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Abstract 

This thesis focused on testing the predictions made in Milner and Goodale’s model 

and reports finding from experiments investigating how inputs from both the dorsal and the 

ventral streams are required when we perform hand actions with objects (Chapter 2) and 

tools (Chapter 3 & 4) using different paradigms such as real and pantomimed grasping and 

techniques such as transcranial magnetic stimulation, motion-tracking of hand movements 

and cutting-edge fMRI multivoxel pattern analysis. The primary aim was to gain a new 

insight on the role of the dorsal and the ventral visual streams in real grasping and 

pantomiming and to understand what specific aspects of objects and movements associated 

with them are represented within the two streams. The first experiment (Chapter 2) examined 

the causal role of the anterior intraparietal and the lateral occipital in object’s real and 

pantomimed grasping using TMS. The results showed that real object grasping and 

pantomime actions without the objects in hand require the left dorsal stream but that 

information from the ventral stream is additionally required for pantomiming. The 

experiments in Chapter 3 and 4 investigated how tools and tool related actions are 

represented within the dorsal and the ventral stream (Chapter 3) and whether different action 

end-goals affected early grasping kinematics (Chapter 4). Using MVPA we showed that both 

dorsal and ventral stream regions represent information about functional and structural 

manipulation knowledge of tools. Moreover, we showed that both streams represent tool 

identity, which seems in line with our behavioural findings that tool identity affects grasping 

kinematics. The current work provided a detailed understanding of how the dorsal and the 

ventral streams interact in tool processing and propose a more sophisticated view of the 

distributed representations across the two streams. These findings open up a number of 

research avenues as well as help understanding how actions are disrupted in brain-damaged 

patients and advance the development of neural prosthetics.  
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1. General introduction 

1.1 Why study vision and action in psychology? 

Vision is one of the main sources of information in our daily interactions with the 

environment. Every day we are able to process countless visual information in order to 

make decisions on how to interact and perform actions within our surroundings. 

Performing movements with our bodies and in particular with our hands, is a meaningful 

way of interacting with the environment and with people and objects within it. For 

example, we use hand gestures to communicate with others, to manipulate and move 

objects around us and also to create music and art.  

Nearly all aspects of everyday life require a visually-guided object-directed 

behaviour (e.g., reaching to grasp an object). For example, when I need to write a note, I 

need to find a pen on my desk. I look around the room and when I find it, my eyes focus 

on the pen and the axons coming from the retina of each eye meet at the optic chiasms. 

Here, information from both the left and the right hemifield is divided and through the 

lateral geniculate nucleus projected to the contralateral occipital cortex, where visual 

information is first elaborated (Polyak, 1957). The information is then passed to higher 

and more specific visual areas for further elaboration. The visual cortex is hierarchically 

organised into different regions, called V1, V2, V3, V4 and V5/MT+ (Van Essen & 

Maunsell, 1983). These regions are organised in an orderly manner, so that low-level 

visual information passes through these regions and become more and more complex and 

detailed representations through successive stages (Van Essen & Maunsell, 1983). Each 

region extracts increasingly complex features of the target stimulus, such as lines, 

orientation, colour, texture, etc. (Livingstone & Hubel, 1988). Following some other 

intermediary stages of processing, from the visual cortex, information is then projected 

along two separate, but interacting streams. A ventral stream that extends from the visual 

cortex to the inferotemporal cortex and is responsible for the extraction of visual 

perceptual features such as shape, texture, which then lead to object recognition (Goodale 
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& Milner, 1992, 2013; Milner & Goodale, 1995, 2006, 2008) and a  dorsal stream that 

extends from the visual cortex to the posterior parietal cortex. Is it here, that relevant 

information for movement planning and execution are processed (Goodale & Milner, 

1992, 2013; Milner & Goodale, 1995, 2006, 2008; figure 1.1). Moreover, parietal regions 

are interconnected with regions in the frontal lobe, such as the primary motor cortex, the 

supplementary motor area and the dorsal and ventral premotor cortex, and it is in the 

frontal lobe that intention and decisions to act with objects are coded (e.g., Andersen & 

Buneo, 2002; Cisek & Kalaska, 2010).  

Going back to my example, once I identified the pen, I need to pick it up to be able 

to use it. A fundamental characteristic of all grasping movements is that grasping points 

need to be established so that a stable grip can be performed (Napier, 1956). When 

grasping a small objects, such as a pen, a common way is to use a two-digit precision grip 

with the index finger and the thumb (Napier, 1956). Although objects can be grasped in a 

variety of ways (for example: precision grip, whole hand grip, opposition of the thumb 

and one/two fingers), functional and physical constraints of the objects and the hand limit 

the number of appropriate grasp types (e.g., although I can grasp a hammer with a 

precision grip, a whole hand grasp would allow a more stable grasp). Specifically, physical 

constraints are related to the object’s intrinsic (e.g., size, shape and texture) and extrinsic 

(e.g., location, orientation) characteristics, as well as the postural properties of the hand, 

while functional constraints depend on how the object will be grasped for the end-goal 

(MacKenzie & Iberall, 1994). During hand-object interactions, visual feedback provides 

critical information about both object’s characteristics and the position of the hand 

(Connolly & Goodale, 1999). 

In summary, vision has two main functions: the perception of objects and their 

relationships in our everyday environment and the control of actions directed towards 

these objects (e.g., visuomotor control) (Goodale & Humphrey, 1998; Milner & Goodale, 

1995, 2006). However, for years in classical psychology, the perceptual and the motor 

systems have been studied separately and while many studies have investigated 

perception,  less attention has been given to visuomotor control (e.g., how vision is critical 

to programme and control our hand actions; Goodale, 2014; Rosenbaum, 2005). Although 
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it might be necessary to describe the perceptual and the motor systems as two separate 

systems, this is only an artificial division, as in fact, the two systems process different 

information but closely work together (Goodale, 1998; Goodale, 2014). Thus, the study 

of perception and action should not be separated, as vision and the motor output it controls 

are strictly linked (Rosenbaum, 2005).   

The current work will test the predictions based on  Milner and Goodale’s model 

(Goodale, 2014; Goodale & Milner, 1992; Milner, 2017; Milner & Goodale, 1995, 2006, 

2008) and will investigate specifically how the two visual streams interact using tasks that 

are thought to require the involvement of both the dorsal and the ventral stream, such as 

pantomime and tasks involving tool processing and use. In project 1, using continuous 

theta-burst stimulation (cTBS), I investigated the causal role of the aIPS, a key region for 

grasping in the dorsal stream, and the causal role of Lateral Occipital (LO) a key region 

in the ventral stream thought to be involved in shape processing, in real and pantomimed 

grasping.  While in project 1 I used meaningless shapes, in project 2 and 3 I used everyday 

tools. Specifically, in project 2, I investigated the representations within the tools 

processing regions and whether these representations vary according to the task (i.e., view 

or pantomime) and the type of manipulation knowledge (e.g., functional: how a tool is 

used; or structural: how a tool is grasped for use). In project 3, using real 3D tools and a 

grasp-to-use and grasp-to-move task, I explored how tool identity and the action end goal 

modulate grasping kinematics even when structural differences (e.g., the handle) between 

objects are controlled for.  

In the next sections, I will review the relevant literature that led Milner and Goodale 

to the development of their account of the distinction between the vision-for-perception 

and the vision-for-action systems, to then move onto evidence that shows how the two 

streams interact. To date, little is known about how the two streams interact and here, I 

will review neuropsychological, behavioural and neuroimaging studies investigating the 

interactions of the two streams using a variety of paradigms such as delayed and 

pantomimed grasping and tasks using tools. 
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1.2 One brain, multiple visual streams 

Although we experience the visual world as a unitary phenomenon, psychologists 

and neuroscientists argued that vision is a highly modular process. In 1968, Trevarthen 

(1968), based on experiments with split-brain monkeys, proposed that “vision of space” 

and “vision of object identity” are mediated by anatomically distinct processes in the 

brain. One called “ambient” vision, mediated by the midbrain system (which comprises 

the tectum, the tegmentum, the substantia nigra, the cerebral peduncle and the cerebral 

aqueduct) and responsible for visual guidance; the other one, called “focal” vision, 

mediated by the geniculostriate system (which comprises axons from the neurons in the 

lateral geniculate nucleus to the primary visual cortex), and responsible for form 

recognition and identification.  

One year later,  Schneider (1969), using a lesion approach in hamsters, revealed that 

ablations of the geniculostriate system were associated with an impairment in the 

discrimination of patterns, whereas lesions within the superior colliculus (or optic tectum) 

were linked with the suppression of visually-elicited movements of the head towards 

objects (e.g., hamsters did not turn their head towards objects). These findings provided 

evidence for the different functional roles between the retinal projections to the superior 

colliculus, which plays a crucial role in the localisation of objects in space (Sprague, 1966; 

for a review see Krauzlis, Lovejoy, & Zénon, 2013) and the system that projects from the 

retina to the geniculostriate system, which is concerned with the identification of the 

stimuli. In other words, he proposed a two visual systems model in which there is a 

distinction between “what” (e.g., object identification) and “where” (e.g., spatial 

localisation).  

Further evidence of the division of the visual system into two distinct pathways, 

came from a new series of studies of vision in the frog. In the central nervous systems of 

frogs (and other non-mammalian) the projections from the retina to the brain can be 

transected and induced to regrow in a different location. By re-wiring neural pathways in 

the frog, Ingle (1973) showed that visually elicited feeding and visually guided 

movements around obstacles are mediated by different visuomotor pathways in re-wired 
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frogs. In fact, after unilateral ablation of the frogs’ superior colliculus, Ingle (1973) 

observed that frogs were directing their responses towards the prey presented towards a 

location that was mirror symmetrical to the actual location of the prey. Similarly, instead 

of jumping away from the looming obstacle, the frogs were jumping towards it. However, 

when the same frogs were escaping a touch on their rear by jumping away from it, they 

always oriented their jump correctly to avoid obstacles in front of them. Histological 

observation of the frog’s brain revealed that the axons of the optic tract, that was transected 

when the superior colliculus was ablated, regenerated and innervated the contralateral 

intact tectum, which explained mirror-symmetrical behaviour (Ingle, 1973). The author 

concluded that, rewired frogs were able to use their vision to guide their jump to avoid a 

barrier and that the remaining retinal projections were responsible for the visual guidance 

of barrier avoidance. These observations led him to the hypothesis that there are at least 

two visuomotor systems in the frog’s brain that are independent: a tectal system (which 

includes the inferior and superior colliculi) which mediates visually elicited prey catching 

and a pretectal system, which mediates visually guided jumps around barriers.  

However, the first great steps in demonstrating the functional modularity of vision 

at a cortical level, were made by Mishkin, Ungerleider and colleagues in their work with 

macaque monkeys (Mishkin, 1972; Mishkin, Lewis, & Ungerleider, 1982; Mishkin, 

Ungerleider, & Macko, 1983; Mishkin & Pribram, 1954; Mishkin & Ungerleider, 1982; 

Ungerleider & Mishkin, 1982; Ungerleider & Pribram, 1977). In a seminal paper, 

Ungerleider and Mishkin (1982), proposed that objects’ features (what) and objects’ 

location (where) information is carried out in two separate visual streams. In this model, 

both streams are important for visual perception with different specialisations: the dorsal 

pathway, that projects from the visual cortex to the posterior parietal cortex, is specialised 

for spatial vision and is tuned to spatial relationships between objects, whereas the ventral 

pathway, that projects from the visual cortex to the inferotemporal cortex, is specialised 

for object vision and is tuned to objects’ features (see also Mishkin, 1972; Mishkin et al., 

1983). Ungerleider and Mishkin’s (1982) model poses a distinction between “where” and 

“what” at a cortical level and has its roots from studies with monkeys with a lesion in one 

pathway but not the other (Mishkin & Ungerleider, 1982). According to this model, both 
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streams are important for visual perception, however, for different purposes: the dorsal 

“where” pathway is tuned to spatial relations between objects and mediates objects 

‘localisation, while the ventral “what” stream is tuned to intrinsic object features (e.g., 

size, shape, texture) and mediates object identification. 

1.3 Two visual systems hypothesis 

In 1992, Goodale and Milner (Goodale & Milner, 1992; Milner & Goodale, 1995, 

2008), proposed an alternative perspective of Ungerleider and  Mishkin’s (1982) model 

known as the perception and action model (figure 1.1) which places less emphasis on the 

input to the two streams (e.g., visual object and its location) but instead highlights the 

output of the two streams (e.g., the way visual information is used, such as for guidance 

Figure 1.1 The ventral and dorsal visual streams for perception and action (adapted 

Milner & Goodale, 1992). The ventral stream projects from the occipital to the lateral 

and inferior temporal cortex (blue arrows) and is specialised for visual perception. 

The lateral occipital complex (LOC), in cyan, is involved in visual object recognition 

(Malach et al., 1995). The dorsal stream projects from the occipital to the posterior 

parietal cortex (in orange) and mediates the visual control of skilled hand actions. At 

the anterior part of the intraparietal sulcus, area aIPS, in red, is thought to be critical 

for grasping (Culham, 2003). 
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of actions). According to this view, both streams process information about the location 

and the intrinsic features of the objects, however within each stream the information is 

processed in different ways and transmitted for different purposes.  

1.3.1 The ventral stream and visual object recognition   

The ventral stream, from V1 to the inferotemporal cortex (ITC), processes visual 

inputs and transforms them into long-lasting perceptual representations (vision-for-

perception) and plays a critical role to the perception and recognition of objects. For 

example, the ventral stream will allow me to recognise a mug that I previously saw on my 

desk, even if this is now in the kitchen. Patient DF, and other patients with ventral stream 

lesions, such as patient MC (Culham, Witt, Valyear, Dutton, & Goodale, 2008) and patient 

JS (Karnath, Ruter, Mandler, & Himmelbach, 2009) have been critical in gaining insights 

into the causal functions of the ventral and dorsal stream. The medial and lateral structures 

of the temporal lobe, known to be critical for memory formation, storage and retrieval of 

information about object features and identity (Chao & Martin, 2000; Eichenbaum, 

Yonelinas, & Ranganath, 2007; Patterson, Nestor, & Rogers, 2007; Squire, Stark, & Clark, 

2004) are positioned just anterior to the ventral stream, which runs downward from V1 

into the temporal lobe. Therefore, the ventral stream is well positioned to receive and 

integrate low-level visual information with long-term memory representations.   

1.3.2 The dorsal stream and visuomotor control 

The dorsal stream originates in the primary visual cortex and then extends to the 

posterior parietal cortex (PPC), which is interconnected with the ventral and dorsal 

premotor areas in the frontal cortex. It is thought that the dorsal stream processes visual 

information on a moment-to-moment basis, to transform the information into appropriate 

motor plans (vision-for-action) and to mediate the visual control of skilled actions online 

(Goodale & Milner, 1992; Milner & Goodale, 1995, 2006, 2008). With the visual cortex 

situated posterior and the somatosensory cortex anterior, the PPC is largely recognized as 

the main associative area dedicated to the coordination between sensory and motor 

information (Sakata, Taira, Kusunoki, Murata, & Tanaka, 1997). The intraparietal sulcus 
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(IPS) divides the superior parietal lobe (SPL) from the inferior parietal lobe (IPL). 

Extensive research using electrophysiological data from macaque monkey have identified 

various division within the IPS that have been involved in the control of hand actions (e.g., 

Lewis & Van Essen, 2000b; Seelke et al., 2012), and together with the prefrontal areas, 

these circuits are critical for the planning and online control of hand actions. With the 

advent of neuroimaging, similar patterns of functionality have been identified the human 

PPC (Culham & Valyear, 2006; Culham, Cavina-Pratesi, & Singhal, 2006) which will be 

reviewed in section 1.7. 

Moreover, the connectivity between the parietal and frontal cortices has been 

comprehensively mapped in a number of studies in monkeys (Andersen, Asanuma, Essick, 

& Siegel, 1990; Cavada & Goldman‐Rakic, 1989; Gharbawie, Stepniewska, & Kaas, 

2011; Goldman-Rakic, 1996; Lewis & Van Essen, 2000; Seltzer & Pandya, 1980; Wise, 

Boussaoud, Johnson, & Caminiti, 1997). In the macaque monkey, neural recordings from 

the intraparietal sulcus revealed a more specific subdivision that includes a lateral bank  

that is involved in eye movements (Andersen et al., 1990), a medial intraparietal area that 

is involved in reaching (Cohen & Andersen, 2002; Johnson, Ferraina, Bianchi, & 

Caminiti, 1996), and an anterior intraparietal area (AIP) that is involved in grasping 

(Murata, Gallese, Luppino, Kaseda, & Sakata, 2000; Sakata, Taira, Murata, & Mine, 

1995). Gharbawie et al. (2011), examined the connection of the posterior parietal cortex 

with motor and premotor cortex in New World monkeys using electrical stimulation 

combined with tracer injections. They found a dorsal parietofrontal network involved in 

reaching connecting the posterior parietal cortex (PPC) with the dorsal premotor cortex 

(PMd), and a more ventral parietofrontal network interconnecting the PPC with the 

primary motor cortex (M1) and the ventral premotor cortex (PMv) involved in grasping. 

In the next section, I will review the most relevant findings for the perception and 

action model derived from testing visual form agnosic patient DF. In fact, although the 

formulation of the perception and action model is backed by scientific evidence from 

different disciplines, including primate neurophysiology, neuropsychological 

neuroimaging and behavioural studies in humans, the centrepiece of the two visual 
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streams hypothesis is findings derived from single neuropsychology cases, in particular 

patient DF, who presented visual form agnosia. 

However, before moving on, I wish to clarify what the authors mean by “perception” 

and “action”. According to the authors (Milner & Goodale, 2008), perception represents 

our visual experience of the surroundings, but it does not provide the information required 

for actions, although it does influence actions. By “action” they refer to the use of visual 

information in the programming and real-time control of hand actions (Milner & Goodale, 

2008). Since the formulation of the model, different tasks have been used to assess how 

the computations require for vision-for-perception differ from the computations required 

in vision-for-action (Goodale & Milner, 1992; Milner & Goodale, 1995, 2006, 2008) 

based on their functions (section 1.5). 

1.4 Neuropsychological evidence for the perception and action model 

1.4.1 From patient DF to the two visual streams hypothesis 

In 1988, DF was 34 years old and whilst taking a shower in her house in northern 

Italy, she suddenly collapsed and lost consciousness due to carbon monoxide intoxication 

from a leak in her gas water boiler. As reported by Milner and colleagues (Milner et al., 

1991), when DF was admitted to hospital, she was in deep coma and had dilated pupils. 

After two days, she re-gained consciousness and was then transferred to the neurological 

clinic at the Ospedale Maggiore in Novara for further examinations where she appeared 

to be blind. However, at clinical examination, the interior surface of her eyes was normal, 

and she had spare pupillary light reflex. After ten days from the event, she started to see 

again and she was able to name bright colours, however, she was still showing severe 

difficulties with ocular fixation.  

DF did not show any evidence of neglect or aphasia, however she performed poorly 

in the visual recognition sub-task in the battery for aphasia, although her auditory and 

tactile recognition were good (77% correct at 1 month and 100% correct at 12 months). 

Five weeks after the accident, DF returned to Scotland (where she was originally from), 

were neuropsychological and psychological testing were carried out at St Andrew’s 

Hospital (for a complete list see Milner et al., 1991). Magnetic resonance imagining 
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investigations carried out close to the event revealed that she had damage ventrally in the 

lateral occipital region and in the parasagittal occipitoparietal region, however area V1 

was largely intact (Milner et al., 1991). Based on the patient report, Milner and Goodale 

diagnosed patient DF with a severe visual form agnosia, and then decided to investigate 

her deficits further. Although DF was unable to verbally report the orientation of the slot 

(Milner et al., 1991) and to rotate the card she was holding to match the orientation of the 

target slot (Goodale et al., 1991), she oriented her wrist correctly when posting her hand 

or a card through the slot. This observation was interpreted as evidence that despite having 

a deficit in perception, DF had a well-preserved ability to coordinate her motor behaviour 

to the orientation of visually presented targets in front of her (Milner et al., 1991).  

To extend these findings and to understand whether other features of an object could 

be used to drive DF’s grasping actions, Goodale et al. (1991) presented pairs of blocks 

(such as size and shape) with same surface area (Efron, 1969) but different dimensions. 

DF and two healthy controls were asked to verbally judge if the blocks were alike or 

different. Moreover, in a separate block, they were instructed to use her index finger and 

thumb to indicate the width of the blocks. When  DF was required to estimate the size of 

the blocks with her index finger and thumb, her aperture was not related to the size of the 

blocks (e.g., bigger hand aperture for bigger blocks and smaller for smaller blocks, as 

observed in healthy participants; Goodale, Jakobson, & Keillor, 1994). Thus, compared 

to the controls, DF’s performance was very poor in both the verbal size judgements and 

manual estimation tasks, demonstrating that she was insensitive to differences in the size 

of the stimuli. Remarkably, when DF picked-up the same blocks, the maximum aperture 

of her fingers (which was achieved in-flight well before touching the object) was 

systematically related to the size of the object, just as observed in healthy controls. Taken 

together, these findings suggest that the neural substrates underlying vision-for-perception 

are distinct from those mediating vision-for-action (Goodale et al., 1991; Goodale et al., 

1994; Milner et al., 1991). 

Despite her severe deficits in perception (e.g., she cannot recognise a mug), DF had 

little difficulties in her everyday activities such as grasping a mug, eating meals, reaching 

out to grasp a pencil and avoiding obstacles on her path. Thus, suggesting that, although 
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she performed poorly when she had to report perceptual features and qualities of objects, 

she was able to access and use those same features and qualities to guide her actions. In 

other words, it seems that she could still transform visual information into motor acts (e.g., 

visuomotor control).  

The dissociation between perception and action observed in DF’s behaviour is one 

of the most crucial pieces of evidence that led Goodale and Milner (1992) to develop the 

perception and action model. Based on DF’s neuroimaging evidence and behaviour in 

visuomotor and perceptual tasks, Milner and Goodale (1992) proposed that while the 

projections from the visual cortex to the dorsal stream remained largely intact, the 

projections from the visual cortex to the ventral stream were compromised.  Since these 

observations, other patients have been reported to present similar dissociations, such as 

for example patient MC (Culham et al., 2008) and patient JS (Karnath et al., 

2009).However, in recent years, the evidential basis for the dissociation between 

perception and action in patient DF has been questioned (see section 1.8). While the lesion 

data from patient with brain damage is informative, the number of patients showing a 

particular behaviour and neural plasticity makes it challenging to be certain about the 

specific role played by areas in the brain. The experiment in chapter 2 in this thesis has 

been developed to shed the light on the contribution of the dorsal and the ventral stream 

in visuomotor and perceptual tasks. 

1.4.2 Optic ataxia 

Indeed, the original formulation of the two visual systems hypothesis was largely 

built upon observation of patient DF. However, it has also been shown that patients with 

damage to the dorsal, but not the ventral stream, present the opposite pattern of deficits 

and preserved functions, with impaired visuomotor performance in the absence of 

perceptual deficits. In particular, patients with optic ataxia, as a result of damage in their 

posterior parietal cortex, have been shown to present deficits like misreaching occurring 

for actions directed to their peripheral visual field and in the online control of reaching 

and grasping, but are able to perceive and recognise objects well (Milner & Goodale, 1995, 

2006; Perenin & Vighetto, 1988).  
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Optic ataxia was first described in 1909 by Bálint who examined a patient that 

showed misreaching with his right hand to targets in the peripheral hemifield following 

bilateral brain infarcts in the parietal region (Bálint, 1909). In the original case observed 

by Bálint, optic ataxia was associated with other symptoms, such as oculomotor apraxia 

and spatial disorder of attention (Bálint, 1909), which constitute the Bálint-Holmes 

syndrome. However, these disorders could not account for optic ataxia, as misreaching  

only affected the right hand of the patient, whereas the spatial disorder of attention and 

oculomotor apraxia were exhibited in the left hemispace (Perenin & Vighetto, 1988). 

Bálint suggested that the deficits observed in his patient were linked to the fact that the 

hand motor area lacked access to the visual information from the visual cortex. 

Specifically, he proposed that the deficits in optic ataxia were visuomotor, and not 

attributable to impairment to sensory and motor functions.  

Following Bálint’s description, patients with bilateral parietal lesions have been 

often referred to as Bálint-Holmes syndrome and the misreaching behaviour observed in 

the first patient has rarely been observed. Since early work conducted by Ratcliff & 

Davies-jones (1972) in patients with missile wound brain injuries, it has been accepted 

that the most commonly damaged area in optic ataxia is the intraparietal sulcus, 

encompassing aspects of the superior parietal lobe (e.g., Perenin & Vighetto, 1988). 

Garcin (1967) was the first that described a patient with optic ataxia symptoms in isolation 

from other deficits. In Garcin’s (1967) case and in similar later reports, optic ataxia was 

observed following unilateral (Auerbach & Alexander, 1981; Ferro, Bravo Marques, 

Castro Caldas, & Antunes, 1983; Levine, Kaufman, & Mohr, 1978; Perenin & Vighetto, 

1988; Rondot, De Recondo, & Dumas, 1977) and sometimes bilateral posterior parietal 

cortex lesions (Boller, Cole, Kim, Mack, & Patawaran, 1975; Damasio & Benton, 1979; 

Denes, Caviezel, & Semenza, 1982; Perenin & Vighetto, 1988). Patients are typically 

impaired in reaching objects placed in the periphery in the visual hemifield contralateral 

to the lesion, with both the right and the left hands, however, cases in which misreaching 

affects only one hand in one hemifield have also been reported (Perenin & Vighetto, 1988; 

Rondot et al., 1977). 
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Based on these observations, optic ataxia has been characterised for the occurrence 

of misreaching to targets in the peripheral vision, while movements to targets in the central 

visual field seem unimpaired, thus suggesting that optic ataxia represents a visuomotor 

coordination deficit (Perenin & Vighetto, 1988). However, more recently, it has been 

observed that the vast majority of these patients show no or poor grip scaling (e.g., closing 

their index-finger and thumb in-flight to object size) when  grasping objects in their 

periphery (e.g., Gréa et al., 2002; Jakobson, Archibald, Carey, & Goodale, 1991; Perenin 

& Vighetto, 1988; Rossetti, Pisella, & Vighetto, 2003). Interestingly, although these 

patients are unable to reach out to grasp an object, they have no major difficulties in 

reporting the location and orientation of the same object (Perenin & Vighetto, 1988).  

Lesions in optic ataxia have been shown to be located within the intraparietal sulcus 

(IPS) and adjacent medial superior parietal lobule and upper parietal lobule, are critical 

for optic ataxia (Auerbach & Alexander, 1981; Buxbaum & Coslett, 1998; Perenin & 

Vighetto, 1988). Moreover, Karnath and Perenin (2005), using lesion subtraction methods 

in 10 patients with optic ataxia, identified the centre of the overlap of the lesions at the 

junction between the inferior parietal lobule, the superior parietal lobule (SPL) and the 

superior occipital cortex, and extended medially to the precuneus, in the vicinity of the 

parieto-occipital sulcus (POS). Subsequently, Pisella et al. (2009) reported similar results 

in a group of patients with optic ataxia, with lesion overlap centred on the parieto-occipital 

regions.  

Although there is controversy (Pisella, Binkofski, Lasek, Toni, & Rossetti, 2006), 

visual form agnosia and optic ataxia have been argued to constitute a double dissociation 

between vision-for-perception and vision-for-action in support to the two visual streams 

hypothesis (Goodale and Milner, 1992; Milner and Goodale, 1995, 2006, 2008; Rossetti, 

1998).   

In this section, I have reviewed how observations from individuals with visual form 

agnosia and optic ataxia provide a double dissociation that support the two visual systems 

hypothesis proposed by Milner and Goodale (Goodale, 2014; Goodale & Milner, 1992; 

Milner & Goodale, 1995, 2006, 2008). In the next section, I will review evidence for the 

model from behavioural studies in healthy participants.  
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1.5 Different neural transformations for vision-for-perception and vision-for-

action 

According to Milner and Goodale (Goodale & Milner, 1992; Milner & Goodale 

2006, 1995), the two visual streams evolved because vision-for-perception and vision-for-

action require different transformations of the visual inputs. For example, to be able to 

grasp the cup of coffee on my desk, my brain must compute the actual size, orientation 

and position of the mug with respect to the hand I am going to use to pick it up. Some of 

these transformations reflect the metrics of the object, such as the size, while others are 

necessary in determining the location of the object in the space and the position of the 

approaching hand and arm. Critical, is also the time at which these transformations are 

performed. In fact, the actor and the target object are not in a static relationship with each 

other and, as a consequence, the position of the target with respect to the hand (i.e., 

egocentric) can change from moment-to-moment. Thus, it is crucial that the coordinates 

for action are computed at the moment the movements are performed  (Goodale, 2011; 

Goodale & Milner, 1992; Goodale, Westwood, & Milner, 2004; Milner & Goodale, 1995, 

2006, 2008).  

On the other hand, Milner and Goodale (Goodale & Milner, 1992; Milner & 

Goodale, 1995, 2006, 2008) suggested that vision-for-perception does not require the 

computation of the absolute size of the target objects, nor their location in respect to our 

hand (i.e., egocentric). This is because our view point over time does not remain constant 

in respect to the target object, and therefore the ventral stream constructs the visual 

representations of the surroundings and allows us to identify objects and attach meaning 

and significance to them, so that we can recognise them in future interactions. For these 

reasons for the perceptual processing of objects in the environment, the ventral stream 

processes the size, orientation and location of objects relative to each other (i.e., 

allocentric) as this allows the observer to generalise over time, thus preserving information 

about spatial relationships as well as objects’ relative size and orientation, even if the 

observer changes viewpoint. Again, the time is critical, as the products of perception need 

to be available for a longer time than the information used to control actions, as we might 
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need to recognize objects that we have seen minutes, hours, days or even years before. 

Computing perceptual representations that are scene-based allow us to maintain the 

constancies of size, shape, colour and location independently of the viewing condition and 

over time (Goodale, 2011; Goodale & Milner, 1992; Goodale et al. 2004; Milner & 

Goodale, 1995, 2006, 2008).  

Over the last two decades, these differences in metrics, timing and frames of 

references of vision-for-action and vision-for-perception have been tested using different 

paradigms (e.g., size estimation, real grasping, pantomimed and delayed grasping).  

1.5.1 Metrics and Timing 

In a seminal paper Goodale et al. (1994) carried out a series of experiments to 

investigate differences in movement kinematics in real, delayed pantomimed and 

pantomimed grasping with healthy participants and patient DF. In the first experiment, 

healthy participants were presented with objects and were asked to reach out and grasp 

them with a precision grip. In one block of trials, participants were presented with an 

object, then their vision of the object was occluded for 2s, and participants were instructed 

to reach out and pick up the object as soon as it was visible again (delayed real grasping). 

In another block of trials, the object was on the table at the beginning of the trial, however, 

during the 2 s in which the object was not visible, the object was removed from the table 

and participants had to remember where the object was and how it looked like to pretend 

to pick-up from memory (delayed-pantomimed grasping). The two tasks were presented 

in blocked and mixed order. The main difference between the two tasks is that the delayed 

real grasping task is a target-driven movement, and the delayed-pantomimed grasping task 

is a memory-driven action as the object is no longer present when the grasping is initiated 

and executed and, therefore the grasping movement is pantomimed. The authors observed 

that pantomimed delayed movements reached lower velocity during the transport of the 

hand, lasted longer, followed more curvilinear trajectories and participants raised their 

wrist higher off the table, compared to delayed real grasping movements. Participants 

scaled their grip in-flight to the object size in both tasks, however, grip apertures in the 

delayed-pantomimed task were smaller compared to the real grasping task. Moreover, 
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participants took proportionately less time to open their hand under the delayed 

pantomimed task compared to the normal grasping. These effects were observed in the 

blocked and in the mixed task (the only difference that was found is that movement 

amplitude and height of the wrist were slightly greater in the mixed than the blocked task). 

The authors suggested that these tasks relied on different mechanisms, a hypothesis that 

was then tested with patient DF. In particular, visuomotor information is computed 

immediately before the action started. In the real grasping trials, the programming of the 

action relied on the visual information available at the moment, whereas in the delayed 

pantomimed trials, the programme would rely on information about the object and its 

location stored in memory (as the object is not visible at the moment the action is initiated). 

To ensure the accuracy in target-directed grasping movements, information such as the 

size, the orientation and position of the object in relation to the observer need to be 

computed at the precise moment the action is initiated and updated constantly as the hand 

moves towards the object. Thus, the visuomotor networks controlling real grasping appear 

to operate in real time and do not rely on memory. On the other hand, delayed pantomimed 

actions might rely on stored representation of the object, provided by the ventral stream. 

To test the idea that delayed-pantomimed actions and real grasping actions relied on 

different mechanisms, the authors tested DF under real and delayed-pantomimed grasping. 

The authors predicted that, if it is true that delayed-pantomimed actions depend on 

information stored in the perceptual system, DF’s performance should be inaccurate 

following from her lesion in the perceptual system underlying object recognition. Here, 

DF and healthy controls were tested under the same conditions described in the first 

experiment, however, in addition to the 2 s delay, a longer delay of 30 s was included. In 

the real grasping task, DF’s consistently scaled her grip aperture to object size, which was 

consistent with the authors earlier reports (Milner et al., 1991). However, when even a 

short delay was imposed between the viewing of the object and the initiation of the 

movement, DF’s grip scaling was no longer evident. The authors argued that, in delayed-

pantomimed grasping task, DF cannot use the stored representation of the object as she 

cannot perceive the object’s features in the first place. Importantly, the authors reported 

that differences in DF’s performance between real grasping and delayed-pantomimed 
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cannot be explained by a difference related to the absence of visual feedback in the latter 

task (versus presence of visual feedback in the real grasping). To clarify their point, 

Goodale et al. (1994) reported as evidence an unpublished observation that even when the 

view of the target and the moving hand is prevented (e.g., open-loop), DF showed 

appropriate scaling of her grip aperture during real grasping. 

In the third experiment, DF and healthy controls were presented with two tasks: in 

the first condition, they were required to reach out and grasp an object presented along 

their midline (real grasping), while in the second condition they viewed an object 

presented slightly off the midline and were then required to imagine an identical object on 

the midline and pretend to grasp it (immediate pantomimed grasping). DF’s performance 

in this task was marginally better than in the delayed pantomimed grasping, however, her 

responses in the immediate pantomimed task were extremely variable compared to the 

real grasping task. As such, DF showed poor grip scaling to object size in the immediate 

pantomimed grasping (figure 2.1). Based on DF’s poor grip scaling in the immediate 

pantomimed grasping task, the authors suggested that not only delayed-pantomimed 

actions, but also immediate pantomimed actions rely on stored perceptual information 

about the object (Goodale et al., 1994). Critically, DF’s poor performance in delayed 

pantomimed grasping cannot be associated with a more general impairment in her 

memory. In fact, in a series of experiments, used as control, Goodale et al. (1994) reported 

that DF was able scale her grip aperture as accurately as healthy participants when asked 

to show how she would pick up an imaginary grapefruit or a tangerine (Goodale et al., 

1994). However, if she had to make a manual perceptual judgement of the size of an object 

in front of her, her manual estimations did not correlate to the object’s size (unlike healthy 

controls), but she was able to match the distance between her thumb and index finger to 

verbally specified (either inches or centimetres) measures (e.g., 5 cm, 4.5 cm, 3.5 cm) by 

the experimenter. 

To summarise, Milner and Goodale (Goodale & Milner, 1992; Milner & Goodale, 

1995, 2006) argued that the kinematics of pantomimed and real grasping are substantially 

different, reflecting different neural substrates. Specifically, pantomimed actions 

consistently tend to last longer and reach lower peak velocities, follow more curvilinear 
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trajectories, undershoot target location and reach smaller in-flight grip apertures. Based 

on evidence from patient DF, they proposed that DF’s spared real grasping is mediated by 

the visuomotor system in the dorsal stream, which although shows evidence of reduced 

cortical thickness, appeared largely intact (Bridge et al., 2013), however, for offline 

actions, such as delayed-pantomimed grasping, the information from the ventral stream is 

additionally required. This argument has been supported by studies with patients with 

optic ataxia who showed poor grip scaling during real grasping for objects presented in 

their periphery, but paradoxically improved when they were pantomiming a grasping 

movement (Milner et al., 2001).  

1.5.2 Frames of reference 

In 1981, Pick and Lockman (1981) defined the notion of frame of reference as “a 

locus or set of loci with respect to which spatial position is defined” (Pick and Lockman, 

1981, p.40). In other words, the spatial location of an object in the surroundings can be 

computed in two ways: (i) in relation to the spatial position of the observer (i.e. egocentric 

frame of reference), (ii) in relation to the spatial position of other objects in the scene (i.e., 

allocentric frame of reference), which is independent from the presence or the position of 

the observer.  

For example, when I grasp the mug on my desk, my brain must compute the actual 

size, shape and orientation of the mug, and represent its location in relation to me (i.e. 

egocentric frame of reference). Moreover, as the action unfolds, the position of the object 

relative to the actor quickly changes and therefore the coordinates of the location of the 

object must be continuously updated with respect to my hand and body. For this reason, 

it is critical that the information required to perform online actions is computed in an 

egocentric frame of reference (Milner & Goodale, 1995, 2006, 2008).  

On the other hand, perceptual representations of the size and shape of objects, use a 

scene-based frame of reference (i.e., allocentric) (Jacob & Jeannerod, 2003; Milner & 

Goodale, 1995, 2006, 2008). Encoding information in an allocentric frame of reference 

preserves information about the relative features of an object (such as size, location and 

orientation), however, it does not store information such as the distance from the observer. 
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When we interact with objects, we are never in the same exact position relative to the 

object, thus, the recognition of objects over time and in different settings requires an 

object-dependent representation, which is independent from the viewer’s position.  Milner 

and Goodale (1995, 2006, 2008) hypothesised that the ventral stream might play a crucial 

role in allocentric visuospatial coding and creates long-term representations of objects 

(Milner & Goodale 1995, 2006, 2008; Schenk, 2006), whereas the dorsal stream processes 

egocentric representations necessary to guide actions (Foley, Whitwell, & Goodale, 2015; 

Milner & Goodale, 1995, 2006, 2008). 

In this view, DF’s relatively spared dorsal stream enables her to grasp a target object, 

which suggests that she can code the spatial position of an object in an egocentric frame 

of reference. However, she is unable to make perceptual judgements of the relative size 

and shape of the same objects, which require allocentric coordinates.  

Nevertheless, there is controversy around this and other claims of the model (see 

section 1.8).   

1.6 Parietal mechanisms of hand actions 

1.6.1 Neurophysiology of reaching and grasping in monkeys 

The first indication of the crucial role of the posterior parietal cortex (PPC) in the 

visual guidance and control of grasping has its roots in early electrophysiological 

investigations in non-human primates, which showed “hand manipulation” neurons in 

Broadmann’s area 7 in the inferior parietal lobule (IPL) (Hyvärinen & Poranen, 1974; 

Mountcastle, Lynch, Georgopoulos, Sakata, & Acuna, 1975). The authors recorded from 

single neurons in PPC in monkey and reported that there are neurons that fire selectively 

when the monkey grasped and manipulated an object, but were not activated during the 

transport phase of grasping nor during random movements with the hand (Hyvärinen & 

Poranen, 1974; Mountcastle et al., 1975).  

Further electrophysiological studies revealed that neurons in the anterior 

intraparietal area (area AIP) on the ventral bank of the intraparietal sulcus play an 

important role in hand preshaping and grasping (Murata et al., 2000; Sakata et al., 1997; 

Taira, Mine, Georgopoulos, Murata, & Sakata, 1990). Area AIP is strongly interconnected 
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with area F5 in the ventral premotor cortex (Rizzolatti et al., 1988), in which neurons are 

activated during object manipulation (e.g. pull a lever) (Sakata et al., 1995; Taira et al., 

1990).  

In a series of experiments, Sakata and colleagues (Sakata et al., 1997, 1995; Taira 

et al., 1990) have looked at visual and motor responses of neurons during hand actions 

and have shown that neurons within area AIP were tuned to the configuration of the hand 

in accordance with the objects shape. Additionally, they reported that neurons that showed 

a selectivity for a given object in the view condition, showed selectivity for the same 

object during grasping. Moreover, when the AIP is inactivated (using injections of a 

GABA agonist), the monkey’s ability to use vision to pre-shape its contralateral hand to 

reach and grasp objects of different shape, size and orientation is severely impaired. 

Specifically, in the baseline condition, to grasp a small object placed in a groove, the 

monkey was using a precision grip in which it was extending the index finger and 

simultaneously flexing the three other fingers during the approaching phase. However, 

after the inactivation injection, this pattern was lost, and the monkey’s fingers were often 

touching the flat surface with failure of inserting the index finger into the groove. The 

authors suggested that AIP plays a critical role in visually guided hands movements 

(Gallese, Murata, Kaseda, Niki, & Sakata, 1994).  

As mentioned above, AIP is strongly interconnected and sends outputs to area F5 

in the premotor cortex (Borra et al., 2008; Luppino, Murata, Govoni, & Matelli, 1999; 

Matelli & Luppino, 2001). Response properties of neurons in the parietal area AIP show 

similarities with those in F5, but also important differences. Like AIP, area F5 contains 

neurons that show selectivity for particular objects, meaning that they fire when the object 

is presented visually but also when an action towards it is required (Murata et al., 1997; 

Vassilis Raos, Umiltá, Murata, Fogassi, & Gallese, 2006; Rizzolatti et al., 1988; 

Rizzolatti, Fadiga, Gallese, & Fogassi, 1996). Additionally, Murata et al. (1997) have 

shown that objects that make neurons in F5 fire more strongly when viewed are typically 

of a shape that makes the same neurons fire when grasping the object.  

Area F5 has been shown to have neurons specifying the kinematics of actions 

tuned to the goal of the action, as such two actions requiring similar movement kinematics, 
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but with different action goals outcomes, will not activate the same F5 neurons (Rizzolatti 

& Luppino, 2001). Reversible inactivation of area F5, results in disruptions in hand 

preshaping during grasping movements (Fogassi, 2001), a similar effect to the one 

observed after inactivation of AIP (Gallese et al., 1994). Notably, recording from 

population of neurons in F5 can accurately predict the upcoming kinematic features of 

reaching and grasping actions (Stark & Abeles, 2007). Moreover, it has been shown that 

neurons in F5 show greater and earlier responses for particulars objects (e.g., plate, ring, 

cylinder, cone, cube) or grasping movement (e.g., side precision grip, precision grip, hook 

grip with the index finger or all the fingers) compared to M1 (Umilta, Brochier, Spinks, 

& Lemon, 2007). The authors argued that these observations are consistent with the view 

that neurons within F5 translate the visual information about the object features into the 

corresponding motor plans that are then received by M1, in which these plans are refined 

and sent to the “spinal  machinery” that controls hands and digits muscles (Umilta et al., 

2007) 

It has been proposed that in the macaque the circuit between AIP and F5 

constitutes the cortical mechanisms responsible for the visuomotor transformation 

underlying the guidance and the control of objects’ grasping and manipulation (Fagg & 

Arbib, 1998; Jeannerod, Arbib, Rizzolatti, & Sakata, 1995; Matelli & Luppino, 2001). 

However, these regions do not operate alone but in parallel with others such as area F2 

(e.g., Castiello & Begliomini, 2008) and parietal area V6A (Fattori et al., 2010; Fattori, 

Breveglieri et al., 2009). In area AIP and F5, with neurons that fire when an action is 

performed (called canonical neurons), Rizzolatti and collaborators (1996) observed 

another type of neurons, known as “mirror neurons” that fire both when the monkey 

executed the action and when was observing someone else performing the action (di 

Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992; Gallese, Fadiga, Fogassi, & 

Rizzolatti, 1996; Rizzolatti et al., 1996).  

Mirror neurons were originally discovered in the premotor cortex of the monkey  

(for a review: Rizzolatti & Craighero, 2004) and subsequently around the intraparietal 

sulcus (Fogassi et al., 2005). While canonical neurons respond to the presentation of an 

object, mirror neurons respond to the execution of an action as well as to the observation 
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of object-directed actions (Rizzolatti & Craighero, 2004; Rizzolatti, & Luppino, 2001)  

Thus, mirror neurons fire both when the same actions are executed and observed (Gallese 

et al., 1996), which led to the account that an observer is able to understand the action 

performed by someone else through an implicit motor simulation process (Gallese & 

Goldman, 1998; Rizzolatti & Craighero, 2004). In addition to action understanding, mirror 

neurons have been proposed to underlie a wide range of functions including observational 

learning (Cross, Kraemer, Hamilton, Kelley, & Grafton, 2009; Frey & Gerry, 2006; Mattar 

& Gribble, 2005), imitation (Buccino et al., 2004; Iacoboni et al., 1999), theory of mind 

(Agnew, Bhakoo, & Puri, 2007; Iacoboni, Molnar-Szakacs, Gallese, Buccino, & 

Mazziotta, 2005) and social cognition (Gallese, 2006; Marco Iacoboni & Dapretto, 2006; 

Leslie, Johnson-Frey, & Grafton, 2004). Although there is evidence that mirror neurons 

are present throughout the motor system in humans, including the dorsal and ventral 

premotor cortices and the primary motor cortex (for a review: Kilner & Lemon, 2013), the 

functional role and significance of mirror neurons is still not well established (Decety & 

Grèzes, 1999; Hauser & Wood, 2010; Hickok & Hauser, 2010; Jacob & Jeannerod, 2003; 

Kilner & Lemon, 2013).  

Taken together, evidence from monkey neurophysiology suggests that the parietal 

cortex plays an important role in the control of actions and consistent results suggests that 

the homologue of the macaque AIP in humans is located at the junction between the 

intraparietal sulcus and the inferior post-central sulcus (Culham, Cavina-Pratesi, & 

Singhal, 2006). Moreover, electrophysiological studies indicated that area V6 in the 

parieto-occipital sulcus, which was thought to be specifically related to reaching and the 

direction of arm movements, shows response for grasping similar to area AIP (Fattori et 

al., 2010; Fattori, Breveglieri et al., 2009). Specifically, reaching-related neurons in 

macaque area V6A appear to be sensitive to reach direction (Fattori, Breveglieri, 

Amoroso, & Galletti, 2004), target orientation (Fattori, Pitzalis, & Galletti, 2009; Galletti, 

Fattori, Gamberini, & Kutz, 1999) and grasp configuration (Fattori et al., 2010). Similarly, 

grasping-related activations have been reported in the superior parieto-occipital cortex 

(SPOC; e.g., Begliomini, Caria, Grodd, & Castiello, 2007; Begliomini, Wall, Smith, & 

Castiello, 2007; Gallivan, McLean, Valyear, Pettypiece, & Culham, 2011), which is 
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considered the human homolog for the monkey area V6A (Cavina-Pratesi et al., 2010; 

Pitzalis et al., 2013; Rossit, McAdam, Mclean, Goodale, & Culham, 2013).  

1.7 Neuroimaging evidence 

Human neuroimaging experiments confirmed a broad overlap between cortical 

areas that show activation during action observation and areas where mirror neurons have 

been observed in monkeys, such as ventral and dorsal premotor cortex and the inferior 

parietal lobule (Kilner & Lemon, 2013; Molenberghs, Cunnington, & Mattingley, 2012). 

Kilner and Lemon (2013) suggested that changes in BOLD signal during action 

observation tasks seem to be consistent with the account that the mirror neuron system 

exists in humans, however this is still unclear. The authors proposed that a possible way 

of attributing the fMRI response to mirror neurons may be to use fMRI adaptation or 

repetition suppression. The rationale behind fMRI adaptation is that during single-unit 

recording studies with non-human primates, neurons that are selective for a particular 

attribute, such as movement type, reduce their firing rate when the same stimulus is shown 

repeatedly (Dinstein, Hasson, Rubin, & Heeger, 2007). Similarly, it has been argued that 

the BOLD signal will also decrease with repeated presentations (Krekelberg, Boynton and 

van Wezel, 2006).  

It is important to highlight that since the advent of modern neuroimaging techniques, 

progress in mapping the functional organisation of the ventral and the dorsal streams has 

moved forward rapidly. 

One year after the accident, DF’s structural MRI scan showed that she has a damage 

bilaterally in the ventrolateral region of the occipital cortex, however, her visual cortex 

remained largely intact (Milner et al., 1991). Based on this evidence and on DF’s 

behaviour in visuomotor and perceptual tasks, Milner and Goodale (1992) proposed that 

while the projections from the visual cortex to the dorsal stream remained largely intact, 

the projections from the visual cortex to the ventral stream were compromised. With the 

advent of modern high-resolution functional neuroimaging techniques James, Culham, 

Humphrey, Milner and Goodale (2003) examined DF’s brain activation while she was 

presented with intact and scrambled images of common objects or she was instructed to 
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reach and grasp blocks. Based on the anatomical images collected during this testing 

session, the authors confirmed the earlier assessment made from fMRI scans carried out 

one year after the incident (Milner et al., 1991). Specifically, James et al. (2003) reported 

a diffuse pattern of cortical brain damage with a concentration of damage in bilateral 

ventral lateral-occipital cortex, larger in the right than in the left hemisphere. Despite the 

diffuse damage, the primary visual cortex and the fusiform gyrus appeared to be spared, 

James et al. (2003), reported that DF has bilateral damage in her ventral stream and 

particularly in the lateral occipital complex (LOC), a region implicated in visual object 

recognition (Grill-Spector, Kourtzi, & Kanwisher, 2001; Malach et al., 1995). Crucially, 

the comparison of DF’s ventral lesion sites with functional activation in neurologically 

intact participants when they are presented with intact versus scrambled images of objects 

(Culham et al., 2003) highlighted that the lesion was restricted to the object selective area, 

named lateral occipital (LO). However, DF did not show any activation in this region. 

Furthermore, James and colleagues (2003) reported previously undetected lesions (despite 

smaller than to the ones in the ventral stream) in the left posterior parietal cortex (PPC). 

In the goal-directed task, DF, like the healthy controls, showed activation during reaching 

and grasping in her dorsal stream. In particular, during grasping, DF (like healthy controls) 

showed activation at the junction of the post-central sulcus and the anterior intraparietal 

sulcus. This activation was clear in the right hemisphere (compared to bilateral activation 

in healthy controls), but no activation was found in the same region in the left hemisphere. 

Moreover, DF showed no activation in the superior parieto-occipital sulcus (SPOC), a 

region that has repeatedly been shown to be involved in visuomotor control, especially for 

reaching in peripheral vision (e.g., Cavina-Pratesi et al., 2010; Connolly, Andersen, & 

Goodale, 2003; Gallivan & Culham, 2015; Gallivan, McLean, & Culham, 2011; Monaco 

et al., 2011; Rossit, McAdam, Mclean, Goodale, & Culham, 2013). Although lesions have 

been observed in the parietal cortex and in particular in the left hemisphere, grasp-related 

activation was evident in DF’s right hemisphere. The authors concluded that DF can use 

her dorsal stream to perform visually guided movements and that this system is able to 

work well to process size and orientation to guide object-directed grasping movements, 

although the object recognition network in the ventral stream is destroyed. 
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More recently Bridge et al. (2013) found regions with reduced cortical thickness 

in DF’s ventrolateral cortex (including the LOC) and  posterior IPS. Additionally, they 

observed reduced detection of stimuli in the right and left lower visual field.  Overall, the 

authors confirmed that DF’s early visual areas are fairly normal (in line with Milner et al., 

1991).  Based on their results, Bridge et al. (2013) suggested that DF’s spared visuomotor 

control of grasping is mediated by a relatively intact visuomotor network in her dorsal, 

while her impaired performance in perceiving objects is the results of her ventral stream’s 

lesions.  

With respect to the functional characterisation of areas within the ventral stream 

important for object recognition, neuroimaging studies have identify different activation 

foci within the lateral and inferior temporal occipital cortex known as the lateral occipital 

complex (LOC; Malach et al., 1995). Areas within the LOC are selectively activated by 

images of objects versus scrambled images, suggesting that this area is involved in shape 

processing (e.g., Grill-Spector, Kushnir, Edelman, Itzchak, & Malach, 1998). Moreover, 

the anterior fusiform components of area LOC show size, position and orientation 

invariance (Grill-Spector et al., 1999; James, Humphrey, Gati, Menon, & Goodale, 2002; 

Valyear, Culham, Sharif, Westwood, & Goodale, 2006; Vuilleumier, Henson, Driver, & 

Dolan, 2002), which is expected within a brain region underlying object recognition (i.e., 

to achieve recognition despite variation in the size, location or position of the object and 

the position of the observer).  Several areas within the ventral stream have been reported 

to be activated selectively for particular categories, such as objects, tools, faces, scenes, 

and body parts (e.g., Bracci, Cavina-Pratesi, Ietswaart, Caramazza, & Peelen, 2012; 

Lingnau & Downing, 2015; Peelen et al., 2013). fMRI studies revealed that viewing 

pictures of tools, performing visual task on pictures of tools, reading names of tools or 

planning tool-related-gesture or actions preferentially activated the lateral 

occipitotemporal cortex (LOTC) (e.g., Gallivan, McLean, Valyear, & Culham, 2013; 

Johnson-Frey, 2004; Orban & Caruana, 2014). Additionally, fMRI studies identified a 

region within the lateral occipitotemporal cortex (LOTC), called the extrastriate body area 

(EBA) that selectively responded to images of human bodies and body parts versus images 

of faces, animals, objects or scenes (Downing, Jiang, Shuman, & Kanwisher, 2001; 
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Downing & Peelen, 2011). Moreover, Bracci, Ietswaart, Peelen and Cavina-Pratesi 

(2010), identified multiple subregions of LOTC that coded for specific body parts, 

including a left-lateralised hand-selective area, which closely overlap with a region that is 

preferentially activate for tools versus objects (Bracci et al., 2012; for a description of 

studies see chapter 3). Although the ventral stream lies distant from the motor regions in 

the frontal and parietal cortex, fMRI studies have shown that activity within LOTC 

increases during the preparation and execution of unseen movements with the arm 

(Astafiev, Stanley, Shulman, & Corbetta, 2004) and the hand (Kühn, Keizer, Rombouts, 

& Hommel, 2011). Thus, it has been hypothesised that hand and tools representations 

within the LOTC are integrated (Lingnau & Downing, 2015) and interact with regions in 

the parietal cortex implicated in tool manipulation knowledge (Bracci et al., 2012; 

Lingnau & Downing, 2015).  

In the dorsal stream, fMRI studies have repeatedly shown that the anterior 

intraparietal sulcus (aIPS) is strongly activated by visually guided grasping (Binkofski et 

al., 1998; Culham et al., 2003; Frey, Vinton, Norlund, & Grafton, 2005; Grèzes, Tucker, 

Armony, Ellis, & Passingham, 2003) and by the mere presentation of graspable objects, 

even when no hand actions are required (Grèzes et al., 2003; Peuskens et al., 2004; Shikata 

et al., 2001, 2003). Using fMRI, Culham et al. (2003) showed that contrasting brain 

activation for grasping versus reaching revealed left lateralised activation at the junction 

between the intraparietal sulcus (IPS) and the post-central sulcus, in the aIPS for actions 

performed with the right hand. On the other hand, while no aIPS activation was found for 

images of intact versus scrambled images of familiar objects, this contrast showed 

bilateral activation in the lateral occipital cortex (LOC). In line with the perception and 

action model (Goodale & Milner, 1992; Milner & Goodale, 1995, 2006), the authors 

concluded that, although object-directed action and perceptual processing of objects both 

require the processing of objects’ properties (such as size and shape), these features are 

differently computed in different pathways. Moreover, they argued that these findings are 

in line with DF’s performance in real grasping tasks. Moreover, similar to non-human 

primates, the aIPS has been shown to be activated when participants were performing 

visually-guided grasping to a target object, object manipulation with no vision available 
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and the mere view of 3D graspable objects, such as tools (Chao & Martin, 2000; Creem-

Regehr & Lee, 2005; Culham & Valyear, 2006; Culham et al., 2003; Vingerhoets, 2014). 

In contrast, the mere view of objects that are not graspable does not activate the aIPS 

(Culham et al., 2003). Additionally, a similar circuit to the one observed between AIP and 

F5 in monkeys, has been identified in humans linking the aIPS with the ventral premotor 

cortex (PMv), which is involved in selecting the appropriate grip type (Ehrsson et al., 

2000).  

Moreover, although reaching and grasping can be studied separately, in our 

everyday interactions they often occur together. Different lines of research have identified 

two sub-networks in the dorso-dorsal dorsal stream: one between aIPS and PMv relevant 

for grasping and another between the superior posterior occipital cortex (SPOC) to middle 

IPS and the dorsal premotor cortex relevant for reaching (Binkofski & Buxbaum, 2013; 

Buxbaum & Kalénine, 2010; Rizzolatti & Matelli, 2003, see section 1.10.3).  

1.8 Critics to the two visual systems hypothesis 

The two visual streams hypothesis proposed by Milner and Goodale (1992; 1995) 

almost 20 years ago and subsequently refined (Milner & Goodale, 2006, 2008) has been 

inspiring to stimulate novel research in vision science and has served well in organizing a 

large body of evidence from the fields of neuropsychology, animal and human 

neurophysiology, neuroimaging and psychophysics. Milner and Goodale’s paper 

“Separate visual pathways for perception and action” has been cited 5725 times 

(information retrieved from Google Scholar, August 2018), however, over the last decade, 

the division of labour between the ventral and the dorsal stream originally proposed by 

Milner and Goodale (1992, 1995) has received critiques (Franz & Gegenfurtner, 2008; 

Rizzolatti & Matelli, 2003; Schenk, 2006; Schenk, 2012a,b; Schenk, Franz, & Bruno, 

2011; Schenk & McIntosh, 2010; Smeets & Brenner, 2006).  

Before proceeding, I would like to clarify that, in addition to the evidence reviewed 

below, one of the aspects that has proven to be a controversial evidence for the two visual 

systems hypothesis is the interpretation of motor and perceptual responses to visual 

illusion paradigms. However, the literature on visual illusions is long, extensive, and well 
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beyond the purpose of this thesis, and therefore it will not be reviewed here (for a review, 

see for example: Bruno, 2001; Bruno & Franz, 2009; Carey, 2001; Milner & Goodale, 

1995, 2006, 2008).  

I have already discussed how the most compelling evidence for the key assertions 

of Milner and Goodale’s model (1992) is the reported dissociation between perception 

and action in patients with lesions to the ventral or the dorsal stream respectively (Goodale 

& Milner, 1992; Goodale et al., 1991; Milner et al., 1991).  However, behavioural 

evidence for the double dissociation between action and perception in these patients is 

incomplete. In fact, patients with visual form agnosia and optic ataxia have not been tested 

under matching condition (Pisella et al., 2006; Rossetti et al., 2003; Rossit et al., 2017). 

In particular, patients with optic ataxia generally show impaired visuomotor performance 

in tasks performed under peripheral vision, in contrast to near-normal performance in 

central or free-vision (e.g. Cavina-Pratesi et al., 2010, Pisella et al., 2006), while DF’s 

performance has been tested mainly in central or free vision (althoug see Hesse, Ball, & 

Schenk, 2012, 2014; Rossit et al., 2017).   

Investigation of perception in optic ataxia patients has shown the existence of 

perceptual deficits in peripheral vision (Michel & Henaff, 2004; Perenin & Vighetto, 

1988; Pisella et al., 2009; Rossetti et al., 2005). On the other hand, patients with visual 

form agnosia (mainly DF), have been mostly tested in central vision. More recently, 

Hesse, Ball and Schenk (2012) investigated DF’s grip scaling performance in central and 

peripheral vision and reported that DF scaled her grip to object size in free vision, 

however, when targets were presented in her periphery, she was unable to scale her grip 

to object size, showing an impairment similar to optic ataxia patients. The authors 

hypothesised that DF (i) due to her damage in the dorsal stream (as reviewed in 1.7), has 

optic ataxia in addition to visual form agnosia or (ii) the visuomotor deficits observed in 

DF are related to her destroyed ventral stream. In a second study, Hesse, Ball, & Schenk, 

(2014), showed that DF was impaired in pointing in the periphery with both hands and in 

both visual fields.  

Recently, Rossit et al. (2017) tested DF’s and a group of healthy controls’ reaching 

abilities in central and peripheral vision. The authors observed that, while in the free-
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vision condition, DF was as accurate as the control group, she was severely impaired when 

reaching to targets in the periphery. As such, she presented a bias toward the fixation, 

undershot the target position and her error rate increased with the increase of the 

eccentricity of the target. Based on evidence that patients with optic ataxia are impaired 

in quickly correcting reaching movements online under free vision (Pisella et al., 2000), 

in two additional experiment, Rossit et al. (2017) examined DF’s (and healthy controls) 

reaching corrections under a fixation-controlled condition and under free vision. The 

authors reported that DF was unable to make fast corrections to the target jump to the left 

or to the right, which is thought to be a core function of the dorsal stream (Pisella et al., 

2000). Specifically, DF was showing much slower correction times compared to controls 

in both the fixation-controlled and free vision condition. The authors concluded that DF 

might not be a good example of a patient with a lesion restricted to her ventral stream (due 

to her lesion in the dorsal stream, as shown by James et al. (2003)), and instead she could 

be characterised as a patient with both visual form agnosia and optic ataxia following a 

combined dorsal and ventral stream lesion (Hesse et al., 2012; Rossit et al., 2017). As 

such, the previously observed dissociations between perception and action in DF might 

need to be further investigated as the originally proposed hypothesis of her preserved 

dorsal stream guiding her hand action, despite her destroyed ventral stream, has now been 

challenged.  

Another criticism to the two visual system hypothesis, has been put forward by 

Schenk (2006), who challenged the interpretation of the perception and action dissociation 

observed in DF, by proposing that the dissociation is not between perception and action 

but instead between allocentric and egocentric coding.  

Schenk (2006) tested DF’s and a group of healthy controls’ ability to use egocentric 

or allocentric spatial processing in different perceptual and motor tasks (figure 1.2).  
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 DF’s performance in the allocentric perceptual task, was significantly impaired 

when compared to controls. As such, her judgements were less accurate than controls. In 

contrast, her performance in the egocentric motor task, was similar to the controls. Taken 

together these results are in line with the two visual streams account (Goodale & Milner, 

1992; Milner & Goodale, 1995, 2006) as pointed out by Schenk (2006). However, DF’s 

performance in the perceptual egocentric task appeared to be as accurate as controls, while 

her performance in the motor allocentric condition was significantly less accurate than 

controls. Schenk (2006) argued that these results did not fit the pattern of results predicted 

by Milner & Goodale account (1992; 1995; 2006). Instead, Schenk (2006) proposed that 

Figure 1.2 The tasks used by Schenk (2006). (a) Allocentric perception task: DF was 

instructed to make a verbal judgement as to which of two stimuli was closer to a target 

cross located between them. (b) Egocentric perception task: DF was instructed to make a 

judgement as to which of two stimuli was closer to a target cross located between them, 

but this time her index finger was located at the reference point. (c) Allocentric motor task: 

DF was instructed to make a motor response (pointing) from an arbitrary start point to 

match the distance of the target stimulus from the reference point. (d) Egocentric motor 

task: DF was instructed to make a direct pointing response from a start location to the 

target stimulus. From “An Allocentric Rather than Perceptual Deficit in Patient D.F.”, by 

Schenk, 2006, Nature Neuroscience, 9, pp. 1369–1370. Copyright 2006 by the Nature 

Publishing Group. Adapted with permission. 
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is not the task (perceptual versus action) determining DF’s performance, but the frame of 

reference (allocentric versus egocentric).  

In response to Schenk’s (2006) criticism, Milner and Goodale (2008) argued that it 

was not surprisingly that DF did poorly in the allocentric perceptual task (figure 1.2a) and 

that her performance improved in the egocentric perceptual task and that these results 

could be explained by the model. Milner and Goodale (2008) also pointed out that, 

although DF did not perform significantly worse than controls in the egocentric perceptual 

task, the amplitude of her responses was more variable than controls. Thus, they suggested 

that in the egocentric perceptual task, DF might have used a different strategy in which 

she imagined making pointing movement to the stimuli to help her judge which one was 

closer, and therefore she might have implemented a non-perceptual strategy to complete 

the task (Milner & Goodale, 2008). Regarding DF’s poor performance in the allocentric 

motor task, Milner and Goodale (2008) argued that the task was not actually testing vision 

for action. Instead, what DF was required to do was to produce what she perceived using 

a non-verbal manual estimation approach, similarly to when she is required to estimate 

the size of objects with her finger, pantomime or to complete anti-pointing tasks, and 

which was also similar in essence to the verbal report used in the allocentric perceptual 

task. Therefore it wasn’t surprisingly that DF’s performance was poor in both the 

allocentric tasks, as they were testing spatial perception (Milner & Goodale, 2008).   

More recently, in another series of experiments Schenk (2012a) investigated 

whether DF uses tactile feedback to compensate for her deficit in size perception (figure 

1.3). As reviewed in 1.4.1, Goodale et al. (1994) showed that DF is unable to pantomime 

grasping movements, although she can reach out and grasp an object. This observation 

prompted the suggestion that her ability to accurately perform grasping tasks relies on the 

availability of a contact with the object (i.e., haptic feedback; DF performed well on the 

standard grasping task (figure 1.3a), however in the grasping without haptic feedback 

(figure 1.3b), she was unable to scale her grip to object size (as previously observed by 

Goodale et al., 1991). In the grasping task in which haptic feedback was provided in 50% 

of trials (figure 1.3 c and d), DF’s grip scaling performance was less accurate than healthy 

controls, however this difference was not significant, while in the grasping with 
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dissociated position (figure 1.3e) DF’s grip scaling was significantly less accurate 

compared to healthy controls. Based on these evidence, Schenk (2012a) argued that DF’s 

ability to scale her grip to object size in the standard grasping condition does not reflect 

intact visuomotor control but is instead related to the availability of haptic feedback. 

Schenk (2012a) hypothesised that in the grasping task, DF is able to use different sensory 

information (e.g., egocentric cues and haptic feedback), which are not available in other 

tasks, such as for example the manual size estimation or grasping without haptic feedback. 

In other words, in the grasping task, DF relies on haptic feedback to compensate for her 

deficit in the perception of size and that her grip scaling relies on the integration of visual 

and haptic feedback. Schenk (2012a) concluded that haptic feedback plays a critical role 

in DF’s grasping performance which highlights the multimodal nature of the control of 

grasping. In fact, Schenk (2012a) highlights that the information within the dorsal stream 

about the target object is not enough to successfully control grasping. He suggested that 

other information such as haptic feedback or visual information from the ventral stream is 

additionally required to produce accurate grasping.  
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Figure 1.3 Set-up of the different grasping tasks. (a) Standard grasping task in which 

the visible cylinder (white circle) and the grasped cylinder (grey circle) were in 

matching positions. (b) Grasping without grasping feedback. Task was similar to 

standard grasping; however, no object was to be grasped behind the mirror. (c and d) 

Haptic feedback in 50% of all trials. The red dot represents the LED. When the LED 

was switched off, no haptic feedback was provided (c), while when the LED was 

switched on haptic feedback was provide (d). (e) Grasping with dissociated position. 

The perceived cylinder (white circle) was placed in the middle position, while the 

grasped cylinder (grey circle) was placed in the far condition. The LED indicated the 

position of the target cylinder behind the mirror, which provided haptic feedback. From 

“No Dissociation between Perception and Action in Patient DF When Haptic Feedback 

is Withdrawn”, by Schenk, 2012, Journal of Neuroscience, 32(6), 2013-2017. Adapted 

with permission. 
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Milner, Ganel and Goodale (2012) offered an alternative and more straightforward 

explanation. According to their account, a grasping task in which the target object is 

visible, but not available to grasp is actually a pantomime task, in which participants have 

to pretend to grasp the object.  They argued that the visuomotor systems in the dorsal 

stream are properly engaged only when the grasping movement is made directly towards 

the target and the hand touches the object at the end of the movement, otherwise, the task 

shift from real grasping to pantomimed grasping, which requires the ventral stream to be 

additionally engaged. In other words, when haptic feedback was removed or the location 

of the visible and grasped object was dissociated in Schenk’s study, the task shifted from 

real, to pantomimed grasping. Therefore, is not surprising that DF was impaired (Milner 

et al., 2012). The authors concluded that DF does not use haptic feedback information in 

order to scale her grip, but she needs some sort of tactile contact at the end of the grasping 

movement to keep her dorsal stream engaged. 

To further test this idea, in a series of experiments, Whitwell, Milner, Cavina-

Pratesi, Barat & Goodale (2014), examined DF’s and a group of healthy controls’ 

performance using the same mirror set-up implemented by Schenk (2012a) using both 

cylinders and Efron blocks (Efron, 1969). In this experiments, there was always an object 

behind the mirror to grasp, however, whilst the width of that object never changed, the 

width of the object viewed in the mirror varied from trial to trial. Here, DF always 

experience tactile feedback at the end of the movements even if the feedback was 

completely uninformative to whether or not her grasp was tuned to the size of the object 

in the mirror. The authors reported that DF continued to scale her grip aperture in-flight 

to object size in the grasping tasks, and her performance was not significantly different 

from the performance observed in the control group. The authors concluded that, even 

when the size of the cylinder behind the mirror was uninformative, the tactile contact by 

itself was enough to keep DF’s visuomotor systems in her dorsal stream engaged. This 

result seems to contradict Schenk’s (2012a,b) hypothesis that DF needs to have access to 

veridical haptic feedback in order to scale her grip aperture. Whitwell, Milner et al. (2014), 

argued that, without any haptic feedback (i.e. hand closing to thin air) at the end of the 

grasp, the movement would become a pantomimed act and therefore without haptic 
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feedback, the visuomotor system is not properly engaged, and participants are carrying 

out a pantomimed grasp (Whitwell, Milner et al., 2014). Whitwell, Milner et al. (2014) 

pointed out that this hypothesis was further supported by the fact that control participants 

in Schenk (2012a) showed a similar performance between the no haptic feedback and the 

size estimation tasks. Additionally, they proposed that the dorsal visuomotor system is not 

engaged solely by the task of reaching to grasp a visual stimulus, but the hand has to 

encounter a tangible endpoint for the visuomotor system to be engaged. This hypothesis 

was based on the differences in scaling accuracy observed between the no-haptic feedback 

task in Schenk (2012a) and the non-veridical haptic feedback task in Whitwell, Milner et 

al. (2014).  

I would like to highlight that, although the model focuses on the division of labour 

between the dorsal and the ventral stream, Milner and Goodale never stated that the two 

visual streams do not interact with each other. In fact, in the final section of the first edition 

of their book (Milner & Goodale, 1995), they clearly stated that the two streams cooperate 

to program and coordinate actions, hence they never excluded the possibility that the two 

streams are interconnected. So far, I have been focusing on the division of labour between 

the dorsal and the ventral stream, however, over the years, it has become clearer that the 

two visual streams must interact closely in our everyday life in the production of adaptive 

behaviour (Goodale, 2014). 

1.9 Interactions between the dorsal and the ventral visual streams 

In their proposal of the perception and action model, Milner & Goodale (1995; 

2006) predicted, that a particular category of objects, tools, would require the dorsal and 

ventral pathways to cooperate. Additionally, they speculated that the ventral stream, 

implicated in the recognition of tools, would be involved in the selection of where and 

how tools should be grasped according to the intended use of the object and its function. 

Finally, the information reaches the dorsal stream which is responsible for the 

transformation of the sensory information critical to implement and control the subsequent 

action. In other words, when grasping our mugs of coffee on our desk, each object in the 

scene is analysed and the target object is identified by the ventral stream, while the dorsal 
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stream is responsible for selecting the particular motor acts necessary to grasp the mug 

and to control the movement online (Goodale & Humphrey, 1998).  

The collaboration between the two streams is critical for tool use as it depends not 

only on physical properties of the object (such as size, orientation and shape), but also on 

the stored knowledge of the specific function associated with it. In fact, familiar tools 

(e.g., hammer, fork, knife) are bound to action plans that are beyond the mere surface of 

the objects, but that are instead defined by previous experience, and that could only be 

unlocked after successful recognition. When grasping familiar tools, how the hand is 

shaped to grasp to use them depends on both the physical aspect (i.e., size, shape, 

orientation) and on the stored knowledge of their function and use. Once the actions 

associated with a specific tool are known, the recognition of the identity of the tool, 

represents an efficient way to retrieve the learned motor plans associated with it. Thus, 

familiar tool use is likely to involve the cooperation between the dorsal and the ventral 

visual streams. In fact, familiar tool use extends beyond the physical properties of the 

objects and the timeframe by which the dorsal stream operates, and appears to rely, instead 

on the stored representations and successful recognition, which are mediated by the 

ventral stream.  

The idea was supported by functional neuroimaging investigations in healthy 

participants showing that although the dorsal pathway is sufficient for programming 

complex movements, when the movements involve actions with tools, the ventral network 

is co-activated (Decety et al., 1997).  

Additional strong evidence for the involvement of the ventral stream in tool use 

comes from testing the ability of DF in grasping and using familiar tools (Carey, Harvey, 

& Milner, 1996). When DF was requested to grasp and use familiar tools, DF was able to 

shape and orient her hand with respect to the tool metrical properties (e.g., size and 

orientation). However, she often failed to grasp the object in a way that reflected her 

knowledge of function and use.  Moreover, when the tools were presented with the handle 

facing away, while controls typically rotated their hand to end up in a final posture that 

was suitable for use  (Rosenbaum & Jorgensen, 1992; Rosenbaum, Van Heugten, & 

Caldwell, 1996), DF did not. Specifically, when the objects were presented with an 
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unusual orientation (i.e., with the handle pointed away from her), DF often grasped the 

objects inappropriately and needed to touch them in an exploratory fashion to identify the 

identity before demonstrating their use. The authors concluded that DF’s initial grasp was 

always guided by visual information about the size and orientation of the object, but often 

not guided by the functional knowledge of the object. Thus, DF was unable to use 

functional information to guide her grasps (Carey et al., 1996). 

The behaviour observed in healthy controls (rotating their hand to grasp the tools in 

a way that was suitable for its use)  by Carey et al. (1996), is consistent with Rosenbaum 

and colleagues’ (Rosenbaum & Jorgensen, 1992; Rosenbaum, Van Heugten, & Caldwell, 

1996) proposal that people are more likely to reliably adopt relatively awkward grasping 

postures if this will enable a more comfortable posture for the completion of the end-goal 

(also called end-state comfort effect, which will be further discussed in section 10.1.1).  

This tendency to grasp tool handles in a way that is appropriate for functional use 

was further investigated by Creem & Proffitt (2001). They have shown that when 

participants were asked to grasp tools, they tended to grasp them by the handle in a way 

that is appropriate for tool use, however, when they were performing a concurrent 

semantic task (i.e., say the second word of pairs of words previously learned in response 

to the first word), they rarely picked up the tools appropriately. The authors argued that 

when planning a functional grasp with tools, the semantic system is involved, which 

presumably involves ventral stream areas. Thus, when the semantic task was performed 

at the same time of the grasping, the tool functional knowledge was not incorporated in 

the grasping. The authors speculated that this happened because the resources from the 

semantic system were not fully available. In contrast, a spatial imagery task (i.e., imagine 

a block letter and classify the corners) did not impair grasping performance. The authors 

concluded that the visuomotor system can reach and grasp an object effectively. However, 

to functionally grasp an object based on its identity, information from the semantic system, 

is additionally needed. These results illustrate a necessary interaction between the dorsal 

and the ventral stream and are consistent with those of functional grasping in patient DF 

(Carey et al., 1996).  
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1.10 Neural basis of tool use 

1.10.1 Neurophysiology of tool use in monkeys 

Although macaque monkeys rarely use tools in the wild (Tomasello & Call, 1997), 

neuroscientists across the world have been training monkeys in the lab to use tools (e.g., 

Iriki & Sakura, 2008; Ishibashi, Hihara, & Iriki, 2000), which has allowed researchers to 

make new discoveries regarding the neural basis of tool use in monkeys.  

In 1996, Iriki et al. (1996), recorded neural activity within the anterior bank of the 

IPS before and after macaque monkeys were trained to use a rake to retrieve food that was 

placed further away. Before the training, the neurons of interest showed a bimodal 

response to both visual and tactile stimuli. They observed that the visual receptive field 

(i.e., the part of the space in which a stimulus would make the neurons fire) were linked 

to the tactile receptive fields of particular body parts, independently of where the monkeys 

were fixating. After the monkeys were trained to use the rake, they observed that the visual 

receptive fields of many of these bimodal neurons within the IPS changed to include the 

area of the space around the tool. To give an example, neurons with a visual receptive 

field tied to the hand before the training showed sensitivity to visual stimuli in the space 

around the tool after the training, which means that the receptive fields expanded to the 

tool use space to include both the hand and the tool. However, this visual receptive fields 

expansion was strictly linked on the monkey actively using the rake. In fact, after 

approximately 5 minutes of rest without using the tool, the visual receptive fields would 

only include the area of space coded prior to the training, even if the monkey was passively 

holding the tool. The results suggests that a tool can actually become incorporated into the 

body schema and that neuronal changes induced by tool use depend on the goal state of 

the monkey (Iriki et al., 1996). The theory put forward by Iriki et al. (1996; Ishibashi et 

al., 2002a, 2000; Maravita & Iriki, 2004) to account for changes in the receptive field 

properties of the IPS is linked to the concept of the body schema (Head & Holmes, 1911). 

This refers to a representation of the position of our body and its parts in space that is 

continually being updated (Head & Holmes, 1911). In their original notion of body 

schema, Head and Holmes (1911) proposed that this representation may incorporate 
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objects when these are relevant for motor control. Notion that has been elegantly 

demonstrated almost a century later (e.g., Iriki et al., 1996; Maravita & Iriki, 2004). 

Expansion of the reach space encoding effects similar to the one observed in 

monkeys after tool use training, have been observed in humans using tools (Berti & 

Frassinetti, 2000; Gallivan et al., 2011; Maravita & Iriki, 2004; Maravita, Spence, 

Kennett, & Driver, 2002). However, tool use in humans is more skilled compared to other 

primates (Frey, 2007; Johnson-Frey, 2003, 2004), thus only an expanded space is not 

sufficient to the neural mechanisms underlying more complex tool use (Arbib, Bonaiuto, 

Jacobs, & Frey, 2009). In fact, while other species uses only simple tools, such as a rake 

for reaching or a stone for pounding, humans are also able to create complex tools, such 

as hammers, axes, spoons (Johnson-Frey, 2004). Moreover, humans are the only species 

that refine these artifacts and the skills associated with their usage and actively transmit 

the use to future generations (Tomasello, 1999). Thus, while neural mechanisms 

underlying tool use in monkeys represent the foundation to understand the neural 

mechanisms underlying tool use in humans, the skilled tool use abilities in humans must 

rely at least on newly evolved brain networks (Frey, 2007; Peeters et al., 2009). 

1.10.2 Neural basis of tool use in humans 

It has been shown that viewing images of tools activate not only ventral stream areas  

implicated in tool identification, but also dorsal stream areas implicated in the visuomotor 

control of actions (e.g., Lewis, 2006). In the human brain, different regions have been 

identified to carry out different aspects of tool recognition and use. Areas in the 

occipitotemporal cortex typically activated by tools include the fusiform gyrus (FG) 

(Chao, Haxby, & Martin, 1999; Garcea & Mahon, 2014; Mahon et al., 2007; Whatmough, 

Chertkow, Murtha, & Hanratty, 2002), the lateral occipitotemporal cortex (LOTC) (Bracci 

et al., 2012; Perini, Caramazza, & Peelen, 2014) and the middle temporal gyrus (MTG) 

(Boronat et al., 2005; Chao et al., 1999; Emmorey et al., 2004; Kellenbach, Brett, & 

Patterson, 2003; Macdonald & Culham, 2015; Valyear & Culham, 2009). It has been 

shown that regions within the occipitotemporal cortex represent the visual surface and 

texture properties of objects (e.g., Cant & Goodale, 2011; Cant & Goodale, 2007; Miceli 
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et al., 2001; Simmons et al., 2007; Stasenko, Garcea, Dombovy, & Mahon, 2014). The 

left middle temporal gyrus, which has been shown to be sensitive to mechanical motion 

of manipulable objects (e.g., Beauchamp, Lee, Haxby, & Martin, 2002), is thought to 

process action relevant semantic information related to manipulable objects (e.g., Mahon 

et al., 2007; Martin, 2007; Peelen & Caramazza, 2012). Areas typically activated by tools 

in the frontoparietal network include the intraparietal sulcus (IPS), the inferior parietal 

lobule (IPL) and the superior parietal lobule (SPL) (Boronat et al., 2005; Buxbaum & 

Saffran, 2002; Chao & Martin, 2000; Hermsdorfer, Terlinden, Muhlau, Goldenberg, & 

Wohlschlager, 2007; Macdonald & Culham, 2015; Mruczek et al., 2013), the ventral 

(PMv) and dorsal (PMd) premotor cortex (Chao & Martin, 2000; Creem-Regehr & Lee, 

2005; Johnson-Frey, Newman-Norlund, & Grafton, 2005; Kellenbach et al., 2003). With 

respect to the PMd and PMv, it has been shown that these regions are involved in action 

planning and sequencing (e.g., Chao & Martin, 2000; Grafton, Fadiga, Arbib, & 

Rizzolatti, 1997).  

Although processes mediated by the posterior parietal cortex have been typically 

associated with visually-guided actions (e.g., Goodale et al., 1994; Goodale & Milner, 

1992), more recently it has been shown that visuomotor posterior parietal cortex 

information interact with conceptual decisions about tools (Almeida, Mahon, Nakayama, 

& Caramazza, 2008; Almeida, Mahon, & Caramazza, 2010). With the advent of 

neuroimaging, it has been shown that the human posterior parietal cortex was selectively 

activated by simply viewing pictures of tools, even when no overt action was required. To 

my knowledge, the first study to show that the parietal cortex was selectively activated by 

simply viewing graspable objects in the human brain was conducted by Chao and Martin 

(2000). They compared viewing and silent naming pictures of familiar tools with viewing 

pictures of animals and showed that graspable objects elicited higher activation in both 

left ventral premotor and left posterior parietal cortex compared to pictures of animals. As 

the authors pointed out, their results were consistent with Binkofski et al. (1999) 

observation that grasping objects activated the intraparietal sulcus within the parietal 

cortex. The authors suggested that the observed parietal activity represented stored 

manipulation knowledge of tool use function and use (Chao & Martin, 2000).  
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However, as animals are usually not graspable, the activation observed may be 

related to the fact that tools afford grasping, whereas animals do not (Valyear, Cavina-

Pratesi, Stiglick, & Culham, 2007). To explore this, Valyear et al. (2007) presented images 

of graspable object (e.g., tomato), non-graspable objects (e.g., bridge), tools (e.g., tongs) 

and scrambled images while participants were performing a silent naming task in the 

scanner. The difference between graspable objects and tools was that, graspable-objects 

could be grasped, but had less clearly defined actions associated with them compared to 

tools. The authors replicated Chao and Martin (2000) findings and additionally showed 

that activity within the tool selective area in the intraparietal sulcus was selective for tools 

versus graspable objects and non-graspable objects and no differences were evident 

between graspable and non-graspable objects. Moreover, they aligned data from a 

previous study investigating grasping versus reaching movement with real objects (e.g., 

3D blocks; Culham et al., 2003) and they observed that the activity associated with tool 

naming and object grasping were reliably distinct, with activity associated with tool 

naming located more posterior to that associated with object grasping. The authors 

postulated that parietal responses to viewing tools do not reflect processing of affordance 

for grasping and also do not overlap with activation for grasping objects. Valyear et al. 

(2007) suggested that tool related activity in the parietal cortex does not reflect only the 

graspable property of the stimuli, but that the activity relates to action representations 

which are linked to knowledge of use and prior experience (Valyear et al., 2007). 

According to the authors, these results seems to fit well with the hypothesis of the 

existence of two streams in the posterior parietal cortex for grasping and tool use 

(Binkofski & Buxbaum, 2013, section 1.10.3). However, they pointed out that while 

Binkofski and Buxbaum (2013) hypothesised a distinction between medial and lateral 

areas within the posterior parietal cortex, they identified a separation between posterior 

and anterior aspects of the intraparietal sulcus.   

There is also another possibility which needs to be taken into account which is that 

most tools are elongated (Almeida et al., 2014; Chen, Snow, Culham, & Goodale, 2017), 

while animal, faces, objects and other stimuli are not (Almeida et al., 2008; Almeida et 

al., 2014; Chen et al., 2017). According to Almeida et al. (2014), object elongation may 
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facilitate the visuomotor description of an object and be useful in selecting a specific 

grasp. The authors argued that most everyday tools (e.g., a knife, a spoon, a hammer) have 

an elongated shape which have peculiar characteristics, such as the handle, that may 

facilitate the preparation of a particular grasp. In a series of experiments using priming 

and images of elongated or blob-like animals and tools, they explored different 

psychophysical manipulations known to bias the processing toward the dorsal to test 

whether elongation triggers processing by the dorsal stream. They showed that elongated 

shaped stimuli, regardless of their semantic category (e.g., animals or tools), when 

processed by the dorsal stream, elicit visuomotor grasp-related information that facilitated 

categorisation responses to elongated targets. The authors suggested that elongated stimuli 

may reduce ambiguity during grasp preparation as provide information about hand 

shaping and orientation to support action planning.  

Recently, Chen et al. (2017) explored the extent to which activity in different areas 

in the dorsal and ventral stream is modulated by tools versus elongation and the 

connectivity between these areas using fMRI. Participants were presented with pictures 

of elongated tools (e.g., hammer), stubby tools (e.g., ping-pong racket), elongated non-

tools (e.g., bottle) and stubby non-tools (e.g., plate) while in the scanner and were 

instructed to passively view the stimuli. The authors found that the middle temporal gyrus 

(MTG) and the superior parietal lobe (SPL) bilaterally were more activated for elongated 

(versus stubby) tools (versus non-tools), while the anterior intraparietal sulcus (aIPS) was 

more activated for tools versus non-tools, but not for elongated versus stubby images. On 

the other hand, the left middle and posterior IPS and the left premotor cortex were more 

activated for elongated images (whether tools or non-tools) versus stubby images. Based 

on their results the authors suggested that “toolness” and shape activated different areas 

in the brain usually associated with tools.  Moreover, the authors investigated connectivity 

between tool-selective areas and showed that “toolness” but not elongation modulated the 

connectivity between the left aIPS and the lateral occipitotemporal cortex (LOTC). 

Additionally, elongated tools (versus stubby tools) increased the reciprocal modulation of 

the connections between left MTG and left aIPS. Overall, the authors concluded that 

elongation is a particularly relevant property of shape processed by the dorsal stream and 



59 

 

that the connections between the left MTG and the left aIPS may play a critical role in 

identifying the function and the selection of tool-appropriated actions. Disentangling if 

the activity in the dorsal stream may be modulated by tools or elongation is a critical issue. 

In fact, most tools are elongated and therefore the effects of tools and elongation may be 

confounded. Further evidence that regions in the dorsal stream are sensitive to elongation 

comes from the observation that neurons in caudal IPS in monkeys fire preferentially for 

elongated versus flat stimuli  (Sakata et al., 1998).  

1.10.3 Two parallel streams for actions with tools in the posterior parietal cortex 

Several groups have suggested that the role of the posterior parietal cortex in action 

execution extends beyond sensorimotor control (Buxbaum & Kalénine, 2010; Creem-

Regehr, 2009; Culham & Valyear, 2006; Daprati & Sirigu, 2006; Frey, 2007; Jeannerod & 

Jacob, 2005; Rizzolatti & Matelli, 2003). Specifically, they suggested that the dorsal visual 

stream is subdivided into two distinct sub-pathways, namely the dorso-dorsal stream and 

the ventro-dorsal stream, which are separated by the intraparietal sulcus (Binkofski & 

Buxbaum, 2013; Galletti, Fattori, Gamberini, & Kutz, 2004; Jeannerod & Jacob, 2005; 

Kravitz, Saleem, Baker, & Mishkin, 2011; Tanné-Gariépy, Rouiller, & Boussaoud, 2002). 

The idea of the existence of two parallel parietal streams in the brain for action stems 

from the observation of the existence of two parallel distinct parieto-frontal pathways in 

the macaque monkey (Rizzolatti & Matelli, 2003). In particular, the dorso-dorsal pathway 

projecting from visual area V6 over the superior parietal lobule (SPL) towards the dorsal 

premotor cortex is thought to be involved in the online sensorimotor control of arm 

movements. On the other hand, the ventral-dorsal pathway leading from the middle 

temporal and medial superior temporal areas (MT/MST) to the ventral premotor cortex, 

via the inferior parietal lobule (IPL) contains representations of learned skilled movements 

such as tool use. Areas within the IPL have been shown to be well connected with the 

ventral visual stream (Harries & Perrett, 1991) and to areas in the superior temporal sulcus 

(STS). These connections are not present in the dorso-dorsal pathway (Rizzolatti & 

Matelli, 2003). Neurons in the STS are important for high-level multimodal integration of 

visual form and motion properties (Barraclough, Xiao, Baker, Oram, & Perrett, 2005; 
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Oram & Perrett, 1996; Oram, Perrett, & Hietanen, 1993), object processing (Baker, 

Keysers, Jellema, Wicker, & Perrett, 2001; Hietanen & Perrett, 1996), selectively 

discharge when observing others’ actions (e.g., grasping) (Barraclough, Keith, Xiao, 

Oram, & Perrett, 2009; Perrett et al., 1989; Perrett, Mistlin, Harries, Chitty, & Goodale, 

1990) and show sensitivity to the gaze direction of the actors (Perrett et al., 1985). Thus, 

it is thought that these responses observed in STS may implicate a role for STS in encoding 

intentionality of others actions (Jellema, Maassen, & Perrett, 2004; Jellema & Perrett, 

2006). 

Hihara et al. (2006) observed changes in physiological properties of the intraparietal 

neural circuit and mapped new connections between the STS and the anterior intraparietal 

sulcus when monkeys were trained to use tools. However, the same changes were not 

observed in naïve monkeys. These findings led the authors to speculate that newly 

acquired tool use behaviour may require an added level of cognitive and contextual 

flexibility (Hihara et al., 2006). In addition, it has been observed that neurons within the 

STS show selectivity for responses to movements when an object is held with the hand 

(Hietanen & Perrett, 1996) and  receive inputs form the middle and medial superior 

temporal cortex, which are motion specialised areas (Maunsell, 1987). Thus, in the 

monkey, the IPL, in the ventro-dorsal pathway, has access to high level visual form and 

motion properties, as well as object and action processing that occurs in the temporal 

cortex, which would contribute to the guidance of movements towards tools (Orban, Van 

Essen, & Vanduffel, 2004).  

In the human brain, the IPL appears expanded compared to the monkey brain (Orban 

et al., 2004), and it is thought to be the precursor of some additional functions that evolved 

in humans, such as tool use (Hihara et al., 2006). However, humans are skilled tools users 

compared to other primates (Frey, 2007; Johnson-Frey, 2003) and explaining the high-

level transformations involved in more complex tool use with expanded space in the IPL 

is not sufficient (Arbib et al., 2009). Thus, it is thought that skilled tool use in humans 

must rely in part on newly evolved brain areas (Frey, 2007). The emphasis of the recent 

discussions is that the posterior parietal cortex is divided in two separate parallel streams 
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devoted to process information to guide the online control of actions versus planning and 

use tools (Binkofski & Buxbaum, 2013; figure 1.4). 

Figure 1.4 Theorised tool processing networks in the human brain (adapted from 

Buxbaum & Kalénine, 2010; Binkofski & Buxbaum, 2013; Lewis, 2006). Left 

hemisphere of the human brain is shown in lateral view. Colours and connections are 

used to highlight the hypothesised role of each region in hand actions (red: dorso-dorsal 

network including reach and grasp subnetworks), action knowledge (green: ventro-dorsal 

network), conceptual knowledge (yellow: semantic network) and object perception 

(blue: ventral stream network). Abbreviations: EVC = early visual cortex; LOC = lateral 

occipital cortex; pFS = posterior fusiform cortex; MTG = middle temporal gyrus; aTP = 

anterior temporal pole; SMG = supramarginal gyrus; PMv = ventral premotor cortex; 

PMd = dorsal premotor cortex; cIPS = caudal intraparietal sulcus; SPOC = superior 

parietal occipital cortex; aIPS = anterior intraparietal sulcus. 
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The dorso-dorsal stream, responsible for the sensorimotor transformation and the 

online control of prehensile actions, is operating in real time within egocentric coordinates 

and tuned to objects metrics directly accessible form information available on the retina 

(Binkofski & Buxbaum, 2013) and corresponds with the dorsal stream traditionally 

described by Milner & Goodale (1995, 2006). The main processing module of this stream 

is the superior parietal cortex with key projections from areas along the medial surface of 

the parietooccipital cortex (Gamberini et al., 2009).   

On the other hand, the ventro-dorsal stream is specialised for processing 

sensorimotor information for learned tool use and is responsible for action planning and 

conceptual knowledge of actions and objects. The main processing module is the inferior 

parietal cortex, with key connections with MT/MST, which then projects to the ventral 

premotor cortex (Buxbaum & Kalénine, 2010).  Moreover, recent evidence suggested that 

the regions within the posterior parietal cortex contribute to the processing of the structure 

and shape of objects (e.g., Freud et al., 2017; Van Dromme, Premereur, Verhoef, 

Vanduffel, & Janssen, 2016). In particular the left supramarginal gyrus (SMG), located in 

the inferior parietal lobule and part of the ventro-dorsal stream, is thought to process 

object-associated functional manipulation knowledge (i.e., how to move our hands to use 

a tool functionally such as using a rotation movement to use a screw-driver), while the 

aIPS in the dorso-dorsal stream is thought to support structural manipulation knowledge 

(i.e., how tools are grasped when picked up such as using a whole-hand power grasp to 

pick-up a screwdriver; e.g., Brandi, Wohlschlager, Sorg, & Hermsdorfer, 2014; Chen, 

Garcea, & Mahon, 2016; Konen, Mruczek, Montoya, & Kastner, 2013; Valyear et al., 

2007). Specifically, the dorso-dorsal network represents structural manipulation 

knowledge about objects such as how they are grasped when picked-up (e.g., use a whole-

hand power grip to pick up a screwdriver), while the ventro-dorsal network represents 

functional manipulation knowledge about objects such as how to move our hands to use a 

tool functionally (e.g., rotation movement to use a screwdriver).  

Evidence from neuropsychology, supports the idea that online visuomotor control 

and learned tool use are supported by separate systems within the human parietal cortex. 

Lesions to the dorso-dorsal stream lead to optic ataxia (Binkofski & Buxbaum, 2013). I 
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mentioned optic ataxia in the context of the two visual streams, where I highlighted that 

it follows a damage to the dorsal stream and is characterised by problems with reaching 

(e.g., Rossetti et al., 2005) and grasping (Tunik, Frey, & Grafton, 2005) that are most 

flagrant in visual periphery (see section 1.4.2). Thus, it is thought that in optic ataxia, 

impairments in reaching and grasping are associated with damage to bilateral superior 

parietal lobe and the dorso-dorsal stream (Goldenberg, 2009). On the other hand, lesions 

to the ventro-dorsal stream lead to ideomotor apraxia (e.g., Buxbaum, 2001). In the 19th 

century, Liepmann was the first to identify and explain ideomotor apraxia as a selective 

impairment in performing learned skilled actions, in the absence of any sensory or motor 

deficits, or related to general deficits in attention, cognition or comprehension (Liepmann, 

1977, 1988). Patients with ideomotor apraxia can recognise tools and understand what 

they are supposed to do with the tools (i.e., a toothbrush if for brushing teeth), however, 

they have severe problems when they have to carry out real movements with tools (Poizner 

et al., 1998). Moreover, when these patients were asked to pantomime tool use actions 

(e.g., without the tool in their hand), errors were more profound; the performance of some 

patients actually improves when they hold the tool in their hand and demonstrate how to 

use it (Goldenberg & Hagmann, 1998; Hermsdörfer, Hentze, & Goldenberg, 2006; 

Buxbaum, Giovannetti, & Libon, 2000; Wada et al., 1999). It is thought that the motor 

impairment observed in these patients results from their inability to mentally evoke actions 

or to use stored motor representations to form mental images of the actions (Jeannerod & 

Decety, 1995). Liepmann also reported that ideomotor apraxia is usually observed after 

left inferior parietal lesions, which has been subsequently confirmed by other authors (e.g., 

Buxbaum, 2017; Goldenberg & Spatt, 2009; Goldenberg, 2009; Haaland, Harrington, & 

Knight, 2000; Johnson-Frey, 2004; Martin, 2016; Negri et al., 2007).  

1.10.4 Structural versus functional manipulation knowledge of tool use 

 In the paragraph above, I highlighted how different behaviours link with grasping 

and how using or demonstrating tool use might be linked to different lesion foci in the 

parietal system. Moreover, also depending on a person’s goals and intentions, grasping 

itself might depend on distinct pathways in the parietal cortex.  
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To my knowledge, the first study that distinguished and evaluated the components 

of grasping and tool use was conducted by Sirigu et al. (1995) in ideomotor apraxic patient  

LL. Patient LL suffered from a severe hypotensive episode during a surgery. 

Neuroimaging investigations (PET and SPECT) conducted after the episode, revealed 

evidence of bilateral occipitoparietal hypometabolism. Behaviourally, she was impaired 

in pantomiming and using familiar tools, and therefore in performing her everyday 

activities such as using a fork and a knife to eat and locking a door (Sirigu et al., 1995). 

The authors asked four independent judges to rate LL’s performance, correctness of hand 

posture and movement trajectories separately, when using 20 common objects (e.g., key, 

screwdriver, spoon). For the hand posture and reaching trajectories, the judges were 

instructed to base their evaluation on a set of well-defined expectations. For example, in 

the case of the spoon, for hand posture, the handle of the spoon was expected to be held 

“between the thumb, index and middle finger with the palm of the hand turned slightly 

upward and towards the subject’s body” (Sirigu et al., 1995, p.44), while for movement 

trajectory, the spoon “had to be moved in a back and forth manner between the table and 

the subject’s mouth” (Sirigu et al., 1995, p. 44). Thus, while the specifications for hand 

posture was evaluated on the basis of functional grasping with the goal of using the tool, 

the evaluation of movement trajectory was strictly linked to global movements of the 

body, their spatial localisation and timing to determine if the finality of the action and the 

path of the tool in space were consistent. Results showed that LL was profoundly impaired 

at shaping her hand for grasp-to-use a tool, however, her movement trajectories were 

unimpaired. In addition, the authors looked at LL’s trajectories and movement 

smoothness, as well as her grip scaling. LL’s in-flight grip scaling was highly correlated 

with the size of the grasped portion of each tool, her wrist orientation in flight was matched 

with the orientation of the tool and overall she showed smooth and well directed grasping 

(Sirigu et al., 1995). Thus, LL, just like DF (Carey et al., 1996), was able to shape her 

hand according to physical properties of tools; however, she was severely impaired when 

she had to execute the grasp-to-use component of the movement with those same tools.   

In a later study, Sirigu, Daprati, Buxbaum, Giraux, & Pradat-Diehl (2003) tested 

grasping-to-use and grasping-to-move in a group of five patients with left IPL lesions and 
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healthy controls. Participants were required to either reach out and grasp an object in front 

of them with their right hand (grasp-to-move), pantomime how they would handle the 

same object in order to functionally use it and to reach out for the object and actually use 

it (grasp-to-use). They used a specialised glove with multiple sensors to record the real 

time information about finger joints to characterise the detailed kinematics. Sirigu et al. 

(2003) observed that in healthy participants, two principal components accounted for the 

variance observed in grasp-to-move. However, in healthy participants in the grasp-to-use 

task, they observed an additional component that accounted for the variance, that was not 

present in grasp-to-move and pantomime. The authors speculated that this factor may 

underlie more fine motor adjustments, necessary in tool use, and therefore be use-specific 

(Sirigu et al., 2003). Analysis of grasping in the patient group revealed that performance 

in the grasp-to-move condition was similar to that of the control group, while the third 

use-specific component observed in healthy participants was absent in the grasp-to-use 

condition in patients. Taken together, the results show that patients, in contrast with the 

controls, adopted an undifferentiated posture across all object (Sirigu et al., 2003), 

similarly to patient DF (Carey et al., 1996). These findings confirm the dissociation 

observed in patient LL, and indicate a selective impairment in the production of grasping 

based on objects’ function and intention of use, while preserving hand shaping in grasp-

to-move (Sirigu et al., 2003).  

Consistent with this, Buxbaum, Sirigu, Schwartz, & Klatzky (2003) presented 

participants with pictures of different manipulable objects and hand postures (clench, 

pinch, palm and poke), real objects (e.g., pencil, clothespin, key, doorbell, etc,) and novel 

objects (e.g., a blue 3D rectangular block positioned upon a white base). The authors 

showed that when real objects were presented most apraxic patients were impaired in both 

recognition and production, however, when novel objects were presented, nearly all 

apraxic patients performed similar to the control group in recognising the hand postures 

appropriate for interacting with the object. Buxbaum et al. (2003) argued that the latter 

observation suggests relative integrity to respond to the structure of the objects, which is 

mediated by their intact dorsal stream processes. On the other hand, impaired responses 

to familiar objects deficit in pantomimes, are linked to damage to the representations 
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underlying knowledge of the appropriate hand posture for functional object use and 

pantomime, which are attributable to damages to structures in the inferior parietal lobe, 

more closely aligned to the ventral stream and responsible for the stored representations 

(Buxbaum, 2001).  

Randerath, Li, Goldenberg and Hermsdörfer (2009) subsequently confirmed this 

observation and showed that when the handle was facing away from the body, 

participants, including apraxic patients, did not show a consistent behaviour in which they 

rotated their hand in half of the trials in the grasp-to-move task (i.e., participants chose an 

awkward grasping position in half of the trials). However, in the grasp-to-use task, non 

apraxic patients and controls rotated their hand nearly in all trials, only apraxic patients 

produced significantly more non-functional grasping movement when the tools were 

presented with the handle facing away. They concluded that grasping behaviour is 

influenced by the end-goal of the task and the position of the handle and that the selection 

of grip type is determined by several factors (e.g., functional knowledge, structural 

characteristics, end-goal and experience) and that patients with apraxia may fail to access 

this information (Randerath et al., 2009).  

Evidence reviewed above showed that grasping based on knowledge of tool function 

and use can dissociate from grasping based on structure, however, also the reverse pattern 

is possible. For example, Jeannerod et al. (1994) described patient AT, with bilateral 

damage to the posterior-parietal cortex, disrupting her medial superior parietal lobe (SPL). 

She was unable to scale her grip to the size of plastic cylinders, however, when the 

cylinders were replaced with real manipulable objects (e.g., lipstick), her grip scaling 

significantly improved. Moreover, she was able to match her finger to the size of the 

cylinders and to imagine the size of familiar objects and reproduce the corresponding 

imagined size with her grip. The dissociation observed led the authors to suggest that 

visual information about object size are mediated by different neural pathways according 

to whether information is used to guide visuomotor control (i.e., dorsal stream) or 

perceptual analysis (i.e., ventral stream) (Goodale & Milner, 1992). The author discussed 

their results within the framework of a dual representation of objects: one representation 

relates to the object as a goal for an action, in which objects attributed are presented as 
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affordance and trigger specific actions (Gibson, 1979) and is mediated by the dorsal 

stream (also called pragmatic system); while the other representation relates to the process 

of recognition, by which objects can be named, categorised and memorised, which implies 

a semantic representation and is mediated by the ventral stream (also called sematic 

system). Based on this, the authors attributed AT’s deficit as a consequence of damage to 

the dorsal stream, whereas her ventral stream was intact. In fact, the hand shaping deficit 

observed with cylinders was less marked with familiar objects, for which she could 

retrieve information to determine the size of the objects from previous knowledge and 

interactions with the objects, stored in her semantic system. The authors suggested that 

impairments in grasping due to a disruption of the dorsal visual pathway, may have been 

compensated using object-centred information from the ventral stream in the case of 

familiar objects (Jeannerod et al., 1994).  

However, the hypothesis suggested by the authors did not take into account the 

findings from patients with lesion to their inferior parietal lobe (IPL) as reviewed above. 

In fact, these patients show selective impairment in shaping their hand for functional based 

grasping (e.g., grasp-to-use) but not for structural based grasping (e.g., grasp-to-move). 

Therefore, an account of the involvement of the ventral stream in grasp-to-use, should 

consider the IPL. Milner and Goodale (1995), made it clear that their model did not deal 

well with the human IPL, and initially speculated that the human IPL may transform 

information derived from both streams, but mainly from the ventral stream. Several 

research groups have shown that the left IPL is more strongly activated during explicit 

retrieval of manipulation versus functional knowledge of tool use  (Boronat et al., 2005; 

Canessa et al., 2008; Kellenbach et al., 2003). Moreover, the IPL is increasingly being 

thought to be involved in integrating information about stored object knowledge 

information from the ventral stream and visuomotor information coming from the dorsal 

stream to create a specific action plan (Almeida, Fintzi, & Mahon, 2013; Binkofski & 

Buxbaum, 2013; Frey, 2007; Grafton, 2010; Randerath, Goldenberg, Spijkers, Li, & 

Hermsdörfer, 2010).  

Almeida et al. (2013) used fMRI and images of tools and animals to explore how 

manipulation knowledge is accessed in the brain. They exploited an asymmetry in how 



68 

 

different cellular channels within the visual system (i.e., parvocellular and koniocellular) 

projects to the dorsal and the ventral streams. The authors manipulated the chromatic 

profiles of line-drawings images of animal and tool stimuli so that they were biased toward 

being processed by either the parvocellular or the kaniocellular pathways and instructed 

participants to passively view the images. The authors found that parvocellular-biased 

stimuli drive tool-preferences selectively in the inferior parietal regions, while 

kaniocellular-biased stimuli drive tool-preferences in posterior and posterior/superior 

parietal regions. Additionally, they performed connectivity analysis between the inferior 

and superior parietal lobes with the ventral stream and MT/V5 and showed that inferior 

parietal region exhibits functional connectivity to the ventral stream, while the 

posterior/superior parietal lobe exhibits functional connectivity to MT/V5 but not to the 

ventral stream. The authors concluded that the inferior parietal lobule receives inputs from 

the ventral stream structures that are known to support object identification and that play 

and integrative function that may be important for selecting the appropriate grip for a 

given object (based on information extracted from the dorsal stream) and for reaching 

toward an object in a way that anticipates the functional manipulation (based on 

information extracted from the ventral stream). In other words, a screwdriver may be 

grasped in a more efficient and biomechanical way when we are grasping it to move it 

only (based on manipulation knowledge), while if we are grasping a screwdriver to use it 

we grasp it in a specific way associated with its functional knowledge.  

Recently, Garcea, Chen, Vargas, Narayan and Mahon (2018) used fMRI to explore 

the functional connectivity between ventral stream regions and regions in the left parietal 

cortex in a pantomime task and in a picture-matching task. In the pantomiming 

experiment, participants were instructed to pantomime object use when the images of the 

objects were presented while in the picture-matching task they were instructed to simply 

view the images and hit a button if any of the images was repeated. The authors found that 

there were strong increases in functional connectivity during tool pantomiming (compared 

to tool picture matching) between ventral stream regions and the left inferior parietal 

lobule, primary and premotor cortex. On the other hand, tool picture matching elicited 

increased functional connectivity among regions in the temporal lobe and the left lateral 
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occipital cortex. The authors concluded that pantomime object use engaged a network 

integrating ventral and lateral occipitotemporal areas with frontal and parietal structures, 

while the picture matching task led to higher connectivity between ventral and lateral 

occipitotemporal areas, demonstrating a task-specific modulation of functional 

interactions between regions in the tool network (Garcea et al., 2018) 

To summarise, these findings suggest that in the human brain there are at least three 

separate, but interacting streams, involved in tool processing and use: while the ventral 

occipitotemporal stream mediates object recognition, the dorsal occipito-parietal stream 

mediates visually guided action. Moreover, it has been hypothesised that the dorsal stream 

is additionally sub-divided into a dorso-dorsal stream and a ventro-dorsal stream. The 

frontoparietal dorso-dorsal stream (with a reach and grasp subnetworks), characterised as 

the grasp-to-move system, is tuned to hand preshaping and processes structural 

manipulation characteristics of objects for the purpose of prehensile actions. On the other 

hand, the temporoparietal ventro-dorsal stream, characterised as the use system is 

concerned with the long-term storage of familiar tool-associated actions and mediates 

functional manipulation knowledge (Binkofski & Buxbaum, 2013). However, how tools 

and manipulation knowledge are represented within each stream is not clear yet. In chapter 

3 of the current thesis, I present a novel experiment that provides new insights on how 

tools and tools manipulation knowledge are represented within each stream during view 

and pantomiming. My findings provide a more sophisticated view of the distributed 

representations of tool processing across the dorsal and ventral streams.  

1.10.5 The concept of affordances 

The fact that viewing pictures of tools activates regions within the parietal cortex 

(see sections 1.7 and 1.10.2) is in line with the concept of affordances articulated by 

Gibson (1979). Gibson (1979) used the term affordances to refer to the fact that the visual 

perception of our surroundings is not just passive perception of the objects in it. Instead it 

involved the direct perception of the potential for action that the observer can carry out 

with them. For example, if we consider object manipulation, a person seeing a mug would 

not only perceive the colour and the shape but will directly perceive the graspability (e.g., 
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handle) of the mug. The affordances of any object depend not only on the object alone, 

but on the possibilities of the observer. For example, while a mug affords grasping for 

humans, it may afford a biting action for dogs.  

Behaviourally, evidence has shown that viewing pictures of tools can automatically 

potentiate motor actions associated with the use of the tool, even if no overt action is 

performed (Tucker & Ellis, 1998). In an elegant experiment, Tucker and Ellis (1998) 

showed pictures of familiar graspable objects with handles (e.g., pan) and asked 

participants to decide whether or not the objects were inverted or upright. Critically, the 

handles of the tools were either facing left or right and button-responses were made with 

either the left or the right hand. The authors observed that when handles were facing right, 

right hand responses were facilitated (i.e., faster reaction times), while left-facing handles, 

facilitated responses with the left hand even though the orientation was irrelevant to the 

task. Taken together these results indicate that the orientation of the handle automatically 

gives rise to the activation of corresponding motor plans for grasping (Tucker & Ellis, 

1998). 

The theory of affordances, as integral to the visual perception of objects, has 

received support from electrophysiological recording in monkeys. As reviewed in section 

1.10.1 grasp related neurons often respond to the visual presentation of object even when 

no overt movement is required (Murata et al., 1997, 2000; Rizzolatti et al., 1988; Taira et 

al., 1990). Similarly, human neuroimaging studies have identified regions in the parietal 

cortex  that show preferential activation for picture of graspable tools versus non 

graspable-objects (Chao & Martin, 2000; Valyear et al., 2007). As reviewed in section 

1.10.2, Valyear et al. (2007) showed that activity within the tool selective area in the 

intraparietal sulcus was selective for tools versus graspable objects and non-graspable 

objects. 

Moreover, objects may elicit multiple representations of affordances based on the 

situation in which these are perceived. For example, a wood log may afford a sit-down 

action if I am tired, but it can also serve to step on it to reach something I am not able to 

reach. Similarly, tools are manipulable objects that elicit multiple affordances, such as 

those related to manipulation knowledge (e.g., using precision grip to grasp a tea-spoon) 
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and those related to functional manipulation knowledge (e.g., using a rotation movement 

to stir my coffee with a spoon) (Creem-Regehr & Lee, 2005). Bub, Masson and Cree 

(2008) examined whether viewing objects elicits manual gestures associated with their 

function (e.g., using the object) and/or their shape (e.g., pick up an object). Participants 

were trained to make specific responses using a Grasparatus, which had different elements 

that afforded open grasp, close grasp, poke and trigger for functional gestures and 

horizontal grasp, vertical grasp, vertical pinch and horizontal pinch for manipulation 

gestures. Participants completed a colour-gesture training before starting the experiment 

to learn to associate each gesture to a colour and were then cued either by images or words 

of objects. The authors found that for both manipulation and functional gesture types, 

reaction times were longer for incongruent trials for both objects and words, indicating 

that both objects and words elicited functional and manipulation knowledge gestures. 

Additionally, the authors presented words and non-words followed by a hand gesture cue. 

Participants were instructed to respond with a gesture in response to the hand and then to 

classify whether the letter string presented was a word or a non-word. They showed that 

functional gestures were more readily evoked by objects names compared to manipulation 

gestures. The authors suggested that these two different gesture types may interact during 

object processing and that if a given object have distinct functional and manipulation 

gesture associated with it, it is possible that using the object according to its function my 

require the suppression of a potentially conflicting manipulation gesture associated with 

its shape (Bub et al., 2008).  

More recently, Borghi, Flumini, Natraj and Wheaton (2012) showed that affordance 

activation is modulated by the context and that other objects in the scene as well as hand 

cues related to manipulation or functional grasps influence reaction times and that 

functional knowledge may be more accessible than manipulation knowledge (as shown 

by slower reaction times for trials in which a manipulation grip was presented).  

Further evidence of the existence of multiple affordances comes from literature on 

“conflict objects” and “non-conflict-objects” (Jax & Buxbaum, 2010). The authors 

explored whether there is a direct competition between functional- and manipulation-

based responses within the same familiar objects. According to the authors “conflict 
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objects” are objects that elicit contrasting affordances for manipulations associated with 

object manipulation based on its structure and based on its function. For example, a 

calculator affords a manipulative clench grasping response and a functional poke 

response. On the other hand, “non-conflicting objects” are associated with one dominant 

action based on both manipulation and functional knowledge. For example, a drinking 

glass affords the same clench grasp. Participants performed two tasks: in the grasp task 

they were instructed to reach for the object and position their hand on the object as they 

would then pass it to another person, while in the use task they were instructed to reach 

for the object and position their hand on the object as they would then use it. Half of the 

participants performed the use task first while the other half performed the grasp task first. 

The authors found two forms of interference involving “conflict objects”. Specifically, 

they found a short-term grasp-use interference in which reaction times to initiate the use 

movements to objects associated with different functional and manipulation grasps were 

longer compared to objects with the same grasp-to-pass actions and occurred regardless 

of whether or not the object was recently grasped to be passed. Additionally, they found 

a long-term use-on-grasp interference which occurred when participants produced grasp 

responses and resulted from the experience gained from previous trials. Specifically, 

differences in initiation of grasp responses for conflict and non-conflict objects were only 

observed when the objects had been recently used. The authors suggested that even if the 

tasks were identical and using the same identical objects, previous use experience 

interfered with the participant’s ability to grasp “conflict objects”. The authors concluded 

that the intention to act on an object seems to trigger a competition between functional 

and manipulation responses during the selection of the action and that only functional 

responses require activation of long-term conceptual representations and therefore 

manipulation responses can be activated more quickly than functional responses.  

Another distinction relevant for affordance representation and selection is the one 

between stable and variable affordances (Borghi & Riggio, 2009; Thill, Caligiore, Borghi, 

Ziemke, & Baldassarre, 2013), also called micro-affordances (Ellis & Tucker, 2000; 

Vainio, Ellis, & Tucker, 2007). Micro-affordance refers to the fact that it is thought that 

affordances are composed by a number of aspects (Ellis & Tucker, 2000) that are specific 
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action components rather than to the whole action. For example, observing an object with 

a given size and orientation may activate a grip component and a wrist orientation 

component. In this view, stable affordances relate to features of the object that tend to be 

constant across different presentations and context (e.g., the size and shape of a mug), 

while variable affordances relate to features that can vary between interactions (e.g., the 

mug can be found in different locations). Binkofski and Buxbaum (2013) proposed that 

the distinction between stable and variable affordances may be related to the difference 

between functional and manipulative affordances as well as the dorso-dorsal grasp system 

and the ventro-dorsal use system in the parietal cortex.  

The existence of multiple affordances (and multiple components of affordances) 

raises the problem of how affordances are selected to produce actions. At a behavioural 

level, the compatibility effect paradigm has been used to explore this. For example, Tucker 

and Ellis (2001) asked participants to classify an object as either natural or artefact using 

a power or precision grip on a customised joystick. The authors presented objects that 

were either small or large and therefore tended to afford a precision or a power grip. They 

showed that even though the size of the object was not relevant to the categorisation task, 

the affordances elicited by the object interfered with the selection of the categorisation 

(for a description of the task see chapter 4).   

Moreover, it is thought that attentional processes play a role in the selection of 

affordances (Tucker & Ellis, 1998). Tipper, Paul and Hayes (2006) used the same 

compatibility effect used by Tucker and Ellis (1998), but presented handles that could be 

different for colours, shape, direction and orientation (“passive state: handle in horizontal 

orientation or “active state”: handle rotated 45°). They showed that affordances are not 

automatically elicited but are instead strongly modulated by the task and the related 

attentional processes. For instance, participants responded faster when the handle was in 

the active state in the shape discrimination task but not in the colour discrimination task. 

Moreover, when the handles were presented in active and passive state, but the door in the 

background was removed, there was no action affordance effect as shown by no difference 

between reaction times between the passive and active state. The authors concluded that 
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active objects, with which the current action is implied, produced larger affordance effects 

compared to object in passive state (e.g., with which no action is implied). 

To summarise, affordances might be based not only on structural object properties 

but also on learned functional properties, which seems compatible with the account of a 

dorso-dorsal stream for grasping and a ventro-dorsal stream for use within the parietal 

cortex. Projects 2 and 3 of this thesis aim to investigate this further.  

1.11 Current projects 

The overall aim of my thesis was to further understand the role of the areas identified 

in the literature review above within the dorsal and ventral visual streams for perceiving 

and grasping both meaningless objects (i.e., rectangular blocks) and objects associated 

with specific hand-actions and functions (i.e., tools) implementing tasks that are thought 

to depend on processing from both streams and/or their interaction. 

In project 1 (Chapter 2), I investigated the causal role of the dorsal and ventral visual 

streams in different types of grasping: real and pantomimed. To do this, I used fMRI-

guided continuous Theta-Burst Stimulation (cTBS) to create a virtual lesion to aIPS (a 

key region in the dorsal stream though to be involved in hand preshaping), LO (a key 

region in the ventral stream thought to be involved in shape recognition) or the vertex 

(control region). To localise these brain regions, I used a novel technique in which I 

combined high resolution individual MRI scans and activations from the NeuroSynth 

platform (http://neurosynth.org/). I implemented a paradigm similar to the one Goodale et 

al. (1994) originally used with patient DF. Milner and Goodale hypothesised that real 

actions (i.e., immediate and target-directed) depend on dorsal processing, while indirect 

actions (i.e., pantomimed or memory-guided actions) additionally require ventral visual 

stream processing. Based on their model, I hypothesised that cTBS-to-aIPS would impair 

hand preshaping in both real and pantomimed grasping tasks, while cTBS-to-LO would 

impair grip scaling in the pantomimed grasping task, only.  

In Project 2 (Chapter 3), I investigated the representations within the tool processing 

regions and whether these representations vary according to the task (i.e., view or 

pantomime) and the type of manipulation knowledge (i.e., functional or structural 
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manipulation knowledge). To decode brain activity in response to viewing pictures of 

tools and pantomimes of tool use, I used fMRI and multi voxels pattern analysis (MVPA). 

MVPA is a multivariate technique that uses classification algorithms to differentiate 

spatial voxel pattern of activity within a given area. Given that univariate fMRI analysis 

has previously revealed the existence of different networks in the human brain for viewing 

tools and pantomiming tool actions (e.g., Lewis, 2006), I used MVPA as it provides 

additional insight into what information different regions within the “tool processing” 

network code and whether they contain information about tool identity and manipulation 

(such as power and precision grip) and functional (such as rotation and squeeze 

movements) properties for perceiving and pantomiming tool use. To test our hypothesis 

participants were presented with either pictures of different tools (view task) or 

pantomimed tool use cued by tool names (pantomime task) while in the scanner. Based 

on previous studies, I would expect that decoding accuracy within the inferotemporal 

cortex would be higher in the view task, while decoding within frontal and parietal regions 

would be higher for the pantomime task. Moreover, I would expect higher decoding 

accuracy for structural manipulation knowledge in regions within the dorso-dorsal stream. 

On the other hand, I would expect higher decoding accuracy for functional manipulation 

knowledge in regions within the ventro-dorsal stream.  

In project 3 (Chapter 4), I explored how tool identity and action end-goal modulates 

grasping kinematics even when structural differences between objects are controlled for. 

Based on the differences demonstrated in patients with optic ataxia and ideomotor apraxia 

in tasks in which they have to grasp an object based on its structural properties (i.e., 

manipulation knowledge) or based on its functional knowledge, I implemented a grasp-

to-move and a grasp-to-use task. My interest focused on whether grasping kinematics 

towards the same tool are influenced by the end-goal of the subsequent action and whether 

tool identity is processed in both grasp-to-use (GTU) and grasp-to-move (GTM) or not. 

Based on the account that there is a dorso-dorsal grasp system and a ventro-dorsal use 

system in the parietal cortex, I hypothesised that GTU and GTM would show different 

grasp kinematics. Moreover, I hypothesised that for the GTU task, the identity of the tool 

should play a critical role in action planning and thus should affect grasp kinematics. In 
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contrast, for the GTM task, tool identity should not play such an important role, and 

therefore I did not expect differences in grasping kinematics between tools.  
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2. An fMRI-guided TMS study to investigate the causal role of LO and aIPS in real 

and pantomimed movements 

2.1 Introduction 

In 1992, Milner and Goodale (1992) proposed an influential model in which two  

cortical visual streams, respectively the dorsal and the ventral visual streams, separately 

subserve vision-for-action and vision-for-perception (Goodale & Milner, 1992; Goodale, 

2014; Milner & Goodale, 1995, 2006, 2008). According to the model, the dorsal stream, 

projecting from V1 to the posterior parietal cortex, processes visual information online to 

allow us to reach and grasp objects in front of us. Whereas the ventral stream, projecting 

from V1 to the temporal cortex, transforms visual information into durable perceptual 

representations, allowing us to recognise the object. However, Milner and Goodale also 

proposed that not all actions are subserved by the dorsal visual stream (Goodale & Milner, 

1992; Goodale, 2014; Milner, 2017; Milner & Goodale, 1995, 2006, 2008). In particular 

they suggested that while real actions (or immediate target-directed) depend on dorsal 

processing, indirect actions (such as pantomimed or memory-guided actions) may be 

additionally mediated by the ventral visual stream (Goodale et al., 1994; Goodale et al., 

1991; Milner, 2017). Although this account may not have been made clear in the initial 

formulation of the perception and action model (Goodale & Milner, 1992; Milner & 

Goodale, 1995, 2006), in 2008, Milner and Goodale published a paper in which they 

clarified their hypothesis, also taking into account more recent studies. 

The perception and action model (Goodale & Milner, 1992; Milner & Goodale, 

1995, 2006, 2008) was based on evidence from a single-case study of a patient who 

suffered from visual form agnosia after bilateral damage to structures in her ventral 

stream. In particular, Goodale and others (1994) found that patient DF, could pre-shape 

her hand in-flight to match the size of objects in front of her (immediate real grasping) in 

a similar way to control participants. However, her performance when she was asked to 

pantomime grasping movements beside the target object was considerably worse 
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compared to her performance in real grasping (experiment 3 in Goodale et al., 1994). In 

fact, in the pantomime grasping task, DF’s anticipatory hand preshaping was highly 

variable and correlated poorly with object size demonstrating weak grip scaling when 

compared to her performance in the real grasping (Goodale et al., 1994) as shown in figure 

2.1. Similarly, when she was instructed to perform memory-guided grasping, all evidence 

of grip scaling had disappeared. 

In sharp contrast with DF, Milner and colleagues (2001) found that optic ataxic 

patient IG with bilateral dorsal stream lesions, was profoundly impaired in real grasping, 

but paradoxically her grasping performance improved when she was required to perform 

delayed real grasping and delayed pantomimed grasping movements (Milner et al., 2001). 

These observations support the idea that real and pantomimed actions might involve 

different brain networks, specifically that pantomimed grasping may rely on ventral 

stream structures that are damaged in patients with visual form agnosia.   

While evidence from neuropsychology has been crucially informative to understand 

which regions in the brain may be causally involved in visuomotor tasks (e.g., Goodale et 

Figure 2.1 Data from patient DF showing the range of maximum grip aperture 

scores for individual trials directed to the various target objects used in 

experiment 3 in Goodale et al., 1994 during real (A) and pantomimed (B) grasping 

responses.  From “Differences in the visual control of pantomimed and natural 

grasping movements”, by Goodale, Jakobson and Keilor, 1994, 

Neuropsychologia, 10, pp. 1159-1178. Adapted with permission. 
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al., 1994; Goodale & Milner, 1992; Milner & Goodale, 2008, 2006), it is important to 

highlight that the number of patients showing a specific behaviour is usually small and 

lesions are very different from case to case. Moreover, post-lesion neuronal reorganisation 

makes it challenging to link the role of a specific brain network to the observed behaviour 

(e.g., Rorden & Karnath, 2004). To tease apart the contribution of the aIPS and LO within 

the dorsal and the ventral stream in hand preshaping during real and pantomimed grasping, 

I used an offline TMS protocol to recreate a virtual lesion in the brain. I decided to use an 

offline TMS protocol as it allows to create virtual lesions that last after the stimulation 

and therefore it allows to recreate a behaviour that is similar to patients with brain damage.  

Several studies in the last 25 years have investigated the differences between real 

and pantomime actions in healthy participants using behavioural (e.g., Cavina-Pratesi, 

Kuhn, Ietswaart, & Milner, 2011; Copley-Mills, Connolly, & Cavina-Pratesi, 2016; 

Goodale et al., 1994) and neuroimaging methods (Kroliczak, Cavina-Pratesi, Goodman, 

& Culham, 2007).  For example, when Goodale et al. (1994), tested DF’s age/gender 

matched controls and observed that participants’ real actions were not identical to the 

pantomimed ones. The authors reported that for pantomimed actions the in-flight distance 

between the index finger and thumb (maximum grip aperture, MGA) was smaller overall 

and was less precise to object size compared to real actions. In addition, pantomimed 

actions took longer to be completed, reached lower peak velocities and presented higher 

trajectories of the wrist during the reaching phase. In line with this, Zahariev & 

MacKenzie (2007), reported that MGA was smaller when participants had to pantomime 

to grasp virtual objects (i.e., no physical object present, only the reflection of the object 

on the workspace) versus grasping real objects. The authors speculated that because 

during pantomiming there is no feedback on terminal accuracy which increases 

uncertainty, adjustment and corrective movements might not be performed (Zahariev & 

MacKenzie, 2007). Similarly, Copley-Mills et al. (2016) reported smaller MGAs in 

pantomimed compared to real grasping actions. Taken together, these results further 

suggest that different networks in the healthy brain are involved in the control of real and 

pantomimed grasping. However, it remains unclear which regions within the dorsal and 

the ventral stream causally contribute to different forms of grasping.  
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Studies implementing functional MRI have been informative in identifying a 

posterior parietal network in the brain activated during target-directed grasping actions 

(Culham, Cavina-Pratesi, & Singhal, 2006; Davare, Kraskov, Rothwell, & Lemon, 2011; 

Filimon, 2010; Konen, Mruczek, Montoya, & Kastner, 2013; Vingerhoets, 2014). In 

particular, the anterior intraparietal sulcus (aIPS), located at the junction between the post-

central sulcus and the intraparietal sulcus, has been identified for its role in hand-objects 

interactions both in humans (Binkofski et al., 1998; Culham et al., 2003; Frey, Vinton, 

Norlund, & Grafton, 2005) and monkeys (Murata et al., 2000; Sakata et al., 1995). 

Binkofski et al. (1998) have shown that patients with lesions of the cortex lining the 

anterior part of the intraparietal sulcus (either left or right) were impaired in shaping their 

hand to object size during grasping whereas patients with posterior parietal cortex (PPC) 

lesion, sparing area aIPS, do not show the same behaviour. They observed that patients 

with anterior intraparietal lesions reached out to the target with normal wrist velocity with 

either hands, but movement time was longer for actions performed on the contralesional 

side. Moreover, patients were not shaping their hand to the object size when grasping with 

the contralesional hand. In contrast, in the group with PPC lesions, without aIPS damage, 

the kinematics parameters were not different from control participants (Binkofski et al., 

1998).  

Evidence from electrophysiological recordings in non-human primates, indicates 

that the neurons located within the anterior-lateral bank of the intraparietal sulcus (area 

AIP), preferentially fire for hand shaping during object-directed grasping versus object 

fixation (Murata et al., 2000; Sakata et al., 1995). The involvement of area AIP in hand 

shaping for grasping has been further confirmed through pharmacological inactivation of 

the area, which led to an impairment in hand pre-shaping during object-directed grasping 

actions (Gallese et al., 1994). In humans, area aIPS is proposed to be the putative 

homologue of the macaque area AIP (e.g., Grefkes & Fink, 2005), and in parallel with 

monkey data, neuroimaging studies in humans have shown stronger activations in the aIPS 

for hand shaping compared to reaching (Culham et al., 2003). Furthermore, in 

neuroimaging studies with humans, higher activations in the aIPS have been observed 

during real versus pantomimed grasping  (Kroliczak, Cavina-Pratesi, Goodman, & 
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Culham, 2007) and real immediate grasping versus delayed grasping (Fiehler et al., 2011; 

Himmelbach et al., 2009; Singhal, Monaco, Kaufman, & Culham, 2013).  

All the above results fit with the two visual streams hypothesis, suggesting that the 

processing of visual information about the object for online grasping depends on 

processing carried out in the dorsal visual stream. However, it remains unclear whether 

visual stream regions play a critical role in more perceptual tasks (e.g., pantomimed 

grasping, delayed-grasping, delayed-pantomimed, object recognition). A likely candidate 

is the lateral occipital complex (LOC) (Malach et al., 1995) in the ventral stream. The 

LOC includes two spatially segregated subdivisions, a dorsal-caudal subdivision called 

the lateral occipital (LO) located on the lateral surface of  the occipital-temporal junction, 

and a ventral-anterior subdivision located in the fusiform gyrus (pFs/LOa) extending also 

into the occipitotemporal sulcus (Grill-Spector et al., 2001). LOC is typically activated by 

the presentation of intact versus scrambled images of objects (Malach et al., 1995) and is 

thought to play a critical role in object recognition by integrating objects’ visual features 

into coherent representations of the objects (Grill-Spector et al., 2001). As noted earlier in 

this thesis, following lesions in her ventral stream, patient DF, showed an impairment in 

pantomimed grasping and in grasping following a delay (Goodale et al., 1994), however, 

her performance improve when she performed real grasping. DF’s lesions do not include 

all of LOC: area LO is damaged bilaterally in patient DF  (James et al., 2003), while areas 

on the ventral occipitotemporal surface, such as primary visual cortex, the lingual gyrus 

and the face selective cortex in the fusiform gyrus, are spared (James et al., 2003; Steeves 

et al., 2004).  Recently, a similar behaviour to DF has been shown in patient MC, who has 

a much more extensive bilateral lesion in the ventral stream (compared to DF), including 

LO (Culham et al., 2008). However, because of the extension of the lesions in both patient 

DF and MC, it is difficult to conclude that area LO specifically is critical for the 

dissociation observed between real and pantomimed grasping.   

It is becoming increasingly apparent that DF’s bilateral lesions are not restricted to 

the ventral stream, but that she has bilateral damage in more posterior parieto-occipital 

regions of her dorsal stream (Bridge et al., 2013; James et al., 2003) in the vicinity of the 

superior parieto-occipital sulcus. This region is activated during arm movement 
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(Connolly, Andersen, & Goodale, 2003) and  is the possible homologue of the macaque 

parietal reach region  (Snyder, Batista, & Andersen, 1997). Whilst in healthy participants 

grasping-related activation in the aIPS is largely bilateral, with stronger response in the 

contralateral hemisphere to the hand being used (Culham et al., 2001), patient DF does 

not show activation in the left aIPS (James et al., 2003).  

Recently, it has also been hypothesised that in addition to visual form agnosia, DF 

has optic ataxia (Hesse et al., 2012, 2014; Rossit et al., 2017; for a description of the tasks 

see section 1.8). Therefore, whether DF’s deficits in pantomimed grasping are related to 

her ventral and/or dorsal stream lesions remains unclear and a new TMS experiment will 

help understanding the causal involvement of aIPS and LO in real and pantomimed 

grasping.  

In an fMRI study of real and pantomimed grasping (versus real and pantomimed 

reaching), Kroliczak et al. (2007) reported that bilaterally aIPS was more activated during 

real grasping versus real reaching, but that it did not appear to be more activated during 

pantomimed grasping versus pantomimed reaching. The authors suggested that making 

contact with the object is critical for aIPS activation and that, in contrast, pantomimed 

actions, are not sufficient to engage the aIPS (Kroliczak et al., 2007; but cf. Shikata et al., 

2003; Simon et al., 2002). Based on previous fMRI studies, the authors hypothesised that 

LO should be equally activated during real grasping and real reaching (Culham et al., 

2003), whereas on the basis DF’s behavioural performance (Goodale et al., 1994) and 

neuroimaging evidence (James et al., 2003), LO should present higher activation in during 

pantomimed grasping versus pantomimed reaching (Kroliczak et al., 2007). However, 

surprisingly, the authors reported no increased activation in LO for pantomimed grasping 

(versus real grasping). Instead, they reported similar levels of activation in LO bilaterally 

across all conditions. The authors did not exclude that information about objects’ features 

processed in LO may be retrieved for pantomimed grasping and suggested  that it might 

be the case that the extraction of the information does not require more oxygen to reach 

the area, and therefore does not lead to an increase in BOLD signal (Kroliczak et al., 

2007). Kroliczak et al. (2007), identified another area, which overlapped with both the 

right middle temporal gyrus (MTG) and superior temporal sulcus (STS), that showed 



83 

 

increased activation during pantomimed actions compared to real actions (Kroliczack et 

al., 2007). Therefore, based on this study, whether LO is critical for pantomimed grasping 

remains questionable.  

 More recently, Singhal et al. (2013) using fMRI, compared activations during real 

(immediate) grasping versus delayed/memory-guided grasping and reported that 

bilaterally IPS was more activated for delayed grasping versus delayed reaching while 

participants were looking at the object and while performing the action, but not during the 

delay, confirming its critical role in action execution. Interestingly, area LO was not only 

activated during visual stimulus presentation but was re-activated during action execution 

(after the delay) when there were no visual stimuli present. The authors argue that during 

delayed grasping perceptual structures that are involved in object recognition are recruited 

to provide information about objects’ features to guide the dorsal stream in performing 

grasping actions (Singhal et al., 2013).  

Evidence from functional MRI is informative about the relationship between task-

behaviour and brain activity, however, fMRI by itself cannot provide information about 

the causal involvement of a brain region on an observed behaviour (Weber & Thompson-

Schill, 2010). Thus, studies implementing Transcranial Magnetic Stimulation (TMS) to 

generate transient virtual lesions may help to attribute causality between brain anatomy 

and function (Pascual-Leone, Bartres-Faz, & Keenan, 1999; Paus, 2005; Sack, 2006; 

Walsh & Rushworth, 1998). With  TMS it is possible to create brief, localised and 

transient virtual lesions that can disrupt cognitive functions and it is possible to make 

inferences about the healthy brain functions (Walsh & Cowey, 2000; Walsh & Rushworth, 

1998).  

TMS was originally developed to investigate the physiology of the motor system 

(Barker, Jalinous, & Freeston, 1985), however, it is now used in several areas of cognitive 

neuroscience, including attention (e.g., Szczepanski & Kastner, 2013) memory (e.g., 

Pobric, Jefferies, & Lambon Ralph, 2010), decision making (e.g., Hartwigsen et al., 2010), 

language (e.g., Sakai, Noguchi, Takeuchi, & Watanabe, 2002), visual processing (e.g., 

Pitcher, Goldhaber, Duchaine, Walsh, & Kanwisher, 2012) and action planning (e.g., 

Pobric et al., 2010).  
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TMS has been used to delineate the perceptual dissociation between the dorsal and 

the ventral stream. For example, Ellison and Cowey (2006) found that while TMS to right 

PPC increased reaction times in the spatial discrimination task (but not in the shape or 

colour task) TMS to right LO increased reaction times in both spatial and shape 

discrimination tasks.  

In a series of studies, Tunik and colleagues (Cohen, Cross, Tunik, Grafton, & 

Culham, 2009; Rice, Tunik, & Grafton, 2006; Rice, Tunik, Cross, & Grafton, 2007; Tunik, 

Rice, Hamilton, & Grafton, 2007; Tunik, Frey, & Grafton, 2005) have shown that online 

TMS to aIPS, but not other parietal regions, impairs the control of grasping with the 

contralateral hand (for a more in depth review, see chapter 1). Specifically, Tunik et al. 

(2005) have shown that in the context of visual perturbation of a target object, TMS-

induced effects were present for adapting the grip aperture and the forearm orientation, 

leading the authors to conclude that left aIPS is involved in the configuration of grasping 

and in the rapid goal-dependent updating of grasping actions (Tunik et al., 2005). No 

effects of TMS were observed when TMS was delivered to left caudal IPS, left parietal 

occipital cortex and left primary motor cortex.  

In a follow-up study, Rice et al. (2006) implemented a similar paradigm to the one 

used by Tunik et al. (2005) and delivered TMS over the left aIPS, medial IPS, left caudal 

IPS or no TMS at all. They delivered TMS at different times: during the viewing period 

(i.e. planning phase) or at button release (i.e., execution phase) while participants were 

performing grasping actions with their right hand. In the no-perturbation task, they 

observed that maximum grip aperture was reached earlier and presented faster peak 

velocities when TMS was applied to left aIPS (but not on the control sites) during the 

execution phase compared to when no TMS was applied. Moreover, in the perturbation 

task, increased maximum grip apertures and peak velocities were observed when TMS 

was delivered over left aIPS (but not control regions) during the correction phase versus 

no-TMS. This study provides evidence that left aIPS plays a causal role in programming 

and correcting hand preshaping during grasping (Rice et al., 2006).  

Similar results were obtained by Glover et al. (2005), who observed that TMS 

(versus no TMS) delivered at movement onset, increased grip aperture in the first half of 
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the movement when a correction from small to large was required. In contrast, when TMS 

was delivered halfway through the movement (versus no TMS), an increase in maximum 

grip aperture was observed in the second half of the movement only. The authors 

suggested that the timing of the disruption was linked to the initiation of the adjustment 

and concluded that the left aIPS plays a critical role in initiating the online adjustment of 

hand grip when a change in target size is required (Glover et al., 2005).  

Subsequently, Rice et al. (2007) investigated whether the contribution of aIPS to 

grasping control is lateralised or not. Here, they used double-pulse online TMS at different 

time frames (e.g., the first TMS pulse at onset of the movement followed by the second 

100 ms later) to the left or the right aIPS or no TMS. The authors showed that, TMS to 

the right aIPS, versus no-TMS, resulted in shorter acceleration phase for grasping with the 

left hand, while TMS to the left aIPS, versus no TMS, resulted in shorter acceleration 

phase for grasping with the right hand. Rice et al. (2007), concluded that left aIPS mediates 

grasping with the right hand only, and that right aIPS mediates grasping with the left hand 

only. Notably, in these studies, no significant effects of TMS on grip scaling were found. 

Based on results from monkey showing that inactivation of AIP altered hand configuration 

(Gallese et al., 1994) the same would have been expected in humans. 

Davare, Andres, Clerget, Thonnard, & Olivier (2007) examined how repetitive TMS 

affected participants’ grip-to-lift performance of an object. The author observed that 

double-pulse TMS applied at different delays between 0 and 200 ms after movement onset 

over aIPS bilaterally (versus the supramarginal gyrus) increased the variability and mean 

location of the points where the fingers contacted the target. They concluded that bilateral 

inactivation to aIPS caused a larger dispersion of the fingertip final position on the object 

surface. The difference in the findings observed by Rice at al. (2007) and Davare et al. 

(2007) may be explained by the difference in the timing at which the TMS pulses were 

delivered, the task employed and how the hand shaping was measured (e.g., hand 

preshaping versus final hand shape).  

Additionally, Gutteling, Park, Kenemans and Neggers (2013) found that TMS to left 

aIPS selectively modulated the participant’s sensitivity to the orientation during action 

preparation, but no effects were found on grasping kinematics during the execution of 
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grasping or pointing itself. These findings seem at odds with the results reported in the 

studies reviewed above, however, as the authors pointed out, no previous studies reported 

effects on kinematics using single-pulse TMS at the go-cue, as is the case here. Thus, the 

authors speculated that it may be the case that aIPS was stimulated too early in the 

grasping preparation. The author concluded that the left aIPS is involved in the perceptual 

modulation preceding the manual action.  

More recently Le, Vesia, Yan, Niemeier, and Crawford (2014) used TMS to probe 

the contribution of aIPS and caudal IPS in each hemisphere while participants were 

grasping an object whose orientation might or not change (e.g., size perturbation task). 

The authors found TMS-induced effects on grip aperture (i.e., wider grip apertures) 

around the time of maximum grip aperture, only when they stimulated the right aIPS at 

the time of movement onset and object-size perturbation. No effects were found when 

TMS was delivered to left aIPS or the caudal IPS. The authors concluded that while 

unimanual precision grasping is associated with the hemisphere contralateral to the 

grasping hand, the right aIPS is causally involved in bimanual grasping. Specifically, right 

aIPS is involved in bimanual grasping movements during object perturbation, but not in 

the transport of the hand (Le et al., 2014), and that this is consistent with previous 

observations (Tunik et al., 2005; Rice et al., 2006).   

To my knowledge, to date, only one study implemented TMS to ventral and dorsal 

stream areas during grasping movements. Cohen et al. (2009) investigated the causal role 

of left aIPS and left LO in the online control of the movement and specifically in real 

(immediate) grasping and delayed grasping implementing MRI-guided online TMS. Two 

pulses of TMS were delivered (first pulse at movement onset followed by the second pulse 

100ms later) over either aIPS, LO or no TMS (control condition). They reported that TMS 

to aIPS and LO led to different effects on timing and velocity kinematics measures 

associated with hand preshaping. Specifically, TMS to aIPS led to a shorter time to peak 

velocities of grip aperture for both real and delayed grasping (compared to no TMS 

condition). On the other hand, TMS to LO led to an increase in the peak velocity of the 

grip aperture compared to the no TMS condition in both real and delayed grasping. The 

authors suggested that aIPS is involved in the online comparison between the target size 
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and grip aperture. However, during delayed grasping, additional processing is required 

from area LO to guide the dorsal stream. The authors suggested that it is likely that the 

representation of the size of the target in the dorsal stream has decayed and, thus a 

perceptual memory representation from the ventral stream is instead required (Cohen et 

al., 2009). Thus, fMRI (Singhal et al., 2013) and TMS (Cohen et al., 2009) evidence 

suggest that LO, a specific area within the ventral stream, is crucial in recalling 

information to control actions following a delay.  

Inspired by these studies, we investigated whether aIPS and/or LO are causally 

involved in the control of real and pantomimed grasping actions. Evidence from fMRI 

supports the view that aIPS is involved in the online control of real and pantomimed 

grasping (versus real and pantomimed reaching), however, whether LO plays a critical 

role is still unclear. Thus, a new experiment with TMS offers the possibility to investigate 

the causal role of aIPS and LO in the control of real and pantomimed grasping.  

Instead of using online TMS as the studies reviewed above, we applied an offline 

TMS protocol, named continuous Theta Burst Stimulation (cTBS), to left aIPS, left LO or 

the vertex (control condition). Previous TMS studies investigating the role of aIPS in the 

control of online movements (Cohen et al., 2009; Rice, Tunik, & Grafton, 2006; Rice et 

al., 2007) have observed that the effects of online TMS were transient in nature and 

specifically they were strongest immediately after the stimulation. Critically, they 

delivered one pulse of stimulation at the onset of the movement followed by the second 

one 100 ms later and they observed TMS induced effects on timing and velocity 

kinematics variables that were measured within approximately 350 ms from the 

stimulation (Cohen et al., 2009). Thus, we chose to implement an offline cTBS protocol, 

which is administered before the participant is presented with the task and allowed us to 

decrease the cortical excitability in a small area in the brain (approximately 0.5-1 cm, 

Sliwinska, Vitello, & Devlin, 2014) for up to 60 minutes (Huang, Edwards, Rounis, 

Bhatia, & Rothwell, 2005; see section 2.2.6). We decided to use an offline, rather than an 

online, TMS protocol, to be able to recreate a lesion that lasted for several minutes and 

that was therefore comparable to lesions in patients with brain damage. This approach 

gave us the possibility to explore the effects of a virtual lesion on variables throughout the 
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task and not just on the variables measured near the time of delivery of to the stimulation 

as in previous TMS studies (e.g., Cohen et al., 2009).  Using offline cTBS we aim at 

recreating virtual lesions in the healthy brain that are similar to lesions observed in patients 

with brain damage, without the confound of lesions that extend to other regions nearby or 

neural plasticity reorganisation.  Moreover, cTBS allow us to test the same participants on 

the same tasks and to manipulate the specific region to which TMS is applied. This would 

help to shed the light on the nature of the double dissociation observed in patients with 

optic ataxia and visual form agnosia, which have not been tested under the same 

conditions so far (Pisella et al., 2006; Rossetti et al., 2003)  

Additionally, previous studies had several limitations: small sample size (N ≤ 10 in 

Cohen et al., 2009; Rice et al., 2006; Rice et al., 2007); instead of using the vertex as a 

control site, implemented a no-TMS condition (Cohen et al., 2009; Le et al., 2014; Rice 

et al., 2006; Rice et al., 2007; Tunik et al., 2005); and to my knowledge, only Cohen et al. 

(2009) applied TMS to both LO and aIPS and found an effect on timing and velocity 

kinematics of grasping. Thus, the involvement of the dorsal and the ventral stream in hand 

preshaping remains to be tested with TMS. Moreover, previous TMS studies used MRI-

guided TMS (Cohen et al., 2009; Davare et al., 2007; Le et al., 2014; Rice et al., 2006; 

Rice et al., 2007), which has been shown to be less powerful than fMRI-guided TMS 

(Sack et al., 2009). Here, to localise the regions, we used a novel technique in which we 

combined high-resolution MRI and individual anatomical landmarks with population-

based fMRI activations. To localise the target regions, we extracted population-based 

fMRI activations from the NeuroSynth database of fMRI studies (http://neurosynth.org/) 

which we superimposed on each participant’s high-resolution MRI (see section 2.2.5). 

In our study, real and pantomimed grasping tasks were performed in open loop 

(without online visual feedback of the hand and target during the movement), so that 

participants had to rely on visual feedforward programming. Based on the perception and 

action model (Goodale & Milner, 1992;  Milner & Goodale, 1995, 2006, 2008), we 

hypothesized that cTBS to left aIPS would interfere with the participants’ ability to 

preshape their hand aperture in the real and pantomimed grasping tasks, whereas cTBS to 

left LO would interfere with their scaling in the pantomimed grasping task only. 

http://neurosynth.org/
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2.2 Methods 

2.2.1 Participants 

Sixteen naïve participants (6 males; mean age = 25.1 years old, S.D. = ±2.4 years 

old; mean education = 18.2 years, S.D. = ±1.9) took part in the study. In total 19 

participants were recruited from the University of East Anglia (Norwich, UK), but data 

from three participants were excluded from the analysis (one participant was discarded 

due to equipment error and the other two participants did not show significant grip scaling 

to object’s size in any condition).  

All participants were healthy, had normal or corrected-to-normal vision, were right-

handed (Oldfield, 1971) and were all screened for adverse reactions to TMS by means of 

the TMS safety screening questionnaire (Rossi et al., 2009). Participants were excluded if 

they had history of neurological, psychiatric or motor disorders, if they had metal in their 

bodies (e.g., shrapnel, surgical clips), or implanted devices (e.g., cardiac pacemakers), 

where taking neuroactive medications (e.g., antidepressant) or drugs, had history of 

seizure in their family, or held a heavy goods vehicle or bus driving licence. Each 

participant was required to visit the lab 4 times (1 “taster” session and 3 experimental 

sessions) and to undergo MRI scanning at the Norfolk and Norwich University Hospital 

Radiology Department. Each visit lasted approximately 1 hour. To minimise the risk of 

any potential hazard due to the assumption of alcohol or sleep deprivation in the 24 hours 

prior to the experiment, the TMS safety questionnaire was administered to each participant 

before each TMS session. 

The UEA Ethics Committee at the School of Psychology approved the study 

(reference 14-15-24) and participants gave informed consent in accordance with the 

principles of the Declaration of Helsinki (1964). All participants were reimbursed for their 

time.  

2.2.2 Materials and Apparatus 

Participants were seated in front of a grey table (1m2) with their chin stabilised on a 

chin-rest to minimise head movements and were instructed to place their thumb and index 
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finger on the start button positioned in front of them and aligned with their midsagittal 

plane. They were asked to maintain their gaze on a green fixation light-emitting diode 

(LED) attached to a lock line in front of them (9 cm above the table they were sitting at) 

at a distance of 52 cm from the participants’ nose bridge. The fixation LED was positioned 

12 cm on the left of the participants’ midline, so that the objects appeared in the peripheral 

lower right visual field at ∼ 13° eccentricity with respect to the fixation LED.  Visual 

feedback was controlled using liquid crystals shutter glasses (Plato System; Translucent 

Technologies, Toronto, Ontario, Canada).  

Six Efron white wooden objects (Efron, 1969) with constant surface area (25 cm2, 

thickness = 1cm) were presented in a pseudo-randomized order (no object was presented 

twice in succession) with the following dimensions (height x width): 5.0 cm x 5.0 cm; 4.0 

cm x 6.25 cm; 2.5 cm x 10.0 cm; 3.0 cm x 8.3 cm; 4.15 cm x 6.0 cm; 3.5 cm x 7.15 cm). 

Three of these objects (the 5.0, 4.0 and 2.5 cm heights) were used for later analysis and 

therefore presented a larger number of times. The other three objects served as foils on 

randomly catch trials, included to reduce practice effects (Rossit et al., 2013). 

Three lightweight markers (4 mm diameter) were attached with adhesive tape to 

the participant’s right nail tip of thumb and index finger and wrist. Six high-resolution 

infrared sensitive cameras (Qualisys AB, Gothenburg, Sweden) were used to record the 

x, y, and z positions of the markers at a frequency of 179Hz. A custom designed program 

written in Matlab (The MathWorks, USA) and the Psychophysics Toolbox extension 

(Brainard, 1997) was used to control the object presentation, goggles, fixation, and 

recordings. Eye movements were recorded by means of a video camera (Panasonic HD 

HVC-210) during the task (Chen, Sperandio, & Goodale, 2015) and visually inspected by 

the experimenter to ensure fixation. Only two experimental trials (out of a total of 1728) 

were excluded due to participants’ not fixating. The use of a high-resolution eye-tracker 

was not possible because the participants were wearing the PLATO goggles to control 

viewing times.  
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2.2.3 Procedure 

At the beginning of each session, the motion tracker markers were attached to the 

participants’ right hand and the participants were explained the tasks and asked to 

complete a practice session (12 trials, 6 of real and 6 of pantomimed grasping). At the end 

of the practice, participants were invited to take a seat on the Brainsight TMS chair where 

the co-registration of their head and their MRI scan took place (see section 2.2.5). Before 

the stimulation, participants were invited to relax and reminded to let the experimenter 

know if they felt any discomfort during the stimulation (see section 2.2.6). At the end of 

the stimulation participants were invited to sit at the grey table to perform the grasping 

task reminded the instructions of the task.  

Participants began each trial with the shutter goggles in opaque configuration and 

the right index finger and thumb touching one another and depressing the start button 

placed 15 cm in front of them.  Then, the experimenter triggered the PLATO goggles to 

change to transparent configuration, and the participant was given 2s to fixate on the 

illuminated LED. At the end of the fixation period, the goggles changed to opaque 

configuration (preventing the participant from viewing the workspace), and the 

experimenter placed an object on the table. After a ready signal from the experimenter, 

the PLATO goggles changed to transparent configuration and an auditory tone (frequency 

500 Hz; duration 0.25 ms) cued the participant to perform either a real or a pantomimed 

grasping according to block order (figure 2.2). 
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 In separate real and pantomime grasping blocks, participants were instructed, upon 

hearing the beep, either to reach out and pick up the object (real grasp, figure 2.3a), or to 

imagine that an identical object to the one in front of them was positioned on the right and 

to pantomime a grasping movement to that imagined object and pretend to pick it up as it 

was physically present (pantomime grasp, figure 2.3b; Goodale et al., 1994; Cavina-

Pratesi et al., 2011). Participants were instructed to repeatedly pretend to pick up an 

imaginary object to the right repeatedly as we were interested in movements conducted 

with the right hand towards the right side after stimulation of the left hemisphere. 

Participants were asked to keep fixation for the whole duration of the trial and to pick-up 

the object by its width with the right index finger and thumb at a quick but natural pace 

upon hearing the auditory cue. Each block consisted of 42 trials, in which each 

experimental object was presented 12 times, the remaining 6 trials were included as catch 

trials to add more variability (which were not included in the analysis). Moreover, the 

Figure 2.2  Trial timing. At the beginning of each trial the goggles opened to give time to 

the participant to adjust his/her eyes to the fixation, then the goggles closed to allow time 

for the experimenter to place the object (2s). During this time the participant was instructed 

to keep his/her eyes still. Simultaneously with the opening of goggles a sound played to cue 

the participant to reach out and grasp the object. As soon as the participant released his/her 

hand from the start button the goggles closed again so that no vision of their hand or the 

object was available during the movement. 
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viewing time of the hand and the object were the same across the two tasks, so that 

participants’ performance was comparable across the tasks.  

2.2.4 MRI acquisition 

A full-brain T1 weighted image was acquired for each participant with a GE 

Discovery 750w 3T MR scanner and a 32-channel coil at the Norfolk and Norwich 

University Hospital using a three-dimensional BRAVO sequence (repetition time, TR = 

7.3 ms; time to echo, TE = 2.8 ms; flip angle = 12°; field of view, FOV = 230 mm; slice 

thickness = 0.9 mm; matrix = 256 x 256; https://cni.stanford.edu/wiki/MR_Prtocols).  

The participant’s MRI scans were transformed into standardised MNI space using 

the FSL software (FMRIB, Oxford; Smith et al., 2004; Jenkinson, Beckmann, Behrens, 

Woolrich, & Smith, 2012). The brain of each participant was extracted from the skull 

using the brain extraction tool (BET; Smith, 2002)  and normalized against a standard 

brain template in MNI space using the FMRIB’s Linear Registration Tool (FLIRT; 

Jenkinson & Smith, 2001; Jenkinson, Bannister, Brady, & Smith, 2002).  

Figure 2.3 Schematic representation of a participant performing real (a) and pantomime (b) 

grasping tasks. The black dot represents the start position and the cross the fixation. 

Participants started each trial with their right hand on the start position and were asked to 

maintain fixation on LED for the whole duration of the trial. 
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2.2.5 Localisation of stimulation sites 

To localise brain regions, we used fMRI activations extracted from the NeuroSynth 

database of previous fMRI studies and we confirmed the location of the activation, using 

anatomical landmarks in each participant’s brain individually. In particular, we used the 

NeuroSynth database (Yarkoni et al., 2011), a large-scale automated synthesis of human’s 

functional neuroimaging data. Using the data available in this database at the time of data 

collection, we identified the activation for aIPS using the keyword “anterior intraparietal” 

(70 studies; Appendix A) and LO using the keyword “lateral occipital” (180 studies; 

Appendix B). We used the reverse inference activation maps, which corresponds to the 

likelihood of a specific term being mentioned in a study given the presence of a reported 

activation. This implies that studies that used a specific keyword frequently, are much 

more likely to report activation in a specific region. NeuroSynth’s reverse inference 

activations maps were superimposed onto the MNI brain of each individual participant for 

each site (figures 2.4a for aIPS and 2.4c for LO). Each ROI (3x3x3 mm voxels) was 

defined using MRIcron (Rorden & Brett, 2000) by selecting the peak of activation closest 

to the anatomical landmarks in each individual (figures 2.4b for aIPS and 2.4d for LO) 

and then imported back to FSL. Table 2.1 shows the mean coordinates for left LO and left 

aIPS. 
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The transformation was then reverse applied to each ROI using FSL to transform 

the coordinates in native space (Feredoes, Heinen, Weiskopf, Ruff, & Driver, 2011; 

Smittenaar, FitzGerald, Romei, Wright, & Dolan, 2013). We then visually confirmed 

 

 

 

 

 

 

Figure 2.4 a) aIPS NeuroSynth reverse activation superimposed on a participants’ MNI 

brain and b) the peak of the activation for aIPS ROI. c) LO NeuroSynth reverse activation 

superimposed on a participants’ MNI brain and d) the peak of the activation for LO ROI. 
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based on anatomical landmarks (Feredoes et al., 2011; Smittenaar et al., 2013) that the 

coordinates in native space corresponded to aIPS and LO. In particular, aIPS site was 

located at the junction of the anterior portion of the intraparietal sulcus (IPS) and post-

central sulcus in the left hemisphere (e.g., Culham et al., 2003; Rice et al., 2006; Cavina-

Pratesi, Goodale, & Culham, 2007; Cohen et al., 2009; Rossit et al., 2013) and LO was 

located on the lateral bank of the fusiform gyrus near the lateral occipital sulcus (e.g., 

Grill-Spector et al., 2001) (figure 2.5). By combining population-based fMRI and 

anatomical landmarks with high resolution individual MRI scans, we were able to localise 

regions in a consistent manner across participants. Additionally, each ROI was visually 

checked by another researcher and was adjusted until 100% agreement was obtained.  

 

Moreover, to test if our coordinates were similar to previous fMRI and TMS studies, 

we selected 20 published studies for aIPS and 22 for LO (Appendix C) and computed the 

x, y, z mean coordinates of aIPS and LO across the studies [when coordinates where 

reported in Talairach space, we used GingerALE (http://brainmap.org/software.html) to 

convert them into MNI space]. We then computed the 95% confidence intervals of the 

Figure 2.5 Localization of brain regions for stimulation on a three-dimensional rendering 

of one participant’s structural MRI in MNI space. Cortical sites are indicated with a red 

(aIPS) and a blue (LO) dot which represents the 95% confidence interval around the mean 

of the x, y, z MNI coordinates. The aIPS was located at the junction between the 

intraparietal sulcus (IPS) and the post-central sulcus (PostCS), while LO was located near 

the later occipital sulcus (LOS) and the inferior temporal sulcus (ITS; Malach et al., 

1995). 
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mean for the x, y, z coordinates extracted from published studies and found that for both 

regions, the mean of our population, was within the 95% confidence intervals of previous 

studies (table 2.1). 

 

2.2.6 Theta-Burst Stimulation (TBS) 

Before the MRI acquisition (approximately 1 month before), potential participants 

were invited to the laboratory to take part in a TMS “taster” session in which they 

completed TMS and MRI screening questionnaires, had a chance to ask question about 

the technique and to try the TMS. So that each participant could familiarise with the TMS, 

after the participant completed the TMS safety checklist, the researcher explained the 

effects of the TMS over the hand motor area (e.g., visible muscle twitching in the hand 

simultaneously with the stimulation) and asked him/her if they were happy to try the 

Table 2.1 Mean (and standard deviation, SD) MNI coordinates and 95% CI from previous 

studies for left LO and left aIPS (a) and mean (and standard deviation, SD) MNI 

coordinates of our sample (b). See Appendix C for a complete list of studies. 

 

Mean (SD)
95% CI 

lower limit

95% CI 

upper limit
Mean (SD)

95% CI 

lower limit

95% CI 

upper limit

x -45.68 (4.7) -47.68 -43.75 -39.10 (5.4) -41.56 -36.64

y -72.29 (7.2) -75.49 -69.07 -40.02 (4.7) -42.15 -37.87

z -3.78 (5.5) -6.21 -1.34 47.58 (6.4) 44.68 50.47

Left LO Left aIPS

 Left LO Left aIPS

Mean (SD) Mean (SD)

x -43.69 (1.9) -41.19 (4.5)

y -74.31 (4.5) -41.88 (2.8)

z -4.75 (2.0) 45.13 (1.2)

a. 

b. 
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stimulation. To locate the hand motor areas in the left hemisphere, we selected a region 

located 5-6 cm laterally and 1-2 cm anterior from the vertex (e.g., Buccino, Sato, Cattaneo, 

Rodà, & Riggio, 2009). Then the researcher asked the participant to pinch the index finger 

and thumb together and, using single pulse TMS with low intensity (e.g., 30% stimulator 

output) delivered TMS. The output of the stimulator was then increased (10% at a time) 

until a twitch in the hand of the participant was observed. The active motor threshold 

(ATM) is defined as the lowest setting at which > 5 out of 10 or stimulations result in any 

observable movement of the index finger (e.g., Westin, Bassi, Lisanby & Luber, 2015). 

However, determining the ATM was not the purpose of the session, nor relevant for the 

study, thus, we assessed the ATM as the minimum intensity at which at least 3 out of 5 

consecutive stimuli elicited a visible movement of any fingers in their right hand. 

Moreover, as stimulation over occipital areas could lead to discomfort due to muscle 

twitching in the neck, we delivered 10 s of cTBS to the occipital cortex during the “taster” 

session. All participants involved in taster session experienced muscle twitching, but they 

reported it not to be painful and were happy to carry on with the experiment. One 

participant who took part in the “taster” session decided not to continue with the 

experiment due to personal circumstances, unrelated to the study. 

Three cortical sites were chosen for stimulation: the most anterior part of the 

intraparietal sulcus (aIPS; Culham et al., 2003) in the left hemisphere, the lateral occipital 

complex (LO) in the left hemisphere and the vertex (Okamoto et al., 2004; Jung, Bungert, 

Bowtell, & Jackson, 2016; Cheke, Bonnici, Clayton, & Simons, 2017). We decided to use 

the vertex as a control site as it is assumed to play no active role in grasping (e.g., 

Dafotakis, Sparing, Eickhoff, Fink, & Nowak, 2008; Taubert et al., 2010). The advantage 

of vertex stimulation (versus sham stimulation in which the coil is placed away from the 

scalp) is that produces the same scalp sensation and the same sound as TMS to target 

regions (Jung et al., 2016). Earplugs were provided during the stimulation to dampen the 

noise associated with the stimulation. During the experiment, cTBS was delivered using 

a 70 mm figure-of-eight coil and a Magstim Super Rapid Plus Transcranial Magnetic 

Stimulator (Magstim Company Ltd.). The stimulation was performed using a continuous 

cTBS pattern (Huang et al., 2005) in which three pulses of stimulation were given at 50 
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Hz, repeated every 200 ms for a total of 600 pulses delivered in 40 s. The stimulus intensity 

was set at 40% of the stimulator output (Hayashi et al., 2013; Sharot et al., 2012; van 

Kemenade, Muggleton, Walsh, & Saygin, 2012). In this experiment we used fixed 

intensity of cTBS (defined as a percentage of the stimulator output). We decided not to 

tailor the intensity of the stimulation to each participant’s ATM as studies suggest that 

different cortical regions have different excitability thresholds and we cannot assume that 

the cortical excitability of the motor cortex can be reliably used in the rest of the brain 

(Stewart, Walsh, & Rothwell, 2001). For example, studies show that there is no correlation 

between motor threshold and phosphenes (Antal, Nitsche, Kincses, Lampe, & Paulus, 

2004; Boroojerdi et al., 2002; Oliver, Bjoertomt, Driver, Greenwood, & Rothwell, 2009), 

thus questioning the assumption that TMS threshold measures from different cortical 

regions might reflect a shared component of individual’s responsiveness to TMS. In light 

of this evidence, using fixed stimulation output has become common practice (Cappelletti, 

Barth, Fregni, Spelke, & Pascual-Leone, 2007; Cattaneo, Silvanto, Pascual-Leone, & 

Battelli, 2009; Cohen Kadosh et al., 2007; Dormal, Andres, & Pesenti, 2008; Knops, 

Nuerk, Sparing, Foltys, & Willmes, 2006). Stimulation sites were located on each 

individual participant’s MRI using Brainsight Frameless Stereotaxic software (Rogue-

Research, Montreal, Quebec, Canada). 

The position of the TMS coil was co-registered with the participants’ head and 

during the stimulation, the position of the head and the coil were monitored using a Polaris 

Optical Tracking System (Northern Digital, Inc., Waterloo, Ontario, Canada).  The coil 

was held tangentially to the scalp with the handle pointing backwards (Cohen et al., 2009; 

Le et al., 2014). To restrict movements and to help the participant keep a stable position, 

a chin rest and a forehead rest were used. None of the participants reported significant side 

effects, however, all the participants felt muscle twitching over their neck or head during 

LO stimulation, and three participants reported that their neck was sore the day after the 

stimulation. Five participants reported a mild headache in the evening after the 

stimulation.    

After the stimulation, we waited approximately 5 minutes before starting the first 

task (Hayashi et al., 2013; van Kemenade, Muggleton, Walsh, & Saygin, 2012). We 
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decided to do this based on Hubl et al.’s (2008) observations, in which they found no 

significant changes in the BOLD signal in the first 5 minutes after TBS over the frontal 

eye field compared to pre-stimulation fMRI.  

According to Huang and colleagues (2005), cTBS produces consistent and rapid 

changes in the function of the human motor cortex that outlast the period of the stimulation 

for up to 60 minutes. The authors measured the peak-to-peak amplitude of MEPs in the 

first dorsal interosseous (FDI) muscle in 9 healthy participants after 600 pulses of cTBS. 

The authors found that after cTBS, MEPs were suppressed at 25 and 45 minutes and 

returned to baseline at 61 and 65 minutes.  Although in the original paper, Huang et al. 

(2005), observed a significant reduction of MEP size following cTBS lasting up for nearly 

60 minutes, it is worth mentioning that the duration of TBS induced effects is still 

controversial and varies according to the area TBS is applied to, as well as the behaviour 

under investigation (Huang et al., 2005; Hubl et al., 2008; Wischnewski & Schutter, 

2015). To our knowledge, there are no studies investigating BOLD signal changes after 

TBS in aIPS and/or LO, however based on Huang et al. (2005) and Hubl et al. (2008) 

work, as well as Wischnewski and Schutter (2015) review which identified the effects of 

600 pulses of cTBS in 40 s to last up to 60 minutes after stimulation, we ensured the 

duration of our experiment was not any longer than 35 minutes. This was done to allow 

time for participants to take short breaks during the tasks if they needed. 

2.2.7 Analysis 

Kinematic data were obtained by localising the x, y, z positions of markers attached 

to the index finger, thumb and wrist of the participants’ right hand and was analysed off-

line using a customised software written in Matlab (The MathWorks, USA). Raw data for 

each marker was filtered using a low-pass Butterworth filter (10 Hz-cut-off, 3rd order) for 

each trial. Each trial was visually inspected for any errors. Movement onset was defined 

as the time at which the velocity of the wrist marker exceeded 50 mm/s and the end of the 

movement was determined as the time at which the velocity of the wrist marker fell below 

50 mm/s (e.g., Cohen et al., 2009). 
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Trials were excluded from the analysis for the following reasons: data points were 

missing due to occlusion of the markers (3.56 %), technical problems (4.25 %), reaction 

times exceeded 800 ms (Cohen et al., 2009) (1.22%), participants’ errors, such as the 

participant was not holding down the start button when the auditory cue was played 

(1.65%) or failure to maintain fixation (0.01%). In addition, outliers were computed in all 

participants for MGA and trials were excluded from analysis if they exceeded two 

standard deviations from the mean MGA (6.6 %). In the real grasp condition, a total of 

81.3% of all trial were included in the analysis and 81.8% were included in the 

pantomimed grasp condition, with a mean of approximately 11 repetitions per object size 

per condition (table 2.2). Given our hypothesis that cTBS-to-aIPS or cTBS-to-LO might 

affect grip scaling in real and pantomimed grasping, for conciseness we only analysed 

grip aperture related variables. 

 

Based on DF’s poor performance (Goodale et al., 1994) in the pantomimed versus 

real grasping task, we analysed the maximum grip aperture. In addition, as maximum grip 

apertures linearly increases with object size (Jeannerod, 1984), we computed the 

VERTEX aIPS LO

Participants' 

mean of 

included trials 

(SD)

Participants' 

mean of 

included trials 

(SD)

Participants' 

mean of 

included trials 

(SD)

Small 11.3 (0.6) 11.1 (0.6) 11.1 (1)

Medium 11.1 (0.8) 11.4 (0.6) 11.4 (0.9)

Large 11.2 (0.6) 11.2 (0.6) 11.1 (0.9)

Small 11.3 (0.7) 11.3 (1.2) 11.3 (0.6)

Medium 10.8 (0.7) 11.5 (0.7) 11.2 (0.9)

Large 11.19 (0.7) 11.4 (0.9) 11.3 (0.7)

Real

grasping

Pantomimed

grasping

Table 2.2 Mean number of trials (and standard deviation, SD) included in the 

analysis for each object in each condition. 
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maximum grip aperture as a function of object size. The best-fitting linear regressions for 

each participant’s grip aperture data on the widths of the Efron blocks was performed 

separately for each cTBS condition and task. We then computed the  value of the  R2 and 

the resultant regression coefficient (i.e., slope), which relates the average increase in MGA 

(mm) per incremental increase in Efron width (mm) (e.g., Keefe & Watt, 2009; Rossit et 

al., 2013) for each TBS site separately. The R2 values were converted to a Fisher-

transformed R2 (e.g., Cohen, 2003; Rossit et al., 2013) to normalise the correlation 

coefficients (Fisher, 1921). 

It is important to highlight, that slope, intercept and R2 are indicators of grip scaling 

efficiency and reflect aspects of the relationship between MGA and object size (Whitwell, 

Milner et al., 2014). As such, the R2 scores rely on the standard deviation of the MGA, 

thus removing information about the original units of the variables (Whitwell, Striemer, 

Nicolle, & Goodale, 2011) and reflect how tight each MGA cluster is around the slope: 

the greater the variability, the smaller the R2 will be. The slope indicates the sensitivity of 

the grip aperture to size changes across the objects. A slope of 0 indicates no scaling of 

the MGA to the object, whereas a slope of 1 indicates perfect scaling, therefore higher 

slopes reflect greater proficiency in grasping (Smeets & Brenner, 1999). The intercept 

indicates the location where the line intersects an axis, and therefore higher values of the 

intercept corresponds to larger grip apertures (Keefe & Watt, 2009). Moreover, as virtual 

lesion studies (e.g. Cohen et al., 2009) reported that TMS-to-LO affects MGA velocity 

and the time at which it is achieved, we analysed the peak velocity of MGA and the time 

of the peak velocity of MGA. For a complete list of the variables, see table 2.3. 
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Time to maximum grip aperture (tMGA), time to peak velocity of grip aperture 

(tPVg), peak velocity of grip aperture (PVg) and maximum grip aperture (MGA) were 

entered into a 2 x 3 x 3 repeated measure analyses of variance (RM-ANOVA), with factors 

task (real grasp, pantomimed grasp), TBS site (vertex, aIPS, LO) and object size (small, 

medium, large). Scaling precision variables (i.e., R2, slope and intercept) were entered into 

Dependent Measures Name Unit Marker(s) Description

Time to Maximum Grip 

Aperture
tMGA ms index, thumb 

Time interval between 

MGA and movement 

onset 

Time to Peak Velocity of 

grip aperure time
tPVg ms index, thumb 

Time interval between 

PV of MGA and 

movement onset

Peak Velocity of grip 

aperture 
PVg mm/s index, thumb 

Maximum value for 

the first derivative of 

grip aperture

Maximum Grip   

Aperture
MGA mm index, thumb 

Peak Euclidean 

distance between the 

thumb and index 

finger's positions

R
2

Slope

Intercept

Scaling precision

Variables obtained 

from the linear 

regression analysis 

between MGA and 

object size

index, thumb

Table 2.3 List of variable analysed. 
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a 2x3 ANOVA with factors task and TBS site. All comparisons in the RM-ANOVAs were 

analysed using the Greenhouse-Geisser correction when sphericity was not assumed and 

considered significant at α-level of 0.05 (two-tailed). Post hoc pairwise contrasts used the 

Bonferroni correction to control for multiple comparisons. Partial eta squared (ηp
2) was 

calculated to determine effect size. Only significant statistics are reported. 

2.3 Results 

2.3.1 Maximum Grip Aperture (MGA) 

Analysis of MGA (figure 2.6) revealed a main effect of task (F (1, 15) = 108.805, p < 

.001, ηp
2 = .879) whereby participants opened their hand in-flight more widely for real 

(mean = 78.39 mm, p < .001) compared to pantomimed (mean = 63.90 mm) grasping. 

Moreover, we also observed a main effect of object size showing that as object size 

increased, MGA significantly increased (F (1.3, 20) = 833.926, p < .001, ηp
2 = .982), 

confirming that participants were able to scale their grip to object’s size for both tasks. 

Thus, participants were opening their hand wider for the large object (mean = 80.47 mm) 

compared to the medium (mean = 73.78 mm, p < .001) and small object (mean = 59.81 

mm, p < .001) and less wide for the small compared to the medium (p < .001) and large 

objects.  Additionally, we found a significant interaction between task and object size (F 

(2, 30) = 3.439, p = .045, ηp
2 = .187) that was further qualified by a three-way interaction of 

task x object size x cTBS (F (4, 60) = 3.533, p = .012, ηp
2 = .191). To determine the source 

of the interaction, post hoc tests were conducted comparing cTBS for each object and task 

separately, however these did not show any significant difference (p > .05 for all 

comparisons). 
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2.3.2 Scaling precision 

2.3.2.1 Fisher transformed R2  

Analysis of the fisher transformed R2 revealed a main effect of cTBS (F (2, 30) = 

3.538, p = .040, ηp
2 = .193) (figure 2.7) whereby participants scaled less to object size in 

real and pantomimed grasping after cTBS-to-aIPS (mean = .961) compared to cTBS-to-

vertex (mean = 1.115, p = .046). No difference was observed between cTBS-to-LO (mean 

= 1.048, p = .767) and cTBS-to-vertex (mean = 1.115), nor between cTBS-to-aIPS (mean 

= .961, p = .503) and cTBS-to-LO (mean = 1.048).  No main effect of task (F (1, 15) = 1.133, 

Figure 2.6 Graph depicts significant finding for the maximum grip aperture. The left graph 

shows data from the real grasping task and the right graph shows data from the pantomimed 

grasping task. Bars indicate means for each object in each cTBS condition separately, error 

bars represent standard error of the mean. Yellow stars denote significant differences 

between conditions. 
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p = .304, ηp
2 = .070) or interaction between cTBS and task (F (2, 30) = 1.804, p = .182, ηp

2 

= .347) was observed.  

2.3.2.2 Slope 

Analysis of the slope of the linear regression revealed a significant interaction 

between task and cTBS (F (2, 30) = 6.425, p = .005, ηp
2 = .300). Post hoc tests revealed that 

for cTBS-to-LO, the slope was significantly less steep (mean difference = -.188, p = .005) 

in the pantomimed grasping task (mean = .770) compared to the real grasping task (mean 

= .959). This suggests that grip scaling performance was less sensitive to object size in the 

pantomimed compared to real grasp task for the TMS-to-LO condition (figure 2.8). No 

Figure 2.7 Mean R2 under each cTBS condition in each task. Error bars denote SEM. 

Yellow stars denote significant differences between conditions. 
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main effects of task (F (1, 15) = 3.006, p = .103, ηp
2 = .167) nor cTBS (F (2, 30) = .083, p = 

.921, ηp
2 = .005) were observed (figure 2.8). 

Figure 2.8 Mean slopes under each cTBS condition in each task. Error bars denote 

SEM. Yellow star denotes significant differences between conditions. 
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2.3.2.3 Intercept 

Analysis of the intercept of the linear regression revealed a significant main effect 

of task (F (1, 15) = 37.664, p < .001, ηp
2 = .715; figure 2.9). The intercept of the linear 

regression was higher for real (mean = 43.914, p < .001) versus pantomimed grasping 

(mean = 32.359), which is not surprising as participants tend to open their hand wider in 

real versus pantomimed grasping. No main effects of cTBS (F (2, 30) = .072, p = .930, ηp
2 

= .005), nor an interaction between task and cTBS (F (2, 30) = 3.175, p = .056, ηp
2 = .175) 

were observed.  

  

Figure 2.9 Mean intercept under each cTBS condition in each task. Error bars denote 

SEM. Yellow stars denote significant differences between conditions. 
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2.3.3 Peak velocity of grip aperture 

Analysis of peak velocity of the grip aperture (PVg), revealed a significant main 

effect of task (F (1, 15) = 35.752, p < .001, ηp
2 = .704) whereby participants reached higher 

velocity of their MGA for the real versus the pantomimed grasping task (mean difference 

= 57.14 mm/s). Also, a significant main effect of object size (F (1.2, 18.1) = 123.22, p < .000, 

ηp
2 = .891) was observed, showing that as object size increased PVg also increased, with 

participants reaching a higher MGA velocity for the large compared to medium (mean 

difference = 22.23 mm/s) and small object (mean difference = 69.86 mm/s) and for the 

medium compared to the small object (mean difference = 47.62 mm/s). In contrast with 

Cohen et al., (2009), we did not find any effect of cTBS on PVg (F (1,15) = 287.106, p = 

.606, ηp
2 = .033).  

2.3.4 Time to maximum grip aperture 

A significant main effect of task was also found for the time at which MGA occurred 

(tMGA: F (1, 15) = 12.379, p = .003, ηp
2 = .452), showing that participants reached the MGA 

earlier for real compared to pantomimed grasping (mean difference = -58.74). Moreover, 

for tMGA, we found a main effect of object size (F (2, 30) = 27.697, p < .001, ηp
2 = .649) 

with earlier tMGA recorded for the small versus the medium (mean difference = -23.13, 

p < .001) and versus the large objects (mean difference = -26.095, p < .001). No difference 

was observed between the medium and large objects (mean difference = -2.969, p = 1). 

No other effects or interactions were found to be significant. 
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2.4 Discussion 

To investigate the causal role of left aIPS, a key region for grasping in the dorsal 

stream, and left LO, a key region for object recognition in the ventral stream, in the control 

of real and pantomimed grasping we used offline cTBS. Based on the perception and 

action model (Goodale & Milner, 1992; Milner & Goodale, 1995, 2006, 2008), we 

hypothesised that cTBS to left aIPS would interfere with the participants’ scaling ability 

in the real grasping task only, whereas cTBS to left LO would interfere with their scaling 

in the pantomimed grasping task only. In line with our hypothesis, we found that cTBS-

to-aIPS weakened the relationship between grip aperture and object size versus cTBS-to-

vertex in real and pantomimed grasping, while cTBS to left LO weakened the relationship 

between grip aperture and object size in pantomimed grasping. Thus, this study clarifies 

the role of key regions in ventral and dorsal visual streams in the control of grasping. 

Specifically, the findings indicate that aIPS is causally involved in hand preshaping 

regardless of grasping task (real or pantomimed). However, LO in the ventral stream is 

additionally required for pantomime grasping. 

Although it might appear surprising that we found that cTBS affects the relationship 

between in-flight grip aperture and object’s size, but not MGA, this might be explained 

by the fact that MGA and grip scaling variables measure different aspects of grasping. 

Grip scaling related variables are a measure of the participants’ maximum grip aperture 

in relation to the object size. As such, they take into account for changes in grip aperture, 

object size and variability of the grip aperture. In contrast, MGA is a measure of the 

maximum distance between the index finger and thumb, but it does not take into account 

variability, nor changes in the size of the objects (Jeannerod, 1988). Thus, here 

participants demonstrated significant grip scaling for all cTBS conditions (e.g., opening 

their hands less wide for the small object compared to the medium and large objects). 

However, they were less precise in scaling their grip to the width of the Efron blocks for 

cTBS-to-aIPS (versus vertex) in the real and pantomime grasping and for cTBS-to-LO in 

the pantomimed grasping. Specifically, participants’ grip apertures were more variable in 

both real and pantomimed grasping after cTBS-to-aIPS compared to vertex, while their 
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grip apertures were less sensitive to changes in object size after cTBS-to-LO in the 

pantomimed compared to the real grasping. The intercept reflects how wide the grip 

aperture was. Thus, it is perhaps not surprising that we observed only an effect of task in 

the intercept, as this reflects that the participants overall opened their grip wider for real 

compared to pantomimed grasping, which is in line with the main effect of task observed 

in MGA.  

It would have been interesting to additionally analyse the final position of the fingers 

on the objects. Davare, Andres, Clerget, Thonnard, and Olivier (2007) reported that while 

a virtual lesion delivered to left aIPS affects the participant’s ability to apply the minimum 

force required to avoid the grasped object to slip, no effects on the final position (i.e. when 

the fingers touch the object) of the index finger and thumb were found. However, when a 

bilateral virtual lesion to aIPS was applied, participants could not shape their hand to the 

object size precisely and this was evidenced by a larger dispersion of the position of 

participants’ fingers when they were required to grasp-to-lift an object. It is important to 

highlight two main differences between the experiment by Davare et al. (2007) and ours. 

First, they presented the stimuli in central vision, while we presented stimuli in the right 

peripheral visual field. Our decision to present the stimuli in the periphery was based on 

the observation that patients with dorsal stream lesions are usually impaired in grasping 

in the visual periphery, but their performance is near-normal in central vision (Perenin & 

Vighetto, 1988; Pisella et al., 2009; Rossetti et al., 2005; Rossit et al., 2017). Second, 

Davare et al. (2007) measured the hand shaping alteration based on the final position of 

the fingertips on the object, while we measured the maximum grip aperture reached in-

flight before the fingers made contact with the objects. Importantly, the terminal position 

of the fingers at contact with the object and the pre-shape in flight are two different 

measures and might be controlled by different networks in the brain (Fukui & Inui, 2013). 

Thus, we could additionally analyse the final hand position in our experiment, to explore 

whether TBS also affects the final hand position at contact with the object.  

Our findings that cTBS-to-aIPS affects hand preshaping are in line with evidence 

from neurophysiological studies in monkeys that have shown that neurons in area AIP 

specifically fire during manipulative hand movements  (e.g., pull a lever, push a button; 
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Sakata et al., 1995) and that during visually guided grasping, AIP plays an important role 

in adjusting the hand posture to the object’s size and shape (Gallese et al., 1994; Murata 

et al., 2000).  Specifically, Gallese et al. (1994) have shown that transient inactivation of 

area AIP in the monkey produced a severe disruption of the pattern of finger movements 

during the period of preshaping, which resulted in a mismatch between the hand 

configuration and the 3D features of the object. This led to either a failure to grasp the 

object or to an awkward grasping, which was achieved after several corrections and 

contact with the object. It has been postulated that area AIP in monkeys has similar 

properties to area aIPS in humans (Binkofski et al., 1998; Culham et al., 2003) and seems 

to be specialised in computing object’s properties in order to guide hand pre-shaping 

during grasping. However, there is controversy. In the macaque brain, area V6A, a region 

in the dorsomedial parieto-frontal circuit involved in reaching (Galletti et al., 2003), is 

also involved in the control of grasping (Desmurget et al., 1996; Smeets & Brenner, 1999). 

Additionally, it has been shown that surgical lesion in V6A produce both misreaching and 

misgrasping, with exaggerated in-flight grip aperture (Battaglini et al., 2002). Thus, 

whether both AIP and V6A mediate grasping is unclear. In reach to grasp movements, the 

transport and hand preshaping occur simultaneously during prehension movements. Area 

V6A, with its connection with both the AIP (Borra et al., 2008) and other posterior parietal 

area (Gamberini et al., 2009), is a good candidate to be involved in monitoring the 

direction of arm movements and grip aperture during grasping (Fattori et al., 2009). Area 

V6A contains a majority of visuomotor cells that respond strongly to the vision of grasping 

action, compared to the vision of the mere object (Breveglieri, Bosco, Galletti, Passarelli, 

& Fattori, 2016). On the other hand, neurons in area AIP seem to be more sensitive to 

simple visual stimuli, such as shapes (Romero et al., 2014). Based on these observations, 

Breveglieri et al. (2016) speculated that area V6A might be more involved in the fast, 

broad control of the hand, while AIP might be involved in the slow, finer control (Galletti, 

Kutz, Gamberini, Breveglieri, & Fattori, 2003; Rizzolatti & Matelli, 2003; Verhagen, 

Dijkerman, Medendorp, & Toni, 2013).   

Here we found that a virtual lesion to aIPS weakens the relationship between the in-

flight grip aperture and the width of the object, we can conclude that the left aIPS might 



113 

 

be involved in the control of grasping movements, similarly to what has been suggested 

for AIP in the macaque brain. While we have shown that a virtual lesion to aIPS disrupts 

grasping, in the future it would be interesting to further explore whether a virtual lesion to 

SPOC would also impair grasping. If SPOC is the human homolog of area V6A, we should 

expect to observe cTBS effects on the hand and fingers transport components when cTBS 

is applied to SPOC. Moreover, based on AIP-V6A connections in the macaque brain, 

future avenues of research should implement a dual-coil TMS paradigm (De Gennaro et 

al., 2003) to explore how SPOC and aIPS are interconnected during grasping movements. 

To investigate the timing of these connections further, other techniques that could be 

implemented in a similar experimental setting, are EEG and event related potentials 

(ERPs) or functional neurospectroscopy (fNIRS), which allows for high resolution 

mapping of temporal dynamics and therefore might be particularly well suited to 

investigate connections between aIPS and SPOC.  

Using TMS, Cohen et al. (2009), reported that TMS-to-aIPS (versus no-TMS) led 

to earlier peak velocities of the hand opening in-flight to match object size in real and 

delayed grasping, while TMS-to-LO (versus no-TMS) resulted in higher peak velocities 

of the hand opening in the delayed grasping task. The authors argued that, although the 

dorsal stream and in particular aIPS is critical for the online control of grasping, an intact 

ventral stream cannot completely compensate for a damaged dorsal stream in the 

performance of memory-guided delayed grasping movements. In Cohen et al.’s (2009) 

experiment, participants had to retrieve information about object size from memory in 

delayed grasping, while here, no memory was required as the object was in front of the 

participants. Thus, based on our findings, we conclude that even when no memory is 

needed to complete the task, information from LO is additionally required to pantomime 

grasping and that this information is specifically critical for hand preshaping.   

Our results that cTBS-to-aIPS disrupts hand preshaping, provide some support for 

the role of aIPS in grasping (whether real or pantomimed) versus reaching (whether real 

or pantomimed) arisen from fMRI (Kroliczak et al., 2007). However, our results seem at 

odds with Kroliczak et al.’s (2007) finding that LO did not show any differential activation 

between real and pantomimed actions, whether grasping or reaching. Although 
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speculative, this observation might be related to the fact that in Kroliczak et al. (2007), the 

object was illuminated for only 150 ms, and the movements were performed in the dark, 

while here the object was visible until the participant started the grasping movement. Grill-

Spector, Kushnir, Hendler and Malach (2000) demonstrated that there is a correlation 

between an individual’s ability to name objects and the activation in the LOC. They 

showed that when the exposure duration of masked images was varied between 20 and 

500 ms, both recognition performance and activity in LOC were non-linear functions of 

image duration. Thus, shortening the exposure reduced the activation in the LOC (Grill-

Spector et al., 2000). Additionally, it is important to highlight that fMRI and TMS measure 

different aspects. In fact, while fMRI measures the correlation between brain activation 

and a specific task, TMS measures the causal relationship between a brain region and a 

task, and this needs to be taken into account when comparing results across the two 

techniques.  

What is the exact role of LO in pantomime grasping? One possibility is that LO 

plays a crucial role in allocentric visuospatial coding. In particular, our results could be 

interpreted in the view that the location of objects in the environment can be either coded 

in an egocentric (i.e. centred on our body) or allocentric (e.g., centred on the relationship 

with other objects in the surroundings) frame of reference. Milner and Goodale (Goodale 

& Milner, 1992; Goodale, 2014; Milner & Goodale, 1995, 2006, 2008), proposed that the 

ventral stream might play a crucial role in allocentric visuospatial coding and creates long-

term representations of objects (Milner & Goodale, 2006, 2008; Schenk, 2006), whereas 

the dorsal stream generates egocentric representations necessary to guide actions (Milner 

& Goodale, 1995, 2006). During a grasping task, we have to compute and continuously 

update the information about the position of our body and our fingers in relation to the 

target object, however, when we have to pantomime, we additionally need to compute the 

distance between our fingers in relation to the object size (figure 2.10).  

Schenk (2006) has shown that there was no difference in DF’s performance when 

compared to controls in both perceptual and motor egocentric tasks, whereas she was 

impaired in both perceptual and motor allocentric tasks. Schenk (2006) argued that this 

dissociation showed in DF’s performance was between the way she codes egocentric and 
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allocentric coordinates and not between perception and action as suggested by Milner and 

Goodale’s model of the two visual streams (Goodale & Milner, 1992; Goodale, 2014; 

Milner & Goodale, 1995, 2006, 2008). However, Schenk’s tasks had some limitations: for 

instance, the tasks could have been conceived to tap into visuomotor and perceptual 

processing. In fact, the tasks used do not rule out the possibility that DF might have been 

imagining performing the pointing tasks in order to help her judge which of the two 

stimulus was closer (Milner and Goodale, 2008).  

Moreover, our results would be in line with studies of allocentric versus egocentric 

reaching. Thaler and Goodale (2011), using fMRI, have shown that contralateral LO is 

more activated in allocentric versus egocentric pointing tasks, while left IPS was activated 

in both egocentric and allocentric pointing tasks. In our experiment, participants might 

have coded information about the position of the object in an egocentric frame of reference 

in real and pantomimed grasping, which relies on the dorsal stream, therefore when cTBS 

was applied over aIPS, their performance was weakened compared to cTBS-to-vertex. On 

the other hand, in pantomimed grasping, additional allocentric coordinates (e.g., distance 

between the index finger and the thumb) need to be computed to successfully guide the 

movement. Perhaps, LO is causally involved in allocentric space representations required 

for pantomimed grasping. Future studies should investigate the role of LO in allocentric 

tasks. For example, future studies could combine TMS with virtual reality to explore the 

Figure 2.10 Coding of objects in the surroundings. The red arrow indicates egocentric 

coordinates and the green arrow allocentric coordinates. 
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role of LO in the representation of allocentric space. As such, using virtual reality, it is 

possible to create a task in which participants grasp an object in virtual reality, using and 

egocentric frame of reference. As there is no contact of the hand with the object in real 

life, this would resemble a pantomimed grasping, however this may not require allocentric 

coding.  

Another possibility is that LO is required in grasping tasks that have no haptic 

feedback available at the end of the movement, such as our pantomimed grasping task. In 

fact, it has been recently claimed that DF’s spared ability to grasp might be driven by 

haptic feedback (Schenk, 2012a; for a description of the task see section 1.7). According 

to Schenk (2012a), DF uses haptic feedback to compensate her deficit in the perception of 

size and that her grip scaling relies on the integration of visual and haptic feedback and 

when haptic feedback is missing, her damaged ventral stream cannot support visually 

guided grasping. However, this hypothesis has been recently questioned.  

Recently, Whitwell, Milner et al. (2014) re-tested DF and a group of healthy controls 

using the same mirror set-up implemented by Schenk (2012a) (for a description of the task 

see section 1.8). Whitwell, Milner et al. (2014) reported that DF scaled her in-flight grip 

aperture to object size independently of whether the visual size of the object was matching 

the haptic feedback derived from hand-object contact. Moreover, they showed that her 

performance was not significantly different from the performance observed in the control 

group. Even when the size of the cylinder behind the mirror was uninformative, DF 

continued to scale her grip to the size of the viewed cylinder (and showed the same 

reduction in grip scaling observed in the control group). These findings seems to 

contradict Schenk’s (2012a,b) hypothesis that DF needs to have access to veridical haptic 

feedback in order to scale her grip aperture. Whitwell, Milner et al. (2014) argued that, 

haptic feedback provided at terminal location of a target directed action, and not object 

size per se, was sufficient to allow DF to calibrate her visuomotor system. Thus, when no 

haptic feedback was provided, the task switched to a pantomimed task, instead (Whitwell, 

Milner et al., 2014). Whitwell, Milner et al. (2014), concluded that the visual processing 

in the dorsal stream is sufficient to mediate accurate grasping in DF, and also in healthy 

individuals, which is in support of the original proposal by Milner and Goodale. Based on 
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these observations and on our findings, in future studies, it will be interesting to combine 

the paradigm used by Withwell, Milner et al. (2014) with TMS-to-aIPS and TMS-to-LO 

to further test our findings that LO is required in grasping tasks that have no haptic 

feedback available.  

Evidence from neuropsychological patients provide a great contribution to our 

understanding of the role of a region on a given behaviour. However, after brain damage, 

the brain normally reorganises its functions and therefore the patients may acquire 

compensatory strategies (Robertson & Murre, 1999). Therefore, using TMS we were able 

to recreate a virtual lesion in the healthy brain to reproduce the basis of the deficit under 

investigation and help in understanding the networks underling an observed behaviour in 

the healthy brain. Moreover, using a virtual lesion approach, we were able to test the same 

participants on the same tasks and to manipulate the specific region to which TMS is 

applied. This could help understanding the nature of the double dissociation observed in 

patients with optic ataxia and visual form agnosia. In fact, one of the criticisms (Pisella et 

al., 2006; Rossetti et al., 2003) to the proposed double dissociation observed between optic 

ataxia and visual form agnosia, (Milner and Goodale 1992), is that these patients have not 

been tested under the same conditions. As such, DF has been tested systematically under 

central vision conditions, whereas optic ataxia patients have been tested systematically 

under visual periphery conditions in grasping tasks (but see Cornelsen, Rennig, & 

Himmelbach, 2016). Recently, Rossit et al. (2017) tested patient DF under different 

reaching conditions, to explore whether DF’s misreaching was biased towards fixation 

and her ability to perform online reaching corrections towards moving targets under free 

and fixation-controlled vision. Performance in these tasks is typically impaired in optic 

ataxia (e.g., McIntosh, Mulroue, Blangero, Pisella, & Rossetti, 2011; Milner, Paulignan, 

Dijkerman, Michel, & Jeannerod, 1999; Rossetti et al., 2005; Rossit et al., 2017). Rossit 

et al. (2017), reported that DF was impaired in peripheral, but not in central visual field 

reaching, and for the first time they showed that DF was impaired also in performing 

online corrections during reaching, thus showing a behaviour similar to optic ataxia 

patients. The authors suggested that the most likely explanation for DF’s performance in 

these tasks is that her SPOC, a region that has been shown to be activated in healthy 
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participants during reaching, especially toward peripheral targets (Martin, Karnath, & 

Himmelbach, 2015; Prado et al., 2005), is bilaterally damaged (Milner et al., 1991). The 

authors concluded that DF presents signs of optic ataxia and therefore cannot be 

considered a pure visual form agnosia patient and suggest that further testing is required 

to test the dissociation between optic ataxia and visual form agnosia. Here we show that 

TMS seems to be a reliable technique to further test the assumptions of the model, and to 

understand the causal role of different brain regions in a given behaviour. Future 

experiments should combine the tasks used in Rossit et al. (2017) with offline TMS to 

understand the causal role of SPOC, aIPS and LOC in reaching and in the online 

corrections in the visual periphery and the central visual field, which would help 

understand which brain regions are involved in DF’s behaviour.  

Our study supports the view that the two streams contribute to grasping movements 

under different action modes and provides support to Milner and Goodale’s hypothesis of 

the two visual streams. Specifically, we found that area aIPS in the dorsal stream is 

necessary for fine hand preshaping to object’s size under real or pantomimed grasping 

movements, however, for pantomimed actions, information regarding object size 

processed in LO is additionally required to grasp efficiently. In particular, we propose that 

in the real grasping condition, the dorsal stream acts independently from the ventral stream 

to control the grasping movement by computing information in an egocentric frame of 

reference. However, under the pantomimed grasping condition, in addition to the 

computations performed by the dorsal stream, the ventral stream is additionally required, 

as the distance between the index finger and thumb need to be computed in relation to the 

size of the object in an allocentric frame of reference. 

Our results that the ventral stream is involved in pantomimed grasping, seem in line 

with recent accounts that suggest the involvement of the ventral stream in prehension 

(Lingnau & Downing, 2015; Verhagen, Dijkerman, Grol, & Toni, 2008;Verhagen, 

Dijkerman, Medendorp, & Toni, 2012). Area LO lies within the lateral occipitotemporal 

cortex (LOTC), which although is not close to classical motor-control region, it has been 

recently shown that represents varied aspects of actions (for a review see Lingnau & 

Downing, 2015). Based on this evidence, Lingnau and Downing (2015) hypothesised that 
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LOTC has a role in the perception, understanding and production of actions, including 

manipulation of tools. Our findings that LO is causally involved in pantomimed grasping, 

seem in line with the hypothesis that LOTC is involved in action. Additionally, we could 

further suggest that a sub-region of LOTC, LO, is involved in hand preshaping, which will 

be further investigated in chapter 3. 

Contrary to previous TMS studies, we did not find any effect of TMS on velocity of 

the peak grip aperture nor on time to maximum grip aperture variables (Tunik et al., 2005; 

Rice et al., 2006; Cohen et al., 2009). This might be explained by the fact that online TMS-

induced effects show a time-dependence on the kinematics of grasping (Rice et al., 2006; 

Rice et al., 2007; Cohen et al., 2009).  Specifically, Tunik and colleagues in a series of 

experiments  (Rice et al., 2006; Rice et al., 2007; Cohen et al., 2009) have shown that 

online TMS disrupts kinematics variables that are measured approximately within 350 ms 

of TMS administration. It would be interesting to further investigate when LO is critical 

in pantomimed grasping, for example by using an online TMS protocol to deliver the 

stimulation at different action stages (e.g., viewing, planning, movement onset).  

Critically, differences in the effects observed could also be related to the fact that 

we used a different localisation approach. Here, we implemented a novel technique. In 

particular, instead of using anatomical landmarks only to localise aIPS and LO only (as in 

Cohen et al., 2009; Rice et al., 2006; Tunik et al., 2005), we implemented a novel approach 

to define the regions of interest combining overlapping meta-analytic maps downloaded 

from NeuroSynth on each participant’s structural image of the brain and anatomical 

landmarks. Recently, Sack and colleagues (2008) to localise a region in the IPS involved 

in magnitude processing, compared 4 different approaches for TMS stimulation such 

fMRI-guided, MRI guided, Talairach group coordinate (extracted from fMRI activation 

of a different group of participant) and 10-20 EEG system. They reported that, although 

all the approaches attempted to denote the same area within the IPS, the strongest 

behavioural effects (e.g., effect sizes) were found when the region was localised using 

fMRI activation from each single participant, followed by MRI-guided TMS, Talairach 

group coordinates and 10-20 EEG system. While using fMRI-guided TMS localisation, 

allows to account for functional and anatomical variability across participants, using MRI-
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guided localization allows to account only for anatomical variability across participants. 

In contrast with the procedure implemented by Sack et al. (2008), we did not acquire fMRI 

activations from each single participant to localise aIPS and LO. However, we used a large 

database of fMRI activations [in Sack et al. (2008) they had only 5 participants] and we 

extracted the peak of activation close to the anatomical landmarks in each participant. This 

was done to account for anatomical variability and for functional variability across 

participants. Thus, here we show that using population-based fMRI activations combined 

with individuals’ anatomical landmarks, is a reliable method to localise LO and aIPS in 

TMS studies. In the future it would be important to compare different methods to localise 

aIPS and LO and compare the resultant behavioural effects (e.g., effect sizes). This is 

important, as using population-based activations will help save money and time as well as 

avoiding scanning participants multiple times. 

Although the existing literature suggests that cTBS applied to the motor cortex lasts 

for up to 60 minutes (Huang et al., 2005), there are not many studies investigating the time 

course and the magnitude of TBS effects on cortical excitability when it is applied to other 

brain regions (see Wischnewski & Schutter, 2015 for a review). Based on Huang et al. 

(2005) and Wischnewski and Schutter (2015), we made sure that our tasks were under 60 

minutes in duration after the stimulation was delivered (specifically our tasks together 

were no longer than 35 minutes to allow breaks). However, our design did not allow us to 

investigate the time course of cTBS-induced effects on aIPS and LO, therefore, in the 

future, it would be crucial to investigate if participants performance at different time 

intervals after the initial stimulation is different (i.e., compare the performance in the first 

10 minutes, with the last 10 minutes). Nevertheless, our results contribute to expand the 

list of brain areas on which cTBS could successfully be used to investigate the causal link 

between brain and behaviour. 

In conclusion, our results have important implications for Milner and Goodale’s 

perception and action model (Goodale & Milner, 1992; Milner & Goodale, 1995, 2006, 

2008). According to the authors, the dorsal stream mediates the visual control of online 

action directed towards an object by continuously evaluating and updating the coordinates 

of the object in relation to the body and the fingers, while the ventral stream transforms 
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visual information into perceptual representations of objects and their spatial 

relationships.  While our results provide further support for the model, that is, that the 

dorsal stream is crucial in the control of online actions, we proposed that under 

pantomimed grasping, in addition to the dorsal stream involvement, inputs from the 

ventral stream are required to guide the dorsal stream. We also propose that under real and 

pantomimed grasping, the dorsal stream controls online grasping, by continuously 

evaluating in real time the position of the objects in relation to the body and the fingers 

and comparing this information with the location and size of the objects. However, under 

pantomimed grasping additional information from the ventral stream, such as allocentric 

computations of the distance between the fingers and the actual size of the object, is 

required. We could hypothesise that the fact the aIPS contributes to both real and 

pantomimed grasping may suggest that perceptual information from the ventral stream 

reaches the dorsal stream, and here merges with action information to control online 

grasping (as suggested by Cohen et al., for real and delayed grasping). Future studies, 

should implement a dual coil TMS paradigm (De Gennaro et al., 2003) to explore how 

LO and aIPS are interconnected during pantomimed grasping.  

In this task, we used meaningless wooden blocks (Efron, 1969) to specifically 

investigate the role of the aIPS in the dorsal stream and area LO in the ventral stream in 

hand preshaping. However, Efron blocks are meaningless shapes and therefore there is no 

functional or manipulation knowledge associated with them. However, in our everyday 

interactions with the surroundings, we usually interact with tools, that have a specific 

meaning associated with them as well as functional and manipulation knowledge. As 

highlighted by Milner and Goodale (2006, 2008), tools are a particular category of objects 

that require the cooperation between the dorsal and the ventral stream. As such, to 

successfully carry out actions towards and with tools, information from both the dorsal 

and the ventral stream are necessary.   Investigation of patient DF’s ability to reach out to 

grasp tools reported that although she was able to grasp a tool based on its size, she was 

unable to grasp the tool in the appropriate place to show its function, unless she was 

allowed to use her hands to explore the object identity first (Carey et al., 1996). This 

suggests that she could use visual information to guide her grasp, however, she was unable 
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to use functional information which is linked to object recognition (e.g., grasp a knife by 

the handle to cut) to guide her hand movements (Carey et al., 1996). These findings 

suggest that structural and functional manipulation knowledge about tools can dissociate 

in the brain (Binkofski & Buxbaum, 2013; Buxbaum & Kalénine, 2010). However, the 

neural correlates of these objects’ properties are still unclear. In the next chapter, using 

fMRI, I will investigate the neural mechanisms underlying viewing tools and 

pantomiming tool actions and how different types of tool manipulation knowledge 

(structural and functional) are coded in the brain. 
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3. The representation of tool identity and action properties in the human brain for 

viewing and pantomiming  

3.1 Introduction 

Every day we constantly recognise and interact with objects in our surroundings and 

in particular tools. Although many animals are able to use simple tools (e.g., a stick for 

reaching) to achieve a goal, humans are able to create and use complex tools (e.g., a spoon, 

a hammer). Tools are man-made handled artefacts that can be functionally used to 

particular goals (Frey, 2007) as they have specific functions associated with them which 

are not inter-changeable (e.g., a knife is for cutting or spreading, but is not for hammering). 

Nearly all our everyday activities involve interactions with tools (e.g., brushing our teeth), 

which we perform easily. However, multiple lines of evidence in the field of neuroscience 

and psychology have highlighted how tool use must rely on complex interactions between 

specialised brain areas, organised in networks of cortical and subcortical regions  

(Johnson-Frey, 2004; Rothi, Ochipa, & Heilman, 1997). In fact, training a robot to 

successfully reach, grasp and use tools, using brain-computer interfaces (BCIs), requires 

multiple complex algorithm to interface (e.g., Andersen, Kellis, Klaes, & Aflalo, 2014). 

According to Milner and Goodale’s (1992) influential view of the human cortical 

visual system, a dorsal visual stream projecting from the occipital to the posterior parietal 

cortex, uses visual information to guide hand actions. Whilst a ventral stream, projecting 

from the occipital to the inferotemporal cortex, uses visual information for the purpose of 

creating perceptual representations of objects, such as the information critical for the 

visual recognition of objects. The advent of human functional neuroimaging has led to 

additional support to this account, identifying several dorsal stream areas that are 

specialised for the visual control of actions (for a review, see Culham & Valyear, 

2006;Vingerhoets, 2014) and several ventral stream areas that are specialised for visual 

recognition (for a review, see Grill-Spector & Malach, 2004).  
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Milner and Goodale (1995, 2006, 2008), hypothesised, that tool use would require 

the dorsal and ventral visual pathways to cooperate and speculated that the ventral stream, 

implicated in the recognition of tools, would be involved in the selection of where and 

how the tool should be grasped according to the intended use of the object and its function 

(Milner & Goodale, 1995, 2006, 2008). This hypothesis was further supported by the 

observation that patient DF could grasp and use objects on the basis of their physical 

properties, however, she did so in a way that was not often compatible with how they were 

used (Carey et al., 1996). According to Milner and Goodale, while the ventral stream 

allows us to recognise a target and to select the motor plan according to our previous 

experience and knowledge of the object, the dorsal stream mediates the motor outputs and 

controls the online movements (Goodale & Humphrey, 1998; Milner & Goodale, 2006).  

Milner and Goodale (1995, 2006, 2008) stressed that the visuomotor 

transformations performed by the dorsal stream are computed in real time and therefore 

are not likely to rely on stored representations, however, tool use is very much thought to 

rely on the stored representations of actions (for  review, see Rothi & Heilman, 1997). 

Thus, unlike other objects, tools are tightly linked to predictable action routines (e.g., a 

hammer is for hammering; Frey, 2007) and efficient tool use is a particular kind of 

visuomotor behaviour that requires the collaboration between the two streams (Milner & 

Goodale, 1995, 2006, 2008). In fact, tool use depends not only on tool recognition and on 

processing structural manipulation knowledge (e.g., physical properties of the objects 

such as size, orientation and shape), but also on stored semantic knowledge about the 

specific function associated with it (Creem & Proffitt, 2001; Frey, 2007; Hodges, Bozeat, 

Ralph, Patterson, & Spatt, 2000; Hodges, Salmon, & Butters, 1992) which includes the 

retrieval of the knowledge related to sensory (e.g., size and location) and motor 

representations (e.g., the motor act associated with it; Kiefer & Pulvermüller, 2012; 

Martin, 2007). Moreover, it has been hypothesised that the dorsal stream is further sub-

divided into a dorso-dorsal stream with a reach and a grasp sub-network for structural 

manipulation knowledge (e.g., how the tool is grasped) connecting frontal and parietal 

regions and a ventro-dorsal stream connecting frontal, parietal and temporal regions for 

functional manipulation knowledge (e.g., how the tool is grasped to be used; Figure 1.4, 
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Binkofski & Buxbaum, 2013; Buxbaum & Kalénine, 2010; Rizzolatti & Matelli, 2003). 

In other words, the dorso-dorsal stream is thought to be characterised as the “grasp” 

system, while the ventro-dorsal stream is thought to be characterised as the “use” system 

(Binkofski & Buxbaum, 2013).  

Here, I used fMRI and multivoxel pattern analyses to investigate how different tool 

properties, such as tool identity, structural and manipulation knowledge are represented 

within the dorso-dorsal, ventro-dorsal and ventral stream and if these representations vary 

according to the task (viewing or pantomiming) and stimulus presentation (pictures or 

words).  

A central role in tool processing and use is played by object features that are relevant 

for grasping (i.e., affordances). According to Gibson (1979), the content of visual 

perception includes a description of how the environment and objects within it can 

potentially impact our actions. Critically, unlike many other objects, such as furniture, 

buildings, animals or body parts, tools can be grasped and are linked to specific actions 

(Mruczek et al., 2013). For example, according to Gibson (1979) the mere vision of tools, 

naturally involves activation of correspondent motor representations for grasping (e.g., 

motor affordances). As such, images of tools activate not only areas in the ventral stream 

implicated in tool identification, but also areas in the dorsal stream, implicated in the 

visual control of actions (Lewis, 2006).  

Behaviourally, it has been shown that viewing pictures of tools can automatically 

potentiate motor actions associated with the use of the tool, even if no overt action is 

performed (Tucker & Ellis, 1998). In an elegant experiment, Tucker and Ellis (1998), 

asked participants to decide whether or not picture of familiar graspable objects with 

handles (e.g., pan) were inverted or upright. The authors observed that when handles were 

facing right, right hand responses were facilitated (i.e., faster reaction times), while left-

facing handles, facilitated responses with the left hand even though the orientation was 

irrelevant to the task. Taken together these results indicate that the orientation of the 

handle automatically gives rise to the activation of corresponding motor plans for grasping 

(Tucker & Ellis, 1998). 
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Tucker and Ellis have since observed a similar compatibility effect for object size 

(Ellis & Tucker, 2000; Tucker & Ellis, 2004). In a series of experiments, participants were 

presented with either man-made tools or natural objects (e.g., fruit, vegetables or nuts), 

which required either precision (e.g., grasping with the index finger and thumb) or power 

(e.g., grasping with the five digits and the palm) grasps and they were asked to decide if 

objects were man-made or natural. Using a novel apparatus to simulate precision and 

power grasping (Ellis & Tucker, 2000; Tucker & Ellis, 2004) the authors showed that 

small objects facilitate precision-type responses while large objects facilitate power grip 

responses. Importantly, as in the authors’ previous experiment (Tucker & Ellis, 1998), the 

task to decide if objects were man-mad or natural, did not require explicit attention to the 

size of the object. 

  Tucker & Ellis (2004) observed the same effect when words of objects, instead of 

images were presented (Tucker & Ellis, 2004). Thus, they proposed that objects’ visual 

properties important for grasping, such as orientation and size, automatically trigger the 

activation of corresponding motor representations. Moreover, for size and grip type, the 

same effect was observed even when words were presented (i.e., action-related visual 

inputs were absent), thus the authors suggested that how the motor representations for grip 

are generated, depends more upon stored knowledge of the object and the actions 

associated with it, than the physical parameters of the stimulus used (Tucker & Ellis, 

2004). 

Evidence to support the idea of motor affordances as integral to the visual perception 

of objects comes from neurophysiology studies in monkeys and neuroimaging studies in 

humans. Electrophysiological recordings in monkeys have shown that grasp-related 

neurons within the anterior intraparietal area (AIP) often respond to the mere visual 

presentation of objects, even if no movement is required (Murata et al., 1997; Murata, 

Gallese et al., 2000; Rizzolatti et al., 1988; Taira, Mine, Georgopoulos, Murata, & Sakata, 

1990). In addition, for some of these cells, a match between the visual and the motor 

response has been observed. Specifically, neurons that respond to precision grasping, also 

respond to the sight of small objects, which requires precision grasping versus bigger 

objects that require power grasps (Murata et al., 2000). 
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Similarly, fMRI studies in humans, have shown that viewing graspable objects 

activate regions not only in the ventral stream, but also in the dorsal stream (Lewis, 2006). 

In a meta-analysis of human neuroimaging studies, Lewis (2006) analysed results from 35 

imaging studies across 64 different tasks, including perceptual (e.g., reading words, 

answering questions, hearing tools), motor tasks (e.g., pantomime and imagining tool use) 

and tool use and identified a network of frontoparietal and occipitotemporal regions that 

was consistently activated when viewing, hearing, imaging and pantomiming tool actions. 

Critically, he observed there was a large extent of overlap of activated brain regions across 

the various paradigms (Lewis, 2006), consistent with the idea that motor actions 

associated with tool use and perception of tools rely on similar cortical networks.  

In the occipitotemporal cortex several areas have been identified to be implicated in 

tool-related tasks. Specifically, the fusiform gyrus (FG) (Chao et al., 1999; Garcea & 

Mahon, 2014; Mahon et al., 2007; Whatmough et al., 2002), the lateral occipitotemporal 

cortex (LOTC) (Bracci et al., 2012; Lingnau & Downing, 2015; Perini et al., 2014) and 

the middle temporal gyrus (MTG) (Boronat et al., 2005; Chao et al., 1999; Emmorey et 

al., 2004; Kellenbach, Brett, & Patterson, 2003; Macdonald & Culham, 2015; Martin, 

2007; Valyear & Culham, 2009). Areas typically activated in tool-related tasks in the 

frontoparietal network include the intraparietal sulcus (IPS), the inferior parietal lobule 

(IPL), the superior parietal lobule (SPL) (Boronat et al., 2005; Buxbaum & Saffran, 2002; 

Chao & Martin, 2000; Hermsdorfer, Terlinden, Muhlau, Goldenberg, & Wohlschlager, 

2007; Macdonald & Culham, 2015; Mruczek et al., 2013), the ventral (PMv) and dorsal 

(PMd) premotor cortex (Chao & Martin, 2000; Creem-Regehr & Lee, 2005; Johnson-Frey 

et al., 2005; Kellenbach et al., 2003).  

To summarise, tool processing is thought to involve both dorsal and ventral visual 

stream regions and is thought to reflect access to structural manipulation knowledge (e.g., 

how to grasp a tool) and functional manipulation knowledge (e.g., the identity and 

function movement associated with it), respectively (Lewis, 2006). Structural 

manipulation knowledge is considered a long-term knowledge based on previous 

experience and contains the parameters associated with the manipulation of familiar tools, 

such as, for example the hand posture. Moreover, it provides this information every time 
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we interact with objects, avoiding the need for each movement to be reconstructed every 

time (Reynaud, Lesourd, Navarro, & Osiurak, 2016). The structural manipulation 

knowledge has been originally associated with left IPL (Binkofski & Buxbaum, 2013; 

Buxbaum, 2001; Buxbaum & Kalénine, 2010; Daprati & Sirigu, 2006; Gainotti, 2012; 

Handy, Grafton, Shroff, Ketay, & Gazzaniga, 2003; Reynaud et al., 2016). On the other 

hand, it is thought that functional manipulation knowledge stores the function associated 

with a tool that can be retrieved for future uses (Vaesen, 2012). In a recent review of fMRI 

studies, Reynaud et al. (2016) identified the left pMTG as a potential key regions for the 

storage of functional manipulation knowledge.  

To date, not much is known about the exact role that different areas within the 

frontoparietal and occipitotemporal cortex play in processing information about tools 

(Almeida et al., 2013; Almeida, Mahon, & Caramazza, 2010; Boronat et al., 2005; 

Buxbaum et al., 2000; Buxbaum & Saffran, 2002; Carey et al., 1996; Goldenberg & Spatt, 

2009). Important insights come from neuropsychological research. For example, damage 

to the MTG and the lateral occipital complex affects knowledge about tool identity and 

function (Buxbaum & Saffran, 2002; Negri et al., 2007). On the other hand, damage to 

the IPL, specifically the SMG, disrupts the ability to functionally manipulate tools 

(Randerath et al., 2010) while damage to the SPL and the posterior IPS impairs structural 

manipulation knowledge (Wood, Chouinard, Major, & Goodale, 2017).  

It is clear that, to efficiently use a tool for a specific purpose (e.g., use a spoon to 

stir the coffee), our visuomotor system must determine the properties of the tool and use 

them to select the appropriate structural manipulation (i.e., how to shape the hand to grasp 

it) and its functional manipulation (i.e., how to move it for use). For example, a key is 

typically grasped between the index finger and the thumb (i.e., precision grip) and inserted 

in the door hole and turned anti-clockwise to open the door (i.e., rotation movement), 

while when we use a screwdriver, we typically grasp the tool with the palm and all the 

five fingers (i.e., power grip) and rotate our wrist to use it (i.e., rotation movement). While 

both a key and a screwdriver involve a wrist rotation movement for using them (i.e., 

functional manipulation knowledge), the hand postures for grasping them (i.e., structural 

manipulation knowledge) are quite distinct (precision versus power).    
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In 1956, Napier (1956) divided handgrips from a functional and evolutionary 

perspective into precision and power grips. In the power grip, all digits are flexed around 

the object to provide high stability, whereas the precision grip requires independent finger 

movements to provide stability and involve fine control of the directions and the forces of 

the fingertips  (Flanagan, Burstedt, & Johansson, 1999; Johansson, 1996). In primates and 

humans, the primary motor cortex is crucial for the execution of skilled manipulatory 

tasks, especially those that involve a precision grip (Porter & Lemon, 1993).  Moreover, 

two key regions have been identified in monkeys to be involved in grasping, the anterior 

intraparietal area (AIP) and the premotor area F5 (Jeannerod et al., 1995; Murata et al., 

1997, 2000; Taira et al., 1990). In a series of studies in monkeys, Baumann and colleagues 

(Baumann, Fluet, & Scherberger, 2009; Fluet, Baumann, & Scherberger, 2010) showed 

that both AIP and area F5 contained neurons selective for grip and object orientation. 

Specifically, during movement execution, the majority of neurons in area AIP decoded 

both grip type and orientation of the handle  (Baumann et al., 2009), while the majority of 

neurons in area F5 decoded grip information only (Fluet et al., 2010). In humans, aIPS has 

been identified as the homologous of the macaque AIP, while PMv has been identified as 

the homologous of area F5 (Ferri et al., 2015).  

Interestingly, similarly to what has been observed in monkeys, neuroimaging studies 

have shown that aIPS and PMv are more activated during grasping versus reaching 

movements (Binkofski et al., 1999; Cavina-Pratesi et al., 2010; Culham et al., 2003; Frey 

et al., 2005). As reviewed above, Tucker and Ellis (2004) reported that the smaller objects 

facilitated precision grip responses, while bigger objects facilitated power grip responses. 

This effect was observed even if no overt movement was required, nor the size of the tool 

was relevant for the task. Thus, the mere viewing of tools of different sizes seems to 

facilitate responses based on their structural manipulation (e.g., power versus precision) 

knowledge.  

In humans, fMRI evidence has shown that  both precision and power grips activate 

the primary sensory cortex (S1), the dorsal premotor cortex (PMd), the ventral premotor 

cortex (PMv), the supplementary motor area (SMA) and regions within the post-central 

sulcus (Ehrsson et al., 2000). One of the aims of the present fMRI and MVPA study is to 
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explore whether power and precision grip (e.g., structural manipulation knowledge) can 

be decoded in the regions highlighted above independently of the task (view or 

pantomime) and stimulus presentation (pictures or words). 

In the last decade, the use of multivoxel pattern analysis (MVPA) to analyse and 

interpret fMRI data has become more common (Poldrack & Farah, 2015). While 

conventional univariate fMRI analyses relates how experimental variables affect the 

activation of individual voxels voxel separately (e.g., Friston et al., 1995; Poldrack & 

Nichols, 2011), MVPA uses patterns of classification algorithms to differentiate the fine-

grained spatial voxels pattern of activity in a given region elicited by different stimuli, 

which might be missed by traditional analysis approaches (Fabbri et al., 2014; Gallivan & 

Culham, 2015; Gallivan et al., 2011; Kriegeskorte, Goebel, & Bandettini, 2006; Mur, 

Bandettini, & Kriegeskorte, 2009; Pereira & Botvinick, 2011; Pereira, Mitchell, & 

Botvinick, 2009). In other words, whereas conventional univariate fMRI analyses 

examine each voxel separately, typically by smoothing and averaging the activity across 

several voxels, MVPA uses classification algorithms to test for information contained 

within voxel patterns of activations. In the last years, MVPA has been applied in the 

domain of visual-perceptual research and showed that visual and auditory stimuli can be 

decoded from voxel patterns of activity in visual (Haxby, Hoffman, & Gobbini, 2000; 

Haynes & Rees, 2006; Haynes & Rees, 2005; Kamitani & Tong, 2005; Williams et al., 

2008) and auditory cortex (Formisano, De Martino, Bonte, & Goebel, 2008; Meyer et al., 

2010). More recently, MVPA has been used to successfully decode tool processing 

(Bracci et al., 2012; Chen, Garcea, Jacobs, & Mahon, 2017; Chen et al., 2016; Peelen et 

al., 2013; Peelen & Caramazza, 2012), target-directed actions (Fabbri, Caramazza, & 

Lingnau, 2012; Fabbri, Strnad, Caramazza, & Lingnau, 2014)  and to discriminate 

between pantomimes of tool use (Chen et al., 2017). 

Critically, to grasp an object we need to move the arm toward it and plan the 

appropriate hand configuration. Previous fMRI studies suggested that the dorsomedial 

pathway (e.g., SPOC, medial intraparietal, PMd) is specialised for transport component 

while the dorsolateral pathway (aIPS, PMv) is specialised for the grip component (e.g., 

Culham et al., 2006; Jeannerod et al., 1995; Vesia and Crawford, 2012). More recently, 
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using MVPA and fMRI  Fabbri et al. (2014) showed that a widespread network of areas 

within the dorsomedial pathway, including SMA, the superior portion of PMd, SPL coded 

for reach direction. On the other hand, regions in the dorsolateral pathway, including the 

inferior portion of PMd, M1 and S1 coded grip type. Additionally, they observed that 

PMv, SPL and aIPS coded both reach direction and grip type. The authors concluded that 

their results provided evidence against the view that there is a clear distinction between a 

reach and a grasp subnetwork within the dorso-dorsal stream. They suggested that the two 

subnetworks may be involved in both components but with a different temporal 

involvement and identified the SPL as a candidate to combine information from the reach 

and the grasp component of the movement.  

In another experiment, Fabbri et al. (2016), asked participants to passively view or 

grasp six 3D objects of different shapes (i.e., plates, disks, spheres, cubes, cylinder and 

bars) and sizes (small, medium and large) using a precision grip (precision 2), using all 

five fingers to precisely grasp the object (precision 5) or to grasp the object coarsely in a 

whole-hand grasp using all five digits (coarse 5). Using representational similarity 

analysis (RSA) the authors found that object elongation is the most strongly represented 

object property during grasping and is coded preferentially in the primary visual cortex, 

the anterior SPOC as well as posterior SPOC. On the other hand, the primary 

somatosensory cortex, the motor cortex and PMv coded preferentially the number of digits 

while regions within the ventral stream and the dorsal stream coded for both visual and 

motor dimensions.  The authors suggested that elongation is a critical property of the 

object to grasp and along with the number of digits used is represented within both parietal 

and occipitotemporal regions. They concluded that the communication between the dorsal 

and the ventral streams about object visual and motor properties may be critical for the 

execution of grasping actions and that the preference for object elongation in the grasping 

task may reflect that elongation is critical in selecting the appropriate grip type and wrist 

orientation. 

Despite the advances made in our understanding of the regions that code hand grip, 

the studies reviewed so far presented blocks or meaningless objects, thus whether these 

regions are responsible for grip selection when processing tools is unclear. When we 
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interact with tools in our surroundings, we have to know their identity and to select not 

only the appropriate grip to pick them up (i.e., structural manipulation knowledge), but 

also the appropriate subsequent movement (i.e., functional manipulation knowledge) 

following our grasp. For example, a key and clothes peg are both picked-up with a 

precision grasp, but distinct rotating and squeezing movements are associated with their 

opening/closing and hanging functions. 

Recently, Peelen and Caramazza (2012), implemented fMRI and multivoxel pattern 

analysis (MVPA) to explore which regions in the human brain carry information about 

conceptual object properties such as functional properties (rotation versus squeeze) and 

location (kitchen vs garage). The authors showed that the activity patterns in the anterior 

temporal cortex carry conceptual information about how (e.g., rotation versus squeeze) 

and where (e.g., kitchen or garage) an object is typically used, while the posterior 

occipitotemporal cortex carry information about perceptual similarities (e.g., how similar 

two objects look like). Moreover, they found that information about object location and 

functional action (e.g., rotation versus squeeze) was independent of whether participants 

made location or action judgements. The authors concluded that object conceptual 

properties (e.g., functional and location properties) carried in the anterior temporal lobe 

were retrieved even when they were irrelevant to the task and suggested that conceptual 

object representations in this region are independent of the perceptual properties of the 

object  (Peelen & Caramazza, 2012).  

More recently, Wurm and Lingnau (2015) used MVPA to investigate the degree to 

which action-specific representations (e.g., to open or to close) in regions within the tool 

network generalise according to different level of abstraction (e.g., concrete, intermediate 

and abstract). While in the scanner, participants watched videos of open and close actions 

with different exemplars of bottles and boxes, that required different kinematics. The 

authors found that bilateral IPL and LOTC coded actions at all levels of abstraction, while 

bilateral PMv coded action only at a concrete level. Moreover, they observed that 

decoding accuracies for intermediate and abstract levels were significantly higher in 

bilateral IPL and LOTC versus bilateral PMv. Additionally, they found that bilateral 

LOTC showed significantly stronger decoding for the concrete compared with 
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intermediate and abstract levels, whereas the bilateral IPL showed similar decoding 

accuracy across the three levels of abstraction. Searchlight MVPA revealed that actions at 

a concrete level were decoded bilaterally in the occipitotemporal cortex, the post-central 

sulcus, the IPS, PMd and PMv, while bilateral pMTG, the inferior temporal sulcus and 

post-central sulcus at the junction to the anterior IPS coded action sat intermediate and 

abstract levels. The authors concluded that inferior parietal and occipitotemporal cortices 

code actions at abstract level of representation (open/close regardless of objects), while 

the premotor cortex codes action at a concrete level only and concluded that the 

occipitotemporal and the inferior parietal cortices, but not premotor regions, are involved 

in action understanding (Wurm & Lingnau, 2015).  

Although there is some understanding of the broad computations that are carried out 

by regions within the frontoparietal and occipitotemporal cortices, it remains unclear what 

tool’s structural and functional manipulation properties are represented within each region 

and how these representations overlap or change according to the task used. In the current 

fMRI study, we use multivoxel pattern analysis (MVPA; Haxby et al., 2001) to explore 

the role of different areas in the tool processing network in representing tool identity, 

structural manipulation knowledge (e.g., power versus precision grip – how to position 

the hand to grasp) and functional manipulation knowledge (e.g., squeeze versus rotation 

– how to grasp the object to use)  while participants passively viewed images of tools and 

executed tool use pantomimes.  

Recently, Chen et al (2016), using fMRI and MVPA explored the role of regions 

within the frontoparietal and the occipitotemporal cortex in representing actions and 

functional knowledge. Participants were asked to pantomime the use of six different items 

while were in the scanner: scissors, pliers, knife, screwdriver, corkscrew and bottle 

opener. The classifier for MVPA was trained to discriminate for example, the pantomime 

of screwdriver from the pantomime of scissors (i.e., rotation versus squeeze movement) 

and then tested on another pair of tools that matched the same squeeze versus rotation 

movement (i.e., corkscrew versus pliers). Moreover, as tools were also matched across 

items for function, they could also test whether regions in the brain coded for function 

(i.e., scissors and knife are for cutting; corkscrew and bottle opener are for opening). For 
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the ROIs MVPA analysis, the authors defined the left somatomotor hand area and tool-

selective regions within the left parietal lobe, the left pMTG and bilaterally in the medial 

fusiform gyrus. They reported that for action pantomimes (i.e., rotation versus squeeze), 

successful decoding was observed in the left somatomotor representation of the right hand 

and in the left aIPS. No action decoding was observed in the left pMTG or in the right 

medial fusiform gyrus. For tool function, they reported no significant decoding in any of 

the regions. Moreover, they conducted a whole-brain searchlight analysis, which revealed 

action decoding in motor and premotor area bilaterally, left aIPS, left anterior temporal 

lobe, bilateral putamen, right cerebellum and in a region posterior to the functionally 

defined middle temporal gyrus. They observed significant decoding for function 

bilaterally in the medial temporal cortex, in the left perirhinal cortex, in the right 

hippocampus, in the right PMd and in the right retrosplenial cortex. Additionally, they 

observed higher decoding accuracies for action versus function in left premotor and motor 

cortex, the left aIPS and bilaterally in the occipital cortex and in the right cerebellum. 

Higher decoding accuracies for object function than rotation versus squeeze movements 

were observed only in the left parahippocampal gyrus. The authors concluded that 

frontoparietal and medial temporal areas represent respectively rotation versus squeeze 

movements and the object function (i.e., corkscrew is used to open)  (Chen et al., 2016).  

While we were analysing our results, Chen et al. (2017) published a paper in which 

using fMRI MVPA, investigated whereas functional manipulation knowledge (rotation 

versus squeeze) and object function (open versus cut) similarity between objects  can be 

decoded independently of the task applied (viewing or pantomime) and stimulus format 

(images or words) in the IPL. These items were chosen as they could be analysed in triads, 

in which two of the three items were similar either in their function (i.e., scissors and knife 

are for cutting; corkscrew and bottle opener are for opening) or in their functional 

manipulation knowledge (i.e., rotation versus squeeze). In the viewing task, participants 

were instructed to look at the images and think about the features of the objects (i.e., name, 

function, actions, weight, context in which is found, material properties), while in the 

pantomime task, participants were presented with tool names in text format and instructed 

to pantomime the tool use with their right hand. The authors reported successful 
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classification of functional manipulation knowledge in the pantomime task in 

frontoparietal areas, including bilateral motor and premotor cortex, left IPL (the left 

supramarginal gyrus and the aIPS), the left SPL, the bilateral putamen, the right insula 

and the right cerebellum. In the viewing task, for rotation versus squeeze, they reported 

significant decoding in the left IPL (the supramarginal gyrus at the junction with the aIPS), 

the left SPL, the bilateral posterior parietal lobule, the bilateral pMTG and the right 

inferior temporal gyrus. Based on the fact that pMTG represents functional manipulation 

knowledge in the viewing task, but not in the pantomime task (e.g., when tools and hands 

are not visible), the authors suggested that decoding in pMTG is driven by tools and hand 

perceptual properties (e.g., viewing a tool/the hand).  For cross-task classification they 

observed that the supramarginal gyrus showed above chance classification for functional 

manipulation knowledge. For tool function in the pantomime task, the authors reported 

significant classification in the medial aspect of the left ventral temporal cortex and the 

middle and orbital frontal gyri bilaterally; while during the viewing task, significant 

decoding was found in the bilateral medial aspects of the ventral temporal cortex, the 

bilateral middle frontal gyrus, the left precentral gyrus and the bilateral occipital pole. 

Thus, the authors suggested that tool function is represented in the temporal lobe and not 

in the parietal cortex. The authors concluded that the left inferior parietal lobule represents 

functional manipulation knowledge independently from the task. On the other hand, the 

SPL represents functional manipulation knowledge in both tasks, but not in a cross-task 

manner. Thus, the authors hypothesised that the SPL represents functional manipulation 

knowledge, but this is task specific manner. Moreover, as all functional manipulation 

knowledge decoding was carried out across different pairs and significant cross-task 

decoding was observed across different tasks and stimulus formats, the authors concluded 

that the IPL represents functional manipulation knowledge in an abstract manner and is 

not based on visual structural properties of the stimuli.  

In the studies reviewed above, the focus was on tool-selective regions, however, 

when interacting with tools in our surroundings, our hands play a crucial role in action 

execution and online visuomotor control is applied to guide, monitor and correct actions. 

Several neuroimaging studies have investigated whether the brain activity in tool networks 
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regions is modulated by what is used to grasp and object (i.e., the hand or a tool) as well 

as whereas the hand is selectively represented in the human brain. For example, Jacobs, 

Danielmeier and Frey (2010) showed that planning grasping action with the tool or the 

hand increased activity within the same regions in the parietal and premotor cortex, such 

as the aIPS and PMv and concluded that grasping actions involving the hand or a novel 

tool depend on representations that are supported by the same brain regions (Jacobs et al., 

2010).  

Similarly, Gallivan, McLean, Valyear and Culham (2013) showed that tool use is 

subserved by numerous action-centred neural representations that are both shared and 

distinct from the representations of hand actions without tools in hand.  At an effector-

specific level, they found that SPOC and the extrastriate body area (EBA) discriminated 

between planning grasping versus reaching for movement performed with the hand only, 

while SMG and pMTG discriminated upcoming movement performed with the pliers 

only. Additionally, the aIPS and the motor cortex discriminated planned actions with both 

the hand and the pliers but did not show cross-decoding between the effectors. On the 

other hand, at an effector-independent level, they identified regions, such as the PMd, 

PMv and the middle and posterior IPS, that represented the planning of reaching versus 

grasping for movements performed with both the hand and the pliers. The authors 

concluded that brain regions that represent planning of actions with the hand or with pliers 

may be organised according to a motor hierarchy that distinguish between various level 

of abstraction required to perform actions. Specifically, they suggested that at a lower 

level there are hand-selective regions like SPOC and EBA, which represents movement 

with the hand but not with the tool, tool-selective regions such as SMG and pMTG and 

parietal areas such as aIPS and motor cortex, which although represented upcoming 

movements with the hand and the pliers, did not generalise across effector. In contrast, 

they suggested that areas that discriminated movement plans for the hand and the pliers 

and across effectors, such as posterior and middle IPS, PMd and PMv, were at higher-

levels within the hierarchy. The authors concluded that action performed with the hand 

and the pliers are represented separately at earlier levels of motor and sensory processing 

and that these representations become integrated in the frontoparietal cortex. 
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According to Napier (1956), humans’ manual dexterity is an important ability that 

sets humans apart from other species. It is clear that the hand plays a critical role in our 

everyday interactions with our surrounding (e.g., to grasp objects, but also to communicate 

and guide attention), therefore several studies have investigated whether there are specific 

hand-selective regions in the brain (Bracci et al., 2012; Bracci, Cavina-Pratesi, Connolly, 

& Ietswaart, 2016; Bracci et al., 2010; Op de Beeck, Brants, Baeck, & Wagemans, 2010). 

For example, Op de Beeck et al. (2010) have shown that regions within the ventral visual 

stream showed a significant difference in the activation patterns between hands and torsos 

in regions such as the extrastriate body area, the ventral occipitotemporal cortex and the 

fusiform cortex and concluded that there is a distributed selectivity for specific 

subordinate categories within the ventral stream, and that this selectivity is particularly 

strong for body parts, including hands.  

In the same year, Bracci et al. (2010) conducted two fMRI experiments to test for 

hand-preferring responses in the human visual cortex using pictures of different body parts 

(e.g., hands, fingers, feet, whole body parts, assorted body parts and robotic hands) and 

objects. The authors localized a new hand-selective region in the left occipitotemporal 

cortex (LOTC), which although is partially overlapping with the extrastriate body area 

(EBA) was functionally dissociated from it. Whilst hand-selective LOTC responded more 

strongly to hands, followed to robotics hands, fingers and feet, EBA responded more 

strongly to body parts, followed by hands and feet. The authors concluded that there is a 

region that contains representation of the human hand in the lateral occipitotemporal 

cortex (LOTC), which is separate from the EBA (Bracci et al., 2010).  

In two subsequent fMRI studies, Bracci et al. (2012) compared the distribution of 

activity within the left  LOTC in response to tools and hands to explore the degree in 

which the functional activity in response to these two categories overlapped. In 

experiment 1, they compared the responses to hands and tools, relative to animals, to 

localize hand- and tool- selective regions in LOTC. Moreover, they localized motion-

responsive (using the contrast moving versus static dots) and object responsive (using the 

contrast intact versus scrambled objects) regions in LOTC. The authors then compared 

the location and functional representations of these regions. In experiment 2, the authors 
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tested whether the overlap between tool- and hand- selective regions was specific to hands 

or related to more general body parts. The authors observed that activity within hand-

selective and tool-selective left LOTC overlapped, however, hand- and tool-selective 

LOTC did not overlap with responses to whole bodies, body parts, objects, or motion. 

Using MVPA, the authors observed a higher degree of similarity between response 

patterns to tools and hands in LOTC, but not between hands and other body parts or tools 

and other body parts. Additionally, they observed that similarity between tools and hands 

response patterns was specific to LOTC and was not observed in the occipital cortex or in 

the fusiform area and suggested that the overlap was therefore not related to low-level 

visual or shape similarities between hands and tools, which would have been expected in 

the fusiform area and in the occipital cortex. Moreover, using functional connectivity 

contrasting the whole brain connectivity, they showed that hand- and tool- selective LOTC 

(versus body-, motion- and object- selective LOTC regions) were connected with regions 

in the left intraparietal sulcus (which showed significantly higher responses to hands and 

tools versus animals and scenes) and left premotor cortex. The authors suggested that 

hands and tools share a primary involvement in object-directed actions, which is reflected 

in the organisation of the occipitotemporal cortex. Regarding the overlap between tools 

and hands in LOTC, the authors postulated that although each selective region represents 

only one category (e.g., tools or hands), each category may indirectly activate the 

representation of the other category (e.g., viewing a picture of a tool may indirectly 

activate the representation of hands). Alternatively, they proposed that LOTC may 

represent the semantic information that represent the meaning of the action. The authors 

concluded the overlap between hands and tools in LOTC is not related to share visual 

properties, but reflect action-related dimensions, and may reflect the organisation of 

parietal downstream networks due to the differences observed in the connectivity between 

LOTC and these networks  (Bracci et al., 2012). 

To further investigate the role played by these occipitotemporal areas, Bracci et al. 

(2016) presented pictures of tools, hands, bodies, non-manipulable objects and scrambled 

images of objects to the participants while in the scanner. Using an ROI approach, they 

identified a network of areas in the left hemisphere, including the IPS, the LOTC and the 
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ventral OTC (VOTC), that was preferentially activated for tools versus scrambled objects. 

Similarly, using a contrast of hand versus scrambled images, they identified regions within 

the left IPS, LOTC and VOTC preferentially activated for hands and that were partially 

overlapping with the tool-selective activation. Thus, hand-related and tool-related 

responses were observed in both the parietal (i.e., IPS) and occipitotemporal cortex (i.e., 

LOTC and VOTC). To further investigate the representational content of the different 

regions, the authors implemented correlation-based MVPA. They computed the 

distribution of the responses to hands and tools images as two categories that are 

functionally associated within the action domain (e.g., both are involved in object 

manipulation), but distinct within the category domain (e.g., tools are inanimate objects, 

whereas hands are animate objects). They observed that while images of hands and tools 

activated similar areas in the parietal and the occipitotemporal cortex, the representational 

content in these regions was remarkably different. In fact, activity patterns in left LOTC 

revealed high response pattern similarities for the action (i.e., hands and tools) as well as 

the category domain (i.e., inanimate and animate), while IPS coded for the action domain 

only. On the other hand, VOTC decoded the object’s domain only. The authors concluded 

that while IPS seem to represent the implementation of hand and tool interactions, the 

VOTC seem to represent aspects of category knowledge such as animate versus inanimate. 

Moreover, LOTC seems to bridge category representations from VOTC and action 

representations from IPS by representing both types of information. The authors 

concluded that there is a network of overlapping hand-related and tool-related responses 

within the tool network in the left hemisphere which represent different properties (Bracci 

et al., 2016).  

Inspired by these findings, here, we explored which properties, such as tool identity, 

structural and functional manipulation knowledge, are represented within the tool network 

and how these representations overlap or change according to the nature of the task. For 

this purpose, we implemented two tasks: in the viewing task, participants were presented 

with pictures of tools, while in the pantomime task they were presented with the printed 

name of the same tools presented in the view task. The two tasks differed in both the 

response that was required (passive viewing versus pantomime) and stimulus presentation. 
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Moreover, by presenting tools that afforded different grasp types (e.g., power versus 

precision) and different functional use movements (e.g., rotation versus squeeze), we 

manipulated structural manipulation knowledge and functional manipulation knowledge 

respectively. In our experiment we compared pictures versus words as well as passive 

view versus pantomiming. This was done as we were interested evaluating the hypothesis 

that regions within the occipitotemporal and frontoparietal networks represents actions in 

a manner that is independent from the specific task participants are performing. Successful 

classification of action properties (e.g., functional and manipulation knowledge) within 

tasks and across objects would constitute evidence that within these regions, action 

properties are accesses independently of task context and stimulus format.  

Based on Gibson’s (1979) theory of affordances, we hypothesized that viewing 

pictures of tools should automatically activate the motor plans for actions in the 

frontoparietal network. Thus, in the view task we would expect structural manipulation 

knowledge (power versus precision), as well as functional manipulation knowledge 

(rotation versus squeeze) to be coded in frontoparietal regions. Based on the perception 

and action model (Milner & Goodale, 1995, 2006, 2008) and on the existence of two 

pathways for grasp and use in the dorsal stream (figure 1.4; Binkofski & Buxbaum, 2013; 

Buxbaum & Kalénine, 2010), we hypothesised that tool identity would be represented 

within the ventral stream as well as within the ventro-dorsal stream (e.g., pMTG, SMG 

and PMv). Moreover, as in chapter 2 we observed that LO is involved in hand preshaping 

in pantomime grasping, we would expect that regions within the lateral occipital cortex 

code for structural manipulation knowledge. In the pantomime task, we would also expect 

that regions within the dorso-dorsal grasp network, such as IPS and PMv, represent 

structural manipulation knowledge, while regions within the ventro-dorsal use network, 

such as pMTG, SMG and PMv, represent functional manipulation knowledge. 

Additionally, as Lewis (2006) hypothesised that the motor and the semantic system 

overlap, thus if the function and the identity of the tools needs to be retrieved to 

successfully produce motor actions, we hypothesized that regions within the ventral 

stream should code tool identity in the pantomime task as well. If decoding can be found 

regardless of tasks and stimulus presentation format (i.e., images versus printed name of 
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tools), this would show that the decoding observed within each task is not simply driven 

by the visual structural properties of the tools. As recent fMRI studies have identified an 

extensive left-lateralised cortical network implicated in real every-day tool use in humans, 

which includes areas that encode both tool identity and the manipulations that are 

performed (Brandi, Wohlschlager, Sorg, & Hermsdorfer, 2014) we focused our analysis 

on the left hemisphere. 

Moreover, as Bracci et al. (2012) showed that there is hand- and tool-selective 

regions within the occipitotemporal cortex and that they represent action and identity 

related properties differently, we were interested in exploring whether and how these 

regions represent tool identity, structural and functional manipulation knowledge 

associated with manipulation of tools. Such insight would help us understanding how tools 

and tool related actions are represented within the tool network.  

3.2 Methods 

3.2.1 Participants 

Eighteen participants (7 males; mean age = 24.6 years old, S.D. = 4.1 years old; 

mean education = 17.5 years, S.D. = 1.8 years) recruited from the University of Maastricht 

(Maastricht, Netherlands) took part in a neuroimaging experiment at the Scannexus MRI 

scanning facilities (Maastricht, www.scannexus.nl). All participants were healthy, had 

normal or correct-to-normal vision and were right-handed (Oldfield, 1971). The study was 

approved by the Ethics committee of UEA (Norwich, UK; ref: 2015-0058-000146) and 

conducted in accordance of the Declaration of Helsinki (1964). Participants were 

reimbursed for their time. Although most of the participants we tested were not English 

native speakers, all participants were consented, instructed, tested and debriefed in 

English. As not all the participants were native English speakers, before taking part in the 

experiment all participants took part in a training session (see section 3.2.5) to ensure they 

were familiar with the word presented as well as with the expected movement associated 

with the tools.  
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3.2.2 Stimuli Selection 

To select the most appropriate tools for our experiment, we selected 12 tool 

identities included in previous normative, behavioural and fMRI studies (Brodeur, 

Dionne-Dostie, Montreuil, & Lepage, 2010; Brodeur, Guérard, & Bouras, 2014; Chen et 

al., 2016; Garcea & Mahon, 2012; Guérard, Lagacé, & Brodeur, 2015; Lagacé, Downing-

Doucet, & Guérard, 2013; McNair & Harris, 2012). First, from a dataset of 296 stimuli 

from Lagacé et al. (2013), we excluded the objects that did not have a specific action 

associated with them (e.g., ashtray), leaving us with 161 tools. Lagacé et al. (2013) 

presented participants with 5 possible grip types: power, intermediate, index-thumb, 

fingers-thumb and parallel extension (see appendix D). Thus, for the purpose of the study, 

from the list of 161 we extracted only tools that afforded power (N = 87) and precision (N 

= 43) grip. These tools were selected, based on  Lagacé et al. (2013) ’s ratings in the grip 

use rating task (e.g., grasp to use the object) and grasp rating task (e.g., grasp the object). 

From this list, we selected only tools which were rated to afford between 0.9 and 1.5 

actions on average, which left us with 58 power grip and 33 precision grip tools. This was 

done to make sure we selected tools that afforded a number of actions as close as possible 

to 1 (thus excluding tools with no actions associated with them, or tools with many actions 

associated with them). From this list of 91 tools, we excluded tools if they included actions 

involving an interaction with the upper part of the body (e.g., lipstick, toothbrush, cup) or 

throw actions (e.g., ball). This was done to avoid excessive movements during pantomime 

actions in the scanner. Moreover, tools that had more than one exemplar, but were 

functionally similar were only reported once (e.g., pen and fountain pen, spoon and 

wooden spoon). This left us with 44 tools: 9 precision grip tools and 34 power grip tools. 

The remaining 34 power grip tools and 9 index-thumb grip tools were compiled in a table 

with other tools used in previous studies from Chen et al. (2016),  Garcea and Mahon 

(2012) and McNair and Harris (2012), totalling 60 tools. All tools in the list were matched 

with the grip rating extracted from Lagacé et al. (2013) and the familiarity rating extracted 

from (Guérard et al., 2015). Tools that were not rated in any of these two studies or were 

given different ratings according to use or grasp were excluded (N = 33). Tools were then 
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divided according to power (N = 19) and precision (N = 8) and were separately grouped 

according to the functional action. Within precision grip tools were grouped according to 

rotation, squeeze and writing/colouring actions. Tools within the power grip group were 

grouped in a similar manner. Tools that could not be grouped within the three categories 

were excluded. This left us with pliers, tongs, screwdriver, tweezers, peg, key, screw, 

nutcracker, corkscrew, clippers and measuring spoon. We additionally selected the bolt as 

its movement was similar to the screw. The bolt was originally excluded because it was 

presented coupled with a nut in Lagacé et al. (2013), but we decided to present it separately 

from the nut.  

 Using the 12 tools above, we conducted a normative study at UEA, to select our 

final 8 tools to use in the fMRI study. We asked 15 naïve participants (1 male; mean age 

= 25.6 years old, S.D. = 6.5 years old) to complete a questionnaire about the 12 different 

tool identities: corkscrew, key, nutcracker, peg, screwdriver, screw, tongs and tweezers, 

pliers, clippers bolt and measuring spoon. The questionnaire was divided into two parts. 

In part one participants had to name the tools, to rate how familiar they were with each 

tool (on a scale from 1 -“very different” to 7 -“very similar”), how many times they use 

each tool (on a scale from 1 – “every day” to 8 “never used2), how easy it was to 

pantomime the use of the tools (on a scale from 1 -“very difficult” to 7 -“very easy”), to 

determine the number of actions and the type of grip required to use each tools (appendix 

D). To select the appropriate grip to use each tool, participants were presented with 

photographs of five grip types: a power grip, an intermediate grip and three different 

precision grips, including an index–thumb grip, a fingers–thumb grip and a parallel 

extension grip (Lagacé et al., 2013) (appendix D). Each participant rated each object once 

(12 trials). Instructions and an example extracted from the questionnaire are presented in 

Appendix D. As we were interested in hand actions that occur in everyday life, we selected 

tool identities that our participants rated as highly familiar, used frequently, afforded a 

smaller number of possible actions and crucially that afforded either a power or precision 

grip. For each item, we computed the median of the group answers (Brandi et al., 2014). 

Descriptive statistics of the ratings are provided in Appendix F.  
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In part two, we asked participants to rate the similarity of  the grip when required to 

move or use each tool (on a scale from 1 -“very different” to 7 -“very similar”), to rate 

how similar is the function of a pair of objects (on a scale from 1 -“very different” to 7 -

“very similar”) and to rate how similar is the shape of the hand when grasping a tool 

compared to another when grasping or using it (on a scale from 1 - “very different” to 7 -

“very similar”). Each participant rated each objects pair twice (110 trials). Instructions 

and an example extracted from the questionnaire are presented in Appendix E.  

First, we looked at the agreement in the naming task. The measuring spoon and the 

bolt were excluded as there was a low percentage of name agreement across participants 

(see Appendix F.1). Second, we looked at familiarity, use and number of actions, but we 

did not exclude any of the tools based on these ratings (Appendix F.3). Third, we looked 

at the grip rating task. The key (index-thumb = 93.3%), the peg (index-thumb = 86.6%), 

the screw (index-thumb = 80%) and the tweezers (index-thumb = 93.3%) were selected 

for the precision grip category, while the clippers were excluded as participants were not 

in agreement on the grip type used to grasp the object (index-thumb = 60%; see appendix 

F.2 for descriptive ratings of all tools). To select the tools for the power grip category, we 

computed the percentage of answers for each tool across the power, intermediate, fingers-

thumb and parallel extension grip type. The screwdriver (100%) and the tongs (100%) 

were selected as tools that afforded power grip. However, as the other tools were all rated 

with high percentage to afford power grip, to select the most appropriate tools between 

the nutcracker (86.5%), the corkscrew (93.2%) and the pliers (93.2%), we looked at the 

ratings in part two of the questionnaire. Thus, the corkscrew was selected as it was rated 

to afford a grasp similar to the screwdriver (median = 3.5; range 2-7); while the nutcracker 

was selected as it was rated to afford a grip more similar to the tongs (median = 7; range 

5-7) compared to the pliers (median = 6; range 1-7). To summarise: the screw, the key, 

the peg and the tweezers were selected as precision grip tools, while the screwdriver, the 

corkscrew, the nutcrackers and the tongs were selected as power grip tools. This selection 

was further confirmed by the ratings of the grasp similarity task in part two of the 

questionnaire (Appendix G). Based on the ratings of part two, the tools were also grouped 

for movement similarity. As such, the screw, the key, the screwdriver and the corkscrew 
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were grouped in rotation movement category, while the nutcracker, the tongs, the tweezers 

and the peg were grouped in the squeeze movement category. 

For each item, we computed the median of the group answers (Brandi et al., 2014) 

and selected the tools and pairs with the higher median. From the 12 tool identities, we 

selected 8 identities: corkscrew, key, nutcracker, peg, screwdriver, screw, tongs and 

tweezers. Descriptive of ratings are presented in Appendix G.  

Ten exemplar images for each tool identity were selected from the BOSS database 

(Brodeur et al., 2010; Brodeur et al., 2014), from the Konklab database (Konkle & Oliva, 

2011, 2012)  and Google Images and then converted to greyscale.  

3.2.3 Experimental design 

Participants were presented with either black and white images (800x800 pixels; 

viewing task; visual angle: approx. 15 °) or words (font size 32; pantomime task) of eight 

tool’s identities on a white background (corkscrew, key, nutcracker, peg, screwdriver, 

screw, tongs and tweezers) on a white background in a block design protocol (Figure 3.1 

shows all the visual stimuli used in the experiment).  Presentation was controlled using a 

PC laptop running a custom designed programme in Matlab (The MathWorks, USA) and 

Psychophysics Toolbox (Brainard, 1997). Visual stimuli were projected onto a screen 

(spatial resolution of the screen: 1920 x 1200) and viewed through a mirror mounted on 

the head coil (distance mirror – screen: 60 cm). Stimuli were matched for orientation 

(approximately 45° angle) with the handle positioned towards the right side of the screen. 

This was done so that the handle was oriented towards the participant’s right hand, which 

was used to pantomime the use of the depicted tool. Each image was presented with a 

fixation cross at the centre.   



146 

 

The stimuli were organised into different categories according to manipulation 

knowledge (power and precision) and function knowledge (rotation, squeeze). In 

particular, the power grip included corkscrew, nutcracker, screwdriver and tongs, all 

similar in terms of manner of manipulation in which the object is held only between the 

index finger and thumb and requires a small force (Lagace ey al., 2013); the precision grip 

type category included key, screw, peg and tweezers, all similar in terms of manner of 

manipulation in which the object is held in contact with the palm and the fingers work 

against the palm (Lagace et al., 2013). For function knowledge, the rotation category 

included key, screw, corkscrew and screwdriver, all similar as the use of the objects 

requires a rotation of the wrist; the squeeze category included nutcracker, peg, tongs and 

tweezers, al similar as the use of the objects requires to put pressure on them (figure 3.2). 

Figure 3.1 Viewing task stimuli consisted of ten exemplars for each of the eight tool 

identities: screw, keys, screwdriver, corkscrew, peg, tweezers, tongs, and nutcracker. 
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 fMRI procedure 

In the present study, we measured the blood-oxygenation-level dependent (BOLD) 

signal while participants performed viewing and pantomiming tasks (in separate runs) 

while lying supine in the scanner. As it is well known that movements of the shoulder and 

upper arm may induce artefacts in the BOLD signal the upper arms were immobilised to 

restrict shoulder movements by means of a strap, but allowed for full rotation of the elbow 

and wrist (Culham, Cavina-Pratesi, & Singhal, 2006; Rossit et al., 2013). 

Each participant completed two tasks while in the scanner:  a viewing task and a 

pantomime task. To avoid the possibility that the activation could be affected by the order 

of which the tasks were presented, we counterbalanced the order participants were 

presented with the experimental runs. To give an example, participants one performed 

pantomime, view, pantomime, view, etc., whereas participant two was presented with 

view, pantomime, view, pantomime, etc. Each functional run comprised 16 stimulus 

blocks and 18 fixation blocks and each individual performed at least 4 runs for each task. 

In each task, each tool identity was presented twice per run. However, in the view 

condition, each exemplar was presented only once within the run (totalling 10 different 
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Functional manipulation knowledge 

 

Figure 3.2 The stimuli were organised into different categories according to precision 

and power grip as well as squeeze and rotation movements. 
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pictures of each identity, figure 3.1). This was done to minimise the possibility that any 

effects might be driven by low-level visual features associated with the tools.  

We used a block design with 10s on and 10 s off as Birn, Cox, & Bandettini (2004) 

showed that a block design with tasks and control durations of 10 s is minimally sensitive 

to task-induced motion artefacts and therefore optimal to detect blood oxygenation level-

dependant signal changes without significant motion artifacts (Birn et al., 2004).   

In the viewing task, within each block, 5 exemplars of each tools were presented 

(i.e., 5 different pegs were presented in 10s), each for 1000 ms with a blank inter-stimulus-

interval (ISI) of 1000 ms. Each run lasted 5.3 minutes and was composed by 16 category 

blocks and each block lasted 10 s interleaved with a fixation block of 10 s (figure 3.3) and 

two baseline blocks of 14 s (one at the beginning and one at the end of the task). During 

this task, participants were presented with pictures of tools and instructed to look at the 

picture keeping their eyes on the bull’s eye (24 pixels) at the centre of the screen. 

Participants performed a 1-back repetition task throughout the run, whereby responses 

were made whenever two successive photos were identical by pressing a button on the 

response box with the right index finger (2.5 x 13 x 6.4 cm, 4 coloured round buttons blue, 

yellow, green and red, fORP 932 response box system). 
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In the pantomime task, each run lasted 5.43 minutes and was composed by 16 

blocks (each tool identity was repeated twice interleaved with a fixation block of 10 s and 

two baseline periods of 14 s (one at the beginning and one at the end of the run). At the 

beginning of each block, a word (e.g., tweezers) to cue the type of pantomime was 

presented for 500 ms. During this time, participants were instructed to keep their eyes on 

the fixation and to lift up their fist from the chest and to get ready to perform the action. 

At the end of the 500 ms, the word disappeared from the screen and the fixation flashed 

green 5 times (1 s on, 1 s off) to cue the participant to perform the action (figure 3.4).  

Each block lasted 10 s and 5 actions were performed triggered by the fixation changing 

colour on the screen. At the end of the 10 s, the fixation turned red to cue the participant 

to place their fist on the chest. During the pantomimed condition, hand actions were 

recorded by means of a video camera (Panasonic HD HVC-210) placed in the control 

room of the scanner and videos were visually inspected before data analysis to check for 

participants’ errors.  

Figure 3.3 View task: block-design protocol and experimental timing. 
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The view and pantomimed task were matched in timing as much as possible (e.g., 

in both tasks, participants viewed the pictures or pantomimed for 10 s with 5 repetitions 

per block), however, each trial in the pantomime task lasted 500 ms more than the view 

task, which corresponded to the time in which the word cue was presented on the screen. 

 Pre-scanning training of participants 

An hour prior to entering the scanner, participants were presented with the images 

of all the eight categories and asked to name each tool identity, to ensure they were 

familiar with the name of each tool. After the naming task, participants were asked to 

show the experimenter how they would pantomime the use of each tool shown on the 

screen. At the end of this task, the experimenter showed the movement expected for each 

tool and asked the participant to perform each movement again in a similar way to the one 

shown (this procedure was adapted from Lausberg, Kazzer, Heekeren, & Wartenburger, 

2015). Importantly, each participant was reminded to carry out the movement in a 

comfortable and natural manner. In addition, as not all our participants were native 

Figure 3.4 Pantomime task: block-design protocol and experimental timing. 

 



151 

 

English speakers, each participant was then shown the name of each tool on the screen 

and asked to perform the expected movement. They were then presented with the words 

of each tool in English and asked to repeat the expected movement when the word 

appeared on the screen. For native Dutch speakers (N = 7), the translation of each word in 

their native language was provided. After this task, participants were given time to 

familiarise with the tools’ word for up to 15 minutes. Once the 15 minutes were over, the 

experimenter asked the participants to pantomime the expected movement for each word 

shown on the screen until they reached 100% correct performance. It is important to 

highlight that most of the participants performed the expected movement correct for each 

tool at the first presentation. Finally, participants were asked to complete up to 8 trials of 

the pantomime task to familiarise themselves with the timing of the experiment (e.g., go 

and stop cues). Although they were sitting at the table, they were asked to pretend they 

were in the scanner (Fabbri et al., 2014). This was done so that the experimenter could 

check if the participant did understand the task and where s/he should place the hand in 

between trials. All participants took part in the training to minimise any effects on the 

results. Moreover, to ensure that while in the scanner the participants performed the 

correct movement associated with each word, we used a video camera to record the 

movements and we visually examined the videos to check for mistakes. No trials were 

excluded.   

3.2.6 Independent localiser stimuli and paradigm 

To localise hand-, tool- and object-selective areas, we used a separate perceptual 

localiser in which greyscale images of whole bodies, chairs, hands, tools and scrambled 

(800 x 800 pixels; visual angle: approx. 15 °) were presented on a white background. 

Importantly, to avoid circularity, we used different stimuli from our main experiment. 

Stimuli were selected from a set of images used in previously published studies in the field 

(Bracci et al., 2010; Bracci, Cavina-Pratesi, Ietswaart, Caramazza, & Peelen, 2011; Bracci 

et al., 2016). For scrambled visual stimuli, each image was divided into a grid of 25 pixels 

square and randomly reordered. Moreover, heads were removed from whole body stimuli, 

to keep the concept of the whole body intact (Bracci et al., 2010). A small black bulls eye 
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fixation (24 pixels) was superimposed at the centre of each image to provide a fixation 

point. Each run lasted 7.47 minutes and was composed of 6 stimulus epochs per condition 

(14 s each), 6 scrambled epochs (14 s each) and two fixation/baseline epochs (14 s) placed 

at the beginning and at the end of the run. Each picture was presented for 500 ms with 500 

ms ISI. Stimulus sequences were organised into sets of four, separated by scrambled 

epochs with the order of the conditions counterbalanced across the total number of runs. 

We created two sets of stimuli for the localiser task: in each set, the category of the stimuli 

was the same, but included 14 different exemplars. Each participant completed 3 runs of 

the localizer (only one participant completed 4 runs of the localiser) after 8 runs of the 

main experiment. Participants were instructed to keep fixation during the whole duration 

of the run and to perform a 1-back task throughout the run, whereby responses were made 

whenever to successive photos were identical by pressing a button on the response box 

with the right index finger. During scrambled epochs, participants were asked to simply 

look at the stimuli. Figure 3.5 shows the protocol and the timing of the localiser task.  

Figure 3.5 Localiser task. Block-design protocol and experimental timing. Localiser 

adapted from Bracci et al. (2011). 
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 fMRI data collection and processing 

All images were acquired using a Siemens whole-body 3T MAGNETON Prisma fit 

scanner with a 64-channel head coil at the Scannexus imaging centre, Maastricht, 

Netherlands. The functional T2*-weighted images (EPI) with BOLD contrast were 

acquired using the following parameters:  repetition time (TR) = 2000 ms, echo time (TE) 

=30 ms, flip angle (FA) = 77°, field of view (FOV) = 216 mm, matrix size = 72 x 72 

pixels. Each functional image consisted of 35 slices (sagittal left-to-right; 3 mm 

thickness).  High-resolution T1-weighted anatomical images were collected in the same 

session as the functional scans. The following parameters were used: TR = 2250 ms, TE 

of 2.21 ms, FA = 9°, FOV 256 mm, matrix size = 256 x 256. We collected 192 slices 

(sagittal left-to-right) of 1 mm thickness. All experimental runs (View: Mean = 4.5; 

Standard Deviation 0.51; Pantomime: Mean = 4.66; Standard Deviation = 0.48) and 

localiser runs (Mean = 3.05; Standard Deviation = 0.23) were completed in the same 

session of approximately 2 hours.  

Brain Voyager QX (version 2.8; Brain Innovation, Maastricht, The Netherlands) 

was used to pre-process the data, to perform univariate analysis and ROI selection. We 

used Brain Voyager’s 3D motion correction (sinc interpolation) to align each functional 

volume within a participant to the functional volume acquired closest in time to the 

anatomical scan (e.g., Fabbri et al., 2016; Rossit et. al., 2013). Data from each run was 

screened for motion artifacts, however, no abrupt movement artifacts were detected. 

Functional data were superimposed on anatomical brain images, previously aligned to 

AC-PC and transformed into standard stereotaxic space (Talairach & Tournoux, 1988). 

No spatial smoothing was applied for ROIs and MVPA analysis. Moreover, for 

completeness, we performed a univariate whole brain analysis. For this analysis data were 

spatially smoothed with a Gaussian Filter function of full-width half-maximum (FWHM) 

of 6 mm. 

 ROI definition 

To identify ROIs for MVPA, we used the data from our independent localizer and 

an orthogonal contrast with the main experiment data. The latter was used as no motor 
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areas were identified using the perceptual localiser. Critically, to avoid the problem of 

“circular analysis” (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009), we used an 

orthogonal contrast so that the activity within the ROIs was not directly biased to show 

and pattern related to differences between our experimental conditions. We aimed to 

identify ROIs in the left hemisphere previously reported to be part of the tool network (for 

a review see Lewis, 2006) and to be involved in the execution and planning of prehension 

movements (for a review see Gallivan & Culham, 2015; Turella & Lingnau, 2014). ROIs 

were defined in each individual participant based on criteria defined below. 

Data was analysed in each participant with a random-effects general linear model 

for both the main experiment data and the localiser data. The statistical threshold was set 

at p < .005, t = 3 (e.g., Gallivan et al., 2013).  For each ROI, we selected the voxels active 

within  a volume of interest up to 15 mm3 around the peak centred on the anatomical 

landmarks (Gallivan et al., 2013).  

To identify ROIs we identified the activations individuated through each contrast in 

each individual participant’s brain transformed into Talairach space. Regions were 

defined using a combination of anatomical and activation criteria rather than stereotaxic 

coordinates. Following ROI definition, Talairach coordinates of each participant were 

extracted and averaged to permit comparison with previous studies. Details of the ROIs 

are reported in table 3.1. Moreover, figure 3.6 and 3.7 show the representative anatomical 

location of each ROI on a Colin 27 Talairach inflated brain (http://neuroelf.net). 

 

The following left hemisphere ROIs were identified using the following criteria:  

• Lateral Occipitotemporal Cortex Object selective (LOTC Object)  – [chairs > 

scrambled] – defined by selecting voxels located near the lateral occipital sulcus 

(LOS) (Bracci & Op de Beeck, 2016). 

• Lateral Occipitotemporal Cortex Tool selective (LOTC Tool)– [tools > chairs] – 

defined by selecting voxels located near the LOS that closely overlap with LOTC 

hand selective area (Bracci et al., 2011). 

http://neuroelf.net/
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• Lateral Occipitotemporal Cortex Hand selective (LOTC Hand) – [(hands > chair) 

and (hands > bodies)] (Bracci & Op de Beeck, 2016) – we first defined LOTC 

body by selecting the peak of activation near the LOS for the contrast [bodies > 

chairs] and then defined LOTC hands by selecting the peak of activation located 

near the LOS and anterior to LOTC Body (Bracci et al., 2010). LOTC body was 

not included in the analysis. 

• Posterior Middle Temporal Gyrus (pMTG) – [hands > chairs] – defined by 

selecting the voxels on the posterior middle temporal gyrus, more lateral, ventral 

and anterior to EBA (Hutchison et al., 2014). We selected the peak in front of the 

anterior occipital sulcus (AOS), as the MTG is in the temporal lobe and the AOS 

separates the temporal from the occipital (Damasio, 1995). 

• Supramarginal Gyrus (SMG) – [pantomimes > baseline] - defined by selecting the 

voxels along the supramarginal gyrus, lateral to the anterior segment of the IPS 

(Gallivan et al., 2013). 

• IPS Tools  – [tools > scrambled] (Bracci et al., 2016) – defined by selecting the 

voxels located close to the junction between the aIPS and the post-central sulcus.  

• IPS hand – [hands > chairs] (Bracci & Op de Beeck, 2016)  – defined by selecting 

the voxels located along the intraparietal sulcus posterior to IPS tools. 

• Motor Cortex (MC) - [pantomimes > baseline] – defined by selecting the voxels 

around the “hand knob” area in the anterior bank of the central sulcus (Gallivan et 

al., 2013; Ariani et al., 2015).  

• Somatosensory Cortex (SC) - [pantomimes > baseline] (Fabbri, Strnad, 

Caramazza, & Lingnau, 2014) – defined by selecting voxels medial and anterior 

to the aIPS, encompassing the post-central gyrus and the post-central sulcus 

(Gallivan et al., 2013). 
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• Dorsal Premotor Cortex (PMd) - [pantomimes > baseline] – defined by selecting 

the voxels at the junction of the precentral sulcus and the superior frontal sulcus 

(Gallivan et al., 2013; Ariani et al., 2015). 

• Ventral Premotor Cortex (PMv) - [pantomimes > baseline] – defined by selecting 

the voxels inferior and posterior to the junction between the inferior frontal sulcus 

and the pre-central sulcus (Gallivan et al., 2013). 

• Supplementary Motor Area (SMA) - [pantomimes > fixation] (Fabbri, Stubbs, 

Cusack, & Culham, 2016) – defined by selecting the voxels on the medial wall of 

the posterior frontal gyrus, anterior to the medial end of the central sulcus and 

posterior to the vertical projection of the AC plane (Ariani et al., 2015). 

 

 

 

 

 

 

 

ROI name Mean x Mean y Mean z SD x SD y SD z mm
3

Nr 

voxels

LOTC Object -42.55 -74.83 -4.36 2.18 2.84 4.67 2130 79

LOTC Tools -44.92 -67.93 -2.31 4.44 3.59 4.25 581 22

LOTC Hands -46.69 -67.67 1.94 4.45 4.14 4.64 1027 38

pMTG -47.24 -58.84 5.31 4.4 3.71 4.95 1034 38

SMG -51.77 -34.57 28.75 4.5 9.05 10.33 1952 72

IPS Tools -37.47 -38.05 40.08 4.84 6.07 5.72 787 29

IPS Hands -36.42 -43.9 42.77 3.38 6.79 5.44 1263 47

MC -35.31 -25.29 49.53 4 4.93 4.47 2726 101

SSC -50.11 -25.4 43.5 4.35 3.52 4.06 2415 89

PMd -29.19 -18.66 47.74 5.54 12.64 14.67 1748 65

PMv -47.17 -7.95 33.66 4.64 14.84 11.11 1336 49

SMA -6 -11.09 48.2 2.35 4.69 4.45 1735 64

Tailarach coordinates ROI size

Table 3.1 ROIs with corresponding Talairach coordinates (mean x, y and z centre of mass 

and standard deviation (SD). Mean sizes across participants from Talairach data (in mm3 

and functional voxel). 
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Figure 3.6 Brain areas activated using the contrast all stimuli > baseline in the localizer task shown 

on a Colin 27 Talairach inflated brain (http://neuroelf.net). The general locations of the selected 

ROIs are outlined in squares (please note that actual ROIs were anatomically defined separately 

in each participant). Each colour corresponds to the contrast used on localizer data as defined in 

the legend. Sulcal landmarks are denoted by white lines (stylised according to the corresponding 

legend). ROI acronyms are spelled out in main text. LH = left hemisphere. 

Perceptual localiser: all stimuli > baseline 
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Figure 3.7 Brain areas activated using an orthogonal contrast in the pantomime task pantomimes 

> fixation shown on a Colin 27 Talairach inflated brain (http://neuroelf.net). The general locations 

of the selected ROIs are outlined in squares (please note that actual ROIs were anatomically 

defined separately in each participant). Sulcal landmarks are denoted by white lines (stylised 

according to the corresponding legend). ROI acronyms are spelled out in main text. LH = left 

hemisphere. 

Pantomimes > baseline 

 

Pantomimes > baseline 

Pantomime task: pantomimes > baseline 
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 Univariate whole-brain voxel-wise analysis 

To investigate possible areas that may demonstrate univariate differences for 

structural or functional manipulation knowledge, we conducted a whole brain voxel-wise 

analysis using a random effect general linear model (RFX GLM) with separate predictors 

for each condition and each participant. In order to control the problem of multiple 

comparisons we used Brain Voyager’s cluster-level statistical threshold estimator. We set 

the voxel-wise threshold at p = .01 and the cluster-wise to p < .001. To investigate 

structural manipulation knowledge, we applied the following contrast: Power > Precision 

in each task separately. To investigate functional manipulation knowledge, we applied the 

following contrast: Rotation > Squeeze in each task separately. 

 Multivariate Pattern Classification Analysis (MVPA) 

We implemented ROI-based MVPA (Haxby et al., 2001) to explore if we could 

decode tool identity, power versus precision grip and rotation versus squeeze movements 

in our ROIs. We performed MVPA within the view and pantomimed tasks (within-task 

decoding) and then we implemented MVPA across the two tasks (cross-task decoding). 

To prepare inputs for the classifier for MVPA, a GLM was used to estimate ß-weights in 

each trial independently for each participant and ROI separately. Design matrices 

contained 16 predictors (2 for each tool identity). Moreover, we included six parameters 

(x, y, z translation and rotation) resulting from 3D motion correction as predictors of no 

interest. To perform MVPA, we used the NeuroElf v 0.9 toolbox in combination with 

custom software written in Matlab R2016b (MathWorks, Natick, MA, U.S.A) and a 

Support Vector Machine (SVM) binary classifier (libSVM toolbox, Chang & Lin, 2011). 

The SVM model used a linear kernel function and default parameters (a fixed 

regularization parameter C = 1) to compute a hyperplane that best separated the trial 

responses (e.g., Gallivan et al., 2013; Haynes et al., 2007; LaConte et al., 2003; Mitchell 

et al., 2003; Mourão-Miranda, Bokde, Born, Hampel, & Stetter, 2005; Pessoa & Padmala, 

2007; Smith & Muckli, 2010). To assess the performance of the classifier we used a leave 

one-run out cross-validation procedure (Smith & Goodale, 2015). This involved training 

the SMV classifier on data from all the run – 1 in each participant and testing on the run 
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that was previously excluded from training the classifier. MVPA was performed in each 

participant individually. 

3.2.10.1 Within-task decoding 

For each participant and for each ROI, separate SVM classifiers were estimated 

for MVPA (e.g., for each pair-wise comparison power versus precision, squeeze versus 

rotation and each tool identity, see figure 3.2). We implemented a “leave-one-run-out” N-

fold cross-validation to test the accuracy of the SVM classifiers (i.e., one run was reserved 

for testing the classifier [2 tool identities trials, 8 grip trials, 8 movement trials] and the 

remaining runs were used to train the classifier). We statistically assessed decoding 

accuracy at a group level by performing a series of one-tailed t-tests against 12.5% chance 

decoding for tool identity, 50% chance decoding for grip type and movement type (e.g., 

Smith & Goodale, 2015; Wurm & Lingnau, 2015). To control for the problem of multiple 

comparisons, we used a false discovery rate (FDR) correction of q ≤ 0.05 on all t-tests 

performed for each task (Benjamini & Yekutieli, 2001). 

3.2.10.2 Cross-task decoding 

Moreover, to test whether there was a similarity of pattern information between 

view and pantomime task in our ROIs, we implemented a cross-task decoding approach 

between the two tasks. For example, to decode functional manipulation knowledge, we 

trained a pattern classifier to discriminate squeeze versus rotation in one task (e.g., view) 

and then we tested whether the same classifier could predict the same movement type in 

the other task (e.g., pantomime). To continue the example, to decode manipulation 

knowledge, the classifier was trained to discriminate precision versus power in the 

pantomimed task and then we tested the classifier in the view task.  In this procedure we 

used a leave-one-run-out procedure for training and testing the classifier (Smith & Muckli, 

2010). We then computed cross-decoding accuracies by averaging together the accuracy 

generated by training the classifier on the view task and testing it on the pantomime task 

and by training the classified on the pantomime task and testing it on the view task for 

each participant. We repeated the same procedure for tool identity. To statistically asses 

decoding significance, we used a series of one-tailed t-test versus 50% chance decoding 
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for grip and movement type and versus 12.5% chance decoding for tool identity (Smith & 

Goodale, 2015; Wurm & Lingnau, 2015) and we applied FDR correction of q ≤ 0.05 on 

all t-tests performed (Benjamini & Yekutieli, 2001). 

 Decoding effects of task and/or action 

To test the differences between decoding accuracies between task and action 

property, we entered each ROI into a 2 x 2 repeated measure analyses of variance (RM-

ANOVA), with factors task (view, pantomime) and action property (manipulation, 

function knowledge). All comparisons in the RM-ANOVAs were analysed using the 

Greenhouse-Geisser correction when sphericity was not assumed and considered 

significant at α-level of 0.05 (two-tailed). Post hoc pairwise contrasts used the Bonferroni 

correction to control for multiple comparisons.  

3.3 Results 

 Voxelwise whole-brain analysis 

3.3.1.1 Structural manipulation knowledge 

In the view task, in the univariate analysis contrast Power > Precision, we found 

significant activation in bilateral anterior cingulate cortex (aCingC), right precuneus and 

right early visual cortex (EVC) (figure 3.8). In the pantomime task, in the univariate 

analysis contrast Power > Precision, we found significant activation in left MC, left 

Intraparietal Sulcus (IPS), left FG, left SMA and bilaterally in the superior parietal 

occipital cortex (SPOC) (figure 3.9). 
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View Task 

Power > Precision 

 

 

Figure 3.8 Brain areas activated using the contrast Power > Precision in the view task. The 

general locations of the selected ROIs are outlined in squares. aCingC = anterior cingulate 

cortex; EVC = early visual cortex; L = Left hemisphere; R = Right hemisphere. Regions are 

shown on a Colin 27 Talairach inflated brain (http://neuroelf.net). 
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3.3.1.2 Functional manipulation knowledge 

In the view task, for the contrast Rotation > squeeze, we found significant activation 

in left inferior frontal gyrus (IFG), motor cortex (MC), supramarginal gyrus (SMG), 

fusiform gyrus and supplementary motor area (SMG). We also found significant 

activation bilaterally in the visual cortex and in right pre-SMA and lingual gyrus (figure 

3.10). While in the pantomime task, we found significant activation bilaterally in MC, 

Pantomime Task 

Power > Precision 

 

SPOC 

Figure 3.9 Brain areas activated using the contrast Power > Precision the pantomime task. The 

general locations of the selected ROIs are outlined in squares. Sulcal landmarks are denoted by 

white lines (stylised according to the corresponding legend). MC = Motor Cortex; IPS = 

Intraparietal Sulcus; FG = Fusiform Gyrus; SMA = Supplementary Motor Area; LH = Left 

hemisphere; R = Right Hemisphere. Regions are shown on a Colin 27 Talairach inflated brain 

(http://neuroelf.net). 
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IPS, SMG, FG, pre-SMA, SMA and subcortically in the putamen. We also found 

significant activation in the right EVC and in the left thalamus (figure 3.11). 

 

View task 

Rotation > Squeeze 

FG 

Post-central sulcus 

 Superior Temporal sulcus 

 

 

Lateral sulcus 

 Frontal Sulcus 

Figure 3.10 Brain areas activated using the contrast Rotation > Squeeze in the view task. The 

general locations of the selected ROIs are outlined in squares. Sulcal landmarks are denoted by 

white lines (stylised according to the corresponding legend). MC = Motor Cortex; SMG = 

Supramarginal Gyrus; FG = Fusiform Gyrus; SMA = Supplementary Motor Area; preSMA = 

pre-Supplementary Motor Area; EVC = Early Visual Cortex; LH = Left hemisphere; R = Right 

Hemisphere. Regions are shown on a Colin 27 Talairach inflated brain (http://neuroelf.net). 
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Pantomime task 

Rotation > Squeeze 

Post-central sulcus 

Lateral sulcus 

 

Figure 3.11 Brain areas activated using the contrast Rotation > Squeeze in the pantomime task. The 

general locations of the selected ROIs are outlined in squares. Sulcal landmarks are denoted by white 

lines (stylised according to the corresponding legend). MC = Motor Cortex; IPS = Intraparietal Sulcus; 

SMG = Supramarginal Gyrus; FG = Fusiform Gyrus; SMA = Supplementary Motor Area; preSMA 

= pre-Supplementary Motor Area; VC = Visual Cortex; LH = Left hemisphere; R = Right 

Hemisphere. Regions are shown on a Colin 27 Talairach inflated brain (http://neuroelf.net). 
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3.3.2 MVPA within-task decoding   

3.3.2.1 Tool Identity 

In the view task, tool identity was classified above chance in LOTC object, LOTC 

tools, LOTC hands, pMTG, SMG and IPS hands (figure 3.12). In the pantomiming task, 

tool identity was classified above chance in LOTC tools, LOTC hands, pMTG, SMG, IPS 

Tools, IPS hands, MC, SSC, SMA, PMd and PMv. Areas in the occipitotemporal network, 

such as LOTC objects and LOTC tools, showed higher decoding accuracy for view versus 

pantomime. In contrast, areas in the frontoparietal networks, such as SMG, IPS tools, IPS 

hands, MC, SSC, PMd, PMv and SMA, showed higher decoding accuracy for pantomime 

versus view (figure 3.12 and tables 3.2 and 3.5). 

Tool Identity decoding 

Figure 3.12 ROI MVPA results for tool identity decoding. Mean classification accuracies for 

decoding within the view (green) and pantomime (blue). Error bars indicate SEM. Black stars 

assess statistical significance across participants with respect to the chance level (FDR 

corrected for the number of tests). Green stars indicate significantly higher accuracy for the 

view task.  Blue stars indicate significantly higher accuracy for the pantomime task. Solid 

black horizontal line represents the chance accuracy level (12.5%). 
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3.3.2.2 Structural manipulation knowledge (power versus precision) 

In the view task, images of objects associated with different grip types were 

classified above chance in LOTC objects, LOTC tools and LOTC hands (figure 3.13). In 

the pantomime task, objects with different grip types were decoded above chance in LOTC 

tools, LOTC hands, pMTG, SMG, IPS tools, IPS hands, MC, SSC, PMd, PMv and SMA. 

Area LOTC objects, in the occipitotemporal network, showed higher decoding accuracy 

for view versus pantomime. In contrast, areas in the frontoparietal networks, such as SMG, 

IPS tools, MC, SSC, PMd, PMv and SMA, showed higher decoding accuracy for 

pantomime versus view (figure 3.13 and tables 3.3 and 3.5).  

 

Region

t t

LOTC Objects 7.833 < .001 * 1.846 30.00% 1.074 = .149 0.253 13.80%

LOTC Tools 7.077 < .001 * 1.716 23.80% 5.056 < .001 * 1.226 17.90%

LOTC Hands 5.910 < .001 * 1.392 23.30% 4.527 < .001 * 1.066 16.90%

pMTG 2.894 = .005 * 0.682 16.50% 3.656 < .001 * 0.862 16.50%

SMG 3.312 = .002 * 0.803 16.40% 5.739 < .001 * 1.391 20.80%

IPS Tools 2.037 = .028 * 0.480 15.40% 4.237 < .001 * 0.998 19.20%

IPS Hands 3.350 = .001 * 0.789 16.80% 4.050 < .001 * 0.954 19.60%

MC 1.442 = .083 0.339 14.10% 14.675 < .001 * 3.459 41.40%

SSC 1.779 = .046 0.419 14.30% 7.691 < .001 * 1.812 29.20%

PMd 1.755 = .049 0.425 15.40% 6.734 < .001 * 1.633 26.50%

PMv -.614 = .273 -0.149 11.90% 2.778 = .006 * 0.673 17.60%

SMA -1.002 = .165 -0.236 11.70% 5.194 < .001 * 1.224 20.50%

Accuracy Accuracy

Pantomime task

Tool identity (versus 12.8% chance level)

Cohen's d
p  value 

(1-tailed)

p  value 

(1-tailed)

Cohen's 

d

View task

Tool identity (versus 12.5% chance level) 

Table 3.2 ROIs and significance levels against chance for the within-task MVPA results for 

tool identity. T values, p-values, Cohen’s d and percentage of mean accuracies are provided. 

* denotes p-values that are significant after FDR correction. Chance level = 12.5% 
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Structural manipulation knowledge 

decoding 

Figure 3.13 ROI MVPA results for structural manipulation knowledge. Mean classification 

accuracies for decoding within the view (green) and pantomime (blue). Error bars indicate SEM. 

Black stars assess statistical significance across participants with respect to the chance level (FDR 

corrected for the number of tests). Green stars indicate significantly higher accuracy for the view 

task. Blue stars indicate significantly higher accuracy for the pantomime task. Solid black 

horizontal line represents the chance accuracy level (50%). 
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3.3.2.3 Functional manipulation knowledge (rotation versus squeeze) 

In the view task, functional manipulation knowledge was classified above chance in 

LOTC object, LOTC tools, LOTC hands, pMTG, SMG, MC IPS tools, IPS hands, MC 

and SSC (figure 3.13). In the pantomiming task, movement was classified above chance 

in LOTC object, LOTC tools, LOTC hands, pMTG, SMG, IPS tools, IPS hands, MC, 

SSC, PMd, PMv and SMA. Areas in the occipitotemporal network, such as LOTC objects 

and LOTC tools, showed higher decoding accuracy for view vs pantomime. In contrast, 

areas in the frontoparietal networks, such as SMG, IPS tools, IPS hands, MC, SSC, PMd, 

PMv and SMA, showed higher decoding accuracy for pantomime than view. Moreover, 

all region in the occipitotemporal network showed higher decoding accuracy for function 

versus structural manipulation knowledge in both tasks. Areas in the frontoparietal 

network such as IPS tools, IPS hands and MC showed higher decoding accuracy for 

movement vs grip in both tasks, whereas PMd and SMA showed higher decoding accuracy 

for movement vs grip in pantomime task only (figure 3.13 and tables 3.4, 3.5 and 3.6). 

Post hoc paired sample t-test were conducted for each interaction observed between task 

Region

t t

LOTC Objects 5.406 < .001 * 1.274 58.70% -.391 = .350 -0.092 51.40%

LOTC Tools 3.289 = .002 * 0.797 56.00% 3.034 = .003 * 0.735 55.30%

LOTC Hands 3.166 = .003 * 0.746 55.40% 2.190 = .021 * 0.516 54.30%

pMTG 1.415 = .087 0.333 52.50% 2.216 =.020 * 0.522 53.70%

SMG -.720 = .241 -0.174 49.00% 4.775 < .001 * 1.158 60.40%

IPS Tools 1.069 = .150 * 0.558 51.70% 3.699 < .001 * 0.871 57.00%

IPS Hands 1.271 = .110 0.299 52.10% 2.973 = .004 * 0.800 55.20%

MC .472 = .321 0.111 50.60% 14.284 < .001 * 3.366 78.30%

SSC 1.516 = .073 0.357 53.10% 7.238 < .001 * 1.706 66.40%
PMd 2.330 = .016 * 0.565 53.20% 5.178 < .001 * 1.255 59.50%
PMv .368 = .359 0.089 50.70% 3.491 = .001 * 0.846 56.70%

SMA -.685 = .251 -0.161 48.70% 3.097 = .003 * 0.729 54.00%

Accuracy

View task

Accuracy

Pantomime task

Manipulation knowledge (versus 50% chance level)

Cohen's d
p  value 

(1-tailed)

p  value

(1-tailed)
Cohen's d

Structural manipulation knowledge (versus 50% chance level) 

Table 3.3 ROIs and significance levels against chance for the within-task MVPA results 

for structural manipulation knowledge. t values, p-values and Cohen’s d and percentage of 

mean accuracies are provided. * denotes p-values that are significant after FDR correction. 

Chance level = 50% 
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and property. In PMd, the main effect of task and the main effect of property were further 

explained by an interaction (F(1-16) = 36.306, p < .001, ηp
2 = .688) which revealed higher 

decoding for functional (mean = 74%) compared to structural manipulation knowledge 

(mean = 59%) within the pantomime task.  In SMA, the main effect of task and the main 

effect of property were further explained by an interaction (F(1-17) = 32.403, p < .001, ηp
2 

= .656) which revealed higher decoding for functional (mean = 70%) compared to 

structural manipulation knowledge (mean = 54%) within the pantomime task. In IPS 

hands, the main effect of task and the main effect of property were further explained by 

an interaction (F(1-17) = 6.573, p < .020, ηp
2 = .279) which revealed higher decoding for 

functional manipulation knowledge within the pantomime (mean = 67%) versus the view 

task (mean = 55%). 
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Functional manipulation knowledge decoding 

 

Figure 3.14 ROI MVPA results for functional manipulation knowledge decoding. Mean 

classification accuracies for decoding within the view (green) and pantomime (blue) task. Error 

bars indicate SEM. Black stars assess statistical significance across participants with respect to the 

chance level (FDR corrected for the number of tests). Green stars indicate significantly higher 

accuracy for the view task. Blue stars indicate significantly higher accuracy for the pantomime 

task. Red stars indicate significantly higher accuracy for functional manipulation knowledge. Solid 

black horizontal line represents the chance accuracy level (50%). 
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 Decoding effects of task and/or action 

A summary of main effects and interactions form the 2x2 ANOVA are reported in 

tables 3.5 and 3.6.  Effects are reported separately for tool identification (figure 3.11), 

power versus precision grip (figure 3.12) and rotation versus squeeze movement (figure 

3.13). Post-hoc paired sample t-test were conducted for each interaction observed and are 

reported within MVPA within-task decoding section below.   

 

 

 

Region

t t

LOTC Objects 8.933 < .001 * 2.105 72.10% 3.161 = .002 * 0.745 55.30%

LOTC Tools 9.090 < .001 * 2.204 64.20% 4.732 < .001 * 1.147 57.20%

LOTC Hands 5.571 < .001 * 1.131 62.70% 6.639 < .001 * 1.564 59.40%

pMTG 2.883 = .005 * 0.679 56.90% 4.856 < .001 * 1.144 60.40%

SMG 3.205 = .002 * 0.777 55.70% 5.970 < .001 * 1.557 64.80%

IPS Tools 3.297 = .002 * 0.777 55.60% 6.355 < .001 * 1.497 65.10%

IPS Hands 2.502 = .011 * 0.589 55.10% 9.914 < .001 * 2.336 67.90%

MC 2.760 = .007 * 0.650 53.50% 13.455 < .001 * 3.171 84.40%

SSC 2.120 = .024 * 0.449 53.60% 10.821 < .001 * 2.550 71.50%

PMd .714 = .242 0.173 51.00% 7.344 < .001 * 1.781 74.60%

PMv 1.246 = .115 0.302 51.90% 5.160 < .001 * 1.251 61.70%

SMA -.165 = .435 -0.038 49.80% 8.445 < .001 * 1.990 70.50%

Accuracy Accuracy

Pantomime task

Function knowledge (versus 50% chance level)

View task

Cohen's d
p  value 

(1-tailed)

p  value 

(1-tailed)

Cohen's 

d

Functional manipulation knowledge (versus 50% chance) 

 

Functional manipulation knowledge (versus 50% chance) 

Table 3.4 ROIs and significance levels against chance for the within-task MVPA results for 

structural manipulation knowledge. t values, p-values, Cohen’s d and percentage of mean 

accuracies are provided. * denotes p-values that are significant after FDR correction. 

Chance level = 50% 
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F df p
Eta 

squared

MD 

(v - p)
F df p

Eta 

squared

MD 

(f - s)

LOTC Objects 38.77 1-17 < .001 * .695 13% 14.1 1-17 .002 * .453 10%

LOTC Tools 9.103 1-16 .008 * .363 38% 9.927 1-16 .006 * .383 5%

LOTC Hands 1.142 1-17 .300 .063 22% 10.83 1-17 .004 * .389 6%

pMTG 0.998 1-17 .332 .055 -2% 8.219 1-17 .011 * .326 5%

SMG 43.16 1-16 < .001 * .730 -9% 10.5 1-16 .005 * .369 5%

IPS Tools 23.21 1-17 < .001 * .577 -7% 7.4 1-17 .017 * .293 6%

IPS Hands 11.44 1-17 .004 * .402 -8% 45.57 1-17 <.001 * .728 7%

MC 309.6 1-17 < .001 * .948 -29% 3.744 1-17 .070 .180 4%

SSC 41.52 1-17 < .001 * .710 -15% 1.890 1-17 .187 .100 2%

PMd 35.31 1-16 < .001 * .688 -14% 8.893 1-16 .009 * .357 6%

PMv 28.85 1-16 < .001 * .643 -7% 1.58 1-16 .181 .109 3%

SMA 57.22 1-17 < .001 * .771 -13% 23.18 1-17 < .001 * .577 8%

Task Property

Table 3.5 Summary of main effects from the 2 tasks x 2 properties ANOVA on decoding 

accuracies. F values, degrees of freedom (df), p-values, Eta squared values and mean 

differences (MD; expressed as percentage) are reported. v – p = mean difference between 

view and pantomime task accuracies; f – s = mean difference between functional and 

structural manipulation knowledge accuracies. 

F df p
Eta 

squared

LOTC Objects 2.344 1-17 .144 .121

LOTC Tools 3.045 1-16 .100 .160

LOTC Hands 0.714 1-17 .140 .040

pMTG 0.415 1-17 .528 .024

SMG 0.729 1-16 .406 .044

IPS Tools 0.977 1-17 .337 .054

IPS Hands 6.573 1-17 .020 * .279

MC 1.231 1-17 .283 .068

SSC 0.186 1-17 .190 .099

PMd 36.72 1-16 < .001 * .697

PMv 1.12 1-16 .306 .065

SMA 32.4 1-17 < .001 * .656

Task x Property

Table 3.6 Summary of interactions from the 2x2 ANOVA on decoding accuracies. F 

values, degrees of freedom (df), p-values and Eta squared values are reported. 
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 Task cross-classification decoding 

Cross-classification MVPA analysis was used to test whether there was similarity 

in pattern information between view and pantomime tasks, but this was not significant in 

any ROI for functional manipulation knowledge (figure 3.16) and tool identity (figure 

3.15). For structural manipulation knowledge, we found that decoding was significantly 

above chance in PMd (t(16) = 2.627, p = .009, one-tailed), however, it did not survive FDR 

correction (figure 3.17). 

  

Tool Identity task cross-decoding 

Figure 3.15 Task cross-classification decoding accuracy for tool identity. Error bars 

represent SEM. Solid horizontal black line represents the chance accuracy level (12.5%). 
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Structural manipulation knowledge task cross-decoding 

Figure 3.17 Task cross-classification decoding accuracy for structural manipulation 

knowledge. Error bars represent SEM. Solid horizontal black line represents the chance 

accuracy level (50%). White star represents accuracy above chance, not FDR corrected. 

Functional manipulation knowledge task cross-decoding 

Figure 3.16 Task cross-classification decoding accuracy for functional manipulation 

knowledge. Error bars represent SEM. Solid horizontal black line represents the chance 

accuracy level (50%). 
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3.4 Discussion 

In the current study, to explore whether different tool identities are coded in regions 

within the tool network for different tasks we employed a viewing task and a pantomime 

task, and we used multivariate pattern analysis over fMRI data. Moreover, by using tool 

identities grouped according to structural and function manipulation knowledge (e.g., how 

to position hand to grasp versus how to move for use), we could test whether tools that 

afford similar actions produce similar activity patterns during viewing versus pantomime 

tasks. Additionally, by using two different tasks, we explored whether different tool 

identities and structural and functional manipulation knowledge are accessed independent 

of task and the format in which the stimulus is presented. As we were able to decode action 

properties (e.g., functional and manipulation knowledge) within tasks and across objects, 

this could be taken as evidence that action properties are accessed independently of task 

or representation context (e.g., picture or words). The principal findings are that: 1) 

different regions within the dorsal and the ventral streams represent both tool identity, 

structural and functional manipulation knowledge; 2) patterns of activity in the tool 

network are modulated by task and type of manipulation knowledge the tool affords.  

Univariate analysis revealed a network of left lateralised parietofrontal regions that 

were preferentially activated by power versus precision grip in the pantomime task, while 

in the view task we observed activations bilaterally in the anterior cingulate cortex, right 

precuneus and right early visual areas. On the other hand, for rotation versus squeeze, we 

observed activations bilaterally in frontoparietal regions (including MC, IPS, SMG and 

SMA) in the pantomime task, while in the view task we observed left lateralised activation 

in parietofrontal regions, including MC, SMG and SMA and in the FG in the 

occipitotemporal cortex. Moreover, we observed bilateral activations in EVC. While in 

the univariate analysis we found regions that overlapped with our ROIs analysis, showing 

that univariate analysis is likely to be consistent with MVPA, however, MVPA was more 

sensitive to the representations of the information processed. For instance, while 

univariate analysis showed that IPS, MC and SMG exhibited activation for power versus 

precision and for rotation versus squeeze in the pantomime task, MVPA reflects the 
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representation of specific structural and functional manipulation knowledge in these 

regions.   

3.4.1 Decoding in the occipitotemporal network 

Interestingly, we could decode not only tool identity, but also structural and 

functional manipulation knowledge in both tasks in several areas in the occipitotemporal 

network, more closely associated with the ventral stream. Specifically, regions in the 

ventral stream presented stronger decoding for tool identities not only in the view 

condition, but also in the pantomime condition, in which no visual stimuli were presented. 

These findings could be viewed as evidence for sensitivity within the ventral stream of 

semantic and/or conceptual knowledge and in particular to the knowledge of tool-specific 

actions. Moreover, hand and tool-selective LOTC in the ventral stream coded tool identity 

as well as functional and structural manipulation knowledge during both the view and 

pantomime tasks.  

Our results demonstrate that object- , tool- and hand-selective LOTC represent tool 

identity but also structural (i.e., power versus precision grip) and functional (i.e., rotation 

and squeeze movements) manipulation knowledge associated with tools. Critically, tool 

identity, structural and functional manipulation knowledge could be decoded in both the 

view and the pantomime task in tool- and hand- selective LOTC, while only function 

manipulation knowledge could be decoded in object selective LOTC in both view and 

pantomime tasks. Although LOTC is not a motor region, we could decode manipulation 

properties that tool affords by simply viewing pictures of objects. Moreover, the fact that 

patterns of activity in regions within LOTC represent not only tool identity, but also 

structure and functional manipulation knowledge, even when no visual images are 

presented, is in line with evidence from congenitally blind individuals. Specifically, 

Peelen et al. (2013), found that left tool-selective LOTC shows a similar activity in 

congenitally blind and sighted participants when they hear words referring to tools 

compared to words related to animals and non-manipulable objects. Based on their results, 

the authors speculated that LOTC-tool stores action-related tool properties, such as the 

posture and the movement of the hand associated with a specific tool (Peelen et al., 2013). 
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Our results suggest that tool- and hand- selective LOTC contain neural codes that 

represent tool-related actions associated with both tool pantomimes and passive view, 

which is in line with Peelen et al.’s (2013) account that LOTC stores action-related tool 

properties.  

Moreover, Oosterhof, Tipper, & Downing (2012) have shown that multivoxel 

patterns of activity in LOTC distinguish between meaningless hand actions (e.g., open 

versus close the hand) as well as object-directed actions, such as punch versus lift a cup-

shaped object, while participants were either seeing short movies of a hand performing 

the actions or performing the action themselves. While performing actions, participants 

were also instructed to either use the fingers or the whole hand. In the meaningless hand 

action condition, the authors observed that both the left anterior parietal cortex and the 

LOTC bilaterally carried information that discriminates between meaningless actions in 

both the visual and motor domains. Thus, the authors speculated that the patterns of 

activity that code the action must be similar across the visual and motor tasks (Oosterhof 

et al., 2012). Similar patterns were also observed in the object-directed experiment for 

LOTC and anterior parietal cortex, additionally, they observed regions around the post-

central gyrus that carry information about actions. The authors concluded that there is a 

common neural coding in these areas across visual and motor aspect of actions (Oosterhof 

et al., 2012). Our results, confirm and further expand these findings. In particular, we show 

that regions within the LOTC discriminate between structure and function manipulation 

knowledge in both the view and the pantomime task. Taken together, these findings may 

suggest that LOTC contains patterns of activity that code for hand actions during tool use.  

Moreover, Valyear and Culham (2010) have shown that regions within the 

occipitotemporal cortex, including LO and pMTG, were more active when participants 

viewed videos of hands grasping tools in a functionally appropriate manner (typical 

grasping) versus videos of hands grasping tools in a way that would not easily allow the 

actor to use the tool without further postural adjustment (atypical grasping). In their 

experiment, areas localized in the posterior occipital and lateral temporo-occipital 

cortices, including both ventral stream areas such as LO and MT+ and the tool-selective 

pMTG, showed a preferential response for typical grasping actions versus atypical 
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grasping actions. The authors suggested that areas in the ventral stream, as well as tool-

selective pMTG, might play a critical role in coupling stored perceptual and semantic 

knowledge about tools. These results seem in line with our finding. Here, we observed 

that in both the view and the pantomime task, manipulation and function knowledge, as 

well as tool identity could be decoded in hand- and tool- selective LOTC. This suggests 

that during the perception of tool images and during overt pantomime actions without the 

object in hand, the ventral stream contains patterns of activity that represent information 

about semantic knowledge of tools and how they are used based on previous interactions, 

which is in line with  Valyear and Culham's (2010) account.  

It is also worth mentioning that we observed a close overlap between LOTC hand 

and LOTC tool, similarly to Bracci et al. (Bracci et al., 2011; Bracci & Peelen, 2013). 

Additionally, we observed similar decoding accuracies between LOTC-tool and LOTC-

hand, which were distinct from the nearby LOTC-object regions. In fact, both regions 

decoded tool identities and action-related properties similarly in both tasks. These findings 

suggest that these regions might represents properties that are common to hands and tools, 

such as for example the size of the object, the hand posture, or semantic information 

related to the meaning of the actions (Bracci et al., 2011; Valyear & Culham, 2010). 

We observed that during the view task, patterns of activity in LOTC-object 

contained information about tool identity, structural and functional manipulation 

knowledge. However, the same pattern was not observed in this region for pantomiming, 

as during this task only functional knowledge about tools could be decoded above chance. 

In contrast with LOTC- object, LOTC-tool contained patterns of activity that represented 

tool identity, function and structural manipulation knowledge regardless of task. These 

observations of the differences observed between LOTC-object and LOTC-tool, further 

confirm the account that LOTC has different subregions which play different role in 

action-related processes (Lingnau & Downing, 2015). A possible explanation for these 

differences between LOTC-object and LOTC tool could be related to the fact that objects 

are not perceived as being controlled by and used as an extension of the body, while tools 

are (Bracci & Peelen, 2013). The fact that LOTC-object contains patterns of activity that 

codes for function manipulation knowledge, but not for structural manipulation 
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knowledge in the pantomime task suggests that this region does not contain information 

about the specific shape of the hand (e.g., grip). Instead, LOTC-object may contain 

information regarding conceptual knowledge about the movement sequences involved in 

using a tool (which is a property perhaps strongly linked with identity). This observation 

seems to be in line with Gallivan, Johnsrude, and Flanagan's (2016) observation that 

manipulatory sequences of actions, that occur after an object has been grasped to be held 

or placed, are represented in the occipitotemporal cortex. Gallivan et al. (2016) instructed 

participants to execute different object-directed action sequences that varied in the number 

of movement components (e.g., grasp to hold or grasp to place) and varied in their final 

spatial position (e.g., grasp to place on the left or grasp to place on the right) while they 

were in the scanner. The authors analysed the preparatory pattern of fMRI activity that 

form prior to movement onset and they could decode which of the 3 action sequences 

(e.g., place to the left, place to the right or grasp to hold) were to be performed within the 

occipitotemporal and frontoparietal regions. In particular they found that object-selective 

LOTC appeared to represent sequence-related information. The authors concluded that 

action sequences were not represented only in frontoparietal regions, but also within 

regions in the ventral visual stream.  

Our results shed new light on the functional organisation of LOTC and in particular, 

how object-, tool- and hand -selective areas process tool identity, functional and structural 

manipulation knowledge about tools during view and pantomime. As we observed 

decoding within LOTC regions during both the view and the pantomime task, it is unlikely 

that the decoding is attributable to low-level visual features alone. Thus, our findings seem 

to be in line with the growing evidence that the organisation of these regions is 

independent from low-level visual features (Mahon, Anzellotti, Schwarzbach, Zampini, 

& Caramazza, 2009; Mahon & Caramazza, 2009; Peelen et al., 2013). However, more 

research is needed to investigate how these regions within the LOTC are functionally 

related to each other and how they represent actions. For example, future fMRI studies 

could implement an event-related design combined with MVPA to understand the 

involvement of regions within LOTC during the planning and the execution of real actions 

with 3D tools.  
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It is worth mentioning that our stimuli were not controlled for properties such as 

elongation, material nor the size and shape of the handle. For example, tools affording a 

power grip had more straighter handles, while tools affording precision grip did not. 

Additionally, while tools affording a squeeze functional movement were straighter, some 

tools affording rotation also had a rounded part (e.g., screw). Finally, while some tools 

were entirely made of metal, other were made of metal and/or plastic. Thus, in future 

studies it would be important to introduce control objects to control for these properties. 

This is important especially as Chen et al. (2018) recently demonstrated that images of 

elongated tools (versus stubby tools) preferentially activated the MTG and the SPL (for a 

description of task and results see section 1.10.4).  

Another region in the occipitotemporal network, the pMTG is considered important 

for knowing about tool-specific actions (e.g., Martin, 2007; Martin, Wiggs, Ungerleider, 

& Haxby, 1996). Left pMTG is active during the generation of words associated with tool-

specific actions (Kellenbach et al., 2003; Lewis, 2006; Martin, Haxby, Lalonde, Wiggs, 

& Ungerleider, 1995), when viewing and naming tools (Lewis, 2006; Martin, Wiggs, 

Ungerleider, & Haxby, 1996; Valyear et al., 2007), when pantomiming tool use (Fridman 

et al., 2006; Johnson-Frey et al., 2005; Lewis, 2006), during the retrieval of semantic 

information about tool function and manipulability (Boronat et al., 2005; Kellenbach et 

al., 2003) and is also responsive when sounds of familiar tools in action are presented 

(Beauchamp, Argall, Bodurka, Duyn, & Martin, 2004; Beauchamp, Lee, Argall, & Martin, 

2004; Lewis, 2005; Lewis, 2006). Here, we show that patterns of activity in pMTG 

contains information about tool identity and function during both view and pantomime 

tasks, while structural manipulation knowledge could only be decoded during 

pantomimes. Gallivan et al. (2013), using MVPA have shown that pMTG discriminates 

upcoming object-directed actions (e.g. grasping versus reaching) when participants were 

performing the actions with a tool only (compared to the hand). The coding for functional 

and structural manipulation knowledge in the pantomime task provide an extension of 

these previous findings. Here, we demonstrate that area pMTG plays an important role in 

generating the appropriate goal-directed movements and is also involved in generating the 
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appropriate grips when there is no visual feedback of the hand available. Thus, suggesting 

that the information might be retrieved from memory of previous experience with the tool.  

It is also important to mention that the human pMTG  is anatomically in a location 

to receive various types of  visual, auditory and sensory-motor inputs  (e.g., Beauchamp, 

Argall et al., 2004; Beauchamp, Lee et al., 2004, Martin, 2007) and is believed to mediate 

interactions between the dorsal and the ventral stream (van Polanen & Davare, 2015). 

Brandi et al. (2014), presenting real tools and bars while participants were in the scanner, 

observed that the middle temporal gyrus was more activated when tools were grasped to 

be used (compared to the bars). The authors suggested that tool use requires complex 

movements as well as conceptual knowledge of the tools and relies on interactions 

between the dorsal and the ventral stream (Brandi et al., 2014). 

Moreover, Valyear and Culham (2010) suggested that areas in the ventral stream, as 

well as tool-selective pMTG, might play a critical role in coupling stored perceptual and 

semantic knowledge about tools. Here, we observed that tool identity and functional 

manipulation knowledge could be decoded in the view condition in pMTG, which seem 

in line with Valyear and Culham (2010) account that this region might be representing the 

knowledge associated with the tool’s function.   

Here, we showed that patterns of activity could be decoded in pMTG for both the 

view and the pantomime tasks for manipulation and function knowledge and tool identity, 

which might indicate that processing of tool motion in pMTG (Martin, 2007) includes 

both knowledge of how tools are used (e.g., squeeze vs rotation) as well as the movement 

required by specific body parts (e.g., hand and wrist). Additionally, as we observed higher 

decoding accuracies for function versus manipulation knowledge, this might suggest that 

pMTG is preferentially involved in processing functional movements, rather than the 

shape of the hand, which is more likely represented in the aIPS, as observed in chapter 2. 

Moreover, grip could be decoded in pMTG during pantomime but not during view. This 

might suggest that information about the appropriate hand shape selection may be 

processed within the ventral stream. This information is then passed to the dorso-dorsal 

stream via the ventro-dorsal stream, likely via the pMTG, only when actual tool-related 

actions are required. Further experiments should investigate the role played by the pMTG 
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in selecting the appropriate hand movements during hand-tool interactions, for example 

by using online TMS during the planning and the performance of the movement. Our 

results expand the knowledge about the important role of pMTG in processing how tools 

and body effectors are likely to move and interact in the surrounding based on our previous 

experience of actually using them.   

Overall, our findings in the occipitotemporal cortex seem in line with Gibson’s 

(1979) theory of affordances. In particular, we have shown that the mere sight of pictures 

of tools automatically evokes tool-related representations associated with their use even 

when this is irrelevant to task performance (Gibson, 1979; Tucker & Ellis, 1998).  

3.4.2 Decoding in the frontoparietal network  

The regions in the parietal lobe that are usually activated during tool-use and by 

viewing pictures of tools are located in the vicinity of regions involved in coding the grip 

component of hand actions (Gallivan et al., 2013). The SMG, a region located near the 

grasp-selective anterior part of the IPS (Chao & Martin, 2000; Gallivan et al., 2013; 

Valyear et al., 2007; Culham, 2006) shows both tool- and grasp- selective responses 

(Gallivan et al., 2013). Although both pMTG and SMG are thought to be part of the 

ventro-dorsal stream (Binkofski & Buxbaum, 2013; Buxbaum & Kalénine, 2010), SMG 

showed significantly higher decoding accuracies for pantomimes in decoding tool 

identity, functional and structural manipulation knowledge, while decoding accuracies in 

pMTG were similar across the two tasks. Here, we show that patterns of activity within 

the SMG contain representations of tool identity and functional manipulation knowledge 

in both view and pantomime, while in the pantomime task, the SMG additionally contains 

patterns of activity that represent structural manipulation knowledge. Damage to SMG is 

linked to an impairment in pantomiming or performing tool use actions known as apraxia 

(Haaland et al., 2000). The fact that SMG contains patterns of activity that represent tool 

identity, functional and structural manipulation knowledge during pantomime provide an 

important extension of previous neuropsychological observations.  

Interestingly, but perhaps unsurprisingly, here we show that the motor cortex 

contains neural codes that represent tool identity, movement and grip of tool pantomimes. 
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This is in line with the evidence that the motor cortex is more engaged when individuals 

execute an action, compared to when they are observing it performed by someone else 

(Hari et al., 1998). Moreover, the fact that patterns of activity in M1 contain information 

regarding tool identity suggest that, although tools could require similar hand shapes or 

movements, the motor cortex processed tool identity for the purpose of sending 

appropriate motor commands to the muscles. As expected, viewing tools led to 

considerably lower decoding accuracy in the motor cortex compared to tool pantomimes. 

In the motor cortex, we observed that patterns of activity did not contain information 

regarding tool identity or structural manipulation knowledge (power versus precision grip) 

while participants were simply viewing pictures of tools. However, the patterns of activity 

contained information regarding functional manipulation knowledge (rotation versus 

squeeze movements). Although it might initially seem surprising to observe significant 

decoding of motor properties of objects in a motor region even when no overt movement 

is required, Gallivan et al. (2011), reported a similar patterns of results. They showed that 

hand movement could be decoded from the preparatory responses in the motor cortex, 

prior to action execution. These results raise the question of why is the motor cortex not 

decoding grip when viewing pictures of tools? We know from behavioural investigations 

that viewing pictures of tools automatically trigger motor affordances (Tucker & Ellis, 

1998). The fact that we could decode rotation versus squeeze movements, but not power 

versus precision grip nor tool identity, might suggest that, viewing picture of tools elicit 

patterns of activity that are related to more general motor programs, such as the movement 

of the hand and the wrist. On the other hand, the grip type might require the involvement 

of more specialized areas such as the IPS. In line with this observation, evidence from 

TMS studies (including our own results in chapter 2, e.g., Cohen et al., 2009; Davare et 

al., 2007; Le et al., 2014; Rice et al., 2006; Tunik et al., 2007; Tunik et al., 2005) as well 

as fMRI (e.g., Cavina-Pratesi, Ietswaart, Humphreys, Lestou, & Milner, 2010; Culham et 

al., 2003; Gallivan et al., 2011; Gallivan et al., 2013) have shown that the left aIPS is 

involved in hand shaping during grasping.   

Nevertheless, we cannot exclude that the decoding observed in the motor cortex 

during the view task is related to participants imagining the use of tools. In fact, Pilgramm 
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et al. (2016), asked participants to imagine three different types of hand actions (e.g., an 

aiming movement, an extension-flexion movement and a squeezing movement) while in 

the scanner. They showed that the action type could be decoded significantly above chance 

level in the motor and premotor cortex, as well as in SPL, IPS and IPL. However, we do 

not believe imagery can explain our findings as we were not able to decode power versus 

precision grip nor tool identity, which also involve different actions. To further explore 

this, future studies could compare decoding of accuracies during motor imagining of tool 

use versus pantomimes and passive viewing, which so far has been explored univariately 

(e.g., Creem-Regehr & Lee, 2005; Imazu, Sugio, Tanaka, & Inui, 2007). 

Similar to the decoding observed in the motor cortex, we observed higher decoding 

accuracy for tool pantomime versus viewing images of tools in the somatosensory cortex. 

Traditionally, the terms somatosensory cortex refers to the upper bank of the lateral sulcus 

the anterior parietal cortex (Keysers, Kaas, & Gazzola, 2010), which includes 4 different 

areas that are known to have different connections and functions: area 3a deals with 

proprioceptive information, area 3b with tactile information, area 1 with a second level of 

tactile analysis, area 3 combines information from the other areas  (Keysers et al., 2010). 

Thus, the function of the somatosensory cortex are manifold including (but not limited to) 

providing proprioceptive information for action related process, as well as tactile input if 

hand-object interaction is involved (Dijkerman & de Haan, 2007). Many studies have 

demonstrated that visual stimuli that imply sound, touch or smell can activate the 

somatosensory cortex (Blakemore, Bristow, Bird, Frith, & Ward, 2005; Ebisch et al., 

2008; Pihko, Nangini, Jousmki, & Hari, 2010; Schaefer, Xu, Flor, & Cohen, 2009) and 

that the somatosensory cortex is also modulated by vision of hands performing actions 

(Avikainen, Forss, & Hari, 2002; Cross, Hamilton, & Grafton, 2006; Julie Grèzes et al., 

2003; Meyer et al., 2010; Molnar-Szakacs, Kaplan, Greenfield, & Iacoboni, 2006; 

Oouchida et al., 2004; Pierno et al., 2009). Activation in the somatosensory cortex has 

been observed in response to tool pantomimes (Johnson-Frey et al., 2005; Lewis, 2005). 

Additionally, it has been shown that passive viewing and perceptual discrimination of 

familiar graspable objects (e.g., a glass, a phone) with no explicit action knowledge 

associated with them also recruit the somatosensory cortex (Creem-Regehr & Lee, 2005; 
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Smith & Goodale, 2015). Surprisingly, in the somatosensory cortex we could not decode 

tool identity, which might seem at odds with Smith & Goodale’s (2015) findings. Smith 

& Goodale (2015) presented participants with visual images of familiar objects (e.g., wine 

glasses, mobile phones, apples) or unfamiliar objects (e.g., cubies, smoothies, spikies) to 

test whether the earliest regions of the somatosensory (S1 and S2) cortex contain content-

specific information about visual object categories. They showed that MVPA revealed 

significant above chance decoding of familiar, but not unfamiliar, visual object category 

bilaterally in S1 and right S2. The authors concluded that the earliest areas of the 

somatosensory cortex carry information about the category of visually presented familiar 

objects. A difference between our experiment and Smith & Goodale’s (2015) experiments 

is that they did not present tools, but familiar objects.  Another difference between our 

study and Smith & Goodale (2015) is that they defined early somatosensory cortex (S1), 

using a mask, while we defined the somatosensory cortex based on fMRI activation in the 

pantomime task. A possible interpretation is that by selecting voxels using the contrast 

pantomimes > baseline, we might have targeted a region within the somatosensory cortex 

more associated with proprioception which could explain why we could decode tool 

identity, functional and structural manipulation knowledge during pantomimes, but we 

could only decode movement from the view task.  Further work is needed to ascertain the 

specific role of the somatosensory cortex in tool recognition, for example in a future study 

we could use a specific localizer to identify S1 and S2 to understand which specific regions 

within the somatosensory cortices contain activity patterns that code for tool identity and 

functional manipulation knowledge.  

Our results show that both structural and functional manipulation properties are 

represented in tool- and hand- selective IPS, PMd, PMv, somatosensory cortex and SMA 

during pantomimes of tool use. While the reported structural manipulation knowledge 

selectivity in these regions is in line with similar findings in monkey area AIP (Murata et 

al., 2000; Taira et al., 1990), area F5 (Fluet et al., 2010; Rizzolatti et al., 1988; Umilta et 

al., 2007), PMd (Raos, 2004) and M1 (Muir & Lemon, 1983; Umilta et al., 2007) and also 

in human aIPS, PMv (Binkofski et al., 1999; Cavina-Pratesi et al., 2010; Culham et al., 

2003; Frey et al., 2005), PMd, M1 and S1 (Ehrsson et al., 2000), the reported functional 
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manipulation knowledge selectivity is in line with directional tuning reported in parietal 

areas in the human brain during reaching movements towards 3D objects (e.g., half-

spheres; Fabbri et al., 2010, 2012; Fabbri et al., 2014; Lingnau et al., 2014). Our data 

suggests that tool- and hand- selective IPS play a critical role in identifying and controlling 

hand movements, including the grip during overt movements. This is in line with our 

results from chapter 2, in which we show that TBS-to-aIPS disrupts hand preshaping 

during target-directed actions.   

Alongside with parietal areas, we observed the involvement of premotor areas. We 

show that PMd codes for identity, power versus precision grip and rotation versus squeeze 

movements during pantomiming and also for grip type during the view task. Although it 

might seem surprisingly that a motor region codes for grip during passive view of tools, 

Grafton et al. (1997) have previously shown activity in left PMd when tools are viewed 

passively. It is thought that PMd is crucial in accessing, maintaining and translating an 

action into a sequence of motor commands (Fink et al., 1999) whereas PMv has a 

somatotopic organisation (Rizzolatti, Luppino, & Matelli, 1998) and is involved in spatial 

perception, imitation and understanding actions, especially with manipulable objects  

(Rizzolatti, Fogassi, & Gallese, 2002). Critically, rotation and squeeze movements require 

different movement of the hand and the wrist. Thus, we could speculate that this region 

not only code for reach direction (Fabbri et al., 2014) and structural manipulation 

knowledge, but also contains patterns of activity that code for functional hand movements. 

PMv is a frontal region that is thought to be necessary for hand grasping and object 

manipulation (Binkofski et al., 1999; Davare, 2006; Grèzes, Armony, Rowe, & 

Passingham, 2003). The observation that PMv contains patterns of activity that represent 

actions only during overt tool use pantomiming is consistent with the findings from Chen 

et al. (2017). In their experiment, Chen et al. (2017) found that when participants were 

performing pantomimes of tool use but not when participants were performing a tool 

identification task, PMd and PMv coded for object-directed actions (e.g., pantomime the 

use of scissors).  

We also found that SMA contained patterns of activity that code for tool identity, 

power versus precision grip and rotation versus squeeze movement during pantomimes 
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only. SMA lies within the superior frontal gyrus and has reciprocal connections with the 

primary motor cortex and PMd (Cona & Semenza, 2017; Luppino, Matelli, Camarda, & 

Rizzolatti, 1993; Tanji, 1996) and is directly related to motor output (Nachev, Kennard, 

& Husain, 2008). It is thought that SMA makes an important contribution to motor 

planning and execution and it is involved in representing action sequences (Halsband, Ito, 

Tanji, & Freund, 1993; Tanji, 2001) and action execution (Nachev et al., 2008; Tanji, 

1996). Evidence from monkey neurophysiology has shown that SMA neurons respond 

preferentially to specific order of movements, such as turn - pull – push, rather than others, 

such as turn – push – pull (Shima & Tanji, 2000; Tanji & Shima, 1994). Moreover, SMA 

inactivation studies in monkeys have shown that monkeys were impaired in performing 

action sequences (e.g., turn – pull – push) previously memorised, however, where still 

able to complete single movements (e.g., reaching) (Shima & Tanji, 1998). In humans, 

Wymbs and Grafton (2013), using repetitive TMS over SMA, have shown that 

participants were less accurate during the retrieval of previously learned action sequences 

compared to no-TMS. Moreover, Wiestler and Diedrichsen (2013) using fMRI and 

MVPA have shown that trained sequences were classified more reliably versus untrained 

finger sequences in the supplementary motor cortex.  The fact that SMA contains patterns 

of activity that code for tool identity, structural and functional manipulation knowledge, 

might reflect the fact that this region plays a critical role in implementing previously 

learned action sequences when using tools. Future fMRI studies should look at patterns of 

activation within the SMA when participants are functionally demonstrating the use of 

tools versus performing atypical movement with tools, to disentangle whether SMA 

contains patterns of activity that differentiate between new and learned action sequences.  

We observed an extensive involvement of the frontal and parietal cortices in coding 

rotation versus squeeze movements, power versus precision grip  and tool identity during 

pantomimes, which is in line with previous evidence from different fields showing that 

aIPS, SMG, PMd and PMv are generally implicated in hand preshaping and tool-related 

actions (Culham et al., 2006; Lewis, 2006; Rizzolatti, & Luppino, 2001; Umilta et al., 

2008)  Moreover, neuroimaging evidence has shown that areas in the frontoparietal 

network are activated in the absence of any overt movement, such as when imaging tool 
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use (Lewis, 2006), suggesting that the frontoparietal network creates representations of 

actions upon viewing tools, which might then be used for action generation, understanding 

and learning  (Rizzolatti & Luppino, 2001). However, our results seem at odds with this. 

Although we show that MC and SSC contain patterns of activity that decode for functional 

manipulation knowledge in both the view and the pantomime task, we did not observe 

above chance decoding accuracy in the other regions for the view task. Specifically, in 

our experiment we found that structural manipulation knowledge and tool identity could 

not be decoded above chance in motor region within the frontoparietal network, such as 

MC, SSC, PMv, PMd and SMA during the view task, although decoding was above 

chance in the pantomime task.  Thus, it may be that although these regions show activation 

during imagining of tool use, however, this activation may be related to the imagined 

movement. Here, we expand upon these observations and we have shown which specific 

regions within the frontoparietal network contains patterns of activity that represent 

function and manipulation knowledge during tool pantomimes.   

Recently, Binkofski & Buxbaum (2013), proposed that there is a distinction between 

a dorso-dorsal  and a ventral-dorsal  circuit. This hypothesis comes from the observation 

of two parallel parieto-frontal networks in the macaque monkey.  A dorso-dorsal pathway 

leading from visual area V6 over the superior parietal lobule towards the dorsal premotor 

cortex and a ventro-dorsal pathway running from the middle temporal and medial superior 

temporal areas through the inferior parietal lobule to the ventral premotor cortex 

(Rizzolatti & Matelli, 2003; Rossetti et al., 2003). According to this hypothesis, while 

dorso-dorsal regions (including the aIPS, SPL and PMd) contribute to the planning of  

online reaching and grasping movements, ventro-dorsal regions (including SMG and 

PMv) contains long-term representation specialized for the processing of learned and 

skilled movements such as tool-use and integrate grasp-related information (Binkofski & 

Buxbaum, 2013). Here, we have shown that with tool pantomimes, regions in both ventro-

dorsal and dorso-dorsal pathways contain patterns of activity that code for both functional 

and structural manipulation knowledge. These findings support the account that there is 

no clear separations between the two pathways and leaving open the possibility of 

alternative explanations for the involvement of the two sub-circuits in the execution of 
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object-directed actions, including the possibility that the two pathways have different 

temporal involvements in skilled tool-use. Future experiments should implement MEG, 

which has higher timing and spatial resolution compared to both fMRI and EEG to 

investigate the temporal involvement of the two pathways when participants are 

interacting with tools. Additionally, implementing online TMS at different phases during 

planning and execution of tool use pantomimed in regions within the dorso-dorsal stream, 

such as middle IPS and PMd, or the ventro-dorsal stream, such as aIPS and PMv, could 

help us to shed new light on the temporal involvement of these pathways in tool 

interactions.  

3.4.3 Task Cross-Decoding 

Surprisingly, we could not cross decode between view and pantomime in any of our 

regions. Although we found above chance task cross-decoding accuracy for structural 

manipulation knowledge in PMd, it did not survive FDR correction. The fact that patterns 

of activity in PMd represent structural manipulation knowledge across tasks may be in 

line with evidence that show that this region plays a role in accessing and maintaining 

information in semantic working memory (Gabrieli, Poldrack, & Desmond, 1998; 

Wagner, Paré-Blagoev, Clark, & Poldrack, 2001). Moreover, although the PMd is 

considered part of the reach subnetwork of the dorso-dorsal stream (e.g., Binkofski & 

Buxbaum, 2013), it is also though that the PMd contains representation of hand digits 

(Dum, 2005). Moreover, multiunit recordings in monkeys have shown that reach and 

grasp can be predicted from PMd (and PMv) accurately. Thus, the fact that we observed 

a trend in decoding accuracy across tasks in PMd may suggested that this region contains 

sematic information about the sequence of the grasp and that this information is available 

independently of whereas an overt movement is required.  

In Chen et al.'s (2017) experiment classifiers were trained and tested across tasks, 

stimulus format and specific tools. Implementing searchlight MVPA and ROI MVPA 

analyses, they found that the only brain regions in which action relations among objects 

could be decoded across tasks, stimulus format and tools was the inferior parietal lobule, 

suggesting that this area has access to abstract action information, even when no overt 
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action is required. A difference between Chen et al. (2017) and our experiment is that they 

used triads of objects, in which 2 of the 3 items were similar by manner of manipulation 

or by function. Our task was designed so that we had 4 objects out of the 8 objects in each 

category of interest. For example, in the power (or precision) category we have 2 objects 

that required a rotation movement and 2 that required a squeeze movement. Similarly, in 

the rotation (or squeeze) category, we had 2 objects that afforded precision and 2 that 

afforded power. Thus, in each group, even if the objects were similar for type of movement 

(e.g., rotation or squeeze), they were different for type of grip, which might have had an 

impact on the way the classifier was trained and tested. Thus, in further analysis we should 

look at training and testing the classifier using objects that are matched for both grip and 

movements type. For example, to test whether we could decode power versus precision 

grip in our brain regions we should train the classifier within the rotation and the squeeze 

category separately and then average the accuracies. For example, we should train the 

classifier on screw versus screwdriver and test on key versus corkscrew and vice versa. 

Similarly, in the squeeze category we should train the classifier on tweezers versus 

nutcracker and test on peg versus tongs. Another difference is that Chen et al. (2017) 

instructed participants to think about the function of the tools, while in our task 

participants were focusing on the identity of the tools as they had to perform a 1-back 

repetition task. It may be that instructing participants to think about the function of the 

objects facilitated the decoding across tasks. 

Although we could not implement searchlight analysis due to time constraints, we 

would like to implement searchlight MVPA (Kriegeskorte, Goebel, & Bandettini, 2006) 

to explore other areas than our ROIs that potentially represent power versus precision grip, 

rotation versus squeeze movements and identity across the two tasks. Additionally, we 

could also implement whole-brain multivoxel representational similarity analysis (RSA) 

(Kriegeskorte, 2008; Kriegeskorte & Kievit, 2013). RSA is a widely used approach to 

characterise the correspondence between brain activity patterns and behavioural 

measurement (Kriegeskorte, 2008) and it consists in constructing representational 

dissimilarity matrices (RDMs) for both measures and calculating the correlation between 

them. Thus, we could combine the behavioural ratings with our ROIs and whole-brain 
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fMRI analysis to test whether the information recorded in our behavioural tasks, such as 

grip ratings, object familiarity and similarities between objects (e.g., use and grasp) 

influence the functional organisation of regions within the dorsal and ventral stream. 

3.4.4 Concluding remarks 

To conclude, we observed that patterns of activity in both visual streams contain 

information about the identities of tools and how to grasp and use them. Moreover, we 

observed that the tool network is modulated by task. That is, although frontoparietal and 

occipitotemporal networks contain patterns of activity that coded for tool identities and 

functional and structural manipulation knowledge, accuracies in regions within the 

occipitotemporal were higher for the view task, while accuracies in frontoparietal regions 

were higher in the pantomime task. Moreover, we showed that not only regions within the 

dorsal stream showed decoding for motor properties, but also regions in the ventral stream. 

On the other hand, visual properties were decoded not only in ventral, but also in dorsal 

stream regions. These results suggest that visual perception is not a characteristic of the 

ventral stream only, but that also the dorsal stream plays a role visual perception (Freud, 

Plaut, & Behrmann, 2016). This will be further expanded in the general discussion.  

One of the limitations of the current experiment is that in the viewing task we 

implemented a working memory component (e.g., 1-back task) but we did not have a 

similar task in the pantomime task. The 1-back task is commonly used in fMRI 

experiments (e.g., Bracci et al, 2010; Bracci et al., 2016; Smith & Goodale, 2015), based 

on our analysis we cannot exclude that the task may have had an effect on the network of 

region analysed. However, we believe that here it was not the case. First, several lines of 

evidence (for a review see Critchley, 1953; Pisella & Mattingley, 2004) suggest that is the 

right posterior parietal cortex, but not the left, that is critically involved in visual functions. 

As here we run our analysis on the left hemisphere only and our task involved visual 

working memory, is unlikely that the task may have had an impact on the regions analysed.  

Second, we did not find cross-decoding between the two tasks, therefore it is unlikely that 

the working memory task used in the viewing task but not in the pantomiming task had an 

impact on the network of regions involved. Indeed, our ability to interact with tools 
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requires that the information about the sequence of the actions is integrated with 

information about object properties as well as maintained over time and evidence has 

demonstrated that parietal mechanisms are important for visual working memory (e.g., 

Berryhill & Olson, 2008; Kastner, Chen, Jeong & Mruczek, 2018; Todd and Marois, 

2004). Therefore, in the future it would be interesting to investigate whether implementing 

a working memory task affected the network of brain regions involved in the two tasks, 

for example this could be done by identifying the regions involved in working memory 

using an independent localiser and run both univariate and MVP analyses in both the left 

and right hemisphere. 

For the purpose of our experiment, we selected tools that were associated with 

specific action plans (e.g., a nutcracker is to open nuts) and participants were specifically 

trained to perform the expected action plan before entering the scanner, however, familiar 

everyday graspable objects may, in fact, be associated with multiple action plans. For 

example, grasping a spoon based on its physical properties (e.g., handle size shape and 

orientation) may differ from grasping based on knowledge and intention of use (Daprati 

& Sirigu, 2006; Frey, 2007). So far, we have shown that functional and manipulation 

knowledge are represented in a network of regions and that these representations are 

modulated by task, but what about grasping real tools with the intention of use?  In the 

next chapter, using grasp-to-use (GTU) and grasp-to-move (GTM) tasks we will further 

investigate how knowledge and intention of use modulates the kinematics of grasping by 

using different 3D everyday tools. 
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4. Tool identity and subsequent use affect the kinematic of grasping movements 

4.1 Introduction  

In our everyday activities we interact with numerous objects, which vary in the 

extent to which they offer functional interactions. For example, while preparing our 

breakfast we use the knife to slice the bread, but also to butter the bread. As noted in 

chapter 3, tools are a unique class of objects as they are man-made artefacts that afford 

specialised actions that are tied closely to their identity. Here, I explored how tool identity 

and action end-goal modulates grasping kinematics even when structural differences 

between objects are controlled for. My interest focused on whether grasping kinematics 

towards the same tool are influenced by the end-goal of the subsequent action and whether 

tool identity is processed when grasping a tool without any subsequent movement and/or 

when the tool is grasped to be used according to its function.   

According to Gibson (1979), objects have specific properties that convey relevance 

for actions, called “motor affordances”. Gibson (1979) used the term affordances to refer 

to the fact that the visual perception of our environment is not a passive perception of the 

objects within it, but is instead a  direct perception of the potential for action for the 

observer that these objects carry. In other words, when viewing a mug, we would not only 

perceive its colour and shape, but first and foremost we would perceive the fact that it is 

graspable, that we could lift it and drink from it. Importantly, object affordances depend 

not only on the object alone, but also on the action possibilities of the perceiving agent.  

Moreover, actions afforded by tools typically consist of specific motor routines 

(Creem & Proffitt, 2001; Tucker & Ellis, 1998). For example, a tea-spoon affords stirring 

and it is wielded with a precision grip between the index finger and thumb and is typically 

associated with a characteristic rotation of the wrist movement to stir. The strong 

functional specificity associated with tools is what differentiates tools from other objects 

in our surroundings, which could be familiar and graspable, however whose identity is 

typically not associated with a specific function (e.g., a building or a flower). For example, 
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although we could grasp an apple to throw it, or a carrot to pound something, natural 

objects are not typically associated with a specific function, nor a typical motor routine. 

In fact, only tools have been created by humans to have a specific function and address a 

specific problem.  

In line with this functional specificity of tools, it has been shown that the mere sight 

of tools facilitates perceiving objects affordances that activate their associated motor 

responses (Ellis & Tucker, 2000; Grèzes et al., 2003; Tucker & Ellis, 1998, 2004). In 

1998, Tucker and Ellis, showed that right-hand responses were facilitated when the objects 

handles were facing right, and left-hand responses were facilitated when the objects 

handles were facing left (for a description of the task see chapter 3). Based on this 

observation, the authors postulated that the orientation of the handle automatically gives 

rise to the activation of the corresponding motor plans for grasping. Subsequently, Tucker 

and Ellis (2004), have shown that small objects facilitate precision-type responses while 

large objects facilitate power types responses (for a description of the task, see chapter 3).  

Taken together, this evidence suggests that the visual properties of objects important for 

grasping, such as orientation and size, automatically facilitate the activation of 

corresponding motor representations.  

In line with Tucker and Ellis (1998, 2004), several neuroimaging studies have 

shown that sensorimotor areas are preferentially activated for pictures of graspable versus 

non-graspable objects even when no action is required (Chao & Martin, 2000; Valyear et 

al., 2007). Chao and Martin (2000) compared viewing and silent naming of pictures of 

familiar tools with viewing pictures of animals. They showed that graspable objects 

elicited higher activation in both left ventral premotor and left posterior parietal cortex 

compared to pictures of animals. The authors suggested that the observed parietal activity 

represented stored manipulation and function knowledge about tools (Chao & Martin, 

2000).  

Moreover, Valyear et al. (2007) suggested that tool related activity in the parietal 

cortex does not reflect only the graspable property of the stimuli, but that the activity 

relates to action representations which are linked to knowledge of use and prior experience 

(Valyear et al., 2007) (for a description of the procedure see chapter 3).  
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Also, Buccino et al. (2009) using a combined TMS and EMG approach and pictures 

of objects with a whole or broken handle, showed that motor evoked potentials (MEP) 

recorded from  muscles in the right hand are modulated by the handle orientation of 

passively viewed objects.  In fact, MEPs were larger when handles were oriented to the 

right, in accordance to a right-hand grasp, but only when the handle was intact. The 

authors suggested that motor programs are tuned to the handle and that in the case of a 

broken handle, these motor programs are interrupted (Buccino et al., 2009). 

Additional evidence that object affordances activate motor representation for 

actions comes from patients showing “utilisation behaviour” following damage to their 

frontal areas (Lhermitte, 1983). These patients are compelled to grasp and use familiar 

objects, even if they are told not to do so (Lhermitte, 1983; Shallice, Burgess, Schon, & 

Baxter, 1989). For example, Humphreys and Riddoch (2000) have shown that object 

affordance play a critical role in such impulsive behaviour. In their task, patient FK, who 

suffered bilateral lesions to the medial frontal and anterior temporal lobes was presented 

with a cup with the handle facing either to the left or the right. FK was instructed to grasp 

the cup with the left hand if the cup was placed on the left, and with the right hand if 

placed on the right. They observed that the patient made frequent errors when the cup was 

placed on the left, but with the handle facing to the right, as such FK often incorrectly 

grasped the cup with his right hand, although was instructed to grasp it with the left hand. 

According to Humphreys and Riddoch (2000), this suggested that the orientation of the 

handle automatically evoked a grasp response. Interestingly, when the patient was asked 

to point to the handle instead of grasping, no errors were observed. The findings indicate 

that affordances can elicit grasping and that the task end-goal (e.g., pointing or grasping) 

plays a determining role in the observation of the impulsive behaviour in these patients  

(Humphreys & Riddoch, 2000). Taken together, these evidences suggest that object 

affordances can lead to the activation of the motor representation relevant for grasping 

actions.  

At a neural level, in the healthy brain, motor affordances are thought to arise due to 

the automatic activation of regions responsible to integrate visual and motor information 

(e.g., visuomotor regions; Gallivan et al., 2011; Handy, Grafton, Shroff, Ketay, & 
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Gazzaniga, 2003). In contrast with other classes of objects, such as non-graspable objects, 

animal, faces and houses (Chao & Martin, 2000; Gallivan et al., 2013; Handy et al., 2003) 

and meaningless shapes (Creem-Regehr & Lee, 2005), tools can be processed based on 

what they are and what they can be functionally used for (Creem-Regehr & Lee, 2005). 

As reviewed in chapter 3, brain regions activated by viewing tools overlap with brain 

regions activated when grasping, using, imagining and pantomiming tool use (Lewis, 

2006). These findings are consistent with the idea that tool perception and actions 

associated with tool use rely on overlapping cortical networks (Humphreys, Riddoch, 

Forti, & Ackroyd, 2004).  

So far, I reviewed work that indicates that object affordances relevant for grasping 

facilitate motor-related activity and can influence perceptual and motor responses, but 

what about the goal of the action (e.g., use a spoon to stir the coffee)? For example, while 

cooking, if I need a spatula, I reach toward my utensils holder to grasp the spatula to flip 

my egg. However, I might also grasp the spatula to move it closer to the hob and use it 

later. Although the object grasped is the same, the end goal of the reaching actions is 

different. When we perform actions in our surrounding our motor behaviour is influenced 

by the forthcoming task, and evidence for this claim comes from studies in which ongoing 

movements are influenced by the context and the next task demands. For example, during 

speech production, the articulation of a phoneme is affected by the identity of the 

upcoming phonemes (Liberman, 1970). Moreover, contextual effects have been reported 

in a variety of manual tasks, including manual aiming (Klapp & Greim, 1979), finger 

spelling (Jerde, Soechting, & Flanders, 2003a, 2003b), typing (Rumelhart & Norman, 

1982), handwriting (van Galen, 1984) and, indeed, it has been shown that during 

prehension, reaching kinematics are influenced by the end goal of the action (e.g., Ansuini, 

Santello, Massaccesi, & Castiello, 2006; Cohen & Rosenbaum, 2004; Cole & Abbs, 1986; 

Gentilucci, Negrotti, & Gangitano, 1997; Marteniuk, MacKenzie, Jeannerod, Athenes, & 

Dugas, 1987; Naish, Reader, Houston-Price, Bremner, & Holmes, 2013; Rosenbaum & 

Jorgensen, 1992; Rosenbaum, Vaughan, Barnes, & Jorgensen, 1992; Schuboe, 

Maldonado, Stork, & Beetz, 2008; Stelmach, Castiello, & Jeannerod, 1994;  Valyear, 

Chapman, Gallivan, Mark, & Culham, 2011).  
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For example, it has been shown that the intent of what an individual wants to do 

with an object affects both the planning and the control of the movement (Marteniuk et 

al., 1987) and that the shape of the hand during reach-to-grasp movement is affected by 

the nature of the following task (Ansuini et al., 2006).  

Although these studies are informative, participants were presented with 

meaningless shapes that are usually not associated with specific action plans. However, in 

everyday life, we interact with familiar graspable objects, which may, in fact, be strongly 

associated with multiple action plans. For example, a plum may afford a particular grasp 

style based on its size and shape, but it also may afford a different grasp based on the way 

it is typically brought to the mouth to be eaten (Gentilucci, 2002; Naish et al., 2013) or to 

be placed elsewhere (Naish et al., 2013). Similarly, familiar objects may afford different 

grasp styles based on the task end goal. For instance, Ansuini, Giosa, Turella, Altoe and 

Castiello (2008) showed that changes in finger joint angles were unique for grasping a 

water bottle to pour water from it and that these changes appeared to reflect anticipation 

of the particular dynamics linked to the pouring action. The authors concluded that 

different after-grasp movements affect the kinematics of the preceding prehension 

movement (Ansuini et al., 2008).  

Moreover, Schuboe et al. (2008) observed differences in reaching movements when 

participants were picking up a bottle in different task contexts. Specifically, the authors 

observed that reaching movements towards the bottle were longer in duration  when the 

subsequent action was pouring liquid from the bottle before placing it down, compared to 

when the end-goal was simply placing the bottle (Schuboe et al., 2008).  

Likewise, for familiar tools, grasping based on properties of the object, such as, size, 

shape and orientation, may differ from grasping based on the knowledge and the intention 

to use the tool for a specific end-goal (Daprati & Sirigu, 2006; Frey, 2007; Valyear et al., 

2011; Valyear et al., 2007). Therefore, different task goals with the same tool may 

translate into distinct motor affordances (e.g., a knife can be used to cut but also to spread 

butter). It is also worth mentioning that for some objects and tools, the hand configuration 

based on the structure of the object is at odds with the configuration required for use 

(Buxbaum et al., 2003; Klatzky, McCloskey, Doherty, Pellegrino, & Smith, 1987). For 
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example, the structure of a hotel reception service bell affords a whole-hand pinch 

interaction to lift it up, but in fact, the learned interaction to use it is a poke. As highlighted 

in the main introduction (see section 1.10.2), evidence from neuropsychology has shown 

that patients with ideomotor apraxia, with damages to their inferior parietal lobe, might 

be able to grasp objects based on their physical properties, however, they are unable to 

use the same object (Carey, Harvey, & Milner, 1996; Randerath et al., 2009; Sirigu et al., 

1995). In contrast, patients with posterior parietal damages, which include the SPL, 

improve when grasping familiar objects versus shapes (e.g., cylinder) (Jeannerod, Decety, 

& Michel, 1994). This suggests that for familiar tools, learned functional properties (use-

based), structural properties (structure-based) or both, may be critical for affordances 

(Bub, Masson, & Cree, 2008; Valyear et al., 2011; Valyear et al., 2007).  

To further investigate use-based affordances, Valyear et al. (2011) asked healthy 

participants to grasp familiar kitchen tools in order to move them (grasp-to-move; GTM) 

or to demonstrate their common use (grasp-to-use; GTU). Actions were preceded by a 

short visual preview of a tool with either congruent or incongruent identity to the tool 

which was then acted with. Importantly, all the tools had identical handles so that priming 

and differences in kinematics could only be related to knowledge of identity and learned 

tool use, instead of structural object properties. The authors showed that priming and the 

kinematics of grasping depend on the goal of the grasping action as well as the context in 

which the tasks were presented. They reported that priming effects were observed for 

reaction times in GTU only when the tasks were presented in separate blocks. According 

to the authors, these results show that the priming effect appeared to be evident when the 

identity of the tool was important for the end-goal of the task (e.g., use the object).  

However, when the tasks were presented in a mixed order, priming effects emerged in the 

GTM task as well. The authors suggested that the effect of priming in GTM when the 

tasks were mixed was linked to the attention to tool identity effect observed in GTU. When 

the two tasks were mixed, the attention to tool identity was in place, and therefore priming 

effects emerged for GTM trials as well. Moreover, they observed longer reaction times, 

shorter movement durations and wider peak grip apertures in GTU compared to GTM. 

The authors concluded that the end-goal of the task modulates the attention to particular 
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object features, which as a consequence modulated affordances and priming. For grasping 

kinematics, no effects of priming were observed. They observed wider grip apertures and 

shorter movement durations for GTU, regardless of the task setting. Moreover, in the 

block setting, they reported an interaction between tool identity and task, which showed 

that in the GTU task the grasping patterns differed according to the tool identity, whereas 

in the GTM task, grasping was similar across all tool identities. Although in the mixed 

design the interaction did not reach significance, the authors reported that the pattern 

remained, but was less pronounced. The authors concluded that priming of grasping is 

determined by the end-goal (e.g., GTU and GTM) of the task as well as the task setting 

(e.g., mix or block design), which are both likely to modulate how affordances are 

perceived and therefore influence the planning of subsequent actions (Valyear et al., 2011) 

In a recent experiment, Cicerale, Ambron, Lingnau and Rumiati (2014) showed that 

participants were faster to initiate the movements and took less time to perform the 

movements for GTM versus GTU.. The authors suggested that the kinematic 

characteristics of the initial grasping movement were modulated by the precision of the 

end-goal of the action. Specifically, in GTU, participants took longer to prepare and 

execute the reach-to-grasp movement indicating that more attention was paid to the plan 

and control of the movement (Cicerale et al., 2014). These results confirm that the end-

goal of an action has an impact on grasping kinematics of the initial reaching and grasping 

movement (Cicerale et al., 2014; but see also: Ansuini et al., 2008). Perhaps surprisingly, 

they did not observe an effect of the goal of the task on grip aperture, however, this might 

be related to the fact that they did not control for structural differences between tools (i.e., 

the tools used did not have the same size handle).  

Based on evidence that there are differences in kinematic characteristics between 

GTU and GTM, one would expect that these differences might be reflected in the muscular 

activity. I have previously discussed that the mere sight of a tool activates motor 

affordances. Similarly, humans are predisposed to have facial reactions to the mere sight 

of facial expressions (Dimberg, 1982; Dimberg & Karlsson, 1997). In a series of studies, 

Dimberg and colleagues have shown that when people see pictures of emotional facial 

expressions, they rapidly, spontaneously and unconsciously react with distinct facial 
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electromyographic (EMG) reactions in the face muscles that are relevant for the emotion 

displayed (e.g., Dimberg, 1990; Dimberg & Thunberg, 1998; Dimberg, 1982; Dimberg, 

Thunberg, & Elmehed, 2000) after only 500 ms of exposure (e.g., Dimberg & Thunberg, 

1998). Moreover, it has been consistently reported that face muscles more generally 

automatically distinguish between negative and positive emotional reactions. Based on 

these observations on facial EMG and emotions, we would expect that hand muscle would 

spontaneously and rapidly react to the mere sight of objects, before any overt movement 

is initiated. Moreover, based on the difference in kinematic characteristics highlighted in 

the previous paragraphs, differences in EMG would be expected between GTU and GTM. 

For example,  Naish et al. (2013) using EMG and motion tracking  showed that the 

initial reach-to-grasp movement in target-directed actions with objects, varies depending 

on both the subsequent action and on the properties of the object itself.  

Inspired by these previous studies, here we explored whether and how reach-to-

grasp movements differ depending on whether familiar tools are going to be grasped and 

placed (GTM) or functionally grasped and used (GTU) and whether tool identity affects 

grasping kinematics. To this end, we investigated real grasping action using familiar 

kitchen tools. Similar to Valyear et al. (2011), we had two tasks: grasp-to-move (GTM), 

whereby participants grasped a tool to move it from one location to the other and grasp-

to-use (GTU), whereby participants grasped a tool to demonstrate its typical use.  

Our interest focused on whether grasping kinematics towards the same tool are 

influenced by the end-goal of the subsequent action and whether tool identity is processed 

in both GTU and GTM or not. For the GTU task, the identity of the tool should play a 

critical role in action planning, therefore we predicted that grip aperture, peak velocities 

and EMG activity would differ across tools. In contrast, for the GTM task, tool identity 

may not play such an important role, and therefore we did not expect differences in 

kinematics and EMG activity across tools. According to Gibson (1979), affordances are 

perceived in a direct way, that is that the knowledge associated with the object does not 

need to be activated, as affordances are not properties of the object alone, but they are 

linked to the object and the effector potential for action. Therefore, based on this account, 

we would expect that tool identity would affect grasp kinematics in the GTU task only.  
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However, an alternative scenario could be expected. Gentilucci (2002) showed that 

grasping kinematics are influenced not only by the actual opposition space (e.g., the part 

of the object that has to be grasped), but by also other parts of the object. Gentilucci did 

not use tools, but meaningless spheres and blocks with no semantic meaning associated 

with them. Similarly, it is possible that when tools are grasped the business head 

influences how the tool is grasped and therefore it may be that the identity of a tool is 

always processed when interacting with it, regardless of the specific goals or motor 

requirements (Gentilucci, 2002, 2003). If this is the case, different kinematics of grasping 

and EMG activity across tools should be expected not only in the GTU, but also in the 

GTM task.  

Importantly, we used tools with the exact same handle so that any differences in 

grasping kinematics could not be simply attributed to any difference in the structure of the 

handle of the objects. This was implemented such as the grasping kinematics would in 

principle be comparable for all tools in the reach-to-grasp movement and to characterise 

the kinematics of grasping in GTU and GTM, without the confounding of using tools with 

different handles (see Valyear et al., 2011). Additionally, we kept the first sequence of the 

movement (e.g., reach-to-grasp) constant across the two tasks, so that any differences 

observed in grasping kinematics and EMG were comparable across tasks and tools. 

Although we recorded EMG, due to time constraints, this data was not analysed.  

4.2 Methods 

4.2.1 Participants 

Eighteen naïve participants (5 males; mean age = 21.5 years old, S.D. = ±2.7 years 

old; mean education = 15.7 years, S.D. = ±1.9) recruited from the University of East 

Anglia (Norwich, UK) took part in a motion-tracking study. In total 20 participants were 

recruited, however, data from 2 participants were discarded due to missing markers. All 

participants were healthy, had normal or corrected-to-normal vision and were right-

handed (Oldfield, 1971).  

The Ethics Committee of UEA, School of Psychology (reference: 2016-0058-

000226), approved the study and participants informed consent was obtained in 
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accordance with the principles of the Declaration of Helsinki (1964). The experiment took 

approximately 1 hour 45 minutes, and participants were compensated financially or were 

given SONA course credits. 

4.2.2 Materials and Apparatus 

Six high-resolution infrared sensitive cameras (Qualisys AB, Gothenburg, Sweden) 

were used to record the x, y, and z positions (179 Hz) of three lightweight markers (4 mm 

diameter) attached with adhesive tape to the inside tip of the thumb, the tip of the index 

finger and the metacarpophalangeal joint of the index finger of the participants’ right 

hands. EMG data were acquired using a BioNomadix dual channel wireless device (W x 

H x D: 6 cm x 4 cm x 2 cm; weight: 54 g) and a Biopac MP-150 electromyograph 

(BIOPAC Systems, Inc., Goleta, CA). EMG signals from the right hand and forearm were 

acquired throughout the whole experiment at a sampling rate of 1kHz and band-pass 

filtered at 1-1000 Hz, digitalized and displayed on the computer screen. Four pairs of 

adhesive solid hydrogel silver-silver chloride surface cloth electrodes (2.5 cm x 2.5 cm 

cloth backing) were attached to the skin to record the activity of four muscles of the 

participants’ right hand and forearm. Specifically, electrodes were placed over the first 

dorsal interosseous (FDI) and the abductor pollicis brevis (APB) in the hand; and the 

forearm flexor (i.e. flexor digitalis superficialis, FDS) and the extensor muscles (i.e. 

extensor digitorum communis, EDC) in the forearm. The ground electrode was placed on 

the styloid process of the wrist, and each pair of electrodes was placed on the skin 

overlaying each muscle at approximately 2 cm  apart (Naish et al., 2013). Figure 4.1 

represents where the electrodes were placed on the right hand and forearm. 
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Participants were seated in front of a grey table (1m2) with their chin stabilised on a 

chin-rest to minimise head movements. They were asked to comfortably place their right 

hand and arm on a cushion with their index finger and thumb placed on the start position 

5 cm on the right of their midline and approximately 20 cm from the edge of the table. A 

black rectangular platform (initial platform, 22.5 x 30 cm), used to place the tools, was 

positioned on the right side in front and of the participants at 38 cm from the edge of the 

table. The black platform in front of the participants (final platform) served as a standard 

position to perform the movements and had a marker on the bottom right corner where the 

participants were instructed to place the handle of the tool at the end of each trial (40 cm 

from the hedge of the table and 12 cm from the participants’ midline; figure 4.2). This was 

done to keep the end position of each trial constant between trials and tasks. Visual 

feedback was controlled using liquid crystals shutter glasses (Plato System; Translucent 

Technologies, Toronto, Ontario, Canada). Participants were presented with three different 

tools: whisk, ice-cream scoop and knife. Table 4.1 lists all the tools and their features. 

Figure 4.1 Representation of electrodes placement on the exterior (a) and interior (b) 

surface of the right hand and right forearm. FDI: first dorsal interosseous, FDS: flexor 

digitalis superficialis, ABP: abductor pollicis brevis, EDC: extensor digitorum communis.  
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Importantly, all tools have the exact same handle (width: 3.2 cm). This was implemented 

so that the grasping kinematics would in principle be comparable for all tools in the reach-

to-grasp movement and to characterise the kinematics of grasping in GTU and GTM, 

without the confounding of using tools with different handles (as in Valyear et al., 2011)  

A custom designed program written in Matlab (The MathWorks, USA) and the 

Psychophysics Toolbox (Brainard, 1997) were used to control the presentation of the 

tools, goggles, motion-tracking and EMG recordings. 

  

Whisk Scoop Knife

Length (cm) 28.5 19.5 21.5

Width (cm) 5.5 4.3 2.1

Depth (cm) 5 2 2

Weight (g) 51 53 38

Table 4.1 Tools. Table shows length, width, depth and weight of each tool. All tools 

have the same handle. 
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4.2.3 Procedure 

Prior to testing, participants were asked to name the three tools and the experimenter 

demonstrated the expected action associated with each tool, however, participants were 

asked to carry out the movements in a way that was comfortable for them and not 

necessarily the way the experimenter showed them (Valyear et al., 2011). At the end of 

the experiment, participants completed a questionnaire about tool use and familiarity (see 

section 4.2.4 below). This was done to ensure that participants were familiar with the tool 

used.   

In this study, we used a tool manipulation paradigm adapted from Valyear et al. 

(2011). Participants began each trial with their right hand and arm on a cushion with the 

index finger and thumb close to each other. A foam cushion was used to allow the 

participants to have their arm in a comfortable position and help them in relaxing their 

muscles in-between trials. Tools were placed on the platform in two different positions: 

the near position was placed 29 cm from the start position while the far position was 

positioned 35 cm from the start position, at an increment of 15° on the right. This was 

implemented to reduce the repetitiveness of the movements (Cicerale et al., 2014). Only 

trials in the near position were included in the analysis, while trials in the far position 

where used as catch trials and therefore repeated fewer times and not included in the 

analysis (Valyear et al., 2011).   

Tasks were presented in a block order and at the beginning and at the end of each 

task, before recording these baselines, participants were asked to sit comfortably on the 

chair and relax their hand and arm muscles. When they felt they were relaxed, a one-

minute task-EMG-baseline was recorded. We recorded these baselines to account for 

changes in factor such as how well accommodate the electrodes are to the skin, how much 

the equipment has heated up and potentially sweat and fatigue, which are factors that could 

affect the low frequency signal in the data and might affect the data even after filtering 

(see Cacioppo, Tassinary, & Berntson, 2007).  

Each trial began with no vision of the workspace available for 1s, in which a trial-

EMG-baseline was recorded, then the goggles opened, and the participants were instructed 
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to simply look at the tool displayed on the platform for 2 s, plus a random delay (between 

0 and 750 ms). At the end of the preview period, a beep (500 Hz, duration 250 ms) played 

to cue the participants to reach-to-grasp the tool on the initial platform. In the GTM task, 

participants were instructed to grasp the tool and place it on the final platform. In the GTU 

task, participants were instructed to grasp the tool on the initial platform, move it on the 

final platform in front of them and then demonstrate three cycles of the use associated 

with the tool, before placing it down with the handle on the final position. Figure 4.2 

represents the timing of a trial. Importantly, to keep the direction of the movement 

consistent between tasks, the tools were moved to the same final position. GTM and GTU 

tasks were performed in separate blocks of 54 trials each (45 experimental trials, 15 

repetitions for each tool identity in each block) with task order counterbalanced across 

participants. Figure 4.2 shows the sequence and timing of events within a given trial.  

Figure 4.2 Example Trial timing for GTM and GTU.  The top red line represents the state of 

the PLATO goggles and whether or not vision was available to the participants. The blue line 

indicates hand position: full line indicates no movement, whereas dashed line indicates that 

participants are performing hand actions. Light green sound symbol indicates the beep used to 

cue participants to start the action. RT = Reaction Times, MT = Movement Time, IP: initial 

platform, FP: final platform. 
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4.2.4 Tools Questionnaire  

At the end of the behavioural experiment, all participants had to answer a 

questionnaire, checking their knowledge about the tools and how familiar they are with 

the usage of the tools presented in the experiment. Completing the questionnaire took 

approximately 10 minutes. Although pictures of the tools used during the experiment were 

presented, participants were reminded to think about the type of object depicted rather 

than the exact exemplar shown in the image when rating.  

For each item, we computed the median of the group answers (Brandi et al., 2014). 

Table 4.2 reports questions, scale rating and the median score for each question.  

The results of the questionnaire show that all the participants were familiar with the 

tools and how to use them.  Moreover, the median shows that participants rated the tools 

easy to pantomime and with few actions associated with them.  
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Question Answer's Range

Whisk

median 

(range)

Scoop

median 

(range)

Knife

median 

(range)

Before you took part in this study, in your 

daily life how familiar were you with this 

object?

1 = no idea to 7 = 

very familiar
7 (3-7) 7 (3-7) 7 (7)

Before you took part in this study, did you 

know the function of this object?

1 = no idea to 7 = 

perfect idea
7 (6-7) 7 (6-7) 7 (7)

How often do you use this object?
1 = less often to 7 

= every day
4 (1-7) 4 (1-7) 7 (1-7)

Please determine the number of actions that 

you can perform with each object. 
1 to 7 + 1 (1-6) 2 (1-4) 2 (1-5)

How easily can you grasp this object?
1 = not at all to 7 = 

very easy
7 (4-7) 7 (5-7) 7 (4-7)

How easy can you pantomime the use of the 

object?

1 = not at all to 7 = 

very easy
7 (4-7) 7 (4-7) 6 (3-7)

How similar is the shape of your hand when 

you grasp the object to move it compared to 

when you grasp it to use it?

1 = not similar at 

all to 7 = very 

similar

4.5 (1-7) 4.5 (1-7) 6 (2-7)

Whisk - 

Scoop

Scoop -

Knife

Knife- 

Whisk

In this task you have to rate how similar is the 

function of the two objects in the picture

1 = very different 

to 7 = very similar
2 (1-6) 2 (1-4) 1 (1-4)

In this task you have to rate how similar is the 

shape of your hand when grasping the two 

objects in the picture

1 = very different 

to 7 = very similar
5 (3-6) 5.5 (1-7) 4 (1-7)

In this task you have to rate the similarity of 

the movement performed when using the two 

objects in the picture

1 = very different 

to 7 = very similar
3 (1-6) 2 (1-4) 1 (1-5)

Table 4.2 Tools Questionnaire. This table includes the items in the questionnaire, the 

response range and the median score for each question for each tool. We used a 

seven-level Likert-type scale in which participants had to indicate their answers for 

each item of the questionnaire. Items in the questionnaire were adapted from relevant 

studies in the field from Kellenbach, Brett, & Patterson (2003) and Lagace, Downing-

Doucet & Guerard (2013). 
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 Analysis 

Kinematic data were obtained by localising the x, y, z positions of markers attached 

to the index finger, thumb and wrist of the participants’ right hand and were analysed off-

line using a customised software written in Matlab (The MathWorks, USA). Raw data for 

each marker were filtered using a low-pass Butterworth filter (10 Hz-cut-off, 3rd order) 

for each trial. Each trial was visually inspected for any errors.  

Reaction times were defined using the wrist marker and were calculated as the time 

between the auditory cue and the first frame in which the velocity exceeded 50 mm/s.  

Movement onset was defined as the time at which the velocity of the wrist marker 

exceeded 50 mm/s and the end of the movement was determined as the time at which the 

velocity of the wrist marker fell below 50 mm/s (e.g., Cohen et al., 2009). For a complete 

list of the dependent variables see table 4.3. 

Trials were excluded from the analysis for the following reasons: data points were 

missing due to occlusion of the markers (5% of trials), participants moved before the 

auditory cue (0.43 % of trials) or multiple peaks of grip aperture were detected (1.42 % of 

trials). In addition, trials were visually inspected and when a failure to detect the end 

movement was observed, they were excluded (6.5 % of trials). Also, we performed an 

outlier analysis on MGA, removing trials that were more than two standard deviations of 

the mean (2.8 % of trials). This procedure resulted in 84.1% of trials being included in the 

analysis for GTM and 83.59% of trials being included in the analysis for GTU with around 

12 repetitions per tool per condition. Table 4.4 shows the total number of trials included 

in the analysis for each object across participants and the mean number of trials included 

per condition. 



211 

 

 

 

  

Dependent Measures Name Unit Marker(s) Description

Reaction time RT ms wrist
Time of the onset of 

the movement

Movement duration MT ms wrist

Time from movement 

onset to movement 

offset 

Time to Peak Velocity tPV ms wrist

Time interval between 

PV and movement 

onset 

Time to Maximum Grip 

Aperture
tMGA ms index, thumb 

Time interval between 

MGA and movement 

onset 

Peak Velocity PV mm/s wrist

Maximum resultant 

velocity of the wrist 

marker within MT

Maximum Grip   

Aperture
MGA mm index, thumb 

Peak Euclidean 

distance between the 

thumb and index 

finger's positions

Table 4.3 List of variables analysed. 
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All dependent variables were entered into a 2 x 3 repeated measure analysis of 

variance (RM-ANOVA), with factors task (GTM and GTU) and tools (whisk, scoop and 

knife). All comparisons in the RM-ANOVAs were analysed using the Greenhouse-

Geisser correction when sphericity was not assumed and considered significant at α-level 

of 0.05 (two-tailed). Post hoc pairwise contrasts used the Bonferroni correction for 

multiple comparisons with a corrected p < .05. Moreover, partial eta squared (ηp
2) was 

calculated to determine effect size.  

  

GTM GTU

Mean of included 

trials (SD)

Mean of included 

trials (SD)

Whisk 12.6 (1.9) 12.2 (2.2)

Scoop 12.8 (1.8) 12.5 (2.2)

Knife 12.7 (1.8) 12.4 (1.9)

Table 4.4 Mean (standard deviation, SD) of trials within participants included in the analysis. 
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4.3 Results 

4.3.1 Reaction Time 

Analysis of reaction time (RT; figure 4.3) revealed that overall participants took the same 

time to begin the movement between the GTM (mean = 515.24 ms) and the GTU (mean 

= 540.23 ms) task (F (1, 17) = 1.874, p = .189, ηp
2 = .099) and across the three different tools 

(F (2, 34) = .843, p = .439, ηp
2 = .047). No significant interaction between task and tool 

identity was found (F (2, 34) = .071, p = .931, ηp
2 = .004). 

  

Figure 4.3 Graph depicts reaction time. Bars indicate means for each tool in GTM (yellow 

bars) and GTU (blue bars). Error bars represent standard error of the mean (SEM). No 

significant main effect or interactions were observed for RT. 
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4.3.2 Movement Time 

We found a significant main effect of tool identity for MT (F (2, 34) = 3.739, p = .034, ηp
2 

= .180; figure 4.4). Participants were overall faster to perform movements when grasping 

the scoop (mean = 754.23 ms) than the knife (mean = 776.67 ms, p = .033). No significant 

main effect of task (F (1, 15) = .137, p = .716, ηp
2 = .008) or interaction between task and 

tool identity (F (2, 34) = 269, p < .776, ηp
2 = .016) were observed. 

 

 

Figure 4.4 Graph depicts movement time. Bars indicate means for each tool in GTM 

(yellow bars) and GTU (blue bars). Error bars represent standard error of the mean 

(SEM). Yellow star denotes significant differences between conditions. 
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4.3.3 Peak velocity 

No main effect of task (F (1, 15) = 2.390, p = .141, ηp
2 = .123) or tool identity (F (2, 34) = 

.442, p = .646, ηp
2 = .025) were observed (figure 4.5). However, we observed a significant 

interaction between task and tool identity for PV (F (2, 34) = 5.852, p = .007, ηp
2 = .256). 

Within the GTM task, participants were faster when reaching to grasp the whisk (mean = 

683.74) compared to the knife (mean = 664.86 mm/s, p = .011). When comparing GTM 

and GTU, participants were faster when reaching to grasp the knife in GTU (mean = 

701.20 mm/s) compared to GTM (mean = 664.86 mm/s, p = .034).  

Figure 4.5 Graph depicts peak velocity (PV). Bars indicate means for each tool in GTM 

(yellow bars) and GTU (blue bars). Error bars represent standard error of the mean 

(SEM). Yellow stars denote significant differences between conditions. 
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4.3.4 Time to peak velocity 

Regarding time to peak velocity (tPV), no significant main effects of task (F (1, 17) = .444, 

p = .514, ηp
2 = .025) or tool identity (F (2, 34) = 629, p = .629, ηp

2 = .027), nor significant 

interactions (F (2, 34) = 224.86, p = .366, ηp
2 = .057) were observed (figure 4.6). 

 

  

Figure 4.6 Graph depicts time to peak velocity (tPV). Bars indicate means for each tool 

in GTM (yellow bars) and GTU (blue bars). Error bars represent standard error of the 

mean (SEM). No significant main effect or interactions were observed for tPV. 
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4.3.5 Maximum grip aperture  

For MGA, we observed significant main effects of task (F (1, 17) = 8.007, p = .012, ηp
2 = 

.320) and of tool identity (F (2, 34) = 19.519, p < .001, ηp
2 = .534). Participants opened their 

hand wider in the GTU (mean = 56.88 mm) compared to the GTM task (mean = 54.43 

mm). Moreover, participants opened their hand wider for the whisk (mean = 56.62 mm) 

compared to the scoop (mean = 55.67 mm, p = .019) and the knife (mean = 54.67 mm, p 

< .001). In addition, participants opened their hand less wide for the knife (mean = 54.67 

mm) compared to the scoop (mean = 55.67 mm, p = .003). No significant interactions 

were observed between task and tool identity (F (2, 34) = 1.394, p = .262, ηp
2 = .076; figure 

4.7). 

Figure 4.7 Graph depicts maximum grip aperture (MGA). Bars indicate means for each 

tool in GTM (yellow bars) and GTU (blue bars). Error bars represent standard error of 

the mean (SEM). Yellow stars denote significant differences between conditions. 
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4.3.6 Time to maximum grip aperture 

We observed a significant main effect of tool identity for tMGA (F (1.48, 25.22) = 5.491, p < 

.017, ηp
2= .244). Participants reached earlier tMGA for the whisk (mean = 544.57 ms) 

compared to the knife (mean = 562.34 ms, p = .028). No main effect of task (F (1, 17) = 

1.626, p = .219, ηp
2 = .087) or interactions (F (2, 34) = 1.347, p = .273, ηp

2 = .073) were 

observed (figure 4.8). 

Figure 4.8 Graph depicts time to maximum grip aperture (tMGA). Bars indicate means for 

each tool in GTM (yellow bars) and GTU (blue bars). Error bars represent standard error 

of the mean (SEM). Yellow star denotes significant differences between conditions. 
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4.4 Discussion 

To explore whether and how reach-to-grasp movements with familiar tools differ 

depending on whether they are grasped based on structural characteristic (e.g., size, shape) 

or the task end-goals, we implemented a GTM and a GTU task. Moreover, using different 

tools we were able to test whether tool identity influenced grasping kinematics of the 

reach-to-grasp movement in GTU and GTM. We show that the initial reach-to-grasp 

movement involved in tool-directed actions varies depending on the action following the 

initial movement and according to the identity of the tools. 

First, our study confirmed that the end-goal of the action influences the initial reach-

to-grasp movement when interacting with tools (see also Marteniuk, Leavitt, MacKenzie, 

& Athenes, 1990). In line with previous studies using shapes  (Ansuini et al., 2008, 2006; 

Marteniuk et al., 1987) and more recently tools (Valyear et al., 2011; Cicerale et al., 2014), 

we observed distinct kinematics characteristics in the initial reach-to-grasp movements 

for GTU and GTM. We observed that in the GTU, where after the initial grasp participants 

had to functionally use the tools, participants opened their grip aperture wider compared 

to the GTM task. Consistent with previous findings, we suggest that MGA depends on the 

demands of the action following the grasp (Rosenbaum et al., 2009; Ansuini et al., 2008, 

2006; Cohen & Rosenbaum, 2004;  Marteniuk et al., 1987; Valyear et al., 2011). Thus, 

although all the tools had the same handle, the placement of the thumb and index finger 

at grasp closure might have been different between GTU and GTM to reflect a more 

comfortable position for the next steps of the action. This sensitivity toward comfortable 

and more controllable final goal postures is called end-state comfort effect. This effect 

was discovered by Rosenbaum while he was in a restaurant while having a meal. He 

spotted a waiter filling a glass with water (Rosenbaum et al., 1990). Each glass was 

inverted to begin with, so each glass had to be turned right-side up before he could pour 

water into it. Rosenbaum observed that the waiter grasped each glass with an awkward 

thumb-down grasp. However, as soon as the waiter turned the glass upright to fill it with 

water, the position of the hand was a less awkward thumb-up grasp, which was a 

comfortable, biomechanically controllable posture to fill the glass with water and place it 
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back on the table. This suggested that the waiter was aware of the end-state of the action 

and was planning in advance his actions (Rosenbaum et al., 1990).  

The end-state comfort effect was then tested by Rosenbaum et al. (1990) in the 

laboratory. They asked the participants to grasp a horizontally positioned bar and place 

either the left or the right end of the bar into a left or right target. The authors observed 

that regardless of the location of the target, participants, always used an overhand (e.g., 

palm facing down) grasp posture when the right end of the bar was to be placed  into the 

target, while they always used an underhand (e.g., palm facing up), when the left end of 

the bar was to be placed in the target (Rosenbaum et al., 1990). The authors concluded 

that the initial grasp postures were selected so that the hand would end up in a more 

comfortable position at the end of the movement, when the bar was placed into the target 

(Rosenbaum et al., 1990) Subsequently, Cohen and Rosenbaum (2004) asked participants 

to take hold of a bathroom plunger and carry it from its initial position (at a fixed height) 

to a number of target shelves at varying height. They observed that participants grasped 

the plunger according to the final position: the higher the final position, the lower the 

grasp height. According to the authors, this indicates that participants planned their 

grasping posture based on the end-goal (Cohen & Rosenbaum, 2004).  

Our results are in line with Valyear et al. (2011), which observed that grip apertures 

were wider in GTU versus GTM. The authors interpreted their results as evidence that the 

end positions of the index finger and thumb are different for GTU versus GTM. Valyear 

et al. (2011), plotted the relative 3-D position of the thumb and index marker at the end of 

the movement time separately for task and tool identity to look at the how the hand is 

positioned just prior to grasp completion (e.g., the hand position in space just prior to 

handle contact). They reported that for the GTM task, the thumb made contact with the 

surface of the tool nearer to the participant, while the index finger made contact with the 

top surface for all the different tools. While in the GTU task, although the orientation of 

the fingers was similar to the GTM task, the position of the finger along the handle were 

different and coincided with some of the kinetic features for the actions that follows. The 

authors concluded that for the GTM task, the index played a relatively passive role in both 

the reach-to-grasp movement and the movement following grasping, which is reflected 
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into the smaller MGAs observed, while in the GTU task, the index finger was more 

actively involved (e.g., help maintain support).  

To further explore this effect, we could analyse the position of the fingers when 

making contact with the objects. Moreover, to further test the hypothesis that MGA 

depends on the demands of the action following the grasp, we could ask participants to 

reach-out to grasp tools to lift them up. Only once they have started the movement (i.e., 

while they are reaching for the tool), a cue could instruct them to use or move the tool. As 

no information regarding the subsequent action is given during movement planning, if 

MGA depends on the action following the grasp, we would expect a similar MGA across 

tasks and tools, due to uncertainty of the task following grasp. 

Perhaps surprisingly, we did not observe an effect of task on reaction times. We 

observed that participants consistently took longer to initiate GTU movements, which is 

consistent with the hypothesis that reaction times are thought to reflect the time taken to 

plan actions (e.g., Rosenbaum et al., 1992), this was not significant. Our findings are in 

contrast with Valyear et al. (2011), who observed that participants were much faster to 

initiate grasping for GTM versus GTM. However, there are differences between our task 

and Valyear et al. (2011), that might explain this. First, while they computed the RT as 

the time at which participants released the start button, we computed the reaction times 

based on motion tracking data. Specifically, we used the velocity marker and computed 

RT as the time at which the marker reached a velocity of 50 mm/s therefore our RTs rely 

on the velocity of the hand and might be less accurate than the RT obtained by button 

release. Second, due to the timing of the EMG, we had a longer preview than Valyear et 

al. (2011), which might have caused a ceiling effect in our data and explain why we did 

not find an effect of task on reaction times. 

Moreover, we observed an interaction between task and tool identity for peak 

velocity. Specifically, we observed slower velocities for the knife in GTU versus GTM 

and faster velocities in GTM for the whisk versus the knife, which may be interpreted as 

in line with affordance suppression mechanisms (Ellis, Tucker, Symes, & Vainio, 2007; 

Tipper, Lortie, & Baylis, 1992; for a review see Thill, Caligiore, Borghi, Ziemke, & 

Baldassarre, 2013). Our results may be explained by the fact that different tools may afford 
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a different number of actions, which could trigger different affordance suppression 

mechanisms. Specifically, the knife afforded more actions (median = 5 actions) than the 

whisk (median = 1 action), therefore participants were faster at grasping to move the whisk 

compared to the knife. Similar findings have been reported by Ellis et al. (2007), who 

investigated the effects of distractor affordances by adding a distractor next to the target. 

The distractor suggested a type of grasp that was either compatible or incompatible with 

the requested task response. They showed that the presence of a distractor led to faster 

reaction times when the distractor depicted incompatible affordances. In contrast, when 

the distractor depicted compatible affordances with the requested task response (e.g., type 

of grasp) it led to slower reaction times. The authors suggested that the inhibitory 

mechanisms that suppress the affordance elicited by the distractor interfered with the 

execution of the task actions (Ellis et al., 2007).  

Here, we selected tools that triggered only few post-grasp actions, however, based 

on our observations, further investigations are needed. For example, in future experiments 

we should explore the affordance suppression mechanisms further by investigating 

grasping kinematics when participants are grasping to use tools to perform different 

actions associated with them. For example, to use the knife to cut and to use the knife to 

spread butter. If peak velocities between use the knife to cut and use the knife to spread 

were different, this might suggest that some actions might have stronger functional 

associations with a tool compared to other actions. To continue the example, if the peak 

velocity in use-to-cut was faster than in use-to-spread condition, this may suggest that 

when using the knife to spread, the cut action needs to be suppressed. According to the 

affordance suppression effect it may be related to the fact that the knife may be more 

strongly linked to the “cut” action, compared to the “spread” action.    

A possible explanation is that when a tool is not grasped to be functionally used, 

affordances suppression mechanisms might be in place, to suppress the functional use in 

order to accomplish the task. This is in line with neurophysiological studies in monkeys, 

showed that two areas that are reciprocally connected (Rizzolatti et al., 1998), the anterior 

part of the intraparietal sulcus (AIP; Murata et al., 2000; Sakata et al., 1995) and F5 

premotor areas (Murata et al., 1997; Rizzolatti et al., 1988), are involved in the control of 
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grasping. Specifically, area AIP is supposed to send visual signals of object properties to 

area F5 for selecting the type of grip and the appropriate hand movements, and area F5 

sends information of the selected motor command to area AIP (Sakata et al., 1995). 

Therefore, the exchange of information between these interconnected areas plays a role in 

the control of movement execution, such as matching the hand shape with the 

characteristics of the object and with the corresponding affordances  (Gentilucci, 2002). 

Gentilucci (2002) proposed that the AIP-F5 circuit concurrently extracts all the possible 

affordances when an object is presented. Specifically, he proposed that within the AIP-F5 

circuit, the motor representation of the whole object is coded, and that information is 

exchanged between the two areas until the grasp is accomplished. To further test this 

affordance suppression mechanism hypothesis, future experiments should look at 

differences when using the same tool for different functional end-goals (i.e., use a knife 

to spread butter and use a knife to cut) as well as for non-common use (e.g., use the knife 

to stir coffee) and atypical use (e.g., new learned movement). According to the affordance 

suppression account, higher velocities should be observed for common actions compared 

to atypical uses.  

We observed a main effect of tool identity for movement time, grip aperture and 

time to grip aperture. The observation that tool identity affects the initial reaching and 

grasping movement is a novel finding. This suggests that regardless of task, the identity 

of the tools affects the kinematics of the movement even when all graspable parts (i.e., the 

handles) are the same size. Although effects on grasping kinematics between different 

objects in GTU and GTM tasks have been previously observed by Cicerale et al. (2014), 

they used tools with different size handles, therefore differences in grasping kinematics 

such as maximum grip aperture and time to peak velocity are interesting, but perhaps 

expected.  

For grip aperture, we observed that participants opened their hand wider for the 

whisk, compared to the scoop and the knife and less wide for the knife compared to the 

scoop. As the MGA seems to increase when the tool head size increases, our results may 

be in line with previous suggestions that object affordances are not only affected by the 
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portion of the object which the hand interact with (e.g., the handle), but by the whole 

object (e.g., business head; Gentilucci, 2002). 

For movement time, participants took less time to complete the movement towards 

the scoop versus the knife, but no difference was observed between the whisk and the 

knife, nor between the whisk and the scoop. Previous investigations using wooden blocks 

have shown that grasping kinematics were strictly correlated to the width of the object 

being grasped (e.g., Goodale et al., 1994). As such, increases in object width led to an 

increase in movement duration, maximum grip aperture and the time at which this is 

achieved. However, the pattern observed in our data is different. Specifically, for 

maximum grip aperture we observed that participants opened their hands wider for tools 

with larger heads (e.g., whisk), compared to tools with smaller heads (e.g., knife) even if 

the handles they grasped were identical across all tools. This is a novel observation and 

could be interpreted in the view that the head end of the tool drives attentional orientation 

(Skiba & Snow, 2016).  

For example, Skiba and Snow (2016), using a modified version of the Posner cueing 

task (Green & Woldorff, 2012), investigated whether attention is oriented towards the 

head or the handle of images of familiar elongated tools that have a strong action 

association versus control stimuli that are not associated with a specific function or motor 

routine, such as images of fruits and vegetables with a shape similar to the tools (e.g., 

knife – asparagus; peeler -chili pepper). In their task, participants were instructed to detect 

a target grey dot that appeared briefly near the handle/stem or head/tip of the target (either 

a tool or vegetable/fruit). They observed a lateralised bias in detection performance for 

the tool cues compared to the control stimuli (e.g., targets were detected more rapidly 

when they appeared near the head versus the handle of the tools). No attentional bias in 

favour of either end of the control stimuli was observed. Moreover, in a separate 

experiment, to provide evidence that tools are strongly associated with specific action 

routines compared to elongated fruits and vegetables, they took pictures of participants 

grasping the same tool and control stimuli used in the previous experiment. They then 

asked a separate sample of participants to judge the similarity of grasps performed with 

each object and results confirmed that grasps for the tools were significantly more similar 
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than those for control stimuli. The authors concluded that attentional bias is toward the 

region of a tool that carry information about the identity and functional use (e.g., tool 

heads versus handles), and that the attention is drawn rapidly to the head of the tool to 

facilitate activation of specific motor routines that are linked to tool identity (Skiba & 

Snow, 2016).  

A possible explanation for the observation that the tool identity affects grasping 

kinematics in our data is that affordances that are related to tool features, other than the 

handle, such as the business head, influence grasping kinematics. For example, in a series 

of experiments Gentilucci (2002) presented participants with two plastic fruits with a 

different shape, volume and weight (an apple and a strawberry) but with the same size and 

shape stalk. In one of the experiments, participants were instructed to grasp the stalk of 

the fruit and lift the fruit up. Although the stalks were the same size and shape, the author 

observed that the movement kinematics differed between object. Specifically, he observed 

an increase in peak velocity and acceleration as well as a decrease in reaction times when 

reaching the strawberry stalk compared to the apple stalk. On the other hand, he observed 

faster peak velocity of finger aperture and faster peak grip aperture when participants were 

grasping the apple stalk. The author suggested that hand shaping is wider and reach is 

faster when grasping larger wooden shape objects (Goodale et al., 1994; Jakobson & 

Goodale, 1991). The same results were observed when the fruit was larger despite the 

stalk being grasped was the same across fruits. Our results seem in line with this 

interpretation, as we observed that grip aperture decreased from the whisk to the scoop 

and the knife. In particular, participants automatically activated a reach-to-grasp motor 

program directed to the tool handle, however their grip was influenced by the shape and 

the size of the head of the tool. This observation might be linked to an attentional bias 

effect toward the region of the tool that indicates its identity and function as discussed 

above. To explore this hypothesis further, we could ask participants to grasp-to-use and 

grsp-to-move tool handles without the business head and cue participants by using either 

tool sounds or words. If the hypothesis of the attentional bias toward business head is true, 

then we would expect no effect of tool identity in MGA when no business end is available. 

However, if differences in grip aperture between tools are observed even if the business 
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head is removed, it might be that MGA is influenced by manipulation and function 

knowledge associated with tools. Thus, the differences in MGA might reflect differences 

in the end posture necessary to use the object.  

Moreover, Ambrosini and Costantini (2017) recorded eye movements while 

participants were looking at pictures of tools, graspable and ungraspable objects while 

their hands were either resting on the table or tied behind their back. They observed that 

participants mostly fixated first the action-related functional part of the tools (e.g., 

business head) versus the manipulation part (e.g., the handle), however, when participants 

had their hands tied behind their backs, this effect was significantly reduced. The authors 

concluded that how we visually explore objects, is biased towards action-relevant 

information (Ambrosini & Costantini, 2017; Handy et al., 2003). Our results complement 

and extend this finding by showing that grasping kinematics may be influenced by the 

functional part of the tools. Importantly, in Ambrosini and Costantini (2017), no overt 

movement towards the object were performed. Future investigations should look at eye 

movements during GTU and GTM. If differences in gaze behaviour across tools are 

observed, this might suggest that it is the functional knowledge of the stimulus that affects 

gaze behaviour towards tools. On the other hand, if differences in gaze behaviour across 

tasks are observed, this might suggest that different actions affect gaze behaviour. 

Additionally, if an interaction between tool and task is observed, this may suggest that 

according to the task, the functional knowledge of a tool may influence the gaze behaviour 

differently.  

We also observed that participants took longer to complete movements towards the 

knife compared to the scoop and reached MGA earlier for the whisk compared to the 

knife, which seems at odds with the hypothesis that the MGA follows the size of the 

business head. As such, time to MGA and movement time usually increase as the object 

size increases (e.g., Goodale et al., 1994). Additionally, the surface area of a tool may 

influence kinematics (e.g., Goodale et al., 2006). As we used everyday tools, these were 

not matched for surface area and luminance. Although in real life it is unlikely that we 

interact with objects that are matched for surface areas, to disentangle the possibility of 
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the effects being driven by the overall surface area of the tools, we could design tools with 

the same surface area and then 3D-print them.  

However, there are other factors that we need to consider and that might have 

implications for our results. First, our tools had different weight, which could have 

influenced reach-to-grasp movements since the weight of objects play a critical role due 

to the different grip force required to functionally hold different tools (e.g., Gentilucci, 

2002, Jeannerod, 1988). Although our tools had different weights, we could not identify 

a pattern in our results. In particular, although we observed shorter movements towards 

the heavier scoop, compared to the lighter-knife, and faster time to maximum grip aperture 

for the mid-weight whisk versus the lighter-knife, it is unlikely that our results could be 

explained by differences in the weight of the tools. In fact, if weight played a critical role 

on movement time and time to MGA, we would have expected movement time and time 

to MGA to increase as the weight of the objects increased. However, this was not the case.  

Second, we need to take into account, the position of the centre of mass (COM). 

Goodale et al. (1994), observed that when meaningless shapes are grasped, the final 

position of the fingers tend to be influenced by the centre of mass. As such they used lines 

to connect the points were the thumb and index finger first made contact with the object 

and observed that these lines tended to pass through the COMs of the objects (Goodale et 

al., 1994).  

Moreover, de Grave, Hesse, Brouwer and Franz (2008) examined fixation locations 

during reaching and grasping tasks to objects (e.g., flat shapes) that were either fully 

visible or that had the grasp location of the index finger, thumb or both partially occluded. 

They found that the first and second eye fixations on the objects were above the COM of 

the fully visible objects. Similarly, in the case of partially occluded objects, their fixation 

was above the COM calculated based on the object’s visible surface area. The author 

suggested that gaze locations are sensitive to COM location. Recently, Desanghere and 

Marotta (2015) examined grasp and fixation locations when grasping objects with 

different shapes and therefore different COMs. They observed both fixation and grasp 

locations were influenced by COM location. Specifically, grasp and fixation location were 

directed towards the location of the COM (Desanghere & Marotta, 2015). The authors 
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concluded that object features differentially influence both gaze and grasp location 

(Desanghere & Marotta, 2015).  

These findings are in contrast with Gentilucci (2002), who reported that the 

maximum grip aperture was not affected when grasping the handle (i.e., the opposition 

space) of objects with different COMs. However, while the objects used by Goodale et al. 

(1994), de Grave et al. (2008) and Desanghere and Marotta (2015), were simple shapes, 

with no obvious handle, the objects used by Gentilucci’s (2002) had an obvious handle. 

In fact, he used a graspable rod (e.g., handle) attached to a sphere (body of the object). By 

manipulating the position of the sphere on the rod, he manipulated the position of the 

COM of the whole object. However, the COM of the handle was constant between the 

two objects, as the handle used was exactly the same. According to Gentilucci (2002), the 

difference in object used may explain the difference observed between his and previous 

experiments. Specifically, he suggested that it is the COM of the part of the object that is 

grasped that influences the grasp, and not the whole object. Thus, based on Gentilucci’s 

(2002) observation, it is unlikely that the position of the COM affected the grasping 

kinematics in our experiment as the size of the handles was the same across the different 

tools. In future analyses it would be interesting to compute the COM to understand if any 

of our effects of tool identity could be related to differences in the COM between tools.  

To conclude the present findings suggest that grasp kinematics are influenced by the 

subsequent action (Cicerale et al., 2014; Rosenbaum et al., 2009; Tucker & Ellis, 2004; 

Valyear et al., 2011) and the identity of the tool that will be grasped. Although we did not 

manipulate attention, a possible interpretation is that some attentional orienting 

mechanisms to the business head, versus the handle, might be involved. In fact, the MGA 

did not follow the size of the handle but seemed to follow the size of the business head of 

the tools. We propose that it is the business head that carries information about identity 

and function and is relevant for action planning and that drives the possibility for actions. 

To confirm this hypothesis, future studies are needed to address for the confounds 

identified here, such as weight, COM, size, shape and number of actions associated with 

each tool.  
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5. General Discussion 

5.1 Summary of findings 

Hand actions constitute a critical link between perceiving our surroundings and 

interacting with objects within it. The goals of my thesis were to gain new insights into 

the behavioural and neural mechanisms underlying hand actions in different contexts 

combining different techniques. My approach focused on how we interact with both 

meaningless shapes (project 1) and familiar tools (projects 2 and 3), and on different 

actions we perform in our everyday life, such as grasping (projects 1 and 3), pantomime 

(projects 1 and 2) and actual tool use (project 3). My studies were designed for  three main 

purposes: (i) to gain an insight on the role of key regions within the dorsal and the ventral 

visual streams in grasping and pantomiming (projects 1 and 2); (ii) to understand what 

specific aspects of objects and movements associated with them are represented within 

key regions in the two streams (project 2) and (iii) whether grasping made towards the 

same tool is influenced by the end-goal of the subsequent action and whether tool identity 

was processed in both grasp-to-use and grasp-to-move or not (project 3).  

In Project 1 (chapter 2), we used fMRI-guided offline cTBS to assess the causal role 

of left aIPS, a key region for grasping in the dorsal stream, and left LO, a key region for 

object recognition in the ventral stream, in the control of real and pantomimed grasping. 

We found that cTBS-to-aIPS versus cTBS-to-vertex overall, weakened the relationship 

between grip aperture and object size. Furthermore, participants were scaling less 

efficiently in the pantomimed versus real grasping after cTBS-to-LO. These findings were 

taken to indicate that aIPS is causally involved in hand pre-shaping regardless of grasping 

task (real or pantomimed), while LO in the ventral stream is additionally required for 

pantomimed grasping. From a methodological point of view, we used a novel technique 

to identify brain regions for TMS. In particular, we extracted activations from the 

NeuroSynth (http://neurosynth.org/) database of previous neuroimaging studies and 

superimposed the activations onto each participants’ high-resolution anatomical MRI 
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images. Our results could be taken as a proof-of-concept evidence that using coordinates 

derived from numerous participants from previous neuroimaging studies can be effective 

to localise regions for future neuromodulation studies.  

In Project 2 (chapter 3), to examine how and where in the human brain tool identity, 

structural (i.e., select the appropriate grip such as power grasp for tongs versus precision 

grasp for key) and functional manipulation knowledge (i.e., squeeze for tongs versus 

rotation for key) are represented we used fMRI multi voxel pattern analysis (MVPA). 

Moreover, we used a view and a pantomime condition to explore whether activity patterns 

in tool processing regions are modulated by the task. We found that different regions 

within the dorsal and the ventral visual streams represent tool identity, structural and 

functional manipulation knowledge. Moreover, we found that the tool network is 

modulated by the task. Specifically, we observed that decoding within the ventral stream 

regions was stronger for viewing than pantomiming, while decoding within the 

frontoparietal regions was higher for pantomiming than viewing.  

In Project 3 (chapter 4), to explore how grasping kinematics are modulated by the 

subsequent movement, we implemented a grasp-to-move (GTM) and grasp-to-use task 

(GTU). All the tools had the same handles, this was done so that the structure of where 

they were grasped was kept constant across the two tasks. We found that participants 

opened their hand wider for the GTU compared to the GTM task. Tools had identical 

handles, thus, larger grip apertures for GTU versus GTM indicated that the end-goal of 

the action influence the initial reach-to-grasp movement. Moreover, using different tools 

we were able to test whether tool identity influenced grasping kinematics of the reach-to-

grasp movement in GTU and GTM. We observed that different tool identities affected 

grasp kinematics of the reach-to-grasp movements. Specifically, the tools with the larger 

business head led to larger grip apertures, while the tools with smaller business head led 

to smaller grip aperture.  

Overall, my studies show that both real objects grasping and pantomiming actions 

without the objects in hand require the left dorsal stream and that the left aIPS plays a 

critical role in hand preshaping. In fact, aIPS represents structural manipulation 

knowledge (e.g., power versus precision) even when simply viewing images of tools. 
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Additionally, area aIPS also contains information linked to functional knowledge (e.g., 

rotation versus squeeze) not only when overt movements are performed, but also when 

simply viewing images.  However, when executing pantomime actions, my findings show 

that the ventral stream is additionally required, thus demonstrating that pantomime actions 

require both the dorsal and the ventral visual streams. Similarly, during tool use 

pantomiming, regions in the ventral stream represent tool identity, structural and 

functional manipulation properties. These findings are consistent with the idea that 

semantic knowledge (e.g., naming tools and retrieve experience of previous interactions 

with tools) need to be retrieved from the ventral stream to select the appropriate 

manipulation and functional properties (e.g., Frey, 2007).  Although the aIPS performs 

visual analyses of objects for grasps, regions within the ventral stream could additionally 

provide the aIPS with additional resources (e.g., allocentric computations, conceptual and 

semantic knowledge) for its visuomotor computations. These findings provide further 

confirmation that although the dorsal and the ventral streams are two separate circuits, the 

anatomical separation between the two streams is not absolute. Connection between the 

two streams have, in fact, been reported between V4 and areas MT and lateral intraparietal, 

as well as between the anterior inferotemporal cortex and area AIP in monkeys (Borra et 

al., 2008). Similarly, in humans the dorsal stream is additionally divided into two 

subdivisions: a dorso-dorsal stream involved in reaching and grasping and a ventro-dorsal 

stream, which appears to underlie the processing of long-term object sensorimotor 

representations (Binkofski & Buxbaum, 2013; Buxbaum & Kalénine, 2010). Our findings 

seem to fit well with the account that the dorso-dorsal stream is involved in grasping and 

is dissociated by the ventro-dorsal stream, which instead seems to be involved in actions 

that require knowledge of object use, such as tool pantomime and tool use. Moreover, 

both dorsal and ventral regions seem to contain information about tool identity (as shown 

in project 2), which also seems to be reflected at a behavioural level (as shown in project 

3).  

My general discussion is divided into sections. First, I will consider my findings 

with respect to the dorsal and ventral streams contributions to real and pantomimed 

grasping and in our everyday interactions with tools. Second, I will outline a few 



232 

 

methodological and theoretical issues that should be taken into consideration when 

interpreting the findings of the current projects and I will offer some suggestions for future 

avenues based on the findings provided here. Third, I will discuss the impact and 

implications of my findings. Lastly, I will offer concluding remarks and highlight the new 

contributions offered by this thesis.  

5.2  The role of the dorsal and the ventral stream in real and pantomimed 

grasping 

In a seminal paper, Goodale et al. (1994) observed that in healthy controls, spatially 

displaced pantomimed grasping movements had lower peak velocities, lasted longer and 

had significantly smaller maximum grip aperture compared to real grasping. Moreover, 

they highlighted that pantomimed grasping performed by healthy participants resembled 

memory-guided grasping. The authors suggested that in contrast to object-directed 

grasping, spatially displaced pantomimed grasping requires participants to rely on the 

perceptual representation of the objects (Goodale et al., 1994). Additionally, compared to 

healthy controls, visual form agnosic patient DF performed poorly in the pantomimed 

task, but was unimpaired in real object-directed grasping.  Based on these findings, 

Goodale et al. (1994) suggested that the transformations underlying spatially displaced 

pantomimed grasping are mediated by the ventral visual stream, while real grasping is 

mediated by the dorsal stream.  

Subsequently, Cohen et al. (2009) applied TMS to either left LO or left aIPS. They 

found that TMS to left LO impaired delayed grasping, but TMS to aIPS impaired both 

immediate and delayed grasping. Specifically, they concluded that while LO was causally 

involved in delayed grasping, aIPS was causally involved in both real and delayed 

grasping. Our results seem in line with Cohen et al.’s (2009) observations, however, we 

concluded that area aIPS is necessary in both real and pantomimed grasping in hand 

preshaping, even when the pantomimed action is executed in real time (without a delay). 

In contrast, LO is involved in hand preshaping only for pantomimed grasping. 

Importantly, in our task, no retrieval of information from memory was necessary, as the 

object was in front of the participants. Therefore, LO seems to be additionally involved in 
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grasping alongside the aIPS, not only when information about the object is retrieved from 

memory (e.g., delayed pantomimed grasping), but also when the action is performed in 

real time and no memory is required. Moreover, based on our results we demonstrate for 

the first time that aIPS is causally involved in hand preshaping to object size specifically. 

In fact, previous TMS studies in aIPS only report effects on timing and velocity variables  

(Cohen et al., 2009; Rice et al., 2006; Rice et al., 2007; Tunik et al., 2005).  

Although we provide some support to Milner and Goodale’s account of the two 

visual streams (Goodale & Milner, 1992; Milner & Goodale, 1995, 2006, 2008) as we 

show that the dorsal visual stream is necessary to real grasping, our data indicate that for 

successful pantomiming, even in real time, both visual streams are required. We suggest 

that some refinement of the model is necessary to account for these new findings in 

grasping simple shapes. Milner and Goodale (1995; 2006; 2008) proposed that there may 

be particular action contexts in which the ventral and the dorsal streams must interact, 

such as when grasping tools. As such, when DF was observed selecting the comfortable 

wrist orientation and end-position when grasping objects (Dijkerman, McIntosh, 

Schindler, Nijboer, & Milner, 2009) or grasping and using tools (Carey et al., 1996), DF’s 

grasping behaviour was impaired. Based on these observations, in a critical review, van 

Polanen and Davare (2015) suggested that increased functional interactions are needed for 

tasks that require more complex processing of the object conceptual knowledge. Based on 

our results from project 1, we could speculate that the two streams are interacting, not 

only when conceptual knowledge is critical to complete the task, but also when perceptual 

information (e.g., allocentric coordinates) about the object is required. Indeed, our 

decoding results from project 2 seem to be in line with the van Polanen and Davare (2015) 

account: representations for both tool identity, tool structural and functional manipulation 

knowledge of how grasp and use tools were found in regions within both the ventral and 

dorsal stream for viewing tools and for pantomime movements.  

5.3 The role of the dorsal stream in tool processing 

The findings from projects 1 and 2 fit rather well with previous neuroimaging 

results. Specifically, Lewis (2006) in a meta-analysis of tool related neuroimaging results 
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from 35 studies involving 64 different paradigms, distinguished between a motor skill 

network and a tool conceptual semantic network. Lewis (2006) identified a motor skill 

frontoparietal network bilaterally, but with a strong left-hemisphere lateralization and 

includes regions such as the SPL and the IPL, the PMd and PMv. The motor skill network 

is involved in the retrieval and production of tool-use motor skills, such as reaching, 

grasping and manipulating tools (e.g., using a precision grasp to pick-up a key or using a 

power grasp to pick-up a corkscrew). On the other hand, the conceptual semantic 

networks, includes the left inferior frontal gyrus (IFG), the left pMTG and the bilateral 

fusiform cortex and is involved in processing inputs and semantic representations (e.g., 

tool identity and tool function) and associated motor output representations, such as how 

tools should be used (e.g., the key is for opening a door, the corkscrew is for opening a 

bottle). More recently, Valyear, Fitzpatrick and McManus (2017) performed a meta-

analysis of 16 published studies of grasping and 11 published studies of pantomime and/or 

actual tool use with the right hand by right-handed individuals. The authors observed that 

there are both shared and separate neural representations underlying grasping and tool use. 

They observed that the aIPS and the PMd were both involved in grasping and tool use. 

Conversely, SMG, fusiform gyrus and pMTG were associated solely with tool use. The 

fact that aIPS is involved in both grasping and tool use fits well with our results from 

projects 1 and 2. Also, we could decode tool identity, tool manipulation and function 

knowledge in the pantomime tool use task, in the regions identified by Valyear et al. 

(2017) – excluding the fusiform gyrus which was not included in our ROIs.  

Moreover, project 2 involved passive viewing of tool images. Comparing the 

pantomime task and the viewing task, we observed that regions in the motor skill network 

showed higher decoding accuracy for the pantomime task, while regions within the 

conceptual semantic network, showed higher decoding accuracy for the view task. This is 

in line with the account that tool use pantomimes are expected to involve dorsal stream 

areas more strongly, while passive viewing is expected to involve perceptual areas in the 

conceptual semantic network more. However, as shown in project 1, pantomimes require 

both streams to cooperate, and so does tools use, as it requires the integration of both 

motor (e.g., how tool is grasped), semantic (e.g., naming tools and experience of previous 
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interactions with tools) and conceptual (what it is and what it is used for) knowledge (e.g., 

Frey, 2007; Orban & Caruana, 2014). This is also reflected in decoding accuracy in project 

2. In fact, we could decode tool identity and functional manipulation knowledge in most 

of the ventral stream regions and posterior parietal cortex regions for tool pantomimes, 

which is in line with the idea that tool use requires  ventral stream inputs as well as that 

these inputs reach the dorsal stream through the ventro-dorsal stream (Binkofski & 

Buxbaum, 2013; Buxbaum & Kalénine, 2010). Additionally, for tool structural 

manipulation knowledge, we observed decoding, mainly in frontal and parietal regions. 

This observation fit well with the account of a subdivision in the dorsal stream between a 

grasp and a use system (Binkofski & Buxbaum, 2013; Buxbaum & Kalénine, 2010) . As 

such, the dorso-dorsal stream is specialised for responding to physical and structural (e.g., 

shape, size, location) object’s properties rather than semantic and conceptual information 

(Binkofski & Buxbaum, 2013; Buxbaum & Kalénine, 2010; Pisella et al., 2006). The fact 

that we observed decoding for tool structural manipulation knowledge, mainly in the 

frontoparietal network versus the occipitotemporal network, is consistent with its 

specialisation for prehensile actions, such as grasping, with tools. Additionally, we 

observed patterns of activity that represented functional manipulation knowledge in the 

dorsal stream which is consistent with the account that the ventro-dorsal stream, is 

considered a function system and relies more on long-term representations of interactions 

with tools  (Binkofski & Buxbaum, 2013; Buxbaum & Kalénine, 2010; Pisella et al., 

2006).  

Moreover, results from project 2 are in line with the view that action plans and the 

motor system can be activated by the mere presence of visual stimuli, as proposed by the 

theory of motor affordances (Gibson, 1979). In fact, we have shown significant decoding 

of tool identity even in the motor cortex even simply viewing tool images. Evidence from 

monkey neurophysiology has shown that visual object properties such as size, shape and 

orientation, activate the corresponding motor representation in frontoparietal neurons that 

code for these properties to control the grasping movement (Murata et al., 2000; Rizzolatti 

et al., 1988; Taira et al., 1990). However, when we grasp tools in our surroundings, these 

can be grasped based on their structural properties (e.g., size, shape, orientation) to be 
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moved from one place to another (e.g., grasp-to-mover, GTM) or they can be grasped 

based on their function (e.g., a knife is for cutting; grasp-to-use, GTU).  

Additionally, in project 3 we tested whether grasps made towards the same tool are 

influenced by the end-goal of the subsequent action and whether tool identity is processed 

in both GTU and GTM or not. At a behavioural level, we observed that grasping 

kinematics are influenced by tool identity for both GTU and GTM. Similarly, we could 

decode tool identity in both ventral and dorsal stream regions when people viewed images 

of tools and pantomimed tool use in project 2. Taken together, these results seem to 

suggest that actions with tools depend on inputs from the ventral stream, important for the 

specification of tool identity and stored use knowledge. In other words, in contrast to 

simple meaningless shapes, efficient tool grasping requires recognition of what the tool is 

and its function. Tool identification is necessary to successfully use tools, and requires 

information regarding both what the tool is and what the tool is for, which are information 

processed in the ventral stream, including the MTG. As a result, cortical regions within 

both the dorsal and the ventral pathway are involved in processing tools.  

How does our results fit with Milner and Goodale’s model (1995, 2006, 2008)? 

Evidence for the involvement of the dorsal stream in vision-for-action came mainly from 

inferences based on the behaviour observed in patient DF. However, in the last decade it 

has become clearer that patient DF’s lesions extend beyond her ventral stream (e.g., 

Bridge et al., 2013; James et al., 2003; Rossit et al., 2017). Moreover, the role of the dorsal 

stream as a visuomotor network has been challenged, with growing evidence of the 

existence of object perceptual representations in the posterior parietal cortex (e.g., Bracci 

& Op de Beeck, 2016; Freud et al., 2017; Konen & Kastner, 2008; Van Dromme et al., 

2016; for a review see Freud, Plaut, & Behrmann, 2016). For instance, Konen and Kastner 

(2008), investigated the neural representations related to different types of object images 

(i.e., images of 2D and 3D objects, line drawing and images of tools) which were presented 

under different viewing condition (e.g., from a range of 0° to 75° rotation to recreate 

different viewpoint) and with different sizes. The authors implemented fMRI adaptation, 

in which repeated presentations of the same stimuli lead to gradual response reductions as 

a function of the frequency of repetition. The authors found object-selective responses in 
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areas within the ventral and dorsal visual pathway, which seemed to generalise across the 

type of stimuli. Specifically, while object-, size- and viewpoint-selective responses were 

observed in intermediate processing stages areas in the ventral stream (e.g., V3A, MT and 

V7), high-order areas in the lateral occipital (LO) and the posterior parietal cortex 

(posterior IPS), responded selectively to objects independently of the size or the 

viewpoint, however, no object-selective responses were observed in the anterior part of 

the IPS. The authors suggested that objects are represented in the dorsal stream and that 

these representations seemed to mirror the responses in LO. Thus, the authors concluded 

that, contrary to the two visual system model, object information may be processed 

similarly in the dorsal and ventral visual pathways.  

Further evidence that object-selective responses are observed in dorsal stream 

regions, even for tasks that do not require overt movements came from a study with patient 

suffering visual object agnosia, after ventral occipitotemporal cortex lesions (Freud et al., 

2017). To explore whether object representations in the dorsal stream are independent 

from ventral steam representations, Freud et al. (2017), presented patients and healthy 

controls with greyscale 3D line-drawing possible and impossible objects (e.g., objects that 

could exist in 3D space, versus objects that could not exist in 3D space). The authors found 

that despite a reduction in the sensitivity to object structure in the ventral stream, regions 

in the dorsal stream showed differential activations to the two classes of objects. In a 

behavioural examination, although the patients were impaired in object perception, they 

showed sensitivity to object-based structural information (e.g., showed faster reaction 

times for possible versus impossible objects). The authors concluded that the dorsal stream 

mediates visual information to generate object representations that are independent from 

the ventral stream. Although the dorsal stream was differentially activated by the two 

object categories, but the patients were still profoundly impaired in perceptual tasks, the 

authors concluded that the object representations in the dorsal stream are not sufficient for 

object perception and that these representations may support the processing of object-

related structural information. Thus, it has been proposed that while the dorsal stream is 

critical in visuomotor control and the ventral stream in visual perception, both processing 

streams contribute to the representation of what we perceive in the surroundings (Freud et 
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al., 2016). According to Freud et al. (2016), this account fits well with the evidence that 

the dorsal stream is sub-divided in two sub-networks, of which the ventro-dorsal plays a 

role in visual perception.  

The results in this thesis seem to support the view that visual perception is not only 

a characteristic of the ventral stream, but that also the dorsal stream plays a role in visual 

perception. In fact, results from project 2 show that tool identity is processed in dorsal 

stream regions even when no overt movement is required. Additionally, our results from 

project 3 show that tool identity affects grasping kinematics, even if the structural 

properties of the handle were the same across tools. Thus, we suggest that vision-for-

perception may not be a characteristic of the ventral stream alone, but of both streams.  

5.4 The role of the ventral stream in tool processing 

The results from project 2 showed several regions within the ventral visual pathway 

that represent tool identity, structural and functional manipulation knowledge. Thus, 

perceptual areas in the ventral visual streams may process not only semantic information 

related to the identity of tools, but also manipulation information in both the view and the 

pantomime task. In fact, in our view task, participants were instructed to simply view the 

images, and yet, it was possible to reliably decode different patterns of activity related to 

how tools were grasped (e.g., power versus precision) and even used (e.g., rotation for 

opening a door versus squeeze tongs to pick up salad leaves). Additionally, in project 3, 

even when structural differences between tools were controlled for, tool identity had a 

significant impact on grasping. These results seems to be in line with the account that the 

ventral stream and the dorsal stream exchange information, and that the ventro-dorsal 

stream is likely to act as an interface between both visual streams (Binkofski & Buxbaum, 

2013).  

However, how is this consistent with the model of tool use and the two visual 

streams hypothesis proposed by Milner and Goodale (Goodale, 2014; Milner & Goodale, 

1995, 2006, 2008)? Milner and Goodale proposed that tool use involves the cooperation 

of both the dorsal and the ventral stream and described this cooperation using an analogy 

with the model of tele-assistance for the remote control of robots. In this view, they 
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hypothesised that the ventral stream plays a role in identifying objects in the scene using 

a rich perceptual representation system, that is however not metrically precise. 

Specifically, it has been postulated that the perceptual mechanisms in the ventral stream 

participate in the identification of specific goals in the surroundings and then flag the 

relevant tool in the scene to the visuomotor mechanisms in the dorsal stream (Goodale, 

2014; Milner & Goodale, 2006). Then, dedicated visuomotor networks in the dorsal 

stream with their precise egocentric coding of size, shape, location and orientation process 

information to perform the expected motor act. Milner and Goodale (Goodale, 2014; 

Milner & Goodale, 2006), postulated that tools are processed in parallel by both streams 

for different purposes. Specifically, while the ventral stream selects the goal object from 

the scene, the dorsal stream processed the metrical computations for the goal-directed 

actions. However, they did not make clear predictions regarding the role of the dorsal and 

the ventral stream in tool processing.  

In the context of the perception and action model (Milner & Goodale, 1995, 2006), 

our finding that action-related information are represented in the ventral stream, would be 

rather surprising. Traditionally vision-for-action has been described as a characteristic of 

the dorsal stream, while areas in the ventral stream are traditionally assumed to serve 

perceptual roles (e.g., object identification, shape recognition; Grill-Spector et al., 2001; 

Grill-Spector & Malach, 2004; Malach et al., 1995). However, recent lines of research 

have shown that the LOTC also represents several aspects of action, including 

representing overt actions, perceiving tools and hands and use-related gestures (e.g., 

Bracci et al., 2016; Gallivan et al., 2013; Oosterhof et al., 2012; Perini et al., 2014; Valyear 

& Culham, 2010; for a review see Lingnau & Downing, 2015). In the monkey brain it has 

been shown that LOTC shares direct reciprocal anatomical connections with the aIPS in 

the dorsal stream (Borra et al., 2008; Borra, Ichinohe, Sato, Tanifuji, & Rockland, 2010). 

Similarly, in the human brain it has been consistently shown that viewing, pantomiming, 

and using tools induces activations in parietal and occipitotemporal areas (e.g., Lewis, 

2006). Moreover, Bracci and colleagues  (2011; 2016) have shown that also images of 

hands activate areas in parietal and occipitotemporal regions. Similar to these previous 

studies, we found a network of areas in parietal and occipitotemporal areas that were 
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preferentially activated for tools and hands. However, while activity patterns in tool- and 

hand- selective occipitotemporal regions revealed significant decoding for tool identity, 

structural and functional manipulation knowledge in both tasks, only functional 

manipulation knowledge was significantly decoded above chance in tool- and hand- 

selective parietal areas in both tasks. Additionally, especially in tool-selective regions, 

decoding was modulated by task: while IPS-tools showed higher decoding accuracy for 

tool identity, structural and functional manipulation in the pantomime task, LOTC-tools 

showed higher decoding accuracy for tool identity and functional manipulation 

knowledge (but not structural manipulation knowledge) in the viewing task only. In 

contrast only IPS-hands showed higher decoding accuracies in the pantomime task for 

tool identity and functional manipulation knowledge, while LOTC-hands showed similar 

decoding accuracy in the two tasks. Thus, our results suggest that both streams represent 

properties of the tools that are linked to perceiving tools and motor information and that 

these are modulated by the task. Although there are similarities between the 

representational content in LOTC and IPS, there are also differences: specifically, while 

occipitotemporal areas seems to decode motor and functional related properties of tools 

from view and pantomime (e.g., tool identity, structural and manipulation knowledge), 

parietal regions seem to decode motor properties linked to the structure of the tools (e.g., 

structural manipulation knowledge) preferentially form the pantomime task. The 

observation that these regions are modulated by task suggests that although both IPS and 

LOTC represent functional and motor related properties, the posterior parietal cortex 

shows a preference for motor properties while the ventral stream shows a preference for 

functional properties.  

One could however argue that the action-related representations may be linked to 

semantic representation in the LOTC associated with the meaning of tools. Although we 

cannot exclude this based on our results, this is quite unlikely. In line with our proposal, 

Gallivan, Chapman, Mclean, Flanagan and Culham (2013) reported  decoding of action 

planning in the occipitotemporal cortex while participants were reaching and grasping 3D 

blocks. Moreover, Valyear and Culham (2010) suggested that prior to tool actual use, the 

ventral stream needs to provide information to parietal areas about tool semantic 
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knowledge, identity, function and how to move or use it  (Creem & Proffitt, 2001; Milner 

& Goodale, 1995, 2006, 2008). In this view, it is likely that the ventral stream identifies 

the part of the tool relevant for grasping and the subsequent action to then end the 

information to the dorsal stream. Our results from project 3 seems to fit with this view. As 

such, we observed that grasping tools (based on structural and functional properties) 

requires the computation of anticipatory kinematics parameters that need to take into 

account the subsequent movement typically associated with the tools being grasped. As 

Milner and Goodale (Goodale, 2014; Milner & Goodale, 1995, 2006, 2008) pointed out, 

acting with tools requires both streams to interact to mediate the final motor output.  

A region that is likely to play a critical role in processing tools in the 

occipitotemporal cortex is the pMTG. In project 2 we observed that pMTG coded for tool 

identity, functional and structural manipulation knowledge in the pantomime task, 

whereas only tool identity and functional manipulation knowledge were decoded within 

this region in the view task. Moreover, selectivity for tools in pMTG has been shown in 

different tasks and contrast (Lewis, 2006) and may represent the region in which multiple 

information form separate modalities are integrated (e.g., Beauchamp, Lee et al., 2004). 

For example, motion is also an important attribute of tools and Beauchamp et al. (2002), 

observed that pMTG showed preferential responses to tool versus body motion and 

proposed that tool selective pMTG may play a specialized role in processing the typical 

motions of tool in action (Beauchamp & Martin, 2007). Evidence from monkey 

neurophysiology suggests possible correspondence between activity in the monkey 

superior temporal sulcus (STS) and tool selectivity in the human pMTG. For example, 

STS neurons in monkeys are responsible for the multimodal integration of sight and sound 

of actions (Barraclough et al., 2005) and similarly, the human pMTG shows similarity for 

both viewing and hearing tools in action (Beauchamp, Lee et al., 2004). Moreover, both 

neurons in the monkey STS (Barraclough et al., 2009; Perrett et al., 1989; Perrett et al., 

1990) and in human pMTG (Valyear & Culham, 2010) show sensitivity to action 

intentions. Thus, human pMTG is likely to be the homologous of the monkey STS 

(Jastorff, Popivanov, Vogels, Vanduffel, & Orban, 2012; Orban & Caruana, 2014; Orban 

et al., 2004). According to the subdivision of the dorsal stream into a dorso-dorsal and a 
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ventro-dorsal stream, it is thought that regions within the ventro-dorsal stream, such as 

pMTG and SMG, represent an interface between the ventral and the dorsal stream for the 

visual processing of information (Binkofski & Buxbaum, 2013; Buxbaum & Kalénine, 

2010; Pisella et al., 2006). The SMG is involved in recognition, naming and actions 

performed with tools and is thought to represent tool information, including semantic 

representation for tools and functional manipulation knowledge (Buxbaum, 2001; 

Ishibashi, Pobric, Saito, & Lambon Ralph, 2016; Johnson-Frey et al., 2005). Anatomical 

connectivity studies have shown that regions involved in tool processing and use in the 

left hemisphere are interconnected: specifically, it has been shown that SMG is connected 

to pMTG and PMv (Ramayya, Glasser, & Rilling, 2010). Based on the fact that the 

connections between SMG and pMTG were strongly left-lateralised, Ramayya et al. 

(2010), suggested that the SMG integrates spatial (e.g., position of the hand and fingers) 

and semantic information to generate actions plans. This account is consistent with our 

data from project 2 in which we observed that SMG represents tool identity, functional 

and structural manipulation knowledge in the pantomime task and also with previous 

studies that show that the IPL is involved in integrating information from the dorsal and 

the ventral stream (e.g., Buxbaum, Kyle, Grossman, & Coslett, 2007).  

In sum, results from projects 2 and 3 suggest that ventral stream processing is 

important for everyday interactions with objects, specifically tools. Results from project 

2 clearly show that regions within the ventral stream code both tool identity and action-

related properties (e.g., grip and functional movements). Based on the results observed in 

the two tasks, we can speculate that these findings can be extended to real tool use. 

Specifically, we propose that the ventral stream provides information related to structural 

and functional manipulation knowledge based on previous interactions.      

5.5 Limitations and future directions 

In project 1 we showed that both aIPS and LO are causally involved in pantomimed 

grasping, whereas LO is causally involved in pantomimed grasping only. Although it is 

established that using TMS combined with behavioural experiments allows to conclude 

that the relationship between brain activity and behaviour causal (e.g., Pascual-Leone, 
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Walsh, & Rothwell, 2000), there are limitations associated with the technique. In fact, 

transient disruption of a given cortical region provides us information not only about the 

causal role of that specific region but also about the capacity of the rest of the brain to 

adjust to it (Lomber & Payne, 1996; Pascual-Leone et al., 2000). For example, Mottaghy 

et al. (2000), combined PET and TMS to investigate the role of the prefrontal cortex in 

working memory and observed that the performance in the task was equally disrupted by 

TMS to the left or the right dorsolateral prefrontal cortex. However, PET analysis revealed 

differences in the brain activity associated with performance in the task between TMS 

applied to left and right dorsolateral prefrontal cortex. These examples confirm that TMS 

produces temporary functional lesions and that these are associated with different 

behaviours. However, it also highlights that disrupting cortical activity in a given region 

may have effects on a network of regions that are not directly targeted by TMS but are 

involved in the task. In our experiment, based on our results and previous 

neuropsychological and fMRI evidence, we concluded that aIPS is involved in grasping 

under real and pantomimed grasping. However, it might have been the case that by 

disrupting the aIPS we were actually disrupting its connections to other regions within the 

network, such as PMv, resulting in the observed impaired behaviour. For example, Davare 

et al. (2006) used TMS to dissociate the role of PMv and PMd in grip-to-lift movement 

and reported that a virtual lesion to the left PMv resulted in  a more variable position of 

the fingers on the object versus TMS to PMd and the control condition (e.g., M1). In 

contrast, a virtual lesion to PMd resulted in a longer delay between the contact of the 

second finger with the object and the subsequent lifting movement. Thus, the authors 

concluded that the PMv played a role in the visuomotor transformation required for hand 

posture configuration. A similar account could be applied to LOC. Future investigations 

could combine TMS, neuroimaging and behavioural investigations to track the changes 

of activity over a widely distributed network linked to an observed behaviour. Moreover, 

by using TMS to transiently modulate different regions within a specific network, it would 

be possible to evaluate the different involvement of the regions that constitute the network 

throughout. To further complement our TMS findings, it might be necessary to implement 

fMRI, EEG or MEG. For example, whilst examining the role of different regions in 
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grasping, it would be interesting to compare the effects of TMS in the dorso-dorsal 

grasping subnetwork which includes aIPS and PMv. Moreover, as during pantomimed 

grasping, LO in the ventral stream is additionally required, it could be beneficial to 

investigate whether the effect may be related to the fact that we disrupted connections 

with the ventro-dorsal stream. In fact, future studies could explore connectivity between 

the ventral and the ventro-dorsal stream for the tasks we used here.  

Another limitation of our study was that the object was not visible during grasping 

(e.g., movements were performed in open-loop), therefore online visual feedback of the 

approaching hand was not available. Since the two visual systems hypothesis (Goodale, 

2014; Milner & Goodale, 2008, 1995, 2006) states that the dorsal stream controls 

movements through online visual control in an egocentric frame of references, it remains 

unclear from our results whether the same results would be found under full vision. 

However, Westwood and Goodale (2003) instructed participants to grasp a rectangular 

object that was presented beside a smaller, larger or same size object in front of them and 

initiate their grasping movement in response to an auditory tone which was given either 

at the end of the preview (no-delay group) or after a delay (delay group). In both groups, 

two visual conditions were interleaved. In the no-delay group in the vision trials, vision 

was available from the cue to movement onset, whereas in the no-vision trials vision was 

occluded coincidentally with the cue. In the delay group, vision was occluded during the 

delay following the preview in the vision and no vision condition. However, in the vision 

trials, vision was restored at the cue, while in the no vision trials, vision was not restored. 

The authors showed that the presence of a second object did not affect peak grip apertures 

on the vision trials for either the no-delay or the delay group, but it did affect peak grip 

aperture in the no-vision condition. Specifically, in the no-vision trials, grip aperture was 

larger when the target object was accompanied by a second smaller object and was smaller 

when the target object was accompanied by a larger object. In addition, they showed that 

this effect was larger in the delay group compared to the no-delay group. As the 

differences between the vision and the no-vision condition was that in the vision condition 

vision was occluded at the movement onset, thus allowing participants to use vision to 

plan the movement, whereas in the no-vision condition, vision was occluded at the time 
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the cue was given, thus forced participants to rely on perceptual information of the target. 

Based on these results, the authors suggested that the dorsal stream operated in real time, 

transforming the visual information from the target into motor programs at the moment 

the action was required. However, if the target object was not visible when the action was 

required, the dorsal stream required additional perceptual information stored in the ventral 

stream. In other words, as long as the object is available during the planning phase, the 

movement should be performed with information from the dorsal stream only. It would 

be interesting to explore the role of the ventral stream in planning and executing 

pantomimed grasping movements. In fact, from our results it is unclear whether the ventral 

stream is involved in the planning or in the control of pantomimed grasping. Further 

studies implementing TMS to LO at different stages during the planning and the execution 

of the movement in pantomimed grasping may be informative about the role played by 

the ventral stream. 

Here we show that aIPS contributes to both real and pantomimed grasping. Perhaps 

this happens as perceptual information from the ventral stream reaches the dorsal stream, 

and here merges with action information to control online grasping (as suggested by 

Cohen et al., for real and delayed grasping). This observation presents a new question: 

how are LO and aIPS interconnected during grasping? Important insights as to how the 

two streams interact come from connectivity studies in monkeys which describe how the 

ventral inferior temporal area projects to both the inferior parietal lobe (Zhong & 

Rockland, 2003) and the prefrontal cortex  (Borra et al., 2010; Gerbella, Belmalih, Borra, 

Rozzi, & Luppino, 2011) but also how area AIP projects to the temporal gyrus (Borra et 

al., 2008). fMRI studies in humans reported that the dorsal and the ventral stream showed 

strong functional connectivity during object recognition between the SPL in the dorsal 

stream and the temporal pole in the ventral stream (Sim, Helbig, Graf, & Kiefer, 2015) 

and between the left medial fusiform gyrus and the left IPL (Mahon, Kumar, & Almeida, 

2013), but also between hand/tool LOTC with left parietal and premotor cortex in response 

to hands and tools images (Bracci et al., 2011). Additionally, it has been shown that 

regions that are preferentially activated by a specific category (e.g., tools) in the ventral 

stream seem to be connected to regions outside the ventral stream that exhibit the same 
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category-preferences (Chen, Garcea, Almeida, & Mahon, 2017). For example, ventral 

stream regions that show a preference for tools show functional connectivity to left IPL, 

which represents object-directed actions (Almeida et al., 2013; Garcea & Mahon, 2014; 

Mahon et al., 2013). With the data available from our experiment, we cannot provide an 

answer for this question, however, this does open up avenues for future studies which 

could be implemented via a dual coil TMS paradigm (De Gennaro et al., 2003) to explore 

how LO and aIPS are interconnected during real and pantomimed grasping.  

Furthermore, a highly challenging but important next step in moving forward would 

be to investigate the causal role of aIPS and LO in hand shaping during grasping (whether 

real or pantomimed) in more natural and ecologically relevant behaviours. In fact, in our 

everyday life, target-directed reach to grasp movements rarely constitute on their own the 

completion of a planned action. Often the end-goal is further object manipulation (e.g., 

move the object, use the object), thus the grasping movement is only the first step of a 

more complex manipulation. Thus, future studies should implement TMS-to-LO and 

TMS-to-aIPS to explore grasping within more ecological settings, such as sequence of 

planned actions with meaningful shapes as well as sequence of planned action with tools 

(this is further discussed below).  

In project 2, we did not observe cross-decoding between the view and the 

pantomime task (although we observed a trend in PMd). When interpreting these findings, 

we should consider that while the view task did not require any overt movement, during 

the pantomimed task, participants were performing actions with their hand and arm. Thus, 

in the latter, although we tried to minimise head motion (e.g., using a strap around the 

upper arm to keep the shoulder still), motion artifacts are introduced into the data when 

the movement of the limb perturbs the magnetic field within the scanner (Culham, 2006). 

While these motion artifacts did not appear to affect the fMRI signal (e.g., no motion 

artifacts were identified), whether these might have affected the spatial patterns of the 

signal being measured is unclear. Future investigations should look at comparing videos 

of hands performing actions versus participants performing actions with tools in hand or 

compare pantomime versus real actions. Additionally, looking at viewing pictures of tools 
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and imagining tool use to overcome the potential perturbations of the magnetic field 

related to limb movements.  

It is worth noting that, while accurate decoding strongly argues for different 

underlying neural representations with respect to different conditions (Norman, Polyn, 

Detre, & Haxby, 2006), a lack of decoding could have different meanings. Firstly, it might 

indicate that neural pattern differences between the two condition exist, but these are not 

picked up by the vector pattern classifier, thus they may reflect limitations of the 

methodology rather than the data (Pereira & Botvinick, 2011); secondly, that the two 

conditions engage the area in a similar or indistinguishable manner; and thirdly, the area 

is not recruited for either of the conditions. Based on our results, it is likely that regions 

that do not show decoding for a particular condition might play a similar functional role 

that particular condition. For example, while patterns of activity within the IPS tools 

discriminate between power and precision grip in the pantomime task, they do not 

discriminate in the same condition in the view task. This is likely to suggest that power 

and precision grip engage the IPS tools in a similar way in the view condition. Although 

we cannot exclude the possibility that the differences are not picked up by the vector 

machine, this is less likely, as the same differences are picked up in the pantomime 

condition. Moreover, if two conditions (i.e., functional and structural manipulation 

knowledge) engaged an area in a similar manner across tasks, this may have been 

evidenced in the cross-decoding. 

While we could decode above chance within-task, we could not cross-decode 

between tasks (other than in PMd, which however did not survive FDR correction). 

However, this does not mean that the representations do not differ. In our MVPA cross-

task analysis we extracted the average decoding from both training on view and test on 

pantomime and training on pantomime and test on view. However, when training a 

classifier on one stimulus set and testing on another, there might be an issue associated 

with training direction or ordering (Kaplan, Man, & Greening, 2015). In the analysis 

reported in this thesis, we reported classification results averaged across both directions 

of training. However, there are alternatives, such as report the direction separately (e.g. 

report train on view and test on pantomime averages separately from train on pantomime 
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and test on view; Akama, Murphy, Na, Shimizu, & Poesio, 2012; Quadflieg et al., 2011). 

As mentioned above, data from the pantomime runs might be noisier than data from the 

view task, and this approach might help pattern classification.  

Moreover, in our lab, we have recently set-up searchlight MVPA (Kriegeskorte et 

al., 2006) and are in the process of running searchlight on present data. It might be the 

case that regions not included in our ROI analysis may represent our conditions across the 

two tasks. Additionally, we could implement representational similarity analysis (RSA), 

in which data samples are converted into self-referential distant space and therefore help 

with comparison across domains (Kriegeskorte, 2008; Kriegeskorte & Kievit, 2013). RSA 

is a widely used approach to characterise the correspondence between brain activity 

patterns and behavioural measurement (Kriegeskorte, 2008). It consists in constructing 

representational dissimilarity matrices (RDMs) for both measures and calculating the 

correlation between them.  

Moreover, to further explore how the dorsal and the ventral stream interact, the next 

step could be to use EEG and event related potentials (ERPs) to map the temporal 

dynamics of these interactions. Both the tasks implemented in project 2 and 3 could be 

easily adapted to be combined with EEG. Using ERP to track the neural events when 

viewing, pantomiming and using tools could offer an insight of the involvement of ventral 

and dorsal stream regions in tool interactions.  

In project 3, we used familiar tools while participants were performing GTU and 

GTM actions to examine actions with tools in a more ecological environment. Although 

the setting was more natural, it posed some limitations linked to the fact we used everyday 

objects. Although we used tools with the exact same handles, the tools did have different 

surfaces, weights and sizes, which might have affected the observed differences in 

kinematics, as discussed in chapter 4. In the future we could design and print 3D familiar 

tools and match the size, weight and surface area, to exclude the possibility that 

differences in kinematics are linked to these differences across tools.  

Moreover, due to the nature of our experiment, whether the observed difference in 

grasping kinematics were linked to tool identity or to semantic knowledge and knowledge 

of previous interactions remains unclear. Thus, future experiments should investigate 
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GTU and GTM and implement both real tools as well as control objects, such as non-tools 

with no semantic knowledge/knowledge of previous use. The non-tools should have 

different sizes business heads (e.g., made by overlapping multiple tools) but with the same 

handles. If differences in grasping kinematics are observed between different tool 

identities but not between the non-tools, this may suggest that is not the shape and size of 

the tools that guides grasping, but it might be the semantic knowledge associated with it. 

However, if differences are observed between control bars, these may be linked to 

physical properties of the objects, instead.  

TMS may also be particularly informative to understand the neural correlates 

underlying tool identity, GTU and GTM actions and how information is exchanged 

between ventral and the ventro-dorsal and dorso-dorsal stream areas. For instance, TMS 

delivered over SMG, but not aIPS, after cue onset has been shown to delay the onset of 

the movement during both grasp-to-move and grasp-to-use a cup (e.g., grasp a cup to pour 

liquid in it), but not in the control condition (e.g., lift the hand; Tunik, Lo, & Adamovich, 

2008). Based on these results, the authors suggested that SMG may be involved in 

planning movements. Recently, McDowell, Holmes, Sunderland and Schürmann (2018) 

instructed participants to grasp-to-use tools placed in front of them that was rotated from 

the initial start position while participants were reaching the tools. Double-pulse TMS was 

delivered over the SMG at the onset of tool rotation (and 100 ms afterwards). The authors 

found that TMS over SMG led to an increase in the percentage of trials in which 

participants grasped the tool in the incorrect orientation (versus no-TMS), as well as 

longer movement times and deceleration times. The authors concluded that SMG is 

important for the selection of appropriate orientation of the hand in grasp-to-use tools and 

suggested that this effect may be related to the role of the SMG in transforming tool use 

conceptual knowledge into the motor plan for action.  These findings are consistent with 

the proposal that the ventro-dorsal stream is involved in grasp-to-use (Binkofski & 

Buxbaum, 2013; Buxbaum & Kalénine, 2010). Based on our behavioural results and these 

previous TMS studies, it would be interesting to use TMS over SMG during planning and 

execution of GTU and GTM to further explore the role of this region. Based on the account 

of the dorsal stream divided (Binkofski & Buxbaum, 2013; Buxbaum & Kalénine, 2010), 
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TMS to SMG should disrupt grasping kinematics in GTU, but not GTM. Moreover, Perini 

et al. (2014), used TMS over tool-/hand-selective LOTC (versus sham TMS) during a 

hand-action (e.g., knowing that a screwdriver involves a rotation movement) or location 

discrimination task. This resulted in significantly slower responses during hand-action 

discrimination compared to a location discrimination task. Based on these results and our 

results it would be interesting to explore the causal role of LOTC in GTU and GTM to 

understand whether LOTC is causally involved in processing semantics but also action-

related properties of tools. Moreover, the GTU and GTM paradigm could be paired with 

dual coil TMS to investigate how and what information (e.g., functional or structural 

manipulation) is exchanged between LOTC and regions in the IPL during GTU and GTM. 

5.6 Implications and applications 

Our results have important implications for Milner and Goodale’s model of the two 

visual streams. Specifically, the results in project 1 (chapter 2) in this thesis show that area 

aIPS in the dorsal stream is necessary for fine hand preshaping to object’s size under real 

or pantomimed grasping movements, however, for pantomimed actions, information 

regarding object size processed in LO is additionally required to grasp efficiently. While 

our results provide some support for Milner and Goodale’s model, we suggest that some 

refinement of the model is necessary to account for this new evidence. In particular, we 

propose that in the real grasping condition, the dorsal stream acts independently from the 

ventral stream to control the grasping movement by computing information in an 

egocentric frame of reference. However, under the pantomimed grasping condition, in 

addition to the computations performed by the dorsal stream, the ventral stream is 

additionally required, as the distance between the index finger and thumb need to be 

computed in relation to the size of the object in an allocentric frame of reference. 

Additionally, our results that LO is causally involved in hand preshaping in 

pantomimed grasping, seem in line with the hypothesis that regions in the ventral stream 

(e.g., LOTC) are also involved in the representation of actions (Lingnau & Dowing, 2015). 

The finding from project 2 (Chapter 3) seems to support the view that visual perception is 

not only a characteristic of the ventral stream, but that also the dorsal stream plays a role 
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in visual perception. In fact, results from project 2 show that tool identity is processed in 

dorsal stream regions even when no overt movement is required. Additionally, our results 

from project 3 show that tool identity affects grasping kinematics, even if the structural 

properties of the handle were the same across tools. Thus, we suggest that vision-for-

perception may not be a characteristic of the ventral stream alone, but of both streams. 

Overall, our results highlight that some refinements of the model are needed to take these 

new findings about the role played by both streams in tool processing into account and 

also offer manifold future research opportunities. 

The knowledge resulting from grasping and tool use research might ultimately find 

applications in different fields: it could (i) help develop rehabilitation programs for 

functional recovery after hand surgery (e.g., Jones, 2002; Valero-Cuevas & Hentz, 2002); 

(ii) provide a better understanding and help develop and improve new rehabilitation 

programs for patients with motor impairment after brain damage such as stroke (e.g., 

Grosse-Wentrup, Mattia, & Oweiss, 2011; Marchal-Crespo & Reinkensmeyer, 2009; 

Lewis & Perreault, 2009; Lang, 2003; Li, Latash, Yue, Siemionow, & Sahgal, 2003; 

Murase, Duque, Mazzocchio, & Cohen, 2004; Haaland & Delaney, 1981); (iii) offer new 

insights in the field of biomechanical engineering to aid the development of robotic hands; 

(iv) help inform the design and improvement of brain-controlled prostheses to assist 

movement-impaired patients, such as spinal cord injury patients (e.g., Bensmaia & Miller, 

2014; Jackson & Zimmermann, 2012).  

Several diseases of the nervous system (e.g., Parkinson’s disease, amyotrophic 

lateral sclerosis), brain lesions (e.g., stroke, tumours) and injuries (e.g., spinal cord injury, 

limb amputation) result in the loss of the ability to make skilful and purposeful actions, 

affecting the ability of the patients to interact with the surroundings and their quality of 

life. Thus, developing therapeutic interventions to support the rehabilitation of these 

patients is a major field of research.   

Over the last years, scientists have been working to design and improve technologies 

to develop human-controlled effectors that do not require physical movement, but instead 

use a brain-machine interface (BMI). BMIs are systems that are built to measure the 

patient’s intention-related brain signals, for example using electrocorticography, and use 
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these signals to decode the planned movement. This information is then converted into 

out commands capable of controlling external devices bypassing the conventional 

neuromuscular pathways to interact with the environment (Beurze, de Lange, Toni, & 

Medendorp, 2007; Hochberg et al., 2006; Kim et al., 2015; Schalk & Leuthardt, 2011). 

Gallivan et al. (2011), highlighted that the knowledge about how movements and 

intentions are encoded in patterns of neural activity is at the basis of BMIs, thus it is 

important to gain a deeper understanding of how the brain controls hand actions to 

continue to develop even more sophisticated, precise and effective neural prostheses. The 

findings provided in this thesis pinpoint several possible brain regions that can be further 

explores to aid the development and efficiency of BMI devices. In particular, this thesis 

offers new insights on regions in the brain that are critical for real and pantomimed 

grasping and on how tool properties and motor information are represented in the brain, 

which are critical for the development of sophisticated, precise and effective neural 

prostheses. Thus, understanding where tool properties and motor information and 

represented in the brain is key in supporting optimal positioning for electrode arrays to 

capture appropriate intention-related signals.  

5.7 Concluding remarks 

Together, the set of findings from the three projects highlight systems in the brain 

important for grasping both meaningless shapes (Project 1) and tools (Projects 2 and 3) 

and the neural systems important for tool processing (Project 2). Moreover, these findings 

shed new light on different but interacting systems in the human brain important for 

grasping and tool use. Project 1 used a real and pantomimed grasping tasks and showed 

the additional involvement of the ventral stream in pantomimed, but not real grasping. 

Findings from Project 2 further showed that different systems in the brain are task-

sensitive and highlights that patterns of decoding in the tool network are modulated by the 

task, with higher decoding patterns in the occipitotemporal network for viewing tools and 

higher decoding patterns in the frontoparietal network for pantomime. Project 3 also 

indicated the importance of the end-goal of an action as well as tool identity in our 

everyday interactions with tools.  
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The projects in this thesis have given us a new insight into the role played by the 

dorsal and the ventral streams and how information processed in both streams is necessary 

for adaptive behaviour. Milner and Goodale (Goodale & Milner, 1992; Milner & Goodale, 

1995, 2006, 2008) proposed a model that made clear predictions about the role of the 

dorsal stream in grasping and the role of the ventral stream in perceptual tasks (e.g., 

memory-guided grasping). However, it is important to highlight that Milner and 

Goodale’s observations were mainly coming from sessions in the lab using meaningless 

objects, such as wooden blocks (e.g., have no semantic knowledge associated with them). 

Instead, in our everyday life we interact with tools, that have a meaning associated with 

them, have handles and are man-made while it is unlikely that we interact with simple 

blocks with no semantic meaning or handles. Milner and Goodale (Goodale, 2014; Milner 

& Goodale, 1995, 2006, 2008) postulated that the two streams must interact in everyday 

life and suggested that while the perceptual mechanisms in the ventral stream are involved 

in identifying tools to enable the selection of the functional posture to use tools, the 

visuomotor mechanisms in the dorsal stream processes metrical information to grasp the 

object based on structure. However, they did not make clear whether the two streams 

interact during object-directed movements towards tools only, or also when processing 

tools (e.g., viewing pictures of tools). These existing distinctions have recently been 

challenged. For instance, it has been shown that actions are actually represented not only 

in dorsal stream, but also in the ventral stream (e.g., Lingnau & Downing, 2015) as well 

as growing evidence of the existence of perceptual representations in the dorsal pathway 

(e.g., Bracci & Op de Beeck, 2016; Freud, Plaut, & Behrmann, 2016; Van Dromme et al., 

2016). Our results in project 2 are in line with this account as we found that functional and 

structural manipulation knowledge was decoded not only in dorsal, but also in ventral 

stream areas. Moreover, our results from project 3 seem to suggest that tool processing 

influenced visuomotor mechanisms in the dorsal stream. Overall, our results highlight that 

some refinements of the model are needed to take these new findings about the role played 

by both streams in tool processing into account. 

To conclude this line of research is important as it provides insights for neuro-

rehabilitation of patients who have suffered from brain damage as well as amputee patients 
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as it can support the development of neural prosthetics to assist movement-impaired 

patients. However, beyond the therapeutic applications, the benefits of basic research 

exploring how the brain controls hand actions are manifold, from refining and building 

theoretical models to technological advances in various related fields, such as robotics.   
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Appendix D 

Part one – Instructions and example of trials 

Instructions: 

In the first part of this study you will see a picture of an object, for example a hammer, on 

the screen and you will be required to complete different tasks. Please read the instructions 

carefully and raise your hand if you have any question. 

OBJECT NAMING TASK: please type the name of the object in the picture in the box. 

Please avoid the use of determinants (e.g., the, a) and adjectives (e.g., colour, size). If you 

don’t know the name of the object, please write unknown or your best guess. 

FAMILIARITY TASK: please rate how familiar you are with the object in the picture 

and how many times you use the object. Any object you are familiar with should be given 

a high rating. Any object you are not familiar with should be given a low rating. Your 

ratings will be made on a 1 to 7 scale, a value of 1 indicating that the object is very 

unfamiliar and a value of 7 indicating that the object is very familiar. Values of 2 to 6 

indicate intermediate ratings. Click on the most appropriate value for each object. When 

rating an object, try to be as accurate as possible, but do not spend too much time on it. 

PANTOMIME RATING TASK: Objects differ in the extent to which a person can think 

of an action involving that object. For some objects it is easier to think of an action than 

for others. The purpose of this part is to rate objects regarding the ease with which a person 

can pantomime their use. For example, a hammer is associated with an action that is easy 

to pantomime (hammering). It is also possible to pantomime the use of a chair (you can 

sit on it). It is more difficult to pantomime the action than can be performed using a ceiling. 

Any object that is easy to pantomime should be given a high rating. Any object that is 

difficult to pantomime should be given a low rating. Your ratings will be made on a 1 to 

7 scale, a value of 1 indicating that the object is very difficult to pantomime and a value 

of 7 indicating that the object is very easy to pantomime. Values of 2 to 6 indicate 

intermediate ratings. Click on the most appropriate value for each object. When rating an 

object, try to be as accurate as possible, but do not spend too much time on it. 

NUMBER OF ACTIONS TASK: Please determine the number of actions that you can 

perform with the object. For example, with a hammer you can hammer (=1 action), with 

a spoon you can stir the soup, but you can also use the spoon to eat the soup (=2 actions). 

Click on the most appropriate value for each object. When rating an object, try to be as 

accurate as possible, but do not spend too much time on it.  
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GRIP RATING TASK: please select the grip type you would employ for grasping the 

object in the picture. When rating, please imagine that the object on the screen is life-

sized. Please identify the posture in which you would place your hand if you are to grasp 

the object by clicking on the appropriate grip type. You will be required to rate between 

these 5 different grip types: 

 

Adapted with permission from: Lagacé, S., Downing-Doucet, F., & Guérard, 

K. (2013). Norms for grip agreement for 296 photographs of objects. Behavior 

research methods, 45(3), 772-781. 
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MOVE VS USE SIMILARITY TASK: Objects differ in the extent to which a person 

can grasp them to use or to move them. The purpose of the present task is to rate objects 

regarding how similar the shape of your hand is when you grasp an object to move 

compare when you grasp it to use. Any object that is grasped in the same way to use it or 

to move it should be given a high rating; any object that is grasped in a different way to 

use it or to move it should be given a low rating. Your ratings will be made on a 1 to 7 

scale, a value of 1 indicating that the grip is very different when you grasp it to move 

compare to when you grasp it to use and a value of 7 indicate that grip is very similar 

when you grasp it to move compare to when you grasp it to use. Values of 2 to 6 indicate 

intermediate ratings. Click on the most appropriate value for each object. Respond as 

spontaneously as possible. The instructions have been provided to you to keep on your 

desk. 

Adapted with permission from: Lagacé, S., Downing-Doucet, F., & Guérard, 

K. (2013). Norms for grip agreement for 296 photographs of objects. Behavior 

research methods, 45(3), 772-781. 
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Trial example:  

1 

 

  

                                                 
1 Image taken from the BOSS database of visual stimuli. Brodeur, M. B., Guérard, K., & Bouras, M. 

(2014). Bank of standardized stimuli (BOSS) phase II: 930 new normative photos. PLoS One, 9(9), 

e106953. 



314 

 

Number of actions: 

 

GRIP RATING TASK 

Please select the grip type you would employ for grasping the object in the picture. When 

rating you should consider the variations provided to you (see instruction sheet). 

 

2 

  

                                                 
2 Adapted with permission from Lagacé, S., Downing-Doucet, F., & Guérard, K. (2013). Norms for 

grip agreement for 296 photographs of objects. Behavior research methods, 45(3), 772-781 
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Appendix E 

Part two – Instructions and one trial extracted from the questionnaire 

Instructions: 

In the second part of this study you will see two objects on the screen, for example a 

hammer and a wrench, on the screen and you will be required to complete different tasks. 

Please read the instruction carefully and raise your hand if you have any question. 

 

FUNCTION SIMILARITY TASK 

In this task you have to rate how similar is the function of each object (on the left) 

compared to the target object on the right. For example, a blow drier and a towel are both 

for drying. Any pair of objects for which function is similar to the target one (i.e. both 

objects are for drying) should be given a high rating. Any pair for which the function is 

different (e.g., the object on the left is for cutting and the object on the right is for 

hammering) should be given a low rating. Your ratings will be made on a 1 to 7 scale, a 

value of 1 indicating that the function is very different and a value of 7 indicate that the 

function is very similar. Values of 2 to 6 indicate intermediate ratings. Highlight the most 

appropriate value for each object. Respond as spontaneously as possible. 

 

GRASP SIMILARITY RATING TASK 

Objects differ in the extent to which a person can grasp them. In this task you have 

to rate how similar is the shape of your hand when grasping each object (on the left) 

compared to the target one (on the right). For example, when grasping a pin, only index 

finger and thumb are used, when grasping a tennis ball, the whole hand is used. Please 

ignore the particular action associated with the use of each object for this task. Any pair 

of objects that is grasped in the same way should be given a high rating; any pair of objects 

that is grasped in a different way should be given a low rating. Your ratings will be made 

on a 1 to 7 scale, a value of 1 indicating that the shape of your hand is very different when 

you grasp one object compare to the other and a value of 7 indicate that shape of your 

hand is very similar. Values of 2 to 6 indicate intermediate ratings. Select the most 

appropriate value for each object. Respond as spontaneously as possible. 

 

MOVEMENT SIMILARITY RATING TASK 

In this task you have to rate the similarity of the movement performed when using each 

object (on the left) to the target one (on the right). For example, when using a squeegee 

and a razor you perform the same action (i.e., up & down movement). Any object that has 

a similar action compared to the target one, should be given a high rating. Your ratings 
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will be made on a 1 to 7 scale, a value of 1 indicating that the action is very different and 

a value of 7 indicate that the action is very similar. Values of 2 to 6 indicate intermediate 

ratings. Select the most appropriate value for each object. Respond as spontaneously as 

possible. 

 

The instructions have been provided to you to keep on your desk. 

 

The first two trials are for you to practice. Please contact the experimenter if anything is 

not clear. 
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Trials example: 

 

 

3 

 

Please rate: 

 

 

 

 

 

 

 

 

 

 

 

  

                                                 
3 Images taken from the BOSS database of visual stimuli. Brodeur, M. B., Guérard, K., & Bouras, 

M. (2014). Bank of standardized stimuli (BOSS) phase II: 930 new normative photos. PLoS One, 

9(9), e106953. 
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Appendix F 

Descriptive ratings for part 1 

F.1 – Naming task. Percentage of agreement with tool name. Only native English 

speakers (N = 9) were asked to complete this task.  

 

F.2 – Grip Rating Task. Percentage of each grip selected for grasping.  

 

Naming Task

Corkscrew 88%

Key 100%

Nutcracker 100%

Peg 100%

Screwdriver 100%

Screw 100%

Tongs 88%

Tweezers 100%

Pliers 100%

Clippers 88%

Bolt 66%

Measuring 

Spoon
22%

Power Intermediate Index-thumb Fingers-thumb
Parallel 

Extension
Other

Corkscrew 33.3% 20.0% 0.0% 26.6% 13.3% 6.6%

Key 0.0% 6.6% 93.3% 0.0% 0.0% 0.0%

Nutcracker 66.6% 6.6% 6.6% 0.0% 13.3% 6.6%

Peg 0.0% 0.0% 86.6% 13.3% 0.0% 0.0%

Screwdriver 46.6% 26.6% 0.0% 20.0% 6.6% 0.0%

Screw 0.0% 0.0% 80.0% 20.0% 0.0% 0.0%

Tongs 13.3% 20.0% 0.0% 26.6% 40.0% 0.0%

Tweezers 0.0% 0.0% 93.3% 6.6% 0.0% 0.0%

Pliers 53.3% 0.0% 0.0% 13.3% 26.6% 6.6%

Clippers 0.0% 0.0% 60.0% 33.3% 0.0% 6.6%

Bolt 0.0% 0.0% 73.3% 26.6% 0.0% 0.0%

Measuring spoon 53.3% 13.3% 13.3% 20.0% 0.0% 0.0%

Grip rating



319 

 

F.3 – Task 1 – Median and range for each task.   

 

 

 

  

Familiarity Task Use Task 
Pantomime 

Rating Task

Number of 

Actions Task

Move versus Use 

Similarity Task

Answer's Range

1 = very 

unfamilair  to 7 

= very familiar

1 = every day to 8 = 

never used

1 = not at all to 

7 = very easy
1 to 7 +

1 = very different to 

7 = very similar

Corkscrew

median (range)
7 (4-7) 4 (2-7) 6 (5-7) 1 (1-2) 4 (1-7)

Key

median (range)
7 (7) 1 (1) 7 (5-7) 1 (1-2) 5 (1-7)

Nutcracker

median (range)
6 (1-7) 6 (4-8) 6 (2-7) 1 (1-2) 5 (1-7)

Peg

median (range)
7 (6-7) 2 (1-5) 7 (5-7) 1 (1-3) 6 (1-7)

Screwdriver

median (range)
7 (5-7) 5 (3 -7) 7 (4-7) 1 (1-2) 6 (2-7)

Screw

median (range)
7 (5-7) 5 (4-7) 5 (1-7) 1 (1-2) 6 (1-7)

Tongs

median (range)
7 (4-7) 2 (1-5) 7 (1-7) 1 (1-3) 5 (1-7)

Tweezers

median (range)
7 (4-7) 2 (1-7) 7 (2-7) 2 (1-5) 5 (1-7)

Pliers

median (range)
6 (2-7) 6 (4-7) 6 (2-7) 1 (1-3) 5 (1-7)

Clippers

median (range)
7 (4-7) 4 (2-7) 7 (2-7) 1 (1-2) 5 (1-7)

Bolt

median (range)
7 (5-7) 5 (3-8) 6 (1-7) 1 (1-2) 7 (4-7)

Measuring Spoon 

median (range)
6 (4-7) 3 (1-7) 6 (4-7) 2 (1-2) 6 (1-7)
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Appendix G 

Descriptive ratings for part two.  

 

Function Similarity 

Task

Grasp Similarity 

Rating Task

Movement 

Similarity Rating 

Task

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

Screwdriver - Corkscrew

median (range)
4 (1-7) 3.5 (2-7) 6.5 (5-7)

Screwdriver - Key

median (range)
1 (1-6) 1 (1-5) 5.5. (1-7)

Screwdriver - Screw

median (range)
6 (1-7) 1 (1-2) 6.5 (1-7)

Screwdriver -Nutcracker

median (range)
1 (1-4) 4.5 (1-3) 1 (1-3

Screwdriver - Tongs

median (range)
1 (1) 4 (1-7) 1 (1-3)

Screwdriver - Tweezers

median (range)
1 (1) 1.5 (1-3) 1 (1-2)

Screwdriver - Peg

median (range)
1 (1) 1.5 (1-3) 1 (1-2)

Screwdriver - Pliers

median (range)
2 (1-5) 3 (1-6) 3.5 (1-6)

Screwdriver -Clippers

median (range)
1 (1-2) 1.5 (1-3) 1 (1-2)

Screwdriver -Measuring spoon

median (range)
1 (1) 5.5 (2-7) 1 (1-4)

Screwdriver -Bolt

median (range)
4 (1-7) 1 (1-3) 5 (1-7)



321 

 

 

 

 

Function Similarity 

Task

Grasp Similarity 

Rating Task

Movement 

Similarity Rating 

Task

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

Key - Screwdriver

median (range)
1 (1-6) 1 (1-5) 5.5. (1-7)

Key - Corkscrew

median (range)
5 (1-7) 1 (1-3) 6.5 (4-7)

Key - Screw

median (range)
1 (1-4) 5.5 (2-7) 6 (3-7)

Key -Nutcracker

median (range)
1 (1-7) 1 (1-2) 1 (1-5)

Key - Tongs

median (range)
1 (1-2) 2 (1-6) 1 (1-2)

Key - Tweezers

median (range)
1 (1-2) 6 (1-7) 1 (1-3)

Key - Peg

median (range)
1 (1) 6 (2-7) 1 (1-2)

Key - Pliers

median (range)
1 (1-5) 1 (1-3) 2 (1-7)

Key -Clippers

median (range)
1 (1) 6 (1-7) 1 (1-3)

Key -Measuring spoon

median (range)
1 (1) 1.5 (1-5) 1 (1-4)

Key -Bolt

median (range)
1 (1-7) 6 (2-7) 6 (4-7)
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Function Similarity 

Task

Grasp Similarity 

Rating Task

Movement 

Similarity Rating 

Task

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

Screw - Screwdriver

median (range)
6 (1-7) 1 (1-2) 6.5 (1-7)

Screw - Key

median (range)
1 (1-4) 5.5 (2-7) 6 (3-7)

Screw - Corkscrew

median (range)
3 (1-7) 1 (1-3) 6 (3-7)

Screw -Nutcracker

median (range)
1 (1) 1(1-2) 1(1-2)

Screw - Tongs

median (range)
1 (1-5) 1 (1-2) 1 (1-2)

Screw - Tweezers

median (range)
1 (1-5) 5.5 (4-7) 1 (1-2)

Screw - Peg

median (range)
1 (1-5) 6 (1-7) 1 (1-2)

Screw - Pliers

median (range)
1.5 (1-7) 1 (1-2) 3.5 (1-7)

Screw -Clippers

median (range)
1 (1-2) 6 (1-7) 1 (1-2)

Screw -Measuring spoon

median (range)
1 (1) 1 (1-3) 1 (1-2)

Screw -Bolt

median (range)
6 (2-7) 6.5 (1-7) 7 (4-7)
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Function Similarity 

Task

Grasp Similarity 

Rating Task

Movement 

Similarity Rating 

Task

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

Nutcraker - Screwdriver

median (range)
1 (1-4) 4.5 (1-3) 1 (1-3

Nutcraker - Key

median (range)
1 (1-7) 1 (1-2) 1 (1-5)

Nutcraker - Screw

median (range)
1 (1) 1(1-2) 1(1-2)

Nutcraker -Corkscrew

median (range)
1 (1-7) 2 (1-5) 1 (1-5)

Nutcraker - Tongs

median (range)
1 (1-7) 7 (5-7) 6 (1-7)

Nutcraker - Tweezers

median (range)
1 (1-6) 1.5 (1-4) 5 (1-7)

Nutcraker - Peg

median (range)
1 (1-6) 2 (1-3) 5.5 (1-7)

Nutcraker - Pliers

median (range)
2.5 (1-6) 7 (6-7) 7 (5-7)

Nutcraker -Clippers

median (range)
1 (1-6) 1 (1-5) 5 (1-7)

Nutcraker -Measuring spoon

median (range)
1 (1-2) 2 (1-7) 1 (1-2)

Nutcracker -Bolt

median (range)
1 (1-2) 1 (1-2) 1 (1-3)
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Function Similarity 

Task

Grasp Similarity 

Rating Task

Movement 

Similarity Rating 

Task

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

Tongs - Screwdriver

median (range)
1 (1) 4 (1-7) 1 (1-3)

Tongs - Key

median (range)
1 (1-2) 2 (1-6) 1 (1-2)

Tongs - Screw

median (range)
1 (1-5) 1 (1-2) 1 (1-2)

Tongs -Nutcracker

median (range)
1 (1-7) 7 (5-7) 6 (1-7)

Tongs - Corkscrew

median (range)
1 (1) 1.5 (1-5) 1 (1-2)

Tongs - Tweezers

median (range)
5 (1-7) 2.5 (1-4) 6.5 (4-7)

Tongs - Peg

median (range)
4 (1-7) 1 (1-4) 6 (1-7)

Tongs - Pliers

median (range)
2.5 (1-7) 6 (1-7) 5 (1-7)

Tongs -Clippers

median (range)
1 (1-6) 2 (1-6) 5.5 (1-7)

Tongs -Measuring spoon

median (range)
2 (1-6) 5 (1-7) 1 (1-5)

Tongs -Bolt

median (range)
1 (1-5) 1 (1-3) 1 (1)
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Function Similarity 

Task

Grasp Similarity 

Rating Task

Movement 

Similarity Rating 

Task

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

Corkscrew - Screwdriver

median (range)
4 (1-7) 3.5 (2-7) 6.5 (5-7)

Corkscrew - Key

median (range)
5 (1-7) 1 (1-3) 6.5 (4-7)

Corkscrew - Screw

median (range)
3 (1-7) 1 (1-3) 6 (3-7)

Corkscrew -Nutcracker

median (range)
1 (1-7) 2 (1-5) 1 (1-5)

Corkscrew - Tongs

median (range)
1 (1-6) 2.5 (1-5) 1 (1-2)

Corkscrew - Tweezers

median (range)
1 (1) 1 (1-6) 1 (1-2)

Corkscrew - Peg

median (range)
1 (1) 1 (1-3) 1 (1-2)

Corkscrew - Pliers

median (range)
1 (1-3) 2.5 (1-5) 2 (1-5)

Corkscrew -Clippers

median (range)
1 (1) 1 (1-5) 1 (1)

Corkscrew -Measuring spoon

median (range)
1 (1-2) 2 (1-5) 1 (1-4)

Corkscrew -Bolt

median (range)
1 (1-6) 1 (1-2) 5.5 (1-7)
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Function Similarity 

Task

Grasp Similarity 

Rating Task

Movement 

Similarity Rating 

Task

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

Peg - Screwdriver

median (range)
1 (1) 1.5 (1-3) 1 (1-2)

Peg - Key

median (range)
1 (1) 6 (2-7) 1 (1-2)

Peg - Screw

median (range)
1 (1-5) 6 (1-7) 1 (1-2)

Peg -Nutcracker

median (range)
1 (1-6) 2 (1-3) 5.5 (1-7)

Peg - Tongs

median (range)
4 (1-7) 1 (1-4) 6 (1-7)

Peg - Tweezers

median (range)
1 (1-7) 7 (5-7) 7 (6-7)

Peg - Corkscrew

median (range)
1 (1) 1 (1-3) 1 (1-2)

Peg - Pliers

median (range)
2.5(1-7) 1 (1-3) 5.5 (1-7)

Peg -Clippers

median (range)
1 (1-7) 7 (6-7) 7 (6-7)

Peg -Measuring spoon

median (range)
1 (1-5) 1 (1-7) 1 (1)

Peg -Bolt

median (range)
1 (1-3) 6.5 (1-7) 1.5 (1-5)
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Function Similarity 

Task

Grasp Similarity 

Rating Task

Movement 

Similarity Rating 

Task

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

Tweezers - Screwdriver

median (range)
1 (1) 1.5 (1-3) 1 (1-2)

Tweezers - Key

median (range)
1 (1-2) 6 (1-7) 1 (1-3)

Tweezers - Screw

median (range)
1 (1-5) 5.5 (4-7) 1 (1-2)

Tweezers -Nutcracker

median (range)
1 (1-6) 1.5 (1-4) 5 (1-7)

Tweezers - Tongs

median (range)
5 (1-7) 2.5 (1-4) 6.5 (4-7)

Tweezers - Corkscrew

median (range)
1 (1) 1 (1-6) 1 (1-2)

Tweezers - Peg

median (range)
1 (1-7) 7 (5-7) 7 (6-7)

Tweezers - Pliers

median (range)
3.5 (1-7) 1.5 (1-5) 5 (1-7)

Tweezers -Clippers

median (range)
4 (1-7) 7 (2-7) 6 (5-7)

Tweezers -Measuring spoon

median (range)
1 (1-6) 1 (1-5) 1 (1-2)

Tweezers -Bolt

median (range)
1 (1-2) 5.5. (1-7) 1 (1-3)
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Function Similarity 

Task

Grasp Similarity 

Rating Task

Movement 

Similarity Rating 

Task

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

Pliers - Screwdriver

median (range)
2 (1-5) 3 (1-6) 3.5 (1-6)

Pliers - Key

median (range)
1 (1-5) 1 (1-3) 2 (1-7)

Pliers - Screw

median (range)
1.5 (1-7) 1 (1-2) 3.5 (1-7)

Pliers -Nutcracker

median (range)
2.5 (1-6) 7 (6-7) 7 (5-7)

Pliers - Tongs

median (range)
2.5 (1-7) 6 (1-7) 5 (1-7)

Pliers - Tweezers

median (range)
3.5 (1-7) 1.5 (1-5) 5 (1-7)

Pliers - Peg

median (range)
2.5(1-7) 1 (1-3) 5.5 (1-7)

Pliers - Corkscrew

median (range)
1 (1-3) 2.5 (1-5) 2 (1-5)

Pliers -Clippers

median (range)
1 (1-7) 1 (1-3) 3 (1-7)

Pliers -Measuring spoon

median (range)
1 (1-7) 4 (1-7) 1 (1-2)

Pliers -Bolt

median (range)
4 (1-7) 1 (1-2) 3 (1-6)
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Function Similarity 

Task

Grasp Similarity 

Rating Task

Movement 

Similarity Rating 

Task

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

Clippers - Screwdriver

median (range)
1 (1-2) 1.5 (1-3) 1 (1-2)

Clippers - Key

median (range)
1 (1) 6 (1-7) 1 (1-3)

Clippers - Screw

median (range)
1 (1-2) 6 (1-7) 1 (1-2)

Clippers -Nutcracker

median (range)
1 (1-6) 1 (1-5) 5 (1-7)

Clippers - Tongs

median (range)
1 (1-6) 2 (1-6) 5.5 (1-7)

Clippers - Tweezers

median (range)
4 (1-7) 7 (2-7) 6 (5-7)

Clippers - Peg

median (range)
1 (1-7) 7 (6-7) 7 (6-7)

Clippers - Pliers

median (range)
1 (1-7) 1 (1-3) 3 (1-7)

Clippers -Corkscrew

median (range)
1 (1) 1 (1-5) 1 (1)

Clippers -Measuring spoon

median (range)
1 (1) 1 (1-3) 1 (1)

Clippers -Bolt

median (range)
1 (1) 4.5 (1-7) 1 (1-4)
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Function Similarity 

Task

Grasp Similarity 

Rating Task

Movement 

Similarity Rating 

Task

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

Measuring spoon - Screwdriver

median (range)
1 (1) 5.5 (2-7) 1 (1-4)

Measuring spoon - Key

median (range)
1 (1) 1.5 (1-5) 1 (1-4)

Measuring spoon - Screw

median (range)
1 (1) 1 (1-3) 1 (1-2)

Measuring spoon -Nutcracker

median (range)
1 (1-2) 2 (1-7) 1 (1-2)

Measuring spoon - Tongs

median (range)
2 (1-6) 5 (1-7) 1 (1-5)

Measuring spoon - Tweezers

median (range)
1 (1-6) 1 (1-5) 1 (1-2)

Measuring spoon - Peg

median (range)
1 (1-5) 1 (1-7) 1 (1)

Measuring spoon - Pliers

median (range)
1 (1-7) 4 (1-7) 1 (1-2)

Measuring spoon -Clippers

median (range)
1 (1) 1 (1-3) 1 (1)

Measuring spoon -Corkscrew

median (range)
1 (1-2) 2 (1-5) 1 (1-4)

Measuring spoon -Bolt

median (range)
1 (1-5) 1 (1-2) 1 (1-2)
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Appendix H 

Function Similarity 

Task

Grasp Similarity 

Rating Task

Movement 

Similarity Rating 

Task

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

1 = very different to 

7 = very similar

Bolt - Screwdriver

median (range)
4 (1-7) 1 (1-3) 5 (1-7)

Bolt - Key

median (range)
1 (1-7) 6 (2-7) 6 (4-7)

Bolt - Screw

median (range)
6 (2-7) 6.5 (1-7) 7 (4-7)

Bolt -Nutcracker

median (range)
1 (1-2) 1 (1-2) 1 (1-3)

Bolt - Tongs

median (range)
1 (1-5) 1 (1-3) 1 (1)

Bolt - Tweezers

median (range)
1 (1-2) 5.5. (1-7) 1 (1-3)

Bolt - Peg

median (range)
1 (1-3) 6.5 (1-7) 1.5 (1-5)

Bolt - Pliers

median (range)
4 (1-7) 1 (1-2) 3 (1-6)

Bolt -Corkscrew

median (range)
1 (1-6) 1 (1-2) 5.5 (1-7)

Bolt -Measuring spoon

median (range)
1 (1-5) 1 (1-2) 1 (1-2)

Bolt -Clippers

median (range)
1 (1) 4.5 (1-7) 1 (1-4)
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