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A one-dimensional model for the initiation of shear
bands in a reactive material is developed, which
accounts for thermal softening, strain hardening and
strain rate effects, and models the chemical reaction
using an Arrhenius source term. An inhomogeneity
in the heat flux is used as the stimulus for localised
plastic deformation, and a solution is sought as a
perturbation to the elastic solution. In the analysis,
the thin zone of localisation is identified as a
boundary layer. It is found that the behaviour of
the perturbations to the temperature, stress and
strain hardening variable in the localisation zone
are governed by four dimensionless parameters
which are known in terms of various material
properties including density, heat of reaction, strain-
rate sensitivity, thermal sensitivity and strain sensitivity.
The resulting equations are solved numerically and a
criterion for the onset of shear banding is discussed.
The analysis highlights key physical properties which
control the reactive shear banding process and gives
a deeper insight into how such a process may be
understood as a mechanism for the accidental ignition
of reactive materials.

1. Introduction
The phenomenon of shear banding, where the flow of
a material localises to narrow bands, is well-studied
in a general context, often with a particular focus on
metals [1–9], or granular and geological materials [10–
13]. However, there have been comparatively few studies
on the development of shear bands in reactive materials.
A comprehensive review of the modelling of shear bands
in inert materials can be found in [2]. Examples of
shear band models developed specifically for explosive
materials are less common in the literature, and are most
often concerned with how the addition of a chemical heat
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source term affects the tendency for a shear band to form [14–16].
In particular, shear localisation is often suggested as a potential accidental ignition mechanism

in explosive materials [14–21], backed up by experimental evidence (e.g. [22,23]). It is suggested
that shear banding could be a so-called ‘hot spot’ mechanism. It is widely accepted that when
explosive materials are subject to unintended low energy mechanical stimuli, ignition is caused
by localised regions of high temperature known as hot spots [22,24]. Understanding the response
of explosive materials to mechanical stimuli, and in particular understanding the mechanisms
which cause the formation of such hot spots, is of key importance in developing and maintaining
safe procedures for working with and storing explosives.

The majority of models of shear banding are one-dimensional, owing to the large aspect ratio
observed in experiments. A one-dimensional model which aimed to address the likelihood of
both friction and shear banding as accidental ignition mechanisms is developed in [19]. The
model predicts the existence of a maximum obtainable temperature in the absence of reaction,
which depends on the pressure and shear velocity. Upon introduction of chemical heating, the
shear rate required to achieve a thermal explosion decreases rapidly as the pressure increases.
The model can track the developing shear band, but requires numerical solution to determine
the velocity profile across the sheared layer. A more simple model, which considers the shear
band as a localised region of uniform straining, is developed in [14]. The work extends the so-
called Frank-Kamenetskii analysis [25], which describes the process of self-ignition, to account for
mechanical heating. The stability of the steady shear banding solution is studied, and predictions
for the maximum temperature at the centre of the band as a function of the plastic work are made.
The analysis demonstrates how the mechanical process of shear banding may combine with
the thermochemical process of self-ignition to increase the mechanical sensitivity of explosive
materials. Caspar and Powers [15,16,26] studied a thin-walled, cylindrical, rigid-plastic specimen
of the explosive material LX-14. Experimental studies were performed on an inert simulant, Mock
900-20, in order to characterise the effects of strain and strain-rate hardening. Their studies go on
to use both numerical and analytical techniques to study how an inhomogeneity in the sample
thickness can trigger the onset of a shear band. Further, shear localisation in LX-14 was shown to
be sensitive to changes in mechanical properties, specific heat and activation energy, but relatively
insensitive to changes in the thermal conductivity and kinetic rate constant.

In this paper we present a boundary layer analysis to describe the onset of shear localisation
in a reactive material. Thermal softening effects play a key role in the initiation and development
of shear bands, and so it is reasonable to assume that the additional heating due to chemical
reactions occurring in the material will affect the rate of plastic work, which in turn increases the
tendency for a shear band to form. Models of shear localisation in reactive materials typically
resort to numerical solution (e.g. [16,27]). However, in [15] a so-called “Thermal Explosion
Theory" is developed for a rigid-plastic material under the assumption that most variables are
spatially homogenous. This allows for the identification of three distinct periods: an induction
stage, a reaction stage and a post-reaction stage. In the initial stage the plastic work, which
is assumed spatially homogenous, causes the temperature to increase to that required for a
significant reaction. The process then enters the reaction stage, in which heating due to chemical
reaction dominates. Once the reaction has reached completion, the process enters the final stage
where the temperature increase is dominated by plastic work once again. Estimates for the
induction time are given from this approximate theory, and from a more rigorous asymptotic
analysis where the strain hardening parameter takes on special values corresponding to no strain
hardening and a linear dependence of stress with strain [15]. In the asymptotic analysis the large
activation energy is exploited in order to determine the perturbation to the temperature. While
the analysis provides useful estimates for the induction, it decouples the mechanical and chemical
effects, and therefore does not account for the way in which heating due to chemical reaction
affects the material behaviour during the so-called induction stage.

Here, we exploit the large activation energy in conjunction with the asymptotic analysis of
inert shear bands in [8] in order to develop an asymptotic theory for shear bands which accounts
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for the effects of heating due to mechanical dissipation and chemical reaction simultaneously.
In Section 2 we present the governing equations for a one-dimensional model for reactive shear
bands, taking into account thermal softening, strain hardening and strain-rate effects. In order
to model the strain hardening behaviour, we propose a novel extension to the constitutive law
used in [8]. The function for the plastic strain-rate takes an exponential form which is particularly
convenient for the asymptotic analysis that follows.

The governing equations are recast in non-dimensional form using a thermal length scale,
which is typically much shorter than the sample width. This allows us to make the simplifying
assumption that the edges of the sample are effectively an infinite distance from the shear band,
consistent with the physical observation that the shear band width is typically much smaller than
the size of the slab. Motivated by [8] we use an inhomogeneity in the heat flux as the stimulus for
localised plastic deformation, and treat the problem as a perturbation to the elastic solution.

In Section 3 the thin zone of localisation is treated as a boundary layer, and scalings for the
plastic strain-rate and activation energy are introduced. The solution for the early-time elastic
stage is given analytically in terms of the imposed heat flux inhomogeneity. The asymptotic
analysis reduces the problem to a system of coupled nonlinear equations which govern the
perturbations to the temperature, stress and strain hardening variable in the band. These are
solved in conjunction with an auxiliary equation which determines a critical reaction timescale.
In Section 4 the equations from the boundary layer analysis are expressed in terms of four new
non-dimensional parameters. The results are compared with the inert case [8] and a criterion for
the initiation of reactive shear bands is discussed. In Section 5 we compare the results of our
asymptotic analysis with numerical results obtained using the the so-called “cohesive scheme"
described by Zhou et al. [7]. We also consider an approximate solution, more akin to the Thermal
Explosion Theory [15], which splits the problem into distinct plastic and reaction stages. It is
demonstrated that accounting for the reaction in the early stages of the shear banding process is
important in accurately determining the time to thermal runaway. We conclude in Section 6 and
make some comments on the possible implications of this study.

2. Reactive Shear Band model
We consider a two-dimensional slab of explosive material of height 2L subject to an applied
uniform shearing motion, see Figure 1. The sample is loaded at time t̃= 0 such that the constant
velocity at ỹ=±L is ±ṽ0. In the absence of any inhomogeneity in the material properties,
or in the initial or boundary conditions, it is assumed that the velocity profile is linear for
−L< ỹ <L. However, perturbations may be introduced which will allow for localisation to occur.
For now, it is assumed that such perturbations will be uniform in the direction of shearing so
that a one dimensional model is appropriate. The explosive material is assumed to behave as
an elastic-plastic (e.g. [23]), with a constitutive law which accounts for strain hardening, strain-
rate sensitivity and thermal softening effects. The heating of the material due to plastic work
is modelled, as well as the subsequent self-heating due to exothermic reaction. The reaction is
modelled using a one-step Arrhenius law which, though simple, is well known to give the correct
qualitative behaviour (e.g. [14,16,28,29]) and is able to well predict ignition times over several
orders of magnitude in time (see [15] and references therein).

In dimensional form the governing equations read:

ρṽt̃ = s̃ỹ, momentum balance; (2.1)

ρcT̃t̃ = κT̃ỹỹ + βs̃Γ̇ + ρΩA exp(−E/(RT̃ )), energy balance; (2.2)

s̃t̃ =G(ṽỹ − Γ̇ ), elastic relationship; (2.3)

Γ̇ = Γ̇ (s̃, T̃ , Γ ), plastic flow law; (2.4)

Γ =

∫ t̃
0
Γ̇ (t′) dt′, plastic strain. (2.5)
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Figure 1. Schematic of uniform shearing vs. a shear band centered about ỹ= 0.

Here the dependent variables are velocity ṽ(ỹ, t̃), stress s̃(ỹ, t̃), temperature T̃ (ỹ, t̃), and plastic
strain rate Γ̇ (ỹ, t̃). The plastic strain Γ (ỹ, t̃) is determined by integration of strain rate. The
material constants ρ, G, c, κ, β, Ω, A, E and R, are the density, elastic shear modulus, specific
heat, thermal conductivity, Taylor-Quinney coefficient, heat of reaction, rate constant, activation
energy and molar gas constant, respectively.

On the top and bottom of the slab we impose a fixed shearing velocity and assume an
isothermal boundary condition, with appropriate compliance of the stress. The initial conditions
are taken to correspond to the uniform shearing solution. Together they read

ṽ(±L, t̃) =±ṽ0, T̃ (±L, t̃) = T̃0, (2.6)

ṽ(ỹ, 0) = ωỹ, s̃(ỹ, 0) = s̃0, Γ̇ (ỹ, 0) = ω, Γ (ỹ, 0) = 0, T̃ (ỹ, 0) = T̃0, (2.7)

where ω is the nominal strain-rate. Specification of an initial stress s̃0 > 0 corresponds to starting
the physical problem nearer to the onset of plastic deformation [8].

In order to initiate a shear band it is necessary to introduce some external localised stimulus.
For this we consider an inhomogeneity in the heat flux placed at ỹ= 0 as in [8], introduced as

κT̃ỹ(0
−, t̃) =−κT̃ỹ(0+, t̃) =Q(t̃)≥ 0, t̃ > 0, (2.8)

where κ is the thermal conductivity and Q(t̃) is assumed to be of small magnitude and short
duration. Other choices for the stimulus for shear band initiation are available (e.g. [4,9,15,16]),
and similar analyses to the boundary layer analysis we will present could be conducted regardless
of the choice of stimulus. Instead of considering an inhomogeneity in one of the model variables,
such as temperature or strain-rate, or in the material properties, such as yield stress, we could
instead make the ad-hoc assumption that the material is subject to a constant rate of average
strain, and comprises a thin zone in which all of the heat generation takes place [30]. In the model
developed in [30], a so-called weak zone is identified, to which all plastic deformation is confined.
Owing to the zone’s thinness, it is treated as a plane of uniform heat generation, which drives
thermal softening behaviour in the material.

For the plastic strain-rate we propose an extension to the constitutive law used in [8],
which takes into account thermal softening, strain hardening and strain-rate dependence. Strain
hardening effects have been shown to be important in polymer bonded explosives, and are
included in a number of models for reactive shear bands [15,16]. The strain hardening behaviour
of a range of explosive simulants, including cure cast, melt cast, and pressed formulations, can be
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found in [26]. The plastic strain-rate takes the following exponential form

Γ̇ (s̃, T̃ , Γ ) = Γ̇ ∗ exp{−[B−11 (T̃p − T̃ ) +B−12 (s̃p − s̃) +B−13 Γ ]}, (2.9)

where Γ̇ ∗ is a dimensional reference strain-rate, and the constants T̃p and s̃p are the critical values
of temperature and stress below which the plastic strain-rate is exponentially small. It is required
that T̃p > T̃0 and s̃p > s̃0 so that the problem is started in the elastic stage in which plastic strain is
initially negligible. The parametersB1,B2 andB3 are related to strain-rate sensitivityM , thermal
sensitivity P and strain sensitivity N via the definitions

M ≡ 1

s̃p

∂s̃

∂ log Γ̇
=
B2

s̃p
, P ≡− T̃p

s̃p

∂s̃

∂T̃
=

(
B2

s̃p

)/(
B1

T̃p

)
, N ≡ Γ̇ ∗t∗

s̃p

∂s̃

∂Γ
=

(
B2

s̃p

)/(
B3

Γ̇ ∗t∗

)
,

(2.10)

where t∗ is a reference time scale. This strain-rate model is a very close approximation of more
typically adopted power law models (see [31] for a comparison), but offers a form which is much
more convenient for the boundary layer analysis to follow.

We introduce non-dimensional variables, which are related to the dimensional variables by

t= t̃/t∗, y= ỹ/l, v= ṽ/ṽ0, s= s̃/s̃0, γ̇ = Γ̇ /Γ̇0, T = T̃ /T̃0, q=Q/q0,

and the parameters

t∗ =
s̃0

GΓ̇0
, l=

(
κs̃0

ρcGΓ̇0

)1/2

, Γ̇0 =
ṽ0
l
, Γ0 = t∗Γ̇0, ω̂=

ω

Γ̇0
,

ρ̂=
κΓ̇0
cs̃0

, λ=
βs̃20
ρcGT̃0

, Ê =
E

RT̃0
, Ω̂ =

Ω

cT̃0
, Â=At∗, q0 =

κT̃0
l
. (2.11)

The choice of the thermal length scale l�L places the rigid boundaries at y=±L/l. We choose
to exploit the physical observation that shear bands are typically very thin compared with the
sample size, taking the limitL/l→∞ so that the material sample occupies the space−∞< y <∞
[8].

To fix ideas we consider the values of various material properties for LX-14, which are
typical of a wide range of explosives [15,26]. Using parameter values found in [15,27,32–
34], we have ρ= 1.849× 103 kgm−3, G≈ 3× 109 kgm−1 s−2, c= 1.130× 103 J kg−1 K−1, κ=
4.390× 10−1 Wm−1 K−1, M ≈ 0.1, N ≈ 0.1, P ≈ 1, β = 1, ω= 103 s−1, L= 3.47× 10−3 m, T̃0 =
3× 102 K, s̃0 ≈ 4× 107 kgm−1 s−2,Ω = 5.950× 106 J kg−1,A= 5× 1019 s−1,E = 2.206× 105 Jmol−1

and R= 8.314 Jmol−1 K−1. Choosing a representative strain-rate based on the thermal length
scale l gives an extremely high value of Γ̇0 ∼ 109 s−1. While this may be typical of the strain-rate
in a fully-formed band (e.g. [7]), a more typical value of the strain-rate found within a developing
shear band would be in the range Γ̇0 ∼ 103 to 106 s−1 [2,7,8]. In [8,9] the scaling for the strain-rate
is selected to be representative of that within a shear band, and is independent from the length
scale. Varying Γ̇0 between 103 and 106 s−1 gives the following order of magnitude estimates for
the parameters:

t∗ ∼ 10−9 to 10−6 s, l∼ 10−9 m, Γ0 ∼ 10−2, ω̂∼ 10−4 to 1, ρ̂∼ 10−7 to 10−4,

λ∼ 10−3, Ê ∼ 102 to 103, Ω̂ ∼ 10, Â∼ 1010 to 1014, q0 ∼ 1011. (2.12)

In the following boundary layer analysis we will exploit this freedom in choosing our scaling
for the strain-rate in order to achieve the designated scalings for some of our non-dimensional
parameters.



6

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

t

y

y = εξ

y = ε1/2Y
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Elastic

T → Te, s→ se as Y → ∞

t− tp ∼ O(ε)

Figure 2. Sketch of the asymptotic structure used in to determine the equations governing the temperature, stress and

plastic strain within the shear band. Three spatial regions are identified: the inner region, which corresponds to the shear

band zone; the outer diffusive zone, which is used to match on to the elastic solution in the far-field; and the elastic zone.

The analysis identifies two regimes in time: the early-time elastic solution; and the plastic-reaction stage, during which the

material is heated by both plastic work and chemical reaction.

The non-dimensional governing equations for the shearing problem in the upper-half plane
read

ρ̂vt = sy, (2.13)

Tt = Tyy + λsγ̇ + Ω̂Â exp
(
−Ê/T

)
, (2.14)

st = vy − γ̇, (2.15)

γ̇ =
Γ̇ ∗

Γ̇0
exp

{
−
[
T̃0
B1

(Tp − T ) + s̃0
B2

(sp − s) + Γ0
B3

γ

]}
, (2.16)

γ =

∫ t
0
γ̇(t′) dt′, (2.17)

where Tp = T̃p/T̃0 > 1 and sp = s̃p/s̃0 > 1 are the non-dimensional critical temperature and stress,
respectively.

3. Boundary layer analysis
We seek a solution of (2.13)–(2.16) in the form of a perturbation to the elastic (γ̇ = 0) solution. In
the following analysis, a thin zone centred around y= 0 in which significant plastic work and
reaction take place is identified. Outside of this region both the heating due to plastic work and
heating due to reaction are exponentially small, and far from the centre of the localisation zone
the elastic solution remains valid. The solution in the thin zone around y= 0 is matched on to
the elastic solution via an intermediate diffusive zone. Figure 2 shows a sketch of the asymptotic
structure used in our boundary layer analysis.

By differentiating (2.13) with respect to y and integrating the result with respect to t we obtain
an expression for vy in terms of the stress. This is substituted into the elastic relationship (2.15) to
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give a single equation relating the stress and strain-rate. The governing equations then read

st = ρ̂−1
∫ t
0
syy(y, t

′) dt′ + ω̂ − γ̇, (3.1)

Tt = Tyy + λsγ̇ + Ω̂Â exp
(
−Ê/T

)
, (3.2)

where the velocity has been eliminated using the initial condition v(y, 0) = ω̂y. The plastic strain-
rate is still given by (2.16). Owing to symmetry considerations, we treat only the upper half plane,
and solve the governing equations subject to the initial and boundary conditions

s(y, 0) = 1, T (y, 0) = 1, (3.3)

sy(0, t) =0, Ty(0, t) =−q(t), T (∞, t) = 1. (3.4)

In order to proceed with the boundary layer analysis, we must identify a small parameter ε.
This is introduced through the ratios B1/T̃0 and B2/s̃0 by the relations

B1

T̃0
= β−11 ε,

B2

s̃0
= β−12 ε,

B3

Γ0
= β−13 ε1/2, 0< ε� 1, (3.5)

where β1, β2 and β3 are O(1) constants. Such a scaling is typical of materials which exhibit shear
banding [8]. It is assumed that the plastic strain-rate function can be multiplicatively scaled [8],
so that Γ̇ ∗/Γ̇0 = γ̇0ε

−1/2, and the plastic strain-rate takes the non-dimensional form

γ̇(s, T, γ) = γ̇0ε
−1/2 exp{−ε−1[β1(Tp − T ) + β2(sp − s)]− ε−1/2β3γ}. (3.6)

where γ̇0 is O(1). The non-dimensional parameter ρ̂= κΓ̇0/cs̃0 is typically small in materials
which exhibit shear banding effects; for LX-14 we find ρ̂∼ 10−2. In order to take advantage of
this, we introduce the scaling ρ̂= ερ̂0, where ρ̂0 is O(1).

The largeness of the product of the pre-exponential factor Â and heat of reaction Ω̂ is also
exploited by setting

Ω̂Â= Â0Ê
1/2T−1R exp

(
Ê/TR

)
, (3.7)

where TR is the (known) non-dimensional critical reaction temperature, i.e. the temperature
at which significant reaction first occurs. The parameter Â0 is treated as O(1). The reaction
temperature will later be used to identify a reaction time scale tR. As in high activation energy
asymptotic analyses (e.g. [35]), the small parameter ε, non-dimensional activation energy and the
critical reaction temperature are related by ε= T 2

R/Ê.
The assumed asymptotic scalings are selected for facilitation of the asymptotic analysis and

are qualitatively consistent with data found in the literature [15,27,32–34]. In our analysis we
consider materials in which onset of significant plastic work and onset of significant reaction
occur over similar timescales. These we refer to as “reactive shear bands". For materials in which
localisation of plastic work occurs well before significant reaction (or vice-versa) these relations
should be adjusted so that the appropriate dominant plastic or reaction properties are related
through different powers of ε. The limit considered herein is perhaps the most important to
consider when concerned with safety and handling; accidental mechanical stimuli are typically of
a short duration and therefore materials which react shortly after the generation of a shear band
pose the greatest risk of ignition.

(a) Elastic stage
In the early stages of deformation the plastic strain-rate is initially exponentially small. This
remains the case until the stress and temperature have risen sufficiently to make the argument
of the exponent in (3.6) positive. Additionally, the Arrhenius source term is exponentially small
until the critical reaction temperature TR is reached. Thus, for early times the inert elastic solution
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of (3.1)–(3.2) is given by

Te(y, t) = 1 + δ

∫ t
0

e
− y2

4(t−t′)

[π(t− t′)]1/2
h(t′) dt′, (3.8)

se(y, t) = 1 + ωt, (3.9)

see, for example, [36, p.75]. Here the heat flux inhomogeneity is represented as q(t) = δh(t), 0≤
h(t)≤ 1. The scaling of the heat flux is such that 0< ε� δ� 1, so that δ is sufficiently large
to introduce localisation, but still small enough to be negligible in comparison with physical
factors that control the evolution of the shear band. The ordering of the small parameters has
the physical interpretation that the thermal stimulus is sufficiently strong to cause the onset of
plastic localisation, but is not so strong that it causes a rapid departure from the elastic response
of the material. This early time solution will be used as the basis of our asymptotic analysis.

(b) Onset of Reactive Shear Band
In this section we develop a boundary layer analysis which splits the problem into an elastic stage
and a plastic-reactive stage, where the latter simultaneously accounts for heating due to plastic
work and reaction. Beyond the critical plastic threshold, γ̇ becomes large due to the multiplicative
scaling. This motivates the definition of a critical time scale tp at which the onset of significant
plastic work occurs, i.e. the time at which the exponential in (3.6) becomes O(1). Therefore tp is
defined by the smallest solution of

β1[Tp − Te(0, tp)] + β2[sp − se(0, tp)] = 0. (3.10)

Given that the stimulus for the shear band is placed along the centreline, the plastic work
first becomes significant near y= 0, and occurs at time t= tp. At this stage the solution will be
a perturbation of the elastic solution (3.8)–(3.9). The temperature in the shear band will increase
due to plastic work, until the critical reaction temperature is reached. As previously discussed, we
consider the case where the subsequent reaction occurs on a similar timescale to the growth of the
plastic work term. It is possible to consider a model in which the plastic and reactive behaviour
occur on disparate timescales, but we restrict ourselves to the most critical case.

We introduce new independent variables ξ and τ such that

y= εξ, t= tp + ετ, ξ > 0, τ >− tp
ε
→−∞, (3.11)

which are appropriate to describe the inner solution in the boundary layer near y= 0, where
the localised plastic straining first begins to occur. In order to identify the onset of the reaction
we define a critical reaction timescale τR (related to the “original time" by tR = tp + ετR) as the
solution of

TR = Te(0, tp + ετR) + εT1(0, τR) + o(ε), (3.12)

where the function T1 is still to be determined as part of the solution.
In the inner layer we expand the temperature and stress in powers of ε as

T = Te(εξ, tp + ετ) + εT1(ξ, τ) + ε3/2T2(ξ, τ) + · · · , (3.13)

s= se(εξ, tp + ετ) + εs1(ξ, τ) + ε3/2s2(ξ, τ) + · · · . (3.14)

Physically we expect the solution in the shear band to be driven by plastic work and the chemical
reaction. The chosen scalings in the expansion allow for the appropriate balance between the
plastic work and reaction terms in the governing equations (3.1)–(3.2). We expand the elastic parts
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of the solution as

Te(εξ, tp + ετ) = Te(0, tp) + ε(aτ − bξ) + o(ε), (3.15)

se(εξ, tp + ετ) = se(0, tp) + εω̂τ + o(ε), (3.16)

where

a= Tet(0, tp) = δ

∫ tp

0
[π(tp − t′)]−1/2h′(t′) dt′, b=−Tey (0, tp) = δh(tp). (3.17)

Substitution of the expansions for the temperature and stress into (3.1)–(3.2) gives[
s1 + ε1/2s2 + · · ·

]
τ
= ρ̂−10

∫τ
−∞

[
ε−1s1 + ε−1/2s2 + · · ·

]
ξξ

dτ ′ − γ̇, (3.18)[
T1 + ε1/2T2 + · · ·

]
τ
=
[
ε−1T1 + ε−1/2T2 + · · ·

]
ξξ

+ λ [se + εs1 + · · · ] γ̇ + Ω̂Â exp
(
−Ê/T

)
,

(3.19)

where the expansion of the plastic strain-rate is given by

γ̇ = γ̇0ε
−1/2 {exp[β4τ − β1bξ + β1T1 + β2s1 − β3γ̂] + o(1)} , (3.20)

and where the O(1) variable γ̂(ξ, τ) = ε−1/2γ has been introduced. Here β4 = β1a+ β2ω̂ > 0,
justified by the observation that β2ω̂ > 0 and a∼O(δ) is negligible. The expansion of the
Arrhenius source term is given by

Ω̂Â exp
(
−Ê/T

)
= Â0ε

−1/2 exp {a(τ − τR)− bξ + T1 − T1(0, τR) + o(1)} , (3.21)

and we observe that the onset of reaction is delayed by the shift in time τR.
We now solve the sequence of boundary value problems which arise from considering powers

of ε. At O(ε−1) we have the problem∫τ
−∞

s1ξξ dτ = 0, s1ξ (0, τ) = 0, s1(ξ,−∞) = 0, (3.22)

T1ξξ = 0, T1ξ (0, τ) = 0, T1(ξ,−∞) = 0. (3.23)

Integrating both equations twice with respect to ξ and applying the boundary conditions at ξ = 0

reveals that the solutions must be functions of time τ only:

T1(ξ, τ) = f1(τ), f1(−∞) = 0, s1(ξ, τ) = g1(τ), g1(−∞) = 0, (3.24)

where f1(τ) and g1(τ) are to be determined by matching with the outer solution. We next solve
the problem at O(ε−1/2):∫τ

−∞
s2ξξ dτ = ρ̂0γ̇0 exp[β4τ − β1bξ + β1f1 + β2g1], (3.25)

s2ξ (0, τ) = 0, s2(ξ,−∞) = 0, (3.26)

T2ξξ =−λγ̇0(1 + ω̂tp) exp[β4τ − β1bξ + β1f1 + β2g1 − β4γ̂]

− Â0 exp[a(τ − τR)− bξ + f1(τ)− f1(τR)], (3.27)

T2ξ (0, τ) = 0, T2(ξ,−∞) = 0. (3.28)

This has solution

s2(ξ, τ) =
ρ̂0γ̇0
β1b

(
ξ exp(−β3γ̂(0, τ)) +

exp(−β1bξ − β3γ̂)
β1b

+ β3

∫ξ
0

exp(−β1bξ − β3γ̂)
β1b

γ̂ξ dξ − β3
∫ξ
0

∫ξ
0
exp(−β1bξ − β3γ̂)γ̂ξ dξ dξ

)
× d

dτ
{exp[β4τ + β1f1(τ) + β2g1(τ)]}
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− ρ̂0γ̇0β3
∫ξ
0

∫ξ
0
exp(−β1bξ − β3γ̂)γ̂τ dξ dξ × exp[β4τ + β1f1(τ) + β2g1(τ)]

+ g2(τ), g2(−∞) = 0, (3.29)

T2(ξ, τ) =−
λγ̇0(1 + ω̂tp)

β1b

(
ξ exp(−β3γ̂(0, τ)) +

exp(−β1bξ − β3γ̂)
β1b

+ β3

∫ξ
0

exp(−β1bξ − β3γ̂)
β1b

γ̂ξ dξ − β3
∫ξ
0

∫ξ
0
exp(−β1bξ − β3γ̂)γ̂ξ dξ dξ

)
× exp[β4τ + β1f1(τ) + β2g1(τ)] + f2(τ), f2(−∞) = 0, (3.30)

where the functions f2(τ) and g2(τ) are to be determined.
In order to satisfy the boundary conditions away from the shear band we consider an outer

layer, in which the appropriate independent variables are

y= ε1/2Y, t= tp + ετ, Y > 0, τ >− tp
ε
→−∞. (3.31)

In this region both the plastic straining and reaction are negligible. Motivated by achieving a
balance between the time derivative and diffusive terms in the governing equations [8], we
introduce the expansions

T = Te(ε
1/2Y, tp + ετ) + εTO1 (Y, τ) + ε3/2TO2 (Y, τ) + · · · , (3.32)

s= se(ε
1/2Y, tp + ετ) + εsO1 (Y, τ) + ε3/2sO2 (Y, τ) + · · · . (3.33)

For the analysis here we only require the leading-order governing equations in the outer layer,
which read

sO1τ = ρ̂−10

∫τ
−∞

sO1Y Y dτ ′, sO1 (∞, τ) = 0, sO1 (Y,−∞) = 0, (3.34)

TO1τ = TO1Y Y , TO1 (∞, τ) = 0, TO1 (Y,−∞) = 0. (3.35)

No boundary conditions are imposed at Y = 0. Instead we must perform an asymptotic matching
between the inner and outer solutions. The inner expansion is expressed in terms of the outer
variables and equated to the outer expansion in order to derive matching relations at Y = 0. This
process provides the boundary conditions

TO1 (0, τ) = f1(τ), sO1 (0, τ) = g1(τ), (3.36)

TO1Y (0, τ) =−
λγ̇0(1 + ω̂tp)

β1b
exp(β4τ + β1f1(τ) + β2g1(τ)− β3γ̂(0, τ))

− Â0

b
exp(a(τ − τR) + f1(τ)− f1(τR)), (3.37)

sO1Y (0, τ) =
ρ̂0γ̇0
β1b

d

dτ
exp(β4τ + β1f1(τ) + β2g1(τ)− β3γ̂(0, τ)). (3.38)

Solution of equations (3.34)–(3.35) subject to the boundary conditions (3.37)–(3.38) provides

sO1 (Y, τ) =− ρ̂
1/2
0 γ̇0
β1b

× exp

[
β4(τ − ρ̂1/20 Y ) + β1f1(τ − ρ̂1/20 Y )

+ β2g1(τ − ρ̂1/20 Y )− β3γ̂(0, τ − ρ̂1/20 Y )

]
, (3.39)

TO1 (Y, τ) =

∫τ
−∞

{
λγ̇0(1 + ω̂tp)

β1b
exp

[
β4τ
′ + β1f1(τ

′) + β2g1(τ
′)− β3γ̂(0, τ ′)

]
+
Â0

b
exp[a(τ − τR) + f1(τ)− f1(τR)]

}
× exp

[
− Y 2

4(τ − τ ′)

]
dτ ′

[π(τ − τ ′)]1/2
. (3.40)
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Imposing matching conditions between the inner and outer solution at Y = 0 gives a pair of
coupled nonlinear equations for the leading-order temperature and stress perturbations in the
shear band, namely

f1(τ) =

∫τ
−∞

{
λγ̇0(1 + ω̂tp)

β1b
exp

[
β4τ
′ + β1f1(τ

′) + β2g1(τ
′)− β3γ̂(0, τ ′)

]
+
Â0

b
exp[a(τ − τR) + f1(τ)− f1(τR)]

}
dτ ′

[π(τ − τ ′)]1/2
, (3.41)

g1(τ) =−
ρ̂
1/2
0 γ̇0
β1b

exp
[
β4τ + β1f1(τ) + β2g1(τ)− β3γ̂(0, τ ′)

]
, (3.42)

with the scaled centreline plastic strain given by

γ̂(0, τ) =

∫τ
−∞

γ̇0 exp
[
β4τ
′ + β1f5(τ

′) + β2g5(τ
′)− β3γ̂(0, τ ′)

]
dτ ′. (3.43)

These are to be solved in conjunction with (3.12) in order to determine the critical reaction time
τR. We note that f1(τ)≥ 0 and g1(τ)≤ 0 which is consistent with the physical observation that
plastic deformation leads to an increase in the temperature and a decrease in the stress [8]. In
particular, rapid growth (decay) of the temperature (stress) is associated with the formation of a
shear band.

4. Reactive Shear Band criterion
In order to analyse the coupled equations for the reactive shear bands (3.41)–(3.43) we introduce
the new variables

f(η) = β1f1(τ), g(η) =−β2g1(τ), k(η) = β3γ̂(0, τ), η= β4τ + log

[
λγ̇0(1 + ω̂tp)

bβ
1/2
4

]
,

to re-write the problem on the η timescale. This introduces the non-dimensional parameters

Λp =
β2(ρ̂0β4)

1/2

β1λ(1 + ω̂tp)
, Λk =

β3b

λ(1 + ω̂tp)
, ΛR =

Â0

bβ
1/2
4

, Λt =
a

β4
, (4.1)

which are known in terms of the material properties and applied shearing motion. Now (3.41)–
(3.43) take the simplified form

f(η) =

∫η
−∞

[π(η − η′)]−1/2
{
exp

[
η′ + f(η′)− g(η′)− k(η′)

]
(4.2)

+ ΛR exp
[
Λt(η

′ − η′R) + β−11 (f(η′)− f(η′R))
]}

dη′, (4.3)

g(η) =Λp exp [η + f(η)− g(η)− k(η)] , (4.4)

k(η) =Λk

∫η
−∞

exp
[
η′ + f(η′)− g(η′)− k(η′)

]
dη′, (4.5)

and correspond to the magnitudes of the perturbations to the temperature, stress and strain
hardening variable, respectively. The parameters Λp, Λk and Λt relate to the material properties,
applied shearing motion and heat flux inhomogeneity, whereas the parameter ΛR relates to the
properties of the chemical reaction.

For the special case Λp = 1 and Λk, ΛR = 0 we have the exact solution f(η) = g(η) = eη and
k(η) = 0 for all values ofΛt . For other parameter values we investigate the behaviour of f(η), g(η)
and k(η) numerically using Newton’s method. In particular, we are interested in understanding
how the inclusion of a chemical reaction in the model affects the tendency for a shear band to form
when compared with the inert solution. In [8] a shear band criterion is developed by adopting the
position that the perturbations should remain O(1) at the critical plastic time for plastic work t=
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tp (τ = 0). For the parameter values quoted in [8] it is found that τ = 0 corresponds to η∼ 1 to 7.
For Λp < 10 the perturbations become O(10) at time η∼ 7, and it is argued that Λp < 10 provides
a useful threshold below which the formation of shear bands occurs. In the following we will
assume that the parameters which appear in the definition of η are such that η= 7 corresponds
to τ = 0. This will allow for a direct comparison between the inert results in [8] and our reactive
shear band model.

In order to simplify the analysis to follow we note that β1 ∼O(1), and through an appropriate
choice of scaling we can always set β1 = 1. Further, we note that the parameter Λt = a/(β1a+

β2ω̂)∼O(δ). Numerical investigation shows that the effect of varying Λt between 0 and 0.1 is
minimal, so in the interest of simplicity we set Λt = 0 and study the reduced three parameter
system controlled by Λp, Λk and ΛR. In Figures 3 and 4 we give results for a range of parameter
values. In particular we consider 0<Λp ≤ 100, which allows for a direct comparison with the
results in [8]. It should be noted that even though the analysis was carried out treating the various
parameters which make up Λp as O(1), numerical investigations reveal that the asymptotic
solution shows good agreement with the full model for large values of Λp.

Figure 3 shows a series of numerically computed results for the inert case ΛR = 0, allowing the
influence of the strain hardening parameter Λk to be more clearly observed. Panels (a)–(c) show
the perturbations to the centreline temperature f(η), stress g(η) and strain hardening variable
k(η) in the absence of any hardening, and are exactly those given in [8]. As Λk is increased we
observe that the growth of the centreline temperature and stress is slowed, particularly for the
results with Λp < 10, and it is argued that the inclusion of strain hardening effects can prevent the
rapid growth (decay) of temperature (stress) typically associated with shear banding. Assuming
the same parameter values as used in [8], we may say that for sufficiently strong strain hardening
effects (Λk ≥ 1) the formation of a shear band may be suppressed: in panels (g) and (h) we see that
the perturbations to the temperature and stress remain O(1) at time η= 7 for all values of Λp.

Figure 4 shows numerical results with fixed hardening parameter Λk = 1 and increasing
reaction parameter ΛR = 0.1, 1, 5, and 10, from top to bottom, respectively. It is clear to observe
that increasing ΛR, which corresponds to increasing reaction rate or heat of reaction, causes the
perturbations to the temperature and stress to grow more rapidly, thus triggering the earlier onset
of shear banding behaviour. In fact, through the addition of a chemical reaction, the model gives
rise to the formation of shear bands for parameter values for which a shear band would not be
observed in an inert material. For instance, in Figure 3 (g) we see that for all values of Λp there
is only a moderate increase in the perturbation to the temperature and f(η) remains O(1) for the
times shown. However, the corresponding result withΛR = 1, shown in Figure 4 (d), depicts rapid
growth Λp = 0.1 and 1, indicative of the onset of shear banding.

Figure 5 shows the outcome of a number of simulations in the Λp − ΛR plane, with
Λk = 0, 0.1, 10, and 1. In the figure, triangles indicate that a shear band did not form, i.e.
the perturbations remained O(1) at the critical plastic time t= tp. Circles indicate that the
perturbations to the temperature and stress were no longer O(1) at time tp, and therefore a shear
band did form. As discussed in [8], for Λp < 10 a shear band is always initiated in the absence of
hardening, irrespective of the reaction properties. However, the reaction may affect the growth
rate of the temperature and stress perturbations once the band has formed. For Λp > 10 a shear
band is not observed when there is no reaction, but it is found that a shear band may be initiated
by sufficiently increasingΛR. That is, for a sufficiently strong, or fast, reaction a shear band may be
initiated in a material which would not otherwise undergo shear banding under the same load. In
Figure 5 (a) we initially observe that as Λp is increased a greater value of ΛR is required in order to
initiate a shear band. However, for Λp large enough (Λp > 70) we see that the critical value of ΛR
required for shear band formation begins to decrease. This is best understood by referring back
to Figure 3 (a,b), which shows the corresponding inert results. We see that the stress perturbation
g(η) grows more slowly asΛp is increased from 0.1 through to 10, but begins to grow more rapidly
again for Λp = 100. When we introduce the chemical reaction, the effects of thermal softening are
increased which causes g(η) to increase at an even faster rate, triggering the formation of a shear



13

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

−5 0 5 10 15

0

5

10

15

η

f(
η

)

Λp = 0.1 Λp = 1 Λp = 10 Λp = 100

−5 0 5 10 15

0

5

10

15

η

f(
η

)

−5 0 5 10 15

0

5

10

15

η

g(
η

)

−5 0 5 10 15

0

5

10

15

η

k(
η

)

−5 0 5 10 15

0

5

10

15

η

f(
η

)

−5 0 5 10 15

0

5

10

15

η

g(
η

)

−5 0 5 10 15

0

5

10

15

η

k(
η

)

−5 0 5 10 15

0

5

10

15

η

f(
η

)

−5 0 5 10 15

0

5

10

15

η

g(
η

)

−5 0 5 10 15

0

5

10

15

η

k(
η

)

−5 0 5 10 15

0

5

10

15

η

g(
η

)

−5 0 5 10 15

0

5

10

15

η

k(
η

)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Λk = 0

Λk = 0.1

Λk = 1

Λk = 10

Figure 3. Results for the non-reactive case ΛR = 0 and hardening parameter Λk = 0, 0.1, 1, and 10, top to bottom,

respectively. In each panel results are given for Λp = 0.1 (· · ·), 1 (·-), 10 (- -) and 100 (−).

band. Interestingly, we see that increasing Λk increases the size of the region in parameter space
where no shear band is observed and for Λk = 10, shown in Figure 5 (d), it is found that a shear
band is prevented entirely until the reaction parameter in increased significantly (≈ΛR > 6). This
highlights the important role strain hardening may play in the development of shear bands.
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Figure 4. Results for the reactive case with ΛR = 0.1, 1, 5, and 10, top to bottom, respectively, and fixed hardening

parameter Λk = 1. In each panel results are given for Λp = 0.1 (· · ·), 1 (·-), 10 (- -) and 100 (−).

5. Comparison with full numerical solution and approximate
theories

In order to solve the full system of governing equations (2.13)–(2.17) numerically, we adapt the
so-called “cohesive" scheme in [7] to include heating due to a chemical reaction. Here we give
a brief description of the numerical method, and refer the reader to [7] for the full details. The
spatial domain −1≤ y≤ 1 is discretised into N segments of equal length ∆y= 1/N , and the
integration time step is fixed as∆t=∆y/S, where S =

√
1/ρ̂ is the non-dimensional elastic wave
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Figure 5. A sketch of the region in the Λp − ΛR plane in which a shear band is formed, for values: (a) Λk = 0; (b)

Λk = 0.1; (c) Λk = 1; and (d) Λk = 10. Triangles indicate that no shear band was formed, whereas circles indicate a

shear band was formed, based on the criterion that the perturbations remain O(1) at the critical time τ = 0, as originally

discussed in [8].

speed. Thus, the y − t plane is divided into a rectangular mesh, with each of the nodes being
linked by the characteristic lines dy/dt= S,−S, 0. First, the temperature is assumed known,
and the mechanical equations (2.13) and (2.15), along with the constitutive laws (2.16) and
(2.17), are solved via an iterative Newton-Raphson scheme. These variables, along with the
known temperature T , may be used to compute the plastic strain γ and strain-rate γ̇. With all
mechanical variables regarded as known, we advance equation (2.14) forward in time. For the
inert problem, it is claimed that, due to the smoothness of thermal diffusion compared with stress
wave propagation, the decoupled approach gives accurate results provided the mechanical step
can be solved accurately [7]. In order to accurately capture the rapid heating due to the chemical
reaction we iterate the computation between the mechanical and thermal stage. This approach
gives satisfactory results provided that the integration timestep is sufficiently small. Typically we
found ∆t∼ 10−4 was sufficient.
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The resulting mechanical finite-difference equations to be solved on the interior of the domain
are

st+∆ti =
sti−1 + sti+1

2
+
ρ̂S

2

[
vt(i+1)− − vt(i−1)+

]
− ρ̂S∆y

2
γ̇t+∆ti , (5.1)

γ̇t+∆ti = γ̇(st+∆ti , T ti , γ
t+∆t
i ), (5.2)

γt+∆ti = γti +
∆t

2

[
γ̇t+∆ti + γ̇ti

]
. (5.3)

Once the mechanical equations have converged, the thermal part of the problem is solved using
a discretised version of (2.14):

T t+∆ti = T ti +∆t

(
T ti+1 − 2T ti + T ti−1

∆y2

)
+∆tλ

(
sti + st+∆ti

2

)(
γ̇ti + γ̇t+∆ti

2

)

+∆t Ω̂Â exp

(
− 2Ê

T ti + T t+∆ti

)
. (5.4)

The above equation, which uses a second order midpoint rule for the heat generation terms, is
iterated with the mechanical part of the problem until the temperature has converged. In the
early stages of the problem, this iteration stage is not required since the temperature changes
on a timescale much shorter than the timescale required by the mechanical part of the scheme.
However, as the temperature is increased the heating due to reaction becomes important, and the
updated value of the temperature may be used to solve an updated version of the mechanical
equations (5.1)–(5.3). Such an iteration process is repeated until a solution is obtained to within a
specified tolerance. Equations (5.1)–(5.4) are supplemented by appropriate boundary conditions,
see [7].

Figure 6 shows a comparison of the centreline temperature stress as predicted by the
asymptotic and numerical results with (a,b) and without (c,d) the effect of strain hardening.
The boundary layer analysis developed in Section 3, labelled ‘Asymptotic’, provides an excellent
agreement with the numerical results obtained using the cohesive scheme described in [7].
We observe that the key features of the shear banding behaviour are well-predicted by the
asymptotic solution, in particular we see the characteristic drop in stress associated with shear
band formation. For the results which include strain hardening we observe that the drop in stress
in less rapid and the formation of the shear band is delayed, in agreement with the conclusions of
our asymptotic analysis that strain hardening delays the shear banding process.

Also shown are the results from two approximate theories: one in which the reaction is
assumed exponentially small in the initial stages of shear band formation (Approximation I);
and another, motivated by the Thermal Explosion Theory [15], in which the heating is first
dominated by plastic work, and then “switches over" to being dominated by chemical reaction
at the induction time t∗ (Approximation II).

In Approximation I, the problem is split into three stages: an elastic stage; a plastic stage; and a
plastic-reactive stage. The plastic stage problem is first solved using boundary-layer techniques,
similar in fashion to the solution in Section 3, but with Â0 = 0. This is consistent with our
assumption that the plastic work dominates until the critical reaction temperature TR is reached.
We then introduce a new timescale τ̂ through the relation t= tp + ε(τR + ε1/2τ̂) which is suitable
to describe the solution once the reaction has commenced. During this final reaction stage, the
model accounts for heating due to plastic work and chemical reaction, and the solution is given
by

T = TR + εθ(ξ, τ̂) + o(ε), (5.5)

s= sR + εψ(ξ, τ̂) + o(ε), (5.6)

where sR is the stress at the time at which the critical reaction temperature TR is reached. The
corrections to the temperature and stress are governed by a system of two coupled ordinary
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differential equations

θτ̂ = λsRγ̇0 exp {β3τR + β1T1(τR) + β2s1(τR) + β3γ̂(0, τR) + β1θ + β2ψ}+ Â0 exp {θ} , (5.7)

ψτ̂ =−γ̇0 exp {β3τR + β1T1(τR) + β2s1(τR) + β1θ + β2ψ} , (5.8)

along with the initial conditions θ(−∞) = 0 and ψ(−∞) = 0. Note that the strain appears constant
to leading order in the law for the strain-rate, that is the effect of strain hardening appears to be
independent of time on the reaction time scale τ̂ .

The second approximate approach identifies three distinct periods: an induction stage, during
which spatially homogenous plastic work induces a temperature rise sufficient to trigger a
significant reaction; a reaction period; and a post-reaction period. In contrast to our critical
reaction time tR, the Thermal Explosion Theory identifies an induction time t∗ corresponding
to the time at which heating due to plastic work and reaction become comparable. The reaction
stage, during which heating due to plastic work is assumed negligible, commences at time t= t∗.
Using the idea of [15], we use our inert (Â0 = 0) centreline solution from Section 3, given by
TI(t; τ) = Te(0, t) + εf1(τ ; Â0 = 0) and sI(t; τ) = se(0, t) + εg1(τ ; Â0 = 0), where the subscript I
denotes inert, to find an induction time t∗. This is found as the root of

λsI(t
∗)γ̇0 exp{−ε−1[β1(Tp − TI(t

∗)) + β2(sp − sI(t
∗))]− ε−1/2β3γI(0, t

∗)}

= Â0 exp

(
Ê

TR
− Ê

TI(t∗)

)
. (5.9)

As in the approximate Thermal Explosion Theory [15], we assume a spatially homogenous
solution during the reaction stage. The plastic work term is treated as negligible so that the
temperature at the centre of the band is governed by the ordinary differential equation

Tt = Ω̂Â exp
(
−Ê/T

)
, T (t∗) = TI(t

∗), (5.10)

which accounts solely for the heating due to reaction along the centre of the shear band. We
further assume a uniform strain-rate during the reaction stage which gives a strain that depends
linearly on time [15]

γ̇(y, t)≈ γ̇∗, γ(y, t)≈ γ̇∗(t− t∗) + γI(t
∗), (5.11)

where the representative strain-rate γ̇∗ = γ̇(sI(t
∗), TI(t

∗), γI(t
∗)) is calculated from the

constitutive law (3.6). An approximate time history of the stress in the band during the reaction
stage may then be computed by rearranging (3.6) to give

s(t) =
β1
β2

(Tp − T ) + sp + ε1/2
β3
β2

[γ̇∗(t− t∗) + γI(t
∗)] +

ε

β2
log

(
γ̇∗

γ̇0
ε1/2

)
. (5.12)

An important distinction to make between the boundary layer and approximate approaches is
that the dominant balance within the band in the asymptotic solution of Section 3 is between heat
diffusion, plastic work and reaction. Solution of the problem then comes from matching with an
outer region in which the temperature satisfies the usual one-dimensional heat equation with no
heat sources. However, in the two approximate solutions there is a dominant balance between the
time derivative of the temperature and either the plastic work and reaction in Approximation I,
or just the reaction in Approximation II.

The critical plastic time tp, critical reaction time tR, approximate critical reaction time tRa

predicted by Approximation I, and induction time t∗ predicted by Approximation II are shown
as vertical lines in Figure 6. The critical plastic time tp agrees well with the numerical solution,
identified as the time at which the solution first differs from the elastic solution by O(ε). This
is most clearly observed in the plots of the stress. Further, the time at which significant heating
due to reaction occurs is also well predicted, most accurately by our full asymptotic solution.
As expected, the boundary layer analysis of Section 3 gives the most rapid rise (drop) in the
temperature (stress) since it accounts for both heating due to plastic work and heating due to
reaction. The first approximate solution, Approximation I, only accounts for heating due to plastic
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Figure 6. Comparison of the centreline temperature and stress as predicted by the asymptotic, approximate and

numerical solutions with: (a,b) β3 = 0; and (c,d) β3 = 0.1. In each case the critical plastic time tp, critical reaction times

tR and tRa , as well as the induction time t∗ are shown as labelled vertical dotted lines. The parameter values used

were ρ̂0 = 10−4, λ= 10−3, γ̇0 = 1, ω̂= 10−1, Tp = 1.01, sp = 1.01, Â0 = 0.05, Ê = 103, TR = 1.02, a= 0.1354,

b= 0.0395, β1 = 1 and β2 = 1.

work up until time tRa , at which point a sharp increase in temperature is observed due to the
commencement of a rapid chemical reaction. Interestingly, both Approximations I and II predict
that the temperature reaches the reaction temperature TR at a comparable time in the absence of
hardening, see Figure 6 (a,b), so both methods would provide a similar approximation for the
time to runaway. This is likely only the case when we consider heating due to plastic work and
reaction to be of a comparable size on a comparable timescale, as we do here.

6. Conclusion
In this paper we have developed a model for shear bands occurring in reactive materials
motivated by the boundary layer analysis of [8]. The analysis allows for the full system of
governing equations to be reduced to four coupled equation used to describe the behaviour of
the perturbations to the centreline temperature, stress and strain hardening variable, as well as
the critical reaction time. It was demonstrated that the asymptotic solution was able to accurately
predict all of the key characteristics of the reactive shear banding process, showing excellent
agreement with numerical results computed using an adapted version of the scheme described
in [7]. In contrast to the inert case with no strain hardening effects, we find that the initiation of
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shear banding is controlled by four parameters instead of one. The simplified equations allow
for the parameter space to be explored, and a criterion for the initiation of shear bands based on
known physical parameters has been suggested. This analysis has extended previous work on
shear bands [8], and has identified three new parameters, which will add to the understanding of
how localised shearing operates as a hot spot mechanism. As in [8], the dimensionless parameters
may be interpreted in terms of physical parameters as follows:

Λp ≈
ρGT̃p(κcω)

1/2

PM1/2s̃
5/2
p

, Λk ≈ δh(tp)
ρcT̃pM

3/2

Ns̃p
, ΛR ≈

ΩM1/2

cT̃p
, Λt ≈ a

β3
∼ δ� 1. (6.1)

Unfortunately, the dependence of Λk and Λt on δ cannot be suppressed. However, by relating the
small parameter ε to the constitutive properties by (3.5), and noting the ordering ε� δ� 1, one
can obtain an estimate of the sizes of both Λk and Λt.

Unlike other works (e.g. [16,30,37]), our analysis gives a parameter-based criterion for shear
banding instead of a stress or strain based relation, which is typically related to the maximum
of the stress-strain curve [38]. Nonetheless, the results may still be interpreted in the same way:
parameter regimes in which a shear band does not form correspond to solutions in which material
hardening is predominant; and parameter regimes in which a shear band does form correspond to
solutions in which material softening is predominant. One could in principle take the composite
solution from the boundary layer analysis presented here to give an explicit solution for use in
stress-strain criterion developed in other works, and compare this with experimental results (e.g.
[39,40]), and our parameter-based shear band criterion, but this is beyond the scope of this work.

The usefulness of this analysis is primarily in assessing the tendency of a reactive material to
form shear bands, based on its material properties and the shear rate of the deformation. As an
example we consider the reactive material LX-14 using the parameter values given in Section 2.
By further assuming that T̃p ≈ T̃0 and s̃p ≈ s̃0, we find that Λp ≈ 1.4 and ΛR ≈ 10, which is well
within the range of values for which a shear band would be observed, even in the absence of
any reaction. However, if the material were less sensitive to thermal softening, say P = 0.1, then
we would find Λp ≈ 14. In this case we would not expect a shear band if the material were
inert, but we do expect a shear band when we take the reaction into consideration. From this
we conclude that considering the behaviour of the reaction can be critical in determining whether
or not localised plastic deformation will occur in an explosive material. Since the non-dimensional
parameters which govern the behaviour of the perturbations to temperature and stress are known
in terms of material properties, the study could be used to inform the manufacture of new
explosive materials: for instance, a different binder could be used to alter the bulk material
properties in such a way to suppress shear banding.

Of particular practical use is the ability of strain hardening effects to delay the onset of shear
banding: it is known that it is possible to control the tendency of a material to exhibit shear
banding by altering its strain hardening properties (e.g. [2]). This work predicts that reactive
materials are more likely to form shear bands, meaning that strain hardening properties need
to be changed considerably more in a reactive material compared to an inert material. In cases
where it may not be desirable or practical to alter the mechanical material properties, the analysis
presented here reveals the interplay between mechanical and reactive properties, and suggests
how altering the properties of the chemical reaction may suppress hot spot mechanisms related
to shear banding. Provided the material still performs as intended, choosing an alternative active
component (thereby altering the properties of the reaction) may provide an alternative strategy
to reduce the susceptibility of a material to shear banding.

In this study it was assumed that the critical temperature for plastic work and reaction were
similar in magnitude, so that the reaction occurs soon after the band has formed. In fact, the
scalings are such that the onset of significant plastic work and onset of reaction effectively occur
simultaneously. In reality, this may not be the case and some adjustment to the analysis would be
required. For the case where reaction occurs before significant plastic work (i.e. reactive materials
which do not exhibit significant shear localisation) it can be shown that the problem reduces to
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that of [28]. In this instance the reaction is confined to a thin zone around the centreline, and the
problem is effectively equivalent to the heating of a half-space of material with the boundary layer
playing the role of a thermal flux applied at the boundary. On the other hand, if the reaction is
weak enough it may be observed that the shear band becomes fully developed before the reaction
occurs. Solution of this problem would require imposing initial conditions consistent with those
found inside a developed shear band and looking for a perturbation about the critical reaction
temperature.
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