins 

Strain Protein Mutation Residue in Mtb 

M. smegmatis 4x03863 FoR 1a GyrB T167A T167 

  D340E D340 

  E489K E489 

  D655N D655 

  D657K D657 

M. smegmatis 4x03863 FoR 1b GyrA F603D F602 

  L624P L623 

 GyrB G83S G83 

  D340E D340 

M. smegmatis 4x03863 FoR 2a GyrA E259K E258 

 GyrB K159R K159 

  T167A T167 

  K202R K202 

  D340E D340 

M. smegmatis 4x03863 FoR 2b GyrA A385D A384 

  L624P L623 

 GyrB T167A T167 

  D340E D340 

 

These four mutants (G83S, K159R, T167A, K202R) were successfully obtained via SDM in 

Mtb GyrB and subsequent protein expression and purification was successful. Confusingly 

the G83S mutant did not appear to show any significant activity in supercoiling (Figure 

4.4.15). This may be explained as although there is a very high homology between the Msm 

and Mtb proteins, it is possible that this position may be essential in the Mtb enzyme and not 

in the Msm protein. It is also plausible that the very low levels of supercoiling seen here is 

significant enough for survival of the bacteria. 

 



152 

 

 

Figure 4.4.15: Time course of supercoiling of GyrBG83S at an enzyme concentration of 0.158 µM, at 

timepoints of 0,15,30,45,60,90,120 minutes. 0.147 µM GyrA used throughout. WT +ve control at 0.147 

µM was made at 30 minutes and -ve no enzyme control at 120 minutes. The emergence of a linear 

cleavage band is as a result of longer incubation times and does not affect the results of this assay. 

 

The other three mutants were active and did not appear to alter the supercoiling activity of the 

enzyme. The supercoiling activity of the K159R, T167A and K202R mutants was tested 

against novobiocin, Redx03863 and Redx04769 to determine if any of them were involved in 

the mechanism of action of the compounds. None of these mutants resulted in resistance to 

novobiocin which is unsurprising as the binding site is already known and none of these 

mutants have previously been implicated in the mechanism of resistance (Figure 4.4.16). 

Additionally, only the M. smegmatis 4x03863 FoR 1b strain had significantly increased 

resistance to novobiocin and none of these mutants were isolated from that strain (Table 

4.4.10). Unfortunately, none of the mutants showed resistance to either Redx03863 (Figure 

4.4.17) or Redx04739 (Figure 4.4.18) either. This may again be an artefact of the different 

species used, or because multiple mutants were required to work in synergy to get an effect. 

It is also possible that these compounds are mutagenic resulting in multiple single point 

mutations throughout the genome and the mutations are not involved in the mechanism of 

mutagenesis which is more likely to come from mutations in efflux pumps. This explanation 

seems somewhat likely as in particular K202 and K159 are unlikely to both be involved in the 

binding site due to the distance between the residues. 
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Figure 4.4.16: Supercoiling assay using GyrB wild type, K159R, T167A and K202R at a final enzyme 

concentration of 150 nM with 150 nM GyrA. -ve control contained DNA substrate in the absence of 

enzymes, DMSO control contained 1% DMSO in the absence of compounds; Novobiocin titration 10-

0.1 µM assayed in 1% DMSO. 
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Figure 4.4.17: Supercoiling assay using GyrB wild type, K159R, T167A and K202R at a final enzyme 

concentration of 150 nM with 150 nM GyrA. -ve control contained DNA substrate in the absence of 

enzymes, DMSO control contained 1% DMSO in the absence of compounds; Novobiocin at 1 µM; and 

compound dilutions 300-3 nM Redx03863. 
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Figure 4.4.18: Supercoiling assay using GyrB wild type, K159R, T167A and K202R at a final enzyme 

concentration of 150 nM with 150 nM GyrA. -ve control contained DNA substrate in the absence of 

enzymes, DMSO control contained 1% DMSO in the absence of compounds; Novobiocin at 1 µM; and 

compound dilutions 1000-10 nM Redx04739. 
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4.4.9 Testing of the naphthoquinone model against Redx03863 and Redx04739 

A model of the 7-methyljuglone binding site was predicted computationally by SE within the 

GyrB NTD (as described in section 4.3) (Figure 4.3.3). Although this model was not tested 

against the naphthoquinones due to the instability of 7-methyljuglone, the site-directed 

mutagenesis and protein purification had already been carried out, and, as the binding site had 

not been determined by bacterial mutagenesis methods, it was decided to test this model 

against Redx03863 and Redx04739 to determine if these compounds interacted with this 

binding pocket. 

 

All six mutants of the mutants made showed significant levels of supercoiling activity as 

compared to wild type DNA gyrase under standard supercoiling assay conditions. However, 

none of these mutants demonstrated any resistance to either Redx03863 (Figure 4.4.19) or 

Redx04739 (Figure 4.4.20) as compared to the wild type. Interestingly, several of the mutants 

(W47F, T189A, N309A, T373A) appear to show slightly increased sensitivity to Redx03863 

and both W47F and N309A have increased sensitivity to Redx04739, however this is most 

likely to be due to the enzyme having decreased activity that was not optimised for this 

reaction. Of these the most marked difference was observed in the W47F where no 

supercoiling was observed within the concentration range tested, although it is unclear why 

this residue would increase the sensitivity to Redx03863 at this time. Overall, this was not an 

unexpected result, as from the biochemical data we know that these compounds are 

competitive ATPase inhibitors, and the predicted mode of action of diospyrin was to inhibit 

DNA gyrase within the GyrB N-terminal domain, but not at the ATP-binding site (Karkare et 

al., 2013b). 
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Figure 4.4.19: Redx03863 tested against the GyrBA fusion protein wild type and naphthoquinone single 

point mutants (R40A, R40Q, W47F, T189A, N309A, T373A) at a concentration of 74 nM. Controls 

used negative (no enzyme), positive, 1% (v/v) DMSO, and 10 µM novobiocin in 1% (v/v) DMSO. 

Compound dilutions in 1000-10 nM Redx03863 in 1% (v/v) DMSO. The presence of a linear cleavage 

band in some of the reactions is as a result of impurities in the enzyme and does not affect the results 

of the assay. 
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Figure 4.4.20: Redx04739 tested against the GyrBA fusion protein wild type and naphthoquinone single 

point mutants (R40A, R40Q, W47F, T189A, N309A, T373A). Controls used negative (no enzyme), 

positive, 1% (v/v) DMSO, and 10 µM novobiocin in 1% (v/v) DMSO. Compound dilutions in 1000-10 

nM Redx04739 in 1% (v/v) DMSO. The presence of a linear cleavage band in some of the reactions is 

as a result of impurities in the enzyme and does not affect the results of the assay. 
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4.5 Discussion 

This chapter described work on four classes of Mtb DNA gyrase inhibitors. Potentially of the 

greatest interest in the context of developing new antibiotics for use in the clinic against active 

Tuberculosis is that of the TriBE class including Redx03863 and Redx04739, which have been 

investigated in detail here to confirm the mode of action. Despite this these compounds will 

probably never make it to the clinic as further optimisation is needed before they can be taken 

forwards. However, knowing the full mode of action should increase the chance of successful 

optimisation even if the full binding site was not confirmed from this work. The 

naphthoquinone 7-methyljuglone which was already known to have toxicity issues has been 

shown here to be unsuitable to be taken forwards as the pure compound is apparently not the 

active substance. Furthermore, as the active compound is unidentifiable the mode of action 

and binding site cannot be confirmed from this work. 

 

4.5.1 Impacts from further studies on known antibiotics 

The work studied here complements the current literature on the known DNA gyrase inhibitors 

moxifloxacin and novobiocin, demonstrating their inhibition of Mtb DNA gyrase fusion and 

subunit constructs to a similar extent to that previously described in the literature. The IC50 

value presented here for novobiocin is very similar to the value presented by Aubry et al. 

(2006a), meanwhile the value we suggest for the IC50 of moxifloxacin is marginally larger 

while the CC50 value is marginally smaller than the literature values (Aubry et al., 2004). 

However, we did find a larger than expected difference between the CC50 and IC50 values of 

moxifloxacin. Several proposed explanations have been presented including the idea that this 

is an effect that arises from the supercoiling assay being carried out in the presence of ATP 

and the cleavage reaction being carried out in the absence of ATP which may alter the efficacy 

of moxifloxacin. 

 

We also suggest an apparent IC50 value for novobiocin of 0.21±0.04 µM for the ATPase assay 

here which to our knowledge is the first reported value of an IC50 value when using the Mtb 

enzymes in this assay, but also demonstrates the difficulties of this assay which requires large 

enzyme concentrations to get reproducible results. As the IC50 value obtained from this 

reaction is close to the enzyme concentration it prevented a true IC50 value from being 

determined due to reaching the limit of detection of the assay. Overall, the value presented is 

not dissimilar to the value presented for E. coli DNA gyrase of 90 nM (Contreras and Maxwell, 

1992) supporting the idea that the limit of detection may have been reached within this assay. 

It is however quite surprising that the IC50 value for the supercoiling reaction was found to be 
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considerably larger than the IC50 of the ATPase reaction, as previously these values have been 

found to be similar in E. coli (Contreras and Maxwell, 1992). It is why unclear why this is not 

the case with M. tuberculosis DNA gyrase. 

 

4.5.2 Instability of 7-methyljuglone and impacts on further studies 

It is clear looking at the results obtained here alongside the prior results in the work of van der 

Kooy (2007) and Dr M.J. Austin (Pers. Comm.) that 7-methyljuglone is not itself active in 

inhibiting DNA gyrase. It is however plausible that a degradation or reaction product formed 

is instead likely to be the active agent causing the inhibition of supercoiling. At present the 

only information we have about the mode of action of the naphthoquinones is that diospyrin 

inhibits DNA gyrase likely within the N-terminal domain of GyrB but is not out competed by 

increasing concentrations of ATP in the Mtb DNA gyrase supercoiling reaction nor does it 

inhibit the ATPase reaction of S. aureus DNA gyrase (Karkare et al., 2013b). Here we 

focussed our work on the less potent naphthoquinone 7-methyljuglone assuming the 

compound class to act through a common mechanism of action as 7-methyljuglone is half of 

a diospyrin molecule. As the reaction of the 7-methyljuglone does not appear to be 

straightforward (as no individual product could be identified) (Dr M.J. Austin Pers. Comm.), 

we could not test the compound reliably and comparatively against the computational model 

as the activity of the compound was evolving. This information may have also affected the 

parameters used to create the computational model (Figure 4.3.3) and hence a different binding 

pocket may have been identified if the work was repeated. 

 

One of the initial questions arising from this work is should we continue to search for a more 

stable naphthoquinone which we would be able to reliably test the binding model on. The 

major issue arising is that the naphthoquinone menadione has been reported to have superior 

stability with >99% remaining after one week dissolved in DMSO (van der Kooy, 2007), but 

has also been reported to be very weak at inhibiting the supercoiling reaction of Mtb DNA 

gyrase with an IC50 value >200 µM (Karkare et al., 2013b). It is apparent that the less stable 

naphthoquinones appear to have greater activity against the enzymes, implying that there may 

be a link between the reactivity of the compounds and inhibition of DNA gyrase. Overall, it 

would be more productive to try and identify the reaction mixture generated from the less 

stable antibiotics to identify the active component and initiate a new series of studies and 

models based on these data. 
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4.5.3 Whole cell activity of the TriBE antibiotics 

From the whole cell activity, Redx04739 shows greater activity against M. smegmatis than 

against the preliminary panel of Gram-negative bacterial species tested including E. coli as 

previously described by McGarry et al. (2018). The cell wall properties vary between the 

Gram staining of different bacterium, with Gram-negative bacterium having a 

lipopolysaccharide outer membrane beyond the peptidoglycan cell wall (Costerton et al., 

1974, Beveridge, 1999) whereas the Gram-positive bacteria are characterised as not having an 

outer membrane with their plasma membranes being simply covered with a layer of 

peptidoglycan (Shockman and Barrett, 1983). On the other hand, mycobacteria are somewhat 

unique in that they have a mycolic acid outer membrane in addition to their peptidoglycan 

layer (Brennan, 2003). This means there are permeability differences in the cell wall structures 

between Gram-negative bacteria and the mycobacteria that may be able to account for the 

differences in the activity on the whole cells which appear to have greater effects on 

mycobacteria despite the activity on the molecular targets being similar or better in the case 

of E. coli DNA gyrase. 

 

It would have been predicted that the compounds should have been able to permeate the Gram-

positive cell wall of S. aureus more easily, but the whole cell activity is comparable to that of 

the Gram-negative bacteria. Two of the potential explanations for this include differences in 

efflux pumps and differences in target enzyme resulting in less inhibition. 

 

In addition to enhanced MIC100 data of Redx03863 and Redx04739 against M. smegmatis, 

these compounds were also determined to have enhanced activity in killing M. smegmatis in 

a biofilm situation when compared to E. coli in a comparable experiment. The assay to 

compare the inhibition of biofilm growth was uninterpretable for M. smegmatis for an 

unknown reason, meaning no direct comparison can be made. The MBEC is however the 

superior measure as it determines the concentration of the compound or drug that is required 

to effectively kill the biofilm as opposed to the concentration required to stall the growth of a 

biofilm. The method developed and used for the M. smegmatis biofilm assay was not ideal as 

the drug incubation step used was 3 days meanwhile all the other steps were only two days. It 

is unclear if by lengthening the incubation with drugs the bMIC values were somewhat altered 

compared to the MBEC values. 
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The results obtained with regards to the biofilm inhibition demonstrate that these novel 

antibiotics have enhanced properties in accessing bacteria in enclosed environments such as 

the biofilm. Although typically M. tuberculosis is not thought of as a biofilm-forming 

infection in its active state, however, there are known cases of non-pulmonary M. tuberculosis 

infections, and in these cases there have been reports of biofilm-like structures forming over 

implants causing infections (Spinner et al., 1996, Sendi and Brent, 2016). Additionally, 

although M. tuberculosis has not been reported to form an environmental biofilm, several 

environmental mycobacteria (e.g. M. kansasii and M. xenopi) are known to form biofilms in 

water systems, described as being found in hospital water reservoirs in the past (Carson et al., 

1988, Schulze-Robbecke et al., 1992). All together this shows that although M. tuberculosis 

biofilms have rarely been detected in clinical settings they are important to consider as they 

have the potential to form biofilm-like infections.  

 

Redx03863 appears to effectively and quickly kill both E. coli and M. smegmatis in liquid 

culture supplemented with at least four times the MIC100 of the compound. The E. coli culture 

showed no surviving cultures at one day post-antibiotic addition whereas this stage was 

reached at just 2 days for the slower growing M. smegmatis cultures. Based on M. smegmatis 

having a doubling time in the region of several hours, it suggests that Redx03863 kills M. 

smegmatis more efficiently over fewer generations. The initial timepoints derived for the M. 

smegmatis assay were successfully derived from the timepoints used by Maurer et al. (2014), 

with later time points being evenly spread to obtain a protocol where no colonies should 

remain after 6 days. It is suggested that if the work was to be repeated in the future with M. 

smegmatis, that this would be a good method to follow again. 

 

4.5.4 Consequences of the bacterial mutagenesis results 

The TriBE group of antibacterial agents were originally developed to act in a dual-targeting 

mechanism (Bensen et al., 2012, Tari et al., 2013a). In the absence of topo IV it is likely that 

a single targeting mechanism occurs in M. smegmatis and hence is also inferred in M. 

tuberculosis (Cole et al., 1998, Mohan et al., 2015). The result of these compounds dual 

targeting both DNA gyrase and topo IV in E. coli, is to make the frequency of resistance rate 

very low as two spontaneous mutations in both targets are required to induce resistance as 

opposed to the single mutation in M. smegmatis. The difference in these values is possibly 

more surprising as the FoR value for M. smegmatis against Redx03863 is in the order of just 

10-5 as opposed to the 10-11 found in E. coli. The values were found to be of the same order 

when the FoR experiment was performed in the presence of 4x Redx04739 or novobiocin, 
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suggesting they are true results (Table 4.4.8). The high FoR results presented here are 

suggested to be an artefact of working with M. smegmatis, this is proposed because when 

working with the mutant set isolated on 4x Redx04739 plates it was not possible to 

conclusively confirm resistance to Redx04739, hence questioning the values obtained within 

this assay – for instance a “grow-through” effect may have occurred where the drug did not 

efficiently kill the bacteria before the efficacy of the compound was degraded, unfortunately 

it was decided not to carry out the time of kill experiment with Redx04739 and hence this 

theory was not tested. We do however know this is not likely to be the case for Redx03863 

due to the results of the time of kill experimentation (Figure 4.4.3). 

 

In contrast to the FoR results it was found that a resistant strain of M. smegmatis ATCC19420 

could not be effectively raised against Redx03863 using the serial passage method whereas an 

E. coli ATCC25922 strain that had 128-fold increased resistance to Redx03863 was raised 

over a period of 50 days (Figure 4.4.11). This implies that continual exposure of a culture to 

a low compound concentration is less effective at producing resistant strains than the selection 

pressure of the high concentrations of compound on agar plates. Likewise, when considering 

this result in the context of the time of kill data, it suggests that the bacterium is effectively 

killed within 4 days and hence there should be no significant concerns over resistance 

generated in the time taken to treat an infection. 

 

This same pattern was also obtained when the bacteria were passaged against Redx04739, 

although resistant strains were obtained over fewer passages (Figure 4.4.12). These results 

somewhat correlate to the FoR results were marginally higher FoR values against Redx04739 

compared with those from Redx03863 were obtained (Table 4.4.8). It does however suggest 

that Redx04739 would not be less clinically effective against E. coli as it is able to generate 

resistance in a brief period of time (i.e. less than a typical course of antibiotics, i.e. 7 days). 

Conversely, it may be possible to use it clinically verses mycobacteria such as M. smegmatis 

as no significant increase in the MIC100 value was obtained in the first 10 passages (>20 days), 

and although no time of kill data were obtained against Redx04739 it is suggested that whole 

cells should be killed effectively within this time. Furthermore, it is important to consider that 

a multiple drug regime is currently preferred for the treatment of tuberculosis, so future studies 

should be investigated in the presence of alternate antibiotics including synergy studies 

(WHO, 2010). 
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The cross-resistance profile of the resistance strains isolated was analysed and gave some 

interesting results. Firstly, it confirmed that the mechanism of action for both Redx03863 and 

Redx04739 is likely to be the same as cross-resistance was present in all strains raised against 

either compound (Table 4.4.4; Table 4.4.9). Secondly, despite moxifloxacin having a known 

mode of action that is different to the proposed mechanism of the novel compounds there 

appeared to be some cross-resistance of the E. coli 03863 SP(25/50) strains which increased 

over the passage number to final resistance of 32-fold to moxifloxacin (Table 4.4.4), although 

no mutations were observed in the QRDR (quinolone resistance determining region) within 

GyrA (Table 4.4.4). No cross resistance of this mechanism was observed for any of the FoR 

mutants analysed but presents an issue with the compounds if they are able to induce resistance 

to compounds with alternate modes of action.  

 

Several of the mutants appear to have a degree of cross resistance or sensitivity to novobiocin. 

These for the most part are relatively small degrees of resistance (2-4 fold) although one strain 

(M. smegmatis 4x03863 1b) exhibited 32-fold resistance over the wild-type, meanwhile E. 

coli 2x03863 FoR appeared to generate 128-fold sensitivity to novobiocin (Table 4.4.4; Table 

4.4.9). It has been previously presented within the literature that the G83S mutation (G85S S. 

aureus) is involved in the mechanism of resistance of novobiocin, and this point mutation is 

found in the M. smegmatis 4x03863 1b novobiocin resistant strain (Stieger et al., 1996). We 

were unable to confirm if through the inhibition of supercoiling reaction if this point mutation 

was involved in binding of either of the Redx compounds due to the very low activity of this 

mutant. However, as the mechanisms of action are comparable, it is therefore plausible that 

the binding sites of these compounds overlap, and indeed the crystal structures of the TriBE 

compounds presented in (Tari et al., 2013a) suggests overlap with the binding pocket of 

novobiocin (Holdgate et al., 1997) and hence one single point mutation in this region (such as 

the G83S mutation) may affect the binding of both groups of compounds. 

 

An interesting thing to consider in the future would be to examine the cross-resistance profiles 

of M. smegmatis ATCC19420 and E. coli ATCC25922 with the R141A and R136A GyrB 

mutants introduced. This is a primary residue involved in novobiocin resistance (del Castillo 

et al., 1991, Holmes and Dyallsmith, 1991, Contreras and Maxwell, 1992, Stieger et al., 1996, 

Kampranis et al., 1999b, Gross et al., 2003, Fujimoto-Nakamura et al., 2005), and hence 

determining if in whole cell there is cross-resistance between novobiocin, Redx03863 and 

Redx04739 this residue would be important in confirming whether these compounds same 

binding site. 
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Sequencing of the type II topoisomerase genes from resistant strains was carried out, 

indicating a surprisingly large number of mutations within these genes, many of which did not 

appear to make sense in the context of the previously discussed mechanism of action. As the 

wild-type type II topoisomerase genes were additionally sequenced and only differences in 

the resistant strains reported here it was decided to continue with testing of only the mutants 

in the GyrB NTD. However, it is also considered possible that the mutants are an artefact of 

poor sequencing (the chromatograms (not shown) appeared normal), or that the compounds 

themselves induce increased mutagenesis. It appears unlikely that it results from an artefact 

of sequencing as there were several mutations that were observed in multiple resistant strains 

but not the wild type strain (e.g. GyrB T167A, GyrB D340E), as opposed to random mutations 

occurring suggesting that there may be a common resistance mechanism obtained from these 

mutations (Table 4.4.10). 

 

One of the mutants that was sequenced contained a mutant of Gly83 to Ser which when 

purified appeared to lack supercoiling activity (Figure 4.4.15). This is surprising as it was 

expected that any mutants that were isolated from bacterial methods should support 

supercoiling in the cell and therefore it would be expected to support supercoiling in vitro. 

Furthermore, this mutant has been previously described to be involved in bacterial resistance 

mechanisms including against novobiocin in S. aureus (Stieger et al., 1996) suggesting that 

that is not an essential amino acid in vivo. However, this mutation in E. coli has been 

previously reported to have only low level ATPase and supercoiling activity in vitro 

previously (Gross et al., 2003). This theory is further enhanced through the evidence presented 

in this chapter that the mechanisms of actions of the aminocoumarins is remarkably like that 

of Redx03863 and Redx04739, although there does not appear to be consistent cross-

resistance between these compounds and novobiocin. 

 

The other three mutations that were introduced into Mtb DNA gyrase (K159R, T167A and 

K202R) did not show resistance to either compound or novobiocin suggesting that they are 

not involved in the resistance mechanism in M. tuberculosis. As discussed earlier, it does not 

preclude them from being involved in the resistance mechanism in M. smegmatis DNA gyrase 

(Figure 4.4.16; Figure 4.4.17; Figure 4.4.18). The most surprising of these negative results is 

that of the T167A mutations, which was independently identified in three of the four M. 

smegmatis 4x03863 FoR strains, implying it to be important in the resistance mechanism. 
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Additionally, there have been studies on two aminobenzimidazole compounds (VRT-125853 

and VRT-752586) (Figure 4.5.1) demonstrating that resistance is generated against these 

compounds when T167 is mutated (Grossman et al., 2007). Finally, T167V has been reported 

to be weakly involved in resistance to novobiocin (Stieger et al., 1996). Overall, this suggests 

that the binding site of both Redx03863 and Redx04739 is likely to be close to the novobiocin-

binding site as is the binding site of the VRT compounds (Holdgate et al., 1997). 

 

 

Figure 4.5.1: Structures of the VRT aminobenzimidazole dual-targeting compounds from Vertex 

Pharmaceuticals Incorporated (Grossman et al., 2007). 

 

Although there is a high degree of homology between the two different enzymes it is plausible 

that there may be some difference in how these compounds interact with the two different 

enzymes. Additionally, it may require multiple mutations to be made in parallel to enable 

resistance to be observed which was not carried out in this study and hence this theory cannot 

be discounted. 
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4.5.5 Consequences of the mode of action studies and the search for the binding site 

From the enzymatic results shown in this section both Redx03863 and Redx04739 have a 

mode of action that involves competitively inhibiting the ATPase activity of GyrB. 

Importantly, it was demonstrated on the Mtb DNA gyrase through use of the ATPase linked 

assay, which, to our knowledge, is the first time this has been achieved for inhibition studies.  

 

The binding domain of Redx04739 (and hence Redx03863) is suggested through the use of 

SPR to be within the ATPase sub-domain (Figure 4.4.9; Figure 4.4.10). The data obtained 

showed that very strong binding was occurring with the chip and that the compounds were 

difficult to remove after binding. A Kd value could however be obtained for Redx04739 for 

both the E. coli and M. tuberculosis ATP-subdomains, although the M. tuberculosis gave very 

large errors and hence is not quoted (Figure 4.4.9; Figure 4.4.10). Although, specific statistical 

values were not obtained it gave promise that the GyrB NTD was the correct place to be 

searching for the binding sites of Redx03863 and Redx04739, as predicted from the previous 

structural studies of compounds within this series (Tari et al., 2013a). These results also 

confirmed that this was the correct domain to be using for subsequent crystallographic trials 

detailed in chapter 5. 

 

Overall, Redx03863 and Redx04739 appear to be part of a useful class of inhibitors that could 

be further optimised to obtain a mycobacterial-specific inhibitor to be explored as a clinical 

option in the future. At present both compounds present with one major issue in their high 

frequency of mutation results in M. smegmatis with no direct DNA gyrase mutants involved 

in the mechanism of action being obtained. It is suggested that to overcome this in the future, 

a permeable M. smegmatis (or E. coli) strain could be exploited to generate resistance mutants. 

Finally, it was not possible within the work of this chapter to locate the specific binding site 

of these compounds, although we have determined that they bind within the sub-ATPase 

domain within the GyrB NTD and the mode of action has been confirmed as being a 

competitive inhibitor of the ATPase reaction. In the next chapter we will further discus the 

binding site in the context of subsequent structural studies performed. 
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5. Crystallographic Studies of Mycobacterial DNA Gyrase 

At present our structural understanding of DNA gyrase from M. tuberculosis is robust with 

the structure of each subunit of the enzyme having previously been solved (Tretter and Berger, 

2012, Agrawal et al., 2013, Blower et al., 2016). From this structural information we can make 

an educated guess of the final arrangement of the subunits based on homology modelling and 

the low resolution cryoEM structure of T. thermophilus DNA gyrase (Figure 5.1.1) (Nagaraja 

et al., 2017). Although we have some structural information, it is however important to keep 

expanding the structural information we have available to better rationalise both the activity 

and inhibition of mycobacterial DNA gyrase to assist with future drug discovery efforts. 

Hence, in this chapter we investigated the possibility of solving the full-length structure of 

DNA gyrase from M. tuberculosis in addition to further investigating the structures of 

mycobacterial ATPase domains bound to inhibitors to understand their mechanisms of action. 

 

5.1 Crystallisation trials of full-length M. tuberculosis DNA gyrase 

In the past there has been no high-resolution structure of full-length DNA gyrase from any 

species. To determine the full-length structure of DNA gyrase the fusion GyrBA protein was 

subjected to crystallisation trials to obtain protein crystals. The fusion protein was chosen as 

by fusing the two subunits it created a protein already complexed with lesser mobility and 

hence it was theorised that this may increase the chance of successful crystallisation. Indeed, 

there is an almost complete structure of the first 1177 residues of S. cerevisiae topo II available 

in the PDB (Figure 1.7.1) supporting the idea that the fusion protein may be a better target for 

crystallisation trials (Schmidt et al., 2012). 

 

It was discovered that at a concentration of 2.2 mg/ml with a CTD-His-tag removed there was 

little precipitation, but no crystals were observed in the KISS, Morpheus® and JCSG-plusTM 

screens. This implied that the protein concentration was too low and hence the protein was not 

able to enter the nucleation zone. When increasing this to a concentration of 7.5 mg/ml (with 

the CTD-His-tag present) in the same three screens no crystals were obtained although a better 

balance of precipitation and clear drops was observed. 
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Figure 5.1.1: Structural model of M. tuberculosis DNA gyrase. The model was made by taking the 

existing crystal structures (5BS8, 3UC1, and 3ZKB) and using the program COOT to assemble a model 

of the A2B2 complex. Domains are coloured as follows: GyrB-NTDs, ice blue with B24 sub-domain 

highlighted in dark blue; GyrB-CTDs, gold; GyrA-NTDs, grey; GyrA-CTDs, pink. DNA is in a coral 

ribbon representation. Abbreviations: CTD, C-terminal domain; NTD, N-terminal domain. Figure 

edited from (Nagaraja et al., 2017). 

 

As the enzyme is relatively mobile in the absence of DNA, as demonstrated by the CryoEM 

structure where the CTDs were not visible in the absence of DNA, it was decided to introduce 

DNA fragments into the crystallisation conditions starting with two published 20 bp fragments 

that had been previously optimised to determine the structure of the S. aureus DNA gyrase 

core-fusion (GyrB CTD – GyrA NTD). However, when introducing the annealed 20-12-p-8 

or 20-447T published DNA fragments (Srikannathasan et al., 2015) in the presence of 

moxifloxacin with or without magnesium and manganese ions, no crystals were obtained. 

There was however, one confirmed salt crystal – well A5 of the Morpheus® screen in the 

presence of both ions, DNA and moxifloxacin. This is somewhat unsurprising as around 70 

bp are required to wrap each of CTD’s, requiring approximately 128 bp to wrap both CTD in 

the absence of a nucleotide and likely increases to around 142 bp on binding of ADPNP 

(Orphanides and Maxwell, 1994). 
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To additionally try to stabilise the enzyme further we looked to use a nucleotide as there is 

considerable evidence that the GyrB ATPase containing NTDs dimerise in the presence of a 

nucleotide (Ali et al., 1993) increasing the stability of the complex. Therefore, we attempted 

crystallisation in the presence of both hydrolysable (ADP) and non-hydrolysable nucleotides 

(AMPPNP) to determine the optimal crystallisation conditions. However, at 7.5 mg/ml with 

or without a C-terminal His-tag there was no evidence of protein crystallisation in the JCSG-

plusTM, Structure screen 1+2 or KISS screens in the presence of 1 mM ADP-Li salt and 5 mM 

magnesium chloride. Equally, after dialysing an untagged protein into the supercoiling assay 

buffer composition in the presence or absence of AMP-PNP (non-hydrolysable ATP) no 

crystals were obtained. Overall, sixteen 96 well screens of the full length fusion M. 

tuberculosis DNA gyrase construct were set up with only salt crystals being obtained. 

 

5.2 Crystallisation of the M. tuberculosis ATPase domain 

From the biochemistry presented in Chapter 4 it was determined that the TriBE compounds 

Redx03863 and Redx04739 bound to the N-terminal of GyrB as competitive inhibitors of the 

ATPase reaction. To locate the binding site of Redx03863 and Redx04739 within this domain 

and enhance our knowledge of the Mtb ATPase domain it was attempted to co-crystallise the 

full ATPase domain in the presence of both compounds. Previously, the ATPase domain of 

M. tuberculosis had been crystallised (Roue et al., 2013), resulting in the crystal structures 

3ZKB, 3ZKD and 3ZM7 (Agrawal et al., 2013). The construct of this domain was a kind gift 

of Drs C. Mayer and S. Petrella (Institut Pasteur, Paris) and purification and crystallisation 

were performed as before (Agrawal et al., 2013). The protein was crystallised at 10.6 mg/ml 

with 5.2 mM magnesium chloride and 5.2 mM AMP-PCP, in a hanging drop arrangement 

with 1 µl drops with 1 µl of well solution (15-30% (w/v) PEG1500, 0.8-1.3% (v/v) 

myoinositol, 100 mM MES pH 6.5, and 5 mM magnesium chloride, total well volume 400 

µl). Under these conditions the protein formed multiple thin plate-like crystals often clumped 

together. The protein did not crystallise in the absence of the AMP-PCP, and only produced 

small crystals in the presence of either Redx03863 or Redx04739 when crystallised with 

AMP-PCP. 

 

With some minor optimisations it was found that we were able to get some crystals suitable 

for X-ray diffraction, however the crystals obtained did not diffract beyond 3.3 Å. It was not 

possible to resolve the structure of either of the data sets collected in the predicted space group 
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of C2221, or the lower symmetry space groups of C2, P2, or P1. As this construct did not 

crystallise in the absence of AMP-PCP the decision was made not to continue with this 

structure as it is believed that the binding sites of AMP-PCP and the two Redx compounds 

should overlap (Tari et al., 2013a), and hence efforts of co-crystallography with both AMP-

PCP and either Redx03863 or Redx04739 would not be sucessful. Instead the decision was 

made to move to the GyrB24 ATPase sub-domain construct which in other species has been 

crystallised in the absence of an ATP analogue. 

 

5.3 Crystallisation trials of M. tuberculosis GyrB24 ATPase subdomain 

To overcome the problems with crystallisation that were faced with the full-length ATPase 

domain, it was decided to try and crystallise the smaller ATPase sub-domain containing the 

ATP and novobiocin binding sites. Furthermore, SPR experimentation in Chapter 4 gave a 

strong indication that Redx03863 and Redx04739 both bound with high affinity to this 

domain. Overall this suggested that the GyrB24 ATPase subdomain was a good target for 

crystallisation. 

 

The ATPase subdomain was initially cloned without the last β-strand of the domain (see 

sections 2.2.3, 2.8.1). This was purified, and no crystals were obtained with this construct 

when bound to either Redx03863 or Redx04739 overnight at low protein concentration (<1 

mg/ml) and subsequently concentrated to around 4 mg/ml for use in the JCSG-plusTM screen. 

After realising that the final β-sheet in the construct was missing the construct was not trialled 

further. 

 

Subsequently, the construct was remade to include the correct C-terminus, however from five 

96-well screens with both compounds only one crystal hit was obtained although, this was not 

followed up due to a lack of UV-fluorescence in the crystal. Following, this lack of success, 

it was decided to remove a pair of potentially long flexible loops which are not visible in the 

crystal structure of the full-length ATPase domain, to form two constructs from here on known 

as B24 SLD (single loop deletion) and B24 DLD (double loop deletion) (Figure 5.3.1).  

 

The two loop deletion constructs were successfully expressed in Rosetta2TM pLysS cells, 

grown in LB media with induction with 0.4 mM IPTG at OD600 1.0, 37°C for 4.5 hours. The 

constructs were lysed using a homogeniser at 40,000 psi then the soluble cell lysate was 
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subsequently purified using a three-column strategy (5 ml HisTrap FF, MonoQ 10/10, S75 

10/300) yielding 2.6 mg of pure B24 SLD protein. The DLD construct was easier to work with 

and purified to give approximately 26 mg of pure protein, at a concentration of 17.3 mg/ml. 

 

 

Figure 5.3.1: Sequence alignment of the sub-ATPase domain constructs with and without the two long 

loops, created based on the published M. smegmatis structures. The second loop is replaced by the two 

amino acids found in the E. coli GyrB subunit (DG) in the absence of the flexible loop. 

 

Due to the low aqueous solubility of Redx03863 and Redx04739, 19.2 µg of each compound 

was bound to 210 µl of B24 SLD at 5.4 mg/ml with 0.7% (v/v) DMSO for 1 hour, before 

concentrating up to ca. 10 mg/ml. Three sparse matrix screens were trialled (JCSG-plusTM, 

PEG suite, AmSO4 suite screens). No crystal hits were obtained. The remaining protein was 

used in the Structure screen 1+2 at 7.9 mg/ml co-crystallised with 0.7 mM novobiocin. One 

potential hit was obtained with well conditions 2 M sodium chloride, 10% (w/v) PEG6000 

(Figure 5.3.2). As no more protein of this batch was available, and because no UV 

fluorescence was observed it was chosen not to follow this lead at this time.  

 

Due to the lack of successful crystallisation the His-tag was removed from the B24 DLD 

protein which was purified and concentrated to 26 mg/ml. Three sparse matrix screens (KISS, 

Morpheus®, and JCSG-plusTM) were all set up for crystallisation trials under apo conditions. 

In addition, the His-tagged B24 DLD protein was concentrated to 38 mg/ml and the PEG and 

JCSG-plusTM screens were trialled both in the presence and absence of 1.6 mM novobiocin. 

Regardless of all these efforts no further crystal hits were obtained for optimisation or 

harvesting. 
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Figure 5.3.2: Visible light (A) and UV (B) image of the single crystal hit obtained when screening the 

Mtb GyrB24 SLD construct. Crystals obtained in the presence of 0.7 mM novobiocin at 7.9 mg/ml in 

2 M sodium chloride and 10% (w/v) PEG6000. Image taken at 9 days. 

 

Multiple screens were set up with the B24 DLD protein at 17.3 mg/ml in an apo form, or in 

the presence of 0.7 mM novobiocin, 0.25 mM Redx03863 or 0.25 mM Redx04739. Only two 

conditions were identified to optimise. The first of these conditions was that of the apo protein 

in 200 mM magnesium chloride, 100 mM Bis-Tris-HCl pH 5.5, 25% (w/v) PEG3350, with 

the second being novobiocin-bound protein in 100 mM Bis-Tris-HCl pH 6.5, 25% (w/v) 

PEG3350. However, after 2 rounds of optimisations no further hits were obtained, and the 

conditions were dropped as they were not reproducible and presumed to be salt. 

 

Due to the lack of crystals being obtained from extensive screening it was decided to perform 

some basic bioinformatics on the constructs, hence, all the current constructs were put through 

the XtalPred-RF database to determine their likelihood of crystallising (Slabinski et al., 2007). 

The results are summarised in (Table 5.3.1) indicating that the constructs being worked with 

were sub-optimal in terms of the Expert-Pool classification of 2, which only suggests them to 

have approximately a 50% chance of crystallisation. Furthermore, the results of the Random 

Forest classifier were in a wider range of classifications, indicating the best construct to be 

attempting crystallisation on was the one missing the last beta-strand, and that the HisGyrB24, 

GyrB24SLD and HisGyrB24DLD constructs were the next best alternatives (Jahandideh et 

al., 2014). 
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Table 5.3.1 
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5.4 Crystallisation trials of M. smegmatis B24 ATPase subdomain 

As the 4 progressive iterations of the Mtb GyrB24 constructs did not yield protein crystals 

after screening 4896 conditions it was decided to move towards the use of a homologue. In 

the past, two structures of M. smegmatis GyrB24 have been published (Shirude et al., 2013, 

Hameed et al., 2014) in the absence of an Mtb structure. Both structures had at least one loop 

deleted, as per the loop deletion constructs designed for the Mtb protein. Based on the 

crystallisation conditions of these constructs and considering the solubility of the Redx 

compounds, it was decided to only clone the double-loop deletion construct, which was 

published to crystallise at a lower pH. The Msm GyrB24 gene was synthesised and codon-

optimised by Invitrogen GeneArt (ThermoFisher Scientific) and subsequently the synthesised 

gene was sub-cloned into the pET28-MHL vector at the BseRI sites. The protein was 

successfully expressed in the transformed E. coli BL21 cell line in 6 L LB induced with 0.4 

mM IPTG at 30°C for 4.5 hours. The protein was purified following the previously published 

procedure (Shirude et al., 2013) to yield more than 160 mg of pure protein at a concentration 

of 17 mg/ml. 

 

Crystallisation screening was carried out at 17 mg/ml in the presence or absence of 1 mM 

novobiocin, Redx03863 or Redx04739. Initially screening was carried out at a range of 

conditions around the published crystallisation conditions (0-30% (w/v) PEG8000, 100 mM 

sodium acetate pH 5.6, 200 mM calcium acetate). Initial crystal hits were obtained within 2 

days in the presence of novobiocin. Crystals grown in 9% (w/v) PEG8000 were harvested in 

50 µl mother liquor and crushed by vortexing for 4 min with 3 mm glass beads to form a seed 

stock. Crystals of Msm GyrB24 supplemented with 1 mM novobiocin were grown in 15% 

(w/v) PEG8000, 100 mM sodium acetate pH 5.6, 200 mM calcium acetate and were harvested 

after 5 days in a cryoprotectant of the mother liquor supplemented with 25% (v/v) ethylene 

glycol, 1 mM novobiocin by Dr Clare Stevenson (Figure 5.4.1). 

 

Extensive co-crystallisation with Redx03863 and Redx04739 was carried out, including using 

the reconcentration method where the compound was added to the protein at a low protein 

concentration and subsequently reconcentrated, no co-crystals were obtained with or without 

the seed stock and subsequent dilutions as described above (Hameed et al., 2014). 
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Figure 5.4.1: Image of crystals of Msm GyrB24 DLD before harvesting from the well for X-ray 

diffraction (left), and in the loop for data collection at the Diamond synchrotron beamline i04 (right). 

Crystals grown in 15% PEG (w/v) PEG8000, 100 mM sodium acetate pH 5.6, 200 mM calcium acetate 

at protein concentration 17 mg/ml supplemented with 1 mM novobiocin. No UV absorbance was 

observed from the crystals. 

 

To try to obtain a crystal structure of the compound-bound structure in the absence of co-

crystallised proteins the decision was made to trial crystal soaks with the compounds. 

However, as the crystals only grew in the presence and not the absence of novobiocin, soaking 

was carried out on novobiocin-bound crystals. Soaking was trialled over time periods greater 

than 6 hours at low compound concentration in DMSO concentrations less than 2% (v/v). 

However, it was found not to be successful as either the crystals dissolved, or the compounds 

did not out soak the novobiocin in the crystals leaving only novobiocin density visible in the 

structure when viewed with DIMPLE (automated refinement and ligand screening software) 

(Figure 5.4.2). 

 

Figure 5.4.2: Example output from DIMPLE autoprocessing showing unmodelled positive density in 

the structure solution. Map shown at an RMSD value of 1.5 (0.4595 electron/Å3). The model used to 

solve the protein backbone was the refined Msm GyrB24 structure with novobiocin but with the ligand 

removed. This indicated that crystals grown in novobiocin and soaked with Redx04739 still contained 

novobiocin. 
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5.5 X-ray diffraction and structure solution of M. smegmatis B24 ATPase 

subdomain 

Data from the novobiocin-containing crystals was collected on the i04 beamline at the 

Diamond light source. From this data the structure of the Msm B24 sub-ATPase domain was 

solved by molecular replacement using the published structure of the Msm B24 sub-ATPase 

domain (PDB entry 4B6C) as the model for phasing. To remove gaps in the mainchain 

BUCCANEER was utilised. This was followed by iterative rounds of automated and manual 

refinement in REFMAC and COOT respectively until the structure gave optimal density fit 

and conformation (Table 5.5.1). 

 

Overall the crystal structure presented here is highly similar to the published 4B6C structure 

of the same construct bound to a different compound in the A crystallographic copy. However, 

there are some clear differences observable of which the first is the presence of a different unit 

cell where this new structure crystallised in the C2 space group compared to C2221 space 

group in the published structure. Both structures contain two crystallographic copies in the 

asymmetric unit cell, however the interfaces between the two structures are distinct (Figure 

5.5.1). 

 

The 4B6C structure was solved to a lower resolution and there are less visible amino acids at 

the N-termini with 18 extra amino acids being visible at the N-terminus of the A-copy, and 17 

in the B-copy in the new structure presented here. Hence, we propose that this new crystal 

structure is an improvement over the previously published structure. As the crystallisation 

conditions were analogous it is not surprising that there are several similar features in both 

structures, one in particular is the presence of sodium ions within the structure. This is most 

noticeable as there is what appears to be a common sodium ion site which is present in both 

of the crystallographic copies where T167, G81 and D80 appear to coordinate to this sodium 

ion alongside one or two water molecules (Figure 5.5.2). This sodium ion site is similar to the 

one presented in the 4B6C structure (Shirude et al., 2013), and was confirmed by the 

CheckMyMetal server (Zheng et al., 2014, Zheng et al., 2017). 
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Table 5.5.1: Data collection and refinement statistics of the Msm B24 sub-ATPase domain structure. 

 Novobiocin 

Data collection  

Space group C2 

Cell Dimensions  

a, b, c (Å) 157.08, 56.12, 50.71 

α, β, γ (°) 90.00, 90.63, 90.00 

Resolution (Å) a 24.55-1.60 (1.63-1.60) 

Number of Observations a 391119 (19736) 

Unique Observations a 58313 (2855) 

Multiplicity a 6.7 (6.9) 

Rmerge (%) a 0.108 (2.075) 

I/σ (I) a 10.4 (0.9) 

CC(1/2) a 0.999 (0.529) 

Completeness (%) a 99.9 (100) 

Refinement  

Limiting Resolution (Å) 1.60 

No. of reflections 58312 

Rwork/Rfree (%) 13.8, 20.1 

Mean B-values (Å2)  

Protein 27.06 

Ligands 30.47 

Ions 33.72 

Waters 39.35 

R. m. s. deviations  

Bond length (Å) 0.0121 

Bond angles (°) 1.655 

Ramachandran Plot (%)   

Favoured region 97.5 

Allowed region 2.5 

Outlier region 0 

Novobiocin occupancy (chain A/chain B)  

Occupancy 0.96/1.00 

RSCC 0.93/0.93 

a Values in parentheses refer to the outer shell 
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Figure 5.5.1: Comparison of the crystallographic subunit interfaces of the published 4B6C structure 

(gold) and the new structure of the Msm GyrB24 ATP sub-domain double loop deletion construct 

(blue). These structures have a high-degree of structural homology, including a shared sodium ion site. 
 

 

Figure 5.5.2: Visualisation of the differences in the sodium ion sites of the A and B chains within the 

Msm GyrB24 ATPase sub-domain structure. Interactions shown are of 2-3 Å. A) shows the interactions 

in the A chain that only involves the mainchain of T167, G81, D80 and the side chain of T167 and a 

single water molecule, in a square planar geometry. Whereas B) shows the interactions to the B chain 

that also a second water molecule, changing the geometry of this binding site to octahedral. 
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The overall protein backbone is in general agreement between the published 4B6C structure 

and the new structure presented here. There are several amino acids that appear to fall in 

alternative conformations throughout the protein, including one surrounding the ligand 

binding site E48, suggesting the orientation of this residue may be based on the ligand bound. 

The only major significant difference in the protein backbone is the modelling of a section of 

an alternative conformation between residues 97-127 which is around one of the loop deletions 

(103-122) suggesting some flexibility in this area.  

 

In addition to the common sodium ion found in the 4B6C structure, there are two additional 

possible sodium ions found within the B-chain but not within the A-chain. These appear to 

coordinate to 5 and 6 atoms respectively at distances between 2-3 Å, with a high degree of 

hydrogen bonding to water molecules, involving just one amino acid each (Figure 5.5.3). The 

interactions are with the carboxylic acid functional group of glutamic acid 46 and the 

mainchain of threonine 33 respectively. Although, it has not been assigned as such, due to the 

proximity of these binding sites, it is possible that this was a single dual conformation sodium 

ion. It is important to note that there is no visible density for either of these sites on the A 

chain and hence this is likely to be an artefact of crystallisation. 

 

 

Figure 5.5.3: Visualisation of the third and fourth possible sodium ion sites on the B chain. All 

interactions shown here are between 2-3 Å in distance. The first of these appears to hydrogen bond to 

the carboxylic acid group of E48 and three water molecules including one of half occupancy, in an 

octahedral coordination. The second sodium forms a hydrogen to the mainchain oxygen of T33 and 

four water molecules, as well as an ethylene glycol in the crystal. The binding geometry is octahedral. 
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As novobiocin was required for crystallisation of the Msm GyrB24 sub-ATPase domain we 

were able to locate significant density to fit most of novobiocin into. This density was 

confirmed by generating an omit map through the use of simulated annealing (Cartesian) in 

the absence of novobiocin on the final refined structure. The omit map clearly demonstrated 

positive electron density in the region of the ligand which novobiocin could clearly be 

modelled into (Figure 5.5.4). Considering the density fit, in the structure presented here we 

observe novobiocin bound in the same binding site as previously observed in previous work 

(Lewis et al., 1996, Holdgate et al., 1997, Tsai et al., 1997). This binding site involves several 

interactions including the key resistance arginine at position 141 (Figure 5.5.5), with a binding 

distance of 2.99 Å. The R141 residue also forms a hydrogen bond of around 2.8 Å to G83 

which has also been implicated in the resistance mechanism of novobiocin through mutation 

to a serine. From examining the structure, the serine side chain substitution at position 83 is 

most likely to be pointing away from the novobiocin ring. Therefore, it is difficult to see why 

this is likely to occur, although it is theorised here that it causes a change in the conformation 

of R141 due to hydrogen bond interactions to the serine destabilising the interaction that R141 

has with novobiocin. 

 

 

Figure 5.5.4: An omit map of the novobiocin within the structure of Msm GyrB24 crystallised in the 

presence of novobiocin. The omit map was made by simulated annealing (Cartesian) of the final refined 

structure with novobiocin removed (phenix) (Adams et al., 2010). The omit map (blue chicken wire) 

was clipped to 5 Å around the novobiocin in the A chain, at a sigma value of 3. The figure was created 

within CCP4MG. 
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Figure 5.5.5: Bonding interactions involved in the interaction of novobiocin with Msm GyrB. Hydrogen 

bonding interactions are represented as dashed lines. The density around novobiocin (grey chicken 

wire) is shown to 1.5 σ on the 2FcFo map. D79, E87 and R141 form direct interactions with novobiocin, 

meanwhile the sat bridge between E56 and R82 is also depicted. 

 

The Aspartate at residue 79 also forms a hydrogen bonding interaction to novobiocin of 2.8 

Å, as does E87 with a distance of 2.45 Å (Figure 5.5.5). Previously N52 has been attributed 

to being involved in the mechanism of binding by novobiocin (Kampranis et al., 1999b). In 

the model shown here we can attribute this through a water bonding network also involving 

D79. Other residues including T169 and T95 also interact with novobiocin through means of 

a hydrogen-bonding network. It should be noted that in the tuberculosis GyrB protein E87 is 

an alanine and hence is unlikely to form a binding interaction to novobiocin, meanwhile the 

threonine at position 169 is actually a serine. 

 

A salt bridge is observed between residues of the E56 and R82 (Figure 5.5.5). This has also 

been previously described to be an essential interaction in the binding of ATP in E. coli, with 

mutants at these locations losing the ability to supercoil DNA, and presenting with very low 

ATPase activity (Gross et al., 2003). Although neither of these molecules appears to form 

direct interactions with the novobiocin, it is very plausible that this interaction stabilised the 

tertiary structure of the protein and disruption of the salt bridge would disrupt the folding of 

the protein. Although, we are not interested in finding further resistance mutations in the scope 

of this work, it would be interesting to see if the ATPase activity, supercoiling activity and 
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subsequently the novobiocin binding were maintained if the amino acids and hence the charges 

were reversed. 

 

Analysing the positions of the bacterial mutants isolated in E. coli, S. aureus, S. pneumoniae, 

and Halophilic archaebacterium against novobiocin (Table 1.8.1) only the interactions of 

R141 and E87 can explain the resistance phenotype of their corresponding mutations observed 

in whole cells (Figure 5.5.6). Additionally, the S128L S. aureus and S. pneumoniae mutations 

(Munoz et al., 1995, Stieger et al., 1996) can likely be explained through unfavourable steric 

interactions preventing the favourability of the binding of novobiocin when replacing the 

corresponding V125 residue with the larger leucine (Figure 5.5.6). 

 

 

Figure 5.5.6: Visualisation of all the novobiocin mutants isolated from bacterial strains including 

potential hydrogen bonds. Many of the single point mutations do not appear to directly interact with 

novobiocin. 
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Many of the other mutations that have been observed in bacteria do not give obvious direct 

interactions with novobiocin (Figure 5.5.6). These interactions are most likely explained 

through hydrogen bonding networks formed from the presence of ordered water molecules, 

and more long-range conformational changes that prevent novobiocin binding that do not 

influence the binding of ATP. 

 

5.6 Crystallisation trials of M. thermoresistibile B24 ATPase subdomain 

Due to the difficulties with crystallising the Mtb GyrB24 sub-ATPase domain with either of 

the two Redx compounds or novobiocin and due to the additional characterisation work that 

we have carried out on M. thermoresistibile in previous chapters, it was decided to design a 

Mth construct of the sub-ATPase domain. This novel construct of the Mth homologue was 

designed to be comparable to the Msm construct and therefore this construct also had the two 

flexible loops deleted. Furthermore, as mycobacteria have high GC content in their genomes 

(Wayne and Gross, 1968), it was decided to use a codon-optimised construct which was 

synthesised by Invitrogen GeneArt (ThermoFisher Scientific). The coding sequencing was 

subsequently sub-cloned into the pET28-MHL vector at the BseRI sites. The protein was 

successfully expressed in the transformed E. coli BL21 cell line in 6 L LB induced with 0.4 

mM IPTG at 30°C for 4.5 hours. The protein was purified to the same method as the Msm 

protein yielding 250 mg purified protein. 

 

Initially, the protein was screened against the JCSG-plusTM, KISS and SG1TM HT-96 screens 

in the presence and absence of 1 mM novobiocin. Three initial conditions were obtained 

yielding crystals which were further optimised, two of which were subsequently determined 

to be salt by X-ray diffraction. Meanwhile as the third could not be reproduced it was decided 

to rescreen against the Morpheus®, the BCS screen and the PGA screenTM 96-well sparse 

matrix screens. Three further hits were obtained (Table 5.6.1), two of which were optimised 

and found to produce crystals within 12 hours. These crystals were found to be highly 

reproducible but not UV fluorescent although they were confirmed to contain protein by 

harvesting and washing crystals before performing SDS-PAGE (Figure 5.6.1).  
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Table 5.6.1: Crystal screening conditions yielding suspected protein crystals from the second iterative 

round of screening of the Mth GyrB24 DLD construct at 22 mg/ml. 

Screen Sub-well Well conditions 

The BCS screen 1 mM novobiocin 100 mM zinc acetate 

100 mM zinc chloride 

100 mM Bis-Tris pH 7.5 

20% (w/v) PEG smear 

medium* 

The BCS screen 1 mM novobiocin 100 mM ammonium acetate 

100 mM zinc chloride 

100 mM Bis-Tris pH 7.2 

15% (w/v) PEG smear high^ 

The PGA screenTM 1 mM novobiocin 100 mM sodium acetate 

5% (w/v) ɣ-PGA (Na+ form) 

8% (W/V) PEG20000 

*PEG Smear medium refers to a combination of 1:1:1:1 mix of PEG2000: PEG3350: PEG4000: 

PEG5000MME 

^PEG Smear high refers to a combination of a 1:1:1 mix of PEG6000: PEG8000: PEG10000 
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Figure 5.6.1: SDS-PAGE gel run with pure Mth GyrB24 DLD protein and crystals washed four times 

with well solution before adding loading dye, boiling solutions and loading onto 12% Bis-Tris SDS-

PAGE. +ve refers to a pure protein sample of 20.8 kDa. Single zinc refers to crystals grown in 

conditions optimised from the BCS screen condition 100 mM ammonium acetate, 100 mM zinc 

chloride, 100 mM Bis-Tris pH 7.2, 15% (w/v) PEG smear high. Double zinc refers to crystals grown in 

conditions optimised from the BCS screen condition 100 mM zinc acetate 199 mM zinc chloride 199 

mM Bis-Tris pH 7.5, 20% (w/v) PEG smear medium. Unambiguous evidence is observed for the 

crystals to contain protein. 

 

Optimised crystals grown in 100 mM zinc chloride, 100 mM ammonium acetate, 14% (w/v) 

PEG smear high (1:1:1 mix of PEG6000:PEG8000:PEG10000) and 100 mM Bis-Tris pH 7.0 

were harvested and flash frozen with the assistance of CS in the crystallisation solution 

supplemented with 25% (v/v) ethylene glycol and 1 mM novobiocin (Figure 5.6.2). 

 

To obtain the crystal structure bound to Redx03863 further novobiocin crystals grown in 100 

mM zinc chloride, 100 mM ammonium acetate, 15% (w/v) PEG smear high, 100 mM Bis-

Tris pH 7.5 were harvested in 50 µl of well solution and vortexed at maximum power with 

one to three 1 mm glass beads (Sigma-Aldrich) for 4 min to crush the crystals. Redx03863 

was added to the seeding stock to a final concentration of 0.24 mM. Screening was repeated 

over the pH range 7-7.5 and 10-20% (w/v) PEG smear high, with drops containing 300 nl of 
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22 mg/ml Mth GyrB24 DLD supplemented with 0.24 mM Redx03863, 200 nl well solution 

and 100 nl seed stock supplemented with 0.24 mM Redx03863.  Crystals grew optimally in 

11% (w/v) PEG smear high and Bis-Tris pH 7.3 were harvested and flash frozen in mother 

liquor supplemented with 25% ethylene glycol and 0.24 mM Redx03863 with the assistance 

of CS (Figure 5.6.3). 

 

 

Figure 5.6.2: Image of crystals of Mth GyrB24 DLD co-crystallised with novobiocin before harvesting 

from the well for X-ray diffraction (left), and in the loop for crystal screening at the Diamond 

synchrotron beamline i03 (right). Crystals grown in 100 mM zinc chloride, 100 mM ammonium acetate, 

14% (w/v) PEG smear high, 100 mM Bis-Tris pH 7.0 at protein concentration 22 mg/ml supplemented 

with 1 mM novobiocin. No UV absorbance was observed from the crystals. 

 

 

Figure 5.6.3: Image of crystals of Mth GyrB24 DLD co-crystallised with Redx03863 before harvesting 

from the well for X-ray diffraction. Crystals grown in 100 mM zinc chloride, 100 mM ammonium 

acetate, 11% (w/v) PEG smear high, 100 mM Bis-Tris pH 7.3 at protein concentration 22 mg/ml 

supplemented with 0.24 mM Redx03863. No UV absorbance was observed from the crystals. 
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Equivalent screening was performed with Redx04739 to attempt to obtain the crystal structure 

bound to Redx04739, however, no crystals were obtained when Redx04739 was supplemented 

at 0.29 mM to the protein solution and seeding solution. When an apo protein solution was 

crystallised with a seeding supplemented with 0.29 mM Redx04739 small crystals were 

obtained, but when the diffraction data was analysed they were found to only contain 

novobiocin and not Redx04739. Further optimisations were attempted using a seed stock that 

was washed prior to crushing the crystals but no crystals were obtained using this method. 

Overall, unfortunately it was determined that the solubility of this compound was too low at 

the crystallisation conditions to obtain crystals with Redx04739. 

 

5.7 X-ray diffraction and structure resolution of M. thermoresistibile B24 

ATPase subdomain 

Data from the Mth GyrB24 ATPase domain crystals were collected on the i03 beamline at the 

Diamond light source. From the collected data the structures of Mth B24 sub-ATPase domain 

were solved using a preliminary Msm B24 sub-ATPase domain as the model for molecular 

replacement. Subsequent rounds of manual and automated refinement using COOT and 

REFMAC were completed until the structures gave optimal density fit and conformation 

(Table 5.7.1). Both structures were found to contain unit cells of similar parameters and were 

assigned to the same space group P1211. 

 

The overall structure of the Mth domain presented as two copies of the protein present within 

the unit cell forming a non-biological dimer connected by two zinc binding sites (D51, D55 

from one chain and H44 from the other) (Figure 5.7.1). Two further zinc-binding sites were 

observed in the structure bound to novobiocin, each of which appeared to be of split 

conformation likely depending on the conformation of a single histidine residue (61) (Figure 

5.7.2). In the structure containing Redx03863 an additional zinc binding site was observed 

binding to H257 (Chain B). The zinc sites were confirmed by collecting data at the zinc edge 

wavelength 1.2782 Å. None of the zinc-binding sites found here contain a sodium ion in the 

Msm previously presented in this chapter. 
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Table 5.7.1: Table of crystallographic statistics for the structures of Mth GyrB24 sub-ATPase domain 

bound to novobiocin and Redx03863. 

 Novobiocin Redx03863 

Data collection   

Space group P 1 21 1 P 1 21 1 

Cell Dimension   

a, b, c (Å) 43.99, 51.12, 83.22 43.77, 51.67, 82.91 

α, β, γ (°) 90.00, 100.32, 90.00 90.00, 100.25, 90.00 

Resolution (Å) a 51.12-1.4 (1.42-1.4) 51.67-1.50 (1.53-1.50) 

Number of Observations a 472775 (22964) 374605 (18170) 

Unique Observations a 71674 (3549) 58503 (2863) 

Multiplicity a 6.6 (6.5) 6.4 (6.3) 

Rmerge (%) a 0.048 (1.405) 0.060 (1.455) 

I/σ (I) a 16.6 (1.3) 12.6 (1.2) 

CC(1/2) a 0.999 (0.665) 0.999 (0.675) 

Completeness (%) a 99.9 (100) 100 (99.9) 

Refinement   

Limiting Resolution (Å) 1.4 1.5 

No. of reflections 64550 58485 

Rwork/Rfree (%) 14.0, 19.0 14.5, 20.2 

Mean B-values (Å2)   

Protein 30.5 26.5 

Ligands 32.3 26.5 

Ions 29.8 35.3 

Waters 41.6 39.1 

R. m. s. deviations   

Bond length (Å)  0.011 0.010 

Bond angles (°) 1.56 1.54 

Ramachandran Plot (%)    

Favoured region 97.7 96.5 

Allowed region 2.3 3.5 

Outlier region 0 0 

Ligand Occupancy (chain A/chain B)  

Occupancy 1.00/0.94 0.99/0.92 

RSCC 0.96/0.95 0.91/0.94 

a Values in parentheses refer to the outer shell 
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Figure 5.7.1: Overview of the Mth GyrB24 sub-ATPase domain structure bound in the crystallographic 

dimer bound to 4 zinc ions including two bound between the non-biological dimer interface, and 

additionally two novobiocin molecules (one per chain of GyrB). 

 

 

Figure 5.7.2: The dual conformation zinc binding site at Histidine 61 in the A chain of the novobiocin-

bound Mth GyrB24 sub-ATPase domain structure. The histidine binds to half occupancy zinc ions in 

two different conformations. The binding sites in the B chain are also dual conformation although the 

histidine is in a single conformation. A similar arrangement is present in the Redx03863 bound 

structure. 
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The protein backbone of the two structures is in very strong agreement with only 3 amino acid 

sidechains being modelled in alternative conformations across the A chain, and 6 alternative 

conformations in the B chain. Interestingly, N52 was seen to be in a different confirmation in 

the two structures like the Msm structures, suggesting that the orientation of this ligand may 

be dependent on the ligand bound.  

 

As both crystal structures were crystallised in the presence of ligands we confirmed the 

presence of the ligands in their respective structures though the use of simulated annealing 

(Cartesian) on the final structure in the absence of the ligand. The resulting electron density 

map showed positive density in the region of the ligands matching novobiocin and Redx03863 

respectively (Figure 5.7.3). This suggested that our mapping of the ligands was correct. 

 

 

Figure 5.7.3: An omit map of the ligands within the structures of Mth GyrB24 crystallised in the 

presence of A) novobiocin and B) Redx03863. The omit maps were made by simulated annealing 

(Cartesian) of the final refined structure the respective ligand removed (phenix) (Adams et al., 2010). 

The omit maps (blue chicken wire) were clipped to 5 Å around the ligands on the A chain, at a sigma 

value of 3. The figure was created within CCP4MG. 

 

Analysing the novobiocin-binding structure, the key binding interaction of R141 that has been 

identified in many studies in many different species as giving resistance to novobiocin (del 

Castillo et al., 1991, Holmes and Dyallsmith, 1991, Contreras and Maxwell, 1992, Stieger et 

al., 1996, Kampranis et al., 1999b) is again clearly shown to be forming hydrogen bonding 

interactions with the novobiocin in this structure at a distance of 3.07 Å. Additionally D79 has 

also been identified to be involved in the binding interactions of novobiocin and again in this 

new structure there is evidence that a hydrogen bond exists (2.9 Å) between the carboxylic 

head group of the aspartic acid and the amide functional group on the novobiocin (Figure 

5.7.4). Other amino acids that give rise to resistance mutants (Table 1.8.1) are also shown in 
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Figure 5.7.4, although many of them do not appear to give direct binding interactions in the 

Mth structure including H89, V99, V125, and S126. There is no clear evidence as to how N52, 

G83, G168, and V171 influence the binding of novobiocin from this structure, however, they 

do appear to be in close proximity to the novobiocin binding site and inserting a bulky amino 

acid into many of these groups may cause a steric clash preventing novobiocin from binding 

especially in the case of both of the glycine residues. The biological mutant of G168 was found 

to be a valine (Contreras and Maxwell, 1992) meanwhile the G83S mutant was discovered in 

resistant S. aureus (Stieger et al., 1996). Likewise, the V171 mutant was also raised against S. 

aureus where the biological mutant was I175T which could easily cause electrostatic repulsion 

to novobiocin in its current conformation. Finally N52 was a mutant that was examined in 

binding studies by SPR and there are suggestions that altering the charge state at this amino 

acid could alter binding interactions and the tertiary structure preventing binding, although it 

is important to consider that in E. coli this mutant was not found to be biologically relevant as 

mutations resulted in an enzyme that was unable to supercoil DNA (Kampranis et al., 1999b). 

 

 

Figure 5.7.4: Visualisation of the novobiocin-binding site in the Mth GyrB24 sub-ATPase domain 

structure. Electron density is shown for the 2FcFo map at 1.5 σ (grey chicken wire). Hydrogen bonds 

are displayed as dashed lines, including hydrogen bonds between D79, T95 and R141 with novobiocin. 

The salt bridge between E56 and R82 is also shown. 
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Overall the structure of the Mth GyrB24 sub-ATPase domain is similar to the others already 

published within the PDB. Additionally, the binding site presented here is in reasonable 

agreement with previously published binding sites of novobiocin in both the E. coli and S. 

aureus crystal structures implying the correct site has been previously identified (Lewis et al., 

1996, Holdgate et al., 1997, Tsai et al., 1997) and that this structure was an appropriate 

structure to utilise for identification of the binding sites of the two Redx compounds.  

 

Analysis of the structure containing Redx03863 indicated that there were significantly 

different binding interactions between novobiocin and Redx03863, with G83 and N52 forming 

closer binding interactions with Redx03863 of around 4 Å (Figure 5.7.5). Like novobiocin 

D79 appears to form a binding interaction of around 2.8 Å to Redx03863 but in contrast the 

key R141 amino acid does not appear to play a significant role in the binding of Redx03863 

(Figure 5.7.5). Other possible interactions include those of E56, and T169 like within the 

published structure of another TriBE compound in E. faecalis GyrB with hydrogen bond 

distances of around 3.3-3.8 Å (Figure 5.7.5) (Tari et al., 2013a). However, T169 is a serine 

within the tuberculosis protein. Additionally, R82 is likely to coordinate through salt bridge 

that is observed with E56 to Redx03863 (Figure 5.7.5). 

 

One interesting interaction that has been observed within the crystal structure is that of the 

glycine at position 83. This residue has been previously observed to cause resistance to 

novobiocin when mutated to a serine (Stieger et al., 1996, Gross et al., 2003, Fujimoto-

Nakamura et al., 2005), and cross-resistance to novobiocin was obtained in a strain presenting 

with the G83S mutation (Chapter 4). Analysis of the structure presented here demonstrates a 

possibility that the mainchain amino group of this residue could interact with the ether group 

in Redx03863, meanwhile the carboxyl oxygen may interact with one of the nitrogen atoms 

on the terminal pyrimidine group (Figure 5.7.6). In addition, the alpha carbon is located 

between 4-5.5 Å away from several atoms within Redx03863 indicating that there is the 

potential for further interactions. Although, it is unclear what orientation the serine group 

would take in mutated versions of GyrB, there is good scope to alter several interactions 

directly or indirectly with Redx03863 by mutating the glycine to a serine. There are similar 

interactions in the 4KSG structure containing C4 from the original TriBE series by Trius 

Therapeutics (Figure 5.7.6b) (Tari et al., 2013a). Overall, there is considerable evidence from 

the crystallographic structures presented here that the G83 residue could be involved in the 

binding of Redx03863 and other compounds within the series including Redx04739. 
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Figure 5.7.5: Binding site of Redx03863 within the Mth structure. Electron density is shown for 

Redx03863 at a sigma level σ = 1.5 for the 2FcFo map. Hydrogen bonding interaction are indicated by 

dashed lines, as is the salt bridge between E56 and R82. Direct interactions are indicated for G31 and 

D79 but not R141. 

 

 

Figure 5.7.6: Detailed interactions of A) N52, D79 and G83 in Redx03863 bound structure of Mth GyrB 

(sub-ATPase domain) and B) N48, D75 and G79 in the C4 bound structure of E. faecalis GyrB24 

(4KSG). All amino acid residues are labelled to the native proteins. 
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5.8 Site-directed mutagenesis of Mtb DNA gyrase based on the structure 

of M. thermoresistibile B24 ATPase subdomain bound to Redx03863 

To confirm the binding pocket of Redx03863 and likely Redx04739 we sought to find a mutant 

that inhibited the action of the compounds. Based on the crystal structure of Mth GyrB24 DLD 

bound to Redx03863, and the published crystal structures of TriBE compounds co-crystallised 

with GyrB from E. faecalis, several residues were identified to test to confirm this binding 

pocket (Figure 5.7.5) (Tari et al., 2013a). As the G83S mutation had already been tested in the 

scope of the previous chapter and showed insufficient supercoiling activity, it was decided not 

to test this residue further. However, seven mutants were successfully made using SDM of the 

GyrB plasmid, all of which expressed and were purified via the protocol for GyrB. Five of 

these mutants were found to be inactive in the ATP-dependent supercoiling reaction (Figure 

5.8.1). This is understandable due to the proximity to the ATP binding pocket. The R141A 

and R141Q mutants were found to have limited activity which after optimisation was deemed 

suitable to test against the compounds (Figure 5.8.2). This residue has been previously 

demonstrated to be important in novobiocin binding and results in resistance to novobiocin 

(del Castillo et al., 1991, Contreras and Maxwell, 1992, Stieger et al., 1996) which was 

confirmed to be the case in Mtb (Figure 5.8.3). On the other hand, it was found that no 

resistance was obtained from the R141A/Q mutants when tested against either Redx03863 or 

Redx04739 (Figure 5.8.4); this was not an unexpected result as in the crystal structure this 

residue is around 4-5 Å away from Redx03863 (Figure 5.7.5). 

 

As the crystal structure of Redx03863 appeared to have many common interactions with those 

of novobiocin and because many of the mutants made were deficient in supercoiling (and 

hence ATPase activity) we directly compared the crystal structures of the two Mth structures 

presented here with the known Mtb crystal structure of 3ZKB containing the non-hydrolysable 

ATP analogue AMP-PNP. From comparing the inhibitor binding sites to that of ATP, there is 

a significant degree of overlap between the two inhibitor binding sites with that of ATP, 

although they all have distinct binding pockets (Figure 5.8.5). This clearly indicates that the 

planar structure of Redx03863 interacts differently with GyrB than either novobiocin or ATP. 

However, there is partial overlap with the ATP-binding pocket meaning that both ATP and 

Redx03863 cannot bind to DNA gyrase at the same time, and as Redx03863 binds with high 

affinity to GyrB it is likely to outcompete ATP within the cell. 
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Figure 5.8.1: Activity testing of five of the seven mutants made in the GyrB subunit of Mtb DNA gyrase 

suggested by X-ray crystallography to be the binding location of Redx03863. Activity tested with equal 

concentration of GyrA and GyrB mutants over 30 minutes at 37°C. A mutant was declared inactive if 

it displayed no ATP-dependent supercoiling activity at 200 nM concentration under these conditions. 

 

 

Figure 5.8.2: Time course of the activity of the Mtb GyrBWT, GyrBR141A and GyrBR141Q mutants assayed 

at 74 nM with equal amounts of Mtb GyrA to optimise the supercoiling activity for compound testing. 

Optimal supercoiling was observed at 30 minutes GyrBWT, 75 minutes GyrBR141A and 60 minutes for 

GyrBR141Q. 
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Figure 5.8.3: Inhibition of ATP-dependent supercoiling activity of 78 nM GyrBWT (30 min incubation), 

GyrBR141Q (60 min incubation), and GyrBR141A (75 min incubation) with 78 nM GyrA by novobiocin at 

a concentration range of 0.1-10 µM. 
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Figure 5.8.4: Inhibition of ATP-dependent supercoiling activity of 78 nM GyrBWT (30 minute 

incubation), GyrBR141Q (60 minute incubation), and GyrBR141A (75 minute incubation) with 78 nM GyrA 

by Redx03863 at a concentration range of 3-300 nM and Redx04739 at a concentration range of 10-

1000 nM. No resistance was observed in response to the R141A/Q mutations. 
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Figure 5.8.5: Structural alignment of the Mth structures containing novobiocin (gold) and Redx03863 

(blue) and the published 3ZKB crystal structure of the Mtb GyrB ATPase domain containing AMP-

PNP (grey). The overall structural alignments are in good agreement and indicate that there is partial 

overlap in the binding pockets of all three molecules. 

 

5.9 Structural comparison of M. thermoresistibile B24 ATPase 

subdomain bound to Redx03863 with the human topo IIα ATPase 

domain 

As all type IIA topoisomerases share a common mechanism of action and similar structural 

features (Berger et al., 1996, Roca et al., 1996) it was decided to perform structural 

comparisons of the binding site of Redx03863 to that of ATP in a eukaryotic topo II. For this 

purpose, we chose the re-refined structure of human DNA topo IIα containing ADP (4R1F) 

(Wei et al., 2005, Stanger et al., 2014). At present there is not a structure of the ATPase domain 

from the human topo IIβ orthologue preventing this analysis from occurring. 

 

In aligning the ATPase domains from Mth GyrB and human topo IIα it is evident that there is 

a high degree of similarity in these structures although there are some differences in some of 

the structural elements, such as the loop of the amino acids 36-39 in the Mth structure that 

forms a large anti-parallel beta sheet arrangement of residues 54-78 in the human structure. 
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Furthermore, a long flexible loop region is visible in the structure of human topo IIα (146-

166) where a similar flexible loop structure was deleted out of the Mth structure (103-125) 

which is not seen in many other bacterial DNA gyrases. Likewise, several of the secondary 

structure elements are in slightly different orientations, although this can likely be attributed 

to the binding of a nucleotide in the full-length ATPase domain as crystallised in the human 

structure resulting in slight conformational changes to the domain (Figure 5.9.1). 

 

Figure 5.9.1: Structural alignment of the Mth sub-ATPase domain bound to Redx03863 (blue) with the 

first 267 amino acids of Human topo IIα (4R1F) (gold). An enlargement of the ligand interactions is 

displayed indicating an overlap in the binding site of Redx03863 with the ATP-binding site of Human 

topo IIα and possible space for binding of Redx03863 in human topo IIα. 

 

More specifically in analysing the ATP-binding position as in the Mtb structure the location 

of the ATP-binding site overlaps with that of Redx03863 (Figure 5.9.1). This unfortunately 

suggests that there is space and hence a possibility for Redx03863 to inhibit human topo IIα 

although this was not analysed in the scope of this project. Several of the key binding 

interactions indicated previously are conserved within the human structure with amino acids 

in the key locations for binding, these include N52 where an asparagine is conserved in a 

similar structural location (N91); likewise, with the threonine at position 169 (T215) and the 

glycine at 83 (G124) (Figure 5.9.2). However, the key binding interaction of the aspartic acid 
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at position 79 is not conserved in the human structure with an asparagine (N120) being present 

at this location. This is unlikely to interact with Redx03863 directly and may be a significant 

enough interaction to provide resistance to human topo IIα although this needs to be further 

tested in the future (Figure 5.9.2).  

 

 

Figure 5.9.2: A structural comparison of the key binding interactions of Redx03863 in the Mth sub-

ATPase domain (blue)  aligned with the ATPase domain of Human topo IIα (4R1F) (Stanger et al., 

2014) (gold). There is conservation at three of the four binding interactions indicated here but crucially 

the key binding interaction of the aspartic acid D79 is not conserved with an asparagine (N120) being 

present at this position in Human topo IIα. 

 

5.10 Discussion 

5.10.1 Previously known structures 

Previously, the N-terminal domain of DNA gyrase has been solved in several iterations from 

several different species including the M. tuberculosis 43 kDa full ATPase domain in the 

presence of non-hydrolysable ATP analogues (Agrawal et al., 2013), but there is only one 

structure of this full domain within the PDB (1JIK) which was crystallised with novobiocin in 

the absence of an ATP analogue (T. thermophilus) (Lamour et al., 2002). On the other hand, 

there are many more structures available within the PDB of the GyrB24 fragment from a wider 

species range, but more critically contain a wide range of compounds bound including the 
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aminocoumarins and TriBE antibiotics. Here we report three new structures, two of these are 

bound to novobiocin of which there are two other GyrB24 structures in the PDB: 1AJ6 

(Holdgate et al., 1997) and 4URO (Lu et al., 2014) from E. coli (R136H mutant) and S. aureus 

respectively. The resolution of these two novobiocin-bound structures from M. smegmatis and 

M. thermoresistibile are a significant enhancement in resolution with the previous best 

resolution being 2.3 Å, with the new structures reported here being at better than 2 Å 

resolution. Likewise, the previous structure of the M. smegmatis GyrB ATPase subdomain 

was solved to 2.2 Å (Shirude et al., 2013), meaning that our new structure has been solved at 

superior resolution. On the other hand, the previous structures containing the TriBE antibiotics 

from Trius Therapeutics were solved in the E. faecalis GyrB24 construct and include the 

4KSG structure containing C4 with the highest similarity to Redx03863 which was solved to 

1.75 Å (Tari et al., 2013a). However, C1-4 from the compound series were solved at 

comparable resolutions in the same E. faecalis construct to our new Mth Redx03863-bound 

structure presented here. In addition, the structure of C3 from the Trius Therapeutics series 

has also been solved within E. coli GyrB and F. tularensis ParE subunits at good resolutions 

(Tari et al., 2013a). 

 

5.10.2 A future structure of Redx04739? 

During the experiments carried out within this project no crystals containing Redx04739 were 

successfully co-crystallised. Instead the crystals that formed in the presence of Redx04739 

were found to contain novobiocin from the seed stock made with novobiocin-containing 

crystals. Soaking experiments were also trialled, in these experiments it was chosen to use the 

crystals grown in the presence of novobiocin as from the experiments carried out in section 

5.4 it was determined that Redx03863 had a lower IC50 value and hence was likely to be a 

tighter binding inhibitor than Redx04739, whereas novobiocin had a more comparable IC50 

value to Redx04739. In these soaking experiments various time points were trialled between 

3 hours to 3 days, however, for the most part the crystals chosen were dissolved in the presence 

of the compound containing soaking solution and where the crystals remained it was found 

that only novobiocin was observed within these structures. 

 

It is suggested that one of the major factors affecting the lack of crystals that were obtained 

was down to the poor solubility of Redx04739 especially in neutral and basic solutions. It was 

therefore hoped that as the crystallisation conditions for the M. smegmatis were more acidic 

than those for the M. thermoresistibile fragment that the compound may co-crystallise under 

these conditions, however it was found that the compound would drop out of solution when 
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added to the protein solution. Adding the drug at lower protein concentrations and co-

concentration with the drug bound was also trialled in a similar method to that used by Hameed 

et al. (2014), however a significant amount of precipitation of the compounds was still 

observed regardless of the temperature and time incubation before concentration. Although 

the same issue was found with Redx03863 the solubility was greater so when the compound 

was added to the protein solution at 1% DMSO it was able to remain in solution and crystallise. 

We suggest that future crystallisation trials with Redx04739 should be carried out with 

increased concentrations of DMSO to increase its solubility. Additionally, it is suggested that 

use of a seed stock that has decreased concentrations of novobiocin (e.g. by washing the 

crystals) should be used to decrease the availability of novobiocin to decrease the chance of 

obtaining novobiocin containing crystals. 

 

5.10.3 Use of homologues and loop deletion constructs 

In the scope of this work it was not possible to crystallise the GyrB sub-ATPase domain from 

M. tuberculosis, although it is possible with further screening and construct alterations with 

novobiocin that in the future a structure may be obtained. This is especially true as it has now 

been demonstrated that protein crystals bound to novobiocin and Redx03863 do not give UV 

fluorescence, and hence it is possible that previous positive hits were discarded (Figure 5.3.2). 

However, as there are no crystal structures of this domain available in the PDB it is plausible 

that, like the work presented here, crystal hits were not obtained when using Mtb constructs. 

Regardless, the crystal structure that we obtained here has a strong similarity to its 

corresponding section of the full ATPase domain (3ZKB) previously published (Agrawal et 

al., 2013) suggesting that the Msm and Mth homologues presented here were appropriate 

choices. Furthermore, as the Msm homologue has previously been used for the inhibitor co-

crystal structures (4B6C, 4BAE) it has likely been previously found that the equivalent Mtb 

fragment was difficult to crystallise (Shirude et al., 2013, Hameed et al., 2014). 

 

All three of the crystal structures presented here have two loops regions deleted from the 

constructs to aid with crystallisation (Figure 5.3.1). Previously this strategy has been utilised 

to obtain crystals of the M. smegmatis sub-ATPase domain (Shirude et al., 2013, Hameed et 

al., 2014), although on the full-length ATPase domain from M. tuberculosis this was not 

performed, but these chains are not visible within the structure suggesting them to be flexible 

(Agrawal et al., 2013, Roue et al., 2013). After extensive crystallisation trials with the Mtb 

sub-ATPase domain no crystals were obtained and hence it was decided to progress towards 

loop deletion constructs, which although they do not contain the full biological relevance, the 
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loops in question do not appear to alter the binding of either novobiocin or Redx03863, nor 

does the second longer loop appear in other species such as E. coli and S. aureus.  

 

5.10.4 Understanding the binding site of novobiocin through crystallographic analysis 

The binding pockets presented in the two crystal structures of novobiocin presented here have 

close similarities to those previously presented for novobiocin and like many people before us 

we have demonstrated the involvement of R141 (R136 in E. coli) in the binding (Table 5.10.1). 

Our enzymatic studies have further confirmed this showing that no inhibition was seen at 3 

µM novobiocin in comparison to full inhibition of the wild type at this concentration (Figure 

5.8.3). Through our crystal structures presented here we have been able to further rationalise 

the involvement of E87 and D79 through direct hydrogen bonding (Table 5.10.1), as well as, 

V125 through steric hindrance. In the limited amount of time we had we were unable to 

confirm the exact mechanism of several of the other reported resistance mutations such as 

G168 and S169 (Table 5.10.1), although we suggest that they must act through long range 

interactions such as altering a stable hydrogen bonding network or a conformational change.  
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5.10.5 Understanding the binding site of Redx03863 through crystallographic analysis 

and mutagenesis of GyrB 

From analysing the solved crystal structure containing Redx03863 and, in comparison with 

the published structure of 4KSG containing the TriBE compound C4 we made several mutants 

(Tari et al., 2013a). However, these mutants appeared inactive in supercoiling when assayed 

at a concentration of 200 nM for 30 mins at 37°C. On comparison to the 3ZKB Mtb crystal 

structure with AMP-PNP it appears that the mutants made may also have important 

interactions with ATP causing them to be inactive in supercoiling (Agrawal et al., 2013). 

Additionally, a comprehensive study of the ATP-binding site through mutagenesis has 

indicated that supercoiling was not permissive in mutating the N46, E50, D73 or R76 residues 

of E. coli DNA gyrase, which correspond to the residues of N52, E56, D79 and R82 which 

were mutated in this study (Table 5.10.1) (Gross et al., 2003). However, several of the residues 

had low-level ATPase activity and hence they were able to confirm that the E50A, D73E and 

R76A all resulted in a significant increase in the apparent IC50 value of novobiocin within the 

ATPase reaction. Initially, it was attempted to perform the SDM in the GyrBA plasmid, 

unfortunately this was unsuccessful, and as the ATPase reaction was problematic giving very 

low ATP turnover when using the individual wild-type Mtb subunits before mutagenesis it 

was decided not to carry out these experiments. On the other hand, from analysing the crystal 

structure it indicated that the G83S mutant obtained from bacterial mutagenesis may result in 

significant resistance to Redx03863 and likely Redx04739 (Table 5.10.1). The carbonyl group 

on the glycine is 4.3 Å away from the compound, meanwhile the amino group is 3.9 Å from 

the ether oxygen. In the published structure of E. faecalis GyrB24 the same interactions with 

C4 of the original TriBE series are 3.9 Å and 4.3 Å suggesting that these could be important 

interactions (Tari et al., 2013a). It is unlikely that the serine side chain would directly interact 

with the compounds as it is likely to point away from the compound, however, it is possible 

that it would alter other surrounding interactions that would directly change the binding 

interactions of the main chain with these compounds. Overall, it is suggested that the G83S 

mutant protein should be further optimised to try and obtain better levels of supercoiling that 

would be possible to be used within an inhibition of supercoiling reaction to determine if there 

is any increase in the IC50 value in the presence of this individual mutant. 

 

The novobiocin binding residue of R141 appears not to interact with Redx03863 or 

Redx04739 in binding. This has been confirmed using inhibition of supercoiling reactions 

with the R141A/Q mutants which do not give resistance to either compound. Likewise, the 

structure presented here of Redx03863 bound to the Mth domain suggests that the distance 
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between this residue and Redx03863 would be too large for a hydrogen bonding interaction 

such as the one seen in the novobiocin bound structures (Table 5.10.1). 

 

5.10.6 Implications of the binding sites  

The binding site of novobiocin has previously been crystallised in other species agreeing with 

the novobiocin-binding site presented here (Holdgate et al., 1997, Lamour et al., 2002, Lu et 

al., 2014). Additionally, the mutagenesis results presented here confirm that this is the correct 

binding site as previously presented in the literature (del Castillo et al., 1991, Contreras and 

Maxwell, 1992, Munoz et al., 1995, Stieger et al., 1996, Fujimoto-Nakamura et al., 2005). 

The crystal structure presented appears to support the idea that R141 is not involved in the 

binding of Redx03863 as the distance between the two species is greater than 4 Å and no 

resistance was obtained when the mutant proteins were analysed. However, the likely binding 

pocket of Redx03863 has a degree of overlap with those of ATP and novobiocin. Overall, this 

leaves compelling evidence for the crystallographic binding site which unfortunately we have 

been unable to confirm via site directed mutagenesis due to the high degree of sensitivity of 

the mutants in this area due to interactions with ATP.  

 

The structural alignments also show that there is the potential for Redx03863 to inhibit human 

topo IIα in addition to the bacterial topoisomerases DNA gyrase and topo IV. However, one 

of the key binding interactions - the aspartic acid (D79) in the Mth structure is presented as an 

asparagine (N120) in the human structure, hence there is a strong possibility that the binding 

and inhibition of Redx03863 may be weaker against human topo IIα. However, this does raise 

significant concerns over the safety of the use of this compound series clinically in humans. 

To confirm this in the future it would be important to test the inhibition of these compounds 

against both Human topo IIα and topo IIβ. Furthermore, additional toxicity tests should be 

utilised to determine the safety of these compounds before further optimisation and hopefully 

developing in pre-clinical testing. 
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6. Discussion 

The work presented in this thesis has used three interlinked areas of study in the form of 

mechanistic, inhibition and structural studies to further our knowledge of DNA gyrase from 

mycobacteria. These studies have built upon the previous studies of Mtb DNA gyrase in terms 

of mechanistic and inhibition studies, meanwhile, although we were unable in the scope of 

this work to advance our structural knowledge of Mtb DNA gyrase, we have instead worked 

towards a place where we may be able to in the future by investigating the structures of other 

mycobacterial species. 

 

6.1 Mechanistic studies of DNA gyrase from M. tuberculosis 

From a mechanistic point of view, we sought to confirm the previous characterisations of 

DNA gyrase (Aubry et al., 2006a), and advance this in terms of using the Mtb DNA gyrase 

fusion protein. From these studies it is clear that our enzymes behaved similarly to previous 

results, with a single omission coming from the results of the ATPase assay. Formerly, it was 

believed that the ATPase activity of Mtb DNA gyrase was very low and unsuitable for 

inhibition studies (Agrawal et al., 2013, Karkare et al., 2013b, Shirude et al., 2013). We 

however, have made an interesting discovery that using a stock of concentrated pure protein 

it is possible to obtain a detectable ATP turnover significantly greater than previously 

determined. In addition, when the reaction was carried out with the fusion protein with a 

topologically unconstrained substrate this rate was determined to be consistently high enough 

to be used for inhibition studies. It is unclear at the current time as to why we observe a 

difference in the ATP turnover from the reconstituted subunits and the fusion protein, however 

we suggest two preliminary explanations for this. The first of these arises from the possibility 

that the fusion proteins are purified to a greater level and hence a greater portion of the ATPase 

rate can be inhibited by novobiocin and hence it makes it appear artificially more active. On 

the other hand, it is also possible that by fusing the two subunits it is also possible that this has 

altered the dynamics of the reaction cycle making it more favourable to carry out the 

supercoiling, and hence the ATPase reaction. At this point in time neither of these explanations 

can be discarded, however, it can be considered that this is the first study to our knowledge of 

the ATPase activity of a DNA gyrase fusion protein. 

 

Whilst determining the ATPase activity from M. tuberculosis DNA gyrase it became apparent 

to us that both the presence and the topological state of DNA were important in stimulating 

this reaction. Previously it has been implied that this is also the case in E. coli DNA gyrase 
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with the presence of either topologically unconstrained double stranded DNA or a relaxed 

plasmid being suggested as the optimal substrates for inducing the ATPase activity (Sugino 

and Cozzarelli, 1980). Our results suggest that the best substrate for Mtb DNA gyrase is 

topologically unconstrained double-stranded DNA. Constrained plasmids appear to be rapidly 

converted into negatively-supercoiled DNA which is a poor stimulator of Mtb DNA gyrase 

and gives a background rate only marginally greater than the enzyme in the absence of DNA. 

Hence, we suggest that future ATPase inhibition studies should be carried out in the presence 

of linearised or nicked plasmid DNA with the fusion protein. Overall, we suggest that this 

means that the ATPase reaction of Mtb DNA gyrase is highly coupled to the presence of 

relaxed or positively supercoiled DNA, suggesting that the enzyme requires an appropriate 

substrate to be active. 

 

It is known that mycobacteria only encode for two topoisomerases within their genomes (DNA 

gyrase and topo I) (Cole et al., 1998). This has caused many previous researchers to question 

if DNA gyrase is able to compensate for the lost functions of topo IV. Topo IV functions in 

the most part to decatenate and relax DNA in an ATP-dependent manner (Kato et al., 1990). 

Although within the scope of the work presented here and previously it has been shown that 

Mtb DNA gyrase can decatenate DNA, it does not appear that it does this to the same level as 

it is able to negatively supercoil a relaxed plasmid (Aubry et al., 2006a). Likewise, although 

Mtb DNA gyrase can relax negatively supercoiled DNA in an ATP-independent fashion 

(Gellert et al., 1977, Sugino et al., 1977), this reaction is slow and can be rapidly reversed 

through the addition of ATP. It is therefore suggested that Mtb DNA gyrase preferentially 

relaxes positively supercoiled DNA, and may be unable to fully compensate for topo IV in 

terms of relaxing negatively supercoiled DNA. 

 

6.2 DNA gyrase from M. thermoresistibile 

One of the key features of this work was the development of DNA gyrase from the 

thermostable M. thermoresistibile, based on the rationale of Edwards et al. (2012), suggesting 

this to be a strong alternative to Mtb as a source of proteins for structural studies. We have 

demonstrated this clearly to be the case as by using the Mth sub-ATPase domain we were able 

to gain a crystal structure bound to Redx03863, which we were unable to with the Mtb and 

Msm homologues. We suggest that this might also be the case with the true aim of this project 

in solving the full-length structure of mycobacterial DNA gyrase. In addition, the Mth fusion 

protein is an ideal candidate to further exploit in future structural studies using both X-ray 

crystallography and cryoEM. 
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On the other hand, we found that the Mth proteins were marginally more difficult to work with 

in terms of enzymatic assays, as the DNA was found to be difficult to remove from the protein 

under the commonly used assay conditions. Regardless of this, we were able to confirm that 

DNA gyrase from Mth is active with the activity being moderately optimised in terms of 

enzyme concentrations, time, and potassium glutamate concentrations. Additionally, we also 

determined that, like the Mtb proteins, there was no significant difference in the enzymatic 

activity by fusing the subunits together. At this stage we cannot confirm if the ATPase rate 

from the Mth enzyme is reliable and reproducible. 

 

6.3 Inhibition of mycobacterial DNA gyrase 

Possibly the most important section of work presented here comes in the form of inhibition 

studies performed on Mtb DNA gyrase. In the period between 2000-2015 an estimated 49 

million people were saved with antibiotics against M. tuberculosis, however, in 2016 alone 

1.3 million people could not be saved and died of tuberculosis (WHO, 2017). This figure 

combined with rising levels of drug resistant-infections being reported, means that we urgently 

need to develop new antimycobacterial agents. Hence, in the scope of the work presented here 

we compared the clinically used second line fluoroquinolone of moxifloxacin (Gillespie, 

2016), and the formally clinically used aminocoumarin novobiocin (Food and Drug 

Administration, 2011) to the novel compound classes of the naphthoquinones (Lall et al., 

2005, Karkare et al., 2013b) and the TriBE antibiotics optimised by Redx AntiInfectives (Tari 

et al., 2013a). 

 

6.3.1 Prospects for the naphthoquinone antibiotic class 

From the work presented here it is clear that the naphthoquinone 7-methyljuglone is not a 

viable option for development into a novel antibiotic. Previous work suggests that these 

compounds are highly unstable in a range of solvents, which we were able to confirm through 

enzymatic assays (van der Kooy, 2007). We therefore suggest that the compound that is active 

against DNA gyrase is not 7-methyljuglone but a resulting derivative or breakdown product. 

As in the scope of this work we were unable to confirm the exact composition of the active 

fraction we therefore propose that this is not a viable option to be taken forwards for further 

investigations. Furthermore, we were unable to confirm the binding pocket of these 

compounds by mutagenesis as we could not obtain a stable and active compound to test the 

model against. 
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6.3.2 The TriBE antibiotics optimised by Redx AntiInfectives 

A substantial proportion of the inhibition studies conducted here used the novel TriBE 

antibiotics of Redx03863 and Redx04739. These have potent activity against whole cell 

mycobacteria as well as against mycobacterial DNA gyrase in both the ATPase and 

supercoiling reactions but not the ATP-independent relaxation reaction. Of the compounds 

tested these compounds present the best opportunity to develop a new clinical 

antimycobacterial compound. These compounds are highly efficient at killing both whole cells 

in MIC testing on agar and in broth as well as having significant activity in killing established 

biofilms. However, there are additional issues with these compounds going forwards, 

including the uncomfortably high frequency of resistance values, suggesting that resistance is 

highly likely to develop, and a non-optimal mechanism of action. These compounds are 

ATPase inhibitors like the aminocoumarin novobiocin, which was withdrawn from clinical 

use against methicillin-resistant S. aureus based on toxicity issues (David and Burgner, 1956, 

Maxwell, 1993, Food and Drug Administration, 2011, Chopra et al., 2012). As DNA gyrase 

is a member of the GHKL ATPase family there is a significant likelihood that any ATPase 

inhibitors of DNA gyrase will have activity against other members of this family (Dutta and 

Inouye, 2000). Likewise, as a type IIA topoisomerase DNA gyrase has significant structural 

homology to eukaryotic topo II enzyme including human topo IIα and β there is a strong 

chance of inhibition of these enzymes causing adverse effects (Wei et al., 2005). Furthermore, 

the structural analysis carried out on the Redx03863 structure suggests that cross susceptibility 

could be an issue with human topo IIα, which should be tested in the future. 

 

One of the biggest challenges of this section of work has been to elucidate the binding pocket 

of both Redx03863 and Redx04739. From combining the proposed mechanism of action of 

competitive inhibition of the ATPase reaction, the preliminary SPR results indicating that 

Redx04739 binds to the sub-ATPase domain of Mtb GyrB, and the crystal structure of 

Redx03863 bound to the sub-ATPase domain of Mth GyrB we believe that we have likely 

determined the binding site of these compounds. However, using bacterial mutagenesis we 

have only determined one mutation in the proposed binding site (G83S) which appears to be 

almost completely inactive in supercoiling. Additionally, all the mutants identified through 

analysis of the crystal structure are inactive in both ATPase and supercoiling activity, hence 

we were unable to definitively confirm the binding site at this time. Despite this, we believe 

it probably has incomplete overlap with the aminocoumarin binding pocket. We suggest that 

in the future it would be important to optimise the little supercoiling activity the G83S mutant 



213 

 

presents with to confirm the binding site. Previously this mutant in E. coli (G77S) was 

described to have ATPase activity of 10% of the wild type enzyme, and supercoiling activity 

requiring a 10x increase in protein concentration, as well as, weak complementation of a 

temperature sensitive mutation (Gross et al., 2003). Overall, this suggests that it is likely that 

we should be able to confirm the binding site in the future. Due to the challenges we faced 

with the SPR experiments we do not propose to use this method to confirm the binding site in 

the future. 

 

Overall, we suggest that these compounds are unlikely to advance towards clinical trials in the 

future due to concerns with toxicity, spontaneous resistance due to the mechanism of action, 

and their poor solubility. Regardless of these concerns, these compounds show some promise 

and it may be possible to optimise them further to alleviate some of these problems. 

Additionally, if this is not possible there may be potential to develop these compounds for 

alternative uses in the future instead, such as anticancer drugs targeting human topo IIα if it 

was proved that they also inhibit this enzyme. Likewise, with the presence of DNA gyrase in 

plants these compounds may be useful as herbicides in the future (Wall et al., 2004). 

 

6.4 Structural studies on mycobacterial DNA gyrase 

In the scope of the work presented here, we were unable to solve the full-length high-

resolution structure of mycobacterial DNA gyrase as we were unable to determine conditions 

that enabled the growth of protein crystals. Furthermore, due to the lack of availability we 

were unable to perform cryoEM studies on these proteins either. From the limited 

crystallisation attempts that were made with both the Mtb and Mth fusion proteins it is clear 

that there are many variables of which only a few have been fully explored and that another 

ten years could easily be spent attempting to generate a crystal. Therefore, we propose that 

with the recent improvements to cryoEM technology in recent years (reviewed in (Renaud et 

al., 2018)), that although DNA gyrase is relatively small and likely only has a two-fold 

symmetry axis, it is an exciting candidate for use within this growing technique. However, it 

has already been shown that DNA gyrase is not an optimal candidate for cryoEM and that the 

addition of DNA is important in stabilising the enzyme (Papillon et al., 2013). This leads us 

to suggest that in future structural studies (crystallography and cryoEM) that a DNA fragment 

capable of wrapping the C-terminal domains and a non-hydrolysable ATP analogue such as 

AMP-PNP should be included in the conditions. Overall, we acknowledge that the 

crystallisation conditions trialled in the scope of this project were not extensive, and that 

further trials should be investigated in an attempt to determine the full-length high-resolution 
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structure of mycobacterial DNA gyrase via X-ray crystallography alongside optimisations 

using cryoEM. 

 

In contrast with the unsuccessful structural studies of the full-length enzyme, we had increased 

success in generating new structures of the ATPase domain of mycobacterial DNA gyrase. 

Two of these structures were bound to the known inhibitor of novobiocin, which were solved 

at superior resolution to the previously available structures (Lewis et al., 1996, Holdgate et 

al., 1997, Tsai et al., 1997). These structures confirmed our current knowledge of the sub-

ATPase domain and the novobiocin binding site. In addition, we solved the structure of the 

sub-ATPase domain bound to the novel compound Redx03863 confirming the 

crystallographic binding site of the TriBE compounds (Tari et al., 2013a), however, in the 

absence of an active resistance mutant we are unable to confirm this model. Unfortunately, 

we were unable to co-crystallise Redx04739 in either of the GyrB24 sub-ATPase domain 

constructs due to its low solubility, confirming it to be unlikely to progress further towards 

clinical trials. 

 

6.5 Are we closer to a new antimycobacterial drug? 

The biggest goal of this project was to head closer to generating a new antimycobacterial agent 

that will help to save millions more patients with the goal of ending epidemic tuberculosis by 

2030, which forms part of goal 3 of the sustainable development goals (WHO, 2017). 

However, we acknowledge that our part in this long-term goal is very small and has not yielded 

a new drug. We have however, ventured into lesser explored chemistries including those from 

the naphthoquinones and the pyrrolopyrimidine TriBE inhibitors. Although neither of these is 

likely to progress beyond laboratory testing, they have provided useful advancements in our 

knowledge of mycobacterial DNA gyrase beyond the immediate compounds, which can be 

used in future experiments and drug discovery efforts. These include the discovery that 

reliable and measurable ATPase rates can be obtained from M. tuberculosis DNA gyrase using 

the fusion construct; a crystallisable construct that yields reproducible crystals of the sub-

ATPase domain from M. thermoresistibile; and the adaption of several bacteriology 

techniques to determine inhibition of the slow growing M. smegmatis. Finally, we have also 

worked to perform initial characterisations on M. thermoresistibile DNA gyrase which we 

strongly believe will help in the search for a full-length high-resolution structure of DNA 

gyrase in the future. 
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