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ABSTRACT: 

Light-emitting carbene-metal amide (CMA) complexes bearing first and second generation 

carbazole dendron ligands are reported, (AdL)M(Gn), (M = Cu and Au; Gn carbazole dendrimer 

generation, where n = 1 and 2; AdL = adamantyl-substituted cyclic (alkyl)amino)carbene). The 

thermal stability of the complexes increases with each dendrimer generation. Cyclic voltammetry 

indicates that the HOMO/LUMO energy levels are largely unaffected by the size of the dendron, 

while first reduction and oxidation processes show a quasi-reversible character. The gold 

complexes in toluene at room temperature show photoluminescent quantum yields (PLQYs) of 

up to 51.5% for the first and 78% for the second generation. Varied temperature transient 
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photoluminescence decay is consistent with a thermally activated process indicating a delayed 

fluorescence-type emission mechanism. Neat films show excited state lifetimes composed of 

prompt and dominant sub-microsecond delayed components, with radiative constants of up to 

106 s−1. Solution-processed organic light-emitting diodes (OLEDs) for first generation copper (1) 

and gold (2) dendrimers (AdL)M(G1) have been fabricated with external quantum efficiencies 

(EQEs) of 5.5% for copper and 10.3% for gold at practical brightness. 

■ INTRODUCTION

Since the discovery of electroluminescent conjugated poly(phenylene vinylene) by Friend 

and co-workers,1,2 polymer-based organic light emitting diodes (PLEDs) have attracted much 

academic and industrial interest. Light-emitting polymers can be deposited as multilayer device 

stacks via an orthogonal solvent approach.3,4 This discovery paved the way for solution 

processing as an alternative route to thermal vacuum deposition techniques which currently 

dominate the manufacture of solid state lighting and small/medium-sized OLED displays. 

Solution processing5,6 promises cost-efficient mass production of large-scale organic printed 

electronics products, for instance, electronic papers and large television displays. Recent 

industrial developments have improved the efficiencies of solution-processed PLEDs from an 

external quantum efficiency (EQE) of 0.1 % and lifetimes of a few minutes to over 20% EQE 

and an operating stability of tens of thousands of hours.7,8 

Dendrimers are macromolecules constructed from a central core connected to several 

branching units (dendrons).9-12 A number of recent reports have described light-emitting 

compounds of dendritic structures which show either thermally activated delayed fluorescence 

(TADF)13-18 or phosphorescence behavior,19-27 and which are suitable for solution processed 

OLEDs due to their high solubility and amorphous nature. The latter suppresses aggregation and 

crystallization in the solid state, which can lead to brittle failure of flexible devices upon 

bending. Moreover, dendrimers may offer advantages due to steric protection of the emissive 

core by the branching units, leading to reduced concentration quenching of the chromophore.28,29 

It has also been shown that fully encapsulated dendrimers can be used in single-component 

OLEDs, such that a single molecule fulfils both host and guest functions, which is an important 

step towards the simplification of OLED structure.30 
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We recently reported a number of highly emissive materials based on coinage metal 

complexes with carbene-metal-amide (CMA) structures;31–33 phosphorescent carbene-metal-

halides and related emissive 2-, 3- and 4-coordinate complexes have also been described.34–35  

This molecular design is based on complexes with linear geometry, where cyclic alkyl(amino) 

carbene (CAAC) donor ligands are linked by a coinage metal to acceptors such as carbazolate, 

resulting in rotationally flexible donor-metal-acceptor type structures. We have demonstrated 

that such a molecular design enables solution- and vapor-processed OLEDs with near-100% 

internal quantum efficiencies at high brightness.36–38 Here, we report the synthesis and 

characterization of carbene-metal-amide emitters based on carbazole dendrons, together with 

their performance in solution-processed OLED devices. 

■ RESULTS AND DISCUSSION

Synthesis and structure. The reaction of copper and gold chloride complexes of 

adamantyl-substituted cyclic (alkyl)(amino) carbenes39–41 with first (G1) and second generation 

(G2) carbazolate dendrimers in the presence of the NaOtBu gave the complexes (AdL)M(Gn) (1–4) 

in high yields (Scheme 1). The carbazole dendrons themselves were obtained by optimized 

Ullmann coupling.42–44 In all cases an adamantyl-substituted CAAC ligand was chosen (AdL), 

which had previously been shown to give optimal photoemission.36,37 The complexes are white 

or slightly yellow solids and are stable for long periods of time in air and in solution in non-

protic organic solvents (with the exception of CH2Cl2). Complexes 1 – 4 possess good solubility 

in aromatic solvents (toluene, chlorobenzene, 1,2-difluorobenzene), THF, dichloromethane, or 

DMF but are only poorly soluble in hexane, acetonitrile and ethanol. 
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Scheme 1. Preparation of carbene metal carbazole dendrimers (AdL)M(Gn) (1–4).

Crystals of 2 were obtained by slow diffusion of hexane into a dichloromethane solution. 

All attempts to crystallize the second generation materials were unsuccessful. Complex 2 

crystallizes with one molecule of CH2Cl2 (Figure 1). The crystal structure confirmed that 2 is 

monomeric, with the typical two-coordinate linear geometry of gold(I). The C1–Au1 and N2–

Au1 bond lengths are negligibly different from the structure of the zeroth generation complex 

(AdL)Au(carbazolate) (2, R = H).36 The dihedral angle between C2-C1-N1 (CAAC) and C28-N2-

C39 (carbazole) of 12.2° is 6.5° smaller than in (AdL)Au(carbazolate). This smaller torsion angle 

for 2 is likely due to weak intermolecular C–H···Cl interactions between complex 2 and the 

CH2Cl2 solvate molecules. The carbazole units are oriented almost perpendicular to one another 

(Figure 1).
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Figure 1. Crystal structures of the complex (AdL)AuG1·CH2Cl2 (2·CH2Cl2). Ellipsoids are shown 
at 50 % probability. Hydrogen atoms and the CH2Cl2 solvate molecule are omitted for clarity. 
Selected bond lengths [Å] and angles [°]: Au–C1 1.993(6), Au–N2 2.025(4), C1–C2 1.523(8), 
C1–N1 1.295(7), N2–C28 1.383(7), N2–C39 1.383(7), C1–Au–N2 177.6(2); torsion angles C52–
N4–C36–C35 85.7(8) and C51–N3–C31–C32 64.0(8); dihedral angle between best planes C2-
C1-N1 (CAAC) and C28-N2-C39 (carbazole) = 12.2°.

Thermal and electrochemical properties. The thermal behavior of 1–4 as solid powders 

was investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetry 

(DSC). The G1 compounds 1 and 2 decompose above 340 °C, while the second generation 

complexes 3 and 4 decompose above 360 °C. The decomposition occurs in two steps. The first 

step can be associated with the elimination of the carbene ligand, according to the weight loss of 

ca. 40% for the G1 and ca. 25% for the G2 compounds, which correlates with the weight of AdL 

(Figure S1). The second decomposition process is likely associated with the decomposition of 

the remaining oligocarbazole ligand. 

Freshly prepared samples of 1–4 are amorphous. Compounds 1 and 2 show significant 

exothermic transition at 256 and 246 °C which can be associated with the crystallization 

temperature (Tc) of the amorphous fraction (Figure S1). Tc was not observed for the G2 materials, 

due to high molecular masses of 3 and 4. This follows the usual trend when crystallization is 

completely suppressed for higher generation of dendrimers45,46 and can be explained by the 
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restrained molecular movement induced by the bulky carbazole dendrons. Therefore, the absence 

of crystallinity in G2 system is beneficial for forming and maintaining emissive films in an 

amorphous state for the development of flexible OLEDs. 

The redox behavior of the 1–4 was analyzed in THF solution using [nBu4N]PF6 as the 

supporting electrolyte. Examples of cyclic voltammograms for first and second generation 

dendrimers are shown in Figure S2, while the electrochemical data are collected in Table 1. The 

G1 and G2 complexes show a quasi-reversible one-electron reduction process.32,36 Its potential is 

largely unaffected by the generation of the dendrimer. The quasi-reversible character of the 

reduction process is more pronounced in higher generation dendrimers and for gold complexes 

compared to copper analogues (Table 1).47 The copper and gold G2 compounds 3 and 4 possess a 

second quasi-reversible reduction (see, Figure S2) with a potential close to the THF discharge. 

The potential of the second reduction is independent of the nature of the metal, which allowed us 

to tentatively assign it to reduction centered on the carbazole dendron.

Table 1. Formal electrode potentials (peak position Ep for irreversible and E1/2 for quasi-

reversible processes (*), V, vs. FeCp2), onset potentials (E, V, vs. FeCp2), peak-to-peak 

separation in parentheses for quasi-reversible processes (ΔEp in mV), EHOMO/ELUMO (eV) and 

band gap values (ΔE, eV) for the redox changes exhibited by copper and gold complexes.a  

Reduction Oxidation
Complex

E2nd E1st Eonset red

ELUMO

eV E1st Eonset ox E2nd 

EHOMO

eV

E

eV

(AdL)CuG1 (1) –
2.89*

(140)
2.80 –2.59

+0.34*

(116)
+0.19 +0.57 –5.58 2.98

(AdL)AuG1 (2) –
–2.76*

(148)
2.67 –2.72

+0.34*

(85)
+0.22 +0.76 –5.61 2.89

(AdL)CuG2 (3)
–3.11*

(190)

2.86*

(136)
2.77 –2.62 +0.35 +0.28 – –5.67 3.05

(AdL)AuG2 (4)
–3.11*

(180)

–2.79*

(130)
2.71 –2.68

+0.39*

(140)
+0.29 – –5.68 3.00
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a Measured in THF solution, recorded using a glassy carbon electrode, concentration 1.4 mM, 

supporting electrolyte [nBu4N][PF6] (0.13 M), measured at 0.1 V s1; EHOMO = –( Eonset ox Fc/Fc+ + 

5.39) eV; ELUMO = –( E onset red Fc/Fc+ + 5.39) eV.[56]

Unlike the zeroth generation compounds (AdL)M(carbazolate) (M = Cu and Au),36 the first 

oxidation process shows a quasi-reversible character, with a well-defined back-peak observable 

in 1, 2 and 4 (see, Figure S2). An irreversible or quasi-reversible character of the oxidation 

processes has previously been reported for aniline and carbazole compounds and was attributed 

to an electropolymerization or cross-linking process.48–51 The oxidation processes is largely 

centered on the core carbazole unit for all compounds 1–4, on the basis of similar oxidation 

potential observed for G0 analogues (AdL)M(carbazolate). The onset of the first oxidation 

potential shifts by ca. +100 mV from the first to second generation dendrimers. A similar trend 

was reported for dendritic Ir(III) and Au(III) carbazole complexes.52–55 It was explained by a 

small negative inductive effect imposed by the nitrogen atom, leading to a slightly lower lying 

HOMO.19,43 HOMO/LUMO energy levels were determined from the onset potentials for 

oxidation and reduction processes of 1–4 (Table 1)56 which are in good agreement with 

previously reported values for carbazole dendrimers identified by photoelectron spectroscopy.57 

Poly(9-vinylcarbazole) (PVK)  was identified as a good host for 1–4. The quasi-reversible 

character of the first oxidation and reduction processes suggests that 1–4 may potentially be 

more robust emitters under electrical excitation compared to their parent compounds 

(AdL)M(carbazolate) (M = Cu and Au). 

Photophysical properties.

The UV/vis absorption spectra of 1–4 were collected in various media (Figures 2 and S3; 

Table 2 and SI, Table S1). In solution, the short wavelength region of the spectra show intense 

well-structured absorptions due to the π–π* intraligand (IL) transitions of the oligocarbazole and 

the CAAC ligands. The absorption at 309 nm is primarily due to the core carbazole π–π* 

transition (Figure S3), with molar extinction coefficients increasing with each dendrimer 

generation. All carbazole dendrons show relatively strong π–π* absorptions at longer overlap 

with a broad ligand-to-ligand charge transfer L(M)LCT {π(carbazole)–π*(CAAC)} band from 
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ca. 360 to 440 nm. The extinction coefficients of the CT absorptions increase with each 

dendrimer generation, indicating a higher oscillator strength for the direct transitions from core 

carbazole (HOMO) to CAAC carbene (LUMO). This observation is in contrast with the behavior 

of purely organic carbazole dendrimers57 but in line with dendritic Ir(III),52 Pt(II),53 and Au(III) 

complexes.54 The absorption CT band for 1 and 2 blue-shifts by ca. 20 nm with increasing 

solvent polarity (from toluene to o-dichlorobenzene, Figure S3). For bulkier second generation 

compounds 3 and 4 the position of the CT band is less affected by solvent polarity. The UV/Vis 

absorption spectra were also recorded for 1–4 neat and 20%-doped films in PVK (Figure 2, S3). 

The neat film absorption profiles are similar to toluene solutions, superimposed upon a broad tail 

whose origin is likely to be scattering by the solid film. In in PVK host-guest films this tail 

largely obscures the CT band. (Figures 2 and S3). 
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Figure 2. UV-vis spectra in toluene solution and films (neat and 20% in PVK) for copper 1 (a) 

and 3 (c), gold 2 (b) and 4 (d) complexes.

To elucidate the effect of the carbazole dendrimer generations on emission properties, we 

measured the photoluminescence of 1–4 under various conditions (Table 2 and SI, Table S1). All 

complexes are green emitters in the solid state and in solution, showing featureless emission 

profiles if excited at the CT absorption band of the (AdL)M(carbazolate) core unit (Figures 2, 3, 

and S3). Compared to the gold compounds 2 and 4 the PL bands of the copper complexes 1 and 

3 are blue-shifted by ca. 10 nm in all media. All dendrimers show the most blue-shifted PL in 

amorphous powder form (Figures 2 and S3) compared to the PL of processed neat (20 nm) and 

20 wt% PVK films (10 nm). This contrasts with a much larger red-shift, of up to 60 nm, 

observed between powder and processed film PL spectra for the zeroth generation complexes 

(AdL)M(carbazolate) (M = Cu, CMA2; M = Au, CMA1) (Figures 3 and S4).36 This implies that 

interactions between chromophores and their environment are suppressed as the dendron 

generation is increased, with the large carbazole dendrimer capable of isolating the CT core from 

intermolecular interactions in both films and solutions. 

In solution, 1–4 show weak solvatochromism, with PL red-shifting by 5–10 nm with 

increasing solvent polarity (toluene to o-dichlorobenzene), unlike the shift of >100 nm 

experienced by many organic TADF emitters.58 The second generation dendrimers 3 and 4 show 

emission peaks blue-shifted by ca. 20 nm for solutions and films compared to very similar PL 

profiles of first 1/2 and zeroeth CMA1/2 dendrimer generations (Figures 3 and S3). Similar 

results were observed previously and explained by the slightly increasing electron-withdrawing 

nature of the dendron ligands.43,53,54 This phenomenon is in line with shallower HOMOs for the 

G2 compounds 3 and 4 observed by electrochemistry (Table 1). 
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Figure 3. Emission spectra in the crystalline powder state; as 20 wt%-doped film in PVK; in 

toluene solution (excitation at 390 nm) for copper complexes CMA2, (AdL)CuG1 and (AdL)CuG2 

(a–c, top); and gold complexes CMA1, (AdL)AuG1 and (AdL)AuG2 (d–f, bottom).

The PL quantum yields (PLQYs) of 1–4 were measured in films and in solutions to 

identify the best candidates for OLED fabrication. The PLQY values for the spin-cast films are 

in the range of 12 to 40.5 % (Table S1). The gold compounds 2 and 4 display the highest PLQY 

values both in 20 wt%-doped PVK films and in toluene solutions (Table 2). All PLQY values are 

much reduced if measured in air, indicating the involvement of triplet states in 

photoluminescence. 

We measured PL spectra with varied excitation wavelengths (280–400 nm) in search of 

possible higher lying excited states which could be involved in the emission process. Usually 

light-emitting dendrimers do not show locally excited emissions from the branched part of the 

molecule, which is an indication of the efficient energy transfer from the dendron to the core of 

the compounds.59,60 Excitation of 1 and 3 at 340 nm (π–π* transition of the carbazole dendron, 

see theoretical considerations) leads to significant emission at 393 nm together with CT-emission 

from the dendrimer’s core (Figure 4 and S5). This carbazole fluorescence is not sensitive to 

oxygen (Figure S5). Compared to the copper compounds 1 and 3, the gold analogues 2 and 4 

excited in the range of 300–440 nm show higher intensity CT emissions (Figures 4 and S5), 
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11

indicative of better energy transfer from the carbazole donor to the carbene-metal acceptor unit 

in the case of gold compared to copper. 

Figure 4. Emission-excitation maps for 3 (left) and 4 (right) in toluene solution.

Figure 5. Emission spectra for CMA2, (AdL)CuG1 (1) and (AdL)CuG2 (3) (top) and for CMA1, 

(AdL)AuG1 (2) and (AdL)AuG2 (4) (bottom) in THF and in MeTHF solutions at 77 and 298K 

(excitation at 390 nm, under nitrogen).
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The charge transfer singlet state (1CT) and local excited triplet state (3LE) energies were 

estimated from the onset values of the blue emission edge of the PL spectra at 295 K and 77 K, 

respectively (Figure 5). The upper estimate of the 3LE triplet state energy is 2.86 eV for copper 

1/3 and 2.89 eV for gold 2/4 (Table 2, Figure 5). The lower estimate of the singlet state energy 

has been measured from the emission spectra in THF solutions of 1–4, where lower-energy 

conformations can be accessed. This analysis leads to the calculated values for the ΔE(1CT–3LE) 

energy gap which are negative for 1, 2 and 4 and positive for copper complex 3 (Table 2). Zeroth 

generation complexes CMA1 and CMA2 show the largest negative ΔE(1CT–3LE) of –0.2 and –

0.14 eV in MeTHF while in THF solutions the CT emission remains dominant at 77K (Figure 5). 

Based on PLQY values in PVK films and their radiative rates, we identify compounds 1, 2 and 4 

as the most promising candidates for OLED fabrication. We do not observe a correlation 

between ΔE(1CT–3LE) and radiative decay rate.

Table 2. Emission data of 1–4 in toluene and in PVK host. The data for the G0 compounds 

(AdL)AuCz (CMA1) and (AdL)CuCz (CMA2)36 are included for comparison. 

CMA1 CMA2 1

toluene THF
PVKa 

matrix
toluene THF

PVKa 

matrix
toluene THF

PVKa 

matrix

λem (nm) 528 531 512 513 516 502 511 514 502

 (µs) 1.25 1.29 0.92 2.1 3.0 2.89 0.79 1.58 3.0

Φ(%, 300K; 

N2/Air)
98 80 86/37 71 40 69.4/31 27.7 43.1 33/23

kr (105 s−1) 7.8 6.1 9.3 3.3 1.3 2.4 3.5 2.7 1.1

knr (105 s−1) 0.16 1.5 1.5 1.3 1.9 1.0 9.1 3.6 2.2
1CT/3LE (eV)b 2.76/2.96 2.79/2.93 2.81/2.85

ΔE(1CT–3LE)b –0.20 eV –0.14 eV –0.04 eV

2 3 4

toluene THF PVKa 

matrix

toluene THF PVKa 

matrix

toluene THF PVKa 

matrix

λem (nm) 526 524 510 491 506 498 505 513 508
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 (µs) 0.67 0.54 0.66 0.83 2.77 1.97 0.79 0.88 1.06

Φ(%, 300K; 

N2/Air)
51.5 51.3 68/49 2.6 18 6/3 78.2 67.8 47.5/26.5

kr (105 s−1) 7.7 9.5 10.3 0.3 0.6 0.3 9.9 7.7 4.5

knr (105 s−1) 7.2 9.0 4.9 11.7 2.9 4.8 2.7 3.6 4.9
1CT/3LE (eV)b 2.76/2.89 2.89/2.86 2.86/2.89

ΔE(1CT–3LE)b –0.13 eV 0.03 eV –0.03 eV
a PVK films were spun from 20mg/mL chlorobenzene solutions for 45 seconds at 2000 rpm on a 

quartz substrate; b 1CT and 3LE energy levels for 1–4 based on the onset values of the emission 

spectra blue edge at 77 K in THF and MeTHF glasses and in solution at 298 K.

Transient PL and kinetic parameters.

Solutions of 1 – 4 show mono-exponential kinetics in time-resolved photoluminescence 

decays (Figure 6b, Table 2 and SI Table S1). By contrast, time-resolved photoluminescence 

decays of neat films and of 20 wt%-doped PVK films are non-exponential, indicating a range of 

excited state lifetimes. Such behavior is consistent with chromophores adopting a range of 

conformations and short-range interactions in solution-processed films. Characteristic decay 

lifetimes (1-e-1 centile) (Figure 6a) for the copper complexes 1 and 3 at ambient temperature are 

ca. 2–3 µs, in contrast to <1 µs for the gold analogues 2 and 4. In comparison with PLQE 

measurements on the same samples, the radiative rate constants for 1/3 are one order of 

magnitude smaller than 2/4 in PVK films (Table 2). All transient PL decays were acquired over 

time scales of 20 μs (solutions) and 100 μs (neat and 20 wt%-doped PVK films) to rule out the 

presence of long-lived phosphorescence components at room temperature (Figure 6a,b). 
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Figure 6. (a) Cumulative spectrally-integrated PL for 1–4 in 20 wt-% doped PVK films. Dashed 

line indicates (1-e-1) centile; (b) Time-resolved spectrally-integrated PL for 1–4 in toluene 

solution; (c) Temperature-dependent time-resolved PL for 2 as neat film. (d) Prompt (0-1 ns) and 

delayed (after 500 ns delay) emission spectra at 295 K, phosphorescence (100 K), steady-state 

PL for 2 in spin-cast film.

Transient PL studies as a function of temperature were measured for 2 in a neat film 

(Figure 6). At all temperatures, PL transients are characterized by non-exponential kinetics over 

two distinct time regimes – nanosecond (I) and 100s of nanoseconds (II). Time regime (I) 

exhibits no significant T dependence and is limited by the ICCD instrument response (~ 3 ns). 

We assign this to prompt fluorescence, with an estimated energy in excess of 2.95 eV. Spectral 

deconvolution indicates that its emission spectrum is blue-shifted compared to that at later times 

(Figure 6d). This small component is observed in various environments (neat films, PVK host-

guest systems, and solutions, Figure S9). Luminescence in regime (II) is unstructured and 
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thermally activated, with an activation energy of 92 meV for 2 (Figure S6); lifetimes increase 

significantly on cooling, from τII = 280 ns at 300 K to 4.48 μs below 100 K. This is consistent 

with a TADF-type emission process whereby delayed emission originates from a reservoir of 

triplet states, whose ability to relax to the singlet ground state is increased at elevated 

temperature. One of the features indicative of the TADF mechanism is the blue-shift of the 

emission maxima with increasing temperature.61–65 We observe a red-shift of the delayed 

emission upon warming. We attribute this to emission from an ensemble of CT states in different 

local configurations within the solid film. The delayed regime accounts for > 90% of the total 

emission at room temperature (Figure S6). Note that the delayed fluorescence spectra after 500 

ns and the neat film spectrum are essentially superimposable, see Figure 6d.

Theoretical Considerations.

We investigated the electronic structure of complexes 1–4 using density-functional theory 

(DFT) for the ground state and time-dependent DFT (TD-DFT)66 calculations for the excited 

states, using the MN15 functional by Truhlar67 in combination with def2-TZVP basis set by 

Ahlrichs.68–70 These molecules have a high dipole moment, of the order of 15-20 D in the ground 

state (see SI, Tables S2 and S3) oriented along the metal-nitrogen vector. This is reduced on 

excitation by charge transfer from the carbazole to the carbene ligand (G2 molecules) and 

changes direction for G0 and G1 complexes. 

The calculated S0 geometry is in a good agreement with the crystal structure of 2 and 

adopts co-planar conformation (CAAC carbene and metal-bound carbazole ligands are lying 

nearly in the same plane). The optimized geometry for S1 and T1 states show that the C–N 

(CAAC) bond is elongated by 0.07–0.09 Å, with simultaneous shortening of C1–Metal and 

elongation of N1–Metal bonds. The distortion from linear geometry calculated for copper 

complexes (Figure 7, C1–M–N2 angle α = 11 and 17° for 1 and 3, respectively) is significantly 

larger than for gold (with α up to 9°). Calculations suggest that the optimized S1 geometry for G2 

complexes is ca. 20° less twisted than for G1 compounds and is systematically lower for copper 

complexes (see SI, Figure S7). This compares with inter-ligand twist angles in the S1 states of 

66° for zeroth generation copper CMA2 and nearly 90° for gold CMA1 analogues. The relaxed 

S1 energy is weakly dependent on the twist angle, while T1 has a stronger angular dependency 

(see SI, Figure S7). The calculated exchange energy ΔE(S1−T1) depends on the twist angle and 
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increases from 0.11 eV for the first generation to 0.15 eV for the second generation dendrimers 

(Figure S7). Gold dendrimer 2 shows the smallest deviations from linear geometry in the excited 

state and has the largest twist angle (39°), which suggests 2 as the most promising OLED 

material candidate where S1 and T1 states could verge on degeneracy.71,72.

The calculations show that the ligand-to-ligand charge transfer (LLCT) from the 

carbazole dendron to the carbene defines both lowest energy states of the singlet and triplet 

manifold (Tables S2–S7). In 1–4 the HOMO is mostly delocalized over the carbazole dendron, 

with decreasing contribution of the metal atom from 5% for zeroeth generation CMA1/CMA2 to 

2.5% for 1/2 and ca. 1.5% for 3/4, while the LUMOs are all very similar and centered on the 

Ccarbene p-orbital. The calculated energy of the S0→S1 absorption agrees well with first peak in 

UV-vis spectrum in toluene ca. 400 nm for 1/2 (ca. 3.05 eV) and ca. 390 for 3/4 (ca. 3.18 eV). 

The vertical S0→S1 transitions are composed of mixed charge transfer HOMO/HOMO-2 → 

LUMO (for 1/2) and HOMO/HOMO-4 → LUMO transitions (for 3/4). The contribution of the 

pure HOMO → LUMO transition decreases from 98% for CMA1/CMA2 to 90% for 1/2 and 

70% for 3/4 (SI, Tables S4 and S5). The calculated geometries for S1 and T1 states show a 

decrease by 10–15° for the angle between core and branched carbazole planes compared with the 

ground state S0 (20–40° decrease compared with crystal structure of 2) This indicates that core 

and branched carbazole units may adopt conformations allowing conjugation in the excited state 

which may lead to competition between localized and CT emissions. The calculated absorptions 

for copper 1/3 (3.66 eV; S0→S3) and gold 2/4 (3.70 eV; S0→S2) are in good agreement with the 

experimental absorption at 343 nm (3.61 eV) which is present in all dendrimer generations and 

corresponds to the carbazole dendron. Indeed, vertical excitations S0→S3 (for copper) and 

S0→S2 (for gold) lead to either locally excited core carbazole (Figure 7, HOMO → LUMO+3 for 

generation G1) or branched dendrimer units (HOMO → LUMO+4 for G2). Moreover the 

oscillator coefficients (f) for these transitions are one third of the pure HOMO → LUMO 

transition and only increase with each dendrimer generation. This theoretical result explains the 

experimental observation of the emission from a higher lying excited state (3.46 eV, Figure 4), 

indicative of significant competing fluorescence emission from the dendron unit leading to 

reduced PLQY values, particularly for copper 1/3 (Table 2). 
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Figure 7. Left: Optimized geometries for copper complex 1 in the first excited S1 and T1 states. 

Middle: molecular-orbital distribution of the HOMO, LUMO, and LUMO+3 for 1 and 3 

involved in vertical excitations (S0 → S1/S3). Right: Electrostatic potential maps of the charge 

transfer upon excitation (S0 → S1/S3), where blue/ red indicate lower/higher electron density). 

Electroluminescent (EL) Properties.

Solution-processed OLED devices were fabricated with copper 1 and gold compounds 2/4 as 

emitters, with the architecture of ITO/ PEDOT:PSS (30 nm)/ poly[9,9-dioctylfluorene-co-N-(4-

butylphenyl)diphenylamine (TFB, 180 nm)/ PVK: 20%wt emitter/ bathophenanthroline (Bphen, 

70nm)/ LiF (0.7 nm)/ Al (100 nm). The choice of near-perfect orthogonal solvents (see SI) 

ensures the sequential deposition of organic layers, without affecting the thickness and interface 

structures of the underlying layers.73,74 In particular, a thick hole-transporting layer of TFB is 

important to ensure a balance of injected charges for exciton formation and recombination within 

the emissive layer and thus enhancing device performance. The devices produced peak EQEs of 

5.6%, 10.6% and 3.7% for 1, 2, and 4, respectively (Figure 8, Table 3). In line with literature 

reports, second generation dendrimer 4 shows lower EQE compared with first generation 2 

which is likely due to a lower carrier mobility in higher generation dendrimers.54 The EL spectra 

for the solution-processed OLEDs agree with the time-averaged PL and delayed fluorescence 
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emission profiles (Figure 8). Devices made from 2, as discussed from its photophysical 

measurements, generated the best performance: they showed the lowest turn-on voltage (3.2 V), 

the least efficiency roll-off at higher current densities and practical luminance (EQE of 10.3 % at 

100 cd/m2 and 10.0 % at 1000 cd/m2), peak EQE at 10.6%, and high luminance (peaking at 

29,000 cd/m2 at ~15 V). The higher turn-on voltage and reduced EQE values for the second 

generation dendrimer 4 could be due an imbalance in charge injection and lower mobility. 

Further device optimization to tune the layer thicknesses and doping concentration may be 

necessary, due to the larger dendrons in the second generation 4. 

Figure 8. (a) Solution-processed OLED devices architectures based on 20 wt.% doped PVK as 

the emissive layer (EML); (b) External quantum efficiencies vs. current density of champion 

OLEDs based on 1, 2, and 4 with inset showing their electroluminescence (EL) spectra; (c) 

Luminance-voltage characteristics for OLEDs based on 1, 2, and 4. 

Table 3. Performance data of solution-processed OLEDs (20 wt-% doped in PVK).

EQE,EL [%]

Dopant
VON

[V]

Max. 
Luminance

[cd m-2] Max. 100 cd m-2 1000 cd m-2

CIEa

(x,y)

1 3.8 8 100 5.6 5.5 4.6 (0.37, 0.60)

2 3.2 29 000 10.6 10.3 10.0 (0.39, 0.58)

4 3.6 10 000 3.7 3.6 2.8 (0.37, 0.60)
a Commission Internationale de l’Éclairage (CIE) color coordinates

■ CONCLUSION 
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In conclusion, emissive carbene-metal-amides (CMAs) with first- and second generation 

carbazole dendron ligands have been synthesized, with high quantum yields (up to 78 %) and 

short (sub-microsecond) excited state lifetimes. Their excellent thermal stability indicates that 

these dendrimers are suitable for the fabrication of OLED devices. The radiative rate constants of 

the gold compounds are one order of magnitude higher than those of the copper analogues. 

Complexes 1, 2 and 4 show dominant delayed fluorescence together with a small prompt 

fluorescence component. PL studies and TD-DFT calculations indicate the existence of higher-

lying excited states which affect the PL properties, particularly for 1 and 3. These dendritic 

complexes proved suitable for the fabrication of solution-processed OLEDs with EQEs of 10% 

at the practical brightness of 1000 cd/m2, and maximum luminance of 29,000 cd/m2. The good 

solubility and amorphous properties of 1–4 suggest that they may be suitable for processing 

techniques such inkjet or roll-to-roll printing for the manufacture of flexible OLEDs. 
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