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Abstract. A weakly nonlinear fully dispersive model equation is derived which de-
scribes the propagation of waves in a thin elastic body overlying an incompressible in-
viscid fluid. The equation is nonlocal in the linear part, and is similar to the so-called
Whitham equation which was proposed as a model for the description of wave motion
at the free surface of an inviscid fluid.

Steady solutions of the fully nonlinear hydro-elastic Euler equations are approximated
numerically, and compared to numerical approximations to steady solutions of the fully
dispersive but weakly nonlinear model equation.

The bifurcation curves for these two different models are compared, and it is found
that the weakly nonlinear model gives accurate predictions for waves of small to moder-
ate amplitude. For larger amplitude waves, the two models still agree on key qualitative
features such as the bifurcation points, secondary bifurcations, and the number of oscil-
lations in a given fundamental wave period.

1. Introduction

The present contribution is devoted to hydroelastic waves propagating along a thin
elastic body overlying an incompressible inviscid fluid. The prime example for this situa-
tion is wave propagation in an ice sheet over a body of water, a topic which has attracted
increasing attention among researchers in recent years.

One of the motivating problems for studying this situation has been the motion of trucks
and other vehicles on frozen lakes and rivers (see for example [27, 35]). In many such
cases, hydroelastic waves are highly dispersive but only weakly nonlinear. For example the
measurements recorded in [35] feature a large spectrum of wavelengths while nonlinearity
is relatively weak. As a result, many researchers have chosen to disregard nonlinear effects
altogether [10, 25, 27, 34]. More recently, nonlinear effects have come into focus as some
studies of weakly and fully nonlinear hydroelastic waves (see for example [30, 29, 40])
have suggested that nonlinearity does have an appreciable effect on hydro-elastic waves.

The nonlinear model system derived in [40] couples the well known Saint-Venant (shal-
low water) system with hydroelastic dispersion, but neglects gravity dispersion. Going
further, the works [14, 15] take into account gravity dispersion in addition to both elas-
ticity and nonlinearity. These studies depend heavily on the long-wave assumption and
therefore lose part of the information of the linearized problem, as wavelengths are re-
stricted to be very long when compared with the undisturbed depth of the fluid and the
elastic length scale. In order to improve the modeling accuracy of such long-wave systems,
in the present work we are aiming at the derivation of a fully dispersive but weakly non-
linear system. As mentioned above, the motivation and need for such a system is given
by experiments such as those reported in [35] where a weakly nonlinear but highly disper-
sive response is recorded which may not be adequately modeled by traditional long-wave
equations.
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The idea of using fully dispersive weakly nonlinear equations goes back to Whitham
[38], and was recently formalized both mathematically [21, 22, 23] and asymptotically
[11, 26]. Fully dispersive equations have been the subject of a number of studies recently,
especially regarding the existence and stability of traveling waves [4, 16, 17, 18, 19, 33]. In
the current work, we first present a formal derivation of a Whitham-type fully dispersive
and weakly nonlinear system of evolution equations, and then reduce the system to a
single equation in the case when it can be assumed that the waves travel in a single
direction (such as is the case for traveling waves). Using a recently developed open-source
Python code, we then provide numerical approximations of traveling-wave solutions of this
system. In order to check whether the derivation and numerical approximation are valid,
we compare these solutions against numerical approximations of traveling-waves solutions
of the fully nonlinear Euler equations with an elastic surface layer. As will come to light
in Section 4, there is very good agreement between solutions of the full model and the
weakly nonlinear model.

The fully dispersive weakly nonlinear equation we are aiming for can be written as

ηt +Wηx +
3

2
ηηx = 0. (1.1)

Elasticity and gravity dispersion are combined in the convolution Whitham operator
Wηx = w(−i∂x)ηx =

(
F−1w

)
∗ ηx which is defined by the dispersive function

w(ξ) =
√

(1 + κξ4) tanh(ξ)
ξ

. (1.2)

Here we have non-dimensionalized the variables so that we may take the gravitational
acceleration g = 1 and the undisturbed depth of the fluid as h0 = 1, and the corresponding
long-wave speed is c0 =

√
gh0 = 1. This non-dimensionalization is explained in the

next section. The floating ice sheet is included here by means of the non-zero elasticity
parameter κ = D/ρ where D is the coefficient of flexural rigidity for the ice sheet and
ρ = 1 is the normalized density of the fluid. The convolution operator W represents a
Fourier multiplier operator with the symbol (1.2). Note also that the Whitham equation
(1.1) has the conserved integral

Q(η) =

∫
ηWηdx+

1

2

∫
η3dx. (1.3)

Firstly, in case of free surface κ = 0, Equation (1.1) was proposed by Whitham [38] as
a fully dispersive alternative to the well known Korteweg-de Vries (KdV) equation. With
non-zero κ the last equation [14] is of the fifth order

ηt + ηx +
3

2
ηηx +

1

6
ηxxx +

1

360
(19 + 180κ)ηxxxxx = 0. (1.4)

For very long waves the KdV equation (1.4) is thought to be a good model for hydro-
elastic waves. In order to be able to model shorter waves one needs to use an equation
which also gives a good description of shorter waves, such as for example equation (1.1).

In the present article, we arrive at the Whitham equation from the Hamiltonian for-
mulation of the water-wave problem given in [41, 9, 7] and modified for the hydroelastic
problem in [14]. Extending the results of [26, 14, 11] we justify the Whitham equation
(1.1) as a Hamiltonian system. We also obtain numerical results on steady solutions of
equation (1.1) and compare them with solutions of the fully nonlinear hydro-elastic sys-
tem based on the Euler equations. The comparisons indicate that the Whitham equation
is able to provide a good description of hydro-elastic waves. Indeed, small-amplitude
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solutions of the full Euler equations are always closely approximated by the weakly non-
linear model, regardless of the wavelength. For large-amplitude solutions, there is good
quantitative agreement in many cases, and good qualitative agreement in essentially all
cases.

2. The hydro-elastic system

We consider a thin elastic plate supported by a fluid below. The elastic layer is modelled
by making use of the special Cosserat theory of hyperelastic shells in Cartesian coordinates
[31]. As already stated, the fluid base is assumed to be inviscid and incompressible, and
the fluid flow is assumed to be two-dimensional and irrotational, so that potential theory
can be used to describe the flow.

In order to normalize the problem the following standard non-dimensionalization is
used. Letting the dimensional variables be primed, the non-dimensional variables are
defined in terms of the fluid depth h0, the graviational acceleration g and the long-wave
speed c0 =

√
gh0 as x′ = h0x, z′ = h0x and t′ =

√
h0/g t. The unknowns are the vertical

deflection of the cover and the velocity potential, and these are nondimensionalized as
η′ = h0η and φ′ = h0c0φ, respectvely. This non-dimensionalization is equivalent to using
the fluid depth h0 as a unit of length, and

√
h0/g as a unit of time.

In the non-dimensional setting, the fluid domain is given by {(x, z) ∈ R2| − 1 < z < η(x, t)}
extending to infinity in the positive and negative horizontal x-direction. The complete
hydro-elastic Euler system [14] consists of the Laplace’s equation in this domain

φxx + φzz = 0 for x ∈ R, −1 < z < η(x, t), (2.1)

the Neumann boundary condition at the flat bottom

φz = 0 at z = −1, (2.2)

the kinematic condition at the free surface

ηt + φxηx − φz = 0 for x ∈ R, z = η(x, t), (2.3)

and the Bernoulli equation combined with elasticity

φt +
1

2

(
φ2
x + φ2

z

)
+ η + κ

(
κss +

1

2
κ3
)

= 0 for x ∈ R, z = η(x, t), (2.4)

where κ = ηxx(1 + η2x)
−3/2 is the curvature of the shell and s is the arclength along this

cover and therefore

κss +
1

2
κ3 =

1√
1 + η2x

∂x

(
1√

1 + η2x
∂x

(
ηxx

(1 + η2x)
3/2

))
+

1

2

(
ηxx

(1 + η2x)
3/2

)3

.

The total energy of the system is the sum of the kinetic energy, the potential energy
and the shell deformation energy [14], so the Hamiltonian function for this problem is
expressed as

H =

∫
R

∫ η

0

z dzdx+

∫
R

∫ η

−1

1

2
|∇φ|2 dzdx+

κ
2

∫
R

η2xx
(1 + η2x)

5/2
dx.

Introducing the trace of the potential at the free surface as Φ(x, t) = φ(x, η(x, t), t), one
may integrate in z in the first integral and use the divergence theorem on the second
integral to obtain

H =
1

2

∫
R

[
η2 + ΦG(η)Φ + κ

η2xx
(1 + η2x)

5/2

]
dx. (2.5)
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This integral represents the Hamiltonian functional of the water wave problem with a
floating thin elastic cover as found in [14]. The Hamiltonian is written in terms of the
Dirichlet-Neumann operator G(η). It was shown in [28] that this operator depends ana-
lytically on the unknown η and can therefore be expanded in a power series

G(η)Φ =
∞∑
j=0

Gj(η)Φ,

where each operator Gj(η) is homogeneous of degree j in η. The terms in the power series
can be computed using a recursion formula (see [9, 7]), and the first two terms have the
form

G0(η) = D tanh(D), G1(η) = DηD −D tanh(D)ηD tanh(D)

where D = −i∂x is a self-adjoint operator on L2(R).
Our first aim is to give the Hamiltonian formulation of the hydroelastic problem in terms

of the displacement η and the variable u = Φx = φx + ηxφy = φτ
√

1 + η2x proportional to
the velocity of the fluid φτ tangential to the surface. Formally integrating by parts one
may rewrite the Hamiltonian in terms of new variables as

H =
1

2

∫
R

[
η2 + uD−1G(η)D−1u+ κ

η2xx
(1 + η2x)

5/2

]
dx. (2.6)

The integration by parts can be made mathematically precise by using the following well
known lemma.

Lemma 2.1. Let f, g be real-valued square integrable functions on the real line R. Regard
D = −i∂x as self-adjoint on L2(R,C) and a real-valued function ϕ that is measurable and
almost everywhere finite with respect to Lebesgue measure. If f, g lie in the domain of the
operator ϕ(D) then ∫

fϕ(D)g =

∫
gϕ(−D)f.

3. Derivation of Whitham type evolution equations

We now give a formal analysis of the long-wave approximation of the Hamiltonian. For
the sake of completeness, we summarize some arguments presented in [11]. Regarding
a wave-field having a characteristic non-dimensional wavelength λ and a characteristic
non-dimensional amplitude α, we define the small parameter µ = 1

λ
and in order to bring

out the difference in the horizontal and vertical scales in the problem, the scalings η = αη̃
and D̃ = λD = −λi∂x are used. Then the natural scaling for the velocity unknown u is
u = αũ, and the Hamiltonian is scaled as H = α2H̃. Omitting terms of cubic and higher
order in α, the scaled Hamiltonian (2.6) is then written using only the terms G1 and G2

as

H̃ =
1

2

∫
R
η̃2 dx+

1

2

∫
R
ũ
[
1− 1

3
µ2D̃2 + · · ·

]
ũ dx+

α

2

∫
R
η̃ũ2 dx

− α

2

∫
R
ũ
[
µD̃ − 1

3
µ3D̃3 + · · ·

]
η̃
[
µD̃ − 1

3
µ3D̃3 + · · ·

]
ũ dx

+ µ4κ
2

∫
R
(D̃2η̃)2

{
1− α2µ2 5

2
(D̃η̃)2 + · · ·

}
dx.

In the case of flexural-gravity waves, the linear terms are dominant and terms of all order
in µ should be kept. We may assume that α = o(µ) such as for example the exponential
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scaling appearing in [26]. Then if terms of order O(α2) and O(αµ) are disregarded, the
Hamiltonian (2.6) reduces to

H =
1

2

∫
R

[
η2 + u

tanhD

D
u+ ηu2 + κη2xx

]
dx. (3.1)

Now the hydro-elastic problem can be reformulated as a Hamiltonian system using the
variational derivatives of the approximate Hamiltonian (3.1). We point out [7, 8] that
the pair (η,Φ) represents the canonical variables for the Hamiltonian functional (2.5).
Our purpose is to derive the equations of motion in terms of η and u = Φx which is
slightly more convenient in the situation at hand. The transformation (η,Φ) 7→ (η, u) is
associated with the Jacobian

∂(η, u)

∂(η,Φ)
=

(
1 0
0 ∂x

)
.

So in terms of η and u the Hamiltonian equations have the form

ηt = −∂x
δH

δu
, ut = −∂x

δH

δη
(3.2)

which is not canonical since the associated structure map Jη,u is symmetric:

Jη,u =

(
∂(η, u)

∂(η,Φ)

)(
0 1
−1 0

)(
∂(η, u)

∂(η,Φ)

)∗
=

(
0 −∂x
−∂x 0

)
.

The Gâteaux derivative δH/δu of the Hamiltonian (3.1) is defined by means of an arbitrary
real-valued square integrable function h from the variation

δuH(h) =
d

dτ

∣∣∣∣
τ=0

H(u+ τh, η) =
1

2

∫
R

[
h

tanhD

D
u+ u

tanhD

D
h+ 2uηh

]
dx.

Integrating by parts according to Lemma 2.1 and taking into account arbitrariness of the
given function h one obtains

δH

δu
=

tanhD

D
u+ ηu

and similarly
δH

δη
= η +

1

2
u2 + κηxxxx.

Substituting these variational derivatives into equations (3.2) we arrive at the Hamiltonian
system

ηt = −tanhD

D
ux − (ηu)x, (3.3)

ut = −ηx − uux − κηxxxxx. (3.4)

This system is fully dispersive in the linear part, which is the distinctive feature of the orig-
inal Whitham equation [38]. At the same time it allows bi-directional wave propagation,
so that it may be of independent interest.

By changing variables in the Whitham system (3.3),(3.4) one may arrive at a new
system, where the equations will be uncoupled in the linear part. In other words we can
separate solutions corresponding to waves moving left and right. To justify this we follow
the approach of [11, 26], and consider the linearization

ηt +
tanhD

D
ux = 0, (3.5)

ut + (1 + κD4)ηx = 0. (3.6)
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Looking for solutions of this linear system as waves η(x, t) = Aeiξx−iωt, u(x, t) = Beiξx−iωt

gives rise to the necessary condition ω2 − (ξ + κξ5) tanh ξ = 0. Introducing the phase
speed as c = ω(ξ)/ξ one arrives at the dispersion relation

c2(ξ) = (1 + κξ4)
tanh ξ

ξ

which coincides, up to the sign of c, with the Whitham dispersion relation (1.2). Clearly,
the choice c > 0 corresponds to right-going wave solutions of the linear system (3.5),
(3.6), while the phase speed c < 0 gives left-going waves. In order to split up left- and
right-going waves we use the following transformation of variables:

r =
1

2
(η +Ku), s =

1

2
(η −Ku), (3.7)

where one anticipates K to be an invertible operator, or more precisely, an invertible
function of the differential operator D. The inverse transformation has the form

η = r + s, u = K−1(r − s). (3.8)

It turns out that the operator K can be chosen in a way that r and s correspond to right-
and left-going waves, respectively. Substituting the transformation (3.8) to the linear
system (3.5), (3.6) obtain

rt + ∂x
(
A(D,K)r + B(D,K)s

)
= 0,

st − ∂x
(
A(D,K)s+ B(D,K)r

)
= 0,

where the operators A and B depend on D and K as follows:

A =
1

2

(
(1 + κD4)K +

tanhD

D
K−1

)
, B =

1

2

(
(1 + κD4)K − tanhD

D
K−1

)
.

So to achieve independence of the obtained two equations we need to choose the trans-
formation K in the way B(D,K) = 0, so that

K =

√
1

1 + κD4
· tanhD

D
(3.9)

which leads to A(D,K) = W = w(D), in terms of the dispersive Whitham operator W
which was introduced at the beginning of the paper by means of the dispersive function
(1.2). In this way, we get the two independent linear equations

rt + ∂xWr = 0, (3.10)

st − ∂xWs = 0. (3.11)

If we again look at the special solutions r(x, t) = exp(iξx− iωrt) and s(x, t) = exp(iξx− iωst)
then we conclude that the first equation (3.10) describes waves moving to the right with
the phase velocity cr = ωr/ξ = w(ξ) and the second equation (3.11) corresponds to the
left-going waves with cs = ωs/ξ = −w(ξ).

Returning to the nonlinear theory we want to obtain a new Hamiltonian system with
respect to unknown functions (3.7). In new variables r and s after integrating by parts
due to Lemma 2.1 the Hamiltonian (3.1) takes the form

H(r, s) =
1

2

∫
R

[
(r + s)2 + (r − s)(1 + κD4)(r − s)+

+(r + s)
(
K−1(r − s)

)2
+ κ(r + s)2xx

]
dx. (3.12)
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As explained in [8], the change of variables (3.7) transforms the structure map to

Jr,s =

(
∂(r, s)

∂(η, u)

)
Jη,u

(
∂(r, s)

∂(η, u)

)∗
=

(
−1

2
∂xK 0
0 1

2
∂xK

)
that leads to the Hamiltonian system

rt + ∂x

(
K

2

δH

δr

)
= 0, st − ∂x

(
K

2

δH

δs

)
= 0. (3.13)

As explained above, one calculates variational derivatives of H given by (3.12) with respect
to r and s at a real-valued square integrable function. Then after integrating by parts as
in Lemma 2.1 and applying operator K/2 one obtains as a result

K

2

δH

δr
= Wr +

1

4
K
(
K−1(r − s)

)2
+

1

2
(r + s)K−1(r − s), (3.14)

K

2

δH

δs
= Ws+

1

4
K
(
K−1(r − s)

)2 − 1

2
(r + s)K−1(r − s), (3.15)

If these expressions are substituted into (3.13), a Whitham system describing in terms of a
left-going component s and a right-going compnent r is appears. This system corresponds
to the Hamiltonian (3.12) which is the same as for the system (3.3), (3.4), and no further
approximation has been made. Recalling that the approximate Hamiltonian (3.12) was
obtained by discarding terms of order O(µα) and O(α2) in (2.6) we may modify terms in
the Hamiltonian on the of order O(µα) and O(α2) without changing the overall order of
approximation.

Thus in order to simplify the above system, we use the long-wave approximation D =
O(µ) which leads to K = 1 +O(µ2), K−1 = 1 +O(µ2) and since r = O(α), s = O(α), the
nonlinear part of (3.14), (3.15) can be written as

H1 =
1

2

∫
R
(r + s)

(
K−1(r − s)

)2
dx =

1

2

∫
R
(r + s)(r − s)2dx+O(µ2α).

Thus neglecting again terms of order O(µα), and assuming that the left-going waves
are s = o(α) such as in [7], we can write the nonlinear part of the Hamiltonian as
H1 = 1/2

∫
R r

3dx. So eventually we arrive at

K

2

δH

δr
= Wr +

3

4
Kr2, (3.16)

K

2

δH

δs
= Ws. (3.17)

These approximations in the Hamiltonian together with the equations (3.13) yield the
system

rt +Wrx +
3

2
K(rrx) = 0, (3.18)

st −Wsx = 0. (3.19)

This system is a fully dispersive system describing waves mainly moving in the right
direction. Since we have modified only the energy of the hydro-elastic problem, the system
(3.18), (3.19) is still Hamiltonian. Indeed that system corresponds to the Hamiltonian

H(r, s) =
1

2

∫
R

[
(r + s)2 + (r − s)(1 + κD4)(r − s) + r3 + κ(r + s)2xx

]
dx.

As one can see the first equation (3.18) can be considered independently from the second
one (3.19) which is actually linear and homogeneous. Moreover, one can easily see that
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the Hamiltonian splits additively into two functionals H(r, s) = H(r) + H(s), where the
first one has the form

H(r) =

∫
R

[
r(1 + κD4)r +

1

2
r3
]
dx.

With this energy, comparable with the initial total energy (2.5), the new Whitham equa-
tion (3.18) becomes Hamiltonian in the sense (3.13).

One may now use the approximation K = 1 + O(µ2) in the first equation (3.18) to
arrive at the Whitham equation (1.1). This is consistent with disregarding terms of order
O(αµ) in the derivation of the system (3.3),(3.4). Note, however, that this equation is
then not Hamiltonian in the current context. Indeed, we have changed the structure map
Jr,s, and the unknown η in equation (1.1) has the same meaning as r in equation (3.18),
though the Hamiltonian structure is different. We have

ηt + ∂x

(
1

2

δQ

δη

)
= 0

where Q(η) is given in (1.3). Note that energy Q is not comparable with the original
Hamiltonian H given in (2.5), and it is therefore not clear whether it represents the energy.
Indeed, as indicated in [1], the mechanical energy might take a completely different form
in the context of equation (1.3).

4. Numerical analysis

For the numerical analysis of equation (1.1) we use the method thoroughly described
in [20, 32]. Here we will just give a quick overview. Travelling wave solutions are under
investigation, so the ansatz

η(x, t) = ϕ(x− ct) (4.1)

is employed which together with equation (1.1) yields

−cϕ+
3

4
ϕ2 +Wϕ = B (4.2)

with some undetermined constant B. We look for solutions of the last equation that are
even and 2L-periodic, so we compute solutions on the interval [0, L] and restore it sym-
metrically on the whole interval [−L,L]. We regard solutions with different wavelengths
L and elasticity κ. We also normalize solutions by requiring its mean-value to be zero.

This means that we require
∫ L
0
ϕ = 0. We use a cosine collocation method, so solutions of

equation (4.2) are represented as linear combinations of functions cos mπx
L

, m = 0, 1, . . .,
that form a basis in L2(0, L). As explained in [17, 20], for the discretization of the problem
we look for solutions in a subspace SN spanned by the first N of these cosine functions and
defined at the collocation points xn = L2n−1

2N
for n = 1, . . . , N . Let WN be the discrete

form of the Whitham operator W and ϕN ∈ SN be the discrete cosine representation of a
solution ϕ. Then the values of ϕN at the collocation points satisfy the algebraic equations

−cϕN(xn) +
3

4
ϕ2
N(xn) +WNϕN(xn) = B (4.3)

with n = 1, . . . , N . As indicated above, to this system one also needs to add the mean-
value normalization

N∑
n=1

ϕN(xn) = 0. (4.4)
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To compute profiles along the bifurcation curve, we introduce a parameter θ as a coordi-
nate on the curve. We define the pseudo-waveheight A by the equation

max
n=1,...,N

ϕN(xn)− min
n=1,...,N

ϕN(xn) = A, (4.5)

and treat the pseudo-waveheight A = A(θ) and the phase speed c = c(θ) as functions of
the parameter θ. This procedure is described in more detail in [20].

Equations (4.3), (4.4), (4.5) form the final system to be solved by Newton’s method.
The unknowns here are ϕN(x1), . . . , ϕN(xN), B, θ. Solutions bifurcating from the lin-
earization of equation (4.2) can be obtained from the initial guess, provided by the Stokes
approximation [20].

The numerical algorithm used to solve the fully nonlinear Euler equations with an elastic
term (2.1) - (2.4) is based on the conformal mapping techniques [13, 12] and generalizes
previous works on gravity waves or capillary waves [6, 2] to the hydroelastic case [14]. We
will give just some essentials here. The Bernoulli equation (2.4) at the free surface in the
moving frame X = x− ct and Y = z has the form

1

2

(
φ2
X + φ2

Y

)
+ η + κ

(
κss +

1

2
κ3
)

= B

where B is the Bernoulli constant. As above (4.1) the surface is represented by η(x, t) =

ϕ(X), so the outward unit normal vector is n = (−ϕX , 1)/
√

1 + ϕ2
X .

The physical domain bounded by the free surface and the bottom is transformed with
a conformal mapping from X + iY to ξ + iζ into a strip of thickness h (called conformal
modulus), with ζ = 0 corresponding to the free surface and ζ = −h corresponding to the
bottom. Solving a Dirichlet boundary-value problem for Y (ξ, ζ) in the mapped domain,
using Cauchy-Riemann relations between the partial derivatives of X(ξ, ζ) and Y (ξ, ζ)

and denoting X̂(ξ) := X(ξ + i0)m Ŷ (ξ) := Y (ξ + i0), we obtain after some algebra and
dropping the hats (see e.g. [6])

Xξ = 1− T Yξ,
where T is the operator T = i cothhD. In the new variables the Bernoulli equation can
be re-written

1

2

c2

X2
ξ + Y 2

ξ

+ Y + κ
(
κss +

1

2
κ3
)

= B. (4.6)

The elastic term
(
κss + 1

2
κ3
)

can be expanded in an explicit form in terms of derivatives
of X and Y , as explained in [15]. The velocity potential on the free surface is satisfying
φ = cξ. We expand the variable Y as a Fourier series

Y (ξ) =
∞∑

n=−∞

ane
inξ,

and we are using equally-spaced collocation points ξj = 2π(j−1)
2N+1

, j = 1, ..., 2N + 1. The
non-local operator acts (for n 6= 0) as

T (einξ) = i coth(nh)einξ.

After truncating the Fourier series at n = ±N , we satisfy the equation (4.6) at the
2N + 1 collocation points for the 2N + 2 unknowns an, n = −N, ..., N and the Bernoulli
constant B. The remaining equation is obtained by fixing a0 = h and the nonlinear system
obtained is solved in MATLAB using a Newton method. In practice, for any given c we
choose an initial guess h = 1 of the conformal modulus and then we enforce that the
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Figure 1. Bifurcation diagrams for L = 4π and κ = 0.1. The blue curves
represent the full hydroelastic system. The green curves represent the Whitham

equation.

dimensionless height of the fluid in the physical space remain unchanged and equal to 1
for all computations, so we actually use a fixed-point procedure to guarantee

1

2L

∫ L

−L
Y Xξdξ = 1,

until the correct value of h is found for each c. It was found that N = 128 is enough for
most of the calculations to obtain a very good accuracy of solutions. When the curves are
turning in the bifurcation diagrams, a version of this algorithm is used, where the height
of the wave is enforced and c was found as part of the solution.

In figures 1 through 18, one can see how solutions change in the bifurcation diagrams.
Solutions are plotted on the interval [−L,L], where L ranges from π/2 to 4π, and several
features are worth noting. First of all, in the bifurcation curves in figures 1, 8 and 11, for
large to intermediate wavelengths, the bifurcation curves of the hydro-elastic Whitham
equation are very close to the bifurcation curves for the Euler system as long as the
waveheight, defined as max(Y ) − min(Y ), is below about 0.4. A similar conclusion is
reached by examining figures 2, 9, 12 and 16, where steady wave profiles are shown, and
a close match between the two curves is evident. Whitham waves of larger amplitude still
resemble the full hydro-elastic waves, qualitatively as shown in figures 3, 4, 5, 6, 7 for
L = 4π and κ = 1, and similarly in figures 13, 14 and 18 for other parameter values. It
is also worth noting that on the period [−4π, 4π] solutions with large enough waveheight
develop several secondary crests which actually start dominating the main crest at the
center of the wave.

For small-amplitude solutions the error in the phase speed c is generally below 1%.
For large-amplitude solutions, the error in the phase speed becomes larger. An extreme
example is shown in figures 8 and 10. Concerning solutions high up on the branch in
Figure 8, if one matches the waveheight, then a near-exact match in the shape of the
wave is obtained, such as in the blue and green profiles in Figure 10. However, the phase
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Figure 2. Wave profiles for L = 4π, κ = 0.1 near the bifurcation point of the
rightmost curve in Figure 1. The blue curve is an approximate solution of the
full Euler system with c = 0.9910. The green curve an approximate solution of
the Whitham equation with c = 0.9911.
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Figure 3. Wave profiles for L = 4π, κ = 0.1 higher up on the main branch
in Figure 1. The blue curve represents the Euler system with c = 1.0506. The
green curve represents the Whitham equation with c = 1.0391.

velocities for these two solutions vary a great deal. On the other hand if one tries to get the
best fit for the phase velocity, then the solution profiles have very different waveheights,
though they still look qualitatively similar (cf. blue and red curve in Figure 10). Figure
10 also shows the interesting result (when compared with figures 13 and 14) that a larger
elastic parameter κ actually leads to fewer oscillations in the steady wave profile.

For large enough wavelengths and small enough elasticity, branches were found which
do not connect to trivial solutions with vanishing waveheight (see figures 1 and 11). On
the other hand, for short wavelengths there are secondary bifurcation from the main
branch, such as shown in Figure 15. In this figure, one can see how 2π-periodic solutions
bifurcate from π-periodic ones. In all cases examined, the bifurcation picture of the
Whitham model looks qualitatively similar to the fully nonlinear hydro-elastic system.
Since the Whitham equation is much more easily approximated numerically, future work
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Figure 4. Wave profiles for L = 4π, κ = 0.1 on the second (middle) bifurcation
point in Figure 1. The blue curve represents the Euler system with c = 0.9764.
The green curve represents the Whitham equation with c = 0.9742.
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Figure 5. Wave profiles for L = 4π, κ = 0.1 on the left bifurcation branch
emanating from the middle bifurcation point in Figure 1. The blue curve repre-
sents the Euler system with c = 0.9553. The green curve represents the Whitham
equation with c = 0.9545.

will include obtaining bifurcation curves for a larger parameter space of κ and L, such as
for example presented for the similar Whitham equation with capillarity in [32].

Finally, we want to comment on two other models mentioned in the current paper,
the 5th-order KdV equation (1.4) with a flexural term, and the fully nonlinear Whitham
equation (3.18). Since the flexural effect corresponds to the term with the 5th derivative
in (1.4), it appears that elasticity has a rather weak effect in the long-wave regime. Indeed,
in the case of long waves, the Whitham equation (1.1) with a free surface (i.e. κ = 0)
gives similar small-amplitude solutions to solutions of other models depicted in Figure 12.
However, with increasing of amplitude elasticity causes the appearance of several crests
on the fundamental wavelength [−L,L], whereas the wave profiles of the free surface
Whitham equation have exactly one crest and are strictly monotonic to both sides of it
[17]. Some simulations of (1.4) and (3.18) are presented in Figures 11-14. Note that both
Whitham equations (1.1), (3.18) give travelling waves very similar to the fully nonlinear
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Figure 6. Wave profiles for L = 4π, κ = 0.1 on the third (leftmost) bifurcation
point shown in Figure 1. The blue curve represents the Euler system with c =
0.9530. The green curve represents the Whitham equation with c = 0.9552.
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Figure 7. Wave profiles for L = 4π, κ = 0.1 on the right bifurcation branch
emanating from the leftmost bifurcation point in Figure 1. The blue curve repre-
sents the Euler system with c = 0.9553. The green curve represents the Whitham
equation with c = 0.9501.

solutions. Whereas the elastic KdV (1.4) gives qualitatively different waves, i. e. with a
different number of of wavecrests on a fundamental wavelength. Moreover, the KdV wave
depicted in Figure 14 is a solution of the secondary bifurcation type. It can be obtained
by bifurcating from the L = π-branch as shown in Figure 11. On the other hand, it does
not seem possible to obtain corresponding solutions of the full system and equations (1.1),
(3.18) in a similar way continuously from linear theory.

5. Conclusion

In order to understand properties of waves in a thin elastic sheet overlaying an inviscid
fluid, a fully dispersive system of equations was derived using the Hamiltonian formulation
of the hydroelastic surface wave system. The Hamiltonian was approximated using an
asymptotic expansion of the Dirichlet-Neumann operator, and the derivation was based on
fundamental ideas regarding Hamiltonian evolution systems [7, 8, 9, 41]. It was also shown
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Figure 8. Bifurcation diagrams for L = 2π and κ = 1. The blue curve rep-
resents the full hydroelastic system. The green curve represents the Whitham
equation.
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Figure 9. Wave profiles for L = 2π, κ = 1 for small-amplitude solutions on
the bifurcation branches in Figure 8. The blue curve represents the Euler system
with c = 0.9779. The green curve represents the Whitham equation with c =

0.9771.

how the Hamiltonian equations can be restricted to model wave propagation in a single
direction. Finally, a single fully dispersive weakly nonlinear equation of Whitham type
(1.1) has been derived. This equation is the hydro-elastic version of the so-called Whitham
equation put forward by Whitham [38] based on phenomenological considerations.

In order to further validate equation (1.1) as a model for hydro-elastic waves, a numer-
ical study of traveling waves has been undertaken. Numerical approximations of steady
solutions of (1.1) were compared to numerical approximations of steady solutions of the
full hydro-elastic system introduced in Section 2. Bifurcation branches and wave profiles
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Figure 10. Wave profiles for L = 2π, κ = 1. The blue curve represents the
Euler system with c = 0.4767. The green curve represents the Whitham equation
with c = 0.7431. The red curve shows a different solutions of the Whitham
equation with c = 0.5002 (that is 5% difference from c = 0.4767).
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Figure 11. Bifurcation diagrams for L = 2π and κ = 0.1. The blue curves
represent the hydroelastic system. The green curves represent the Whitham
equation (1.1). The black curves correspond to the fully nonlinear Whitham
equation (3.18). The purple color is associated with the KdV-like equation (1.4).

were compared, and it was shown that small-amplitude solutions of (1.1) resemble solu-
tions of the full hydro-elastic system rather closely. Intermediate-amplitude solutions of
the two approximations are still comparable, and even large-amplitude solutions of (1.1)
show good qualitative agreement. In addition, it can be seen in figures 1, 8, 11 and 15 that
bifurcation branches of (1.1) contain the same features as the bifurcation curves for the
corresponding fully nonlinear hydro-elastic system. In particular, primary and secondary
bifurcation points and the number of branches are closely matched.
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8 6 4 2 0 2 4 6 8

x

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.020

S
u
rf

a
ce

 E
le

v
a
ti

o
n

Figure 12. Wave profiles for L = 2π, κ = 0.1 for small-amplitude waves
on the main branch in Figure 11. The blue curve shows a solution of the full
hydro-elastic system with c = 0.9653. The green curve shows a solution of the
Whitham equation (1.1) with c = 0.9657. The black solution corresponds to
the Hamiltonian Whitham equation (3.18) with c = 0.9654. The purple color is
associated with the KdV equation (1.4) for c = 0.9668.
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Figure 13. Wave profiles for L = 2π, κ = 0.1 for waves high up on the main
branch in Figure 11. The blue curve shows a solution of the full hydro-elastic
system with c = 0.9668. The green curve shows a solution of the Whitham (1.1)
equation with c = 0.9685. The black solution corresponds to the Hamiltonian
Whitham equation (3.18) with c = 1.0682. The purple color is associated with
the KdV equation (1.4) for c = 0.9607.

Further work on these issues will include the study of whether the flow below the
surface can be reconstructed from the surface profile η(x, t). Such an analysis has recently
been begun in the case of a free surface in [3]. In the present situation, this issue is
more complicated because of the elastic layer. Nevertheless, analyzing for example the
derivation used in [40] it seems possible that progress could be made.

Another important issue which deserves further study is the analysis of the nonlinear
regime of the bifurcation curves, and the stability of the traveling waves. Such an analysis
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Figure 14. Wave profiles for L = 2π, κ = 0.1 on the leftmost branch in
Figure 11. The blue curve shows a solution of the full hydro-elastic system with
c = 0.9353. The green curve shows a solution of the Whitham equation (1.1)
with c = 0.9261. The black solution corresponds to the Hamiltonian Whitham
equation (3.18) with c = 0.9486. The purple color is associated with the KdV
equation (1.4) for c = 0.8932. It corresponds to the secondary bifurcation curve
in Figure 11.
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Figure 15. Bifurcation diagrams for L = π and L = π/2 with κ = 0.1. The
blue curves represent the full hydroelastic system. The green curves represent
the Whitham equation.

has been provided for the original Whitham equation [4, 18, 33], and the Whitham equa-
tion with surface tension in [19, 32] but not yet for the equation derived in the current
work.

The current model may also be extended by the inclusion of a variety of additional
physical effects, such as a horizontal loading on the ice sheet, as described in [40], a
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Figure 16. Wave profiles for L = π, κ = 0.1 for small-amplitudes solutions
on the left branch in Figure 15. The blue curve shows a solution of the full
hydro-elastic system with c = 0.9140. The green curve shows a solution of the
Whitham equation with c = 0.9129.
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Figure 17. Wave profiles for L = π, κ = 0.1 on the left branch in Figure 15.
The blue curve shows a solution of the full hydro-elastic system with c = 0.5148.
The green curve shows a solution of the Whitham equation with c = 0.6790. The
red curve shows a solution of the Whitham equation with c = 0.5402 (that is 5%
difference from c = 0.5148).

vertical forcing [35], and the influence of nontrivial bathymetry [37]. These issues will be
the focus of future work.
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