
Data Mining and Knowledge Discovery manuscript No.
(will be inserted by the editor)

A probabilistic classifier ensemble weighting scheme
based on cross-validated accuracy estimates.

James Large and Jason Lines and
Anthony Bagnall

the date of receipt and acceptance should be inserted later

Abstract Our hypothesis is that building ensembles of small sets of strong
classifiers constructed with different learning algorithms is, on average, the
best approach to classification for real world problems. We propose a simple
mechanism for building small heterogeneous ensembles based on exponentially
weighting the probability estimates of the base classifiers with an estimate of the
accuracy formed through cross-validation on the train data. We demonstrate
through extensive experimentation that, given the same small set of base
classifiers, this method has measurable benefits over commonly used alternative
weighting, selection or meta classifier approaches to heterogeneous ensembles.
We also show how an ensemble of five well known, fast classifiers can produce
an ensemble that is not significantly worse than large homogeneous ensembles
and tuned individual classifiers on datasets from the UCI archive. We provide
evidence that the performance of the Cross-validation Accuracy Weighted
Probabilistic Ensemble (CAWPE) generalises to a completely separate set of
datasets, the UCR time series classification archive, and we also demonstrate
that our ensemble technique can significantly improve the state-of-the-art
classifier for this problem domain. We investigate the performance in more detail,
and find that the improvement is most marked in problems with smaller train
sets. We perform a sensitivity analysis and an ablation study to demonstrate
the robustness of the ensemble and the significant contribution of each design
element of the classifier. We conclude that it is, on average, better to ensemble
strong classifiers with a weighting scheme rather than perform extensive tuning
and that CAWPE is a sensible starting point for combining classifiers.

{james.large, j.lines, ajb}@uea.ac.uk
School of Computing Sciences
University of East Anglia
United Kingdom

2 James Large and Jason Lines and Anthony Bagnall

1 Introduction

Investigation into the properties and characteristics of classification algorithms
forms a significant component of all research in machine learning. Broadly
speaking, there are three families of algorithms that could claim to be state of
the art: support vector machines; multilayer perceptrons/deep learning; and tree
based ensembles. Nevertheless, there are still good reasons, such as scalability
and interpretability, to use simpler classifiers such as decision trees. Thousands
of publications have considered variants of these algorithms on a huge range of
problems and scenarios. Sophisticated theories into performance under idealised
conditions have been developed and tailored models for specific domains have
achieved impressive results. However, data mining is an intrinsically practical
exercise and our interest is in answering the following question: if we have a
new classification problem or set of problems, what family of models should
we use given our computational constraints? This interest has arisen from
our work in the domain of time series classification [2] and through working
with many industrial partners, but we cannot find an acceptable answer in the
literature. Large-scale comparative studies of classifiers attempt to give some
indication (for example [13]), but most people make the decision for pragmatic
or dogmatic reasons.

Our first hypothesis is that, in the absence of specific domain knowledge,
it is in fact better to ensemble classifiers from different families rather than
intensify computational efforts into selecting and optimising a specific type. Our
second hypothesis is that the best way of combining a small number of effective
classifiers is to combine their probability outputs, weighted by an accuracy
estimate derived through cross-validation on the training data, raised to the
power four to magnify differences in competence. We call this weighting scheme
the Cross-validation Accuracy Weighted Probabilistic Ensemble (CAWPE).
The algorithm has the benefit of being very simple and easy to implement,
trivially parallelisable, incremental (in that new classifiers can be added to
the ensemble in constant time) and, on average, provides state-of-the-art
performance. We support the last claim with a series of experiments on two data
archives containing over 200 datasets using over twenty different classification
algorithms. We compare classifiers on unseen data based on the quality of
the decision rule (using classification error and balanced classification error to
account for class imbalance), the ability to rank cases (with the area under
the receiver operator characteristic curve) and the probability estimates (using
negative log likelihood).

The algorithms we compare against can be grouped into three classes:
heterogeneous ensembles; homogeneous ensembles; and tuned classifiers. The
first of these classes is in direct competition with our approach, while the latter
two are examples of attempts to improve individual types of classifiers.

The heterogeneous ensemble algorithms most similar to our approach
involve alternative weighting schemes [22], ensemble selection algorithms [8]
and stacking techniques [12]. We compare CAWPE to nine variants of these
heterogeneous ensembles that all use the same base classifiers and the same

A probabilistic classifier ensemble weighting scheme 3

estimate of accuracy found through train set cross-validation. We demonstrate
that CAWPE provides a small, but significant, improvement on all of them.

To put the performance of CAWPE in a wider context we also compare it
to homogeneous ensembles and tuned single classifiers. We choose classifiers
to compare against from among those often considered to be state of the art:
random forest; support vector machines; neural networks; and boosting forests.
Using data derived from the UCI archive, we find that a small ensemble of
five untuned simple classifiers (logistic regression, C4.5, linear support vector
machine, nearest neighbour classifier and a single hidden layer perceptron)
combined using CAWPE is not significantly worse than either state-of-the-art
untuned homogeneous ensembles, nor tuned random forest, support vector
machine, multilayer perceptron and gradient boosting classifiers.

To avoid and correct for any danger of dataset bias, we repeat the core
experiments on a completely separate repository, the UCR archive of time
series classification problems [4], and draw the same conclusions. We show that
the CAWPE scheme can provide a small, but significant, improvement to the
current state-of-the-art time series classification algorithm.

We then address the question as to why CAWPE does so well. We compare
CAWPE to choosing the best classifier and find that the CAWPE approach
is significantly better. It is most effective for data with small train set size.
CAWPE consists of four key design components: using heterogeneous classifiers;
combining probability estimates instead of predictions; weighting these proba-
bilities by an estimate of the quality of the classifier found on the train data;
and increasing the differences of these weights by raising them to the power α,
the single parameter of the classifier. On their own, none of these components
are novel. Our contribution is to demonstrate that when used together, the
whole is greater than the sum of the parts. To demonstrate this we perform an
ablation study for the last three design components of CAWPE and show that
each element contributes to the improved performance. We perform a sensitivity
analysis for the parameter α and show that CAWPE is robust to changes to
this parameter, but that the default value of α = 4 we decided on a priori
and use in all experiments may be improved with tuning. The exponentiation
through the parameter α allows for the amplification of small differences in
accuracy estimates. This facilitates base classifiers that show a clear affinity to
a given problem to provide a larger contribution to the ensemble while still
allowing it to be overruled when enough of the other base classifiers disagree. It
provides a mechanism to balance exploiting information found from the train
data (through high α) and mitigating for potential variance in the accuracy
estimate (through lower α).

In summary, the remainder of this paper is structured as follows. Section 2
provides a brief background into ensemble classifiers, concentrating on the
algorithms most similar to CAWPE. Section 3 describes the CAWPE classifier
and motivates the design decisions made in its definition. Section 4 describes our
experimental design, the datasets used, and the evaluation procedure. Section 5
contains our assessment of the CAWPE classifier. We compare CAWPE to its
components (5.1), other heterogeneous ensemble schemes (5.2), homogeneous

4 James Large and Jason Lines and Anthony Bagnall

ensemble schemes (5.3), and tuned state-of-the-art classifiers (5.4) on 121 UCI
datasets. We also present a reproduction study of the performance gain between
CAWPE and its base classifiers on the UCR time series classification datasets
(5.5), and compares its performance to the standard benchmark classifier in
that domain. Section 6 provides a deeper analysis into the CAWPE scheme.
We explore the differences in performance between combining a set of classifiers
with CAWPE and picking the best of them based on the train set of any
given dataset (6.1). To better understand the nature of the improvements, we
also carry out an ablation study that builds up from simple majority voting
to CAWPE (6.2), and perform a sensitivity analysis of CAWPE’s parameter,
α (6.3). Finally, we conclude in Section 7. Our conclusion is that it is, on
average, better to ensemble the probability estimates of strong classifiers with
a weighting scheme based on cross-validated estimates of accuracy than expend
resources on a large amount of tuning of a single classifier and that the CAWPE
scheme means that classifiers can be incrementally added to the ensemble with
very little extra computational cost.

2 Background

We use the following notation. A dataset D of size n is a set of attribute
vectors with an associated observation of a class variable (the response), D =
{(x1, y1), . . . , (xn, yn)}, where the class variable has c possible values, y ∈
{1, . . . , c} and we assume there are m attributes, xi = {xi,1, . . . , xi,m}. A
learning algorithm L, takes a training dataset Dr and constructs a classifier or
model M . To avoid any ambiguity, we stress that all model selection, parameter
tuning and/or model fitting that may occur with any classifier are conducted
on the train set, which may or may not require nested cross-validation. The
final model M produced by L by training on Dr is evaluated on a test dataset
De. A classifier M is a mapping from the space of possible attribute vectors
to the space of possible probability distributions over the c valid values of
the class variable, M(x) = p̂, where p̂ = {p̂(y = 1|M,x), . . . , p̂(y = c|M,x)}.
Given p̂, the estimate of the response is simply the value with the maximum
probability.

ŷ = arg max
i∈{1,...,c}

p̂(y = i|M,x).

An ensemble E is a collection of classifiers E = {M1, . . . ,Mk} built by a
set of (possibly identical) learning algorithms L = {L1, . . . , Lk} which train
on (possibly different) train data D = {D1, . . . , Dk}. An ensemble algorithm
involves defining the learning algorithms L, the data D used by each learning
algorithm to produce the models E and a mechanism for combining the output
of the k models for a new case into a single probability distribution or a single
prediction.

Key concepts in ensemble design are the necessity to inject diversity into
the ensemble [11,26,18,20] and how to combine the outputs of the models, be
that through some form of voting scheme [22] or meta-classification [38]. An

A probabilistic classifier ensemble weighting scheme 5

ensemble needs to have classifiers that are good at estimating the response in
areas of the attribute space that do not overlap too much. That being said,
there is no single precise definition or measure of diversity accepted throughout
the literature, with dozens of different candidates having been proposed [23,32].
Further, it has been argued that diversity is a necessary but not itself sufficient
condition of a strong ensemble [24], with conditions of minimal performance of
the base classifiers and suitable combination methods playing a role. Broadly
speaking, diversity can be engineered by either changing the training data
or training scheme for each of a set of the same base classifier to form a
homogeneous ensemble or by employing different classification algorithms to
train each base classifier, forming a heterogeneous ensemble.

2.1 Heterogeneous Ensembles

Heterogeneous ensemble design focuses on how to use the output of the base clas-
sifiers to form a prediction for a new case. i.e., given k predictions {ŷ1, . . . , ŷk}
or k probability distributions {p̂1, . . . , p̂k}, how to produce a single prediction
ŷ or probability distribution p̂. There are three core approaches: define a
weighting function on the model output (weighting schemes); select a subset of
the models and ignore other output (ensemble selection schemes); or build a
model on the training output of the models (stacking) [30].

2.1.1 Weighting Schemes

The family of techniques most similar to our approach are weighted combination
schemes, which estimate a weight wj for each base classifier and then apply it
to their predictions. Base classifier predictions multiplied by some weight are
summed,

si =

k∑
j=1

wj · d(i, ŷj)

where

d(a, b) =

{
1, if a == b

0, otherwise

then the class with the highest weighted prediction is chosen

ŷ = arg max
i∈{1,...,c}

si.

Based on the framework described in [22], we concentrate on four weighting
schemes, which are described as following on from one another when relaxing
assumptions about base classifiers’ performance.

1. Majority vote (MV): wj = 1 for all base classifiers.

6 James Large and Jason Lines and Anthony Bagnall

2. Weighted majority vote (WMV): wj is set as an estimate of the accuracy
of the base classifier found on the train data.

3. Recall (RC): Rather than a single weight wj , a separate weight is assigned
to each class wi,j . This weight is set to be the proportion of cases correct
for that class on the training data (the true positive rate/recall/sensitivity).

4. Naive Bayes Combiner (NBC). The Naive Bayes combiner uses the condi-
tional distributions to form an overall distribution, assuming conditional
independence.

p̂(y = i|{ŷ1, . . . , ŷk}) = p̂(y = i|ŷ1) · p̂(y = i|ŷ2), . . . , p̂(y = i|ŷk)

where the probability estimates are derived directly from the train cross-
validation confusion matrix. The final prediction is the index of the maxi-
mum probability.

2.1.2 Ensemble Selection

A popular approach is to use a heuristic to select a subset of classifiers. Also
referred to as an overproduce and choose strategy or ensemble pruning, it
was initially proposed for ensembles of diverse neural networks [27], but later
became generalised to other classifier types [19]. The approach became known
to a wider audience after the landmark paper [8], which describes the algorithm
we implement and call ensemble selection (ES).

Given a set of base classifiers, ES uses forward selection to progressively
build the ensemble, selecting the classifier at each stage that gives the largest
improvement to the ensemble’s performance, or stopping when no improvement
can be made. This process has a large potential for overfitting, and so this is
mitigated through three strategies: selecting with replacement allows for the
incorporation of good models multiple times, instead of being forced to select
poor models sooner that may by chance improve ensemble performance on the
current set; initialising the ensemble with a subset of the best classifiers in the
pool gives a strong and reasonable start to the process; and lastly, repeating
the selection process multiple times on bagged subsamples of the set of base
classifiers before aggregating into a final ensemble gives the inter-relationships
between different sets of models more chances to be recognised.

2.1.3 Stacking

The third popular approach to building heterogeneous ensembles is stacking [38].
This involves taking the output of the base classifiers on the train data, then
applying another learning algorithm to determine how to best combine the
outputs to predict the class value. Thus the cross-validation on the train data
produces a set of predictions or probabilities for each case from all ensemble
members and a further classifier is then trained on this output. New cases are
classified by first producing the output of the base classifiers, then passing these
outputs to the meta-classifier to form a prediction. The first stacking algorithm

A probabilistic classifier ensemble weighting scheme 7

to gain widespread usage was stacking with multi-response linear regression
(SMLR) [34]. Two extensions to SMLR were proposed in [12]. These were
stacking with multi-response linear regression on extended features (SMLRE)
and stacking with multi-response model trees (SMM5).

2.2 Homogeneous Ensembles

Homogeneous ensemble design focuses more on how to diversify the base
classifiers than on how to combine outputs. Popular homogeneous ensemble
algorithms based on sampling cases or attributes include: Bagging decision
trees [6]; Random Committee, a technique that creates diversity through
randomising the base classifiers, which are a form of random tree; Dagging [33];
Random Forest [7], which combines bootstrap sampling with random attribute
selection to construct a collection of unpruned trees; and Rotation Forest [31],
which involves partitioning the attribute space then transforming in to the
principal components space. Of these, we think it fair to say Random Forest is
by far the most popular. These methods combine outputs through a majority
vote scheme, which assigns an equal weight to the output of each model.

Boosting ensemble algorithms seek diversity through iteratively re-weighting
the training cases and are also very popular. These include AdaBoost (Adaptive
Boosting) [14], which iteratively re-weights based on the training error of the
base classifier; Multiboost [37], a combination of a boosting strategy (similar to
AdaBoost) and Wagging, a Poisson weighted form of Bagging; LogitBoost [16]
which employs a form of additive logistic regression; and gradient boosting
algorithms [15], which have become popular through the performance of recent
incarnations such as XGBoost [9]. Boosting algorithms also produce a weighting
for each classifier in addition to iteratively re-weighting instances. This weight
is usually derived from the the training process of the base classifier, which
may involve regularisation if cross-validation is not used.

3 The Cross-validation accuracy weighted probabilistic ensemble
(CAWPE)

The key features that define the weighting scheme we propose in the context of
other commonly used weighting schemes such as those described above are that,
firstly, we weight with accuracy estimated through cross-validation instead of
a single hold-out validation set, secondly, we extenuate differences in accuracy
estimates by raising each estimate to the power of α and thirdly, we weight the
probability outputs of the base classifiers instead of the predictions. To clarify,
prediction weighting takes just the prediction from each member classifier,

p̂(y = i|E,x) ∝
k∑

j=1

wjd(i, ŷj)

8 James Large and Jason Lines and Anthony Bagnall

whereas probability weighting weights the distribution each classifier produces,

p̂(y = i|E,x) ∝
k∑

j=1

wj p̂j(y = i|Mj ,x). (1)

Figure 1 gives an overview of the components of CAWPE that make it different
to majority voting.

Test Instance
(actual class = 1)

Classifier A

Train: 0.8

Prob Class 1 0.48

Prob Class 2 0.52

Prediction 2

Majority Vote

Class 1 Class 2

1 + 1 =
2

1 + 1 + 1 =
3

(0.4) (0.6)
Classifier B

Train: 0.5

Prob Class 1 0.3

Prob Class 2 0.7

Prediction 2

Classifier C

Train: 0.75

Prob Class 1 0.3

Prob Class 2 0.7

Prediction 2

Classifier D

Train: 0.6

Prob Class 1 0.7

Prob Class 2 0.3

Prediction 1

Classifier E

Train: 0.9

Prob Class 1 0.9

Prob Class 2 0.1

Prediction 1

Class 1 Class 2

0.6 + 0.9 =
1.5

0.8 + 0.5 + 0.75 =
2.05

(0.42) (0.58)

Proportional
Votes

Weighted
Probabilities

(α = 1)

Class 1 Class 2

0.8*0.48 +
0.5*0.3 +

0.75*0.3 +
0.6*0.7 +
0.9*0.9 =

1.99

0.8*0.52 +
0.5*0.7 +

0.75*0.7 +
0.6*0.3 +
0.9*0.1 =

1.56

(0.56) (0.44)

Weighted
Probabilities

(α = 4)

Class 1 Class 2

0.84*0.48 +
0.54*0.3 +

0.754*0.3 +
0.64*0.7 +
0.94*0.9 =

0.99

0.84*0.52 +
0.54*0.7 +

0.754*0.7 +
0.64*0.3 +
0.94*0.1 =

0.58

(0.63) (0.37)

Ensemble
Predictions

2

2

1

1

Fig. 1 Illustration of the different effects of combination and weighting schemes on a toy
instance classification. Each stage progressively pushes the predicted class probabilities
further in the correct direction for this prediction.

Our approach is based on the idea of building a smaller number of effective
classifiers and combining the output rather than learning a huge number of
weak classifiers. The rationale for using the probability estimates rather than
the predictions is that they will contain more information than a point estimate,
and with fewer classifiers we need to capture all information available. With 500
base classifiers the voting mechanism is less important than with 5 classifiers,
since averaging over 500 votes is likely to have lower variance than averaging
over 5 votes.

The construction of the CAWPE ensemble involves estimating the classi-
fication accuracy of each base classifier on the train data through a ten-fold
cross-validation, then constructing a model of each base classifier on the whole
train data. Classifying a new case, described in Algorithm 1 and Equation 1,
requires obtaining a probability estimate of each class from all the base classi-
fiers, weighting these by the cross-validation accuracy raised to the power α
(the only parameter of the approach), then either normalising if probability

A probabilistic classifier ensemble weighting scheme 9

Algorithm 1 CAWPE classify(A test case x)
Output: prediction for case x
1: Given a set of classifiers < M1, . . . ,Mk >, an exponent α, a set of weights wi, and the

number of classes c
2: {p̂1, . . . , p̂c} = {0, . . . , 0}
3: for i← 1 to k do
4: for j ← 1 to c do
5: q̂j ← p̂((y = j|Mi,x)
6: p̂j ← p̂j + wαi · q̂j

return arg maxj=1...c p̂j

estimates are required or returning the index of the maximum probability if a
prediction is needed.

As α increases, the weightings of classifiers found to be stronger on the
training data relative to the rest are increased, until the ensemble becomes
functionally identical to the single best classifier in training. Conversely, when
alpha is 0 all members will be equally weighted. Therefore, on a high level, the
α parameter defines the degree to which the base classifiers’ error estimates
should be trusted in guiding the ensemble’s output. Set α too high, and all but
the best classifier’s outputs are diminished. Set α too low, and the competitive
advantage that the best individual is estimating it has is potentially wasted.
The quality of the error estimate is key to this process, of course, thus the use
of cross-validation as opposed to single validation set, for example, as used in
a number of previous works [21].

The optimal value of α will therefore allow the strongest classifiers to
steer the ensemble, but enable them be overruled when sufficiently outvoted.
This value will be dependent on the relative performances and distribution
of probabilistic output of the base classifiers on the given dataset. To keep in
line with the general ethos of simplicity, we remove the need to tune α and
potentially overfit it by fixing α to 4 for all experiments and all component
structures presented. We chose the value 4 fairly arbitrarily as a sensible
starting point before running any experiments. In Section 6 we revisit the
importance of the α parameter and whether it could benefit from tuning, as
well other design decisions we have made.

4 Experimental Design

The UCI dataset archive1 is widely used in the machine learning and data
mining literature. An extensive evaluation of 179 classifiers on 121 datasets
from the UCI archive, including different implementations of notionally the
same classifier, was performed by [13]. It is worth mentioning there have
been several problems identified with the experimental procedure used in this
study (see [35] for a critique). Firstly, some algorithms were tuned, others
were used with the built in default parameters, which are often poor. For

1 http://archive.ics.uci.edu/ml/index.php

10 James Large and Jason Lines and Anthony Bagnall

example, random forest in Weka defaults to 10 trees. Secondly, for some of the
tuned algorithms, there was an overlap between validation and test datasets,
which will have introduced bias. Thirdly, the data were formatted to contain
only real valued attributes, with the categorical attributes in some data sets
being naively converted to real values. We retain this formatting in order to
maintain consistency with previous research but this may bias against certain
types of classifier. Comparisons between heterogeneous ensembles should be
entirely unaffected, since they are all built on the same base classifier prediction
information. We have no prior belief as to the impact of the formatting on
other base classifiers and in order to avoid any suggestion of a priori bias, we
use the exact same 121 datasets. A summary of the data is provided in Table 5
in the Appendix.

The UCR archive is a continually growing collection of real valued time
series classification (TSC) datasets2. A recent study [2] implemented 18 state-
of-the-art TSC classifiers within a common framework and evaluated them
on 85 datasets in the archive. The best performing algorithm, the Collective
of Transformation-based Ensembles (COTE), was a heterogeneous ensemble
of strong classifiers. These results were our primary motivation for further
exploring heterogeneous ensembles for classification problems in general.

We aim to use this data to test the generality of some of the core results
obtained on the UCI archive, serving as an independent collection of data with
entirely different characteristics and separate from the problems with the UCI
data described previously. A summary of this data is provided in Table 5 in
the Appendix.

Experiments are conducted by averaging over 30 stratified resamples. Data,
results and code can all be found at the accompanying website for this re-
search3. For the UCI data, 50% of the data is taken for training, 50% for testing.
Therefore there is no overlap in train or test data as previously observed by [35]
and the data can be used in a similar manner to [36] without introducing bias.
The UCR archive provides a default train/test split. We perform resamples
using the number of train and test cases defined in these default splits. We
always compare classifiers on the same resamples, and these can be exactly
reproduced with the published code. Resample creation is deterministic and
can be reproduced using the method
Experiments.sampleDataset(directory,datasetName,foldID), or alterna-
tively the initial train/test split and all resampled folds can be downloaded.
This means we can compare two classifiers with paired two sample tests, such as
Wilcoxon signed-rank test. For comparing two classifiers on multiple datasets
we compare either the number of datasets where there is a significant difference
over resamples, or we can do a pairwise comparison of the average errors over
all resamples. All code is available and open source. The experiments can be re-
produced (see class vector classifiers.CAWPE). In the course of experiments
we have generated gigabytes of prediction information and results. These are

2 http://www.timeseriesclassification.com
3 http://www.timeseriesclassification.com/CAWPE.php

A probabilistic classifier ensemble weighting scheme 11

available in raw format and in summary spreadsheets. For comparing multiple
classifiers on multiple datasets, we follow the recommendation of Demšar [10]
and use the Friedmann test to determine if there are any statistically signif-
icant differences in the rankings of the classifiers. However, following recent
recommendations in [5] and [17], we have abandoned the Nemenyi post-hoc
test originally used by [10] to form cliques (groups of classifiers within which
there is no significant difference in ranks). Instead, we compare all classifiers
with pairwise Wilcoxon signed-rank tests, and form cliques using the Holm cor-
rection (which adjusts family-wise error less conservatively than a Bonferonni
adjustment).

We assess classifier performance by four statistics of the predictions and
the probability estimates. Predictive power is assessed by test set error and
balanced test set error. The quality of the probability estimates is measured
with the negative log likelihood (NLL). The ability to rank predictions is
estimated by the area under the receiver operator characteristic curve (AUC).
For problems with two classes, we treat the minority class as a positive outcome.
For multiclass problems, we calculate the AUC for each class and weight it by
the class frequency in the train data, as recommended in [28].

5 Results

We demonstrate the benefits of the CAWPE scheme through a sequence of
experiments to address the following questions:

– Does CAWPE improve heterogeneous base classifiers (Section 5.1)?
– Is CAWPE better on average than alternative heterogeneous ensemble

schemes all using the same base classifiers and error estimates (Section 5.2)?
– Is CAWPE better on average than homogeneous ensembles (Section 5.3)?
– How does CAWPE compare to tuned versions of classifiers commonly

considered state of the art (Section 5.4)?
– Do the results generalise to other data (Section 5.5)?

Throughout, we make the associated point that CAWPE is significantly
better than its components when they are approximately equivalent. CAWPE
has a single parameter, α, which is set to the default value of 4 for all exper-
iments. We stress that we perform no tuning of CAWPE’s parameter α: it
simply combines classifier output using the algorithm described in Algorithm 1.
We investigate the sensitivity of CAWPE to α in Section 6.3.

We present results in this section through critical difference diagrams which
display average rankings. A full list of the average scores for each classifier is
provided in Table 6 in the Appendix, while further spreadsheets are available
on the accompanying website.

12 James Large and Jason Lines and Anthony Bagnall

5.1 Does CAWPE improve heterogeneous base classifiers?

Ensembling multiple classifiers inherently involves more work than using any
single one of them. As a basic sanity check, we assess whether applying CAWPE
to a random set of classifiers improves performance. We randomly sampled 5
out of 22 classifiers available in Weka and constructed CAWPE on top of them.
Over 200 random configurations, CAWPE was significantly more accurate than
the individual component with the best average rank on 143 (71.5%), and
insignificantly more accurate on a further 34 (17%), over the 121 UCI datasets.
CAWPE was never significantly worse than the best individual component.
Note that many of these sets contain components that are significantly different,
with average accuracies across the archive ranging between 81.4% and 62.7%.

To avoid confusion as to the components of any CAWPE instantiation,
we continue the evaluation with two sets of base classifiers. The first, simpler
set contains well known classifiers that are fast to build. These are: logistic
regression (Logistic); C4.5 decision tree (C4.5); linear support vector machine
(SVML); nearest neighbour classifier (NN); and a multilayer perceptron with a
single hidden layer (MLP1). These classifiers are each distinct in their method
of modelling the data, and are roughly equivalent in performance. We call this
version CAWPE-S.

The second set of five classifiers are more complex, and generally considered
more accurate than the previous set. These are: random forest (RandF);
rotation forest (RotF); a quadratic support vector machine (SVMQ); a multi
layer perceptron implementation with two hidden layers (MLP2); and extreme
gradient boosting (XGBoost). We call CAWPE built on this second set of
advanced classifiers CAWPE-A.

In Figure 2 we compare CAWPE-A and CAWPE-S against their respective
base classifiers in terms of accuracy. In both cases, CAWPE is significantly
better than all components. CAWPE also significantly improves of all the base
components in terms of balanced accuracy, AUROC, and log likelihood.

6 5 4 3 2 1

1.7314 CAWPE-S
3.6281 MLP1
3.6488 NN3.7149SVML

4.0992C4.5
4.1777Logistic

6 5 4 3 2 1

1.8306 CAWPE-A
3.2851 RandF
3.4752 RotF3.6405XGBoost

4.1736MLP2
4.595SVMQ

Fig. 2 Critical difference diagrams CAWPE-S with its base classifiers (left), and CAWPE-A
with its base classifiers (right). Ranks formed on test set accuracy averaged over 30 resamples.

The improvement is not particularly surprising for CAWPE-S, since the
benefits of ensembling weaker learners are well known. It is perhaps more
noteworthy, however, that learners often considered state-of-the-art such as
random forest, rotation forest and XGBoost, are improved by inclusion in

A probabilistic classifier ensemble weighting scheme 13

the CAWPE-A ensemble. This improvement is achieved at a computational
cost. The CAWPE scheme will require more computation than using a single
classifier, since a cross-validation procedure is required for each base classifier.
If a ten-fold cross-validation is used, as we do in all our experiments, CAWPE
requires approximately 50 times longer to train than the average training
time of its five base classifiers. In terms of time taken to predict a new test
case, CAWPE simply needs five times the average prediction time of the base
classifiers. We have experimentally verified this is the case, but exclude results
for brevity (see the associated webpage). This constant time overhead is easy
to mitigate against: it is trivial to distribute CAWPE’s base classifiers and
even the cross-validation for each classifier can easily be parallelised.

5.2 Is CAWPE better on average than alternative heterogeneous ensemble
schemes?

We compare the particular weighting scheme used in CAWPE to well known
alternatives. We compare CAWPE-S and CAWPE-A to the weighting, selec-
tion and stacking approaches described in Section 2. In each comparison, all
ensembles use the same set of base classifiers, so the only source of variation is
the ensemble scheme. Algorithms such as ensemble selection were originally
described as using a single validation set to assess models. However, cross-
validation will on average give a better estimate of the true error than a single
hold-out validation set [21]. Given that CAWPE uses cross-validation error
estimates and that these estimates are already available to us, we also use these
for all ensembles. Hence, we are purely testing the ability of the ensembles to
combine predictions with exactly the same meta-information available.

Figure 3 shows the summary ranks of ten heterogeneous ensembles built
on the simpler classifier set on the 121 UCI datasets using four performance
metrics. CAWPE-S is highest ranked for error and in the top clique for both
error and balanced error. It is significantly better than all other approaches
for AUC and NLL. It has significantly lower error than all but SMLR, and
significantly lower balanced error than all but NBC.

Figure 4 shows the summary ranks of the same ten heterogeneous ensembles
on the 121 UCI datasets using the more advanced classifiers. The pattern of
results is very similar to those for the simple classifiers. CAWPE-A is top ranked
for error and in a clique with majority vote and weighted majority vote. For
balanced error, it is not significantly different to NBC and is significantly better
than the others. For both AUC and NLL, it is significantly better than all the
other methods. Considering the results for both CAWPE-S and CAWPE-A, it
is apparent that the CAWPE scheme is more consistent than other approaches,
since it is the only algorithm in the top clique for all measures for both sets of
classifiers. We think this suggests that the CAWPE scheme on this data is the
best heterogeneous ensemble technique, at least for the simple and advanced
component sets studied.

14 James Large and Jason Lines and Anthony Bagnall

10 9 8 7 6 5 4 3 2 1

4.124 CAWPE-S
4.5496 SMLR-S
4.9628 WMV-S
5.1446 SMM5-S
5.1736 NBC-S5.2438ES-S

5.4959MV-S
5.8595RC-S
6.4504SMLRE-S
7.9959PB-S

10 9 8 7 6 5 4 3 2 1

4.0124 NBC-S
4.062 CAWPE-S

4.9256 SMLR-S
5.0826 WMV-S
5.3843 ES-S5.4008SMM5-S

5.6198MV-S
6.1653SMLRE-S
7.1446PB-S
7.2025RC-S

(a) Error (b) Balanced Error

10 9 8 7 6 5 4 3 2 1

1.438 CAWPE-S
3.9959 NBC-S
4.7603 PB-S
5.1529 WMV-S
5.7934 RC-S6.2893ES-S

6.595SMM5-S
6.624SMLR-S
6.8099MV-S
7.5413SMLRE-S

10 9 8 7 6 5 4 3 2 1

2.7273 CAWPE-S
4.1694 WMV-S
4.8843 ES-S
4.9959 MV-S
5.6818 RC-S5.8347SMM5-S

5.8678PB-S
6.3512SMLR-S
6.7727NBC-S
7.7149SMLRE-S

(c) AUC (d) NLL

Fig. 3 Critical difference diagrams for ten heterogeneous ensemble classifiers on 121 UCI
data built using logistic, C4.5, SVML, NN and MLP1 base classifiers. The weighted ensembles
are: Majority Vote (MV); Weighted Majority Vote (WMV); Recall (RC); Naive Bayes (NBC)
and our scheme (CAWPE). The selection ensembles are: Pick Best (PB); and Ensemble
Selection (ES). The stacking schemes are: stacking with multi-response linear regression
(SMLR); stacking with multi-response linear regression on extended features (SMLRE); and
stacking with multi-response model trees (SMM5).

10 9 8 7 6 5 4 3 2 1

3.9876 CAWPE-A
4.438 WMV-A

4.8884 MV-A
5.0083 ES-A
5.2025 SMLR-A5.2355NBC-A

5.3017RC-A
6.3223SMM5-A
7.0992SMLRE-A
7.5165PB-A

10 9 8 7 6 5 4 3 2 1

3.7521 NBC-A
3.8926 CAWPE-A
5.1488 WMV-A
5.157 SMLR-A

5.3058 ES-A5.5248MV-A
6.0041SMM5-A
6.5289SMLRE-A
6.6612PB-A
7.0248RC-A

(a) Error (b) Balanced Error

10 9 8 7 6 5 4 3 2 1

1.3554 CAWPE-A
2.6529 PB-A
4.6612 NBC-A
5.4669 WMV-A
6.0248 RC-A6.5248SMM5-A

6.657SMLR-A
6.814ES-A
7.0083MV-A
7.8347SMLRE-A

10 9 8 7 6 5 4 3 2 1

2.8595 CAWPE-A
3.7769 WMV-A
4.4876 MV-A
4.9091 PB-A
5.0992 ES-A5.3967RC-A

6.1694SMM5-A
6.6488SMLR-A
7.4917NBC-A
8.1612SMLRE-A

(c) AUC (d) NLL

Fig. 4 Critical difference diagrams for ten heterogeneous ensemble classifiers on 121 UCI
data built using Random Forest (RandF), Rotation Forest (RotF), Support Vector Machine
with a quadratic kernel (SVMQ), a two layer multilayer perceptron (MLP2) and extreme
gradient boosting (XGBoost) base classifiers.

A probabilistic classifier ensemble weighting scheme 15

Given the ensembles are using the same base classifiers and accompanying
error estimates, and these are all good classifiers in their own right, we would
expect the actual differences in average error to be small, and this is indeed
the case (see Table 6 in Appendix). Nevertheless, the weighting scheme used
in CAWPE is significantly better than nearly all the other methods using the
four metrics.

In conclusion, CAWPE makes sets of approximately equivalent classifiers
significantly better, and is competitive with or generally better than commonly
used weighting, selection and stacking schemes when the number of classifiers
is small. Given how simple CAWPE is, we believe it is a sensible starting point
for any attempt at combining small numbers of base classifiers on an arbitrary
problem. The question then is, should you heterogeneously ensemble at all, or
rather should you focus efforts into improving a single model?

5.3 Is CAWPE better on average than homogeneous ensembles?

We examine how CAWPE-S compares to five homogeneous ensembles that each
employ 500 duplicates of the same base classifier. CAWPE-A, which includes
RandF and XGBoost in its base classifier set, is significantly better on all four
performance metrics than both them and all the homogeneous ensembles evalu-
ated here (see Figure 2, the results are available on the accompanying website).
However, this improvement requires roughly 50 times the computational effort
of XGBoost or Random Forest alone. We are more interested in assessing how
the simpler and faster CAWPE-S compares with homogeneous ensembles.

6 5 4 3 2 1

2.5661 CAWPE-S
2.6116 RandF
2.8512 XGBoost3.6033Bagging

4.2562LogitBoost
5.1116AdaBoost

6 5 4 3 2 1

2.5496 CAWPE-S
2.6074 XGBoost
2.6529 RandF4.0992LogitBoost

4.2686Bagging
4.8223AdaBoost

(a) Error (b) Balanced Error

6 5 4 3 2 1

2.2231 RandF
2.7149 CAWPE-S
2.7438 XGBoost3.1777Bagging

4.8512LogitBoost
5.2893AdaBoost

6 5 4 3 2 1

2.438 RandF
2.4711 CAWPE-S
3.1488 Bagging3.405XGBoost

4.2975LogitBoost
5.2397AdaBoost

(c) AUC (d) NLL

Fig. 5 Critical difference diagrams for CAWPE (built using logistic, C4.5, SVML, NN and
MLP1 base classifiers) against 5 homogeneous ensemble classifiers on 121 UCI data.

Figure 5 shows the results of five ensembles each with 500 base classifiers
and CAWPE-S. We observe that CAWPE-S is significantly more accurate
than AdaBoost, LogitBoost and Bagging, and not significantly worse than

16 James Large and Jason Lines and Anthony Bagnall

Table 1 Summaries of train times for CAWPE-S and the homogeneous ensembles. All times
are in seconds, and are averaged across the 121 UCI data.

Classifier CAWPE-S LogitBoost RandF XGBoost Bagging AdaBoost
Mean 524.9 302.2 111.9 46.8 22.7 7.8

Median 13.7 8.9 6.9 2.1 0.7 0.06

Random Forest and XGBoost. With minimal effort using standard classifiers we
have produced an ensemble that is not significantly worse than state-of-the-art
homogeneous ensembles.

Table 1 summarises the train times of CAWPE-S and the homogeneous
ensembles in seconds. CAWPE on this simpler component set has a much larger
mean train time than RandF and XGBoost. This largely comes down to the
logistic regression component, which takes a relatively much longer amount
of time on datasets with larger numbers of classes. The median times are
closer, however XGBoost especially still achieves predictive performance not
significantly different to that of CAWPE-S in much shorter times on average.

These timings should be interpreted with the understanding that XGBoost
is a highly optimised library, while the logistic and MLP1 implementations
in particular are relatively straight forward and unoptimised implementations
in Java. The fact that CAWPE-S has a median train time within the same
order of magnitude as XGBoost while not being significantly less accurate is,
we think, a positive result.

5.4 How does CAWPE compare to tuned classifiers?

In Section 5.1 we showed the ensemble scheme outperforms its set of base
classifiers. However, finding the weights requires an order of magnitude more
work than building a single classifier because of the ten fold cross-validation
across the different components. Given it is widely accepted that tuning pa-
rameters on the train data can significantly improve classifier accuracy [1],
perhaps a carefully tuned classifier will do as well as or better than CAWPE
built on untuned classifiers. To investigate whether this is the case, we tune an
SVM with a radial basis function kernel (SVMRBF), XGBoost, MLP and a
random forest and compare the results to CAWPE-S and CAWPE-A. We tune
by performing a ten-fold cross-validation on each train resample for a large
number of possible parameter values, described in Table 2. This requires a huge
computational effort. We can distribute resamples and parameter combinations
over a reasonably sized cluster. Even so, considerable computation is required;
we were unable to complete a full parameter search for 4 datasets (within a 7
day limit): adult; chess-kvrk; miniboone; and magic. To avoid bias, we perform
this analysis without these results.

Figure 6 compares CAWPE-S and CAWPE-A to tuned versions of MLP,
XGBoost, RandF and SVM. On average, CAWPE-S, containing the five simpler
untuned base classifiers (Logistic, C4.5, SVML, NN and MLP1), is significantly

A probabilistic classifier ensemble weighting scheme 17

Table 2 Tuning parameter ranges for SVMRBF, Random forest, MLP and XGBoost. c is
the number of classes and m the number of attributes

Classifier Parameter Range
SVMRBF Regularisation C (33 values) {2−16, 2−15, . . . , 216}
1089 variance γ (33 values) {2−16, 2−15, . . . , 216}
combinations
Random Forest number of trees (10 values) {10, 100, 200, . . . , 900}
1000 feature subset size (10 values) {

√
m, (log2m+ 1),m/10, . . . ,m/3}

combinations max tree depth (10 values) {0,m/9,m/8 . . . ,m}
MLP hidden layers (2 values) {1, 2}

nodes per layer (4 values) {c,m,m+ c, (m+ c)/2}
learning rate (8 values) {1, 1/2, 1/4, . . . , 1/(27)}

1024 momentum (8 values) {0, 1/8, 2/8, . . . , 7/8}
combinations decay (2 values) {true, false}
XGBoost number of trees (5 values) {50, 100, 250, 500, 1000}

learning rate (5 values) {0.01, 0.05, 0.1, 0.2, 0.3}
625 max tree depth (5 values) {2, 4, 6, 8, 10}
combinations min child weight (5 values) {1, 3, 5, 7, 9}

5 4 3 2 1

2.547 CAWPE-S
2.7051 TunedSVM
2.7436 TunedRandF

2.9615TunedXGBoost
4.0427TunedMLP

5 4 3 2 1

1.9017 CAWPE-A
2.8034 TunedSVM
2.9915 TunedRandF

3.2222TunedXGBoost
4.0812TunedMLP

(a) (b)

Fig. 6 Average ranked errors for (a) CAWPE-S and (b) CAWPE-A against four tuned
classifiers on 117 datasets in the UCI archive. The datasets adult, chess-krvk, miniboone
and magic are omitted due to computational restraints.

better than the tuned MLP and not significantly worse than tuned versions of
XGBoost, SVMRBF and Random Forest (Figure 6(a)). The highest ranked
tuned classifier is SVM, but it is still ranked lower than CAWPE-S. This despite
the fact that CAWPE-S is two orders of magnitude faster than the tuned SVM
and at least one order of magnitude faster than tuned Random Forest, MLP
and XGBoost. Sequential execution of CAWPE-S for miniboone (including all
internal cross-validation to find the weights) is 5 hours. For TunedSVM, ten-fold
cross-validation on 1089 different parameter combinations gives 10890 models
trained for each resample of each dataset. For the slowest dataset (miniboone),
sequential execution would have taken more than 6 months. Of course, such
extensive tuning may not be necessary. However, the amount and exact method
of tuning to perform is in itself very hard to determine. Our observation is that
using simple approach such as CAWPE-S avoids the problem of guessing how
much to tune completely.

If we use CAWPE-A, containing the more advanced components (RandF,
RotF, SVMQ, MLP2 and XGBoost), we get a classifier that is significantly
more accurate than any of the individuals (Figure 6(b)). CAWPE-A takes
significantly longer to train than CAWPE-S, but it is still not slower on average
than the tuned classifiers. We are not claiming that CAWPE-A is significantly

18 James Large and Jason Lines and Anthony Bagnall

faster than tuning a base classifier in the general case, because this is obviously
dependent on the tuning strategy. CAWPE-A involves a ten fold cross-validation
of five classifiers, so it is going to be comparable in run time to one of these
single classifiers tuned over 50 parameter settings. However, our experiments
demonstrate that tuning a single base learner over a much larger parameter
space does not result in as strong of a model, on average.

Our goal is not to propose a particular set of classifiers that should be used
with CAWPE. Rather, we maintain that if one has some set of classifiers they
wish to apply to problem, ensembling them using CAWPE is generally at least
as strong as other heterogeneous ensemble schemes when we have a relatively
small number of base classifiers, that it significantly improves base classifiers
that are approximately equally strong, and that the degree of improvement
is such that state-of-the-art level results can be achieved with minimal effort.
Once a classifier is trained and the results are stored, ensembling is very quick.
To perhaps belabour the point, we ensembled the four tuned classifiers using the
parameter ranges given in Table 2 and the resulting classifier was significantly
better than the components in a manner reflecting the patterns observed in
Section 5.1.

5.5 Does the CAWPE performance generalise to other datasets?

Our interest in heterogeneous ensembles originated in time series classification
(TSC) problems, where we ensemble over different representations of the data in
a style similar to CAWPE [25]. TSC involves problems where the attributes are
ordered (not necessarily in time) and all real valued. The UCR repository for
TSC contains problems from a wide range of domains such as classifying image
outlines, EEG and spectrographs. There are currently 85 datasets, with diverse
data characteristics. A full list of the 85 datasets is listed in the Appendix in
Table 5.

Traditionally, dynamic time warping distance (with window size set through
cross-validation) [29] with a 1-nearest neighbour classifier (referred to as just
DTW henceforth) has been considered the benchmark algorithm for this type
of problem. In recent years, a range of bespoke algorithms have been proposed
in high impact journals and conferences. The experimental evaluation in [2]
found that of 18 such algorithms, only 13 were significantly better (in terms of
accuracy) than DTW.

Our goal is to test how well the results observed for CAWPE on the UCI
data generalise to other data. We test whether CAWPE significantly improves
basic components UCR data. To do so, we ignore the ordering of the series
and treat each time step in the series as a feature for traditional vector-based
classification. The UCR datasets generally have many more features than the
UCI data. This has meant we have had to make one change to CAWPE-S: we
remove logistic regression because it cannot feasibly be built on many of the
data. Since DTW is a 1-nearest neighbour classifier, it always produces 0/1

A probabilistic classifier ensemble weighting scheme 19

probability estimates. Because of this, we omit a probabilistic evaluation using
AUC and NLL, as it has little meaning for DTW.

6 5 4 3 2 1

2.0235 CAWPE-S
2.5529 DTW
3.3647 MLP13.4118NN

4.3294SVML
5.3176C4.5

7 6 5 4 3 2 1

2.0529 CAWPE-A
3.4588 DTW
3.5529 RandF
4.2118 RotF

4.6588MLP2
5.0176SVMQ
5.0471XGBoost

(a) (b)

Fig. 7 Average ranked errors for DTW against (a) CAWPE-S and its components and (b)
CAWPE-A and its components on the 85 datasets in the UCR archive.

Figure 7 shows the critical difference diagrams for accuracy of CAWPE-
S, CAWPE-A, their respective constituents, and DTW. Both sets of base
classifiers are significantly improved by CAWPE once more. These results
closely mirror those on the UCI datasets presented above. Furthermore, neither
of the CAWPE versions are significantly worse than DTW and both have higher
average rank. This should be considered in the context that neither classifier
takes advantage of any information in the ordering of attributes. Despite this,
CAWPE-A has a higher average rank than 9 of the 18 bespoke time series
classification algorithms evaluated in [2], and is not significantly worse than
11 of them. CAWPE, a simple ensemble using off the shelf components and a
simple weighting scheme, has been made as accurate as complex algorithms
that use a range of complicated techniques such as forming bags of patterns,
using edit distance based similarity, differential based distances, compression
techniques and decision trees based on short subseries features.

Using standard classifiers for TSC is unlikely to be the best approach. The
best performing TSC algorithm in [2], significantly more accurate than all the
others, was the Collective of Transformation-based Ensembles (COTE) [3]. It
has components built on different representations of the data. COTE uses an
ensemble structure that is the progenitor of CAWPE. The latest version of
COTE, HIVE-COTE [25] uses weighted majority voting for five modularised
classifier components defined on shapelet, elastic distance, power spectrum, bag-
of-words and interval based representations, and is significantly more accurate
than the previous version, flat-COTE, and all of the competing algorithms.
HIVE-COTE exploits the diversity of the representations through an ensemble
scheme. We address the question of whether CAWPE is the best ensemble
scheme for HIVE-COTE.

Figure 8 shows how HIVE-COTE performs when we incrementally add in
the CAWPE combination scheme methods. The left most version, weighted
majority vote, is the classifier used in [25]. Raising the weight to the power of
four significantly reduces error. Switching to using probabilities is significantly
better than either weighted voting scheme. Using CAWPE (probs, a=4 in
Figure 8) is significantly better than all variants. It is not just a matter of tiny

20 James Large and Jason Lines and Anthony Bagnall

improvements in accuracy improving the ranks. The overall mean accuracy over
all problems for HIVE-COTE using CAWPE is 87.16%, whereas the accuracy
reported in [25] using WMV is 85.97%. An overall improvement of over 1% for
such a simple change is hugely valuable. For context, the average accuracy of
DTW is 77.7%.

4 3 2 1

1.4647 HIVE-COTE(probs,a=4)
2.1471 HIVE-COTE(probs,a=1)2.9647HIVE-COTE(vote,a=4)

3.4235HIVE-COTE(vote,a=1)

Fig. 8 Average ranked errors for 4 variants of HIVE-COTE on the UCR datasets.

6 Analysis

We perform a more in-depth analysis of results to determine whether there are
any patterns in the results that indicate when and why CAWPE performs well.
We compare various facets of performance against choosing the best component
on any given dataset (Section 6.1). We then perform an ablative study of
CAWPE (Section 6.2), and a sensitivity study of its parameter, α (Section 6.3).

6.1 CAWPE vs Pick Best Exploratory Analysis

Given CAWPE ensembles based on estimates of accuracy obtained from the
train data and gives increasingly larger weights to the better classifiers, it seems
reasonable to ask, why not just choose the single classifier with the highest
estimate of accuracy? Figure 3 demonstrated that it is on average significantly
worse choosing a single classifier than using the CAWPE ensembles. When
comparing algorithms over entire archives, we get a good sense of those which
are better for general purpose classification. However, differences in aggregated
ranks do not tell the whole story of differences between classifiers. It could be
the case that CAWPE is just more consistent that its components: it could be
a jack of all trades ensemble that achieves a high ranking most of the time,
but is usually beaten by one or more of its components. A more interesting
improvement is an ensemble that consistently achieves higher accuracy than all
of its components. For this to happen, the act of ensembling needs to not only
cover for the weaknesses of the classifiers when in their suboptimal domains,
but accentuate their strengths when within their specialisation too. Figure 9
shows the scatter plots of accuracy for choosing the best base classifier from
their respective component sets against using CAWPE. This demonstrates that
CAWPE has higher accuracy than Pick Best on the majority of problems, and
that the differences are not tiny.

A probabilistic classifier ensemble weighting scheme 21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CAWPE-S ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
B

-S
 A

C
C

PB-S
is better here

CAWPE-S
is better here

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CAWPE-A ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
B

-A
 A

C
C

PB-A
is better here

CAWPE-A
is better here

(a) (b)

Fig. 9 Accuracy of (a) CAWPE-S and (b) CAWPE-A vs picking the best component.

0

10

20

30

40

50

60

CAWPE-S MLP1 NN SVML C4.5 Logistic

Da
ta

se
t O

cc
ur

en
ce

s

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6

0

10

20

30

40

50

60

CAWPE-A RandF RotF XGBoost MLP2 SVMQ

D
at

as
et

 O
cc

ur
en

ce
s

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6

(a) (b)

Fig. 10 Histograms of accuracy rankings over the 121 UCI datasets for (a) CAWPE-S and
(b) CAWPE-A and their respective components.

Figure 10 shows the counts of the rankings achieved by CAWPE built on
the simpler (a) and advanced (b) components, in terms of accuracy, over the
121 UCI datasets. CAWPE is the single best classifier far more often than any
of its components, and is in fact more often the best classifier than second best.
Both versions of CAWPE are never ranked fifth or sixth, and very rarely ranked
fourth, demonstrating the consistency of the improvement. This suggests that
the simple combination scheme used in CAWPE is able to actively enhance
the predictions of its locally specialised members, rather than just achieve a
consistently good rank.

For clarity we restrict further analysis to the CAWPE-S results. Comparable
results for CAWPE-A are available on the accompanying website.

Comparing overall performance of classifiers is obviously desirable; it ad-
dresses the general question: given no other information, what classifier should
I use? However, we do have further information. We know the number of train
cases, the number of attributes and the number of classes. Does any of this
information indicate scenarios where CAWPE is gaining an advantage? The

22 James Large and Jason Lines and Anthony Bagnall

Table 3 CAWPE-S vs pick best split by train set size. The three datasets with the same
average error have been removed (acute-inflammation, acute-nephritis and breast-cancer-
wisc-diag). If there is a significant difference within a group (tested using a Wilcoxon sign
rank test) the row is in bold.

#Train Cases #Problems #CAWPE-S WINS Mean Error Difference
1-100 28 21 1.49%

101-500 46 36 0.71%
501-1000 12 11 1.51%
1001-5000 23 11 0.16%
>5001 9 2 0.02%

most obvious factor is train set size, since picking the best classifier based on
train estimates is likely to be less reliable with small train sets.

Table 3 breaks down the results of CAWPE-S compared to Pick Best by
train set size. With under 1000 train cases, CAWPE-S is clearly superior. With
1000-5000 cases, there is little difference. With over 5000 cases, CAWPE-S is
better on just 2 of 9 problems, but there is only a tiny difference in error. This
would indicate that if one has over 5000 cases then there may be little benefit in
using CAWPE-S, although it is unlikely to be detrimental and leads to better
estimates of the error on unseen cases. Analysis shows there is no detectable
significant effect of number of attributes. For the number of classes, there is a
benefit for CAWPE-S on problems with more than 5 classes. CAWPE-S wins
on 62% of problems with five or fewer classes (53 out of 85) and wins on 85%
of problems with 6 or more (28 out of 33). This is not unexpected, as a large
number of classes means fewer cases per class, which is likely to introduce more
noise into the estimate of error.

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 20 40 60 80 100 120

P
ic

k
B

es
t

Er
ro

r
-

C
A

W
P

E
Er

ro
r

Ordered Dataset ID

No Pairwise Diff (57)
CAWPE Signif. Better (46)
Pick Best Signif. Better (18)

Fig. 11 The difference in average errors in increasing order between CAWPE-S and picking
the best classifier on each dataset. Significant differences according to paired t-tests over
folds are also reported. CAWPE-S is significantly more accurate on 46, the best individual
classifier on 18, and there is no significant difference on 57.

A probabilistic classifier ensemble weighting scheme 23

Despite using the same classification algorithms, not all of the differences
between pick best and -S are small in magnitude. Figure 11 shows the ordered
differences between the two approaches. The largest difference in favour of
CAWPE-S (averaged over 30 folds) is 4.42% (on the arrhythmia dataset) and
in favour of pick best 4.5% (on energy-y1). This demonstrates the importance
of the selection method for classifiers; it can cause large differences on unseen
data.

This analysis indicates that CAWPE-S is likely to be better approach than
simply picking the best when there is not a large amount of training data, there
are a large number of classes and/or the problem is hard. Overall, CAWPE
requires almost no extra work beyond pick best and yet is more accurate with
no significant bias.

6.2 CAWPE Ablative Study

CAWPE belongs to the family of ensemble schemes broadly categorised as
weighted output combination. We found in Section 5 that both CAWPE-S and
CAWPE-A are significantly better than the most common instantiations of
this type of ensemble; majority vote and weighted majority vote. The major
design components of CAWPE are the fact it uses the probabilistic outputs
of its base classifiers and the emphasising of differences in weights by using
α set to 4. Figure 8 has already shown that that both of these factors result
in significant improvement of the TSC algorithm HIVE-COTE. Here we wish
to delve further into the contribution that each factor of CAWPE has on its
performance. For brevity, we perform all analysis using the CAWPE-S set of
simpler classifiers.

6 5 4 3 2 1

2.512 CAWPE(a=4-probs)
3.058 WMC(a=1-probs)
3.475 EWMV(a=4-preds)3.777WMV(a=1-preds)

3.901MC(a=0-probs)
4.277MV(a=0-preds)

6 5 4 3 2 1

2.397 CAWPE(a=4-probs)
2.905 WMC(a=1-probs)
3.62 MC(a=0-probs)3.777EWMV(a=4-preds)

3.979WMV(a=1-preds)
4.322MV(a=0-preds)

(a) ACC (b) BALACC

6 5 4 3 2 1

1.467 CAWPE(a=4-probs)
2.008 WMC(a=1-probs)
2.715 MC(a=0-probs)4.446EWMV(a=4-preds)

4.777WMV(a=1-preds)
5.587MV(a=0-preds)

6 5 4 3 2 1

2.165 CAWPE(a=4-probs)
2.917 WMC(a=1-probs)
3.653 MC(a=0-probs)3.686EWMV(a=4-preds)

4.008WMV(a=1-preds)
4.57MV(a=0-preds)

(c) AUC (d) NLL

Fig. 12 Critical difference diagrams of the stages of progression from a simple majority vote
up to CAWPE, on the 121 datasets of the UCI archive using the CAWPE-S variant.

We split CAWPE based on these two factors, building up from majority vote
to CAWPE: the use of the base classifiers’ probabilities (probs) or predictions

24 James Large and Jason Lines and Anthony Bagnall

(preds); and the extent to which we make use of the base classifiers’ cross-
validation accuracy to weight their contribution: none at all (a=0); standard
weighting (a=1); and extenuated weighting (a=4). Figure 12 details the results
of a comparison between all combinations of these factors. To better ground
these results in the context of the previous comparison to other heterogeneous
ensembles in general in Section 5.2, we reuse and define new labels relevant to
combinations of these factors of weighted output combination. These are: Ma-
jority Vote (MV: a=0,preds); Majority Confidence (MC: a=0,probs); Weighted
Majority Vote (WMV: a=1,preds); Weighted Majority Confidence (WMC:
a=1,probs); Exponentially Weighted Majority Vote (EWMV: a=4,preds); and
finally Exponentially Weighted Majority Confidence (CAWPE: a=4, probs).

These diagrams confirm some suspicions. Firstly, for equal values of α,
it is always better to use probabilities instead of predictions. For AUC and
NLL, the performance metrics most relevant to probabilistic output, the use of
probabilities is better even regardless of the value of α. Secondly, the use of a
weighting scheme, and then further increasing the value of α to 4 also always
provides improvement on average.

The improvement from increasing α to 4 is consistent, too, providing in
some instances surprising improvements in absolute accuracy. When directly
comparing CAWPE (α=4, probs) to WMC (α=1, probs), CAWPE wins on 86
datasets and loses on 28. The largest reduction in error was 4.49% on the flags
dataset, with the largest increase in error being 1.65% on plant-shape.

Figure 13 displays scatter plots to demonstrate these findings. Against
differences in error between CAWPE and WMC, it plots a four dataset charac-
teristics: the number of instances; number of attributes; number of classes; and
class imbalance. For this purpose, the class imbalance of a dataset is informally
calculated as the average difference between each class’ actual proportional
representation in the dataset, and its expected value, 1/c. These confirm visu-
ally that there is no obvious relationship between the improvement α provides
and any of these characteristics.

6.3 CAWPE sensitivity analysis

Section 6.2 has shown that exaggerating the weights of classifiers using α
gives a significant increase in performance over standard weighted averaging of
probabilities, even with all else being equal. As stated at the end of Section 3, the
value of α was fixed to 4 for CAWPE for all experiments reported throughout
the previous sections. This value was decided on while developing HIVE-COTE.
Having performed our experiments with α = 4, we were interested to find out
how sensitive the performance of CAWPE is to this single parameter.

Figure 14 depicts what happens if we fix α to progressively higher values
over both dataset archives and both base classifier sets used throughout, the
basic set (Logistic, C4.5, SVML, NN and MLP1) and the advanced set (RandF,
RotF, SVMQ, MLP2 and XGBoost). To keep everything on the same scale
and to appropriately highlight the actual differences in accuracy, the average

A probabilistic classifier ensemble weighting scheme 25

R² = 0.002

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

1 10 100 1000 10000 100000 1000000

R² = 0.0062

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

1 10 100 1000

(a) Number of Instances (b) Number of Attributes

R² = 0.0098

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

1 10 100

R² = 0.01

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 0.1 0.2 0.3 0.4 0.5

(c) Number of Classes (d) Average Class Imbalance

Fig. 13 Four plots of the difference in error between CAWPE (α=4,probs) and WMC
(α=1,probs), against different dataset characteristics. Above zero CAWPE wins, below zero
WMC wins. Trend represented by solid black line, R2 reported in top-right corner.

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
iff

er
en

ce
 in

 a
cc

ur
ac

y
to

 α
=0

α

UCI:train
UCI:test
UCR:train
UCR:test

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
iff

er
en

ce
 in

 a
cc

ur
ac

y
to

 α
=0

α

UCI-train
UCI-test
UCR-train
UCR-test

(a) CAWPE-S (b) CAWPE-A

Fig. 14 Mean train (squares) and test (triangles) accuracies over the 121 UCI (dashed line)
and 85 UCR (solid line) datasets as the alpha parameter changes, expressed as the difference
to equal weighting (α=0).

accuracy of each α value is expressed as the difference between itself and using
α = 0, i.e. no weighting of the base classifiers. Even across the two different
archives and base classifier sets, the test performances of different values of α
show a fairly consistent pattern, rising steadily until around five to seven before
tapering off or eventually falling again. Ultimately as α tends to infinity, we
know that the ensemble becomes equivalent to picking the best individual, at

26 James Large and Jason Lines and Anthony Bagnall

which point the line has fallen far below 0 on these graphs. While not included
for the sake of space and clarity, the results for the other three test statistics
(balanced error, AUC, and NLL) follow an effectively identical pattern.

These results give us an understanding of the surprisingly consistent prop-
erties of α overall. However, given some particular set of base classifiers, their
relative performances and ability to estimate their own performance on the
training set could vary to different extents depending on the individual dataset
provided. As such, the amount that we want to extenuate the differences
between the classifier could change from dataset to dataset. It is therefore
natural to wonder whether the alpha parameter could be tuned. To do this in
a completely fair and unbiased way, we would need to perform a further nested
level of cross-validation. However, we can find a much faster (but possibly
biased) estimate of the ensemble’s error by using exactly the same folds as the
base classifiers once more, and simply recombining their predictions.

3 2 1

1.7025 CAWPE(ConTie)
1.8595 CAWPE(alpha=4)

2.438CAWPE(RandTie)

3 2 1

1.8529 CAWPE(alpha=4)
1.9176 CAWPE(ConTie)

2.2294CAWPE(RandTie)

(a) CAWPE-S, UCI (b) CAWPE-S, UCR

3 2 1

1.7562 CAWPE(alpha=4)
1.9959 CAWPE(ConTie)

2.2479CAWPE(RandTie)

3 2 1

1.6706 CAWPE(alpha=4)
1.9176 CAWPE(ConTie)

2.4118CAWPE(RandTie)

(c) CAWPE-A, UCI (d) CAWPE-A, UCR

Fig. 15 Critical difference diagrams over test error of CAWPE on the UCI and UCR archives
as it stands (alpha=4), and against two tuning schemes for the alpha parameter: resolving
ties in error estimates randomly (RandTie); and conservatively picking the lowest alpha
amongst the ties (ConTie).

However, as Figure 15 shows, tuning alpha over the range {0,1,. . . 15,∞}
appears to offer little to no benefit when doing so with simple and sensible
tuning rules such as picking the α with the best accuracy estimate, and resolving
ties (which can be quite common in this scenario) either randomly (RandTie)
or conservatively, by choosing the smallest tied value of α (ConTie). ConTie
tends towards more evenly averaging the base classifier’s outputs, both to
counteract any potential overfitting by the base classifiers and, as shown in
Figure 14, the tendency for higher values of α to increasingly lead to higher
estimates of the ensemble’s own performance incorrectly.

One could imagine many more complex tuning schemes potentially having
a positive effect, such as sticking to the default value of 4, and only deviating
if another value significantly improves accuracy over the cross-validation folds.
However, considering both this analysis of α and the findings of the previous
section, and remembering our initial guiding principle of simplicity, we believe
we can reasonably fall back to fixing the value of α.

A probabilistic classifier ensemble weighting scheme 27

7 Conclusions

The key message of this paper is simple: forming heterogeneous ensembles of
approximately equivalent classifiers produces on average a significantly better
classifier (in terms of error, ordering and probability estimates) than a wide
range of potential base classifiers, and when we use a weighted probabilistic
combination mechanism simple classifier ensembles can be at least as good
as homogeneous ensembles, heterogeneous ensembles or tuned classifiers. The
CAWPE method we propose is significantly better than many equivalent
methods and, if the number of classifiers being ensembled is relatively small,
represents a sensible starting point. CAWPE is quick, simple and easy to
understand. The CAWPE of five simple untuned classifiers is not significantly
worse than heavily tuned support vector machines, multilayer perceptron,
random forest and XGBoost. CAWPE is significantly better than similar
heterogeneous schemes based on predictions rather than probabilities. Clearly,
CAWPE is not always the best approach, but given the short time it takes to
build the simple classifiers we have used to test it, it seems a sensible starting
point.

CAWPE has limitations or areas where it is untested. Firstly, as the train
set size increases, the value in ensembling, as opposed to just picking the
best, reduces. However, picking best rather than ensembling requires a similar
amount of work, and ensembling is unlikely to make things worse. Secondly,
with a larger pool of classifiers, it may be better to select a subset rather
than use all classifiers using some ES type algorithm. We have not tested this,
because unless we choose the overproduce and select methodology of including
multiple copies of the same learning algorithm, there are not that many learning
algorithms that would be considered equivalent. Our approach is to use fewer
very different base classifiers, then combine their output in a way that retains
the maximum information. Thirdly, it may well be possible that advanced
classifiers such as boosting, deep learning and support vector machines can be
designed to beat CAWPE, but if this is the case it is not trivial, as we have
shown. Finally, the data we have used has only continuous attributes. We made
this decision based on the fact that we wanted to extend previous research
and because we come to this problem from time series classification, where
all data is real valued. It may be that the variation in classifier performance
on nominal data is such that the ensembling does not benefit. However, given
that CAWPE is classifier neutral, it seems unlikely that the pattern of results
would be much different.

Ultimately we hope to drive a better understanding of what classifier to
use for a new problem and how best to use it. With current technology, our
conclusion is that, rather than expend extra computational time tuning a single
classifier, it is better to ensemble different classifiers from different families of
algorithms, and that the best way of doing this is to weight the probability
estimates from each base classifier with an exponentiated accuracy estimate
derived from the train data.

28 James Large and Jason Lines and Anthony Bagnall

Acknowledgements

This work is supported by the UK Engineering and Physical Sciences Research
Council (EPSRC) [grant number EP/M015807/1] and the Biotechnology and
Biological Sciences Research Council (BBSRC) Norwich Research Park Bio-
sciences Doctoral Training Partnership [grant number BB/M011216/1]. The
experiments were carried out on the High Performance Computing Cluster
supported by the Research and Specialist Computing Support service at the
University of East Anglia and using a Titan X Pascal donated by the NVIDIA
Corporation.

References

1. A. Bagnall and G. Cawley. On the use of default parameter settings in the empirical
evaluation of classification algorithms. ArXiv e-prints, 2017.

2. A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances. Data Mining and Knowledge Discovery, 31(3):606–660, 2017.

3. A. Bagnall, J. Lines, J. Hills, and A. Bostrom. Time-series classification with COTE:
The collective of transformation-based ensembles. IEEE Transactions on Knowledge
and Data Engineering, 27:2522–2535, 2015.

4. A. Bagnall, J. Lines, and E. Keogh. The UEA UCR time series classification archive.
http://timeseriesclassification.com, 2018.

5. A. Benavoli, G. Corani, and F. Mangili. Should we really use post-hoc tests based on
mean-ranks? Journal of Machine Learning Research, 17:1–10, 2016.

6. L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
7. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
8. R. Caruana and A. Niculescu-Mizil. Ensemble selection from libraries of models. In

Proc. of the 21st International Conference on Machine learning, 2004.
9. T. Chen. XGBoost: A Scalable Tree Boosting System. In Proc. 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2016.
10. J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of

Machine Learning Research, 7:1–30, 2006.
11. T. Dietterich. An experimental comparison of three methods for constructing ensembles

of decision trees: bagging, boosting, and randomization. Machine learning, 40(2):139–157,
2000.

12. S. Džeroski and B. Ženko. Is combining classifiers with stacking better than selecting
the best one? Machine Learning, 54(3):255–273, 2004.

13. M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hundreds
of classifiers to solve real world classification problems? Journal of Machine Learning
Research, 15:3133–3181, 2014.

14. Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In Proc.
International Conference on Machine Learning, volume 96, pages 148–156, 1996.

15. J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of
Statistics, pages 1189–1232, 2001.

16. J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view
of boosting. Technical report, Stanford University, 1998.

17. S. Garćıa and F. Herrera. An extension on statistical comparisons of classifiers over
multiple data sets for all pairwise comparisons. Journal of Machine Learning Research,
9:2677–2694, 2008.

18. P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomised trees. Machine Learning,
63(1):3–42, 2006.

19. G. Giacinto and F. Roli. An Approach to the automatic design of multiple classifier
systems. Pattern Recognition Letters, 22(1):25–33, 2001.

A probabilistic classifier ensemble weighting scheme 29

20. L. Hansen and P. Salamo. Neural network ensembles. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(10):993–1001, 1990.

21. R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In Proc. 14th International Joint Conference on Artificial Intelligence, pages
1137–1143. Morgan Kaufmann Publishers Inc., 1995.

22. L. Kuncheva and J. Rodŕıguez. A weighted voting framework for classifiers ensembles.
Knowledge and Information Systems, 38(2):259–275, 2014.

23. L. Kuncheva and C. Whitaker. Measures of diversity in classifier ensembles and their
relationship with the ensemble accuracy. Machine Learning, 51(2):181–207, 2003.

24. G. Fumera L. Didaci and F. Roli. Diversity in classifier ensembles: Fertile concept or
dead end? In International Workshop on Multiple Classifier Systems, pages 37–48.
Springer, 2013.

25. J. Lines, S. Taylor, and A. Bagnall. HIVE-COTE: The hierarchical vote collective of
transformation-based ensembles for time series classification. In Proc. IEEE International
Conference on Data Mining, 2016.

26. D. Opitz and R. Maclin. Popular ensemble methods: an empirical study. Journal of
Artificial Intelligence Research, 11:169–198, 1999.

27. D. Partridge and W. Yates. Engineering multiversion neural-net systems. Neural
Computation, 8(4):869–93, 1996.

28. F. Provost and P. Domingos. Tree induction for probability-based ranking. Machine
Learning, 52(3):199–215, 2003.

29. C. Ratanamahatana and E. Keogh. Three myths about dynamic time warping data
mining. In Proc. 5th SIAM International Conference on Data Mining, 2005.

30. M. Re and G. Valentini. Ensemble methods: a review. Data Mining and Machine
Learning for Astronomical Applications, 2011.

31. J. Rodriguez, L. Kuncheva, and C. Alonso. Rotation forest: A new classifier ensemble
method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):1619–
1630, 2006.

32. K. Tang, P. Suganthan, and X. Yao. An analysis of diversity measures. Machine Learning,
65(1):247–271, 2006.

33. K. Ting and I. Witten. Stacking bagged and dagged models. In Proc. 14th International
Conference on Machine Learning, pages 367–375, 1997.

34. K. Ting and I. Witten. Issues in stacked generalization. Journal of Artificial Intelligence
Research, 10:271–289, 1999.

35. M. Wainberg, B. Alipanahi, and B. Frey. Are random forests truly the best classifiers?
Journal of Machine Learning Research, 17:1–5, 2016.

36. J. Wainer and G. Cawley. Empirical evaluation of resampling procedures for optimising
svm hyperparameters. Journal of Machine Learning Research, 18(15):1–35, 2017.

37. G. Webb. Multiboosting: A technique for combining boosting and wagging. Machine
Learning, 40(2):159–196, 2000.

38. H. Wolpert. Stacked Generalization. Neural Networks, 3(2):241–259, 1992.

30 James Large and Jason Lines and Anthony Bagnall

Appendix

Table 4 A full list of the UCI datasets used in the experiments in Section 5. Experiments
were conducted on averages over 30 stratified resamples of each dataset, with 50% of the
data taken for training and 50% for testing. All classifiers were are aligned on the same folds.

Dataset Atts Classes Cases Dataset Atts Classes Cases
abalone 8 3 4177 monks-1 6 2 556

acute-inflammation 6 2 120 monks-2 6 2 601
acute-nephritis 6 2 120 monks-3 6 2 554

adult 14 2 48842 mushroom 21 2 8124
annealing 31 5 898 musk-1 166 2 476

arrhythmia 262 13 452 musk-2 166 2 6598
audiology-std 59 18 196 nursery 8 5 12960
balance-scale 4 3 625 oocytes m nucleus 4d 41 2 1022

balloons 4 2 16 oocytes m states 2f 25 3 1022
bank 16 2 4521 oocytes t nucleus 2f 25 2 912

blood 4 2 748 oocytes t states 5b 32 3 912
breast-cancer 9 2 286 optical 62 10 5620

breast-cancer-w 9 2 699 ozone 72 2 2536
breast-cancer-w-diag 30 2 569 page-blocks 10 5 5473
breast-cancer-w-prog 33 2 198 parkinsons 22 2 195

breast-tissue 9 6 106 pendigits 16 10 10992
car 6 4 1728 pima 8 2 768

cardio-10clases 21 10 2126 pit-bri-MATERIAL 7 3 106
cardio-3clases 21 3 2126 pit-bri-REL-L 7 3 103

chess-krvk 6 18 28056 pit-bri-SPAN 7 3 92
chess-krvkp 36 2 3196 pit-bri-T-OR-D 7 2 102

congressional-voting 16 2 435 pit-bridges-TYPE 7 6 105
conn-bench-sonar... 60 2 208 planning 12 2 182
conn-bench-vowel... 11 11 990 plant-margin 64 100 1600

connect-4 42 2 67557 plant-shape 64 100 1600
contrac 9 3 1473 plant-texture 64 100 1599

credit-approval 15 2 690 post-operative 8 3 90
cylinder-bands 35 2 512 primary-tumor 17 15 330

dermatology 34 6 366 ringnorm 20 2 7400
echocardiogram 10 2 131 seeds 7 3 210

ecoli 7 8 336 semeion 256 10 1593
energy-y1 8 3 768 soybean 35 18 683
energy-y2 8 3 768 spambase 57 2 4601

fertility 9 2 100 spect 22 2 265
flags 28 8 194 spectf 44 2 267
glass 9 6 214 statlog-aus-credit 14 2 690

haberman-survival 3 2 306 statlog-ger-credit 24 2 1000
hayes-roth 3 3 160 statlog-heart 13 2 270

heart-cleveland 13 5 303 statlog-image 18 7 2310
heart-hungarian 12 2 294 statlog-landsat 36 6 6435

heart-switzerland 12 5 123 statlog-shuttle 9 7 58000
heart-va 12 5 200 statlog-vehicle 18 4 846
hepatitis 19 2 155 steel-plates 27 7 1941

hill-valley 100 2 1212 synthetic-control 60 6 600
horse-colic 25 2 368 teaching 5 3 151

ilpd-indian-liver 9 2 583 thyroid 21 3 7200
image-segmentation 18 7 2310 tic-tac-toe 9 2 958

ionosphere 33 2 351 titanic 3 2 2201
iris 4 3 150 trains 29 2 10

led-display 7 10 1000 twonorm 20 2 7400
lenses 4 3 24 vert-col-2clases 6 2 310
letter 16 26 20000 vert-col-3clases 6 3 310
libras 90 15 360 wall-following 24 4 5456

low-res-spect 100 9 531 waveform 21 3 5000
lung-cancer 56 3 32 waveform-noise 40 3 5000

lymphography 18 4 148 wine 13 3 178
magic 10 2 19020 wine-quality-red 11 6 1599

mammographic 5 2 961 wine-quality-white 11 7 4898
miniboone 50 2 130064 yeast 8 10 1484

molec-biol-promoter 57 2 106 zoo 16 7 101
molec-biol-splice 60 3 3190

A probabilistic classifier ensemble weighting scheme 31

Table 5 The 85 UCR time series classification problems used in the experiments for
Section 5.5. Experiments were conducted on averages over 30 stratified resamples of each
dataset and all classifiers were aligned on the same folds. Each UCR dataset has an initial
default train and test partition that was used for the first experiment, and each subsequent
experiment was conducted using resamples of the data that preserve the class distributions
and size of the original training and test partitions.

Dataset Atts Classes Train Test Dataset Atts Classes Train Test
Adiac 176 37 390 391 MedicalImages 99 10 381 760

ArrowHead 251 3 36 175 MidPhalOutAgeGroup 80 3 400 154
Beef 470 5 30 30 MidPhalOutCorrect 80 2 600 291

BeetleFly 512 2 20 20 MiddlePhalanxTW 80 6 399 154
BirdChicken 512 2 20 20 MoteStrain 84 2 20 1252

Car 577 4 60 60 NonInvasiveThorax1 750 42 1800 1965
CBF 128 3 30 900 NonInvasiveThorax2 750 42 1800 1965

ChlorineConcentration 166 3 467 3840 OliveOil 570 4 30 30
CinCECGtorso 1639 4 40 1380 OSULeaf 427 6 200 242

Coffee 286 2 28 28 PhalOutCorrect 80 2 1800 858
Computers 720 2 250 250 Phoneme 1024 39 214 1896

CricketX 300 12 390 390 Plane 144 7 105 105
CricketY 300 12 390 390 ProxPhalOutAgeGroup 80 3 400 205
CricketZ 300 12 390 390 ProxPhalOutCorrect 80 2 600 291

DiatomSizeReduction 345 4 16 306 ProximalPhalanxTW 80 6 400 205
DisPhalOutAgeGroup 80 3 400 139 RefrigerationDevices 720 3 375 375

DisPhalOutCor 80 2 600 276 ScreenType 720 3 375 375
DislPhalTW 80 6 400 139 ShapeletSim 500 2 20 180
Earthquakes 512 2 322 139 ShapesAll 512 60 600 600

ECG200 96 2 100 100 SmallKitchApps 720 3 375 375
ECG5000 140 5 500 4500 SonyAIBORSurface1 70 2 20 601

ECGFiveDays 136 2 23 861 SonyAIBORSurface2 65 2 27 953
ElectricDevices 96 7 8926 7711 StarlightCurves 1024 3 1000 8236

FaceAll 131 14 560 1690 Strawberry 235 2 613 370
FaceFour 350 4 24 88 SwedishLeaf 128 15 500 625

FacesUCR 131 14 200 2050 Symbols 398 6 25 995
FiftyWords 270 50 450 455 SyntheticControl 60 6 300 300

Fish 463 7 175 175 ToeSegmentation1 277 2 40 228
FordA 500 2 3601 1320 ToeSegmentation2 343 2 36 130
FordB 500 2 3636 810 Trace 275 4 100 100

GunPoint 150 2 50 150 TwoLeadECG 82 2 23 1139
Ham 431 2 109 105 TwoPatterns 128 4 1000 4000

HandOutlines 2709 2 1000 370 UWaveAll 945 8 896 3582
Haptics 1092 5 155 308 UWaveX 315 8 896 3582
Herring 512 2 64 64 UWaveY 315 8 896 3582

InlineSkate 1882 7 100 550 UWaveZ 315 8 896 3582
InsectWingbeatSound 256 11 220 1980 Wafer 152 2 1000 6164

ItalyPowerDemand 24 2 67 1029 Wine 234 2 57 54
LargeKitchApps 720 3 375 375 WordSynonyms 270 25 267 638

Lightning2 637 2 60 61 Worms 900 5 181 77
Lightning7 319 7 70 73 WormsTwoClass 900 2 181 77

Mallat 1024 8 55 2345 Yoga 426 2 300 3000
Meat 448 3 60 60

32 James Large and Jason Lines and Anthony Bagnall

Table 6 Raw average scores for error, balanced error, AUC and NLL of the classifiers
referenced throughout Section 5. Scores are averaged over all datasets and resamples of the
UCI and UCR archives respectively, except for the tuned classifiers on the UCI archive which
had the adult, chess-kvrk, miniboone, and magic datasets removed due to computational
restraints.

121 UCI datasets Classifier Sections Error
Balanced

AUC NLL
Error

CAWPE
CAWPE-A 5.1,5.2,5.4 0.174 0.243 0.893 0.651
CAWPE-S 5.1,5.2,5.3,5.4 0.184 0.258 0.884 0.706

Simple components
C4.5 5.1 0.23 0.301 0.736 1.161
Logistic 5.1 0.238 0.309 0.841 8.134
MLP1 5.1 0.213 0.287 0.86 1.297
NN 5.1 0.216 0.303 0.798 1.116
SVML 5.1 0.229 0.306 0.849 1.073

Advanced components
MLP2 5.1 0.204 0.276 0.858 1.26
RandF 5.1,5.3 0.185 0.259 0.886 0.713
RotF 5.1 0.187 0.265 0.868 0.704
XGBoost 5.1,5.3 0.193 0.261 0.876 0.843
SVMQ 5.1 0.216 0.281 0.863 1.454
ES-S 5.2 0.19 0.266 0.813 0.884

Heterogeneous Ensembles, MV-S 5.2 0.195 0.273 0.808 0.877
simple components NBC-S 5.2 0.193 0.26 0.82 0.999

PB-S 5.2 0.229 0.306 0.847 0.95
RC-S 5.2 0.195 0.288 0.811 0.912
SMLR-S 5.2 0.195 0.272 0.737 1.144
SMLRE-S 5.2 0.214 0.288 0.734 1.251
SMM5-S 5.2 0.195 0.271 0.744 1.046
WMV-S 5.2 0.192 0.27 0.814 0.872
ES-A 5.2 0.176 0.246 0.817 0.847

Heterogeneous ensembles, MV-A 5.2 0.176 0.249 0.815 0.833
advanced components NBC-A 5.2 0.183 0.249 0.821 1.031

PB-A 5.2 0.193 0.261 0.876 0.843
RC-A 5.2 0.177 0.262 0.813 0.87
SMLR-A 5.2 0.19 0.263 0.752 1.141
SMLRE-A 5.2 0.203 0.275 0.747 1.232
SMM5-A 5.2 0.188 0.261 0.757 1.019
WMV-A 5.2 0.175 0.248 0.817 0.837
AdaBoost 5.3 0.353 0.469 0.775 3.258

Homogeneous ensembles Bagging 5.3 0.206 0.303 0.868 0.775
(RandF and XGBoost LogitBoost 5.3 0.241 0.302 0.836 8.246
repeated) RandF 5.1,5.3 0.185 0.259 0.886 0.713

XGBoost 5.1,5.3 0.193 0.261 0.876 0.843

Tuned Classifiers
TunedMLP 5.4 0.227 0.318 0.857 1.009
TunedRandF 5.4 0.188 0.271 0.879 0.719
TunedSVM 5.4 0.188 0.255 0.857 0.955

(on 117 UCI datasets)
TunedXGBoost 5.4 0.194 0.267 0.869 0.86
CAWPE-T 5.4 0.175 0.244 0.891 0.653

85 UCR datasets Classifier Sections Error
Balanced

AUC NLL
Error

CAWPE CAWPE-S 5.5 0.241 0.267 0.88 1.071
CAWPE-A 5.5 0.226 0.254 0.903 0.906

DTW DTW 5.5 0.224 0.246 - -

Simple Components
C4.5 5.5 0.36 0.384 0.685 2.168
Logistic 5.5 - - - -
MLP1 5.5 0.275 0.301 0.842 3.323
NN 5.5 0.27 0.301 0.78 1.654
SVML 5.5 0.312 0.337 0.823 4.733

Advanced components
MLP2 5.5 0.276 0.304 0.858 1.538
RandF 5.5 0.245 0.28 0.893 1.036
RotF 5.5 0.251 0.279 0.881 1.019
SVMQ 5.5 0.276 0.295 0.856 5.755
XGBoost 5.5 0.267 0.297 0.881 1.156

