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In this letter, we propose a novel revised regularization to improve the
performance of compressive sensing (CS) reconstruction. We suppose
that a specific regularization term is insufficient to accommodate the
prior information of CS while it can be improved by further imposing a
linear approximation term. We also prove that the revised regularization
is substantially equivalent to the CS preprocessing methods. We conduct
extensive experiments on various CS algorithms which show the
effectiveness of our revised regularization.

Introduction: Compressive sensing (CS) theory has been widely
employed in various applications, such as image coding and transmission
[1]. CS theory permits that using a certain regularization, the original
signal can be reconstructed accurately from a small set of measurements

y = Pz, )

where ® € R™*"™ (m < n) is a CS measurement matrix which satisfies
restricted isometry property (RIP), € R™ is the image, and y € R™
is the observation vector. Since @ is rank-deficient, it requires to solve
the ill-posed CS reconstruction problem by introducing some additional
regularization information. By selecting an appropriate regularization
parameter A, CS enable to reconstruct an image x from y by solving the
following unconstrained optimization problem:

x = arg min ||z — y||3 + \G(z), 2)
x

where G(x) is a regularization function that introduces prior information
on the expected solution. The popular regularization terms include ;-
norm, total variation norm, and non-local rank-norm. The recent adaptive
data-driven regularization, which can be learned according to the datasets
by using deep neural, has become a more efficient way to the inverse
problem [2]. The CS reconstruction performance is closely associated
with the selection of the regularization term.

In this letter, we propose a revised regularization method based on
the linear approximation to improve the CS reconstruction performance
effectively. We provide sufficient evidence to show that the proposed
regularization term is a generalization of the preprocessing method
for CS reconstruction improvement. We analysis that the sparse-
filtering preprocessing method [3] and collaboration reduced rank
preprocessing method [4] are special cases, which adopt the proposed
linear approximation revised regularization for wavelet sparse prior and
low-rank prior respectively. We further test the improvement of CS
reconstruction by applying the proposed method to the state-of-the-art
data-driven regularization [5]. The experimental results show that the
proposed revised regularization term can significantly improve the CS
reconstruction performance.

Solving method for general regularization: Eq. 2 can be solved by
introducing an auxiliary variable z that is constrained to be equal to z,
which gives us the following optimization problem [6]:
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Eq. 3 can be solved analytically over = and z in two alternating steps,
which consists of the following iterations [6]:

x'“=argmmin||‘1>1‘—yllg-irullzkf1 —al3, “)

2" = argmin ||z — (@ = AV=G(@)3 + ullz —<*|3, )

where V,G(z*) is the gradient descent of G. In the first step Eq. 4, a
strictly quadratic convex function has to be minimized, which leads to
the following linear formulation:

aF = (@@ + pul) N (@Ty + pzF ). ©6)

In the second step, setting the gradient of Eq. 5 to be zero, we can acquire
the closed-form solution to z sub-problem as follows
e ek 4 (@~ AV.G@ER))
p+1

=z" — pV.G(z"), 0

where p= ﬁ By iterating Eq. 6 and Eq. 7, CS can output the
final reconstructed image. This two-step splitting approach is the basic
framework for CS reconstruction algorithm, which we can use to deal

with different kinds of CS regularization.

Revising regularization with linear approximation: In addition to the
generally certain regularization term, we additionally assume that
(T ®2) also needs to satisfy the prior assumption. Suppose Z is the
original image. Then the linear approximation of the regularization term
G(®T ®2) at the point of Z can be formulated as

G(@T®2)~G(z) + (@Td2 — )T V.G(Z). )

By further imposing linear approximation regularization term to the
original one, our novel revised regularization term can be written as

R(z) = G(z) + G(92Tz)
=G(2) +G@) + (®Tdz — 2)TV.C(%), 9)
which has
V.R(z)=V.G(z) + ®TdV.G(z). (10)

Replacing the regularization term G in Eq. 3 with the new revised term
R, the two-step iterative solving process should be represented as

" = (@T® + puI) 1 (@Ty + pzF1), an
2 =2k — pV,.R(z*) =2k — pV,G(zF) — pdTOV.G(z), (12)

In the iteration process for Eq. 11 and Eq. 12, we can move the third
term p®T®V,.G(z) in Eq. 12 to Eq. 11, which does not change the
final iterative calculation result. Thus, Eq. 11 and Eq. 12 can be further
rewritten as

2P = (@T® + ul) 1 (@Ty + pzF~t — ppdTdv.G(z)), (13)
2P =gk fpVZG(zk) (14)
Considering y = ®z, Eq. 13 can be further formulated as
ot = (@7 + )" (@7 + pt Y, (15)
where § is measured from the preprocessing image (Z — pupV.G(Z)):
7= (% — ppV.G(2)). (16)

Thus, we can use g instead of y to reconstruct the original image. It is not
difficult to observe that our revised CS regularization term is equivalent
to go through CS preprocessing.

Preprocessing for CS improvement: Fig. 1 shows the block diagram
of the CS preprocessing method, where (Z — pupV.G(Z)) represents
the relevant preprocessing for different regularization G. Note that the
process of (Z — upV.G(Z)) can be seen as the vertical and horizontal
finite difference value thresholding operator, wavelet value thresholding
operator, singular value thresholding operator, and denoising convolution
neural network for TVNL [7], TSW [8], NLR [9] and DLAMP [5],
respectively.

The sparse-filtering preprocessing method [3] cuts off the small
wavelet coefficients before CS measurement, which is a preprocessing
method using wavelet value thresholding operator. Also, collaboration
reduced rank preprocessing method [4] strengthens the non-local sparsity
using low-rank approximation before CS measurement, which is a
preprocessing method using singular value thresholding operator. Both
methods can significantly improve CS reconstructed PSNR results
using preprocessing, and they are just the individual cases of the
proposed linear approximation revised regularization. With our revised
regularization, we can easily extend the CS preprocessing method to the
more advanced CS reconstruction algorithm, such as LDAMP [5].
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Fig. 1. The block diagram of CS preprocessing scheme.

Experimental results and discussion: The experimental results are
based on four classical CS reconstruction algorithms: TVNL-CS [7],
TSW-CS [8], NLR-CS [9], and LDAMP-CS [5], which use total
variation based non-local regularization, tree-structure wavelet sparse
regularization, non-local low-rank regularization, and learned data-driven
based regularization, respectively. The relevant parameters, including
u, A and p, are set following the original papers. We compare the
reconstructed results for the original regularization and the corresponding
revised regularization. We test four standard 256 x 256 size gray-scale
images, including Barbara, Lena, Peppers, and Cameraman, to evaluate
the performance of the proposed method.

Table 1 presents the peak signal-to-noise ratio (PSNR) results
between the original image and the CS reconstructed image for different
algorithms. "LAR’ refers to the proposed linear approximation revised
regularization method. The higher PSNR values between the original
regularization and the revised one are highlighted in bold in each cell.
We can see that our linear approximation revised regularization can
significantly improve the CS reconstruction performance of the original
regularization. The proposed LAR-LDAMP can achieve the state-of-the-
art CS reconstruction results.

Fig. 2 and Fig. 3 illustrate the reconstructed Lena using the original
regularization and the revised regularization at sampling ratio 0.1
respectively. We can see that the proposed algorithm can achieve a much
better visual effect.

Table 1: Reconstructed PSNRs for different algorithms

Sampling ratios

Images Methods 0T 07 03 07 03
TVNL 23.16 2577 2824 31.39 3374
LAR-TVNL 2374 2619 29.11 31.78  33.96
TSW 2510 2773 30.18  32.84 3477
Barbara LAR-TSW 2544 28.67 3579 37.57 36.86
NLR 2943 3456 3518 3945 4143
LAR-NLR 3094 3651 37.70  41.61 4295
LDAMP 2739 3274  36.01 3795 39.36
LAR-LDAMP  28.08 3429 3734 3940 40.79
TVNL 27.18  30.76 3275 3554  36.56
LAR-TVNL 27.64 3138 3424 3625 37.90
TSW 2698  30.89 3352  36.17 38.09
Lena LAS-TSW 29.87 3495 38.73 41.80 41.34
NLR 31.26 3585 3839 4093 4273
LAR-NLR 3222 3717 4039 4224 4350
LDAMP 32.04 3639 3926 4124 4290
LAR-LDAMP 3310 37.08 39.65 41.77 43.55
TVNL 2696  31.16 3297  35.67  36.09
LAR-TVNL 27.07 3173 3419 36.02 37.21
TSW 2420  27.11 31.66 3374 3526
Peppers LAR-TSW 2436  28.64 36.64 39.28 37.44
NLR 30.50 34.04 3565 3756  39.11
LAR-NLR 31.86 3594 3792 3958  40.59
LDAMP 31.04 3438 3656  38.01 39.27
LAR-LDAMP 3286 35.69 38.09 39.52 40.55
TVNL 25.66  28.74  31.07 33.51 36.60
LAR-TVNL 2632 2977 3208 3434  36.61
TSW 2358 2625 2959 32.06 3481
Cameraman LAR-TSW 2410 28.71 3535 36.89 38.59
NLR 2730  31.67 34.14 36.83 3824
LAR-NLR 2840 3271 3549 3825  38.92
LDAMP 2929  32.17 3560 3750 38.80
LAR-LDAMP 3090 33.83 3643 38.57 40.00
TVNLM 2574 29.11 3126 34.03 3575
TVNLM-LAS  26.19 29.77 3241 34.60 36.42
TSW 2497  28.00 31.24 3370 3573
Average TSW-LAS 2594 3024 36.63 38.89  38.56
NLR 29.62 3403 3584 38.69 40.38
NLR-LAS 30.86 3558 37.88 4042 4149
LDAMP 2994 3392 36.86 38.68  40.08

LDAMP-LAS  31.24 3522 37.88 39.82 41.22

Conclusion: In this work, we propose a novel revised regularization
with linear approximation term for CS reconstruction improvement. We
also prove that the proposed regularization is substantially similar to CS
preprocessing. We further test the proposed method with different kinds
of CS regularization. The experimental results show that the proposed
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Fig. 2. Using original regularization terms at sampling ratio 0.1.
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Fig. 3. Using the revised regularization terms at sampling ratio 0.1.

revised regularization can significantly improve the CS reconstruction
performance compared to the original regularization.
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