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ABSTRACT 

Multiple myeloma (MM) is the second most common hematologic malignancy in the 

UK, characterised by uncontrolled plasma cell proliferation in the bone marrow (BM). 

Though the survival rate is improving, the MM incidence rate is increasing. Currently, 

MM is still incurable as with time malignant plasma cells inevitably become resistant 

to the currently available drugs. The two primary mechanisms responsible for MM 

relapse are through the MM cell adaptation to the treatment induced stress and through 

the interaction with the BM microenvironment for protection. Thus, investigations of 

the mechanisms of MM cell drug resistance are needed to improve the MM patient 

outcomes. 

 

The aims of this PhD project were to determine: 1) how MM cells escape the 

endoplasmic reticulum (ER) stress induced cell death; 2) how MM cell outsource 

autophagy to the BM microenvironment; 3) how bone marrow stromal cell (BMSC) 

derived NRF2 supports MM proliferation. The results show: 1) primary MM cells 

exhibit high NRF2 expression; 2) high NRF2 expression reduces the ER stress induced 

apoptosis in MM cells; 3) MM cells induce NRF2 upregulation in BMSC; 4) primary 

MM cells outsource autophagy to BMSC; 5) BMSC derived NRF2 supports 

autophagy.    

 

To summarise, this PhD research project has identified mechanisms through which 

MM cells avoid endoplasmic reticulum (ER) stress induced apoptosis and how the 

BMSC-MM interaction support MM cells proliferation. In identifying these 

mechanisms, it is hoped that further work will result in new treatment strategies for 

patients with MM in the future. 
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CHAPTER ONE    

GENERAL INTRODUCTION 
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1.1 Multiple Myeloma (MM) 

It is currently estimated that 240,000 people are living with blood cancer in the UK 

[1]. Multiple myeloma is the second most common blood cancer and accounts for 2% 

of all new cancers diagnosed in the UK in 2015 (5540 new diagnosed MM patients). 

Nearly 1 in 10,000 people will be diagnosed with MM each year. MM incidence rates 

have increased by 32% in the UK since the early 1990s [2]. The median survival rate 

for MM is approximately 5 years and the disease presently remains incurable [2]. Thus, 

studies which lead to new drugs that target MM are necessary to improve outcomes in 

this disease.  

 

MM is an age related disease with approximately two-thirds of patients diagnosed over 

the age of 65 years [3]. MM treatment includes initial therapy, stem cell transplantation, 

consolidation/maintenance therapy, and relapse treatment. However, patients aged 

over 75 cannot receive stem cell transplantation therapy [4]. Thus, the mortality rates 

for MM in the UK are highest in people aged over 85 years of age, which in part 

reflects the challenges of managing older patients with current therapies.   

 

1.1.1 Plasma Cell hierarchy  

MM is a cancer of uncontrolled terminally differentiated plasma cell proliferation, 

which infiltrates and accumulates in the bone marrow (BM) with detectable 

monoclonal protein in the serum or urine [5]. The plasma cell belongs to lymphoid 

lineage cell, which is derived from long term and short-term BM blood stem cell 

(Figure 1.1). The blood stem cell differentiates into a lymphoid stem cell, then 

lymphoid blast. Next, the B cell is matured into plasma cells under stimuli. Various 

mutations in the plasma cells in the BM niche, allows for its transformation into MM 

[6]. 
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Figure 1.1 Haematopoiesis in the BM  

Plasma cells originate from BM blood stem cell. The blood stem cell differentiates 

first into a lymphoid stem cell, then into a lymphoid blast. Next, the B cell is matured 

into plasma cells under local stimuli. 

 

1.1.2 MM Stem Cells  

The exact MM stem cell (MMSC) phenotype is still not fully determined. For 

example, clonotypic B cell have been reported to have more clonogenic potential 

than MM cells and to be able to differentiate into MM cells (Figure1.2) [7]. Though 

whether clonotypic B cells are MMSC is still not clear. Moreover, the clonotypic B 

cell has been reported of responsible for the MM drug resistance [8]. 

 

Thus, the MMSC maybe an attractive model for MM disease relapse. In favour of 

this is the idea that the stem cells are quiescence in nature and thus more resistant 

to chemotherapy. In addition, the cell that causes relapse must be inherently 

chemotherapy resistant. Therefore, this argues that as the drugs designed to target 

MM cells and debunk most of the disease do not target the MMSC, leading to the 

argument that drugs which target MMSC may prevent relapse and allow this disease 

to be a curable one. 
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Figure 1.2 Simplified MM originate.  

B cell is originated from hematopoietic stem cells in the BM and then Pre-B cells enter 

the circulation and mature in lymph node. The plasma blast return to the BM, where 

the malignancy process initiated and proliferate in the BM niche. A small fraction of 

MM cells will enter the circulation and respond for the relapse. Some of the clonotypic 

cells arise from the lymph node also have the potential to differentiate to plasma blast. 

 

1.1.3 Plasma Cell Longevity Regulation 

A plasma cells is derived from terminal differentiated B cells. After, a B cell is 

activated by antigen stimuli and differentiated into short-lived, antibody-secreting 

plasma blasts, part of which migrate into BM niche and develop into long-lived 

plasma cells [9]. Contrary to the 1960’s concept that plasma cells only survive for a 

few days in response for an immune stimuli [10-13], there is now accumulating 

evidence that the plasma cells survive for weeks, months [14-16] or even more than 

10 years without memory B cells [17]. One reported mechanism for plasma cell 

longevity is B lymphocyte-induced maturation protein 1 (Blimp1) linked autophagy 

and endoplasmic reticulum (ER) function for the plasma cell survival. 
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Blimp1 is first identified as a transcriptional repressor targeting c-Myc [18], Pax5 [19], 

CIITA  [20], SpiB and Id3 [21]. Blimp1 silences B cell transcription and leads B cell 

differentiating into plasma cells. Pax5, for example, maintains the identity of mature 

B cells and Blimp1 upregulation suppresses Pax5 and Pax5 targeted genes, which code 

for B cell surface receptors, signal transducer and transcriptional regulators in mature 

B cells. Thus, the Blimp1 upregulation leads to the B cells loss  of identity and its 

transformation into plasma cells [22]. 

 

Blimp1 also been reported as a transcriptional activator and Blimp1 upregulation 

leads to antibody producing in B-lymphoid lineage [23], which lead to the 

expansion of ER. One of the mechanisms is Blimp1 activated mTOR signalling, 

which modulates the protein synthesis or the organelle biogenesis in response to 

stimuli and resulted in enhanced immunoglobulin production [24]. Moreover, 

Blimp-1 enhances the amino acid level to support the antibody production, through 

upregulating carriers, such as CD98, and blocking the inhibitory Sestrin–AMPK (5' 

AMP-activated protein kinase axis)[25]. Through these machineries, Blimp1 

supports the antibody production. Upon antibody production, the endoplasmic 

reticulum (ER) is in stress, as the ER is overloaded with protein for folding, 

processing and exporting, which lead to the unfolded protein response (UPR). The 

process for UPR is to halt protein translation, to degrade misfolded proteins, and to 

activate the chaperones production involved in protein folding. If the UPR could 

not restore cell normal function, then UPR leads the cells toward apoptosis. UPR 

also results in the expansion of ER which covers most of the cell [26]. Together, 

this suggest that Blimp1 regulation affects ER swelling resulting in more antibody 

folding and export from the cell.  

 

It is interesting to note that autophagy, a self-degradative process, blocks the 

Blimp1 role of promoting antibody production in plasma cells, as autophagy 

decreases ER volume and antibody secretion, as well as increase metabolism and 

survival of plasma cells [27]. The above evidence suggests that Blimp1 links 

autophagy and ER function for the plasma cell survival. In 1.7.1, I describe the 

autophagy role in MM survival in details. Overall, Blimp1 mediated plasma cell 

survival is interconnected with autophagy and ER function and ultimately essential 

processes for the maintenance and survival of MM cells. 
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1.1.4 MM Diagnostic Criteria 

Symptomatic MM follows from a progression starting with monoclonal gammopathy 

of undetermined significance (MGUS) through asymptomatic MM and then finally 

symptomatic MM. The International MM Working Group diagnostic criteria for MM 

and the diagnostic criteria for distinguish different types of plasma cell disorder are 

shown below (Table 1.1, Table 1.2). 

 

Table 1.1 International MM Working Group Diagnostic Criteria of MM 

 

The table was extracted from International MM Working Group [28].  

Definition BM clonal plasma cells >10% or biopsy-proven bony or 

extramedullary plasmacytoma and any one of the CRAB features 

and MM-defining events described below 

End organ 

damage  

Hypercalcemia: serum calcium >0.25 mM or >2.75 mM Renal 

insufficiency; creatinine clearance <40 mL/ min or serum 

creatinine >177ML  

Anaemia: haemoglobin value 20 to 100g/L 

Bone lesions: one or more osteolytic lesion (skeletal radiography, 

CT, etc). 

If BM <10% clonal plasma cells, more than one bone lesion is 

required to distinguish from solitary plasmacytoma with minimal 

marrow involvement 

Malignancy 

biomarkers  

>60% clonal plasma cells on BM examination 

Serum involved / uninvolved free light chain ratio >100 

            Involved free light chain: kappa or lambda > normal range 

            Uninvolved free light chain < normal range 

Absolute light chain >100mg/L  

More than one focal lesion on MRI > 5mm.  
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Table 1.2 International MM Working Group Diagnostic Criteria for Related 

Plasma Cell Disorders 

Plasma 

Disorder 

Definition 

Smoldering 

MM 

Serum IgG or IgA >30g /L, urinary monoclonal protein >500mg 

/24h, clonal BM plasma cells 10-60% and no MM or amyloidosis. 

Non-IgM 

MGUS 

Serum monoclonal protein <30g/L, clonal BM plasma cells <10%, 

no end-organ damage (hypercalcemia renal insufficiency, etc.), no 

plasma cell proliferative disorder associated amyloidosis. 

IgM MGUS Serum IgM monoclonal protein <30g/L. No anemia, no 

constitutional symptoms, no hyperviscosity, no lymphadenopathy, 

no hepatosplenomegaly, no plasma cell proliferative disorder 

associated amyloidosis. 

Light chain 

MGUS 

Free light chain ratio >1.65 or <0.26 

No immunoglobulin heavy chain, no end-organ damage, no plasma 

cell proliferative disorder associated amyloidosis, Clonal BM 

plasma cells <10%, urinary monoclonal protein <500mg/24h. 

Solitary 

plasmacytoma 

Solitary lesion or soft tissue of bone with clonal plasma cells, normal 

BM no clonal plasma cells, Spine and pelvis, no end-organ damage, 

no plasma cell proliferative disorder associated amyloidosis. 

Solitary 

plasmacytoma 

minimal BM 

involvement 

Solitary lesion or soft tissue of bone have clonal plasma cells, clonal 

BM plasma cells <10%. Spine and pelvis (exception: primary 

solitary lesion), no end-organ damage, no plasma cell proliferative 

disorder associated amyloidosis. 

POEMS 

syndrome 

Polyneuropathy, monoclonal plasma cell proliferative disorder 

Major criteria: sclerotic bone lesions, Castleman’s disease, VEGFA 

levels increasing. Minor criteria: Organomegaly, overloaded 

extravascular volume, endocrinopathy, skin disorder, papilloedema, 

thrombocytosis/ polycythemia. 

Systemic AL 

amyloidosis 

Amyloid-related systemic syndrome, positive amyloid staining, 

light-chain-related amyloid, monoclonal plasma cell proliferative 

disorder. 

The table was extracted from International MM Working Group [28]. 
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 1.1.5 MM Risk Factors 

Currently, it is still unknown the causes of MM, but several risk factors have been 

identified which appear to increase an individual’s risk of developing MM as shown 

in Table 1.3.  

 

Table 1.3 Possible MM risk factors 

Risk factors How it affects MM accident 

Family history People have 2-3-fold chance to develop MM or MGUS [29-32] 

with immediate family members that diagnosed with MM or 

MGUS. 

Lowered 

immunity 

People who take immunity lowering drugs have increased MM 

accident: Less than 1% who have received an organ transplant 

develop MM [33-35]. 

People with human immunodeficiency virus have an increased 

risk of MM [36, 37] . 

medical 

conditions 

Autoimmune condition (Alkylosing spondylitis, autoimmune, 

haemolytic anaemia, systemic lupus erythematosis pernicious 

anaemia [38-44]. 

Genetic condition: [45] 

Body weight and 

diet 

Evidence that show diet affect MM risk are weak [46, 47].  

Vegetarian diet may lower MM risk [48-51]. 

Radiation 

exposure 

The risk of MM was increased for personal exposure to UV 

radiation during adulthood [52, 53]. 

Chemical 

exposure 

Benzene, a wildly used carcinogen [54-56] has been proved to 

be a risk factor of MM. 

 

Besides a slight increase in MM incident for the people with immediate family 

members with MM, the identified MM risk factors are not strongly associated with 

MM incident. Since, till now, there are no known causes of MM and no strong risk 

factors that are associated with MM, currently, there is a lack of strategies to prevent 

the disease.  
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1.1.6 MM genetic abnormalities 

Four common methods are used to detect the genetic changes: 1) karyotyping (detect 

the number and structure of chromosomes); 2) Fluorescence in-situ hybridisation 

(chromosomes were stained with fluorescent marker to detect and localise the specific 

DNA sequences on a chromosome); 3) gene expression profiling (to evaluate the 

activity of genes in a snapshot); 4) next generation sequencing (to determine the 

precise DNA sequence).  The types of genetic abnormalities in MM are listed in Table 

1.4. 
 

Table 1.4 Types of genetic abnormalities in MM 

Genetic errors Examples 

Chromosome 

abnormalities 

Alterations in chromosome number: hyperdiploidy, MM 

cells have more than two copies of a chromosome [57]. 

Alterations in chromosome structure:  

Chromosome deletion, common chromosome deletions in 

MM are del(13q) and del(17q) [58, 59]. 

Chromosome duplication, 1q gain [60]. 

Chromosome translocation, common translocation 

abnormalities are between chromosome 4 and 14, known 

as t(4; 14) or t(11; 14) [60, 61]. 

Genes that control cell 

growth 

Gene mutation (p53, RAS, et al.) control cell growth in 

MM patients [62-65]. 

Epigenetic changes  Histone modification [66, 67] 

 

The development of MM also involves certain germline mutations according to 

several MM family studies [29-32], including: CDKN2A [68], lysine specific 

demethylase 1[69], immunoglobulin VH genes [70], hyper phosphorylated paratarg-7 

[71, 72], hyaluronic synthase 1 [73] and a meta-analysis of two genome-wide 

association (GWA) studies has identified single-nucleotide polymorphisms localising 

to a number of genomic regions that are robustly associated with MM risk [74]. The 

above finding confirm that MM is a genetically heterogeneous disease.  
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Gene mutation is thought to be the critical event for the plasma cells transforming to 

MM cells and it is becoming apparent that different genetic subtypes of MM maybe 

more likely to respond to particular chemotherapy drugs [63, 75]. Thus, identifying 

MM genetic subtype and treating it accordingly, is a possible way to improve the 

treatment of the disease.  In addition, genetic subtype also affects prognosis in patients 

with MM. Genetic subtype affects how quickly MM may progress and furthermore 

how likely MM patients will respond to certain treatments. Accordingly, MM subtype 

is associated with differences in survival rates for patients treated with the disease. 

The most common MM genetic subtypes are:  t(4;14),  del(13q),  del(17p),  1q21gain,  

t(11;14),  hyperdiploidy [76]. The International MM Working Group defines t(4;14), 

del(17p), t(14;16), t(14;20), hypodiploidy, and gain(1q)/del(1p) as being high-

molecular-risk markers,  and defines t(4;14), del(17/17p), t(14;16), t(14;20), 

nonhyperdiploidy, and gain(1q) as poor prognosis markers [77]. Favourable prognosis 

markers have also been reported, such as trisomies 3, trisomies 5 [78] and gain of 

5(q31) [79] improved outcome with hyperdiploid MM. Other meta-analysis study also 

confirm that t(4;14), t(14;16), t(14;20), del(17p) and gain(1q21) are poor prognosis 

markers [80]. These findings confirm that treating MM patients according to their 

genetic subtype will enhance outcomes. 

 

Genome-wide association studies identified MM risk loci that is related with 

autophagy [81]. Firstly, dysregulation of autophagy has been identified as contributing 

with dysregulated B cell differentiation, which increases the MM susceptibility [81]. 

MM oncogenesis study identified five loci that support IRF4-MYC-mediated 

autophagy, including eQTL effects WAC (at 10p12.1) and Hi-C looping interactions 

(at 8q24.21 and 16q23.1). The 7p15.3 association ascribable to rs4487645 has been 

confirmed to regulate differential IRF4 binding mediated by c-MYC-interacting 

CDCA7L [82]. These reports confirm that the autophagy may influence B cell 

differentiation. Secondly, dysregulation of autophagy has been identified as 

contributing to MM development. Mammalian target of rapamycin (mTOR) is a 

central regulator of cellular metabolism and contribute to cancer development, which 

is highly activated in many MM patients  [83]. mTOR related genes ATG5 mediated 

the IRF4-MYC related autophagy, which contribute to the MM development [81]. The 

above reports point to a relationship between autophagy regulation and MM initiation 
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and development. Therefore, chemotherapy targeting autophagy may improve the 

treatment outcome. 

 

1.2 Proteasome inhibition in MM treatment 

The main treatment for MM is chemotherapy, including steroids and biological 

therapy. BM transplant or radiation therapy are also used for the treatment of MM [84]. 

Besides these treatments, more targeted drugs are being developed and evaluated to 

treat the MM. For example, one of the mainstays of the MM drugs are proteasome 

inhibitors (Bortezomib, Carfilzomib or Ixazomib), which prevent proteasomes from 

breaking down proteins in the cells to inhibit the proliferation of MM cells. However, 

despite the availability of several different drugs to treat MM at this point in time 

relapse for patients remains inevitable and MM is still regarded as an incurable disease. 

We envisage that novel therapeutic approaches will be necessary to cure MM and 

targeting the environment in which MM proliferates may be one possible target.  

 

The ubiquitin proteasome degradation system is a main cellular pathway to degrade 

unwanted, misfolded or damaged proteins. The proteasome degradation system is 

capable of degrading the majority of regulatory proteins in eukaryotic cells, thus 

regulating many cellular processes, including the regulation of cell cycle, the 

regulation of DNA repair, apoptosis and responses to oxidative stress [85]. Inhibition 

of proteasome activity can disrupt normal cellular functions and can induce cell death 

caused by the accumulation of unwanted proteins [86].  

 

The proteasome is a cylindrical like protein complex that functions through the 

breaking of peptide bonds. The central pore of the proteasome is formed by four rings 

and each ring binds with 7 proteins. The inner two rings of the core include 7 β 

subunits with protease active sites on the interior surface of the two rings, and this is 

the degradation site for targeted proteins. The outer two rings contain α subunits, 

which form the entering site for the targeted proteins. To initiate the ubiquitin 

proteasome degradation process, poly-ubiquitin tags are first attached to targeted 

proteins, then the α subunits in the outer two rings of the proteasome bind to "cap" 

structures or regulatory particles that recognize the poly-ubiquitin tags. After the 
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binding of ubiquitin and proteasome, the protein is lead to the two inner rings of the 

proteasome and the protein degradation process is initiated. 

 

Cancer cells are more sensitive to proteasome inhibitor induced apoptosis than non-

malignant cells because cancer upregulates proteasome activity in order to cope with 

oncogene activation and up-regulated metabolism [87]. MM is particularly dependent 

on the ubiquitin-proteasome system as a mechanism to avoid over produced misfolded 

protein accumulation in the endoplasmic reticulum and prevent ER stress induced cell 

death. Thus, MM cells are particularly sensitive to treatments that target the 

proteasome.  

 

20S subunit is the core of proteasome activation, which exhibits three enzymatic 

activities: chymotrypsin-like, trypsin-like and post-glutamyl peptide hydrolase-like 

[88]. The 20S subunit has been the main targeting site of many of the therapeutic 

proteasome inhibitors. Proteasome inhibitor treatment is widely used in the MM 

therapy [89], and these induce accumulation of proteins which in turn activates the 

apoptotic cascade, growth arrest and cell death. The main proteasome inhibitors are 

described below. 

 
Figure 1.3 Schematic representation of proteasome function and mechanism of 

PI  

Proteasome recognise ubiquitin tagged protein and degraded the protein. PI binding 

to proteasome and inhibit the process. 

 

1.2.1 Proteasome inhibitor bortezomib (Bz) 

Bz (PS-341, Velcade) was the first proteasome inhibitor clinically used for MM, which 

is administered via subcutaneous injection. Bz belongs to the peptide boronic acid 
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analogues and reversibly binds to the chymotrypsin-like site in the 20S core of 

proteasome [90, 91]. Bz is an established therapeutic drug used in the treatment of 

MM patients for first line and relapsed or refractory MM [92-94].It may also be used 

for maintenance treatment once remission of the MM has been achieved [95]. Many 

reported mechanisms of Bz effect on MM cells (Table 1.5). 

 

Table 1.5 Reported mechanisms of action for bortezomib in the treatment of MM  

Mechanism of Action of Bortezomib  Reference 

Induce apoptosis. [96] 

Induce NF-kB activity. [97] 

Reduce adherence of MM cells to BMSC. [98] 

Block VEGF, IL-6, Ang-1, Ang-2, and IGF-1 secretion in BMSC.  [99]. 

Alter expression of proangiogenic mediators and tumour 

suppressor p53.  

[100, 101]. 

Trigger the differentiation of MSCs into osteoblasts and induce 

apoptosis of osteoclast. 

[102] 

Bz disrupts the unfolded protein response by increasing the 

endoplasmic reticulum (ER) stress in MM cells caused by high 

production of immunoglobulins. 

[103, 104]. 

 

1.2.2 Proteasome inhibitor carfilzomib (Cfz)  

Carfilzomib (PR-171) is a proteasome inhibitor which belongs to epoxy ketone class 

of drugs and irreversibly binds to the chymotrypsin-like site in the 20S core of 

proteasome [105]. Cfz is administered via intravenous infusion, in the clinic. Unlike 

Bz, Cfz has minimal activity against off-target enzymes and has demonstrated clinical 

activity against Bz-resistant MM cells [92, 94, 106]. 

 

1.2.3 Proteasome inhibitor lxazomib 

Ixazomib is the first clinical oral PI and can be used as a single reagent [107]. 

Similar to Bz, Ixazomib is a peptide boronic acid analogue [108], which is designed 

to administrated via oral to improve treatment compliance. For example, the Bz 

administration associated with the risk of peripheral neuropathy and the Cfz 

administration requires twice-weekly IV infusion [107, 109].Oral PI Ixazomib is not 
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only convenience for the drug administration, but also is more tolerable for prolonged 

therapy.  

 
Figure 1.4 Schematic representation of mechanism of PI  

Present the binding position of Bz and Cfz on the PI. 

 

1.3 Metabolic change in MM cells 

Cancer cells undergo metabolic rearrangements to meet the bioenergetic and 

biosynthetic demands for proliferation and drug resistance [110]. Increased aerobic 

glycolysis and decreased oxidative phosphorylation are common metabolic shifts in 

cancer cells and are thought to support the bioenergetics demands of the tumour. In 

addition, cancer cells shift other metabolism enzymes including, succinate 

dehydrogenase, fumarate hydratase, and pyruvate kinase and isocitrate 

dehydrogenase to produce more biosynthetic intermediates to support tumoural 

biosynthetic demands. Taken together these findings demonstrate cancer to be a 

‘metabolic disease’. 

 

MM cell expansion and paraprotein production places huge energy demands on the 

malignant plasma cell. Glucose and glutamine metabolism shift have been described 

in MM cells as supporting the tumoural energy requirements, with both playing roles 

in drug resistance, proliferation and apoptosis [111].  MM upregulate glucose 

metabolism to favour progression [112], which lead to the therapy strategy of inhibit 

the glucose metabolism to prevent MM progress and inhibitors that targeting 

Hexokinase II (HKII) activation show promising outcomes. The first step of glycolysis 

relies on the enzymes of hexokinase family to convert glucose into glucose-6-

phosphate. HKII activation needs the binding of the voltage-dependent anion channel 

(VDAC), which is located on the outer membrane of mitochondria. HKII is stabilised 
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by phosphoinositide-3 kinase (PI3K)/Akt signalling, which lead the design of 

inhibitors that targeting PI3K to inhibit the HKII and autophagy as well to treat MM.  

 

MM cells also upregulate glutamine metabolism. Ammonia (converted from 

glutamine) levels have been identified to be constantly high in MM cells, which 

reflects the shift of glutamine metabolism [113]. Glutamine is a precursor of GSH and 

is regulated by the NRF2 pathway (the detailed mechanism is descripted in the 1.7 the 

role of NRF2 part) [114]. GSH is an important cellular antioxidant and is also 

consumed in the protein folding correction event. As the MM cells produce large 

amount paraprotein, which need to be folded in the ER causing ER stress, the NRF2 

regulated glutamine metabolism is essential to release the ER stress and prevent ER 

stress induced apoptosis.  

 
Figure 1.5 Schematic representation of metabolic change  

MM cells upregulate aerobic glycolysis and glutamine metabolism, while down 

regulate oxidative phosphorylation. 

 

1.4 Reactive oxygen species (ROS) role in MM malignancy 

MM cells function to produce large amount of monoclonal immunoglobulin and/or 

light chain protein, one cellular consequence of this is to lead to cellular stress through 

induction of ROS [115]. Conversely ROS is believed to be a key player in disturbing 

intracellular protein synthesis in the MM cells. Topf and colleagues have shown that 

ROS production from external stimuli or from mitochondrial pathologies negatively 

affects protein synthesis [116] and in turn this reduces the MM cells capacity to 

maintain proteins synthesis for cell growth, proliferation and paraprotein production. 

Mechanistically cellular stress regulates translation, such as misfolded protein induced 
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stress in the ER, UV irradiation, amino acid starvation, hypoxia, viral infections and 

oxidative stress [117]. Besides that, ROS is involved in regulation of cell survival. 

While in redox homeostasis cellular, ROS maintains the proper function of redox-

sensitive signalling proteins, which enables the cellular response to endogenous and 

exogenous stimuli; in redox unbalanced cells, oxidative stress may lead to aberrant 

cell death and tumour growth [118]. In summary tumour cells are characterised by 

enhanced oxidative stress and metabolism due to oncogene activation, they possess 

higher level of ROS and lower levels of antioxidant molecules than non-malignant 

cells, leading cancer cells more vulnerable to ROS induced cell death. Thus, 

suggesting that targeting ROS in the treatment of MM is a potentially viable strategy.  

 

1.4.1 Sources of ROS  

To lead us to therapeutic interventions targeting the ROS pathways we must first 

understand the processes which regulate ROS in MM. Reactive oxygen species (ROS) 

and reactive nitrogen species (RNS) are free radicals that are derived from both 

endogenous sources and exogenous sources. The endogenous sources of free radicals 

include mitochondria, peroxisomes, endoplasmic reticulum and phagocytic cells. The 

exogenous sources of free radicals include pollution, alcohol, tobacco smoke, heavy 

metals, transition metals, industrial solvents, pesticides and certain drugs like 

halothane, paracetamol and radiation. 

 

Mitochondria is the main source of reactive oxygen species (ROS), which contribute 

to mitochondrial damage in a range of pathologies and retrograde redox signalling in 

cells [119, 120]. Complex I (NADH dehydrogenase) and complex III (ubiquinone 

cytochrome c reductase) are the two major sites in the electron transport chain that 

produce superoxide radicals. Mitochondrial superoxide dismutase converts 

superoxide anions to hydrogen peroxide. Monoamine oxidase, α-ketoglutarate 

dehydrogenase and glycerol phosphate dehydrogenase in the mitochondria also 

contribute to the ROS production.  Furthermore peroxisomal enzymes (acyl CoA 

oxidases, D-amino acid oxidase, L-α-hydroxy oxidase, urate oxidase, xanthine oxidase 

and D-aspartate oxidase), which degrade long chain fatty acids, produce ROS [121]. 

In the mitochondria, the peroxisomes generate H2O2 in the reactions that transfer 

electrons to oxygen.  
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The endoplasmic reticulum is another source of ROS [122]. For example, when the 

proteins are folded in ER to form the disulfide bonds from cysteine, H2O2 is generated. 

H2O2 is a source of ROS. Moreover, to correct an improperly paired disulfide bonds, 

the antioxidant GSH is consumed, which further increases the ROS stress in MM [123]. 

 
Figure 1.6 Schematic representation of the source of ROS  

Endogenous sources of ROS include heavy metals, alcohol, pollution and tobacco 

smoke et al. Exogenous sources of ROS include mitochondria, ER and peroxisomes. 

 

1.4.2 Cellular toxic effects of ROS 

As ROS is highly reactive, elevated ROS levels disturb the cell fate through damaging 

essential biomolecules such as, nucleic acids, proteins, and lipids [124]. 

 

Nucleic Acids 

All components of DNA such as purine and pyrimidine bases, deoxyribose sugar 

backbone are sensitive to ROS, especially the OH• radical [125]. ROS induces nucleic 

acid mutations including single and double stranded breaks in DNA. When under ROS 

stress, the mitochondrial DNA show more mutations than nucleic DNA. This is 

postulated to be because the mitochondrial DNA are co-located to the main ROS 

source in the cells [126]. 

 

The RNA molecule is more sensitive to ROS than DNA. RNA is single stranded and 

there are no repair mechanisms to manage damage. Furthermore  the RNA are also 

located closer to the ROS source than DNA [127]. 

 

Protein  

The oxidation of proteins can be induced by both radical species including O2•−, OH•, 

peroxyl, alkoxyl, hydroperoxyl as well as non-radical species such as H2O2, O3, and 

singlet oxygen [128]. Oxidized amino acids form protein–protein cross linkages, 

which results in protein, receptors/ transport protein and enzyme protein malfunction 



18 
 

[129]. The amino acid residues lysine, proline, threonine and arginine are the most 

sensitive to ROS stress. 

 

1.4.3 ROS stress and malignancy 

ROS induced DNA damage is considered to be the major event of cell oncogenesis 

[130]. Patients with cancer associated risk disorders have been observed to have 

elevated ROS induced DNA damage level or deficient in DNA damage repair system. 

For example, patients with Li-Fraumeni syndrome, which is an inherited cancer 

predisposition disorder, carries TP53 mutation. Impaired p53 activation associate with 

increased oxidative stress, which leads to oxidative DNA damage, and may lead to 

genomic instability and initiate the cancer [131]. 

 

One of the major mutations induced by ROS is through the ROS triggered guanine 

modification, causing G→T transversions [132]. If the mutation site is in oncogenes 

or tumour suppressor genes, the cells may subsequently initiate malignancy and cancer 

progression. For that reason, ROS are both involved in the initiation and progression 

of cancer. 

 

1.4.4 Therapies targeting ROS 

Proteasome inhibitors induce MM apoptosis partly through increased intracellular 

oxidative stress by elevating endoplasmic reticulum stress [133].  Reports show that 

proteasome inhibitors repress transcription of the mitochondrial thioredoxin reductase, 

which directly induces oxidative and endoplasmic reticulum stresses in MM cells 

[133-135]. ROS generation plays a critical role in the apoptosis induced by the 

proteasome inhibitor Bz, as evidence by the observation that the disruption of 

mitochondrial function and the induction of apoptosis can be almost totally rescued 

by ROS scavengers [136].  Modalities (i.e., radiation, photodynamic therapy, and 

specific chemotherapeutic drugs) generating ROS have been shown the therapeutic 

effect on malignant B-cells [137]. As MM cells undergo ER stress induced by the 

accumulation of misfolded protein, the role of ROS in ER stress induced cell death is 

another focus in this project. In addition, I will study mitochondrial function in the 

MM cells to elucidate the mechanisms by which MM cells interact with BMSC to 

reduce intracellular and mitochondrial ROS levels in malignant plasma cells to escape 

cell death.  
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If manipulation of the cellular response to oxidative stress is to be therapeutically 

exploited in MM therapy, then strategies need to be developed from a scientific 

understanding of these interactions.   

 

1.5 The role of NRF2 

NRF2 is tightly regulated while bound to KEAP1 in the cytoplasm. As KEAP1 is the 

sensor of cellular oxidative stress, NRF2 nuclear translocation is considered to be an 

indicator of ROS stress. As my project is targeted to the ROS induced cell stress 

response and apoptosis, I will investigate NRF2 function in MM cells under normal 

conditions and in response to MM chemotherapy. 

 
Figure 1.7 Schematic representation of the KEAP1 mediated NRF2 degradation 

KEAP1 binding to NRF2 protein then initiate the proteasome degradation process. 

 

Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is the key regulator for cellular 

antioxidant defence and ROS is the key activator of NRF2 [138]. Under normal 

condition, Kelch-like ECH-associated protein 1 (KEAP1) binds to NRF2 and 

facilitates the ubiquitination and degradation of NRF2 through proteasome [139]. 

When cells is in oxidative stress, ROS levels is increasing and the cysteines in KEAP1 

been modified to form disulfide bond, which changes the conformation of the hinge 

region by thiol oxidation and releases the NRF2 [140].  NRF2 is then modified by 

PKCδ and Akt and translocated to the nucleus [140]. In the nuclus, NRF2 binding with 

small Maf proteins, and then active many gene promoters that contain the antioxidant 

response element (ARE) sequence [141]. NRF2 binding to ARE requires cAMP 

responsive element-binding protein-dependent acetylation [142]. NRF2 activates 

cytoprotective genes through binding to a cis-acting enhancer sequence upstream of 

the antioxidant response element, [143], which are present in the promoter regions of 

its target genes [144]. These genes include Nicotinamide adenine dinucleotide 

phosphate (NADPH) or nicotinamide adenine dinucleotide hydride (NADH): quinone 
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oxidoreductase 1 (NQO1), Glutamate-cysteine ligase (GCLM), Heme oxygenase 

(HO-1), as well as proteins involved in scavenging ROS and glutathione (GSH) 

biosynthesis and regeneration. Mitochondria is the main cellular ROS producer and 

NRF2 regulates substrate availability for mitochondrial respiration, which may affect 

mitochondrial ROS production [145]. 

 

Table 1.6 List of NRF2 targeted antioxidant related genes and their general 

function 

NRF2 target genes Functions 

Superoxide dismutase 3  ROS catabolism [146] 

Glutathione peroxidase  ROS catabolism [147] 

Peroxiredoxin  ROS catabolism [148] 

Glutathione reductase Regeneration of oxidized factor [149] 

Thioredoxin reductase Regeneration of oxidized factor [150] 

Glutamate-cysteine ligase  Synthesis of reducing factor [151] 

Glucose-6-phosphate dehydrogenase  Synthesis of reducing factor [152] 

Phosphogluconate dehydrogenase  Synthesis of reducing factor [153] 

Heme oxygenase  Stress response protein [154] 

p62  Autophagy [155] 

 

 

1.5.1 NRF2 regulated glutathione system  

Gene promoters that contain the ARE sequence include many of those involved in 

xenobiotic response and Phase II metabolism, as well as glutathione (GSH) 

biosynthesis and recycling (Diagram shown in chapter3 discussion 3.37). 

 

GSH is one of the most abundant endogenous antioxidants in cells. GSH can be 

detected in nearly all types of cells in the body. When GSH is activated, the 

concentration of GSH can achieve millimolar level. GSH works together with 

glutathione reductase, glutathione peroxidases and glutathione S-transferases to form 

the glutathione system for ROS detoxification. First, glutathione S-transferases 

triggers the joining of GSH to a variety of electrophilic compounds and then GSH is 

oxidized to glutathione disulfide. The glutathione peroxidases breakdown the by-
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products of these reactions, hydrogen peroxide and organic hydroperoxides [156] 

Glutathione reductase reduces glutathione disulfide back to GSH. Through this cycle, 

GSH reduce disulfide bonds to cysteines. 

 

GSH has been reported to be involved in many cellular defence events, such as 

antioxidant defence, detoxification of electrophilic xenobiotic, redox regulated signal 

transduce regulation, cysteine pool,  cell proliferation regulation, deoxyribonucleotide 

synthesis regulation, immune responses regulation, leukotriene regulation and 

prostaglandin metabolism regulation [157].  

 

As an acetylated cysteine residue, N-acetyl-cysteine (NAC), is a rate-limiting substrate 

for GSH synthesis [158]. NAC is an effective scavenger of ROS and a major pool of 

cellular cysteine. NAC is widely used in clinic and research to manage the effects of 

ROS stress. Combining NAC with stimuli to replenish GSH levels is an established 

way to investigate GSH function. 

 

Under ROS stimuli, most of the GSH is in the reduced form because of upregulated 

glutathione reductase activation in cells. Thus, detection of GSH is a reliable way to 

determine the state of cellular oxidant levels. Glutathione S-transferases are also 

observed to be overexpressed in many tumours, where they appear to functionally  

regulate MAPK pathways and are reported to be involved in chemotherapy resistance 

[159]. 

 

1.5.2 NRF2/HO-1 system  

Heme oxygenase-1 (HO-1) and HO-2 are two HO isoforms found in mammals. While 

HO-2 is expressed constitutively in cells, HO-1 is an inducible 32-kDa protein. 

Inducers of HO-1 include: heme, ROS, heavy metals, growth factor, cytokines, 

modified lipids [160].  

 

HO-1 catalyzes heme degradation and produces iron ions, biliverdin and CO. As an 

antioxidant, biliverdin regulates inflammation, apoptosis, cell proliferation, fibrosis, 

and angiogenesis. Through the Fenton reaction, iron facilitates ROS generation and is 

involved in many enzyme activities as a core element. CO is also reported to be anti-

apoptotic, anti-proliferative and anti-inflammatory. 
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As HO-1 expression is inducible and the HO-1 gene is activated by the NRF2, HO-1 

levels can be used to determine the activation of NRF2. 

 

1.5.3 NRF2/ NQO1 system  

As a metabolizing enzyme, NQO1 protects normal cells from ROS induced stress.  

NQO1 catalyzes two-electron reduction of quinones to hydroquinone, which is then 

conjugated and excreted. NADH or NADPH are the electron donor for NQO1 reaction. 

NQO1 supports the cancer cell in coping with high ROS levels.  Upregulated NQO1 

expression is linked with many human malignancies and linked with cancer 

progression and chemo-resistance.  

 

1.5.4 NRF2-P62-autophagy axis 

P62 is a autophagy receptor with multiple signaling moieties, including  ZZ-type zinc 

finger domain, nuclear localization signals, nuclear export signal and KEAP1 

interacting region [161]. Thus, P62 linked autophagy regulates many signaling 

pathways, such as, NRF2, NF-kB and mTOR [162]. Besides that, P62 links autophagy 

and redox homeostasis. That is because KEAP1 has two roles which are 1] modify 

P62 to form autophagosome and 2] regulating the NRF2 ubiquitination for proteasome 

degradation. When cells are under stress conditions, P62 recruits KEAP1 to active 

autophagy, which leads to the accumulation of NRF2 as a result of lack of KEAP1 

regulated NRF2 degradation [163, 164]. The activated NRF2 then enters the nucleus 

and promotes the expression of P62, which forms a positive feedback loop in response 

to cellular stress. In my project, I silence the NRF2 in cells, to test if it can break the 

feedback loop and sensitise the MM to apoptosis. Because KD NRF2 impairs the 

cellular antioxidant responds, which leads ROS stress and ROS induced apoptosis, and 

impairs P62 mediated autophagy, which block the cells to clear away unwanted 

cellular components and leading to cell death.    

 

1.5.5 Other NRF2 associated transcription Factors 

NRF1 regulates mitochondrial respiration, mitochondrial DNA transcription and 

replication through activation of the expression of a number of metabolic genes. NRF1 

works together with NRF2 (see below) to active the expression of nuclear-encoded 

ETC proteins, mitochondrial transcription factor A and mitochondrial transcription 

factor B1 and B2. Together these proteins regulate nuclear and mitochondrial genomes 
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and regulate the three mitochondrial-encoded COX subunits. Through the above 

regulation NRF1 links together nuclear DNA synthesis and mitochondrial function. 

 

NRF1 is indispensable for mice normal development and healthy growth of cells, as 

Jefferson reported that homozygous NRF-1 mutant mice are embryonic lethal [165]  

but NRF2 is indispensable for mice development, as Chan reported that the 

homozygous NRF-2 mutant mice reached adulthood, and reproduced [166]. These 

studies suggest that NRF1 plays a distinctive role from NRF2 for the regulation of 

cellular homoeostasis and organ integrity [167]. 

 

The exact mechanisms of NRF1 regulation are not fully understand, since NRF1 

mutant mice is die in utero. Some studies show that NRF1 regulate ATPase protein 

p97/VCP which is associated with various cellular activities. NRF1 also appears to 

regulate the proteasome 26S subunit transcriptional expression. When the cells have 

been treated with PI, NRF1 support the recovery of proteasome pathway through 

upregulation of proteasome 26S subunit transcriptional expression [168, 169].  

 

Since NRF1 is localized in the cytoplasm and is bound to the ER membrane, NRF1 

nuclear translocation is considered to be an indicator of ER stress. NRF1 is 

phosphorylated by Cyclin D1-dependent kinase and the regulation of NRF1 is 

independent of Keap1, which suggests that either NRF1 does not respond directly to 

ROS stimuli or NRF1 utilises other factors to sense ROS levels in the cells. 

NRF3 and NRF1 proteins were identified many years ago, however compared with 

NRF1, the NRF3 transcriptional response to oxidative stress and the NRF3 function 

are less well understood.  

 

NRF3 is a glycoprotein that is bind to the ER and the nuclear membrane. Three NRF3 

isoforms have been identified with the A form being glycosylated and the B and C 

forms being un-glycosylated. This observation suggests that the membrane binding 

and releasing of NRF3 is mediated by the glycosylated A form. However the detailed 

function of the three isoforms appear to be poorly understood at present.  

 

NRF3 has a similar structure to NRF1. NRF3 function in some respects is thought to 

be similar to NRF1. Like NRF1, NRF3 is not activated by ROS, however, unlike 
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NRF1, NRF3 has been reported to repress transcription of ARE-regulated genes in 

human cells [170]. In this paper the authors report that NRF3 disturbs the binding of 

small Maf proteins to the ARE and thus negatively regulates ARE-mediated NQO1 

expression. 

 

NRF3 has been detected with high levels in mammalian placenta and the B cell lineage, 

which suggest NRF3 may play a role in the B cell maturation, However in an 

experimental knockout of NRF3 in mice, the animals show no difference compared to 

wild type in phenotype, fertility, gross anatomy and behaviour which suggests 

redundancy in its mechanism or the presence of compensatory pathways [171]. 

 

1.6 The role of autophagy in MM progression 

As MM cells produce large amounts of paraprotein, the cells are under constant stress 

conditions due to the misfolding of protein.  There are 3 main mechanisms for the cells 

to manage this, including the ubiquitin-proteasome pathway, unfolded protein 

response pathway and autophagy. 

 

Autophagy is a cellular way to degrade or recycle unnecessary or dysfunctional 

components, such as defective organelles, protein aggregates, and intracellular 

microbes [172]. There are three types of autophagy has been investigated in detail that 

are include macroautophagy, microautophagy, and chaperone-mediated 

autophagy.  macroautophagy, microautophagy, and chaperone-mediated autophagy. 

In my project, the macroautophagy is investigated. Macroautophagy involve double-

membraned vesicle (autophagosome), which later infuse with lysosome and be 

degraded and recycled.  

 

The concept that views autophagy as a bulk degradation process has changed, instead, 

more reports show that the autophagy is selective [161]. Selective autophagy targeting 

different cellular components for degradation, for example, organelles (mitophagy and 

pexophagy), ribosomes, macromolecular, specific proteins or protein aggregates. P62 

is a key selective receptor, which is binding both with LC3B and ubiquitin to form 

autophagosome for degradation [173]. 
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Once formed the autophagosome, it is then fused with lysosomes to initiate 

phagosome degradation. As descript before, NRF2-P62- autophagy forms a positive 

loop to upregulate autophagy as a mechanism to reduce cellular oxidative stress.  

 
Figure 1.8 Schematic representation of the autophagy regulation  

P62 is modified by KEAP1 and then binding to the unwanted components. ATG5 and 

LC3 are building blocks to form the autophagosome. 

 

Autophagy is a cellular event of adaptation to stress and promote cell survival, but 

autophagy also promotes cell death. In addition, autophagy plays a key role in memory 

B cell and long-lived plasma cell survival [174]. As primary MM cells shows 

upregulated autophagy [175], it is reasonable to hypothesise a pro-tumoural role for 

autophagy in MM cell proliferation and drug resistance in the BM microenvironment.  

 

Autophagy has both positive and negative effects on cell function and survival. On the 

one hand, highly activated autophagy has been reported to suppress tumours or MM 

[176], through the initiation of cell death and senescence [177]. On the other hand, 

autophagy is beneficial for tumour or MM [178] maintenance and progression [179]. 

Autophagy is also increasing the sensitivity of MM cells to PI treatment [155]. As PI 

is the corner stone of MM treatment, the combination of autophagy inhibition and PI 

treatment may provide new therapy strategy. Thus, reveal the mechanism of 

autophagy regulation in MM and its microenvironment is in need. 

 

1.7 Sub Cellular Organelles Stress Associated Apoptosis 

Organelles in the plasma cell include lysosomes, mitochondria and the endoplasmic 

reticulum, which have been investigated for their roles in MM disease progression and 

chemotherapy resistance in this project. 
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During apoptosis, intra-nuclear chromatin change  is widely accepted as the crucial 

event, but changes in the cytoplasmic compartment and altered organelle structure and 

function [180] also play essential roles in the initiation of programmed cell death [181, 

182]. For example, 1)  cytoskeleton reorganization, with fragmentation of the 

microfilament bundles [183] and the formation of actin and tubulin thick bundles [184], 

facilitate the shrinkage of the cells during apoptosis; 2) enlarged and swollen ER in 

cancer cells [185]; 3) Golgi apparatus, as an oxidative stress sensor [186], undergoes 

fragmentation, swelling and distension [184, 186, 187]; 4) the lysosomes, key role for 

cellular degradation, cause increased membrane permeabilization and stimulate the 

release of apoptosis promoting factors such as BCL-2 family members, which in turn 

regulate mitochondria function [188-191]; 5) permeabilization of mitochondrial 

membranes plays a key role in cell apoptosis as well as the regulation of mitochondria 

mass, mitochondria translocation and mitochondria membrane potential [192-195]. 

Accordingly, in this project, ER stress, mitochondria stress and lysosome associated 

autophagy are investigated to decode the mechanisms of how MM cells utilise the 

BMSC to avoid apoptosis induced by chemotherapy, through mitochondrial and 

endoplasmic reticulum interaction, which exchange calcium or lipid. [196-199]. 

 

1.7.1 Endoplasmic reticulum (ER) stress associated apoptosis 

ER is an organelle in eukaryotic cells that form a membrane enclosed network. As a 

vesicular system, ER is connected with the outer nuclear membrane and mitochondria, 

forming a tube or sac like membrane enclosed network in eukaryotic cells. This system 

is intimately involved in Ca2+ homeostasis and xenobiotics detoxification [200].  

There are two types of ER, the rough ER located in the outer side of the cell and 

embedded with ribosomes for the protein synthesis, and the smooth ER not embedded 

with ribosome which functions as a site for lipid manufacture and metabolism.  

 

When the ER is under stress (for example when the MM cells produce large amount 

of paraprotein) the ER initiates the unfolded protein response (UPR). There are 3 

pathways that regulate UPR responds. The UPR function to: 1) preventing the 

translation of protein to restore normal cell function; degrading misfolded protein to 

clear away unwanted protein aggregation; 3) initiating the production of molecular 

chaperones used for the correct folding of protein.  
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Activating transcription factor 6 (ATF6) is a transmembrane transcription factor. 

Misfolded protein in the ER will cleave the ATF6 and active the transcription of ER 

chaperones. Inositol-requiring enzyme 1 (IRE1) is a transmembrane protein, which 

sense the ER stress and active RNase activity, leading the upregulation of ER 

chaperones. ER stress also induce protein kinase RNA-like endoplasmic reticulum 

kinase activation, which inhibit the protein synthesis and active activating 

transcription factor (ATF4).  If the UPR cannot resort the normal cell function, then 

CHOP mediated apoptosis is initiated.   

 

 In MM cells, the large amount of paraprotein production induces the UPR, and 

eventually if the UPR cannot restore the normal function of the cell, the ER will initiate 

ER associated apoptosis that is mediated by CHOP expression. Through ER stress in 

myeloma has been investigated, the drugs to targeting ER stress and sensitise MM 

cells to chemotherapy is still in need for investigate. 

 

 
Figure 1.9 Schematic representation of the UPR pathway  

While ER is in stress, three pathways are involved in the UPR activation. 

 

1.8 The MM Bone Marrow (BM) Microenvironment 

It is clear that the non-malignant cells of the BM interact with MM cells and support 

their survival , proliferation and drug resistance [201-203] via an interplay of cytokines, 

chemokines, adhesion molecules and proteolytic enzymes [204]. These supporting 

cells are known as the BM microenvironment. As the BM niche is the location for the 

malignant plasma cells and in other contexts the BM microenvironment has been 

shown to be protective to BM resident cells, then I hypothesise that drug targeting of 

the MM BM niche may improve the treatment of MM. 

 

Targeting the cells of the BM microenvironment, which provides the protective niche 

for malignant plasma cells, may provide opportunities to eradicate residual disease 
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and prevent relapse. Accordingly, to realise this opportunity it will be important to 

decode the mechanisms of the interaction between MM cell and BM niche, to decode 

how BM niche supports the proliferation and drug resistance of MM cells and to find 

new strategy to induce apoptosis in MM cells or sensitise the MM cells to 

chemotherapy.  

 
Figure 1.10 Schematic representation of the BM microenvironment  

MM cells are connected with different cell types in the BM microenvironment. For 

example, adipocyte provides nutrition, BMSC secrete IL-8 or IL-6 to support the 

proliferation of MM cells. 

 

1.8.1 Components of MM BM Niche  

Bone is composed of two organ systems, the skeleton and the haematopoietic 

BM. Endocrine, paracrine and autocrine factors regulate the marrow cells to remodel 

bone and regulate haematopoiesis [205]. The BM contains several cell types, such as 

haematopoietic stem cells (HSC), bone marrow stromal cells (BMSC), BM adipocytes, 

resident tissue macrophages, neurons, osteoblasts, endothelial cell and immune cells 

[206]. All the cell types are tightly regulated to maintain a healthy BM niche.  For 

example, the regulation of osteoblast and osteoclast activity is fundamental for normal 

bone health. Increased osteoclast activity initiates bone resorption and it is triggered 

and regulated by many factors including IL-6, IL-1b, tumour necrosis factor (TNF)-α, 
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parathyroid hormone-related protein, macrophage inflammatory protein-1a, RANK, 

RANKL, osteoprotegerin and annexin II [207, 208]. Decreased osteoblast activity is 

associated with reduced new bone formation. It is evident that the different cell types 

in the BM need to be tightly regulated to maintain the normal bone function.  

 

1.8.2 Metabolic Changes in the MM BM Niche 

Cancer is associated with local and systemic metabolic changes [209-211]. Otto 

Warburg first proposed that dysfunctional cellular respiration initiates all cancers 

[212]. He found out that impaired respiration initiates cancers and glycolysis 

compensate the cellular energy need. This phenomenon is described as the ‘Warburg 

effect’ [213]. Accumulating studies confirm that in cancer cells electron transport may 

not be coupled to ATP synthesis [214] and any mitochondrial defect that would impair 

respiration contribute to Warburg effect thus leading to carcinogenesis [214, 215]. 

These findings point out the metabolic change is a key player in cancer initiation. 

 

Metabolic change is also reported as important in the early events of MM genesis [216]. 

For example, patients with Gaucher disease exhibit over 30-fold risk of developing 

MM [217]. Gaucher disease is an inherited metabolic disorder characterized with high 

level lyso-glucosylceramide, which support B cells and promote plasma cell 

differentiation [217]. These findings suggest that the metabolic rearrangement is an 

important MM initiation factor. 

Moreover, metabolic change in BM niche is also thought to be a contributing factor in 

the progression of MGUS to MM [218]. Ludwig et al discovered that most of the 

metabolic rearrangement is detected in the development of MGUS patient not in the 

progress of MM patient [219]. Other reports show that the metabolic change of BM 

microenvironment is independent of MM cells [104, 107,108]. These findings provide 

further evidence that metabolic change in BM is an important MM initiator.  

 

According to above research, drugs targeting metabolic in MM may provide new 

therapy strategy for the treatment of MM [112]. As the two most studied metabolic 

rearrangement are in glucose and glutamine metabolism [220], drugs targeting these 

two metabolic processes are promising, for example, drugs that targeting HKII, which 

is the first enzyme to catalyse the glucose metabolism, is currently in clinical trial for 

MM treatment.   
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The metabolic changes between healthy and MM cells are as described below. 

 

1) Anabolism is a process to synthesis complex molecules, which requires 

energy. Anabolism is the building-up aspect of metabolism. Anabolism is a cellular 

metabolic process to synthesize molecules, which is essential for cell proliferation and 

tumour growth. Thus, to detect the anabolism in the MM cell BM microenvironment 

is an effective way to determine the MM cell effect on their niche metabolism. 

Decreased anabolism was detected in the MM patients’ BM that include essential 

amino acids, isoleucine and threonine, as well as the hypoxanthine and xanthine, 

which are fragments of nucleotide.  Since the MM cells proliferate in the BM niche, it 

is reasonable to suggest that the decreased anabolism in BM is to facilitate the 

anabolism of MM cells [219]. 

 

2) Compared to healthy patients, majority of MM patients are detected with high level 

of uric acid [221]. Uric acid is the end product of nucleic acid metabolism [222]. 

During the proliferation of cancer cells, the serum uric acid level is increasing. And 

others show that high level serum uric acid is associated with cancer progression [223].  

 

3) Reports show that the metabolism of hypoxanthine to xanthine is increased in the 

MM patients’ BM [219]. Hydrogen peroxide (a by-product of hypoxanthine 

metabolism to xanthine) is detected in MM patient’s BM [219].  

 

4) Finally, hypoxia induced glycolysis upregulation is believed to promote cancer 

growth and development. Glycolytic metabolism is high in BM niche, due to its 

hypoxic nature [224]. High level glycolytic metabolism facilities and maintains 

quiescent haematopoietic stem cells [205, 225, 226], thus contributing to MM relapse 

and drug resistance [227]. MM relapses from residual disease sequestered in the 

hypoxic BM microenvironment and therefore hypoxic conditions and changes in 

glucose metabolism may be important in MM [228]. Furthermore, patients with 

advanced stages of MM show increased glucose uptake in the tumour and this is 

correlated with decreased survival rate [229, 230]. In vitro experiments show that 

targeting insulin-responsive glucose transporter GLUT4 to downregulate the glucose 

uptake in MM cells is effective to induce apoptosis in MM cells [228]. Thus, 

suggesting that glucose uptake is important for the MM cell survival. 
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1.8.3 BM niche role in oncogenesis 

The BM niche is the home for many types of cell, thus dysregulated BM niche may 

affect the attached cells and provide a favourable microenvironment for tumour 

growth. The BM niche may be dysregulated by several different mechanisms and the 

bone formation and bone resorption, also called bone metabolism, dysregulation is a 

key trigger of BM niche dysregulation. Because, the over activated bone resorption 

reshapes the BM no cellular composite and resulting with the blood cells lost its 

‘physical home’. A report confirms this concept, which shows dysregulated bone 

metabolism resulting in disrupted haematopoiesis [231]. In another study researchers 

showed that genetic alteration in the osteo-progenitors (knockdown Dicer1 gene in the 

osteo-progenitors), disturbed the HSC niche and induced malignant change in 

haematopoiesis resulting in myelodysplasia and secondary leukaemia in the 

experimental mice [232]. The above evidence suggests that the dysregulated bone 

metabolism impairs the BM niche which favours oncogenesis. 

 

1.8.4 BMSC role in MM initiation 

There are many different types of cells in the BM niche, and BMSC is important to 

form and maintain the niche [118]. BMSC give rise to cells which form the skeleton 

[233]. The plasticity of BMSC is instrumental in the formation the niche and it is this 

cell that most research has been focused on in the context of the MM protection and 

proliferation.  

 

Many researchers have identified that the BMSC is involved in many steps of MM 

initiation. First, BMSC mediated the maturing of B cells to plasma cells. For the B cell 

to mature to a plasma cell it needs attachment of lymphoid cell to BMSC and the 

process also requires the expression of stromal-derived-factor-1 (SDF1) also known 

as C-X-C motif chemokine 12 (CXCL12) on the surface of BMSC as well as 

expression of the chemokine receptor, chemokine (C-X-C motif) ligand 4 (CXCL4) 

or CXCL7 on the surface of MM cells [205]. Inhibition of SDF1 prevents BMSC 

meditated protection of MM cells [234]. Second BMSC also mediate MM specific 

change in tumour metabolism as previously discussed in section ‘1.2.2. MM BM niche 

metabolic change’. Third, BMSC is essential for the homing of MM cells and support 

the MM cell proliferation. Thus, targeting BMSC maybe provide a new therapy 

strategy to prevent the MM initiation. For example, Bz pre-treated BM is less 
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protective for MM cells. An in vivo experiment further confirms this concept. In this 

experiment, drugs which target BMSC are administrated in mice prior to MM cell 

engraftment. Result show that the BMSC targeting drug prevents the homing of MM 

cells to the BM and decrease the efficiency of tumour engraftment [235]. Together, 

this data suggests that BMSC is a main cell type in the BM niche that support MM. 

 

1.8.5 BM Role in MM Progression 

Interactions between MM cells and BMSC increase MM growth and drug resistance 

[98]. Several factors have been identified as mediators of MM-BMSC interaction 

including: 1) the vascular cell adhesion molecule 1/integrin β1; 2) intercellular 

adhesion molecule 1/integrin β2; 3) mucin 1 cell surface–associated axes (triggering 

a bidirectional signalling cascade, which activate NF-κB and MAPK1 pathways in 

BMSC and induce the secretion of IL-6, CXCL12, IGF-1, and VEGFA that further 

support MM progression [62]; 4) Notch1 receptor on MM cells binds to BMSC and 

prevents apoptosis from alkylating and intercalating agents by a p21-dependent and 

NF-κB independent mechanism [99]. From these studies it is clear that new 

therapeutic strategies are needed to disrupt the interaction between MM cells and 

BMSC and thus prevent the progression of MM and sensitise MM cells to 

chemotherapy. 

 

Primary MM cells lose their proliferation potential after being separated from their 

BM niche and cultured without BM mesenchymal stromal cell (BMSC) [236]. Many 

mechanisms describing the pro-tumoural effects of BMSC for the benefit of MM cells 

have been reported. Besides SDF-CXCR4 mediated MM cells and BMSC attraction, 

MM cells adhere to BMSC through expressing VLA-4, which binds to VACM 

expressed on BMSC. After the adherence is established, the MM cells induce signal 

pathways in the BMSC. For example, NF-κB role of promote MM cell progression 

will descripted in the ‘1.2.9 MM remodel BMSC to favour malignancy’. MM also 

upregulates secretion by the BMSC of pro-tumoural cytokines including IL-6 which 

triggers the MM cells to express VEGF, which form a positive loop to feedback to 

promote progression of MM [237].  

 

BMSC regulation of osteoclasts has also been identified as promoting MM growth. To 

absorb the bone, osteoclast seal the targeted bone matrix surface and degrade the bone, 
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through secreting hydrochloric acid and acidophilic. The transforming growth factor 

beta (TGF-β) and insulin growth factor I (IGF-I) that are secreted by dissolved bone 

matrix and the platelets that are recruited promote MM cell growth [238, 239].  The 

above studies suggest that BMSC plays a key role for MM progression via the 

regulation of osteoclast. 

 

1.8.6 MM cell remodel BM niche to favour malignancy 

The concept that cancer cells remodel their niche to favour tumour progression has 

been demonstrated in several different types of cancer [240, 241]. For example, serum 

from breast cancer patients is also proved to be able to remodel the microenvironment 

to favour the cancer cell. Sera with higher levels of PDGF-AB, intercellular adhesion 

molecule 1 and vascular cell adhesion protein 1 have all been found to be pro-tumoural 

in this setting [242]. Furthermore, microvesicles produced by cancer cells and 

circulating free DNA released from cancer cells have been shown to remodel the 

malignant niche [243, 244]. All this evidence suggests that cancer cells utilise several 

different mechanisms to remodel their niche to promote tumour progression. 

 

The concept of MM cells promoting bone destruction came initially from the clinical 

observation that many patients with MM develop lytic bone lesions.  Osteolytic bone 

lesions in patients with MM may lead to compression fractures. Furthermore, patents 

with MM have abnormal hematopoiesis as evidenced by the frequent clinical 

observation of anaemia. The anaemia observed in patients with MM is often multi-

factorial but in part is due to the hematopoietic cells being replaced by plasma cells in 

the BM. Understanding the mechanisms through which MM remodels the BM niche 

is envisaged to provide further insights as to how MM cells promote bone resorption, 

compromise the normal haematopoietic BM function, it is expected this will 

eventually result in novel approaches to prevent the MM progression within the BM. 

Research studying mechanisms of MM cells induced bone absorption reveals that MM 

cells promote osteoclast formation through upregulation of the production of RANKL 

and TNF-α, and downregulation of the production of RANKL decoy receptor and 

OPG [245]. Together these changes promote the absorption of bone. MM cells also 

modulate osteoclast function though cell – cell fusion. This concept is examined by 

the detection of transcriptionally active chromosomes of MM origin in around 30% of 

osteoclasts isolated from MM patients’ BM niche [246]. 



34 
 

MM cells also contribute to bone loss through inhibition of osteoblast activity.  The 

increased TGF-β and IL-3 levels are detected in MM patients that function to inhibit 

the osteoblast activity. The osteoblast differentiation factor, osteogenic protein-2 

expression is also inhibited by MM cells [247]. As osteoblasts function to form new 

bone, Plasma cell induced inhibition of osteoblast activity contributes to bone disease 

in patients with MM. 

 

1.9 Research Rational, Aims and Objectives 

1.9.1 Rationale 

MM evolves to become resistant to chemotherapy in part through the protective effects 

of the BM microenvironment interaction. Accordingly, new treatment strategies are 

needed to realise improved outcomes for patients. 

 

MM is an age-related disease with the majority of the new cases diagnosed in patients 

over the age of 65 years old. Furthermore, with the aging population the MM incidence 

rate is increasing. Despite many new drugs developed for the treatment of MM, the 

disease presently remains incurable. Relapse following treatment is inevitable and 

median survival following diagnosis is about 5 years.  The sub organelles of the MM 

cells such as mitochondria and ER are associated with stress induced apoptosis. The 

mechanism of how the sub organelles of MM cells adapt to the malignant cell burden, 

paraprotein producing burden and chemotherapy requires further investigation. Such 

experiments will help determine the mechanisms regulating the stress response and 

thus I postulate to lead to new ways to sensitise the malignant MM cells to 

chemotherapy. 

 

1.9.2 Aims 

The primary aims of the project are:  

1) to evaluate the signalling pathways regulation on MM cells chemotherapy 

resistance and survival  

2) to evaluate how MM cells, regulate BMSC to provide supportive microenvironment 

 3) to identify new therapy strategies to disrupt the interaction of MM and BMSC to 

sensitise the MM cells to chemotherapy. 
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1.9.3 Objectives  

To achieve the aims of the project the following approaches are applied. 

1) To establish an in vitro co-culture system to culture the MM patient BM aspirate 

derived MM cells and BMSC. Then characterise the basal state of MM cells and 

BMSC and investigate the interaction of MM cells and BMSC. 

2) To investigate the role of ER stress and mitochondria function in MM cells and 

determine the upstream regulation factors involved in the stress response which may 

sensitise the MM cells to chemotherapy. 

3) To establish the mechanism of the tumour protective effect of the MM cells and 

BMSC interaction and by doing so determine the key factors which may be targeted 

to break the protection chain and leave the MM cells more sensitive to apoptosis or 

chemotherapy. 
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CHAPTER TWO  

METHODS 
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2.1 Cell culture 

2.1.1 Cell lines and culture conditions 

To protect both the samples and the environment, all the cell culture procedures were 

carried out in sterile biological safety class II cabinets (SCANLAF, MARS Safety 

Class 2, Labogene) with standard aseptic procedures. To protect the operator, the 

airflow of the cabinet is directed around the handler and into the air grille. Then the 

air flow under the work top, up to the top of the cabinet from the back and is filtered 

through the High-Efficiency Particulate Air (HEPA) filters. To prevent contamination, 

HEPA filtered air is blown down from the top to cover materials on the work surface. 

HEPA filtered outward air, then is either recirculated back into the laboratory (for 

handling cell line) or expelled from the building by an exhaust fan (for handling MM 

patients’ BM aspirates), through ductwork. 

 

MM derived cell lines (MM1S, MM1R, U266, RPMI8226, H929) were obtained from 

the European Collection of Cell Cultures and DNA-fingerprinting authenticated. 

5TMG1 were obtained from Dr Oyajobi, The University of Texas Health Science 

Center, San Antonio, USA. All the MM cell lines were suspended cells and maintained 

in Roswell Park Memorial Institute (RPMI) 1640 Medium (Gibco) supplemented with 

10% (v/v) fetal bovine serum (Gibco), 1% penicillin-streptomycin 

(HyClone™ Penicillin-Streptomycin 100X solution, GE Healthcare). MM cell lines 

were grown in T25 or T75 flasks (Nunclon Delta surface, Thermo) and passaged to 

maintain the cell density in around 3×105 -6×105 cells/mL.   

 

BM stroma cells (BMSC) are adherent cells and maintained in a Dulbecco's Modified 

Eagle Medium (DMEM, Gibco) supplemented with 15% (v/v) (for MEFs) or 20% 

(v/v) (for human BMSC) fetal bovine serum (FBS, Gibco), 1% penicillin-streptomycin 

(HyClone™ Penicillin-Streptomycin 100X solution, GE Healthcare). BMSC were 

grown in T25 or T75 flasks (Nunclon Delta surface, Thermo) and passaged when they 

reached 80% confluence. The hydrophilic cell culture surface of the flask facilitates 

cell attachment. Briefly, when cells reached above 80 % confluence, medium was 

aspirated and cells were washed with phosphate buffered saline (PBS, without calcium 

and magnesium) to rinse out the FBS (FBS inactivates Trypsin). The cells were then 

dissociated by trypsin (Trysin-EDTA 0.25%, phenol res,) at 37 oC for a few minutes 
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(for human BMSC). Completed media was added to the detached cells to inactivate 

the trypsin and then cells were resuspended at ratio between 1:3 to 1:5. Cells were then 

seeded with culture medium. 

 

HEK293T are human embryonic kidney derived adherent cells, which were obtained 

from Dr. Ariberto Fassati (University College London, London, UK). HEK293T cells 

are maintained in DMEM supplemented with 10% (v/v) fetal bovine serum and 6 mM 

L-glutamine at 60%-90% confluence in 10 mm plate. HEK293T cells have a weak 

attachment to the tissue culture plate, therefore during subculture the cells only require 

1 mL 0.125% Trypsin. Trypsin was washed off by PBS for 1-3 min, the plate was 

swirled until the cells were detached from the plate, and then the cells were pipetted 

to obtain single cell suspension. Medium replaced every other day. 

 

All the cells were cultured in HERAcell 150i CO2 incubator (Thermo Scientific), 

which provides 95% relative humidity, 37 oC and 5 % CO2 environment. All the 

culture medium was pre-warmed to 37 oC in Grant Instruments SUB Unstirred Water 

Baths to prevent temperature induced stress to the cells.  

 

The co-culture methods include direct contact and indirect contact through transwell. 

Briefly, for direct co-culture, the BMSC is seeded on the plate overnight, and then co-

culture MM cells on it; for transwell co-culture, the BMSC is seeded on the plate 

overnight, and then the MM cells that cultured in the insert well is fitted on top of the 

plate. The ratio of BMSC and MM cells is between 1:3 to 1:4. 

 

2.1.2 Primary cell isolation 

Primary MM cells and BMSC were obtained from MM patients’ heparinized BM 

aspirates with informed consent in accordance with the Declaration of Helsinki and 

following approval by the Health Research Authority of the National Health Service, 

United Kingdom. BM aspirates from MM patients were diluted 1:1 in Hanks’ buffer 

with ethylenediaminetetraacetic acid (EDTA) and then isolated using Histopaque1077 

density-gradient centrifugation method. Density gradient separation procedure 

removed both red blood cells and died cells. Briefly, 10 mL Histopaque 1077 (sterile-
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filtered, density 1.077 g/mL, Sigma) was added at the bottom of a sterile 50 mL conical 

centrifuge tube, then 10 mL of diluted BM sample was gently added on top of the 

Histopaque. The mixture was centrifuged at 400×g (Eppendorf, centrifuge 5804), 

room temperature, for 20 min with no brake. The mononuclear cells (the layer between 

the plasma and Histopaque) was carefully removed with sterile pasteur pipet and 

placed into a 15 mL conical tube. PBS was added to the tube, which was centrifuged 

at 400×g, room temperature, for 7 min. The supernatant was discarded and 1mL red 

cell lysis buffer was added into the mixture for a minute to lyse red blood cells and 

then PBS was added to neutralise the red cell lysis solution. Cells were then centrifuge 

at 400×g, room temperature, for 7 min and supernatant discarded and cell pellet 

resuspended in complete media.  

 

The cells isolated from the BM were then cultured in complete medium for 24 h to 

obtain the BMSC. BMSC attach to the surface of the flask and primary MM cells were 

then purified from the supernatant using magnetic-activated positive selection cell 

sorting with CD138+ MicroBeads (Miltenyi Biotec, Auburn, CA). The cells were 

magnetically labelled with CD138 microbeads and then loaded on to a magnetic 

column (MACS). The CD138 negative cells passed through the MACS column with 

3 washes with cold MACS buffer (PBS with 0.5% bovine serum albumin and 2 mM 

EDTA). The MM cells were eluted by removing the magnetic field and forcing the 

cells out of the column with a plunger.  The purified CD138+ cells were then used in 

experiments described below.   

 

2.1.3 Calculating cell density  

Cells were counted using haemocytometer (Fisher Scientific) with a gridded chamber 

of 0.1 µL capacity. The cell numbers were counted and converted to cell density. 

Briefly, 10 µL cells were mixed with 10 µL 0.4% trypan blue (Sigma-Aldrich) for 1 

min to stain the dead cells. Then 10 µL cells were loaded onto the haemocytometer 

and counted under a light microscope. Cells stained blue were dead cells. If the cells 

located on the border of the grid, only count top and left side. Sum up four grids cell 

numbers and convert it to cell density using the following equation.  
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10, 000 is to convert grids capacity (0.1 µL) to 1 mL, 2 is the dilution factor as the 

cells were diluted with trypan blue in a ratio of 1:1.  

 

2.1.4 Cryopreservation of cells  

Cryopreservation is a method to maintain the cell stock. At low temperature ( < -80 
oC), cells protein and gene are stable. Dimethyl sulfoxide (DMSO) minimize the 

formation of ice crystal to prevent it from damaging the cell membrane. Briefly, for 

suspension cells, 5 ×  106 cells were collected. For adherent cells, 1/3 cells were 

collected from one T75 flask when reached 80% confluence. Cells were centrifuged 

at 300 × g for 5 min. The supernatant was discarded and the cells were resuspended 

in 1 mL freezing medium (5%-10% DMSO according to the cell type). The cells were 

then put in a cell freezing box in the -80 oC freezer for 24 h. The freezing box 

facilitated the temperature drop at a ratio of 1 oC/min.  

 

2.1.5 Thawing cells  

The thawing procedure was to minimize the stress of the frozen cells when thawing. 

That is work quickly and seed cells with high density. Briefly, the cells were 

immediately thawed in a 37 oC water bath for no more than 1 min (gently swirling the 

vial). Then the cells were slowly added to 9 mL pre-warmed medium (dropwise). The 

cells were then centrifuged at 200×g for 5 min. The medium was discarded, and the 

cell was gently re-suspended in complete medium in T25 flask. 

   

2.2 Viability and apoptosis assay 

2.2.1 Morphology assay 

Dead cells cannot maintain membrane integrity. As trypan blue only penetrates in the 

cells without membrane integrity, 0.4% trypan blue staining method was used to detect 

dead cells. It is to count the viable (no staining) and dead cell (stained with blue colour) 

numbers to get the percentage of the dead cells.  
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During apoptosis, nucleus of the cells becomes condensed and then dissembled, while 

nucleus of healthy cell is generally spherical and even distributed. Accordingly, 

morphology assay of cell nucleus is used to determine apoptosis and health cell 

numbers. Two staining reagents are used, Hoechst 33342 (Thermo Fisher Scientific, 

5 µM in PBS) to stain the nucleus of live cells and 4′, 6-diamidino-2-phenylindole 

(DAPI, 300 nM in PBS) to stain the nucleus of fixed cells. Then it is to image the cells 

with fluorescent microscopes (emit light: 350 nm, filter: 460 nm) or with confocal 

microscopy (excitation 352 nm, emission 520nm) and count the viable cells and 

apoptosis cells according to the nuclear morphology.  

 

2.2.2 Cell Titer-GLO assay 

Cell Titer-GLO Luminsecent Cell Viability Assay (Promega, Southampton, UK) was 

used to determine viable cells by measure intracellular adenosine triphosphate (ATP) 

level. ATP level represents cell metabolic level and viable cells. Briefly, cells were 

seeded into 96 well plates in quadruplactes at 1 x 105 cells per well in 100 μL culture 

medium. 100 μL CellTiter-Glo® Reagent was added in each well and mixed on an 

orbital shaker (700 rpm, 2 min). This was used to equilibrate the reaction for 10 

minutes in dark to stabilize the luminescent signal. 150 μL sample from each well was 

transferred to an opaque-walled white 96-well plate. Luminescence was then recorded 

on FLUOstar Optima Microplate Reader (BMG LABTECH, Germany) at 570 nm 

wavelength.  

 

2.2.3 Annexin V-FITC, PI apoptosis assay 

During apoptosis, cells translocate membrane phosphatidylserine to the cell surface, 

which can be detected by Annexin V staining – conjugated to a fluorochrome (FITC 

excited by 488 laser and detected using FL1 channel on a flow cytometer). Propidium 

iodide (PI) can only penetrate dead cells and stain the nucleus (excited by 488 laser 

and detected using FL3 channel on a flow cytometer). Here I used both Annexin V 

and PI to detect apoptotic cell and dead cells, as well as the live cell population 

(Annexin V/PI negative). Cells were washed with PBS and centrifuged to discard the 

supernatant, then the cells were resuspended in annexin-binding buffer to ~1 × 106 

cells/mL. Cells were stained with Annexin-V and Propidium Iodide (PI) 



42 
 

(eBioscience™ Annexin V-FITC Apoptosis Detection Kit, ThermoFisher) for 15 min 

at room temperature followed by analysis by flow cytometry (CyFlow Cube 6 flow 

cytometer, Sysmex, Milton Keynes, UK). 

 

2.3 Flow cytometry  

Different flow cytometers were used according to the purpose of the detection. 

CyFlow Cube 6 is used for up to 2 colour detection, for example, apoptosis assay. BD 

FACSAria ǁ for cell sorting to enrich the cells that were either infected with Luci or 

mCherry. Beckman coulter for up to 4 colour detection and for up to 7 colour detection. 

 

Multiple colour detection is needed for the hematologic study, as multiple cell surface 

marker proteins are needed to be detected to distinguish cells types among primary 

MM BM cells. 

 

Briefly, histopaque1077 density-gradient method isolated primary samples were first 

filtered with 0.4 mesh. Then the cells were washed with PBS. The cells were 

centrifuged and were suspended in 100 μL PBS (filtered with 0.22 μm, 1%FBS, 2mM 

EDTA and sterilised). Next the cells were stained with different cell surface antibodies 

according to the staining panel of the cell type for 15-30 min in dark. Finally, the cells 

were wash with PBS and analysed by flow cytometer.  

 

For the design of the co-staining panel, the chromophores were selected according to 

their emission wave length to avoid overlapping or bleaching of the signal. Before 

analysing the cells, perform the compensation experiment to optimise the accuracy of 

the co-staining data. The calculation of the compensation is performed by the software 

automatically. 

 

2.4 Microscopy  

According to the purpose of the experiment, different types of microscopy were used 

including confocal microscopy, high resolution fluorescent microscopy, normal 

fluorescent microscopy and normal microscopy. 



43 
 

For the confocal microscopy method, the cells were cultured on plate with the bottom 

layer is made of glass. As the laser detection system can only detect signals from the 

refractive index of glass.  

 

The live cell nuclei staining is using Hoechst (30 min staining in dark, then wash the 

cells). The fixed cell nuclei staining is using DAPI (30 min staining in dark, then wash 

the cells).  

 

The methanol fixation method was used to fix the cells. Briefly, the cells were seeded 

on coverslips in a 24 well plate and then treat the cell according to the purpose of the 

experiment. At the end point of the experiment, take off the media and add 200 μL ice 

cold methanol for 7 min in -20ºC freezer. Then took off the methanol and wash with 

PBS. Next, add 200 μL DAPI that is diluted with 1:5000 ratio and put the plate on a 

shaker for 5 min. Finally, wash the cells three times with PBS and briefly wash it in 

water, followed put the coverslip on the glass slide with 10 μL mounting solution. 

Store the slide in 4ºC dark room until imaging. 

 

2.5 RNA expression analysis 

Generally, it is difficult to detect low abundance RNA (ribonucleic acid) expression 

from a sample directly. To generate the profile of RNA expression in a sample, 

quantitative reverse transcription and PCR (polymerase chain reaction) are combined 

to amplify the number of specified RNA. First, the total RNA is isolated from cells. 

Second, the isolated RNA is reverse transcribed into complementary deoxyribonucleic 

acid (cDNA) by reverse transcriptase. Finally, the synthesised cDNA was used as the 

template for the qPCR reaction.  

 

2.5.1 Total RNA extraction 

ReliaPrep RNA cell miniprep Kit (Promega) was used to extract total RNA. Guanidine 

thiocyanate was used to disrupt nucleoprotein complexes and release the RNA, 1-

Thioglycerol to inactivate the ribonucleases, chaotropic salts to facilitate the bonding 

of nucleic acids to the column, and RNase-free DNase I to digest contaminating 

genomic DNA. Lysates were then passed through a column to isolate the RNA. Briefly, 
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suspended cells was washed with phosphate buffered saline (PBS), then cell pellet was 

digested with ice cold BL lysis buffer supplemented with TG and transferred to 

RNase-free Eppendorf tube. Adherent cells were washed with PBS and applied ice 

cold BL lysis buffer supplemented with TG. The lysis buffer was pipetted over the 

cells and lysate transferred to Ribonuclease (RNase)-free Eppendorf tube, then the 

lysate was vortexed for 30 seconds. Absolute isopropanol was added in the lysate, 

which was further vortexed for 5 seconds. The lysate was transferred to column and 

centrifuged (1 min, 12000 g, at room temperature). The nucleic acids were bound to 

the column. Column was washed with RNA wash solution, then was added 

deoxyribonuclease (DNase) I and incubated for 15 minutes at room temperature. 

Column was then washed with column wash solution once and RNA wash solution 

twice. The RNA was air dried for 1 minute and eluted with DNase/RNase free water. 

 

2.5.2 RNA quality control 

DNA, RNA and protein solution absorb ultraviolet light passing through it. The quality 

of the RNA can be determined according to the ‘Beer’s Law’ equation by detecting 

the absorbance. The concentration of the RNA was calculated by the 260 nm 

absorbance (A260 reading 1.0 = 50 µg/mL double-stranded DNA, = 40 µg/mL RNA 

and = 33 µg/mL single-stranded DNA). 

 

The purity of the nucleic acid without protein was indicated by the 260/280 nm 

absorbance ratio. Because aromatic amino acids have maximized absorption at 280 

nm wave length, the absorbance measurements at 280 nm are used to estimate the 

amount of protein in the sample. The ratio between 1.8- 2.2 is accepted as pure nucleic 

acid, while the ratio beyond this range is regarded as sample contaminated with protein. 

The purity of the RNA without solvent was indicated by the 260/230 nm absorbance 

ratio. The sample with ratio above 1.8 is accepted as pure RNA and ratio below 1.8 is 

regarded as RNA contaminated with solvent (typical contamination is ethanol or 

nucleic acid). 

 

NanoDrop ND-1000 spectrophotometer (Thermo Scientific) was used to analyse the 

concentration and quality of the RNA. For RNA measurement, the spectrophotometer 

requires to be loaded 0.5- 2 µL of sample (detection range 2 – 12,000 ng/µL). The 
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advantage of using NanoDrop ND-1000 spectrophotometer is the simplified procedure. 

The sample does not need to be added in any reagent or to be diluted. The disadvantage 

of the absorbance method is indistinguishable of all nucleic acids (double stranded 

DNA (dsDNA), RNA and single-stranded DNA (ssDNA)). Because all nucleic acids 

(dsDNA, RNA and ssDNA) have similar absorbance at 260 nm, the method can not 

specify which form of nucleic acid is presented in the sample. Briefly, the 

spectrophotometer was first blanked by 2 μL of DNase/RNase free water. Then, 2 μL 

of each RNA sample was added to the sensor and then the concentration was measured.  

Sample concentrations were recorded along with the 260/280 ratio and 260/230 ratio. 

 

2.5.3 cDNA synthesis 

To synthesize double stranded complementary DNA (cDNA) from a single stranded 

RNA, qPCRBIO cDNA synthesis kit (PCR Biosystems, London, UK) was used. This 

includes modified MMLV reverse transcriptase, which is not inhibited by ribosomes, 

the kit also contains short primer sequences which binds to the 3' end of the isolated 

RNA template, RNase inhibitor which prevents degradation of RNA, anchored oligo, 

random hexamers, enhancers, deoxynucleotide (dNTPs) and MgCl2. Reverse 

transcription was performed on a BIO-RAD T100 Thermal Cycler. Briefly, 7.5 μL 

RNA (from 4.0 pg up to 0.4 μg of total RNA) was mixed with 2 μL 5x cDNA Synthesis 

Mix and 0.5 μL 20x RTase (with RNase inhibitor). This was incubated at 42°C for 30 

minutes (for most of applications that GC content <65%), 85°C for 10 minutes and 

cooled down to 4°C immediately (lid temperature 105 °C). cDNA was stored at 4°C 

until used.  

 

2.5.4 Relative quantitative RT-PCR 

Relative quantitative real-time PCR allows us to compare changes in gene expression 

between a set of samples. For this I used the SYBR green based method of detection 

(qPCRBIO SyGreen Mix, PCR Biosystems). Predesigned KiCqStart SYBR Green 

primers were purchased from Sigma. SYBR green is a fluorescent dye that binds to 

dsDNA and releases fluorescent signal, which can be detected at the end of each PCR 

cycle. Briefly, the cDNA was mixed with SyGreen Mix and primer, and this was 

placed in a 96 or 384 well plate. The cycling conditions were 95 °C for 2 min as pre-



46 
 

amplification to activate the polymerase and denature the cDNA. Second, the cDNA 

was amplified through 45 cycles (95 °C for denaturation of the dsDNA, for 15 seconds 

and 60°C for annealing and extending the ssDNA, for 10 seconds and 72°C for 10 

seconds) on a 96 or 384-well LightCycler 480 (Roche, Burgess Hill, UK). The 

specified mRNA expression was normalized against glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) or β-actin. Sequences of real-time PCR primers used in this 

study are listed in Table 2.1. 

 
Table 2.1 Oligonucleotide sequences for real-time PCR (5' to 3') 

Gene Forward (5' to 3')  Reverse (3' to 5') 

GAPDH GCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATA 

NRF2 CGTTTGTAGATGACAATGAG AGAAGTTTCAGGTGACTGAG 

HO-1 ATGACACCAAGGACCAGAGC GGGCAGAATCTTGCACTTTG 

GCLM TGCAGTTGACATGGCCTGTT TCACAGAATCCAGCTGTGCAA 

ATF4 CCTAGGTCTCTTAGATGATTACC CAAGTCGAACTCCTTCAAATC 

CHOP CTTTTCCAGACTGATCCAAC GATTCTTCCTCTTCATTTCCAG 

Β-ACTIN GATCAAGATCATTGCTCCTC TTGTCAAGAAAGGGTGTAAC 

ATG5 AAGACCTTTCATTCAGAAGC CATCTTCAGGATCAATAGCAG 

CYPD ACGAGAACTTTACACTGAAG CAACCAGTCTGTGTCTTTATGG 

 

2.6 Protein expression analysis 

Western blot or protein immunoblot method was used to analyse the specified protein 

expression. First, the protein was extracted, denatured and separated through gel 

electrophoresis. Second, the protein was transferred to a polyvinylidene difluoride 

(PVDF) membrane and bound with antibodies that specifically target it. Finally, the 
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protein can be visualised through the secondary antibody, which binds to the first 

antibody. 

 

2.6.1 Protein extraction  

For the whole protein extraction, radioimmunoprecipitation assay buffer (50 mM Tris, 

pH 8.0, 150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate, 

supplemented with phosphatase inhibitor cocktail tablet and protease inhibitor cocktail 

tablet from Roche) was used. This buffer quickly lyses the cells and solubilizes the 

proteins which include membrane-bound proteins. For the protein located in the 

nucleus, NE-PER nuclear and cytoplasmic extraction reagents (Thermo scientific) 

were used. This buffer effectively separates cytoplasmic and nuclear protein. Briefly, 

for the whole protein extraction, the cells were washed with PBS and the ice cold lysis 

buffer was added to the cells. For the nuclear protein extraction, the cells was first 

washed with PBS and was added with ice cold CER buffer I. After vortex for 15 s, the 

lysate was put in ice for 10 min. Second the lysate was added with CER II buffer, and 

incubated on ice for 1 min, then the mixture was centrifuged and the supernatant 

(cytoplasmic extraction) was discarded. Finally, the pellet was added with NER buffer 

and incubated on ice and then centrifuged. Supernatant (nuclear protein) was placed 

in a fresh tube and stored at -80°C until use. 

 

2.6.2 SDS polyacrylamide gel electrophoresis and Western Blot 

Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis was used to 

separate proteins by their molecular mass. Briefly, the lysate was first centrifuged at 

4 °C, 10000 g, for 10 min and the supernatant was collected and then the loading buffer 

was added to the samples, and mixed, heated to 100 °C for less than 5 min. Thereafter, 

the protein sample was loaded to the acrylamide gels. The gels were run at 200 V for 

1 h in the running buffer (Tris-Base 3.03 g, glycine 14.4 g, SDS 1 g in 1 L dH2O). 

After the electrophoresis, the proteins were transferred from the gel onto a 

polyvinyladine fluoride (PVDF) membrane for analysis, The PVDF membrane was 

pretreated with methanol. The wet transfer apparatus was filled with the transfer 

Buffer (3.03 g of Tris-Base, 14.4 g of glycine and 200 mL of methanol in 1 L dH2O), 

and the transfer was run at 100 V for 1 h. All subsequent incubation steps were 
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performed with constant agitation on a shaker. Following the transfer, the membranes 

were blocked in a solution of 5% BSA or 5% milk in PBS with 0.1% Tween (PBST) 

for 1 h at room temperature.  

 

The membranes were incubated with the primary antibody diluted in 5% BSA or 5% 

milk PBST, at 4°C overnight. The membranes were washed 5 times with PBST for 5 

min per wash. The horseradish peroxidase (HRP) conjugated secondary antibody was 

diluted in 5% BSA or 5% milk PBST. The membranes were incubated with the 

respective secondary antibodies for 1 h at room temperature. The membranes were 

washed with PBST 5 times for 5 minutes each. Next, the membranes were developed 

using the enhanced chemiluminescence (ECL) reagent (GE healthcare, Little Chalfont, 

UK). The solution A and solution B were mixed in a 1:1 ratio. Then, the resulting 

solution covered the membranes for 1 minute, and further drained off. The membranes 

were imaged using the Chemdoc-It2 Imager (UVP). Images were stored and then 

processed using Image J. Table2.2 show the list of antibodies used for Western 

Blotting.  
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Table 2.2 Antibodies for Western Blotting 

Primary antibodies 

Name Isotype Dilution Supplier 

Anti- β-actin mouse 
monoclonal 

1:1000 R&D Systems, MAB1536 

anti-NRF2 rabbit 
monoclonal 

1:1000 Abcam, 62352 

anti-GAPDH rabbit 
monoclonal 

1:1000 Cell Signaling Technology, D16H11 

anti-Sam68 rabbit 
monoclonal 

1:1000 Santa Cruz Biotechnology, sc-1238 

anti-CHOP rabbit 
monoclonal 

1:1000 Cell Signaling Technology, 1649 

anti-P62 rabbit 
monoclonal 

1:1000 Abcam, ab109012 

Anti-LC3 rabbit 
monoclonal 

1:1000 Cell Signaling Technology, 4108S 

Secondery antibodies 

Name Dilution Supplier 

Goat anti-mouse IgG HRP 1:1000 Dako, Agilent, P0447 

Goat anti-Rabbit IgG HRP 1:1000 Dako, Agilent, P0448 

 

2.7 Short hairpin RNA (shRNA) mediated gene silencing using lentivirus 

2.7.1 RNA amplification 

MISSION® TRC shRNA plasmid need to be recovered, purified and amplified. To 

reviving the E. coli, a sterile loop was jabbed into the glycerol stock, then was streaked 

gently across the agar plate as show below. The sterile loop was changed for each 

streak. The streaked plate was put at 37 °C hot room for 14 h to allow the revival of 

the stored bacteria. The single clones normally is shown along the third streak. 
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Figure 2.1 Streak plate 

Three steps to streak the plate. 

To purify and amplify the E. coli, 4-5 single clones were picked (avoid satellite 

colonies in antibiotic depleted area) and was transferred into culture tube with 5 mL 

sterile LB, individually. It was swirled at 250 rpm, at 37 °C overnight. This procedure 

was carried out to ensure the homogeneity of the E. coli. 

 

2.7.2 Plasmid purification  

NucleoSpin® Plasmid kit (Macherey-Nagel, Germany) was used to purify the plasmid 

from E.coli. The bacteria were lysed by SDS/alkaline buffer. After neutralisation, 

precipitated protein, genomic DNA, and cell debris were pelleted, then the plasmid 

bound with the column, and contaminations like salts, metabolites and soluble 

macromolecular cellular components were washed out by centrifuge force. Purified 

plasmid DNA was eluted by sterile dH2O.  

 

Briefly cells were centrifuged for 30 s at 11,000 x g and the supernatant was discarded 

as much as possible. Second, 250 μL Buffer A1 was added to resuspend the pellet 

completely. Third, 250 μL Buffer A2 was added. The tube was gently inverted for 6–

8 times to avoid shearing of genomic DNA and was incubated at room temperature 

for up to 5 min until lysate appeared to be clear. Fourth, 300 μL Buffer A3 was added. 

The tube was gently inverted for 6–8 times until blue samples turned colourless 

completely without any traces of blue. Fifth, after the tube was centrifuged for 5 min 

at 11,000 x g at room temperature, 750 μL of the supernatant was transferred onto the 

column and centrifuged for 1 min at 11,000 x g. The remaining lysate was loaded and 

centrifuged. Sixth, the column was washed with preheated 500 μL Buffer AW (50 °C) 
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for 1 min at 11,000 x g, then was washed with 600 μL Buffer A4 for 1 min at 11,000 

x g. Finally, the column was dried through centrifuging for 2 min at 11,000 x g and 

was incubated with 50 μL sterile ddH2O at room temperature for 1 min, then was 

centrifuged for 1 min at 11,000 x g to elute the plasmid. Plasmids were stored at -

20 °C before use. 

  

2.7.3 Plasmid precipitation 

For effective transfection, the optimal plasmid DNA concentration should be above 

180 ng/μL. Ethanol precipitation is a widely-used method to concentrate plasmid DNA, 

as ethanol efficiently precipitates nucleic acid when salt in presence and the plasmid 

DNA can be achieved at desired concentration. Briefly the plasmid was mixed 

thoroughly with 3 M sodium acetate (pH 5.2, 10%) and ice cold 100% ethanol (2.5- 3 

fold v/v), the DNA was precipitated at -20 °C overnight. Then the mixture was 

centrifuged at 13000 rpm, 4°C, for 30 min. Second, the pellet was washed twice with 

500 μL ice cold 75% ethanol (centrifuged at 4 °C for 10 min). Third, the trace ethanol 

was removed through spin at 13,000 rpm for 10 s). Finally, the pellet was dried by air 

and resuspended in ddH2O (nuclease free, 0.22 μm filtered). 

 

2.7.4 Lentivirus production 

Gene silencing or gene knockdown is a method to reduce the expression of a target 

gene in cells. Unlike gene knock-out (for example, CRISPR-CAS9), which is to 

eliminate target gene expression by removing essential DNA sequences from the cells, 

RNA interference that selectively inactivate targeting mRNA by double-stranded 

RNA, can reduce gene expression from 50 – 95% of total target RNA expressed. The 

method enables the essential gene required for survive of the cells to be investigated 

and the disease-related gene to be investigated by their link between gene expression 

level and disease progression. RNA interference includes siRNA and shRNA methods. 

shRNA could integrate in DNA for stable shRNA expression thus is widely used for 

RNAi. Compares to cell lines, primary cells are relatively difficult for shRNA delivery, 

thus lentivirus-delivered short hairpin RNA (shRNA) -mediated knock down method 

was used. The used shRNA is MISSION® shRNA, a lentiviral clone, which is a 

sequence- verified plasmid from Sigma. Low in degradation and turnover rate, shRNA 
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has a tight hairpin turn, a loop structure, to decrease gene expression via RNA 

interference with target RNA sequence. MISSION® shRNA NRF2 plasmid was 

purchased from Sigma-Aldrich and transferred into HEK 293T cells. MISSION® 

pLKO.1-puro Control Vector was used as the control lentivirus (SHC001, Sigma-

Aldrich). 

 

The MISSION® TRC shRNA plasmid or control vector was transformed into 

Escherichia coli (E. coli) strain DH5α T1R, colonies were picked and the plasmid 

isolated and stored at -20 °C. After amplification of the shRNA plasmid/control 

plasmid, it was co-transfected into the HEK 293T cells with pCMVΔR8.91 (the 

packing plasmid expressing gag-pol) and pMD.G (the envelope plasmid expressing 

VSV-G) to produce lentivirus. Both of the two plasmids were kindly provided by Dr. 

Ariberto Fassati (University College London, London, UK).  

 

Gag (a polyprotein), Pol (a reverse transcriptase), and Env (the envelope protein) are 

three major proteins encoded in the lentivirus genome. Gag produces the viral core 

structure and core proteins. Pol is encoded to produce a reverse transcriptase, affecting 

integrase activity and RNase H activity, which is essential during genome reverse 

transcription. Three plasmids were co-transfected to the packing cells to produce 

lentivirus. The plasmids are pCMVΔR8.91 (packing plasmid expressing gag-pol), 

pMD.G (envelope plasmid encoding VSV-G), and shRNA plasmid. 

 

FuGENE (Promega, Fitchburg, WI, USA) was used to transfect plasmids to the 

packaging cells, HEK293T. Nonliposomal FuGENE® Transfection Reagent is widely 

used for transfection due to its high efficiency and low toxicity. The reagent does not 

require removal of serum or culture medium and does not require washing or changing 

of medium after introducing the reagent/DNA complex. 

 

Briefly, a 10 cm plate was seeded with HEK293T cells to 60% confluency and was 

changed with 7.5 mL complete medium without antibiotics. 1 μg of each packaging 

plasmids were mixed with 1.5 μg shRNA plasmid and were topped up to 15 μL with 

TE buffer, then it was mixed with 18 μL FuGENE (room temperature) in 200 μL Opti-

MEM (Life Technologies, Gaithersburg, MD, USA) reduced serum medium. The 
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mixture was added to the plate drop wise. The plate was swirled gently and put in 

culture incubator for 24 h. The medium was discarded and replaced with 7.5 mL fresh 

complete medium without antibiotics. The medium was collected and replaced at 48, 

72 and 96 h. The collected medium was frozen immediately at -80 °C. 150 μL medium 

was collected and frozen separately each time for titration.   

 

2.7.5 Lentivirus RNA isolation for titration 

NucleoSpin RNA Virus Isolation Kit (Macherey-Nagel, Germany) was used to isolate 

lentivirus RNA. After the cells were lysed by RAV1, the RNA was bound to the 

column. For low-concentrated viral RNA, carrier RNA (inert RNA >200 nt) was used 

to improve binding and recovery of the RNA. Contaminations (salts, metabolites and 

soluble macromolecular cellular components) were washed out by centrifuge force 

using washing buffer. The nucleic acids were then eluted by water. Briefly, first, 70 

μL of each time point collected medium was combined and 150 μL of which was 

mixed with 600 μL Buffer RAV1 with Carrier RNA, then it was incubated for 5 min 

at 70 °C. Second, after 600 μL 100 % ethanol was mixed by vortex for 10–15 s, 700 

μL of the mixture was transferred to the column and was centrifuged for 1 min at 8,000 

x g. Repeat the step to reload all the mixture to the column. The flow-through fraction 

was discarded and collection tube (2 mL) was changed for each step. Third, the column 

was washed by 500 μL RAW buffer for 1 min at 8,000 x g to remove the contaminants 

and PCR inhibitors. Then the column was washed with 600 μL Buffer RAV3 for 1 

min at 8,000 x g again. Fourth, the column was washed with 200 μL Buffer RAV3 for 

2–5 min at 11,000 x g, then it was centrifuged again to remove all the ethanol in the 

Buffer. Finally, the column was incubated with 50 μL RNase-free H2O (preheated to 

70 °C) for 1–2 min, then the RNA was eluded by centrifugation for 1 min at 11,000 x 

g. 

 

2.7.6 Lentivirus RNA titration  

The purified RNA was first treated with DNase I to degrade the DNA contamination, 

then quantitative RT-PCR was performed for the lentivirus RNA titration. Quant-X™ 

One-Step qRT-PCR SYBR® Kit (Clontech) and Lenti-X reverse transcription 
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polymerase chain reaction (qRT-PCR) titration kit (Clontech Laboratorories, 

California, USA) were used.  

 

Briefly, First, for the DNase I reaction, after 12.5 µL RNA sample was mixed with 2.5 

µL DNase I Buffer (10x), 4 µL DNase I (5 units/µL) and 6 µL RNase-free Water, the 

mixture was incubated at 37°C for 30 min, followed by 70°C for 5 min in a BIO-RAD 

T100 Thermal Cycler. The mixture was stored on ice, while preparing the next 

procedure.  

 

Second, master reaction mixture for qRT-PCR was prepared on ice, which was a 

mixture of 8 µL RNase-free water, 12.5 µL Quant-X Buffer (2X), 0.5 µL Lenti-X 

Forward Primer (10 µM), 0.5 µL Lenti-X Reverse Primer (10 µM), 0.5 µL ROX 

Reference Dye LSR or LMP (50X), 0.5 µL Quant-X Enzyme and 0.5 µL RT Enzyme 

Mix. The actual volume of each reagent was 10% more than was described before to 

ensure enough master reaction mixture for the reaction.  

 

Third, PCR grade 8-well strips were used to make 10-fold serial dilutions of Lenti-X 

RNA Control Template and the viral RNA with EASY Dilution Buffer. The first well 

of Lenti-X RNA Control Template contents 5 x 107 copies/µL and the fifth well 

contents 5 x 102 copies/µL. The standard curve of Lenti-X RNA Control Template 

was calculated according to the concentration. 3 wells for control of serial dilutions of 

Lenti-X RNA Control Template were loaded with EASY Dilution Buffer only. Each 

purified RNA sample was diluted to four 10-fold serial dilutions. To remove bubbles 

from the mixture, the strips was tapped gently and was centrifuged at 2000 rpm, 4°C 

for 1 min.  

 

Fourth, for the PCR reaction, a 96-well PCR plate was placed on ice, and 23 µL/well 

of master reaction mixture was loaded into the wells (in duplicate). 2 µL/well of Lenti-

X RNA Control Template dilutions, control EASY Dilution Buffer and RNA sample 

dilutions were loaded into the wells. To remove bubbles from the mixture, the plate 

was centrifuged at 2000 rpm, 4°C for 2 min. The LightCycler 480 (Roche, Burgess 

Hill, UK) was programmed as below, 42°C 5 min and 95°C 10 s for RT reaction, 

repeat 95°C 5 s and 60°C 30 s for qPCR x 40 Cycles, 95°C 15 s – 60°C 30 s for melt 

curve analysis then all 60°C–95°C. The standard curve was plotted through average 
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Ct values from the control dilution duplicates (y axis) and copy number (log scale, x 

axis).  

 

To determine the RNA sample copy numbers, each RNA dilution copy numbers were 

calculated through the standard curve according to the cycle threshold (Ct values). The 

mean copy number was generated through back-calculated starting copy number value 

of each RNA dilution. The formula is shown below. 

 
 

Next, the copy number was converted to transducing units (TU/mL). The formula is 

shown below. 100000 is the division factor, which was the viral copy number and viral 

infectivity ratio. It was determined by counting GFP positive cells that were infected 

with the lentiviral vectors expressing GFP through a conventional fluorescent 

microscope (performed by Dr. Lyuba Z, UEA, UK). 

 

Sixth, the 100 kDa Concentration Amicon Ultra centrifugal filter (EMD Millipore, 

Massachusetts, USA) was used to concentrate the virus. The virus medium was thawed 

on ice overnight then it was loaded to the upper reservoir of the Amicon and was 

centrifuged at 1000 x g, 4°C in a swinging-bucket rotor. The concentrated virus was 

frozen and stored at – 80 °C until needed. The final volume was recorded. Finally, the 

formula for calculate the volumes of virus that is needed for desired Multiplicity of 

infection (MOI) is shown below. MOI is the number of virus particles per cell. 

 

 

2.7.7 Lentivirus transduction 

1 µg/mL polybrene was used to enhance the efficiency of transduction. As 

a cationic polymer, it can improve transduction efficiency 100- 1000 fold through 

neutralizing the charge repulsion between virions and sialic acid on the cell 
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surface.  The virus was thawed on ice to prevent the degradation. The desired volume 

of virus was added on the polybrene-treated cells that were cultured in antibiotic free 

medium and was gently mixed, then the cells were in culture incubator overnight and 

topped up with fresh antibiotic free medium. Generally, MOI 30 is used for lentivirus 

transduction to BMSC and lower than MOI 10 is used for lentivirus transduction to 

MM cells. The gene silencing can be detected from the transduction after 72 h.  Table 

2.3 show the shRNA sequencing.  

Table 2.3 Mission shRNA sequence 

Name Clone ID TRCN SEQUENCE 

Nrf2 NM_006164.

2-1144s1c1 

000000

7558 

CCGGCCGGCATTTCACTAAACACAA

CTCGAGTTGTGTTTAGTGAAATGCC

GGTTTTT 

ATG5 NM_004849.

1-1170s1c1 

000015

1963 

CCGGCCTGAACAGAATCATCCTTAA

CTCGAGTTAAGGATGATTCTGTTCA

GGTTTTTTG 

 

2.8 Promoter assay 

The HO-1 promoter construct (pHO-1Luc4.0 and pHO-1mut ARE) was a kind gift 

from X. Chen, Baylor institute of Medicine, Houston. For the reporter assays, a total 

of 0.5 μg of reporter plasmids and pRL-CMV control constructs were co-transfected 

into U226. The transfected cells were incubated for 48h before the indicated treatments. 

For reporter assay, the cells were treated with Dual-Luciferase Reporter Assay System 

(Promega) and were evaluated by (FLUOstar optima Microplate Reader BMG 

LABTECH, Germany) with luminometer. 

 

2.9 ER-stress detection 

ER-Tracker™ Red (BODIPY® TR Glibenclamide, Thermo Scientific) was purchased 

from Invitrogen. The live cellular ER-stress levels were determined according the 

manufacturer's guidelines by flow cytometry. Briefly, HBSS-washed cells was stained 
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with ER-Tracker™ Red for 30 minutes at 37 oC, then analysed by CyFlow Cube 6 

flow cytomter (Sysmex, Milton Keynes, UK). 

 

2.10 GSH assay 

GSH-Glo™ Assay was purchased from Promega. The cellular GSH levels were 

determined according the manufacturer's guidelines by (FLUOstar optima Microplate 

Reader BMG LABTECH, Germany) with luminometer. Briefly, GSH-Glo reagent 

was added to cells in 96 well white plate and the mixture was incubated for 30 minutes. 

Then cells were added with reconstitutes luciferin detection reagent, incubated for 15 

minutes. Then, the luminous signal was detected. 

 

2.11 In vivo mice experiments 

Project license and personal license were obtained for the regulated procedures on the 

living animals. I carried out this work under the direct supervision of my supervisor 

in the Disease Modelling Unit (DMU) facility at the University of East Anglia, where 

the mouse was housed in individually ventilated cages and were maintained under 

specific pathogen-free conditions in accordance with regulations of UK Home Office 

and the Animal Scientific Procedures Act. 8-10 week old mouse were used for all the 

experiments. NSG mouse were purchased from Jackson Laboratories (Bar Harbor, ME, 

USA).  

 

2.11.1 NSG mice  

NSG, also called NOD scid gamma, NOD-scid IL2Rgnull or NOD-scid 

IL2Rgammanull. NSG mice are a widely used immune deficient strain to avoid host 

immune system responds and improve the immune cell engraftment efficiency, which 

is developed by Dr. Leonard Shultz from The Jackson Laboratory. Specifically, there 

are two mutations in the mice.  Severe combined immune mutant is the DNA repair 

complex protein Prkdc deficiency and resulted with impaired B and T cell; the 

complete null allele of the IL2 receptor common gamma chain mutant inhibit cytokine 

signalling and impaired the NK cells. 



58 
 

2.11.2 MM cell xenograft 

For the in vivo detection of the MM cell engraftment, pCDHluciferase-T2A-mCherry 

lentiviral construct (Luc) were used to infect the MM cells (a kind gift from Prof. Dr. 

Med. Irmela Jeremias, Helmholtz Zentrum München, Munich, Germany). MM-Luci 

cells will shift luciferin to red light in vivo at 37 °C and the signal can be detected by 

the Bruker In-Vivo Xtreme Imaging Systems. The MM-Luci cells were sorted by BD 

FACSARIA III cell sorter (BD Biosciences) on FL3 channel. 6-8 week old NSG mice 

were either subcutaneous (SC) or intravenous (IV) injected with MM-Luci cells. For 

the SC administration, the MM-Luci and BMSC cells (3:1 ratio, in 200 μL PBS) were 

injected under the loose skin over the flank of each mice. For the IV administration, 

the mice were first warmed at 37 oC in individual warming boxes for no more than 10 

minutes, the cells (in 200 μL PBS) were injected with 27-gauge needle with 1 ml 

syringe. Pressure was applied to the injection site to avoid bleeding. 

 

2.11.3 In vivo bioluminescent (BL) imaging  

Bruker In-Vivo Xtreme Imaging Systems (Bruker Corp., Massachusetts, USA) imager 

for in vivo bioluminescent (BL) imaging was used to evaluate the engraftment of MM 

cells in anaesthetised NSG mice. 200 µl of D-luciferin (Thermo Fisher Scientific, 15 

mg/mL in PBS) was intraperitoneal (IP) injected into each mice 10 minutes before 

anaesthesia (2-3% isoflurane with oxygen). The mice were transferred to the Bruker 

specimen chamber, which is fitted with nose cone isoflurane/oxygen delivery device 

to maintain anaesthesia during imaging. The light, X-ray and luminescent images were 

acquired within 5 minutes to avoid faded signal. The mice were monitored closely 

until they were recovered from anaesthesia. Bruker MI SE software and Image J were 

used to process the images.  

 

2.11.4 Mice scarification and BM cells isolation  

At the ending point of experiment, for example, weight loss more than 20%, reduced 

motility, bilateral hind leg paraplegia, over grooming or rough and patchy fur, tumour 

at 10mm (SC MM injected animals), a schedule 1 method was used to sacrifice the 

mice (Usually mice were exposed to CO2, followed by neck dislocation). To harvest 

the BM cells, the tibia and femurs were isolated and were cut in the middle, then the 
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bones were placed in a 0.5 mL Eppendorf tube with a hole at the bottom to allow the 

BM cells passing through. The BM cells were collected by centrifugation of no more 

than 10 seconds at 400g with 1.5 ml Eppendorf tube. Hybri-Max buffer were used to 

lysis the red cells. BM cells were then stained with different antibody panels to 

evaluate the desired cell population. For example, anti hCD33 and anti hCD45   

staining penal determines MM cell population, mCD45-/CD105+/CD31-/Ter119- 

staining penal determines mBMSC population. The antibody penal used to determine 

desired cell population is listed in Table 2.4. 

Table 2.4 Antibody penal for cell staining 

Cell Antigen Fluorochrome Species Supplier 

BMSC CD45- BV420 Human BioLegend 

CD45- BV510 Mouse BioLegend 

CD105+ FITC Mouse Miltenyi Biotec 

CD31- Percp Mouse Miltenyi Biotec 

Ter119- APC Mouse Miltenyi Biotec 

CD140a- APCcy7 Mouse Miltenyi Biotec 

CD33- PE Human Miltenyi Biotec 

 

2.12 Adenovirus GFP LC3B construct 

Adenovirus GFP LC3B was a kind gift from Thomas Wileman. Briefly, LC3BF 5’-

ATCGCTCGAGCTACCATGCCCTCGGAGAAGAGCTTC-3’ and LC3BR 5’-

ATCGGGATCCCTAGACGGAAGATTGCACTCC-3’, were cloned into pEGFP-C1 

(Clontech, 6084-1) between the XboI and BamHI sites. Then the construct was 

combined with replication-defective recombinant human adenovirus [248]. 
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2.13 Statistical analysis 

The Mann Whitney test was used to compare results in control to treated groups. 

Results with p < 0.05 were considered statistically significant (*). Two-way ANOVA 

with Sidak’s post-test was used to compare changes in individual primary sample 

under treatment. Results with p < 0.05 were considered statistically significant (*). 

Results represent the mean ± SD of 4 independent experiments. For Western blotting, 

data are representative images of 3 independent experiments. I generated statistics 

with Graphpad Prism 5 software (Graphpad, San Diego, CA, USA). 
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CHAPTER THREE   

HIGH NRF2 EXPRESSION CONTROLS ER STRESS INDUCED 

APOPTOSIS IN MM 
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3.1 Introduction 

3.1.1 Understanding PI resistance in MM 

Genetic studies show that MM is a complex heterogeneous disease and adapted to 

multi-drug treatments [249-252]. As a result, the newly designed drugs, for example 

PI, are increasingly used in clinic for the treatment of MM but MM patients quickly 

develop resistance to the drugs and relapse. Until now, MM is still an incurable blood 

cancer [253-256]. Thus, there is a need to decode the mechanisms of PI resistance to 

improve the outcomes of MM treatment. 

 

3.1.2 The role of NRF2 in PI induced ER stress 

MM cells are high in ER stress. ER is a sub cellular organelle, which is a protein 

folding compartment. In MM cells, the ER has to cope with substantial incorrect 

folded paraprotein production. PI prevents the degradation of proteins, which further 

elevates ER-stress and increases intracellular oxidative stress in MM cells and induces 

ER stress associated apoptosis [86, 257-259]. These evidences suggest that PI resistant 

MM cells may activate survival mechanism to avoid ER stress associated apoptosis. 

 

NRF2 regulation may support the MM cells to elevate ER stress. NRF2 regulates ER-

stress through the negative regulation of CHOP [260]. During ER stress, CHOP is 

induced by ATF4, and then mediates ER stress associated apoptosis. This concept is 

supported by a report, which confirms high NRF2 activity prevents ER-stress induced 

apoptosis by preventing the induction of CHOP [261]. PI induces NRF2 activity in 

many cell types including MM cells [262, 263], which provide the MM cells a survival 

mechanism to avoid ER stress induced apoptosis.   

 

3.1.3 The aim of the project 

Reports suggest that deregulating redox homeostasis in MM increases sensitivity of 

MM to Bz [263] and elevated glutathione levels block Bz induced stress responses 

[264]. Since NRF2 activation positively regulates glutathione levels and negatively 

regulates CHOP, therefore, I wanted to determine: 1) Is NRF2 highly expressed in 
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MM? 2) Does silencing NRF2 reduce cell viability? 3) Does the NRF2 regulate 

glutathione and CHOP in response to PI treatment? 

 

3.2 Results 

3.2.1 Investigate NRF2 activity in MM cell lines and primary MM cells 

NRF2 upregulation has been reported in various cancers [265-267], which suggests 

the NRF2 activation as pro tumour. To test whether this was the case in multiple MM, 

I first characterised the basal expression of NRF2 in MM cell lines and primary MM 

cells. High NRF2 expression was detected in all MM cell lines and 4/8 primary MM 

samples (Figure 3.1).  

 
Figure 3.1 NRF2 levels in MM cell lines and primary MM cells 

Whole cell protein from MM cell lines and primary MM cells was extracted and was 

compared for the NRF2 protein expression by Western blotting. Blots were reprobed 

for β-actin for loading control.  

 

3.2.2 shRNA targeted NRF2 silencing in MM cell  

Next, I used NRF2 targeted shRNA to silence NRF2 in MM cells. The shRNA KD 

method is commonly used to determine the functional consequence of silencing gene 

activity. According to Figure 3.1, I chosed the MM cells line, MM1S (low NRF2 

expression) and U226 (high NRF2 expression) as in vitro models. Figure 3.2 shows 

that NRF2 targeted lentivirus reduced NRF2 mRNA expression in both cell lines. 
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Figure 3.2  Silencing NRF2 in MM cells using shRNA 

MM1S and U266 were infected with lentiviral mediated NRF2 targeted shRNA. Then 

RNA was extracted and analysed for NRF2 expression and GAPDH was used for 

normalisation. Then the NRF2 mRNA expression fold change was normalised with 

their control group to compare the NRF2-KD efficiency between two cells. The Mann 

Whitney test was used to compare results in control to treated groups. Results with p 

< 0.05 were considered statistically significant (*). Results represent the mean ± SD 

of 3 independent experiments. 

 

To determine if NRF2 activation was inhibited by NRF2 targeted shRNA, I used qPCR 

to detect the expression of NRF2 regulated gene HO-1 and GCLM. Both these genes 

carry an antioxidant response element (ARE) in their promoters [268, 269]. Moreover, 

HO-1 has been shown to play an essential role in drug resistance in MM cells and 

GCLM is a modifier subunit of the rate limiting enzyme, glutamate cysteine ligase in 

GSH synthesis [270].  Figure 3.3 and 3.4 show that NRF2-KD MM cells decreased 

HO-1 and GCLM messenger RNA (mRNA) expression. 

 

 
Figure 3.3  NRF2-KD MM cells have reduced HO-1 gene expression 
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Lentiviral mediated shRNA KD of NRF2 in MM1S and U266. RNA was extracted and 

analysed for HO-1 expression and GAPDH was used for normalisation. Empty vector 

was transduced in the cells as control group. The Mann Whitney test was used to 

compare results in control to treated groups. Results with p < 0.05 were considered 

statistically significant (*). Results represent the mean ± SD of 3 independent 

experiments. 

 

 

 

 
Figure 3.4  NRF2-KD MM cells have reduced GCLM gene expression 

Lentiviral mediated shRNA KD of NRF2 in MM1S and U266. RNA was extracted and 

analysed for GCLM expression and GAPDH was used for normalisation. The Mann 

Whitney test was used to compare results in control to treated groups. Results with p 

< 0.05 were considered statistically significant (*). Results represent the mean ± SD 

of 3 independent experiments. 

 
3.2.3. NRF2 function in MM cell survival 

To prove that the NRF2 activity is essential for the MM cell survival, I evaluated 

NRF2-KD MM cell viability using flow cytometer with PI/Annexin V staining to 

measure apoptosis. Results show that the viability of NRF2-KD U226 and MM1S 

were significantly reduced (Figure 3.5).  
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Figure 3.5  Viability of NRF2-KD MM cells are reduced 

Lentiviral mediated shRNA KD of NRF2 in MM1S and U266, and then analysed for 

cell viability using flow cytometer with PI/Annexin V staining. The Mann Whitney test 

was used to compare results in control to treated groups. Results with p < 0.05 were 

considered statistically significant (*). Results represent the mean ± SD of 3 

independent experiments. 

 
Finally, I wanted to determine if blockade of NRF2 using a chemical inhibitor could 

mimic the effect using shRNA.  As inhibitor that could specially target NRF2 is in 

need of develop, I selected brusatol to treat the MM1S and primary MM sample. 

Brusatol is a quassinoid compound extracted from Brucea javanica. As a general 

translation inhibitor, brusatol causes a decline in the protein levels of short‐lived 

proteins, including NRF2 [271]. Data show brusatol decreased cell viability of primary 

MM cells and MM cell lines (Figure 3.6). Since a subset of MM cells were resistance 

to brusatol, the data suggest that NRF2 activation is critical for the survival of a subset 

of MM cells.  
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Figure 3.6  NRF2 inhibitor brusatol induces MM cell apoptosis 

MM1S cells and primary MM cells were treated with brusatol (30 nM) for 24h and 

then analysed for apoptosis using flow cytometer with PI/Annexin V staining. 

 

3.2.4 To investigate PI induced NRF2 activity in MM cells 

PI is increasingly used in the treatment of MM. I therefore evaluated NRF2 expression 

in PI treated MM cell lines to evaluate if NRF2 may function as a mechanism of 

resistance to PI. I evaluated nuclear NRF2 expression, as it better reflects NRF2 

activation. Results show PI induced NRF2 protein level in nuclear extracts (Figure 

3.7-8) of all MM cell lines.  

 
Figure 3.7  PI activates NRF2 in MM cell lines 
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MM cell lines were treated with Bz (10 nM) for 4h. Nuclear protein was then extracted, 

and Western blotting was performed for NRF2 protein expression. Sam68 is for 

positive loading control (Sam68: the Src-Associated substrate in Mitosis of 68 kDa 

 is specifically expressed in nucleic) and GAPDH is for negative loading control 

(GAPDH is not expressed in nucleic).  Blots were reprobed for SAM68 and GAPDH 

for loading control. 

 
Figure 3.8  PI activates NRF2 in MM cell lines 

MM cell lines were treated with Cfz (10 nM) for 4h. Nuclear protein was then 

extracted, and Western blotting was performed for NRF2 protein expression. Blots 

were reprobed for SAM68 and GAPDH for loading control. 

 

As it is difficult to acquire enough primary MM samples to analyse the nuclear NRF2 

expression by Western Blot method. For detecting the PI effects in primary MM cells, 

confocal imaging method was used.  Figure 3.9 shows that NRF2 accumulated and 

presented in the nucleus of primary MM cells treated with PI.  
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Figure 3.9  PI activates NRF2 expression in primary MM cells 

Primary MM cells were treated with Bz or Cfz (10 nM) for 4h. Cells were fixed and 

stained with NRF2 and DAPI and then analysed using confocal microscope method. 

Scale bar = 10 μm. 

 
To evaluate if accumulated nucleic NRF2 protein initiates NRF2 regulated gene 

expression, I examined the HO-1 and GCLM mRNA expression in PI treated MM cell 

lines and primary MM cells, using qPCR (Figure 3.10-3.13).  

 

 
Figure 3.10  PI induces HO-1 RNA expression in MM cell lines 
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MM cell lines were treated with Bz or Cfz for 4h at 10 nM. RNA was extracted and 

analysed using qRT-PCR for HO-1 expression. Gene expression was normalised to 

GAPDH. The Mann Whitney test was used to compare results in control to treated 

groups. Results with p < 0.05 were considered statistically significant (*).  Results 

represent the mean ± SD of 3 independent experiments. 

 

 
Figure 3.11  PI induces GCLM RNA expression in MM cell lines 

MM cell lines were treated with Bz or Cfz for 4h at 10 nM. RNA was extracted and 

analysed using qRT-PCR for GCLM expression. Gene expression was normalised to 

GAPDH. The Mann Whitney test was used to compare results in control to treated 

groups. Results with p < 0.05 were considered statistically significant (*).  Results 

represent the mean ± SD of 3 independent experiments. 

 
Figure 3.12  PI induces HO-1 RNA expression in primary MM cells 

Primary MM cells were treated with Bz or Cfz for 4h at 10 nM. RNA was extracted 

and analysed using qRT-PCR for HO-1 expression. Gene expression was normalised 

to GAPDH. Two-way ANOVA with Sidak’s post-test was used to compare changes in 

individual primary sample under treatment. Results with p < 0.05 were considered 
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statistically significant (*). Results represent the mean ± SD of 3 independent 

experiments. 

 
Figure 3.13  PI induces GCLM RNA expression in primary MM cells 

Primary MM cells were treated with Bz or Cfz for 4h at 10 nM. RNA was extracted 

and analysed using qRT-PCR for GCLM expression. Gene expression was normalised 

to GAPDH. Two-way ANOVA with Sidak’s post-test was used to compare changes in 

individual primary sample under treatment. Results with p < 0.05 were considered 

statistically significant (*). Results represent the mean ± SD of 3 independent 

experiments. 

 
3.2.5 To Determine if PI induced NFR2 activation by examining the activity of 

the ARE in the HO-1 promotor. 

To confirm that PI actives NRF2 in MM, HO-1 promoter assay method was used. A 

wild type HO-1 promoter or a mutant (mut) HO-1 promoter (NRF2 antioxidant 

response element mutated, ARE; Figure 3.14) were transfected into MM1S. To 

generate a mutated ARE in the HO-1 promoter, pHO- 1Luc4.0mARE, the conserved 

GC nucleotides in the inverted ARE element were mutated to TA using the GeneTailor 

mutagenesis kit according to the manufacturer’s instructions (Invitrogen). The PCR 

primers used in the mutagenesis were 5’-GGCGGATTTTGC TAGATT- 

TTATTGAGTCACCA-3’ (forward primer, the underlined AT represents GC to TA 

mutation) and 5’-TGTTTCCCTTCCGCCTAAAACGATCTA- AAA-3’ (reverse 

primer). 
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Figure 3.14  Schematic of the human promoter construct 

Human HO-1 promoter construct (pHO-1Luc4.0) or human HO-1 promoter with ARE 

mutation construct (pHO-1mutARE). 

 

Cells were then treated with PI and promoter activity was determined. Figure 3.15 

shows that mutant HO-1 promoter (mutARE) had a significant reduction in activity 

compared to wildtype (ARE).  

 
Figure 3.15 Bz and Cfz activate NRF2 in MM cells 

MM1S cells were transfected with pHO-1Luc4.0 or pHO-1mutARE for 48h and then 

no treatment (as control) or treated with Bz or Cfz (10 nM) for 24h. Luciferase activity 

assay was used to detect HO-1 promoter activation. The Mann Whitney test was used 

to compare results in control to treated groups. Results with p < 0.05 were considered 

statistically significant (*). Results represent the mean ± SD of 3 independent 

experiments. 

 
The above data confirm that the PI induced the NRF2 activation. 

 
3.2.6 shRNA mediated NRF2 depletion in MM cells  

To investigate the NRF2 function in PI resistant MM cells, I first silenced NRF2 in 

MM cells and evaluated the PI induced NRF2 protein expression. Figure 3.16-17 show 

that PI induced NRF2 up-regulation was inhibited in NRF2-KD MM cells.  
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Figure 3.16  Less NRF2 protein levels was detected in NRF2-KD MM1S cells  

Lentiviral mediated shRNA KD of NRF2 in MM1S. Cells were then treated with Bz or 

Cfz (10 nM) for 4h and whole cell protein was extracted, and Western blotting was 

performed for NRF2 protein expression. Blots were reprobed for β-actin as loading 

control. 

 
Figure 3.17  Less NRF2 protein levels was detected in NRF2-KD U266 cells  

Lentiviral mediated shRNA KD of NRF2 in U266. Cells were then treated with Bz or 

Cfz (10 nM) for 4h and whole cell protein was extracted, and Western blotting was 

performed for NRF2 protein expression. Blots were reprobed for β-actin loading 

control. 

 
Next, experiments were designed to determine if NRF2-KD in MM cells have lower 

NRF2 regulated gene expression. Figure 3.18-21 show that PI induced NRF2 

regulated genes were inhibited in NRF2-KD U266. Taken together these data confirm 

that PI activates NRF2 induced transcription of target genes in MM cells.  

 
Figure 3.18 Bz induces less HO-1 RNA expression in NRF2-KD U266 cells 
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Lentiviral mediated shRNA KD of NRF2 in U266 cells. Cells were then treated with 

Bz for 4h. RNA was extracted and analysed for HO-1. Gene expression was 

normalised to GAPDH. The Mann Whitney test was used to compare results in control 

to treated groups. Results with p < 0.05 were considered statistically significant (*). 

Results represent the mean ± SD of 3 independent experiments. 

 
Figure 3.19 Bz induced less GCLM RNA expression in NRF2-KD U266 cells 

Lentiviral mediated shRNA KD of NRF2 in U266 cells. Cells were then treated with 

Bz for 4h. RNA was extracted and analysed for GCLM. Gene expression was 

normalised to GAPDH. The Mann Whitney test was used to compare results in control 

to treated groups. Results with p < 0.05 were considered statistically significant (*). 

Results represent the mean ± SD of 3 independent experiments. 

 
Figure 3.20  Cfz induced less HO-1 RNA expression in NRF2-KD U266 cells 

Lentiviral mediated shRNA KD of NRF2 in U266 cells. Cells were then treated with 

Cfz for 4h. RNA was extracted and analysed for HO-1. Gene expression was 

normalised to GAPDH. The Mann Whitney test was used to compare results in control 
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to treated groups. Results with p < 0.05 were considered statistically significant (*). 

Results represent the mean ± SD of 3 independent experiments. 

 
Figure 3.21  Cfz induced less GCLM RNA expression in NRF2-KD U266 cells 

Lentiviral mediated shRNA KD of NRF2 in U266 cells. Cells were then treated with 

Cfz for 4h. RNA was extracted and analysed for GCLM. Gene expression was 

normalised to GAPDH. The Mann Whitney test was used to compare results in control 

to treated groups. Results with p < 0.05 were considered statistically significant (*).  

Results represent the mean ± SD of 3 independent experiments. 

 

3.2.7 NRF2 inhibition up-regulated CHOP expression and induced ER stress  

MM cells present higher levels of ER stress as a consequence of the large amount of 

paraprotein (incorrect folded protein) production [257, 259, 272]. Moreover, PI further 

increases ER stress as more proteins accumulate in the MM cells when the proteasome 

degradation system is inhibited [86]. I therefore wanted to explore if upregulated 

NRF2 expression decreases ER stress associated apoptosis in response to PI. First, I 

showed that NRF2-KD in U226 and MM1S cells upregulated CHOP expression, but 

not ATF4 expression (Figure 3.22-23).  
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Figure 3.22  NRF2-KD U266 cells have upregulated CHOP expression but not 

ATF4 expression 

Lentiviral mediated shRNA KD of NRF2 in U266. RNA was extracted and analysed 

for ATF4 and CHOP. Gene expression was normalised to GAPDH. The Mann Whitney 

test was used to compare results in control to treated groups. Results with p < 0.05 

were considered statistically significant (*).  Results represent the mean ± SD of 3 

independent experiments. 

 
Figure 3.23  NRF2-KD MM1S cells have upregulated CHOP expression but not 

ATF4 expression 

Lentiviral mediated shRNA KD of NRF2 in MM1S. RNA was extracted and analysed 

for ATF4 and CHOP. Gene expression was normalised to GAPDH. The Mann Whitney 

test was used to compare results in control to treated groups. Results with p < 0.05 

were considered statistically significant (*).   Results represent the mean ± SD of 3 

independent experiments. 
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Next, I wanted to determine if NRF2-KD MM cells have higher ER stress. Figure 3.24 

shows that using the ER tracker assay, NRF2-KD cells had a higher ER stress 

compared to control-KD cells.  

 
Figure 3.24  NRF2 regulated ER stress in MM1S 

Control-KD and NRF2-KD MM1S cells were incubated with the Hoechst 33342 and 

ER Tracker then visualized by fluorescence microscopy. Scale bar = 20 µM. 

 

3.2.8 Can PI induce CHOP expression and ER stress in NRF2-KD MM cells? 

I demonstrated that PI treated NRF2-KD cells have further increased ER-stress by 

flow cytometry (Figure 3.25). Next, I used qPCR method to examine if CHOP and 

ATF4 gene expression increased in response to PI treatment. Figure 3.26 shows that 

CHOP was increased in MM1S cells in response to PI.  

 
Figure 3.25  NRF2 regulated ER-stress in MM1S 

Control-KD and NRF2-KD MM1S cells were incubated with the Hoechst 33342 and 

ER Tracker then analysed by flow cytometry. The Mann Whitney test was used to 

compare results in control to treated groups. Results with p < 0.05 were considered 
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statistically significant (*). Results represent the mean ± SD of 3 independent 

experiments. 

 
Figure 3.26  PI induced CHOP RNA expression in MM cells 

MM1S cells were treated with PI for 4h and RNA was extracted and analysed for ATF4 

and CHOP. Gene expression was normalised to GAPDH. The Mann Whitney test was 

used to compare results in control to treated groups. Results with p < 0.05 were 

considered statistically significant (*).  Results represent the mean ± SD of 3 

independent experiments. 

 
Next, I analysed CHOP mRNA expression in PI treated NRF2-KD cells to determine 

if ER stress induced CHOP expression. Figure 3.27 shows that NRF2-KD cells have 

a significant increased CHOP expression when they were treated with PI compared to 

control-KD cells.  

 
Figure 3.27  PI induced CHOP RNA expression in NRF-KD MM1S 

NRF2-KD MM1S cells were treated with PI for 4h and RNA was extracted and 

analysed for CHOP. Gene expression was normalised to GAPDH. The Mann Whitney 

test was used to compare results in control to treated groups. Results with p < 0.05 

were considered statistically significant (*).  Results represent the mean ± SD of 3 

independent experiments. 
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3.2.9 NRF2 regulated CHOP protein expression in MM cells  

Next, I examined if NRF2 regulates CHOP protein expression in MM cells. To do this 

I knocked down NRF2 in MM cells and performed a Western blot for CHOP 

expression. Figure 3.28 and 3.29 show that in NRF2-KD cells treated with PI have 

increased CHOP expression.  

 
Figure 3.28  NRF2 regulated CHOP protein expression in MM1S 

Lentiviral mediated shRNA KD of NRF2 in MM1S. Cells were treated with PI for 4 h. 

Protein was extracted, and Western blotting was performed for CHOP protein 

expression. Blots from Figure 3.14 were reprobed for CHOP protein expression. 

 
Figure 3.29  NRF2 regulated CHOP rotein expression in U266 

Lentiviral mediated shRNA KD of NRF2 in U266. Cells were treated with PI for 4 h. 

Protein was extracted, and Western blotting was performed for CHOP protein 

expression. Blots from Figure 3.17 were reprobed for CHOP protein expression. 

 

3.2.10 NRF2 regulates GSH synthesis  

There are two ways for NRF2 to regulate CHOP gene expression. One is by direct 

binding to the CHOP promoter, another is from an indirect pathway, which is mediated 

through the NRF2 regulated GSH synthesis pathway [260] [273]. To confirm if GSH 

plays a role in regulating CHOP expression in MM cells, I first analysed the GSH 

levels in PI treated MM cell lines. Figure 3.30 shows that Bz increased GSH levels in 

MM1S.  
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Figure 3.30  PI induced GSH synthesis 

MM1S cells were treated with Bz (10 nM) for 4h. A GSH assay was performed to 

detect GSH level. The Mann Whitney test was used to compare results in control to 

treated groups. Results with p < 0.05 were considered statistically significant (*).  

Results represent the mean ± SD of 3 independent experiments. 

 

In 1.5.1 I descripted that NRF2 regulated GSH synthesis. Then, NRF2-KD was used 

to determine if NRF2 regulates GSH levels in MM cells. Figure 3.31 shows that GSH 

levels were not significantly increased in NRF2-KD MM cells compared to Con-KD 

cells, which confirms reduced NRF2 decreasing GSH production.  

 
Figure 3.31  NRF2-KD MM1S have lower PI induced GSH levels 

Con-KD and NRF2-KD MM1S cells were treated with Bz (10 nM) for 4h. GSH assay 

was performed to detect GSH level. The Mann Whitney test was used to compare 

results in control to treated groups. Results with p < 0.05 were considered statistically 

significant (*). Results represent the mean ± SD of 3 independent experiments. 
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3.2.11 GSH synthesis blocks ER stress in MM cells  

To confirm that the GSH regulates CHOP expression and ER stress in MM cells, I 

supplemented the MM cells with N-Acetyl Cysteine (NAC), a precursor of GSH. 

Figure 3.32-33 show that NAC blocked Bz induced CHOP and ER stress responses. 

These data confirm that GSH level is essential in MM cells for the CHOP regulation 

and ER stress. 

 
Figure 3.32  NAC blocked Bz induced CHOP RNA expression 

MM1S cells were treated with Bz (10 nM) in combination with NAC (100 uM). Then 

RNA was extracted and analysed using qRT-PCR for CHOP expression. Gene 

expression was normalised to GAPDH. The Mann Whitney test was used to compare 

results in control to treated groups. Results with p < 0.05 were considered statistically 

significant (*).  Results represent the mean ± SD of 3 independent experiments. 

 

 
Figure 3.33  NAC inhibited Bz induced ER stress 

MM1S cells were treated with Bz (10 nM) in combination with NAC (100 μM). Cells 

were incubated with the ER Tracker and analysed by flow cytometry. Results 

expressed as relative median fluorescence intensity. The Mann Whitney test was used 

to compare results in control to treated groups. Results with p < 0.05 were considered 
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statistically significant (*). Results represent the mean ± SD of 3 independent 

experiments. 

 
Next, I wanted to determine if the GSH synthesis inhibitor, buthionine sulfoximine 

(BSO) increases Bz induced CHOP mRNA expression and ER stress responses. 

Figure 3.34-35 show that BSO increased Bz induced CHOP and ER stress responses.   

 
Figure 3.34  BSO increased Bz induced CHOP RNA expression 

MM1S cells were treated with Bz (10 μM) in combination with buthionine 

sulphoximine (BSO) 5 μM for 4h and then RNA was extracted and analysed using qRT-

PCR for CHOP expression. Gene expression was normalised to GAPDH. The Mann 

Whitney test was used to compare results in control to treated groups. Results with p 

< 0.05 were considered statistically significant (*).  Results represent the mean ± SD 

of 3 independent experiments. 

 
Figure 3.35  BSO increased Bz induced ER stress 

MM1S cells were treated with Bz (10 nM) in combination with (BSO) 5 μM for 4h. 

Cells were incubated with the ER Tracker and analysed by flow cytometry. Results 

expressed as relative median fluorescence intensity. The Mann Whitney test was used 

to compare results in control to treated groups. Results with p < 0.05 were considered 



83 
 

statistically significant (*). Results represent the mean ± SD of 3 independent 

experiments. 

 

3.2.12 NRF2-KD MM cells were sensitive to PI induced apoptosis 

Finally, I wanted to determine if NRF2-KD sensitises MM cells to PI induced 

apoptosis. Figure 3.36 shows that NRF2-KD MM cells were sensitive to PI induced 

cell death.  

 
Figure 3.36 NRF2-KD MM cells were sensitive to PI treatment 

Con-KD or NRF2-KD MM1S or U266 were incubated with Bz or Cfz (10 nM) for 36h 

and then cell apoptosis was analysed using flow cytometer with PI/Annexin V staining. 

The Mann Whitney test was used to compare results in control to treated groups. 

Results with p < 0.05 were considered statistically significant (*). Results represent 

the mean ± SD of 3 independent experiments. 

 

3.3 Summary and Discussion 

PI is a first line drug for MM, however patients inevitably relapse through the 

development of drug resistant clones [249-252, 274]. Thus, a new MM therapy 

strategy is in needed to treat patients that become resistant to PI. In this chapter, I show 

that NRF2 inhibition could be that new target and this could allow resistant clones to 

become resensitised to PI inhibitors.  

 

Here I show that high levels of NRF2 in 50% of primary MM cells tested and in all 

MM cell lines tested, which suggest the NRF2 protect MM cells. I think multiple 

reasons resulted with only 50% of primary MM cells were detected with high NRF2. 
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For example: 1) the primary MM samples were derived from different stage of disease 

progression from 10% to 100% MM cells infiltrated in the BM, which will give variety 

of NRF2 levels (table 1.1); 2) there are multiple gene mutation events in MM patients, 

which may lead to different NRF2 expression; 3) the primary samples include 

untreated newly diagnosed patients, patients going through chemotherapy or relapse 

patients that will have different NRF2 expression accordingly.  

 

I performed NRF2 inhibition experiment to exam if NRF2 regulation protect MM cells, 

and data show NRF2 inhibition sensitised MM cells to apoptosis. My data are 

consistent with another report, which shows that regulating ROS in MM cells 

enhances its sensitivity to Bz and is NRF2 dependent [263].  

 

I confirm that NRF2 promotes MM cell survival at least partly by mediating the CHOP, 

a NRF2 regulated ER stress response protein. Moreover, I confirm that PI prompts 

NRF2 upregulation in MM cells, which decreases CHOP expression and increases 

GSH production. Silencing NRF2 decreases PI induced GSH level and induces CHOP 

expression. Apoptosis assay shows that NRF2 inhibition sensitises MM cells to PI 

treatment.  

 

As descripted in 1.5.1, NRF2 regulates GCLM expression and thus active GSH 

synthesis and recycling [275]. In MM cells, I discovered that PI upregulates NRF2 

regulated CHOP expression, which is mediated by GSH. I confirmed that PI induces 

GSH, and NRF2 silencing decreases GSH in MM cells. My data are consistent with 

reported works that confirm GSH regulates MM survival from PI treatment and I 

extended that observation to place CHOP downstream of GSH. 

 
Figure 3.37 Schematic representation of NRF2- GCLM- GSH  

NRF actives the GCLM gene expression. GCLM was then involved in the GSH 

synthesis. 
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In summary, though NRF2 protects non-malignant cells from oxidative stress, it also 

has a pro-tumoural role especially in MM cells. Here I have shown that NRF2 

enhances the chemotherapy resistance via the up-regulation of the GSH synthesis. The 

data show that PI activates the NRF2 pathway, which negatively regulates ER stress 

via inhibition of CHOP expression. NRF2 upregulation increases the GSH synthesis, 

which blocks the CHOP induced apoptosis (summarised in figure 3.37). Accordingly, 

the project may lead to a new MM treatment strategy that is to identify a clinically 

relevant NRF2 inhibitor to sensitise MM cells to PI.  

 
Figure 3.38 Schematic representation of NRF2 activity in PI treated MM cells  

Pi induces the NRF2 activation and resulted with elevated GSH level which decrease 

the CHOP expression and decreased the ER stress.  
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CHAPTER FOUR    

INVESTIGATING THE PROTECTIVE ROLE OF NRF2 IN 

BMSC ON MM 

  



87 
 

4.1 Introduction 

4.1.1 BMSC plays a key role on MM progression 

The pathogenic role of the BM niche in the progression of MGUS and SMM to MM 

is crucial [203]. The BM niche is not only the location for the MM cell proliferation, 

but also protects MM cells against chemotherapy. The MM-BM niche interaction is 

bidirectional and MM BM niche is different in its cellular and non-cellular 

composition compared to the healthy BM niche [276]. Thus, this section of my thesis 

aims to study the interaction between MM and the BM niche and identify new targets 

that could improve MM treatment. 

 

The BM niche is a spatial microenvironment, which consist of different cell types and 

BMSC is one of the cells that has been heavily investigated for its protective role on 

MM cells. It is widely established that BMSC support the growth of MM cells [277]. 

For example, the MM cells attach to the BMSC and trigger the secretion of interleukin-

6 (IL-6) from BMSC, which in turn promotes the proliferation of the MM cells [278]. 

Others have shown that binding of MM cells to the BMSC are essential for the 

chemotherapy resistance [278-282]. Moreover, BMSC function is essential for the 

progression of MM. For example, DKK1 is highly expressed in the MM derived 

BMSC, which promote the permissive interaction of MM-BMSC which leads to MM 

progression [283]. Besides these examples, several mechanisms of how BMSC 

promote MM progression have been identified, for example: BMSC secreted 

exosomes activate immune suppressor cells in the BM mediated by STAT3/STAT1 

and the immune suppressor cells suppress immune response which favours MM 

progression [284]; the vascular cell adhesion molecule 1/integrin β1 mediated MM 

and BMSC interaction promote the activity of osteoclast, which favours MM 

progression [285]; mucin 1 cell surface–associated axes 1 active MYC promotor in 

the MM cells and is involved in the progression of MGUS to MM [151]. BMSC also 

secrete chemotactic cytokines such as IL-6, CXCL12, IGF-1 and VEGFA that favour 

MM cells. Taken together, these studies suggest a special role for the BMSC in 

regulating the survival, proliferation and chemotherapy resistance of MM. 
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Furthermore, the MM-BMSC interaction are bidirectional in that MM cells also 

stimulate BMSC to create a favourable microenvironment for their survival, for 

example: MM cells over express β1 integrin, which mediated the adhesion of MM and 

BMSC, which then causes BMSC to increase the secretion of IL-6 and activate STAT3 

signalling in MM cells [286]; β1 integrin together with gp130 (IL-6β receptor) also 

mediate focal adhesion formation and active proline-rich tyrosine kinase activity, 

which is linked with MM progression [287]; MM cells express IL-17A, which both 

increase the MM cell proliferation and induce IL-6 production from BMSC [288]; 

ubiquitin-binding protein, p62 regulates the modification of NF-κB, p38 MAPK and 

JNK in BMSC that increase osteoclast genesis and MM cell proliferation [289]. The 

above research suggests that interrupting the interaction of MM-BMSC is necessary 

to prevent the progression of MM and sensitise the MM cells to chemotherapy.  

 

4.1.2 The NRF2 Function in BM Protection Effect on MM Cells 

In Chapter 3 I described how MM needs to regulate ROS as they produce superoxide 

as a byproduct of paraprotein folding/production in the ER. Moreover, within the 

group I work, published data shows that AML induces ROS in BMSC [290]. Therefore, 

in this research I first wanted to determine if BMSC have increased ROS when in close 

proximity to MM cells.  The MM cells produce and secrete paraproteins to the 

surrounding BM microenvironment, which could lead to increased stress in the local 

environment. Furthermore, when the MM patient is in treatment, the BMSC is also 

exposed to chemotherapy. Therefore, I hypothesise that the BMSC have increased 

ROS levels when located close to MM cells as well as in response to MM 

chemotherapy.  

 

Universally expressed in nearly all types of cells, NRF2 is the main cellular way to 

sense the ROS change and upregulate the antioxidant defence systems needed to 

regulate the elevated ROS. In chapter three, I have reported that NRF2 regulation in 

MM cells plays a key role for the survival of MM cells. In this chapter, I will further 

decode the mechanism of NRF2 function in MM by examining the role of NRF2 in 

BMSC and its effect on MM cell survival.  
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NRF2 function in the BMSC protection effect on MM cells has not been investigated, 

but the NRF2 function in bone metabolism, BM and BMSC has attracted some 

attention. For example,  a report shows that NRF2 is a key player for the normal 

postnatal bone acquisition [291]. Another report shown that activating the NRF2 

pathway is essential in the treatment of spinal cord injury [292]. When BMSC is in 

stress (such as oxidation stress or chemotherapy), the BMSC upregulate NRF2 for 

protection [293]. These studies highlight the protective role of NRF2 in the bone and 

the BMSC under normal stressed conditions. 

 

4.1.3 Aims and objectives 

The last chapter showed that NRF2 regulates ER stress associated apoptosis which 

protects MM cells from PI induced cell death. This highlights a role for NRF2 

protection in MM. Next, I wanted to determine if NRF2 regulates BMSC protection 

of MM. To investigate this idea, I asked the following questions; 1) Do MM cells 

induce ROS stress and NRF2 upregulation in BMSC? 2) Do PI induce ROS stress and 

NRF2 upregulation in BMSC? 3) Does silencing NRF2 expression in BMSC reverse 

BMSC protection of MM cells and sensitise MM cells to chemotherapy? 
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4.2 Results  

4.2.1 BMSC protected MM cells from apoptosis 

It is widely accepted that MM cells cannot survive without the support of the 

BM/BMSC both in vitro and in vivo. To confirm this observation, I isolated primary 

MM cells and then cultured these cells with or without BMSC isolated from patients 

with MM. Moreover, I treated these co-cultured cells with Cfz for 24 hr. The MM cells 

are suspended cells and the BMSC is adherent cell. Primary MM cells are generally 

not form tight connection within 24h co-culture. I washed the MM cells off the BMSC 

and gating out detached BMSC in the FSC/SSC chart (The size of primary MM cells 

is smaller than BMSC). Figure 4.1 shows that primary MM cells have increased 

apoptosis when cultured alone compared to MM cells cultured on BMSC. Moreover, 

MM cells were protected from chemotherapy induced apoptosis by co-culture with 

BMSC.  

 

 
Figure 4.1 BMSC protected primary MM cells from apoptosis 

Freshly purified primary MM cells isolated from MM patients were co-cultured with 

or without BMSC and were treated with Cfz (50 nM) for 24h. Joined bar show the 

changes of single primary MM cells cultured with or without BMSC.   Viable primary 

MM cells were analysed using a flow cytometer with PI/Annexin V staining. Two-way 

ANOVA with Sidak’s post-test was used to compare changes in individual primary 

sample under treatment. Results with p < 0.05 were considered statistically significant 

(*). Results represent the mean ± SD of 4 independent experiments. 
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4.2.2 Determine MM cells induced ROS level on BMSC in vitro 

As NRF2 senses ROS [138], next I wanted to determine if MM cells induce ROS stress 

in BMSC. To do this I examined both mitochondrial and cellular ROS, using the dyes 

MitoSOX and DCF, in BMSC that were co-cultured with MM cells. Figure 4.2A and 

Figure 4.2B show that primary MM cells increased both MitoSOX and DCF MFI 

levels in BMSC.  

 

 
Figure 4.2 MM cells increased MitoSOX and DCF level in BMSC 

Primary MM cells isolated from MM patients were co-cultured with or without BMSC. 

(A) MitoSOX levels in BMSC were analysed using flow cytometer with human CD105 

APC and MitoSOX (PE-Cy5 channel) staining and expressed as MFI. (B) DCF levels 

in BMSC were analysed using flow cytometer with human CD105 APC and DCF 

(FITC channel) staining and expressed as MFI. Two-way ANOVA with Sidak’s post-

test was used to compare changes in individual primary sample under treatment. 

Results with p < 0.05 were considered statistically significant (*). Results represent 

the mean ± SD of 5 independent experiments. 

 

4.2.3 Determine MM cells induced ROS level on BMSC in vivo 

It is important to understand if the ROS increase, I observed in BMSC in in vitro co-

cultures, also observed in the BMSC of in vivo MM models. To do this I injected 

primary MM cells, which were infected with a lentivirus encoding luciferase (luci) 

into the tail of NSG mice. If MM cells could engraftment in the mice, then it will 

localise in the BM of mice. I did this so I could visualise primary MM engraftment in 

NSG mice in live animal imaging.  Figure 4.3 shows the engraftment of MM cells in 

the BM of mice on day 20 as measured by in vivo live imaging using the in vivo Bruker 



92 
 

Xtreme. Figure 4.4 shows that when I isolated the BM cells of NSG engrafted mice it 

contains human CD45+ and human CD38+ cells. The results confirm that primary 

MM cells engraft into the BM of NSG mice after 20 days.  

 

 
Figure 4.3  Bioluminescence in vivo images detected the disease progression in 

MM xenograft NSG model 

Three primary cells were infected with Luci. 1*106 MM-Luci cells were injected in the 

tail of NSG mice (IV). Bioluminescence method was used to monitor the engraftment 

of cells at day 20.  

 
 

 

Figure 4.4  Flow cytometry analysis of MM engraftment in to NSG mice 

1*106 primary MM cells were injected in the tail of NSG mice (IV). Mice were 

sacrificed at day 25 and then the BM of NSG was isolated. Using human CD45+ 

BV421 and human CD38+ APC marker to evaluate the engraftment. 
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Next, I injected primary MM cells without the luci tag into the NSG mice to determine 

if MM caused a change in ROS level in NSG BMSC. I didn’t want the luci tag on the 

MM cells as it may interfere with the flow cytometry analysis for the ROS levels in 

the BMSC. Figure 4.5 shows the antibody panel for flow cytometric analysis of the 

BMSC from NSG isolated BM. Figure 4.6A and 4.6B show the MitoSOX and DCF 

level in BMSC from MM engrafted NSG and human CD34+ cord blood engrafted 

NSG as a control. FSC/SSC is to gate out unwanted cell fragment, then gating out the 

human and mice hematopoietic cells by human CD45/ mice CD45. Platelet endothelial 

and erythroid cells are gating out by mice CD31 and mice Ter119. Finally, using mice 

CD105 to gate the BMSC cells and Mitosox level is quantified. 

 

Figure 4.5  Antibody panel to detect mitochondrial ROS in BMSC from BM of 

MM xenografted NSG mice 

1x106 primary MM cells were injected into the tail of NSG mice (n=4). Human CD34+ 

engrafted NSG mice were used as control group. Mice were sacrificed at day 25 and 

then the BM of NSG from MM engrafted and CD34+ engrafted mice were isolated. 

Flow cytometry was used to detect MitoSOX level in BMSC. The antibodies used were 

human anti-CD45-BV421, mouse anti-CD45-BV510, mouse anti-CD31-APC, mouse 
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anti-TER119-APC-Cy7, mouse anti-CD105-FITC. PE channel is used to evaluate 

MitoSOX level in BMSC. 

 

 
 

Figure 4.6  Cellular and mitochondrial ROS detection in BMSC from BM of MM 

xenograft NSG mice 

1x106 primary MM cells were injected into the tail of NSG mice (n=4). 2x105 human 

cord blood derived CD34+ cells were engrafted into NSG mice and used as control 

group. Mice were sacrificed at day 25 and then the BM of NSG from MM engrafted 

and CD34+ engrafted mice were isolated. Flow cytometry was used to detect 

MitoSOX and DCF level in BMSC. The antibodies used were human anti-CD45-

BV421, mouse anti-CD45-BV510, mouse anti-CD31-PE-Cy5, mouse anti-TER119-

APC, mouse anti-CD105-APC-Cy7, mouse anti-CD140a-PE. FITC channel was used 

to evaluate DCF level in BMSC. Two-way ANOVA with Sidak’s post-test was used to 

compare changes in individual primary sample under treatment. Results with p < 0.05 
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were considered statistically significant (*). Results represent the mean ± SD of 4 

independent experiments. 

 
These data show that MM engrafted into NSG mice induced both cellular and 

mitochondrial ROS in BMSC when compared to normal CD34+ cells. However, what 

causes this increase in ROS is not known. Moreover, what effected the ROS has on 

BMSC is also unknown. These are two questions I aim to answer in the following 

results section. 

 

4.2.4 MM cells induced NRF2 expression in BMSC in vitro   

Since NRF2 is the key regulator of cellular ROS, I hypothesised that BMSC upregulate 

NRF2 activity in response to the elevated ROS levels derived from the co-culture with 

MM. 

An in vitro time course experiment was performed to detect the NRF2 protein 

expression in the BMSC that was co-cultured with MM cells. Figure 4.7 shows NRF2 

protein level was increased after co-culture with MM cells. These data suggest the 

BMSC upregulates NRF2 pathways in responds to a stimulus from MM cells. 

 

Figure 4.7  MM cells induced BMSC NRF2 expression 

BMSC were co-cultured with MM cells for indicated hours and then BMSC protein 

was extracted and Western blotting was performed for NRF2 protein expression. Blots 

were reprobed for β-actin loading control. 

 

4.2.5 In vivo experiment confirmed BMSC support MM cells engraftment in NSG 

model 

BMSC are adherent cells, thus it is difficult to localise BMSC into the BM of the mice 

through tail injection. To confirm that BMSC protects MM cells in vivo. I used a 

different MM model to show this. In this model I subcutaneously injected the MM cell 
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line U266-Luci, with or without human BMSC in the NSG mice. If BMSC support the 

proliferation of MM cells, then the MM cells will expend under the skin of the mice, 

at the injection site. Figure 4.8 shows the engraftment of U266 cells was significantly 

increased when they were injected together with BMSC. The in vivo experiment 

confirms that BMSC supported the progression of MM cells. Figure 4.9 shows the size 

of the tumour. 

 
Figure 4.8  Bioluminescence in vivo images detected the disease progression in 

U266 and BMSC xenograft model 

Control group 1*106 U266-Luc cells or co-culture group 1*106 U266-Luc cells with 

0.5*106 BMSC cells were injected in the NSG mice subcutaneously. The control cells 

were injected in the left side and the co-culture cells were injected in the right side. 

Bioluminescence method was used to monitor the engraftment of cells.  
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Figure 4.9  Tumour size of U266-luci/BMSC engraftment mice 

Control group 1*106 U266-Luci cells or co-culture group 1*106 U266-Luci cells with 

0.5*106 BMSC cells were injected in the NSG mice subcutaneously. The control cells 

were injected in the left side and the co-culture cells were injected in the right side. 

The mice were sacrificed upon tumour formation at day 8 and then the tumour was 

dissected out and measured (A and B). Joined bars show the tumour sizes in separate 

mice inoculated with a single primary MM subjected to BMSC co-culture or 

monoculture. Two-way ANOVA with Sidak’s post-test was used to compare changes 

in individual mice under treatment. Results with p < 0.05 were considered statistically 

significant (*). Results represent the mean ± SD of 4 individual mice. 

 

4.2.6 NRF2-KD BMSC unable to protect MM cells in vitro.  

To determine the role of NRF2 in BMSC, MM cells primary MM cells were co-

cultured with NRF2-KD BMSC or control BMSC for 6 days and then the viable MM 

cell numbers were determined. The NRF2-KD-BMSC method and confirmation of 

NRF2-KD is show in Figure 4.19-20. Figure 4.10 confirms the NRF2-KD BMSC is 

less supportive of MM cell survival.  



98 
 

 
Figure 4.10 Primary MM cells viability was decreased when were co-cultured 

with NRF2-KD BMSC compared to control knockdown 

Primary MM cells were co-cultured with Con-KD or NRF2-KD BMSC for 6 days, then 

the MM cells viability was determined by trypan blue method. Joined bar show 

changes of individual primary sample. Two-way ANOVA with Sidak’s post-test was 

used to compare changes in individual mice under treatment. Results with p < 0.05 

were considered statistically significant (*). Results represent the mean ± SD of 5 

independent experiments. 

 
4.2.7 NRF2-KD BMSC unable to support MM engraftment in NSG model in vivo  

To confirm the supportive role of NRF2 in BMSC on MM cells, I KD NRF2 in BMSC 

and then I subcutaneously injected MM cell line U266, which were infected with Luci, 

with control BMSC or NRF2-KD BMSC in the NSG mice. Figure 4.11 shows the 

engraftment of U266 cells was significantly decreased when they were injected 

together with NRF2-KD BMSC. This in vivo experiment confirms NRF2 plays a key 

role for the BMSC to support the progression of MM cells. Figure 4.12 shows the size 

of the tumours. 
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Figure 4.11  Bioluminescence in vivo images detected the disease progression in 

U266 and BMSC xenograft model 

Control group 1*106 U266-Luci cells with 0.5*106 control BMSC or NRF2-KD group 

1*106 U266-Luci cells with 0.5*106 NRF2-KD BMSC cells were injected in the NSG 

mice subcutaneously. The control cells were injected in the left side and the co-culture 

cells were injected in the left side. Bioluminescence method was used to monitor the 

engraftment of cells.  

 
 
Figure 4.12  Images show the tumour size from U266/BMSC NRF2-KD engrafted 

mice 

Control group 1*106 U266-Luci cells with 0.5*106 control-KD BMSC or NRF2-KD 

group 1*106 U266-Luci cells with 0.5*106 NRF2-KD BMSC cells were injected in 

the NSG mice subcutaneously. The control cells were injected in the left side and the 

KD cells were injected in the right side. Bioluminescence method was used to monitor 

the engraftment of MM cells. The mice were sacrificed upon tumour formation at day 

11 and then the tumour was measured. Joined bars show the tumour sizes in separate 

mice inoculated with U266 subjected to control or NRF2-KD BMSC. Two-way 

ANOVA with Sidak’s post-test was used to compare changes in individual mice under 
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treatment. Results with p < 0.05 were considered statistically significant (*). Results 

represent the mean ± SD of 6 independent experiments. 

 

4.2.8 PI induced NRF2 expression in BMSC   

As chapter 3 shows that NRF2 regulation in MM cells plays a key role in the MM cell 

chemotherapy resistance, in this section I want to identify if NRF2 regulation in 

BMSC plays a key role in the MM cell chemotherapy resistance. To determine if 

BMSC upregulates NRF2 pathway in response to PI treatment, I first, characterised if 

NRF2 protein expression is increased in BMSC when treated with PI for 4 or 24 hrs. 

Figure 4.13 shows the dose depended NRF2 protein expression in response to PI 

treatment after 4 and 24h. 

 
Figure 4.13  Dose depended accumulation of NRF2 protein in the BMSC when 

were treated with Cfz 

BMSC were treated with different doses of Cfz for 4h and 24h and BMSC protein was 

extracted and Western blotting was performed for NRF2 protein expression. Blots 

were reprobed for β-actin loading control. 

 
Figure 4.13 shows that NRF2 protein levels in BMSC were increased in response to 

PI treatment. Next, I wanted to evaluate if the increased NRF2 protein translated to 

increase downstream NRF2 regulated genes. Figure 4.14 shows that Bz and Cfz 

treatment induced the NRF2 regulated genes HO-1 and GCLM in BMSC that were 

co-cultured with MM1S.  
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Figure 4.14  PI increased BMSC HO-1 and GCLM mRNA expression 

BMSC were co-cultured with MM1S in the transwell for 24h and then treated with Bz 

or Cfz (100 nM) for 4h. RNA was extracted and analysed using qRT-PCR for HO-1 

and GCLM expression. Gene expression was normalised to GAPDH. The Mann 

Whitney test was used to compare results in control to treated groups. Results with p 

< 0.05 were considered statistically significant (*). Results represent the mean ± SD 

of 3 independent experiments. 

 

4.2.9 Investigation of NRF2 expression in PI treated BMSC when were co-

cultured with MM cells. 

Since PI increases NRF2 expression by inhibiting its continuous degradation by the 

proteasome, next I wanted to determine if NRF2 expression was increased in PI treated 

BMSC when co-cultured with MM cells. I co-cultured the MM cells with BMSC, then 

the cells were treated with PI for 4h and the BMSC NRF2 protein levels were 

determined.  Figure 4.15 shows that the PI treated BMSC NRF2 protein were elevated 

when co-cultured with MM cells. 

 
Figure 4.15  PI treated MM cells induced BMSC NRF2 up-regulation 

MM1S were co-cultured with BMSC followed by treatment with Bz or Cfz (10 nM) for 

4h and BMSC whole cell protein was extracted and Western blotting was performed 

for NRF2 protein expression. Blots were reprobed for β-actin loading control.  
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4.2.10 BMSC reduced MM cell ROS response to PI treatment 

Since PI is reported to increase the ROS production in MM cells [133], I wanted to 

determine how BMSC protect MM from PI induced cell death and whether ROS levels 

were important. To do this I used the ROS level indicators, DCF and MitoSox to 

determine if BMSC reduce MM cellular stress induced by PI treatment.  

 

The MM cells were cultured alone or in combination with BMSC and then the cells 

were treated with PI. Results show that mitochondrial ROS levels were high in PI 

treated primary MM cells compared to PI treated MM cells when co-cultured with 

BMSC (Figure 4.17). However, total ROS levels as measured by DCF were not 

significantly changed (Figure 4.18). One reason for the difference of cellular and 

mitochondrial ROS levels is the nature of the ROS production, as the majority of 

cellular ROS is produced in the mitochondria [294]. For example, the ROS in MM 

cells could have been changed by the media or been transferred to the BMSC and 

induce ROS in BMSC, which shown in Figure 4.6. 

 
Figure 4.16  Primary MM cells mitochondria ROS levels were increased when 

were co-cultured with BMSC with PI treatment 

Primary MM cells were co-cultured with BMSC and treated with Bz or Cfz for 24h 

then MM cell apoptosis was analysed using flow cytometer with Mitosox staining. The 

Mann Whitney test was used to compare results in control to treated groups. Results 

with p < 0.05 were considered statistically significant (*). Results represent the mean 

± SD of 3 independent experiments. 
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Figure 4.17  MM cell DCF levels when were co-cultured with BMSC with PI 

treatment 

Primary MM cells were co-cultured with BMSC and were treated with Bz or Cfz for 

24h then MM cell apoptosis was analysed using flow cytometer with DCF staining.  

 

4.2.11 Determining if NRF2 in BMSC confers resistance to MM in response to PI 

treatment 

Next, I wanted to determine if NRF2 plays a role in the BMSC protection effect on 

MM cells. This is because NRF2 activity was activated in BMSC in response to PI 

treated MM cells. To do this I silenced the NRF2 gene in the BMSC to determine if 

this impairs BMSC protection of MM cells when co-cultured together. Figure 4.19 

shows that lentivirus shRNA targeted NRF2 reduced NRF2 protein expression when 

treated with Cfz. Figure 4.20 shows that lentivirus shRNA targeted NRF2 BMSC have 

decreased NRF2 mRNA expression. Figure 4.21 shows that shRNA targeted NRF2 

BMSC have reduced HO-1 expression in response to Cfz. 

 
Figure 4.18  NRF2 protein expression in NRF2-KD BMSC treated with Cfz 

NRF2-KD and control-KD BMSC were treated with Cfz for 4h and BMSC whole cell 

protein was extracted and Western blotting was performed for NRF2 protein 

expression. Blots were reprobed for β-actin loading control. 
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Figure 4.19  NRF2 mRNA expression in NRF2-KD BMSC 

Lentiviral mediated shRNA KD of NRF2 in BMSC. RNA was extracted and analysed 

using qRT-PCR for NRF2 expression. Gene expression was normalised to GAPDH. 

The Mann Whitney test was used to compare results in control to treated groups. 

Results with p < 0.05 were considered statistically significant (*). Results represent 

the mean ± SD of 3 independent experiments. 

 
Figure 4.20  NRF2-KD BMSC HO-1 RNA expression when treated with Cfz 

Lentiviral mediated shRNA KD of NRF2 in BMSC. NRF2-KD BMSC were then treated 

with Cfz (10nM) for 4h and RNA was extracted and analysed using qRT-PCR for HO-

1 expression. Gene expression was normalised to GAPDH. The Mann Whitney test 

was used to compare results in control to treated groups. Results with p < 0.05 were 

considered statistically significant (*). Results represent the mean ± SD of 3 

independent experiments. 

 

Those data confirm the successful NRF2 knockdown in BMSC. 

 

4.2.12 NRF2-KD BMSC unable to decrease the PI treated MM cell ROS levels 

To determine the role of NRF2 in the BMSC on MM cells I first examined if lentivirus 

shRNA targeted NRF2 in BMSC affect ROS levels in PI treated MM. Figure 4.22 
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shows that the MM cells cultured with NRF2-KD BMSC have higher mitochondria 

produced ROS levels and the total cellular ROS level were not significantly changed 

(figure 4.23).  

 
Figure 4.21 Mitochondrial ROS levels in NRF2-KD BMSC were high when 

cultured with PI treated MM1R 

MM1R cells were cocultured with NRF2-KD BMSC and treated with Bz or Cfz for 24h 

then MM mitochondrial ROS analysed using flow cytometer with Mitosox staining. 

The Mann Whitney test was used to compare results in control to treated groups. 

Results with p < 0.05 were considered statistically significant (*). Results represent 

the mean ± SD of 3 independent experiments. 

 
Figure 4.22 Cellular ROS were unchanged in NRF2-KD BMSC when cultured 

with PI treated MM1R 

MM1R cells were cocultured with NRF2-KD BMSC and treated with Bz or Cfz for 24h 

then MM cellular ROS was analysed using flow cytometer with DCF staining. 
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The above data suggest the NRF2 played a key role in regulating mitochondrial ROS 

levels in both BMSC and MM cells when treated with PI.   

 

4.2.13 NRF2-KD in BMSC sensitised MM cells to PI treatment induced apoptosis 

Knockdown NRF2 in BMSC may block the BMSC protection effect on MM cells. 

Because: 1) the BMSC decreased the ROS levels in the co-cultured MM cells; 2) the 

NRF2-KD BMSC unable to decrease the ROS levels in the co-cultured MM cells 

(Figure4.22).  

 

To confirm the hypothesis that BMSC-NRF2 protected MM cell from PI induced 

apoptosis, I silenced NRF2 in BMSC and co-cultured them and then subjected them 

to PI treatment. Figure 4.24-25 show that the primary MM cells and MM cell lines 

were sensitised to PI treatment when co-cultured with NRF2 silenced BMSC. 

 
Figure 4.23  NRF2-KD BMSC sensitised primary MM cells to Cfz treatment 

Primary MM cells were co-cultured with NRF2-KD BMSC and treated with Cfz for 

24h then MM cell apoptosis was analysed using flow cytometer with PI/Annexin V 

staining. 
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Figure 4.24  NRF2-KD BMSC sensitised U266 to PI treatment 

U266 or MM1S cells were cocultured with NRF2-KD BMSC and treated with Bz or 

Cfz for 24h then viable MM cells were analysed using flow cytometer with PI/Annexin 

V staining. The Mann Whitney test was used to compare results in control to treated 

groups. Results with p < 0.05 were considered statistically significant (*). Results 

represent the mean ± SD of 3 independent experiments. 

 

4.3 Discussion  

The mechanism of how BMSC protect MM cells from chemotherapy is in need of 

investigation. As currently, the chemical that have been tested in in vitro experiments 

that could effectively induce the MM cell death are eventually develop relapse in 

clinical application. This suggests the MM cells acquire protection from BM 

microenvironment. We need investigate the interaction of MM cells and BM 

microenvironment to find out how to interrupt microenvironment interaction with MM 

cells. In this chapter, I describe that NRF2 regulation in BMSC is a new mechanism 

of how MM-BMSC interaction could be targeted to disrupt the BMSC protection role 

on MM cells.  

 

First, I confirmed that BMSC protect primary MM cells from apoptosis. My data are 

consistent with reported works that MM cells interact with BMSC for protection and 

I extended that observation to place ROS as a mediator of cell to cell interaction. 

To prove ROS is a mediator of cell to cell interaction, First, I used in vitro and in vivo 

experiments to confirm that MM cells induce ROS in BMSC when in co-culture. 

Second, I confirmed that BMSC decrease ROS level in MM cells as well. xThe above 

data confirm that ROS is a mediator of MM and BMSC interaction. 
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Next, as NRF2 is the key regulator of ROS, I explore the NRF2 role in the BMSC and 

MM interaction. First, I knocked down NRF2 in BMSC, which blocked its ROS 

decreasing role on MM cells. As upregulation of NRF2 in MM cells protect the cells 

from chemotherapy induced apoptosis this leads me to think that NRF2 activity in 

BMSC may affect the MM cells sensitivity to chemotherapy, The data confirm that PI 

induce more ROS and more apoptosis in MM cells when it was co-cultured with NRF2 

silenced BMSC compared to control BMSC.  

 

The BMSC protect MM cells at least partly through regulating ROS. This is because 

ROS regulation is essential for the MM cell survival, as ROS overproduction induces 

MM apoptosis and PI further increase ROS, which trigger more apoptosis of MM cells 

[133]. My data confirm this idea, as I detected BMSC decreasing ROS level in co-

cultured MM cells.  

 

Since NRF2 is the key cellular way to promote ROS detoxification, I hypothesised 

that MM cells induce ROS in BMSC and BMSC upregulate NRF2 to reduce the ROS 

stress. The data presented here confirm that the MM cells induce ROS in BMSC both 

in vivo and in vitro. Furthermore, KD-NRF2 in BMSC block its ROS decreasing role 

in MM cells. These data confirm that NRF2 regulation in BMSC is essential for its 

protection effect on MM cells. One question still remains and that is how ROS is 

transferred from MM cells to BMSC. This is an interesting question and I can suggest 

how this might be the case. One possibility is that MM cells transport some cellular 

components to the BMSC for recycling. Or maybe ROS in the form of superoxide is 

exported from the MM cell and absorbed or dealt with by the neighbouring BMSC.  

 

BMSC is supporting the proliferation and chemotherapy resistance of MM cells. 

Studies show that interrupting the attachment of MM cells to BMSC sensitises the 

MM cells to treatment. For example, BMSC produces SDF-1 and its receptor, CXCR4 

is presented on the surface of MM cells, which plays a key role for MM cells 

trafficking and homing [295, 296]. Interrupting the SDF-1-CXCR4 axis decreases the 

BMSC protection effect on MM cells [296-298]. But as the cell to cell attachment is 

important for normal cells, tissue and whole body to coordinate and function normally, 
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it is difficult to design drugs that inhibit the cancer and BMSC cell attachment and at 

the same time not cause damage to normal cells. 

 

Here I have identified other ways to disturb the interaction of MM-BMSC. NRF2 

inhibition may provide a powerful way to disrupt the BMSC protection effect on the 

MM cells. Though the interruption of MM to BMSC attachment have shown a good 

effect on sensitising of MM cells to the treatment, the compact BM niche where the 

MM and BMSC are crowded together is difficult to target.  New strategies to interrupt 

not only the attachment of MM-BMSC but also the MM-BMSC attachment 

independent interaction are needed and NRF2 inhibition could be a feasible choice.  

 
Figure 4.25 Schematic representation of MM cell induced NRF2 regulation in 

BMSC protects MM cells 

When co-culture MM cells with BMSC, MM cells induce the ROS stress in BMSC. As 

a respond, the BMSC then upregulate NRF2 expression. NRF2-KD in BMSC will 

block the BMSC protection effect on MM cells, which confirm NRF2 regulation in 

BMSC is important for the BMSC protect the MM cells against chemotherapy.  
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CHAPTER FIVE   

MM CELLS EXPORT AUTOPHAGY TO THE MM 

MICROENVIRONMENT 
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5.1 Introduction 

5.1.1 Autophagy is the cellular way of protection 

To further understand how BMSC protect MM cells I next explored if autophagy in 

the BMSC is activated in response to MM coculture. MM have been shown to 

upregulate their own autophagy machinery to cope with cellular stress induced by 

paraprotein over production and injured sub cellular organelles and over activated 

autophagy induces cell death [299]. When the MM cells’ own autophagy is unable to 

recycle the unwanted cellular components, MM cells may secrete its unwanted cellular 

components to the microenvironment. BMSC may support the MM cells by digesting 

their cellular components through autophagy. Therefore, I hypothesise that BMSC 

autophagy plays a key role in protecting MM cells. Furthermore, since NRF2 has been 

shown to regulate p62, which senses toxic cellular waste products, I further 

hypothesise that MM derived ROS activates BMSC NRF2 which upregulates p62 

autophagy in BMSC of the MM microenvironment. In this chapter, I will decode the 

autophagy role in the BMSC protection effect on MM cells.  

 

5.1.2 Cancer cells outsource autophagy for survival 

Reports have shown that some cancer cells outsource autophagy for survival [300]. 

The NRF2-P62-Autophagy axis link two essential cellular stress defence pathways 

together, as KEAP1, a sensor of ROS, regulates NRF2 degradation also regulates p62 

mediated autophagosome forming [301]. First, it is important to determine the role of 

autophagy in MM and its tumour environment. Then I will aim to determine if NRF2 

is involved in regulating this response. Thus, I hypothesis that MM autophagy is 

exported to the microenvironment by MM and that BMSC derived NRF2 regulates the 

formation of autophagy and ultimately the degradation of MM derived products. 

 

5.1.3 Aims and objectives 

Since MM cells have high autophagy I want to determine if autophagy regulation is 

involved in the BMSC protection effect on MM cells and decode the autophagy 

regulation mechanism. This can be split into two main questions 1) Does MM cells 

activate BMSC autophagy?  2) Does NRF2 regulate MM induced autophagy in BMSC?  
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5.2 Results  

5.2.1 Investigation of autophagy levels in MM cell lines and primary MM cells 

As autophagy plays a key role for MM cell survival, I hypothesised that BMSC support 

MM cells proliferation by performing autophagy for the tumour cell.  In the first 

experiment, I characterised the basal microtubule-associated protein 1A/1B-light 

chain 3 (LC3ǀ, LC3ǁ) protein turnover to evaluate the autophagy level in the MM cells. 

During formation of autophagosome, LC3 I is modified to form LC3 ǁ, which is then 

degraded once it fused with lysosome. Thus, the turnover of LC3 I to LC3 ǁ reflects 

the autophagy flux in the cells. Figure 5.1 shows that freshly isolated primary MM 

cells had higher turnover of LC3 I to LC3 ǁ. It was hard to detect both the LC3 II band 

in MM cell lines, suggesting that MM cell lines are not a good model for these 

experiments. I think compares to the MM cell lines, freshly isolated BM primary MM 

cells should maintain more functions and markers seen in vivo, thus for the LC3 level, 

MM cell lines failed to present it.  

 
Figure 5.1 Basal LC3I and LC3II expression in MM cell line and primary MM 

cells 

Whole cell protein in MM cell lines or primary cells were extracted and Western 

blotting was performed for LC3 protein expression. Blots were reprobed for β-actin 

loading control. 

 

5.2.2 Autophagy levels in BMSC culture with primary MM and MM cell lines  

Next, I wanted to determine if the MM-BMSC interaction affects the autophagy levels 

in MM cells. MM cells and BMSC were co-cultured, then MM cells were removed 

and protein isolated and whole cell lysate were analysed for LC3 protein expression. 

Figure 5.2 shows that the BMSC decreased the LC3 turn over in MM cells. To 
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determine if MM cells can induce autophagy in BMSC, I cultured both primary MM 

cells and MM cell lines on BMSC. MM cells were removed and BMSC were analysed 

for LC3I and LC3II expression. Figure 5.3 shows the primary MM cells, but not MM 

cell lines, increased the LC3II protein expression in BMSC. 

 
Figure 5.2 BMSC LC3I and LC3II expression in response to MM co-culture  

MM cell line or primary cells were cocultured with BMSC in transwell then whole cell 

protein in MM cell lines or primary cells were extracted and Western blotting was 

performed for LC3 protein expression. Blots were reprobed for β-actin loading control. 

 
Figure 5.3 LC3 expression in BMSC when co-cultured with MM cell line or 

primary MM cells 

MM cell line or primary cells were cocultured with BMSC in transwell then whole cell 

protein from BMSC were extracted and Western blotting was performed for LC3 

protein expression. Blots were reprobed for β-actin loading control.  

 

5.2.3 Investigation of MM cells induced LC3 puncta formation in BMSC 

To confirm that the MM cells increasing BMSC derived autophagy I used a second 

method to examine autophagy. This involved overexpressing LC3-tagged to GFP 

adenovirus in BMSC. Figure 5.4 confirms that BMSC been transduced with LC3-GFP 
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and then the BMSC been starved, I observed the formation of LC3 puncta. Moreover, 

when I cultured MM cells with BMSC and then washed off MM cells, this induced 

the formation of LC3-GFP puncta in BMSC.  Next, I counted the puncta per field, and 

this is represented in Figure 5.5. The results show that MM induced LC3 puncta 

formation in BMSC. Together, these results suggest that MM induces LC3 puncta in 

BMSC. 

 
Figure 5.4 Primary MM cells induced LC3 puncta formation in GFP-LC3 tagged 

BMSC 
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GFP-LC3 tagged BMSC were starved for 2h or cocultured with primary MM cells for 

24h, then the LC3 puncta were visualised by fluorescent microscope, scale bar=10 

μm. 

 
Figure 5.5 Primary MM cells induced LC3 puncta number in GFP-LC3 tagged 

BMSC 

GFP-LC3 tagged BMSC were starved for 2h (to test the model) or co-cultured with 

primary MM cells for 24h, then the LC3 puncta number were determined by 

fluorescent microscope. The Mann Whitney test was used to compare results in control 

to treated groups. Results with p < 0.05 were considered statistically significant (*).  

 

5.2.5 MM cells outsourced autophagy burden to BMSC  

For MM cells to upregulate autophagy on BMSC this suggests that MM cells may 

transfer their autophagy burden to BMSC and then induce autophagy upregulation in 

BMSC. As MM cells depend on autophagy for survival and for primary MM cells, it 

is hard to survive without the support of BMSC, this suggests BMSC may support the 

MM cells by their autophagy. 

 

To confirm the autophagy burden transfer from MM cells to BMSC, first I transduced 

MM cells with LC3-RFP. Confocal images show that primary MM cells have 

undegraded LC3 puncta (Figure 5.6). Then I transduced MM cells with GFP-

membrane virus and co-culture the MM cells with BMSC for 24h and the confocal 

images shown the primary MM cells actively secreted EV which were acquired by 
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BMSC (Figure 5.7). These data indicated the transfer of EV from MM cells which 

were acquired by BSMC. 

 
Figure 5.6 Primary MM cells have undegraded LC3 puncta 

RFP-LC3 tagged primary MM cells were visualised by confocal microscope, scale 

bar=10 μm. 

 

 
Figure 5.7 MM cells actively secreted EV which were acquired by BMSC 
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A. GFP-membrane virus tagged primary MM cells were visualised by confocal 

microscope, scale bar=10 μm. B. GFP-membrane virus tagged primary MM cells co-

cultured with BMSC for 24h and MM cells be washed away. BMSC was visualised by 

confocal microscope, scale bar=10 μm. 

 
5.2.6 Autophagy inhibitor blocked BMSC protection effect on MM cells   

To confirm that the autophagy plays a key role for the BMSC supporting MM cells 

proliferation, I used two autophagy inhibitors to block autophagy in BMSC and then 

detected co-cultured viable MM cells. Figure 5.8 shows that HCQ (blocking the 

infusion of autophagosome and lysosome) and wortmannin (blocking ATG mediated 

formation of autophagosome) blocked the BMSC supportive role for the MM cell 

survival. 

 
Figure 5.8 Autophagy inhibitors blocked BMSC induced protection of MM cells  

BMSC were treated with HCQ (20 μM) or Wortmannin (5 μM) for 24h then cultured 

with1*105 primary MM cells. MM viable cell numbers were assessed by trypan blue 

staining. The Mann Whitney test was used to compare results in control to treated 

groups. Results with p < 0.05 were considered statistically significant (*). Results 

represent the mean ± SD of 4 independent experiments. 

 

5.2.7 shRNA targeted ATG5 in BMSC    

To understand if upregulated autophagy in BMSC is important for the BMSC 

protection effect on MM cells, I KD ATG5 in BMSC to impair its autophagy.  
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Figure 5.9 shows the ATG5 mRNA levels in BMSC after transduction with ATG5 

shRNA expressing lentivirus.  

 
Figure 5.9 ATG5 RNA expression in ATG5-KD BMSC 

BMSC were transduced with lentivirus containing shRNA targeted to ATG5 for 72h. 

BMSC RNA was then extracted and analysed using qRT-PCR for ATG5 expression. 

Gene expression was normalised to GAPDH. The Mann Whitney test was used to 

compare results in control to treated groups. Results with p < 0.05 were considered 

statistically significant (*). Results represent the mean ± SD of 3 independent 

experiments. 

 

5.2.8 MM cells unable to induce LC3 puncta in ATG5-KD BMSC  

Next, I infected five BMSC from five MM patients with LC3-GFP and ATG5 virus. 

Then co-cultured the BMSC with primary MM cells for 24h. (Figure 5.10) The images 

indicate if the autophagy in the ATG5-KD BMSC is compromised.  

 

The ATG5-KD impaired autophagy in BMSC was confirmed, as Figure 5.10 shows 

that MM cells induced the puncta formation in BMSC and unable to induce the puncta 

formation in ATG5-KD BMSC. This suggests that the BMSC autophagy machinery 

is needed to process the waste from MM cells. 
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Figure 5.10 Primary MM cells induced LC3 puncta formation in BMSC but not 

in BMSC with ATG5 knockdown 

GFP-LC3 tagged control-KD BMSC or ATG5-KD BMSC were cultured alone or co-

cultured with primary MM cells for 24 hrs. LC3 puncta were visualised by fluorescent 

microscope, scale bar=10 μm. 
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5.2.9 Investigate ATG5 function in BMSC protection effect on MM cells in vitro 

To determine if autophagy in BMSC is protective to MM cells. I co-cultured four 

primary MM cells with ATG5-KD BMSC for 6 days and then determined the viability 

of MM cells. Figure 5.11 shows that ATG5-KD in BMSC impaired the BMSC support 

of MM cells. 

 
Figure 5.11 Primary MM cells viability was decreased when co-cultured with 

autophagy impaired ATG5-KD BMSC compared to control knockdown BMSC 

Four primary MM cells were co-cultured with Con-KD or ATG5-KD BMSC for 6 days, 

then the MM cells viability was determined by trypan blue method. The Mann Whitney 

test was used to compare results in control to treated groups. Results with p < 0.05 

were considered statistically significant (*). Results represent the mean ± SD of 4 

independent experiments. 

 

The above data show that autophagy function is important for the BMSC support the 

MM cells proliferation. 

 

5.2.10 Investigate ATG5 function in BMSC protection effect on MM cells in vivo 

To determine the role of BMSC derived autophagy on MM cells, I knocked down 

ATG5 in BMSC and then I cultured the MM cell line U266 on control-KD cells or 

ATG5-KD cells and then these were subcutaneously injected into NSG mice. Figure 

5.12 shows the engraftment of U266 cells was significantly decreased when they were 

injected together with ATG5-KD BMSC compared to control-KD BMSC. Figure 5.13 
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shows the size of tumours. This in vivo experiment confirms that BMSC derived 

autophagy plays a key role in supporting the progression of MM cells. 

 

 

 
Figure 5.12 Bioluminescence in vivo images detected the disease progression in 

U266 and ATG5-KD BMSC xenograft model 

Control group 1*106 U266-Luci cells with 0.5*106 control-KD BMSC or ATG5-KD 

group 1*106 U266-Luci cells with 0.5*106 ATG5-KD BMSC cells were injected in 

NSG mice subcutaneously. The control cells were injected in the left side and the co-

cultured cells were injected in the right side. Bioluminescence method was used to 

monitor the engraftment of cells at day 10. 
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Figure 5.13 Images show the tumour from U266/BMSC ATG5-KD engraftment 

mice 

Control group 1*106 U266-Luci cells with 0.5*106 control BMSC or ATG5-KD group 

1*106 U266-Luci cells with 0.5*106 ATG5-KD BMSC cells were injected in the NSG 

mice subcutaneously. The control cells were injected in the left side and the co-culture 

cells were injected in the right side. The mice were sacrificed at day 14 and then the 

tumour was dissected and quantified. Joined bars show the tumour sizes in separate 

mice inoculated with U266 subjected to control or ATG5-KD BMSC. Two-way 

ANOVA with Sidak’s post-test was used to compare changes in individual primary 

sample under treatment. Results with p < 0.05 were considered statistically significant 

(*). Results represent the mean ± SD of 4 independent experiments. 

 

5.2.11 NRF2 regulated P62 protein levels in BMSC 

P62 is regulated by the NRF pathway, therefore I next wanted to determine if NRF2 

regulates autophagy through the mediator of P62. I first KD NRF2 in BMSC and then 
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detected the P62 protein levels. Figure 5.14 shows the P62 protein levels is decreased 

in the NRF2-KD BMSC. 

 
Figure 5.14 KD-NRF2 BMSC have decreased P62 protein level 

BMSC were transduced with virus to knockdown NRF2 or control-KD for 96h and 

BMSC whole cell protein was extracted and Western blotting was performed for P62 

protein expression. Blots were reprobed for β-actin loading control. 

 

5.2.12 NRF2 regulated autophagy in BMSC 

To confirm that NRF2 regulates autophagy in BMSC, I knocked down NRF2 in LC3-

GFP labelled BMSC cells and then co-cultured them with primary MM cells. Figure 

5.15 shows the MM cells induced less LC3 puncta in NRF2-KD BMSC. 
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Figure 5.15 LC3 puncta formation in the NRF2-KD BMSC after the BMSC been 

co-cultured with primary MM cells  

GFP-LC3 tagged NRF2-KD BMSC were co-cultured with primary MM cells for 24h, 

then the LC3 puncta were visualised by fluorescent microscope and quantified, scale 

bar=10 μm. Two-way ANOVA with Sidak’s post-test was used to compare changes in 

individual primary sample under treatment. Results with p < 0.05 were considered 

statistically significant (*).  

 

These results confirm that NRF2 supports P62 mediated autophagy in BMSC and 

plays a key role for the BMSC supported MM proliferation. 

 

5.3 Discussion  

In chapter 4, I descripted that the NRF2 regulation in BMSC is important for BMSC 

protection of MM cells that are co-cultured with. In this chapter, I aim to investigate 

autophagy role in the BMSC protection effect on MM cells, as NRF2 also regulate 

autophagy. As descripted in 5.1.1, MM have been shown to upregulate their own 

autophagy machinery for survival, which lead me to think does autophagy also play a 

role in BMSC protection effect on MM cells.  

 

First, I confirmed that primary MM cells have constant high level of autophagy 

activation, and then I confirmed that primary MM cells induce autophagy upregulation 

in BMSC cells both from in vivo and in vitro experiments. I also extend my investigate 
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into decode how NRF2 regulate autophagy in BMSC to support the proliferation of 

MM cells. Finally, I confirm that NRF2 regulated autophagy upregulation is important 

for the BMSC support the MM cell proliferation. 

 

Autophagy is the cellular way to remove malfunctioning sub cellular organelles or 

misfolded proteins. If the autophagy level is high, the cells are more prone to apoptosis.  

In this chapter, I show that the primary MM cells have higher basal autophagy levels 

than MM cell lines. That may explain why primary MM cells are more prone to 

apoptosis when were cultured alone and it may also suggest that MM cell lines are not 

the best model to study MM. As MM cell lines cannot present the high basal autophagy 

level as was shown in primary MM cells. Therefore, I focused on MM primary cells. 

 

It is interesting to note that culture of MM and BMSC together affects their autophagy 

levels. Data show that the BMSC autophagy levels are upregulated when co-cultured 

with primary cells but not changed when co-cultured with MM cell lines. BMSC 

decreased autophagy level MM cells. This suggests that something is regulating this 

response and autophagy upregulation in BMSC may play a role in protecting MM cells 

from apoptosis. Further experiments show that if I impair BMSC autophagy by using 

knockdown of ATG5 this inhibits BMSC support of MM cells. Moreover, NRF2-KD 

BMSC impaired P62 mediated autophagy, resulting in reduced support and growth of 

MM cells both in vitro and in vivo.  

 

Here I provide new mechanistic insight in the ways of how BMSC protect MM cells. 

It is possible that during PI treatment these responses are elevated, thus allowing MM 

cells to evade chemotherapy induced apoptosis. This suggests a potential therapeutic 

strategy by impairing autophagy and treating with PI for the treatment of MM. 
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Figure 5.16 Schematic representation of MM cell induced NRF2 mediated 

autophagy regulation in BMSC protects MM cells 

When co-culture MM cells with BMSC, MM cells induce the ROS stress in BMSC. As 

a respond, the BMSC then upregulate NRF2 expression (descripted in chapter 4). 

NRF2-KD in BMSC will decrease P62 expression and the autophagy function in 

BMSC is comprised and block the BMSC protection effect on MM cells, which confirm 

NRF2 mediated autophagy upregulation in BMSC is important for the BMSC surport 

the MM cells proliferation. 
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CHAPTER SIX   

OVERALL DISCUSSION 
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Currently, MM is incurable, as MM cells quickly resistant to all the clinical available 

drugs. To find a new therapy strategy is in need to investigate. From my team’s 

previous research and published reports, I select the NRF2 pathway for the treatment 

of MM. Because (descripted in 1.4, 1.6 and 1.7.1) MM patients have been reported to 

present high level ROS, autophagy and ER stress. NRF2 pathway could regulate the 

above stress, which maybe a targetable pathway for the treatment. 

 

I investigate the NRF2 regulation both in MM cells and BMSC. Because, one of the 

difficulties to find a new pathway for targeting is the BM microenvironment may 

respond to the treatment and protect MM cells. I need to confirm that the possible 

NRF2 inhibition treatment could not be comprised by the co-cultured BMSC. So, I 

use in vitro cell co-culture system and in vivo experiment to investigate the NRF2 

function. 

 

6.1 NRF2 regulation plays a key role for MM cell survival  

NRF2 regulation has been reported as having a role in both the prevention of 

tumorigenesis and the promotion of cancer progression. As the main cellular defence 

system, NRF2 regulates the response to ROS, drug excretion and maintenance of 

intracellular homeostasis. Thus, NRF2 is considered as a cancer suppressor, which 

protect normal cells and prevent carcinogenesis [302]. However, it is the same 

mechanism that also leads to NRF2 being considered as an oncogene, as NRF2 

activation protects cancer cells and promotes cancer cell proliferation [303].  

 

In my project, I focused on the pro-tumoral role of NRF2 in MM. I then explored 

whether and how inhibition of pro-tumoral NRF2 could be exploited in the treatment 

of patients with MM. Furthermore I considered the role of NRF2 in drug resistance to 

existing therapies as it has previously been reported that NRF2 activation contributes 

to MM cell resistance to PI, which is mediated by proteasome maturation protein [304]. 

My research explored additional mechanisms of NRF2 protection in MM cells. 

Consistent with other reports [264, 304-306], my data show that NRF2 inhibition 

sensitises MM cells to PI treatment. 
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6.1.1 MM cells upregulate NRF2 pathway for survival  

In addition to ROS, NRF2 upregulation has been reported to occur in response to two 

more mechanisms. The first mechanism is P62-autophagy-NRF2 axis, as several 

groups have reported that P62 or dysregulated autophagy activates NRF2 expression 

in liver disease [163], HEK293 cells [164], HeLa cells [307], U2OS cells and MEF 

cells [308]. They found that KEAP1 suppresses NRF2 and actives P62, which 

coordinates the NRF2 regulated antioxidant defence system and the P62 mediated 

autophagy system. Thus, P62 activation and autophagy dysregulation all activate 

NRF2. The second mechanism is PI induced NRF2 activation [304], as NRF2 is 

mainly degraded through the proteasome system. Once the PI inhibit the proteasome, 

more NRF2 are accumulated in the cells and enter the nuclei to initiate NRF2 regulated 

gene activation. Therefore, I investigated whether either of these two mechanisms 

regulating NRF2 were relevant in MM.  

 

First, I wanted to confirm whether PI induces accumulation of NRF2. This is important 

because the proteasome degradation system is the main way for the NRF2 degradation 

and PI form the backbone of current MM therapy. I found that PI inhibit the 

proteasome system and thus resulted in the accumulation of NRF2 in benign and 

malignant cells. This mechanism is confirmed in chapter 3 and 4, which detected the 

increased NRF2 protein in PI treated MM and BMSC. This finding led to further 

investigations of the NRF2 protective role on MM cells drug resistance and NRF2 role 

in BMSC protective role on MM cells as shown in 6.1.2-3.  

 

Second, I confirmed that the NRF2-P62-autophagy axis mediates NRF2 upregulation 

in MM. In chapter 4, I reported that the primary MM cells demonstrate higher LC3ǀ to 

LC3ǁ turnover, which indicates primary MM cells have higher autophagy flux. While 

the KEAP1 is recruited for the activation of P62 to form autophagosomes, the NRF2 

degradation pathway is disturbed and resulted with accumulated NRF2 in MM cells. 

The upregulated NRF2 further promote autophagy, which forms a positive loop for 

the cells to clear away unwanted cellular material. 

 

Taken together there are at least three different mechanisms that contribute to the 

upregulation of NRF2 activation in MM cells and result in constitutive high NRF2 



131 
 

expression in MM cells. Moreover, my data show that the NRF2 upregulation plays a 

key role for MM cell survival. In chapter 3, I reported for the first time that primary 

MM cells exhibit high level NRF2 activation and that PI treatment further elevates the 

NRF2 activation. Finally, compared to the control group, KD-NRF2 in MM cells 

induces cell death and sensitise MM cells to PI treatment. These data confirm that MM 

cells upregulate NRF2 for survival and provide a biologic rationale for targeting NRF2 

in patients with MM. 

 

6.1.2 NRF2 promotes the survival of MM cells through upregulating antioxidant 

defence systems and autophagy   

NRF2 actives many pathways to promote the survival of MM cells. For the antioxidant 

system activation, other researcher have shown that MM cells are high in ROS stress 

and PI further increase the ROS level, which can be eliminated by NRF2 activated 

antioxidant systems [133]. One important NRF2 regulated cellular antioxidant is GSH, 

which is important for the ER to correct the misfolded protein [309] and important for 

the cells to prevent ROS stress induced apoptosis [310]. Moreover, GSH reduces PI 

induced cytotoxicity in MM cells [264]. In my project I revealed that ROS induced 

NRF2 promotes the survival of MM cells through NRF2 regulated GSH synthesis, 

which blocks ER stress associated apoptosis in MM cells. This finding links the 

previous findings together to decode a full pathway of how MM cells become resistant 

to PI.  

 

NRF2 regulated autophagy has previously been reported to be essential for the survival 

of malignant plasma cells [174]. Furthermore, it was reported that combining an 

autophagy inhibitor with PI treatment sensitises MM cells to death. Moreover, a 

genetic study revealed that autophagy promotes MM oncogenesis [81]. In chapter 5, I 

detected high autophagy levels in primary MM cells, which is consistent with the 

above reports.  

 

MM cells have high levels of autophagy and high levels of NRF2 are needed to 

activate the transcription of P62, which is needed for the formation of the 

autophagosome. A previous report has shown that the NRF2-P62- autophagy axis 

plays an important role in MM cell chemotherapy resistance [304]. My finding further 



132 
 

points out that the primary MM cells have much higher autophagy levels than MM 

cell lines, which may explain why primary MM cells hardly survive without the 

support of BMSC once aspirated out of their BM microenvironment. My findings 

taken together with previous work on the MM autophagosome confirm that NRF2 

regulated autophagy increases play a key role in the survival of malignant MM cells 

through the upregulation of the antioxidant defence system and autophagy. Inhibiting 

autophagy in BMSC block its supportive role on MM cells, which highlights that 

autophagy in BMSC is essential to provide a pro-turmoral microenvironment for MM. 

 

6.1.3 BMSC upregulate NRF2 when in co-culture with MM cells 

In chapter 4, I reported for the first time that MM cells induce NRF2 activation in 

BMSC. As KEAP1 senses the ROS level in the cells, this suggests that the NRF2 

upregulation in BMSC may be induced by ROS. I detected increased ROS levels in 

the BMSC of patients with MM and confirmed that this is induced by the MM cells 

both in vitro and in vivo. These data confirm that MM cells induce BMSC NRF2 

upregulation and it is driven by ROS. This is a new finding and demonstrates the 

importance of the crosstalk between malignant plasma cells and the non-malignant 

stromal cells in the microenvironment that support them. Furthermore, it extends the 

findings of Rushworth and Brittany who have previously shown that ROS induced 

NRF2 is pro-tumoral in the malignant plasma cell [133, 311]. My finding shows that 

NRF2 upregulation in BMSC is also important for the MM proliferation and it is 

induced by the MM stimulated ROS stress. These findings highlight the NRF2 role in 

the interaction of MM and BMSC leading to a pro-tumoral microenvironment for the 

MM.  

 

6.1.4 BMSC are less sensitive to PI induced apoptosis compared to MM cells 

My data shown in chapter 4 reveal that higher dosage of PI is needed to induce the 

accumulation of NRF2 protein in the BMSC than MM cells and that BMSC are more 

resistance to PI induced apoptosis. The proteasome system functions in cellular stress 

to degrade unwanted and misfolded protein in MM cells. Therefore, the MM cells and 

BMSC have different sensitivity to PI treatment which is in favour of the patient and 

allows a much wider PI dosage range and generates less damage to the 

microenvironment than the tumour. In chapter 5 I confirmed that NRF2 regulated 
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autophagy in BMSC protects MM cells. Therefore, taken together as NRF2 

upregulation in MM cells and BMSC both favour the MM cells and NRF2 inhibition 

in MM cells and BMSC both comprise MM cells, my data led me to hypothesise that 

inhibiting NRF2 in patients with MM will be antitumoral through both a direct effect 

on the cancer cells and indirect effects through modulation of the tumour 

microenvironment. 

 

6.2 The role of the ER on survival of MM cells  

6.2.1 MM cells endure ER stress 

Functionally ER controls protein translocation, folding and modification. The 

correctly modified protein is then transported to the Golgi and vesicles for secretion 

or display on the surface of the cell. As plasma cells produce and secrete 

immunoglobulin the ER plays a key role in non-malignant and malignant plasma cell 

normal function. 

 

Accordingly, MM cells are a widely used in vitro model for ER stress research, due to 

its high-level basal ER stress that is induced by excessive production of paraprotein. 

Then, the paraprotein is transported to the ER lumen for protein folding, which induces 

the ER stress response: UPR.  UPR functions to slow down the protein translation and 

increases the protein folding process to restore ER homeostasis. Therefore, the 

mechanisms by which MM cells sustain such high levels of ER stress are expected to 

provide novel insights in the development of future treatments of MM. 

 

6.2.2 PI induces ER stress 

ER stress has been reported as responsible for the progression and drug resistance of 

MM [258, 312]. Thus, targeting ER stress to induce apoptosis of MM cells is an MM 

treatment strategy.  

 

PI are a first line drug for treatment of MM and have a number of reported mechanisms 

of action. One such mechanism is the targeting of ER function in MM cells. The 

proteasome degradation system coordinates the unfolded protein response to speed up 
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the degradation of unwanted or misfolded proteins. When the MM cells are treated 

with PI, the ER stress is increased and the unfolded protein response is unable to 

release the ER stress, which leads MM cells towards an ER stress associated apoptosis. 

In chapter 3, I confirmed that the PI induces ER stress in MM cells. But as MM patients 

still relapse to the PI treatment, which lead to a question of how MM cells escape the 

ER stress induced cell death. My research shows that the NRF2 regulated GSH 

production play a key role for the cells to release ER stress and then escape cell death. 

 

6.2.3 ER stress responses 

A number of different pathways of ER stress response have been reported [313, 314], 

for example:  

1) IRE1α: IRE1α upregulates the unfolded protein response mediated by activation of 

transcriptional factor XBP-1. IRE1α also activates JNK and p38 MAPK mediated by 

TRAF2 and ASK1. Activated JNK translocate to the mitochondrial membrane and 

regulates mitochondria function and activates p38 MAPK which activates CHOP, 

which then contributes to the induction of ER stress induced cell death.  

2) ATF6: During ER stress, ATF6 relocates to the Golgi to mediate ER expansion and 

protein modification.  

3)  PERK: PERK activates elF2α and induces ATF4, which is an inducer of CHOP.  

These three pathways highlight the central role of CHOP in the mediation of ER stress 

associated apoptosis. For this reason, I investigated the function of CHOP in MM. 

 

6.2.4 NRF2 regulate ER stress associated apoptosis 

CHOP plays a central role for ER stress induced apoptosis and other reports have 

confirmed that in MM cells the NRF2 regulated ER stress associated apoptosis is 

mediated by CHOP and ATF4 [315, 316]. In chapter 3, I further confirmed that the 

high NRF2 expression controls CHOP mediated ER stress induced apoptosis in PI 

treated MM cells. I also extended our understating of the role of the ER stress response 

in MM drug resistance, which is mediated by NRF2 regulated GSH production. These 

finding decode a full mechanism of the NRF2 role in MM cells drug resistance. 
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6.4 Autophagy role on survival of MM cells  

6.4.1 MM cells upregulate autophagy for survival 

Under normal conditions, autophagy plays a key role in maintaining cellular 

homeostasis. Under stress conditions, cells upregulate autophagy to remove damaged 

organelles and other components, which provides recycled materials to meet the 

energy and nutrient demands of the cell [317]. As MM cells need to degrade 

dysfunctional sub-cellular organelles and misfolded paraprotein to prevent the 

initiation of apoptosis, autophagy upregulation is therefore essential for MM cell 

survival [318]. In chapter 5, I confirmed this concept, and, in my work, I extended the 

study of autophagy to cells within the tumour microenvironment, which is autophagy 

upregulation in the BMSC is also important for its supportive effect on MM cells. 

 

Targeting autophagy to sensitise MM cells to chemotherapy is attracting attention, as 

MM is might dependent on autophagy to degrade paraprotein. Besides that, I have 

found that PI treatment upregulates P62 mediated autophagy in MM cells for survival. 

Thus, a strategy of inhibit both autophagy and the ubiquitin-proteasome degradation 

system would likely be highly effective in the treatment of MM. 

 

6.4.2 BMSC upregulate autophagy to protect MM cells 

My research further focused on the function of autophagy in the BMSC, which is 

essential for the BMSC protection effect on MM cells.  As shown in chapter 5, ATG5-

KD BMSC are unable to form autophagosome and autophagy impaired BMSC is less 

protective to MM cells. I further revealed that MM cells and PI treatment both induce 

NRF2 activation in BMSC and NRF2 regulate autophagy, which is mediated by P62. 

This data suggest NRF2 regulation plays a key role for the BMSC protective effect on 

MM cells. I confirmed the hypothesis using a lentivirus mediated shRNA targeted 

NRF2 silencing method. My data show that NRF2-KD BMSC have decreased P62 

protein level and impaired autophagy and results in less protection to MM cells. These 

data highlight that NRF2 activated autophagy in the BMSC is pro-tumoral in MM. 
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6.4.3 Targeting NRF2 inhibition to overcome the drawback of autophagy 

inhibition treatment of MM 

 Though autophagy is an important cellular way to unload cell stress, cells have other 

ways to clear away unwanted proteins, for example the proteasome degradation 

system. Thus, the autophagy inhibitor would be optimally used in combination with 

other drugs, for example PI to treat MM [319]. So, autophagy inhibition alone may 

not be effective to induce MM cell death.  

 

Autophagy inhibition and PI combination therapy also have drawbacks. A phase 1 

clinical trial have tested the combination of Bz and autophagy inhibitor treatment on 

MM patients. It reports that the MM patients’ responses were not robust. They 

hypothesised that ER stress and the unfolded protein responses as the possible 

mechanisms for MM cell survival [319]. So, autophagy inhibition and PI combination 

therapy may also be insufficient to treat MM cells. 

 

Furthermore, as shown in chapter 3, I confirmed that PI treatment induces NRF2 

upregulation. As descripted in chapter 1, NRF2 activation initiates more P62 

production. It is also reported that PI increases P62 phosphorylation and promote 

autophagy which contribute to MM cells drug resistance. As a result, a new strategy 

is needed to improve the outcome of PI and autophagy inhibitor combination in the 

treatment of MM. Targeting NRF2 to overcome the failure of autophagy inhibitor in 

MM cells has been reported [306]. In chapter 4, I further confirmed that knock down 

of NRF2 in BMSC impaired its autophagy and block the BMSC protection effect on 

MM cells. So NRF2 inhibition may provide a new therapy strategy for treatment of 

MM. 

 

6.5 Concluding remarks and future investigations  

Although the newly developed drugs for the treatment of MM have significantly 

increased the patients’ remission time, currently MM is still incurable. Thus, 

understanding the cellular mechanisms of MM cell chemotherapy resistance is needed 

to improve therapy. 
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In my thesis, I highlight the role of NRF2 regulation in MM cell survival. I report that 

NRF2 reduces ER stress associated apoptosis in response to PI treatment of MM cells 

through regulating CHOP and GSH. This is a new finding, which highlights the role 

of NRF2 regulated ER stress on MM cells drug resistance. I also show that NRF2 

regulates BMSC autophagy which functions to digest the outsourced autophagy 

burden from MM cells, and that this is mediated by P62. This is a new finding that 

extended our understandings of the protective role of NRF2 in the cell to cell 

interaction. It shows that BMSC protective effect on MM cells is mediated by MM 

cells that outsource its autophagy. 

 

My research also highlights the role of the microenvironment in the protection of MM 

cells. In the BM, different types of cells build up an MM niche, which promotes MM 

progression and protects MM cells from chemotherapy induced cell death. In my 

research, I extended our understanding that autophagy in BMSC supports MM cells 

proliferation, which is induced by the ROS transferred from MM cells.  

 

Further investigation should focus on establishing the details of the complex network 

of MM cell and BM microenvironment interaction and to decode the mechanisms of 

BM microenvironment protective role on MM cells. For example: 1) to design NRF2 

specific inhibitors for the possible application in the disturb the cell to cell interaction; 

2) to investigate other cell types, such as macrophage cells, T cells et al. in the BM 

microenvironment that interact with MM cells and affect its sensitivity to the 

chemotherapy; 3) to investigate how to sensitise MM cells stem cells to chemotherapy; 

4) to investigate mechanisms of how MM cells explore BM microenvironment to 

avoid mitochondria induced cell death. 
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Figure 6.39 Schematic representation of NRF2 regulation protect MM cells 

In the PI treated MM cells (Chapter 3), NRF2 is upregulated to decrease PI induced 

ROS and ER stress associated MM apoptosis. MM cells also induces ROS stress and 

NRF2 upregulation in BMSC, which upregulates autophagy in the BMSC. 

Upregulated autophagy supports the proliferation of MM cells (chapter 5). 
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a b s t r a c t

Multiple myeloma (MM) is an incurable disease characterized by clonal plasma cell proliferation. The
stress response transcription factor Nuclear factor erythroid 2 [NF-E2]-related factor 2 (NRF2) is known
to be activated in MM in response to proteasome inhibitors (PI). Here, we hypothesize that the tran-
scription factor NRF2 whose physiological role is to protect cells from reactive oxygen species via the
regulation of drug metabolism and antioxidant gene plays an important role in MM cells survival and
proliferation. We report for the first time that NRF2 is constitutively activated in circa 50% of MM primary
samples and all MM cell lines. Moreover, genetic inhibition of constitutively expressed NRF2 reduced MM
cell viability. We confirm that PI induced further expression of NRF2 in MM cell lines and primary MM.
Furthermore, genetic inhibition of NRF2 of PI treated MM cells increased ER-stress through the regula-
tion of CCAAT-enhancer-binding protein homologous protein (CHOP). Finally, inhibition of NRF2 in
combination with PI treatment significantly increased apoptosis in MM cells. Here we identify NRF2 as a
key regulator of MM survival in treatment naive and PI treated cells.

© 2017 Elsevier B.V. All rights reserved.

Introduction

Multiple myeloma (MM) is an incurable disease characterized
by clonal plasma cell proliferation [1e3]. Genetic studies demon-
strate that MM is a highly complex and heterogenous disease that
undergoes clonal evolution towards a multi-drug resistant disease
over time [4e7]. Thus, treatment relapse from the development of
drug resistance clones is inevitable and presently MM remains
incurable [8]. Therefore, better patient outcomes are expected to
come from an improved understanding of the mechanisms of drug
resistance which results in the development of novel treatment
strategies that ‘re-sensitise’ MM cells to chemotherapy.

MM cells are dependent on the unfolded protein response to
alleviate the endoplasmic reticulum (ER) stress caused by the
excessive amounts of paraprotein being produced [9]. The protea-
some inhibitors bortezomib and carfilzomib increase the accumu-
lation of proteins, which elevate ER-stress and increase intracellular
oxidative stress. This, in part accounts for proteasome inhibitor
induced apoptosis in MM cells [10]. The transcription factor

(nuclear factor erythroid 2 [NF-E2]-related factor 2 (NRF2)) is a key
mediator of oxidative stress through the direct regulation of over
200 genes, as well as through mechanisms of post transcriptional
modification [11e13]. These genes are involved in various cellular
processes including the regulation of glutathione (GSH) synthesis,
detoxification and the regulation of inflammatory processes
[14e17]. The transcription factor NRF2 has been shown to
contribute to the malignant phenotypes of several cancers through
effects on proliferation and drug sensitivity [18]. Moreover, in MM
we identified the pro-tumoural function of heme oxygenase-1 (HO-
1), an NRF2 regulated gene, through chemotherapy resistance [19].

NRF2 is regulated by Kelch-like ECH-associated protein 1
(KEAP1), which facilitates the ubiquitination and subsequent
degradation of NRF2 by the proteosome [18]. Therefore, because
proteosome inhibitors prevent the degradation of NRF2 by KEAP1,
an increased transcriptional activity is induced in most cell types
including malignant plasma cells [15,20]. Recently, NRF2 has also
been shown to be involved in regulating ER-stress through the
negative regulation of CCAAT-enhancer-binding protein homolo-
gous protein (CHOP) [21]. CHOP is induced by the transcription
factor, Activating Transcription Factor 4 (ATF4), as part of the ER-
stress response which then mediates apoptosis. Studies have
shown that high NRF2 levels inhibit the expression of CHOP and
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therefore prevent ER-stress induced apoptosis [22]. Others have
shown that modulating redox homeostasis in MM could increase
sensitivity of MM to bortezomib [20]. Finally, a recent study has
shown that elevated glutathione levels can block bortezomib
induced stress responses [23]. Therefore, since NRF2 activation
positively regulates glutathione levels and negatively regulates
CHOP we wanted to determine in MM if NRF2 is highly expressed
and if silencing the expression of NRF2 reduced cell viability. In
addition, we aimed to determine the relationship between NRF2
activation, increased glutathione levels and CHOP deregulation in
response to proteasome inhibitors.

Materials and methods

Materials

Anti- b-actin (R&D Systems, Abingdon, UK #MAB1536), anti-NRF2 (Abcam,
Cambridge, UK #62352), anti-GAPDH (Cell Signaling Technology, Cambridge, MA,
USA #D16H11), anti-Sam68 (Santa Cruz Biotechnology, Santa Cruz, USA), anti-CHOP
(Cell Signaling Technology #1649). All other reagents were obtained from Sigma-
Aldrich (St Louis, MO, USA), unless indicated.

Cell lines and primary cell isolation

DNA-fingerprinting authenticatedMM derived cell lines were obtained from the
European Collection of Cell Cultures. MM cell lines were maintained in medium
RPMI 1640 supplemented with 10% (v/v) foetal bovine serum, 1% penicillin-
streptomycin. Primary MM cells were obtained from MM patients' heparinized
BM aspirates with informed consent in accordance with the Declaration of Helsinki
and under approval from the United Kingdom National Research Ethics Service (07/
H0310/146).

Histopaque 1077 density-gradient centrifugation method was used to isolate
primary cells from MM patients' heparinized BM aspirates. The cells were then
cultured in DMEM supplemented with 20% (v/v) foetal bovine serum and 1%
penicillin-streptomycin. Primary MM cells were purified from other haematopoietic
cells using magnetic-activated positive selection cell sorting with CD138þ
MicroBeads (Miltenyi Biotec, Auburn, CA). All cells were incubated at 37 "C with 5%
CO2 and 95% relative humidity.

Viability and apoptosis assay

Cell viability was determined by measuring levels of intracellular ATP using Cell
Titer-GLO (Promega, Southampton, UK) according to manufactures instructions.
Plates were measured on FLUOstar optima Microplate Reader (BMG LABTECH,
Germany). CyFlow Cube 6 flow cytomter (Sysmex, Milton Keynes, UK) was used to
detect cell apoptosis. Cells were counter stained with Annexin-V and Propidium
Iodide (PI), then analysed by flow cytometry.

Quantitative RT-PCR

ReliaPrep RNA cell miniprep Kit (Promega) was used to extract total RNA, ac-
cording to the manufacturer's instructions. Reverse transcription (RT) was per-
formed using the qPCRBIO cDNA synthesis kit (PCR Biosystems, London, UK).
Relative quantitative real-time PCR using qPCRBIO SyGreen Mix (PCR Biosystems)
was performed on cDNA generated from the reverse transcription of purified RNA.
After pre-amplification (95 "C for 2 min), the PCRs were amplified for 45 cycles
(95 "C for 15 s and 60 "C for 10 s and 72 "C for 10 s) on a 384-well LightCycler 480
(Roche, Burgess Hill, UK). Each mRNA expression was normalised against glyceral-
dehyde 3-phosphate dehydrogenase (GAPDH). Sequences of real-time PCR primers
(Sigma) used in this study are listed in Table 1.

Protein extraction/SDS-PAGE analysis

Radioimmunoprecipitation assay buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1%
NP-40, 0.1% SDS, 0.5% sodium deoxycholate, phosphatase inhibitor cocktail tablet
and protease inhibitor cocktail tablet from Roche) was used to extract whole cell
lysates. NE-PER nuclear and cytoplasmic extraction reagents (Thermo scientific)
were used to extract nuclear lysates. Sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) was used to separate proteins, then proteins were
transferred to polyvinylidene difluoride membrane and Western blot analysis per-
formed with the indicated antisera according to the manufacturer's guidelines. All
images are representative of a minimum of three independent experiments.
Detection was performed by electrochemical luminescence (ECL Chemdoc-It2
Imager (UVP).

Lentiviral knockdown

Plasmid containing MISSION® shRNA NRF2 (NRF2-KD) were purchased from
Sigma-Aldrich and transduced into 293 Tcells. MISSION pLKO.1-puro Control Vector,
was used as the lentivirus control (Con-KD). Control and target lentivirus stocks
were produced as previously described [24].

Promoter assay

The HO-1 promoter construct (pHO-1Luc4.0 and pHO-1mut ARE) was a kind gift
from X. Chen, Baylor institute of Medicine, Houston. For the reporter assays a total of
0.5 mg of reporter plasmids and pRL-CMV control constructs were co-transfected
into U226. Transfected cells were incubated for 48 h before the indicated treat-
ments. For reporter assay, cells were treated with Dual-Luciferase Reporter Assay
System (Promega).

ER-stress detection

ER-Tracker™ Red (BODIPY® TR Glibenclamide, Thermo Scientific) was pur-
chased from Invitrogen. The live cellular ER-stress levels were determined according
the manufacturer's guidelines by flow cytometry.

GSH assay

GSH-Glo™ Assay was purchased from Promega. The cellular GSH levels were
determined according the manufacturer's guidelines by flow cytometry.

Statistical analysis

The Student's T test was used to compare results in control to treated groups.
Results with p < 0.05 were considered statistically significant (*). We also use the
Two-way ANOVA with Sidak's post-test. Results with p < 0.05 were considered
statistically significant (*). Results represent the mean ± SD of 4 independent ex-
periments. For Western blotting, data are representative images of 3 independent
experiments. We generated statistics with Graphpad Prism 5 software (Graphpad,
San Diego, CA, USA).

Results

Increased NRF2 activity in MM is pro-tumoral

NRF2 has been shown to be constitutively activated in various
cancers [25e27]. Therefore, we first evaluated the basal expression
of NRF2 inMM cell lines and primary cells. NRF2 is highly expressed
in all MM cell lines and 4/8 primary MM tested (Fig. 1A). The
functional consequence of high NRF2 was examined using NRF2
targeted shRNA in MM1s (low NRF2 expression) and U226 (high
NRF2). Fig. 1B shows that MM1s and U226 infected with lentivirus
targeted to NRF2 have reduced NRF2 RNA expression. Fig. 1C shows
that targeted NRF2-KD inhibits HO-1 and GCLM mRNA expression.
Furthermore targeted NRF2-KD significantly reduces the viability of
U226 and MM1s (Fig. 1D). Finally, the NRF2 inhibitor brusotal in-
hibits cell viability of both MM#9 and MM1s (Fig. 1E). These results
suggest that NRF2 is critical to the survival of a subset of MM.

Proteasome inhibition induces NRF2 activity in MM

Bortezomib and carfilzomib are proteasome inhibitors widely
used in the treatment of MM. We therefore evaluated the nuclear
NRF2 expression in proteasome inhibitor treated MM cell lines.
Bortezomib and carfilzomib induced NRF2 protein in nuclear ex-
tracts (Fig. 2A) in all MM cell lines. Fig. 2B shows that NRF2

Table 1
Oligonucleotide sequences for real-time PCR Sequences (5' to 3').

GAPDH F GCACCACCAACTGCTTAGC
R GGCATGGACTGTGGTCATA

NRF2 F CGTTTGTAGATGACAATGAG
R AGAAGTTTCAGGTGACTGAG

HO-1 F ATGACACCAAGGACCAGAGC
R GGGCAGAATCTTGCACTTTG

GCLM F TGCAGTTGACATGGCCTGTT
R TCACAGAATCCAGCTGTGCAA

ATF4 F CCTAGGTCTCTTAGATGATTACC
R CAAGTCGAACTCCTTCAAATC

CHOP F CTTTCCAGACTGATCCAAC
R GATTCTTCCTCTTCATTTCCAG
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accumulates and is present in the nucleus of primary MM cells
treated with bortezomib and carfilzomib. Moreover, bortezomib
and carfilzomib induced NRF2 regulated genes in U226 and MM1s
cells and primary MM (Fig. 2C and D).

Next wewanted to determine if NRF2 was activewhenMM cells
are treated with bortezomib and carfilzomib. To do this we used the
HO-1 promoter assay in which a wild type HO-1 promoter or a
mutant HO-1 promoter (NRF2 antioxidant response element

mutated; Fig. 3A) were transfected into the MM cell line MM1s.
Cells were then treated with bortezomib and carfilzomib and
promoter activity was examined. Fig. 3B shows that mutant HO-1
promoter had a significant reduction in activity compared to
wildtype. Finally, we used NRF2-KD in MM1s and U266 cells and
treated with bortezomib or carfilzomib. Fig. 3C shows that borte-
zomib and carfilzomib induced NRF2 up-regulated is inhibited by
NRF2-KD. Fig. 3D shows that bortezomib induced NRF2 regulated

Fig. 1. NRF2 expression in MM cell lines and primary MM cells. (A) Whole cell protein was extracted from MM cell lines and primary MM cells and Western blotting was
performed for NRF2 protein expression. Blots were reprobed for b-actin to show loading across samples. (B-C) Lentiviral mediated shRNA knockdown (KD) of NRF2 in MM1S and
U266 cells. (B) RNA was extracted and analysed using qRT-PCR for NRF2 expression. Gene expression was normalised to GAPDH. (C) HO-1 and GCLM expression was analysed and
normalised to GAPDH. (D) Cell viability was analysed using flow cytometer with PI/Annexin V staining and Cell-TiterGlo. (E). MM1s cells and MM#9 cells were treated with 30 nM
brusatol for 24 h and then analysed for cell viability using flow cytometer with PI/Annexin V staining and Cell-TiterGlo.
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genes were also inhibited by NRF2-KD in U266 cells. Together these
data confirm that NRF2 induced transcription is activated by bor-
tezomib and carfilzomib in MM.

NRF2 inhibition induces ER-stress associated apoptosis through up-
regulation of CHOP

MM cells have high levels of ER-stress as a consequence of the
large amount of immunoglobulin they produce [9,28,29]. Moreover,
the addition of a proteasome inhibitor increases this stress
response thus inducing apoptosis [30]. We therefore wanted to
explore if NRF2 regulates ER-stress associated apoptosis in
response to proteasome inhibition. Initially we identified that in

U226 and MM1s cells NRF2-KD induced CHOP expression, but not
ATF4 expression (Fig. 4A). Next wewanted to determine if ER-stress
was increased in response to NRF2-KD. Fig. 4B shows that using the
ER tracker assay, NRF2-KD cells have a higher ER-stress compared
to control-KD cells. Moreover, the addition of bortezomib or car-
filzomib to the NRF2-KD cells further increased ER-stress (Fig. 4C).

Next we examined if CHOP and ATF4 were increased in response
to bortezomib or carfilzomib. Fig. 4D shows that CHOP is increased
inMM1s cells in response to proteasome inhibition. To determine if
the ER-stress was an effect of increased CHOP expression we ana-
lysed CHOP mRNA expression in NRF2-KD cells when treated with
bortezomib or carfilzomib. Fig. 5A shows that NRF2-KD cells have a
significant increase in CHOP expression when treated with

Fig. 2. NRF2 is activated by proteasome inhibitors. (A) MM cell lines were treated with bortezomib (Bz, 10 nM) and carfilzomib (Cfz, 10 nM) for 4 h. Nuclear protein was extracted
andWestern blotting was performed for NRF2 protein expression. Blots were reprobed for SAM68 and GAPDH to show loading across samples. (B) Primary MMwas treated with Bz,
10 nM and Cfz, 10 nM for 4 h. Cells were fixed and stained with NRF2 and DAPI and then analysed using fluorescence microscopy. Scale bar ¼ 10 mM. (C and D), MM cell lines and
primary MM cells were treated with Bz and Cfz for 4 h at 10 nM. RNAwas extracted and analysed using qRT-PCR for HO-1 and GCLM expression. Gene expression was normalised to
GAPDH.
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bortezomib or carfilzomib as compared control-KD cells. Finally we
confirmed the increase in CHOP usingWestern blotting in NRF2-KD
cells treated with bortezomib and carfilzomib (Fig. 5B and C).

NRF2 regulates ER-stress associated apoptosis in MM cells through
its regulation of GSH synthesis

CHOP mRNA expression has been shown to be controlled by
direct NRF2 binding of the CHOP promoter or via an indirect NRF2
response [21]. The indirect response is mediated through gluta-
thione (GSH) whose synthesis is tightly controlled by NRF2 [31]. To
determine if GSH plays a role in regulating CHOP in MM we first
analysed the GSH levels in MM cell lines treated with bortezomib.
Fig. 6A shows that bortezomib increases GSH levels in MM cells.
Next wewanted to determine if this was regulated by NRF2. Fig. 6B
shows that GSH levels were not significantly increased in NRF2-KD
MM cells compared to Con-KD cells. Next we wanted to examine if
the precursor to GSH, N Acetyl Cysteine (NAC) could inhibit bor-
tezomib induced CHOPmRNA expression and ER-stress. Fig. 6C and
D shows that NAC inhibits bortezomib induced CHOP and ER-stress
responses. Next we wanted to detect if the glutathione (GSH)
synthesis inhibitor, buthionine sulfoximine (BSO) increased borte-
zomib induced CHOP mRNA expression and ER-stress responses.
Fig. 6E and F shows that BSO increases bortezomib induced CHOP

and ER-stress responses. Finally, we show that bortezomib induced
cell death in both MM1s and U226 is enhanced when NRF2
expression is inhibited (Fig. 6E and F). Taken together, these results
confirm that NRF2 regulates bortezomib induced CHOP mediated
apoptosis in MM at least in part through the generation of GSH (see
Fig. 7).

Discussion

Here we report that NRF2 supports survival and chemotherapy
resistance in MM. We find that NRF2 is constitutively expressed in
approximately 50% of primary MM samples tested and all MM cell
lines. Subsequently, genetic or drug induced inhibition of NRF2
reduces survival of MM. We find that inhibiting NRF2 induces
upregulation of the ER-stress response protein CHOP. Moreover,
treatment with PI further increased expression and activity of
NRF2, which inhibits CHOP and increases glutathione. Silencing
NRF2 prevents PI induced glutathione, which regulates CHOP
expression. Consequently, genetic inhibition of NRF2 increases MM
sensitivity to PI.

Proteasome inhibitors are highly effective in MM, however pa-
tients will inevitably relapse following treatment through the
emergence of drug resistant clones [4e7,32]. Here we report that
proteasome inhibitor induced NRF2 activation supports the

Fig. 3. Bortezomib and carfilzomib induce NRF2 activity. (A) Schematic of the human HO-1 promoter construct (pHO-1Luc4.0) or human HO-1 promoter with ARE mutation
construct (pHO-1mutARE). (B) U266 cells were transfected with pHO-1Luc4.0 or pHO-1mutARE for 48 h and then treated with Bz (10 nM) or Cfz (10 nM) for 24 h. HO-1 promoter
activation was measured by luciferase activity. (C and D) Lentiviral mediated shRNA knockdown (KD) of NRF2 in MM1S cells. (C) Cells were then treated with Bz (10 nM) or Cfz
(10 nM) for 4 h and whole cell protein was extracted and Western blotting was performed for NRF2 protein expression. Blots were reprobed for b-actin to show equal loading across
samples (D) RNA was extracted and analysed for HO1 and GCLM. Gene expression was normalised to GAPDH.
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Fig. 4. ER-stress is regulated by NRF2 in MM. (A) Lentiviral mediated shRNA knockdown (KD) of NRF2 in MM1s and U266 cells. RNAwas extracted and analysed for ATF4 and CHOP.
Gene expression was normalised to GAPDH. (B) Control-KD and NRF2-KD MM1S cells were incubated with the Hoechst 33342 and the ER Tracker and visualized by fluorescence
microscopy. Scale bar¼ 20 mM. (C) Control-KD andNRF2-KDMM1S cellswere incubatedwith the ER Tracker and analysed byflowcytometry. Results expressed asmedian fluorescence
intensity. (D) MM1s cells were treated with bortezomib and carfilzomib for 4 h and RNAwas extracted and analysed for ATF4 and CHOP. Gene expression was normalised to GAPDH.

Fig. 5. NRF2 regulate Chop expression in MM. Lentiviral mediated shRNA knockdown (KD) of NRF2 in MM1S and U266 cells. Cells were treated with bortezomib and carfilzomib
for 4 h. (A) MM1S cells RNA was extracted and analysed for ATF4 and CHOP. (B) Protein was extracted and Western blotting was performed for CHOP protein expression. Blots from
Fig. 3C were reprobed for CHOP protein expression.
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survival of MM. We find that inhibiting NRF2 induces upregulation
of the ER-stress response protein CHOP, which increases PI induced
associated apoptosis. Subsequently, we demonstrate that NRF2
regulates CHOP and ER-stress associated apoptosis via the

regulation of GSH. Finally, we show that pharmacological inhibition
of NRF2 induces MM apoptosis via the induction of CHOP.

The mechanisms of MM cellular resistance to PI include
inherent or acquired mutation and inducible pro-survival signaling

Fig. 6. NRF2 regulates ER-stress associated apoptosis in MM cells through its regulation of GSH synthesis. (A) MM1s cells were treated with Bz (10 nM) for 4 h. GSH assay was
performed to detect GSH level. (B) Con-KD and NRF2-KD MM1s cells were treated with Bz (10 nM) for 4 h. GSH assay was performed to detect GSH level. (C) MM1s was treated with
Bz (10 nM) in combination with NAC (100 mM) (C) or buthionine sulphoximine (BSO) 5 mM (E) for 4 h and then RNAwas extracted and analysed using qRT-PCR for CHOP expression.
Gene expression was normalised to GAPDH. MM1S treated with Bz (10 nM) in combination with NAC (100 mM) (D) or BSO 5 mM (F) for 4 h. Cells were incubated with the ER Tracker
and analysed by flow cytometry. Results expressed as relative median fluorescence intensity. (G) Con-kD or NRF2-KD MM1S cells were incubated with Bz or Cfz for 36 h then cell
viability was analysed using flow cytometer with PI/Annexin V staining.
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[8]. In vitro studies show that BMSC protect MM cells from carfil-
zomib and bortezomib induced apoptosis [33], which is a conse-
quence of MM cell migration and adhesion to the BMSC [34]. In the
present study we present data which suggest proteasome induced
NRF2 activation protects the MM cells from carfilzomib and bor-
tezomib induced apoptosis. The mechanism for this NRF2 acquired
protection is the control of CHOP expression. This is because CHOP
induction is associated with induced apoptosis. Thus the inhibition
of this protein protects the MM cells from undergoing proteasome
induced cell death.

Bortezomib has been shown to induce ER-stress response
through the up-regulation of the unfolded protein response (UPR)
[35]. The results of which show that bortezomib at doses less than
10 nM can induce transcriptional up-regulation of ATF4, an
important effector of the UPR via its induction of CHOP induced
apoptosis. In our experiments we show that bortezomib and car-
filzomib at doses of 10 nM cannot induce ATF4 mRNA up-
regulation. We observed, that NRF2-KD had no effect on ATF4
expression both alone or in combination with carfilzomib and
bortezomib. Moreover, others have identified two distinct mecha-
nism through which NRF2 regulates CHOP induction [21,31]. The
first is through direct binding of the CHOP promoter which pre-
vents ATF4 from binding and inducing expression of CHOP [21]. The
second is via a GSH regulated mechanism [31]. In this study the
authors suggest that exogenous GSH could prevent palmitate
induced CHOP and associated ER-stress in adipocyte cultures.
Moreover, others have shown that regulating redox homeostasis
MM can enhance the sensitivity of MM to bortezomib through an
NRF2 dependent mechanism [20]. Here we add to these important
studies and show proteasome induced NRF2 activation regulates
CHOP in MM in a GSH driven mechanism.

We found that GSH is elevated in MM when treated with car-
filzomib and bortezomib and this elevation was inhibited whenwe
knockdown NRF2 expression. Moreover, others have shown that
GSH synthesis is regulated by the NRF2 signaling pathway [36]. This
is through the regulation of multiple genes involved in regulating
the synthesis and recycling of GSH. Our observations are consistent
with the work of others who have previously reported the impor-
tance of GSH in regulating the survival of MM in response to pro-
teasome inhibition and we extend that observation to place CHOP
downstream of GSH.

In summary, although NRF2 in the non-malignant cell is a
regulator of endogenous ROS, in the context of MM and

chemotherapy, NRF2 enhances the resistance of malignant cells via
the up-regulation of the GSH. Here we report that PI induce the
activation of the NRF2 pathway, which negatively regulates ER-
stress via inhibition of CHOP expression. Specifically, NRF2 modu-
lates the synthesis of GSH resulting in the suppression of CHOP
induced apoptosis. Accordingly, we hypothesize that identification
of a clinically relevant inhibitor of NRF2 will open up potential
strategies in the treatment of MM.
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