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Here we report the results of an experimental study where we measure the hydrodynamic
force acting on a plate which is lifted from a water surface, suddenly starting to move
upwards with an acceleration much larger than gravity. Our work focuses on the early
stage of the plate motion, when the hydrodynamic suction forces due to the liquid inertia
are the most relevant ones. Besides the force, we measure as well the acceleration at the
center of the plate and the time evolution of the wetted area. The results of this study
show that, at very early stages, the hydrodynamic force can be estimated by a simple
extension of the linear exit theory by Korobkin (2013), which incorporates an added mass
to the body dynamics. However, at longer times, the measured acceleration decays even
though the applied external force continues to increase. Moreover, high-speed recordings
of the disc displacement and the radius of the wetted area reveal that the latter does not
change before the disc acceleration reaches its maximum value. We show in this paper
that these phenomena are caused by the elastic deflection of the disc during the initial
transient stage of water exit. We present a linearised model of water exit that accounts
for the elastic behaviour of the lifted body. The results obtained with this new model
agree fairly well with the experimental results.
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1. Introduction

Marine and naval structures commonly experience impact loads caused either by
waves or by the motion of the structure into and out of water. For instance, ship
sections enter the water and then subsequently exit it in rough sea conditions, a process
known as slamming. A related phenomenon, wetdeck slamming, is observed in offshore
engineering, where a wave hits the wetdeck of a platform from below, a problem studied
both experimentally and numerically by Baarholm (2001), Baarholm & Faltinsen (2004),
Faltinsen et al. (2004), and Scolan et al. (2006). During a first stage, the wetted area of
the deck increases in time leading to high hydrodynamic loads. Then, during the second
stage, the wetted area diminishes as the wave propagates away from the platform.

It is common wisdom that a body that enters a water surface at high speed may
experience very large forces. However, it is less obvious that forces of similar magnitude
–but opposite sign– act in the opposite case, i.e. when the body exits water. Commonly,
hydrodynamic loads are defined as positive during the entry stage, and negative during
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the exit one. Here, negative loads mean that the hydrodynamic pressure acting on the
wetted part of the ship hull is below the atmospheric pressure, albeit still above the vapour
pressure at which cavitation occurs. It is remarkable that, although the exit stage lasts
longer than the entry one, the magnitude of the negative loads can be comparable to the
magnitude of the positive ones (Faltinsen et al. 2004; Scolan et al. 2006; Piro & Maki
2011). Despite these similarities, the physical origins of these loads are different. While
the positive loads during the entry stage scale with the dynamic pressure and thus are
proportional to the entry velocity of the body squared, negative loads during the exit
stage are governed mainly by the acceleration, provided this is much larger than gravity.
Conversely, if the body leaves the water slowly, then gravity and hydrostatic pressure
play the major roles (Greenhow 1988; Rajavaheinthan & Greenhow 2015). Despite water
entry being much related to water exit, the former problem has been studied extensively
in the past (Korobkin & Pukhnachov 1988), while the latter has received comparatively
less attention.

We mention here several studies that emphasize the water exit stage. Two-dimensional
problems of water entry and exit were investigated numerically by Piro & Maki (2011,
2012, 2013) using full Navier–Stokes simulations. In particular, they computed the impact
of a rigid wedge with deadrise angle of 10◦, initial velocity 4 m s−1 and a deceleration of
92 m s−2. They found that the hydrodynamic force is initially positive and then becomes
negative even though the wedge continues to penetrate the water. Later, the magnitude
of the negative hydrodynamic force reaches a maximum at the end of the entry stage,
when the speed of the wedge is zero, and continues to be negative with a decreasing
magnitude during the exit stage.

Recently, the development of analytical and semi-analytical approaches to calculate
hydrodynamic loads in water-exit problems has become of interest. Korobkin (2013)
developed a linearised model that was in excellent agreement with existing computational
results (Piro & Maki 2011). In this model, both the hydrodynamic equations and
the boundary conditions were linearised by exploiting the fact that, at small times,
displacements are small. In particular, this allows us to impose the boundary conditions
on both the free surface and the surface of the moving body on the initial equilibrium
level of the water. The actual shape of the body was not included in the model, and
neither were gravity, surface tension and viscosity. The problem was then formulated for
an acceleration potential, which is zero on the free surface. The wetted part of the body
surface diminishes during water exit. The speed of the contact line, which bounds the
wetted part of the body surface, is set to be proportional to the local velocity of the
flow along the body surface. This condition was introduced by Baarholm & Faltinsen
(2004) and Faltinsen et al. (2004) in a two-dimensional problem of wetdeck slamming
with the coefficient of proportionality between fluid and contact line speeds, γ, being
equal to one. This is, the contact line was assumed to be a material one. Korobkin
(2013) set γ = 2 using the computational results by Piro & Maki (2011) regarding
the hydrodynamic force during the exit stage. The linearised model of water exit with
a constant deceleration provides hydrodynamic forces which are very close to those
computed with the Navier–Stokes solver (see figure 5 for a wedge and figure 6 for a
parabolic contour in Korobkin (2013)). The comparison becomes even better if nonlinear
effects and gravity are included in the exit model by using the approximations suggested
by Korobkin (2004) and Khabakhpasheva et al. (2016).

The linearised model of two-dimensional water exit was generalised, and validated
using CFD results, by Korobkin et al. (2017a) to include arbitrary motions of bodies and
bodies of time-varying shapes. The model was developed further to be included in the
two-dimensions-plus-time analysis of aircraft ditching. Korobkin et al. (2017b) presented
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another model of water exit, which is based on a small-time asymptotic solution of the
two-dimensional problem of a plate lifted suddenly from the water surface and on the
method of matched asymptotic expansions. A similar model was developed by Iafrati &
Korobkin (2008) for water impact problems. In this theoretical study of water exit the
flow near the edges of the plate and the motion of the contact line are nonlinear and
self-similar, in contrast to the flow in the main region, which is linear at leading order
for small displacements of the plate. The acceleration of the contact line was found to
be proportional to t−

2
3 for a constant acceleration of the plate lifting, where t is the

time. Note that this result is valid also for the three-dimensional lifting problem of a
floating plate with smooth edge, where the flow near the plate edge is two-dimensional
at the leading order during the early stage of the motion, see Scolan & Korobkin (2003).
The predicted shape of the free surface near the contact points was found to be very
close to full Navier–Stokes numerical simulations. Note that, in the linearised exit model,
the free-surface shape is very different from the computed one, despite the fact that the
theoretical hydrodynamic forces compare well with experiments.

A simplified description of water entry and exit is provided by the von-Kármán
model (Von Karman 1929), which defines the wetted part of a body surface during
both the entry and exit stages as the intersection of the body surface with the flow
region determined without the effect of the body presence. This idea was used in water
exit problems by Tassin et al. (2013) to estimate the hydrodynamic loads for bodies
with time-dependent shapes. However Faltinsen et al. (2004) pointed out that, using
the von-Kármán approach, the calculated duration of the water-exit phase of a body is
shorter than the experimentally observed one. Despite this discrepancy in the calculated
duration of these stages, the peak values of the forces obtained with this method were
still comparable in magnitude. In our problem, this model cannot be used because the
flat disc, which has negligible draft, leaves the initial liquid region immediately after it
starts to move upwards.

Due to the complexity of the exit flows with unsteady free surfaces, both numerical
and theoretical findings and models should be validated against experiments. To the
best of our knowledge there are few works that can be used to validate experimentally
the kinematics of water-exit flows, but not the hydrodynamic loads, which are difficult
to measure. Two papers are worth highlighting as they focus specifically on water-exit
(Reis et al. 2010; Tassin et al. 2017). The seminal study by Reis et al. (2010) deals
with the volume of water dragged by a lifting disc that mimics a cat’s tongue. This disc
was controlled by a computer to reproduce the observed motion of an actual tongue,
in particular reaching accelerations as high as 27 m s−2. The dragged water volume
was determined using high-speed imaging. They concluded that the domestic cat laps
exploiting “fluid inertia to defeat gravity and pull liquid into the mouth”. Despite the
interest of the experiment, these authors did not measure the forces required to pull
the disc, so their results cannot be used to validate water exit theories (Korobkin 2013;
Korobkin et al. 2014a). Tassin et al. (2017) reported experiments where they measured
the dynamics of the contact line, or in other words the evolution of the wetted area.
The acceleration of a circular transparent plate was measured to be between 0 and 25 m
s−2. Furthermore, they showed that the radius of the wetted region closely follows the
radius predicted by the linearised exit model with γ = 1. Recently Tassin et al. (2018)
published experimental results for both a circular disc and a cone lifted from the water
surface. The radius of the disc was 20 cm and the deadrise angle of the cone was 15
degrees. Initially the water was at rest and the circular disc touched the water surface
with negligible initial draft. The initial radius of the wetted surface of the cone varied
from 10 to 25 cm. The disc and cone were lifted vertically by a hexapod which imposed a
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prescribed time-varying displacement with maximum speed 0.6 m/s and relatively small
accelerations comparable to gravity. The maximum measured magnitudes of the suction
forces were about 35 N with a duration of about 0.25 s. It was concluded that the
measured hydrodynamic forces were in rather good agreement with the numerical results
obtained with the ABAQUS/Explicit solver.

Some ideas about the hydrodynamic forces during water exit can be gained from
experiments with a body moved by a given external force. Then the measured acceleration
of the body motion can be used to determine the evolution of the hydrodynamic
force acting on the body. This idea was employed by Korobkin et al. (2014b) who
studied experimentally, numerically and theoretically the oscillations of a rigid sphere
entering and exiting a water surface. The sphere was supported by a spring with
the equilibrium position above the water surface. These experiments demonstrated
that the hydrodynamic force was negligible in the conditions reported. Theoretical
analyses revealed that, for these forces to be relevant, the added mass of the wetted
sphere should be at least comparable to the body mass. Moreover, it was concluded
that the hydrodynamic force would be more visible if the body moved at a higher
acceleration. These conclusions follow from the linearised exit model, which states that
the hydrodynamic force is proportional to both the added mass of the body and the body
acceleration.

With the aim of quantifying experimentally the hydrodynamic loads during water exit,
in this work we present an experimental investigation of the loads acting on a circular
plate, a disc, lifted impulsively from a water surface with a high acceleration. Initially the
disc touches the flat water surface with a negligible draft. Then the disc is moved suddenly
upwards by a given external force applied around its center. Both the pulling force and
the disc acceleration are measured with high temporal resolution in order to resolve the
initial few milliseconds of the motion, when the highest loads occur. Besides measuring
force and acceleration, we use high-speed cameras to record the disc displacement and
the radius of the wetted area. The disc acceleration peaks at about 200 m s−2 in our
experiments and then rapidly decays despite the fact that the external force continues
to increase. We also observe that the wetted area of the disc does not change before
the disc acceleration peaks. This behaviour of the disc acceleration and its wetted area
is attributed in this study to the interaction between the hydrodynamic loads and the
elastic deflection of the disc.

To explain and quantify theoretically these measurements, we introduce a model that
solves the unsteady axisymmetric flow generated by a lifted elastic body coupled with its
elastic deformations. This new model explains both the non-monotonic relation between
the disc acceleration and the applied external force and the delay in the shrinking of the
wetted part of the disc surface. The model is finally validated quantitatively by dedicated
experiments with circular discs of different rigidities. Notice that these hydroelastic effects
are not expected to be observed in the experiments by Tassin et al. (2018) because of
the smooth lifting of the bodies, i.e. with small accelerations. Although, to the best of
our knowledge, there are no models of water exit taking into account hydroelastic effects,
a relevant axisymmetric problem of water entry of an elastic conical shell was studied
theoretically by Scolan (2004). We use some techniques and the notation of this study
to develop our model of hydroelastic water exit.

The paper is structured as follows: the experimental set-up and some results, that
justify the hypotheses adopted thereafter, are presented in section 2. In section 3,
the relation between the measured force and the measured acceleration of the disc is
compared to that predicted by the linearised theory of water exit of Korobkin (2013).
Furthermore, the recorded motions of both the contact line and the vertical displacement
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Figure 1: (a) Layout of the experiment. (b) Detail of the plate, which is connected to a
driving mechanism through an inverted U-shape structure fixed at its upper surface.

of the disc edge are used to validate the relation between the contact line recoil and the
plate vertical displacement reported in Korobkin et al. (2017b). In section 4, we present
a generalised linear theory of water exit that takes into account elastic effects in the
motion of the plate. Finally, some conclusions are presented in section 5.

2. Experimental study of the water exit

Here, we present the facility designed to measure the hydrodynamic forces acting on an
object suddenly lifted from a water surface at an acceleration much larger than gravity,
a � g. Besides the force pulling the object and its acceleration, we also measure the
evolution of the wetted area or, conversely, the recoil of the liquid-gas-solid contact line.

The layout of the experimental apparatus is shown in figure 1. The plate is set in
motion by a structure which operates as a catapult. A mobile arm, a seesaw, turns around
a fulcrum located in a fixed structure anchored to the ground. The plate is supported by
a steel bar that hangs from one end of the mobile arm through a steel cable. An auxiliary
structure guides the movement of the steel bar, to guarantee that its motion is purely
vertical. The other end of the arm is connected to the impact mechanism, which consists
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Radius, R 10.8 cm
Thickness, hp 1 cm

Mass of the plate, Mp 0.432 kg
Mass of the equipment, Mc 0.198 kg

Added mass of the plate, ma 1.680 kg
Total mass, M = Mp +Mc 0.630 kg

Density, ρp 1180 kg m−3

Young’s modulus, E 3.1× 109 Pa
Poisson ratio, ν 0.33

Table 1: Summary of the features and material properties of the plate.

in a weight that slides along a rail and a base that stops its fall and thus transmits the
impact to the seesaw.

The bar connects to the plate through a fast-speed-of-response load cell (Honeywell
Model 31 mid, 100 lb), capable of measuring forces of up to 450 N. The disc is equipped
with an accelerometer (Honeywell model JTF ± 50G), placed at its centre. The signals
from the load cell and the accelerometer are read by an oscilloscope (Tektronik TDS3014c,
sample rate of 250 kHz), after having been pre-conditioned by amplifiers (ADAM 3016).
During postprocessing, the acceleration of gravity and the weight of the plate are
subtracted from the results.

The plate, whose properties are summarised in table 1, is made of transparent acrylic
to allow for the observation of the contact line motion. The total mass of the equipped
disc, M , is the sum of the mass of the plate, Mp, the connector, accelerometer and load
cell, Mc. The connector and the steel bar between the load cell and the driving mechanism
are considered as perfectly rigid in the present analysis. They are made of aluminium,
which is much stiffer than the material of the plate.

At the beginning of the experiment, the weight (5 kg) is released and allowed to fall
freely (from a height of 10 cm), sliding down the rail until it impacts the base. When
this happens, this instant is regarded as the time origin, t = 0.

We perform two kinds of experimental sessions, one where the plate is touching the
water surface of the tank (wet experiment), and another one, identical in everything to
the first one, except in that the disc does not touch the water surface (dry experiment).
Wet experiments are carried out with the disc touching the water surface of a tank, whose
dimensions, 100 x 40 x 40 cm3, are large enough to guarantee negligible boundary effects.

To illustrate the good repeatability of the results, we plot in figure 2 the acceleration
and force corresponding to wet experiments performed under identical conditions (see
table 2, session 3, for details). To make clear the point that the curves are essentially
the same, within the experimental variability, they have been shifted a small time to
compensate for the uncertainty in the determination of the impact time (∆t1 = 0.2 ms,
∆t2 = 0.7 ms, ∆t3 = -0.6 ms and ∆t4 = 0.85 ms). The relative discrepancy in the peak
scaled forces (figure 2a) is less than 8.3%, whereas that in the peak accelerations (figure
2b) is less than 7.2% for the four repetitions.

The motion of the contact line, in other words the evolution of the wetted area, is
recorded by a high-speed camera (NAC Memrecam HX-3) working at 15000 fps. To
acquire clear top-view images, we use a LED light (Metaphase Technologies, 9” x 16”
White, LED Backlight) at the bottom of the tank, so that the perimeter of the disc
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Session Dry/Wet M (kg) hp (cm)

1 Dry 0.630 1
2 Wet 0.630 1
3 Wet 0.630 1
4 Wet 1.070 2
5 Wet 0.430 0.5

Table 2: Summary of the experimental sessions. Sessions 2 and 3 are identical in their
conditions, but high-speed movies were acquired only for session 3.

Figure 2: Comparison between force and acceleration measurements obtained under
identical experimental conditions for four repetitions of session 3.

and the contact line are visible as black lines during the experiment. This lighting
configuration is similar to the configuration denoted as “central LED lighting” in Tassin
et al. (2017). Moreover, high-speed movies are taken from the side, to compare the
evolution of the wetted radius with the distance the plate has risen. Examples of the
images used to measure these quantities are shown in figure 3, along with a sketch of
their definitions.

A few comments should be made here about the image processing techniques used
to measure the time evolution of the wetted area. We track the contact line using a
custom-made image processing software implemented in Matlab based on the so-called
Hough transform (Yuen et al. 1990). The Hough transform is a well-known technique
used in image analysis to find objects with a given shape, in this case circles, by a voting
procedure. In a first step we detect the edges of images like those in figure 3(e-h). In this
way, two families of pixels are found near the region of interest where the contact line
is expected to be found: pixels belonging to the edge of the disc and pixels belonging to
the contact line. Each edge point detected adds one vote to all the possible circles that
it can belong to. Repeating this procedure for all the edge points, we create a histogram
in the parametric space of possible circles, whose local maxima correspond to the circles
actually found in the image, i.e. containing a large number of points. In the case of the
images shown here, this histogram exhibits two peaks, which correspond to the plate edge
and the contact line respectively. We should point out that, using this procedure, it is
possible to detect the contact line when it is still very close to the plate edge. Thus, this
technique proves to be essential to capture the first instants of the contact line motion.
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8 P. Vega-Mart́ınez, J. Rodŕıguez-Rodŕıguez, T. I. Khabakhpasheva and A. A. Korobkin

Figure 3: (a–d) Side view of the edge of the plate and (e–h) top view of the plate where
the blue dots mark the diameter of the plate and the red dash traces the detection of the
contact line. Images acquired at 15000 fps. (i) Definition of c(t) and he(t).

3. Comparison of the linearised theory of water exit with
experiments

In this section we present the results of the experiments summarised in table, 2. For
each realization the accelerometer and load cell provide the acceleration of the center
of the plate and the total force pulling it upwards, respectively. Moreover, the contact
line dynamics and the height of the plate during the first instants are obtained through
digital image processing of high-speed movies.

The accelerometer measures the acceleration of the plate, a(t), whereas the load
cell measures the total force, Fexp(t), with which the driving mechanism pulls the
instrumented plate of mass M . These quantities, together with the hydrodynamic force
Fh(t), are related through Newton’s second law:

Fexp = Fh +Ma. (3.1)

From the linearised theory of Korobkin (2013), Fh is approximated by the product of the
disc added mass, ma, times the disc acceleration, a,

Fh = ma a, where ma =
4

3
ρc3, (3.2)
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Figure 4: Comparison between the force and acceleration measurements obtained in a
dry and a wet case respectively. Sessions 1 and 2 from table 2.

thus Fexp is expected to be proportional to a,

Fexp =

(
M +

4

3
ρc3
)
a, (3.3)

with c denoting the radius of the wetted area, see figure 3i. The added-mass term arises
from the suction pressure forces that the plate communicates to the parcel of surrounding
liquid that follows its accelerated motion. The effect of these forces is equivalent to endow
the plate with an additional mass that must be also accelerated with it, thus effectively
increasing its apparent inertia. Notice that, in our experiments, this added mass is indeed
much larger than the mass of the instrumented disc itself, see table 1.

To highlight the relevance of this hydrodynamic suction force, Fh, we show in figure
4a the force and acceleration measured for the same experimental conditions, but in two
realizations with the plate being dry and wet respectively. While in the dry case, Fh = 0,
the force divided by the mass of the plate coincides with the acceleration within the
experimental variability, the acceleration in the wet case is substantially smaller, as a
consequence of the hydrodynamic suction force that pulls the plate downwards. Figure
4b shows that, taking into account the added mass of the wetted plate, yields a reasonable
agreement with equations (3.1) and (3.3) during the initial period of 3.5 ms only.

It should be pointed out that the radius of the wetted area, c(t), as well as the forces
and the plate’s acceleration, are functions of time. However, in practice it is possible
to neglect the recoil of the wetted area, since its radius, c, barely departs from that of
the disc, R, along the duration of the experiment, always shorter than 10 ms. This is
supported by the measurements of the evolution of the wetted radius shown in figure 5.
Figure 5a does not show any variation of the wetted area during the first 4 ms. Indeed,
until the plate moves of the order of the capillary length (around 2 mm, see figure 5b)
the contact line recoils a very small distance. In order to further prove this, we record
movies of the side view of the experiment focusing on the edge (Figure 3a-d). Notice
that only after 4 ms the motion of the contact line can be determined from the top-view,
when the contact line detaches from the edge and slides along the lower surface of the
plate. In summary, these observations support that c(t) can be approximated as R in the
calculations of the hydrodynamic force.

At longer times, when the contact line detaches from the edge and recoils, its position
can be related to the instantaneous displacement of the plate edge, he(t), using the
ideas of Korobkin et al. (2017b). In that paper, the authors found a self-similar solution
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Figure 5: Evolution of the radius of the wetted area and the vertical displacement of the
edge of the plate for four experimental realizations of session 3.

Figure 6: Log-log plot of 1 − c/R versus he/R, showing the convergence to the law
1− c/R ∼ (he/R)2/3 (solid line) predicted by Korobkin et al. (2017b).

to describe the dynamics of the free surface close to the edge of a plate lifted from the
water surface at a large constant acceleration. This solution predicts that the contact line
displaces a distance∆c = R−c ∼ t4/3 with time. On the other hand, since the acceleration

was assumed constant, then he ∼ t2. Combining these estimates, we get ∆c ∼ h2/3e . Even
though the acceleration is not constant in our experiments, this power law seems to be
recovered once the contact line starts to slide along the plate, as illustrated in figure
6. The data shown in this figure corresponds to early times, when the displacement
of the contact line is smaller than about 10% of the plate radius. Thus, although the
plate is circular, the dynamics of the contact line near the disc edge is approximately
two-dimensional, and covered by the analysis of Korobkin et al. (2017b).

Figure 4b sheds light on the dynamics of the coupled water-disc system. Although at
short times the acceleration compares reasonably well with the prediction derived from
equations (3.1) and (3.2), at about t ≈ 4.5 ms the behavior of the acceleration changes
dramatically. In particular it decays, which is in clear contradiction with these equations,
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which predict a linear relation between Fexp and a. They are not proportional any more,
but one decays whereas the other grows monotonically.

In the next sections we will show that the prediction of proportionality, equation (3.3),
is based on the assumption that the plate is rigid. Once elastic effects are taken into
account, the oscillatory behavior of the acceleration shown in figure 4b –and confirmed
by dedicated experiments– can be explained and quantitatively predicted.

4. Elastic effects on water exit

In order to explain the experimental results of the previous section, we assume that the
hydroelastic interaction of the acrylic disc and the liquid is important during the early
stage. This assumption is not obvious because the disc does not demonstrate visible
elastic motions in the experiments. To prove that the disc elasticity is important in the
water exit process, we generalize the linearised model of water exit of Korobkin (2013) by
including the elasticity of the lifted body, and compare the obtained theoretical results
with the experimental ones. The theoretical analysis is limited to axisymmetric problems,
where the contact line remains attached to the edge of the plate, which corresponds to
the conditions of the water exit in the present experiments during the early stage. Note
that the connector is not axisymmetric in the experiments, see Figure 1b. Therefore, the
experimental conditions are only approximately axisymmetric, and the disc deflection
depends on the azimuthal coordinate, strictly speaking. However this effect is expected
to be weak and negligible at leading order. In particular, the contact line in experiments,
see Figure 3, is circular with good accuracy. Also, although we do not study the sensitivity
of our experimental and theoretical results to a lack of axisymmetry, it will be shown in
section 4.2, that even this approximately axisymmetric model accounting for the elasticity
of the disc improves significantly the agreement between the theoretical and experimental
results compared with the rigid body model of section 3.

4.1. Formulation of the axisymmetric exit problem and its solution

The problem of water exit is formulated in cylindrical coordinates (r, z), where r is the
radial coordinate and z is the vertical one, which coincides with the symmetry axis of
the plate. The plane z = 0 corresponds to the initial position of both the lower surface
of the disc and the liquid surface, with the liquid occupying the lower half-space, z < 0.
The disc touches the water surface with zero draft. Thus the initial position of the lower
surface of the disc is z = 0, r < R. Then the disc is moved suddenly upwards by an
external force applied at the disc centre. The position of the lower surface of the moving
disc is described by the equation z = w(r, t), where w(r, t) accounts for both the rigid and
elastic components of the disc displacement. During the early stage, when displacements
are small compared to the disc radius R, the flow equations and the boundary conditions
can be linearised. In particular, this means that the boundary conditions can be imposed
on the initial position of the liquid boundary.

Under the assumptions of the early stage, the flow caused by lifting an elastic disc from
the water surface is described by a velocity potential, ϕ(r, z, t), which satisfies Laplace
equation,

1

r

∂

∂r

(
r
∂ϕ

∂r

)
+
∂2ϕ

∂z2
= 0 (z < 0), (4.1)

in the initial flow region, the linearised dynamic condition on the free surface,

ϕ = 0 (z = 0, r > R), (4.2)
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12 P. Vega-Mart́ınez, J. Rodŕıguez-Rodŕıguez, T. I. Khabakhpasheva and A. A. Korobkin

and the body boundary condition on the disc,

∂ϕ

∂z
=
∂w

∂t
(z = 0, r < R). (4.3)

Furthermore, this potential decays at infinity, as r2 + z2 →∞.

The disc displacement, w(r, t), is governed by the Bernoulli-Euler equation of thin
elastic plates,

m
∂2w

∂t2
+D∇4w = pext(r, t) + ph(r, 0, t) (r < R, t > 0), (4.4)

where m is the mass of the disc per unit area, m = ρphp, D the rigidity coefficient,
D = Eh3p/[12(1− ν2)], for an elastic disc of constant thickness, see table 1 for the elastic
constants of the disc material. The hydrodynamic pressure, ph(r, 0, t), acting on the
disc/water interface, z = 0, is given by the linearised Bernoulli equation,

p(r, 0, t) = −ρϕt(r, 0, t), (4.5)

whereas pext(r, t) is the external load caused by the driving mechanism, see figure 1, and
acting on the disc through the load cell and the connector. The external load is assumed
uniformly distributed over a small circular area of radius rc, pext(r, t) = P (t), where
r < rc, with Fext(t) = πr2cP (t) being the total force acting on the disc. Later, we will
simplify the analysis by letting rc → 0. The displacement w(r, t) is positive where the
disc moves upwards. Note that different parts of the disc can move in different directions.
For example, the centre of the disc may move upwards but the edge of the disc moves
downwards at the same time. The bounday-value problem (4.1-4.5) is similar to that
studied by Scolan (2004) for water entry of an elastic conical shell.

The connector is not axisymmetric in experiments. Therefore, the external load and
the disc deflection should depend on the azimutal coordinate, strictly speaking. These
azimutal modes are expected to introduce a high frequency jitter in the measured
acceleration curves, although its amplitude must be small. Indeed, to trigger the non-
axisymmetric modes in an efficient way, the force should be applied far from the disc
centre, which is not the case here.

In the experiments, the weight of the connector, Mc, which is placed in between the
load cell and the disc, is comparable with the weight, Mp = πR2m, of the disc. To account
for this extra weight, Newton’s second law for the connector,

Mc
∂2w

∂t2
(0, t) = Fexp(t)− Fext(t), (4.6)

is used, where Fexp(t) is the force measured by the load cell, and −Fext(t) is the force
acting on the connector from the disc. We assume that the connector is rigidly connected
to the centre of the disc, thus the displacement of the connector is approximately w(0, t).
Then the external load can be approximated by

pext(r, t) =

(
Fexp(t)−Mc

∂2w

∂t2
(0, t)

)
δ(r)

2πr
, (4.7)

where δ(r) is the Dirac delta function. In the present model, the force Fexp(t) is assumed
known from experimental measurements.

The disc edge, r = R, is free of stresses and shear forces. The radial bending moment
and the Kelvin-Kirchhoff edge reaction are zero at the edge. For axisymmetric deflections
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Hydro-elastic effects during the fast lifting of a disc from a water surface 13

of a circular plate, these two conditions read

∂2w

∂r2
+
ν

r

∂w

∂r
= 0,

∂

∂r

(
1

r

∂

∂r

(
r
∂w

∂r

))
= 0 (r = R). (4.8)

Initially, t = 0, both the disc and the water are at rest,

w(r, 0) = 0, wt(r, 0) = 0, ϕ(r, z, 0) = 0. (4.9)

The problem formulated by equations (4.1)-(4.9) is coupled, the hydrodynamic loads and
the disc displacement should be determined at the same time. The problem is solved by
the normal mode method (Scolan 2004; Khabakhpasheva & Korobkin 1998; Korobkin
2000; Khabakhpasheva 2006; Khabakhpasheva et al. 2013). Within this method the disc
displacement is sought in the form

w(r, t) = h(t) +
∞∑
n=1

an(t)Wn(r̃), (4.10)

where r̃ = r/R is the non-dimensional radial coordinate, r̃ < 1, an(t) are the principal
coordinates of the elastic deflections of the disc, which are to be determined, and h(t) is
the rigid-body displacement of the disc. The functions Wn(r̃) are the non-trivial bounded
solutions to the homogeneous boundary value problem

∇̃4Wn = k4nWn (r̃ < 1), (4.11)

W ′′n + νW ′n = 0, (∇̃2Wn)′ = 0 (r̃ = 1), (4.12)

where

∇̃2Wn =
1

r̃

∂

∂r̃

(
r̃
∂Wn

∂r̃

)
, (4.13)

a prime stands for the derivative in r̃, and kn are the corresponding eigenvalues. The
functions Wn(r̃), known as normal modes of the free-free circular elastic disc, describe
the axisymmetric shapes of free vibrations of a circular disc with its edge being free of
forces and bending stresses, and with frequencies proportional to k2n (Leissa 1969). The
normal modes are orthogonal and read

Wn(r̃) = An

(
J0(knr̃)−

J1(kn)

I1(kn)
I0(knr̃)

)
, (4.14)

where kn , n > 1, are the positive solutions of the equation

J1(kn)

J0(kn)
+

I1(kn)

I0(kn)
=

2(1− ν)

kn
, (4.15)

and the coefficients An are determined by the normalization condition,∫ 1

0

Wn(r̃)Wm(r̃)r̃dr̃ = δnm, (4.16)

δnm = 0 for n 6= m and δnn = 1. Equations (4.14)-(4.16) give

An =

(
J2
0(kn)− 2ν(1− ν)

k2
n

J2
1(kn)− 2(1− ν)

kn
J0(kn)J1(kn)

)− 1
2

. (4.17)

Note that ∫ 1

0

Wn(r̃)r̃dr̃ = 0, (4.18)
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which means that the elastic modes with n > 1 are orthogonal to the rigid mode, W0(r̃) =√
2, which corresponds to k0 = 0.
The solution of the hydrodynamic problem (4.1)-(4.3) is given by

ϕ(Rr̃, 0, t) =

∫ 1

r̃

χ(µ, t)dµ√
µ2 − r̃2

, χ(µ, t) =
2R

π

∫ µ

0

wt(Rσ, t)σdσ√
µ2 − σ2

, (4.19)

see Appendix A in Korobkin & Scolan (2006). It is convenient to introduce the functions
Qn(x) and the coefficients Wnk by

Qn(x) =
1

x

∫ x

0

Wn(σ)σdσ√
x2 − σ2

, Wnk =
2

π

∫ 1

0

x2Qn(x)Qk(x)dx, (4.20)

see Scolan (2004) and Pegg et al. (2018). In particular, Q0(x) =
√

2. The functions
Qn(x) and the coefficients Wnk are expressed through the Bessel, trigonometric and
hyperbolic functions similar to those in Pegg et al. (2018), Appendixes B and C, where
the corresponding integrals were evaluated for a simply supported circular elastic disc.

Substituting (4.10) in (4.19) and using (4.20) we find the velocity potential on the disc
surface,

χ(µ, t) =
2R

π
µ

(
h′(t) +

∞∑
n=1

a′n(t)Qn(µ)

)
, (4.21)

ϕ(Rr̃, 0, t) =
2R

π

(
h′(t)

√
1− r̃2 +

∞∑
n=1

a′n(t)

∫ 1

r̃

µQn(µ)dµ√
µ2 − r̃2

)
. (4.22)

The latter equation provides the asymptotic behaviour of the radial flow velocity near
the edge of the disc,

∂ϕ

∂r
(r, 0, t) ∼ − 2RV (t)√

R2 − r2
, V (t) = h′(t) +

∞∑
n=1

a′n(t)Qn(1). (4.23)

Multiplying both sides of the plate equation (4.4) by r̃ and integrating in r̃ from 0
to 1 using (4.10), (4.7) and (4.18), we arrive at the following equation for the rigid
displacement of the disc,

h′′(t) =
Fexp(t)

M +ma
−
∞∑
n=1

a′′n(t)

{
Mc

M +ma
Wn(0) +

3π

2
√

2

ma

M +ma
Wn0

}
, (4.24)

where M = Mc +Mp is the mass of the equipped disc, and ma is the added mass of the
disc (equation (3.2)). Equation (4.24) provides the acceleration at the disc centre, a(t),
which is measured in the experiments,

a(t) =
∂2w

∂t2
(0, t) = h′′(t) +

∞∑
n=1

a′′n(t)Wn(0) =
Fexp(t)

M +ma
+

∞∑
n=1

a′′n(t)

{
Mp +ma

M +ma
Wn(0)− 3π

2
√

2

ma

M +ma
Wn0

}
.

(4.25)

Therefore, the elastic deflection of the disc may significantly affect the acceleration of
its center. Formula (4.25) is reduced to (3.3) when the elastic accelerations are negligible,
i.e. ak(t) ≈ 0.

The equations for elastic deflections of the disc follow from the plate equation (4.4).
Multiplying both sides of the plate equation (4.4) by r̃Wk(r̃) and integrating in r̃ from
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Hydro-elastic effects during the fast lifting of a disc from a water surface 15

Figure 7: Comparison of experimental and theoretical results for session 3, repetition
1 (see figure 2). (a) Dashed line is for rigid wet-body acceleration Fexp(t)/(M + ma),
solid line is for theoretical acceleration at the disc centre provided by equation (4.33),
and the dotted line is for the measured acceleration. (b) rigid wet-body acceleration and
theoretical acceleration measured at the center of the disc are the same as in (a), dash-
dotted line is for the rigid-body acceleration h′′(t) given by (4.32), dotted line is for the
elastic acceleration at the plate centre, a′′1W1(0), and the solid line with dots markers are
for the acceleration of the disc edge, wtt(R, t).

0 to 1 using (4.10), (4.7), (4.11) and (4.16), we arrive at the following equations for the
principal coordinates ak(t), k > 1,

a′′k(t) + ω2
kak = Fexp(t)fk +

∞∑
n=1

a′′n(t)Skn, (4.26)

where

ω2
n =

Dk4n
mR4

, γ =
3π

2
√

2

ma

M +ma
, fk =

Mp +ma

2Mp(M +ma)
(Wk(0)− γWk0) , (4.27)

Skn = Snk =
3π

4
√

2

ma

Mp
γWk0Wn0 −

Mc

2Mp

Mp +ma

M +ma
Wk(0)Wn(0)

+
γMc

2Mp
(Wk(0)Wn0 +Wn(0)Wk0)− 3π

4

ma

Mp
Wnk.

(4.28)

The system (4.26) is integrated in time numerically subject to the initial conditions

ak(0) = 0, a′k(0) = 0 (n > 1) (4.29)

and for the forcing function Fexp(t) measured in the experiments. Then the acceleration
at the center of the disc is calculated using equation (4.25) and compared with the results
gathered by the accelerometer.

4.2. Comparison between theoretical and experimental results

The computations are performed for the one-mode approximation with ak(t) ≡ 0
for n > 2. This is because the conditions of the experiments are axisymmetric only
approximately. Therefore, we do not expect that including more axisymmetric terms
in the series (4.10) would improve the theoretical predictions of the disc acceleration
compared to the experimental ones.

For the conditions of the experiments with the plate thickness hp = 1 cm (see table
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Figure 8: Sketch of the expected motion during the initial stages of the elastic disc lifting
from the water surface.

1) we calculate k1 = 3.011. The frequency and the period of the first dry mode are
ω1 = 3853 s−1 and T1 = 1.63 ms. (Compare with the corresponding values for the second
dry elastic mode, k2 = 6.2, ω2 = 16363 s−1, T2 = 0.38 ms), γ = 2.423, and W10 = 0.143,
W1(0) = 2.848, W11 = 0.218, f1 = 2.645 kg−1, S11 = −2.921. The resulting equation for
the principal coordinate of the first elastic mode reads

a′′1(t) +Ω2
1a1 = α1Fexp(t), (4.30)

where the frequency of the first wet mode, Ω1, and the forcing factor α1 are given by

Ω1 =
ω1√

1− S11

, α1 =
f1

1− S11
. (4.31)

In the conditions of these experiments, Ω1 = 1946 sec−1 and α1 = 0.675 kg−1. The
corresponding period of the first wet elastic mode is equal to 2π/Ω1 = 3.223 ms, which is
twice greater than the period of the dry mode, and is comparable with the peak time of
the measured acceleration, see figures 7 and 10. Equation (4.30) is integrated numerically
for the function Fexp(t) measured by the load cell and the initial conditions (4.29). Then
the acceleration of the rigid body motion of the disc is calculated by (4.24), which reads
within the one-mode approximation,

h′′(t) =
Fexp(t)

M +ma
− α2 a

′′
1(t), α2 =

Mc

M +ma
W1(0) + γW10. (4.32)

The theoretical acceleration of the disc centre, a(t), is calculated by equation (4.25),

a(t) =
Fexp(t)

M +ma
+ α3 a

′′
1(t), α3 =

Mp +ma

M +ma
W1(0)− γW10. (4.33)

For the conditions of our experiments, α2 = 0.59 and α3 = 2.61. Therefore, the effect
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Hydro-elastic effects during the fast lifting of a disc from a water surface 17

of the elastic deflection of the disc on the rigid motion of the disc is about four times
smaller than on the acceleration of the disc centre.

Figure 7a compares the measured acceleration of the disc centre (dotted line) with the
theoretical predictions (equation 4.33) (solid line) for the first run of session 3. The first
term in (4.33) is shown by the solid thin line. Therefore we can claim that accounting for
the disc elasticity explains the relation between the measured force and acceleration. More
details about the disc motion are shown in figure 7b. It can be observed that the rigid-solid
component of the acceleration h′′(t) (dash-dotted line) depends weakly on the elasticity
of the disc and is close to the acceleration predicted by the rigid disc model (equation
(3.2), dashed line. The total acceleration of the disc centre (solid line), a(t), is the sum
of two components within the one-mode approximation, a(t) = h′′(t) + a′′1(t)W1(0), see
equation (4.25). The elastic acceleration, a′′1(t)W1(0), is shown by the dotted line. It is
larger than the rigid acceleration, h′′(t), for 0 < t < 4 ms. The acceleration of the disc
edge, wtt(R, t) = h′′(t) + a′′1(t)W1(1), is shown by the solid line with dots markers. It is
seen that this acceleration is negative for 0 < t < 3.8 ms. Therefore, initially the edge
of the disc goes down but the disc centre goes up. This situation is sketched in figure
8. The edge of the plate moves down when 0 < t < t∗, where t∗ is determined by the
equation wt(R, t

∗) = 0. The calculations provide t∗ = 4.5 ms for the case of figure 7.
Initially the edge of the disc penetrates the water even though the main part of the disc
exits the water. The radial velocity of the flow near the disc edge is given by equation
(4.23). Within the one-mode approximation, the vertical velocity of the disc edge,

wt(R, t) = h′(t) + a′1(t)W1(1), (4.34)

the coefficient V (t) in (4.23),

V (t) = h′(t) + a′1(t)Q1(1), (4.35)

and the coefficient,

U(t) = −h′′(t)− a′′1(t)Q1(1), (4.36)

in the asymptotic formula for the pressure,

P (r, 0, t) ∼ 2ρ

π
U(t)

√
R2 − r2 (r → R− 0), (4.37)

near the contact line before it starts to move are depicted in figure 9. Physically speaking
the contact line cannot move if the pressure under the disc edge is greater than the
atmospheric pressure, when U(t) given by equation (4.36) is positive, see equation (4.37).
The calculations provide that U(t) is very close to zero for 0 < t < 4 ms and quickly
decreases after this time. The contact line does not move also if the radial velocity of the
flow at the disc edge is positive, V (t) given by equation (4.35) is negative, see equation
(4.23). The calculations show that V (t) is positive but very small for 0 < t < 3 ms. The
disc edge moves down for 0 < t < 4.6 ms, see line 1 in figure 9b. Therefore figure 9 shows
that the generalised exit theory predicts that the contact line is unlikely to move before
t = 3.5− 4 ms which is in good agreement with the experiments (see figure 5a).

The theoretical accelerations a(t) calculated for different forcing functions Fexp(t) in
different experimental runs are compared with the measured accelerations in figure 10.
These results confirm that taking into account the elastic deflection of the disc explains
the non-monotonic relation between the measured forces and measured accelerations.
The discrepancies between the peak accelerations derived theoretically and measured
experimentally shown in figure 10 are 13.47% for panel (a), 17.72% for (b), and 6.59%
for (c). The repetition shown in figure 10d corresponds to a drop that felt from a lower
height, compared to the other runs. Thus, the force applied to pull up the disc was
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Figure 9: (a) Pressure coefficients U(t) for two repetitions of session 3 (1 and 2). (b)
wt(R, t) (line 1) and V (t) (line 2) for session 3, repetition 1.

smaller and so was the acceleration. Nonetheless the agreement between the theory and
experiments is still good even in these different conditions (the discrepancy in this case
is 11.35%). Even though the specific details of the measured forces and accelerations are
rather sensitive to the precise initial conditions of each run, the theory predicts well the
maximum accelerations and their duration.

To prove that elastic effects are negligible in the absence of water, we show in figure
11 the acceleration aexp(t) measured by the accelerometer, the acceleration computed
from the load-cell measurements under the rigid-body assumption, Fexp(t)/M , and the
acceleration predicted by the present elastic model, ath(t), with ma = 0. It is seen that all
these three accelerations are close to each other, with the maximum difference between
them being 5.5%.

To conclude this subsection, a few comments can be made about the distribution of
stresses in the disc. The radial σr and tangential σt stresses on the disc surface are given
by

σr(Rr̃, t) =
Ehp

2R2(1− ν2)

(
W ′′1 (r̃) +

ν

r̃
W ′1(r̃)

)
a1(t), (4.38)

σt(Rr̃, t) =
Ehp

2R2(1− ν2)

(
νW ′′1 (r̃) +

1

r̃
W ′1(r̃)

)
a1(t), (r̃ < 1), (4.39)

in the one-mode approximation. For the conditions of figure 7, the theoretical amplitude
of the elastic mode a1(t) increases monotonically from zero to 4 × 10−4 mm at the end
of the measurements. The functions σ̃r(r̃) = W ′′1 (r̃) + νW ′1(r̃)/r̃ and σ̃t(r̃) = νW ′′1 (r̃) +
W ′1(r̃)/r̃ are shown in figure 12. Their maximum values are achieved at r̃ = 0 and are
equal to each other.

4.3. Effect of plate thickness

To further support the conclusion that elastic effects are essential during the initial
stages of the plate exit, we provide here additional experiments with two discs of
thicknesses hp = 0.5 cm and hp = 2 cm, see table 3. As expected, the elastic vibrations
of the thicker disc have smaller amplitude and higher frequency than those of the thinner
one, as depicted in figure 13. In general, the period of these oscillations is reasonably well
captured by the theory. It should be stressed that the results presented here have been
obtained using the measured properties of the plates and that, once these parameters are
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Hydro-elastic effects during the fast lifting of a disc from a water surface 19

Figure 10: Comparison of the theoretical accelerations at the disc centre with the
experimental ones for four runs (session 3, repetitions 2, 3, 4, and 5). Dashed lines
represent the rigid wet-body acceleration, Fexp(t)/(M + ma), solid lines the theoretical
accelerations at the disc centre provided by equation (4.25) and the dotted lines are for
the measured accelerations.

Figure 11: Comparison of the measured acceleration, aexp, the acceleration computed
using the load-cell measurements under the rigid-body assumption, Fexp/M , and the
theoretical acceleration, ath.
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Figure 12: Distributions of radial and tangential normalised stresses along the disc radius,
curve (1) corresponds to σ̃r(r̃) and (2) to σ̃t(r̃).

hp (cm) Mp (kg) M (kg) ωwet,1 (s−1) Twet,1 (ms)

0.5 0.216 0.414 775 8.10
1 0.432 0.630 1945 3.23
2 0.864 1.07 5034 1.25

Table 3: Properties of the three different discs used in experiments.

fixed, the theory has no adjustable parameters and its only input is the excitation force
measured experimentally.

For the thinner plate, the first peak of the acceleration is very well described by
the theory, as illustrated in figure 14, albeit the second one exhibits an amplitude
substantially smaller than the calculated one. We hypothesize that this disagreement is
caused by several effects. First, it should be reminded that, in the theory, we assume that
the force is applied at the center, whereas in reality it is applied on a non-axisymmetric
region. Second, non-linearity leads to the appearance of higher-order modes, including
non-axisymmetric ones, which are excited more easily in a thinner plate, since their –
longer– natural period is closer to the duration of the experiment. A third explanation
may be sought in the fact that our theory does not account for any source of dissipation.
Due to the smaller elastic energy stored in a thin plate, the effects of dissipation are
expected to be more important in relative terms. Finally, because of its smaller mass, a
thin plate leaves the water surface at a slightly larger acceleration than a heavier one, thus
the assumption that the virtual mass is that evaluated at t = 0 becomes questionable. In
figure 14, the maximum difference between the theoretical and experimental accelerations
is 19.5%, but the difference between the measured and the rigid wet-body accelerations
is 400%, which shows that the rigid-disc model of water exit is not applicable to the case
of this thin disc.

Regarding the results for the thick plate, hp = 2 cm (see figure 15), the theory predicts
accelerations which oscillate around the experimental ones, albeit with a larger amplitude,
which we attribute again to the lack of dissipation in the model. The maximum difference
between the theoretical and the experimental acceleration is 33% in figure 15c. For the
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Figure 13: Comparison of the experimental accelerations at the disc centre (a) and the
measured rigid wet-body accelerations, Fexp(t)/(M + ma), (b), for three different plate
thicknesses, 0.5, 1, and 2 cm. Comparison between the experimental accelerations (dotted
lines) and the rigid wet-body accelerations, Fexp(t)/(M+ma), (dashed lines) for the plate
thicknesses hp = 0.5 cm (c) and hp = 2 cm (d).

other cases these differences are smaller than 13%. Despite this discrepancy, the period of
these oscillations is well predicted by the elastic exit theory. Note that these oscillations
are not present in the rigid wet-body accelerations shown by dashed lines in figure 15.
Thus, we find fair to state that the elastic theory predicts better the experimental
behavior in this case. Indeed, for a thick plate we expect the arguments used in the
previous paragraph for a thin plate to reverse, which explains the better agreement
between theory and experiments.

In view of these results, we find reasonable to claim that the generalised linear theory
of water exit presented here can be successfully used to describe the motions of an elastic
body that leaves the water surface at a large acceleration, such that its elastic vibrational
modes are excited.

5. Conclusions

We designed, built and tested a facility to investigate the sudden lifting of a plate from
a water surface. The results of the experimental campaign carried out in this facility
for a circular plate, a disc, have been presented and analysed using the added mass
theory. Several non-intuitive phenomena have been observed in the experiments. First
the acceleration of the plate close to the place where the external force is applied does not
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Figure 14: Comparison of theoretical accelerations at the disc centre with the
experimental ones (session 5) in four runs for disc thickness, hp = 0.5 cm. Dashed lines are
for the rigid wet-body acceleration, Fexp(t)/(M +ma), solid lines are for the theoretical
accelerations at the disc centre provided by equation (4.25) and dotted lines are for the
measured acceleration.

monotonically increase in time even if the external force does. Second, the wetted part of
the plate does not start instantaneously to decrease with the plate lifting. Instead, there
is an initial interval of time during which the wetted part of the plate does not shrink. It
was found that both these phenomena are governed by the elastic properties of the plate
and the interaction between the liquid flow and the plate deflection.

It was inferred from these observations that the modelling of the suction force experi-
enced by a rigid plate that leaves a water surface at a large acceleration is complex, due
to the interplay between the body motion and the free surface dynamics. Nonetheless, at
the very early stages of the motion this modelling was greatly simplified by linearizing the
equations and boundary conditions through exploiting the fact that the displacements of
the body and the water surface are very small. In particular, this allowed us to impose
the boundary conditions at the undisturbed (flat and horizontal) free surface and initial
body position. The linearised exit theory of rigid bodies (Korobkin 2013) predicts that
the body acceleration is proportional to the driving force, where the proportionality
coefficient depends on the added mass of the body.

Although at very short times this approach yields reasonable results, as was shown
for instance by the numerical simulations of Korobkin et al. (2017a) as well as by our
experimental observations (see figure 4b), eventually the acceleration predicted by the
theory significantly departs from the acceleration at the center of the plate obtained
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Figure 15: Comparison of theoretical accelerations at the disc centre with the
experimental ones (session 4) in other four runs for disc thickness, hp = 2 cm. See
figure 14 for an explanation of the different curves.

experimentally. Most notably, the observed accelerations even decrease in response to a
monotonically increasing force.

This disagreement has motivated the development of a generalised linear theory of
water exit that takes into account the elastic response of the plate to large accelerations.
This new theory is based on the same ideas of Korobkin (2013) but includes, for the
first time, the deformation dynamics of the plate through the linear elastic theory of thin
plates.

Taking advantage of the linear nature of both the hydrodynamic and elastic problems,
the disc displacement was expressed as a series of normal elastic modes of a free-free
circular disc supported at its center. The theoretical results obtained with only one
mode agree fairly well with experiments, while keeping the complexity of the solution at
a reasonable level. We stress here again that this theory has no free parameters to adjust,
and all the required inputs are determined experimentally.

Besides yielding accelerations close to the experimental ones, the hydroelastic theory
of water exit predicts that the contact line between the liquid, the air and the plate will
remain attached initially to the edge during several milliseconds, which is also in excellent
agreement with our observations using high-speed movies. It is also interesting to point
out here that, once the contact line detaches from the plate edge, it recoils as the plate
instantaneous height raised to the power of 2/3, as predicted by the self-similar solution
obtained by Korobkin et al. (2017b) for the flow close to the corner of a plate leaving a
water surface at a large acceleration. It is worth highlighting that these features of the flow
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near the edge are well described with the theory, despite the fact that the pressure field
underneath the plate is calculated with the assumption of fixed contact radius, c = R.
The reason for this is that, as pointed out in Korobkin et al. (2017b), the flow motion
in a region close to the contact line is determined by the pressure distribution far away
from the edge, where the suction created by the plate lifting is maximum. Therefore, the
details of the flow near the corner do not affect substantially the pressure distribution.

We would like to highlight the surprising result that seemingly stiff plates like the ones
used in our experiments, exhibit elastic effects strong enough to completely alter their
surface exit dynamics. We show that the additional local inertia caused by the liquid
motion is responsible for this elastic behavior. This effect was not observed in those
experiments where the plate does not touch the water, see figure 11. In these cases, the
acceleration and the applied force nearly follow each other within the experimental error
margin.

Despite the generally good agreement with the experiments, our theoretical model still
exhibits some discrepancies, specially for small plate thicknesses. We attribute those to:
(a) the non-axisymmetric way in which the force is applied to the disc in the experiments,
(b) the appearance of higher-order and non-asisymmetric modes, not considered in
our calculations, (c) the absence of a dissipation mechanism that surely exists in the
experiments, and (d) the assumption that the disc surface remains completely wet at all
times.

Even taking into account the assumptions just mentioned, we believe that it is fair to
conclude that the hydroelastic theory presented here emerges as a simple yet useful tool
to compute the fluid-structure interaction in water exit phenomena occurring at large
accelerations.
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