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Abstract. Uni-axial compressive stress and simple shear stress experiments on ice determine the 

corresponding minimum strain-rates following the very small primary elastic strain or viscoelastic 

creep for a range of applied constant stresses. Assuming these responses are those of a non-linear 

incompressible simple viscous fluid, they can be related to the two response functions, each 

depending on two invariants, of the general viscous law, and more specifically to simpler special 

cases for which the response functions are determined by the uni-axial and shear responses. In 

particular, the customary co-axial relation with one response function of one invariant argument 

can only apply if there is an explicit relation between the uni-axial and shear responses. Given that 

experimental data shows that this relation is not satisfied, then the uni-axial and shear stress 

responses determine the two response functions, each depending on only one invariant, of a 

non-co-axial quadratic relation. Single independent strain-rate component responses can 

determine dependence on only one invariant. However, there is no data for both these responses, 

and correlations have been made with data from combined uni-axial stress and shear stress tests 

carried out at the University of Melbourne. Expressions for the two general response functions are 

derived in terms of the responses in combined uni-axial stress and shear stress tests, from which it 

is found that the quadratic coefficient is very significant at the majority of the data points. This 

implies that a co-axial relation depending on two invariants, suggested by Steinemann (1954) 

when his data showed that the customary co-axial relation failed, is not valid. It is also seen that the 

available data points cover little of the two invariants plane, so dependence on two invariants could 

not be deduced. The data is used to determine the two response functions of the quadratic, 

non-co-axial, relation, each with dependence on only one invariant, a measure of the shear 

strain-rate. Note, though, that the Melbourne experiments do not measure the complete strain-rate 

response, but instead make an assumption that the longitudinal strain-rate is zero which is not 

confirmed, so the present construction hinges on the validity of that approximation. The theory 

shows how accurate data can be used to construct a viscous law. 

 

Key words: polar ice, viscous creep, isotropic response, constitutive law. 
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1 Introduction 

Ice-sheet flow plays a significant role in climate change, and flow solutions involve a constitutive 

law for the stress dependence on ice deformation, deformation rate and temperature. To a very 

good approximation, ice is incompressible and the pressure is a workless constraint, not given by 

any constitutive law, but determined by the momentum balances and boundary conditions. On the 

large time-scales of ice-sheet flow, the shear response to applied stress has an initial viscous 

(secondary creep) response followed by tertiary creep which depends on the deformation history, 

described as ice fabric (microstructure) evolution which induces macroscopic anisotropy. This 

description neglects the very short time-scale elastic or viscoelastic (primary creep) effects. 

Simple solutions for idealised plane (Staroszczyk and Morland, 2000) and radially symmetric 

(Morland and Staroszczyk, 2006) flows have shown the significant effects of ice fabric evolution, 

for which the constitutive law involves the initial isotropic viscous response. Here we focus on that 

initial viscous response. We also assume the ice is thermorheologically simple, for which the 

strain-rate at a given stress has a temperature dependent rate factor. 

Such a viscous law, necessarily isotropic by material frame indifference, has the general 

Rivlin-Ericksen quadratic representation, with alternative, but equivalent, stress and strain-rate 

formulations, as discussed by Morland (1979). However, it is still common practice to ignore the 

quadratic term and adopt a simple relation proposed by Nye (1953) in which the deviatoric stress is 

co-axial with the strain-rate, and which depends on only one of the two strain-rate (or deviatoric 

stress) invariants; specifically the second principal invariant which is a measure of the shear 

strain-rate or stress magnitude. The first principal strain-rate and deviatoric stress invariants are 

zero by incompressibility. 

Glen (1958) (acknowledging F. Ursell) presented the general quadratic viscous relation for 

the strain-rate, but adopted the simple co-axial form proposed by Nye (1953) with dependence on 

one invariant, for which he assumed a power law to correlate with his uni-axial compression 

experimental data, since known as Glen’s Law. He noted that Steinemann (1954) claimed that his 

compression and shear data were not consistent with a single relation of this simple co-axial form, 

and that Steinemann suggested retaining the co-axial form with further dependence on a second 

invariant - the third principal invariant - but this has not been explored. Glen’s Law has been used 
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in nearly all ice-sheet flow modelling. 

We first determine the explicit relation between uni-axial and shear responses which make 

them both consistent with the simple form, and given that this is not satisfied by experimental data 

we show how they determine the two response functions depending on a single invariant in the 

non-co-axial quadratic form. Clearly, experimental responses which involve only one independent 

strain-rate component cannot determine dependence on two strain-rate invariants. It also follows 

that a relation between the octahedral deviatoric stress and octahedral strain-rate is only possible if 

the simple conventional co-axial relation applies, which experimental data has rejected. 

Combined compression and shear test data involves two independent invariants. Morland 

(2007) analysed combined compression and shear tests for two approximations to the strain-rate 

configuration, and specifically that adopted for the many experiments carried out at the University 

of Melbourne; see, for example, Li and Jacka (1996), Warner et al. (1999), Treverrow et al. (2012), 

Budd et al. (2013). In particular, a universal relation is derived which is independent of the form of 

the response functions, and determines the longitudinal constraint stress in terms of measured 

variables. 

Here the values of the two general response functions are determined at 21 points of the 

combined stress data, though data inconsistencies imply that only 15 points should be considered. 

That is, the response functions are determined at only 21 or only 15 points in the plane of the two 

invariants, see Figure 1, too sparse to define two response functions with two invariants as 

arguments. However, the data does determine the two response functions as functions of a single 

invariant argument, and specifically shows that the quadratic term is very significant at 11 of the 

15 points. These points are incompatible with the Steinemann co-axial conjecture with dependence 

on two invariants. The above correlated response functions determine a constitutive law which in 

turn gives the uni-axial and shear responses. Note, though, that the Melbourne experiments do not 

measure the complete strain-rate response, but instead make an assumption that the longitudinal 

strain-rate is zero which is not confirmed, so the present construction hinges on the validity of that 

approximation. The theory shows how accurate data can be used to construct a viscous law. 

 

2 The viscous relation 

Ice response to stress exhibits a strong dependence on temperature T . This is assumed to be 
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described by applying a rate factor ( )a T  to the strain-rate, where ( )a T  is a rapidly increasing 

function of T ; that is, the actual strain-rate at a given stress and temperature increases rapidly with 

temperature. As noted by Morland (1979), this is the assumption of a thermorheologically simple 

response, Schwarzl and Staverman (1952) and Morland and Lee (1960), in which the same 

processes occur, but on a time-scale factored by ( )a T . Smith and Morland (1981) constructed 

exponential representations for the rate factor ( )a T  over different temperature ranges from the 

constant Mellor and Testa (1969) uni-axial stress data, and that with the widest validity is 

 ( ) = 0.7242exp(11.9567 ) 0.3438exp(2.9494 ),a T T T  (2.1) 

 0 0= 20 K , = 273.15 K,T T T T  (2.2) 

where 
0T  is the melting point and 0( ) =1.068a T  is approximately unity, normalising the factor at 

the melt point. This ignores the dependence of the melt point on pressure which is likely to be 

smaller than errors in the rate factor (2.1). At 2 K  below melting (271.15) = 0.4751a , less than 

half that at the melt point, and at 30 K  below the melt point, a temperature magnitude found in 

cold ice-sheets, (243.15) = 0.0041a , implying much smaller strain-rates than those near melting. 

2
 The Melbourne data we use is based on experiments at 2 K  below melting. 

From the outset we use normalised dimensionless deviatoric stress ̂  and strain-rate D , 

the symmetric part of the velocity gradient tensor, based on a stress unit 5

0 10   Pa and 

strain-rate unit 1 8 1

0 a 3.18 10 sD      , where ‘a’ denotes year, which are the deviatoric stress 

and strain-rate magnitudes expected, at melt point, in ice-sheet flow. The units 0  and 0D  are 

those used by Morland and Johnson (1980), Morland (1984) and Smith and Morland (1981) to 

obtain a normalised dimensionless viscous relation at the melt temperature in the conventional 

co-axial form. We further introduce a temperature normalised strain-rate D  and principal 

invariants 1I , 2I , 3I  defined by 

 1 1= ( ) , = trace( ) = ( ) = 0,a T I a T ID D D  (2.3) 

                                                 
2
 We appreciate the advice given to us by Dr David Cole who has examined many data sets for temperature 

variation and judges the Mellor and Testa (1969) data to show a consistent variation with temperature, though with 

higher strain-rates. The above ( )a T  variation is therefore consistent, here normalised at the melt temperature 0T . 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 2 2 3

2 2 3 3= trace( ) / 2 = [ ( )] , = det( ) = [ ( )] ,I a T I I a T ID D  (2.4) 

where the vanishing of 
1I  is the incompressibility condition, and 2I  is a measure of the 

strain-rate magnitude squared. Note that this definition of 
2I , used for convenience, has the 

opposite sign to the second principal invariant. Now let   denote the Cauchy stress tensor, then 

 
1

ˆ ˆ= , = trace( ), trace( ) = 0,
3

p p    I  (2.5) 

where p  is the mean pressure and I  is the unit tensor. The principal invariants of ̂  are 

defined by, omitting the minus sign in the second invariant for convenience, 

 2

1 2 3
ˆ ˆ ˆ= trace( ) = 0, = trace( ) / 2, = det( ).J J J    (2.6) 

Now the most general thermorheologically simple frame-indifferent viscous law is a relation 

between ̂  and D  which can be expressed in two alternative, but equivalent, forms of the 

Rivlin-Ericksen representation between tensors with zero trace : 

 2

1 2 3 2 2 3 2

2
ˆ = ( , ) ( , ) ,

3
I I I I I 

 
  

 
 D D I  (2.7) 

 2

1 2 3 2 2 3 2

2
ˆ ˆ= ( , ) ( , ) .

3
J J J J J 

 
  

 
 D I  (2.8) 

The vanishing of 1J  is by the definition of the deviator, so the response functions 1 , 2 , 1 , 

2  each depend on only two non-trivial invariants. 2I  and 
2J  are measures of shear strain-rate 

and shear stress magnitudes squared, while 3I  and 3J  have no physical description. While the 

expansions (2.7) and (2.8) are equivalent, there is no explicit algebraic inversion. Note that 2 = 0  

implies, and is implied by, 2 = 0 . 

These expansions for a simple viscous fluid are necessarily isotropic in all reference 

configurations, and cannot describe induced anisotropy associated with the fabric developed as the 

ice elements deform and crystal glide planes are re-oriented. However, this viscous response 

describes the initial isotropic response as ice is first formed at an ice-sheet surface, and is a crucial 

part of the constitutive behaviour as the ice deforms and induced anisotropy develops. It is the 

stress formulation (2.7) which is the constitutive law required for substitution in the momentum 

and energy balances of a general ice-sheet flow, so this form will be analysed here, There is an 

analogous analysis for the strain-rate formulation, which is required in the reduced model, 
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Morland and Johnson (1980), Morland (1984), equivalent to the shallow ice approximation SIA 

formulated by Hutter (1983). Both formulations require longitudinal gradients to be very small, so 

are applicable only when the bed undulations are very small which is not a realistic situation in 

reality. The reduced model, SIA, is useful for determining solutions of idealised flows against 

which solutions from the more complex numerical schemes needed for the full equations can be 

compared for accuracy (validity !). Sadly such comparisons are not made. 

The pioneering experimental work of Glen (1952, 1953, 1955, 1958) on polycrystalline 

(isotropic) ice measured the minimum strain-rate response to a range of applied constant uni-axial 

compressive stresses at different constant temperatures. This can determine only one response 

function of one argument, and was used to construct power laws for the simplified co-axial form of 

(2.8) proposed by Nye (1953), with the equivalent simplified form of (2.7), namely 

 1 1

1 2 1 2 1 2
ˆ ˆ= ( ) = ( ) , = ( ) = ( ) ( ) .c c ca T D J I I a T    D D D  (2.9) 

In this simple form D  is co-axial with ̂ , and there is only one response function 1c  

depending on only one invariant 
2J , a measure of the shear stress magnitude squared, or one 

response function 1c  depending on one invariant 2I , a measure of the strain-rate magnitude 

squared. Comparisons of known data sets in 1980 were made by Smith and Morland (1981), which 

demonstrated wide differences. The form (2.9)1 was correlated with the Glen (1955) data, showing 

that a three-term fifth-order polynomial representation, with finite viscosity at zero stress, was a 

much closer correlation than Glen’s power law with infinite viscosity at zero stress. Lliboutry 

(1969) and Colbeck and Evans (1973) had also constructed similar polynomial representations 

from different data, but without error estimates. Note that in this co-axial form the rate factor 

( )a T  simply appears as a multiplying factor of ̂ , which is not the case for the general 

thermorheologically simple forms (2.7) and (2.8). 

Simple shear stress tests also determine one response function of one argument, and 

Steinemann’s (1954) shear tests indicated this was different to that obtained from the uni-axial 

compression tests. Given that the simple form (2.9) cannot satisfy both uni-axial and shear data, 

the most simple generalisations are 

 2

1 2 3 1 2 2 2 2

2
ˆ ˆ= ( , ) , = ( ) ( ) ,

3
s q qI I I I I  

 
  

 
 D D D I  (2.10) 

with the first, proposed by Steinemann (1954), retaining the co-axial form but using dependence 
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on two invariants, and the second losing the co-axial form but using dependence on only one 

invariant. Morland (2007) analysed the Reduced Model, SIA scaling with both forms to show that a 

leading order (in surface slope or dimensionless viscosity magnitude) simplification still follows. 

While a response function 1 2 3( , )s I I  cannot be determined by only the uni-axial and shear data 

for which the two invariants 2I  and 3I  are not independent, the two response functions of one 

argument in the form (2.10)
2

 can be determined by this data. 

The relations (2.9)
2

, (2.10)
1
 and (2.10)

2
 give the respective invariant relations 

 2 2

2 1 2 2 2 1 2 3 2= ( ) , = ( , ) ,c sJ I I J I I I   (2.11) 

 2 3 2 4 2

2 1 2 2 1 2 2 2 2 2 2

1 2
= ( ) ( ) ( )trace( ) ( )[ trace( ) ],

2 3
q q q qJ I I I I I I     D D  (2.12) 

where 3trace( )D  and 4trace( )D  can be expressed in terms of 2I  and 3I  by the 

Cayley-Hamilton theorem, noting that here 2I  is the negative of the second principal invariant. 

These invariant relations are not required for the construction of a constitutive relation, but note 

that there is explicit dependence on 3I  in (2.11) 2, and also in (2.12), so that neither the co-axial 

relation (2.10)1 nor the simplified quadratic relation (2.10)2, allows a 
2J  – 2I  relation. 

Inferences from the Melbourne experiments were mainly expressed in terms of octahedral 

deviatoric stress 0  and strain-rate 0  given by 

 2 2

0 2 0 2= 2 / 3, = 2 / 3,J I   (2.13) 

so an octahedral relation is a relation between 
2J  and 

2I , equivalently 2I , at a given 

temperature, which can occur only if the viscous relation is of the most simple form (2.9)2. It was 

noted above that there is no such relation with the more general forms (2.10)1 and (2.10)2. That is, 

if (2.9)2 does not apply, then there is no octahedral relation between only the second invariants of 

deviatoric stress and strain-rate, and such a relation cannot represent a material property. Further, 

an octahedral invariant relation only determines a combination of stress components, not the actual 

stress tensor, so is not a constitutive relation. 

 

3 Uni-axial and shear relations 

The stress and deviatoric stress tensors for a uni-axial compressive stress   in the vertical 
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direction are 

 

0 0 0 0 0
1 1

ˆ= 0 0 0 , = , = 0 0 .
3 3

0 0 0 0 2

p



 

 

   
   
   
       

   (3.1) 

This gives rise to an axial vertical compressive strain-rate   and equal horizontal strain-rates 1
2
  

at the melt temperature, from which the strain-rate tensor, strain-rate squared tensor and invariants 

are 

 

2

2 2

2

0 0 0 0
1 1

= 0 0 , = 0 0 ,
2 4

0 0 2 0 0 4

 

 

 

  
  
  

      

D D  (3.2) 

 
3

2 3 2
2 3 2

3 1
= , = = 2( / 3) ,

4 4
I I I    (3.3) 

so 3I  and 2I  are not independent. 

Given a uni-axial response = ( )U   at melt temperature, determined by data, and 

expressing   in terms of 2I  by (3.3), the co-axial constitutive relation (2.9)2 gives 

 
1 1 1

2 22 2 2
2 1 22[ ] = [3 ] ( ), = 2[ ] ,

3 3
c

I I
U I I 
 
 
 

 (3.4) 

which determines 1 2( )c I  in terms of ( )U  . However, the quadratic constitutive relation (2.10)2 

gives 

 
1 1

2 2 2
2 1 2 2 2 22[ ] = [3 ] ( ) ( ),

3
q q

I
U I I I I 
 

 
 

 (3.5) 

which relates a combination of 1 2( )q I  and 2 2( )q I  to ( )U  . 

The set-up for the Melbourne shear experiments supposes (approximately) zero 

longitudinal strain-rate = 0xxD  in comparison with the shear strain-rate, and we suppose further 

that approximately = 0zzD  and hence = 0yyD  by incompressibility. The applied shear stress 

=xz   gives rise to a corresponding shear strain-rate   at melt, but there can additionally be 

axial constraint stresses which depend on the constitutive law. Thus, the stress and deviatoric 

stress tensors have the forms 
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0
1

= 0 0 , = ( ),
3

0

xx

yy xx yyp

 

    

 

 
 

   
  

 (3.6) 

 

2 0 3
1

ˆ = 0 2 0 ,
3

3 0 2

xx yy

yy xx

xx yy

   

  

   

  
 

  
    

  (3.7) 

and the strain-rate tensor, strain-rate squared tensor and invariants are 

 

2

2

2

0 0 0 0

= 0 0 0 , = 0 0 0 ,

0 0 0 0

 

 

  
  
  

   
   

D D  (3.8) 

 2

2 3= , = 0,I I  (3.9) 

so no dependence on 3I  could be inferred. Now given a shear response at melt = ( )S  , the 

co-axial constitutive relation (2.9)2 gives 

 
1 1 1

2 2 2
2 2 1 2= ( ), = ,cS I I I I 

 
 
 

 (3.10) 

which determines 1 2( )c I  in terms of the shear response. Comparing with (3.4) shows that the 

simple co-axial relation (2.9)2 can only apply if 

 
1 1 1 1

2 2 2 23 ( ) = (2 / 3 ), 3 (3 / 2) = ( ),S U S U     (3.11) 

for any positive argument   of ( )S   and ( )U  . In this case the axial constraint stresses satisfy 

 = = ,xx yy    (3.12) 

and for determination require a further assumption; for example = 0yy . 

Accepting Steinemann’s (1954) assertion that (3.11) does not apply, which also follows 

from the later data correlations, then, analogous to (3.5), turning to the simple quadratic 

generalisation (2.10)2 gives 

 
1 1

2 2
2 2 2 2 2 1 2= , = ( ), ( ) = ( ),xx yy q qI I S I I I         (3.13) 

which determines 1 2( )q I , the same expression as (3.10), directly in terms of the applied ( )S  . 

This can now be combined with the uni-axial relation (3.5) to determine 2 2( )q I : 
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1 1 1

22 2 2
2 2 2 2( ) = 3 ( ) 2[ ] ,

3
q

I
I I S I U

 
  

 
 (3.14) 

which is zero, if and only if, (3.11) holds. That is, given ( )S   determines 1 2( )q I  directly, then 

given ( )U   determines 2 2( )q I .
3
 Note that monotonic increasing ( )S   implies, and is implied 

by, monotonic increasing 1 2( )q I , but monotonic increasing ( )U   does not imply monotonic 

2 2( )q I ; increasing or decreasing, and vice-versa. The above analysis shows that uni-axial and 

simple shear data directly determine the response functions in a viscous law of the form (2.10)2. 

 

4 Combined compression and shear responses 

While the uni-axial compression and simple shear data determine both response functions in the 

simplified quadratic form (2.10)2, they do not determine the response function in the co-axial form 

(2.10)1, which depends on two invariants. We will now analyse the combined compression and 

shear relations which describe the Melbourne experiments. It is instructive to start from a more 

general deformation configuration, not asserting zero longitudinal strain-rate, to note the 

implications of this approximation: 

 1 1 1 3 2 2 2 3 3 3 1 2 3= , = , = , =1,x X X x X x X       (4.1) 

where 1 2 3( , , )X X X  and 1 2 3( , , )x x x  are respectively dimensionless material and spatial 

rectangular Cartesian co-ordinates with unit 1m . 1 2 3, ,    are the stretches along the axes, with 

1  not necessarily unity, and   is the tangent of the shear angle in material co-ordinates. The 

corresponding dimensionless velocity components in spatial co-ordinates, with unit 1ma  , are 

 1 1 1 1 3 1 1 1 3 2 2 2 2 3 3 3 3= / ( ) / ( ), = / , = / ,v x x v x v x            (4.2) 

giving the strain-rate D  and its square 

 

2 2

11 11 22

2 2

22 22

2 2

22

0 0

= 0 0 , = 0 0 ,

0 0

D D D

D D

D

  

    

    
  
  

        

D D  (4.3) 

                                                 
3
 The published Melbourne data gives only two points for each of these responses, so cannot determine the 

response functions, and a wider search for both shear and uni-axial stress data has been unsuccessful. 
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where 

 31 2
11 22 33 13 31 11 3

1 2 3

= , = , = = , = = = ( ) / (2 ),D D D D D D
 

    
  

   (4.4) 

with two non-trivial independent invariants, and one trivial: 

 2 2 2 2 21
1 11 22 2 11 22 3 22 112

= = 0, = ( ), = ( ).I D D I D D I D D            (4.5) 

Note that the shear strain-rate   is not simply given by the rate of angle change   unless the 

approximation 11 = 0D  applies. The stress and deviatoric stress tensors have the forms given in 

(3.6) and (3.7). 

The Melbourne longitudinally confined compression experiments assumption 11 = 0D  

makes the simplifications 

 2 2 2

11 22 3 2 3= 0 = , = / (2 ), = , = ,D D I I          (4.6) 

and the first requirement 22 =D   can be confirmed, or otherwise, provided the lateral 

deformation is measured; this is an important property of the response which can justify, or not, the 

main approximation.
4
 Note that the approximation 11 = 0D  and resulting 2I  is different from the 

uni-axial relations (3.2) and (3.3), and the uni-axial data points in lines 5 and 7 in Table 1 (see the 

next section) are analysed here with this approximation. This configuration was analysed by 

Morland (2007) for the general law (2.7) to determine a universal relation between the response 

variables which is independent of the two viscous response functions, and which determines the 

longitudinal constraint stress in terms of measured response, and further to express both viscous 

response functions in terms of the response. 

The general relation (2.7) with arbitrary response functions 1 2 3( , )I I , 2 2 3( , )I I  applied 

to the above stress and strain-rate configurations with the Melbourne approximations (4.6) now 

gives three independent relations 

 
2 2

1 2 1 2= , = 2 ,xx yy                  (4.7) 

                                                 
4
 The apparatus used by Budd et al. does not allow for the direct measurement of 11D  and 22D . A significantly 

more complex experimental system would be required to enable these measurements. However, if the approximation 

is not good, a more general analysis allowing non-zero 11D  would require either 11D  or 22D  to be measured to 

enable a correlation. 
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 1 2= ,      (4.8) 

where   and   are the measured applied stresses. Since the lateral extension is unconfined, the 

Melbourne analyses further assume that = 0yy , which was adopted by Morland (2007), when 

(4.7)1,2 give 

 2 2 2

1 2 1 2= 0 = 2 , = ( ),yy xx                 (4.9) 

and hence by (4.8) and (4.9)1, 

 2 2 3 2

1 2( 2 ) = , ( 2 ) = 2 .                (4.10) 

(4.10) are relations for the two response functions at melt strain-rates   and  , and so at the 

corresponding invariants 2I  and 3I  using the relations (4.6), in terms of the measured applied 

stresses   and  . Eliminating 1  and 2  by (4.10) in the xx  expression (4.7)1 gives a 

universal relation 

 ( ) =xx     (4.11) 

independent of the response functions, so (4.11) determines xx  directly in terms of the measured 

responses. It should be emphasized that (4.11) is independent of the response functions, and 

therefore, if xx  can be measured, provides a check on the assumption of a viscous law of the 

form (2.10)2. Alternatively, given the response functions and strain-rate components, xx , and 

other stress components, are determined by the constitutive relation (2.9). 

An unconfined compression and shear configuration was also introduced in Budd et al. 

(2013), already analysed by Morland (2007), with inferences from experiments shown graphically, 

but no data points given explicitly. 

 

5 Data correlations 

We now focus on the results of the experiments performed in recent years at the University of 

Melbourne, where it is expected that laboratory facilities and apparatus would be improvements on 

those available in earlier years. Specifically, we will examine the data in Table 1 of Budd et al. 

(2013), which includes uni-axial stress data at 2 compressive stress levels, simple shear data at 2 

shear stress levels, and combined compression and shear data at 17 stress level combinations, all at 

= 271.15T K , = 0.1T  . First we convert to strain-rates relative to melt-temperature, (2.9)1, by 
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applying the scale factor 1(271.15) = 2.1049a , then apply the further scaling 3.1536 to change 

the Melbourne unit 
710
 

1s  to our 1

0 aD  , a total scaling of 6.638. Their stress unit 610 Pa = 

10 
0 , so a stress scaling of 10 is required to convert to our units. The converted data and 

associated invariants, (4.10), and the consequent response functions, (4.5), are shown in our Table 

1. Clearly 2 compression data points and 2 shear data points cannot determine the correlations 

( )U   and ( )S   introduced in Section 3, with the consequent relations (3.4), (3.5), (3.10), (3.12), 

(3.13), and (3.14) for the response functions, and the criterion (3.11) which allows the 

conventional single response function of one invariant argument to be valid. 

We will now investigate what can be determined from the combined stress experiments 

data. Our Table 1 shows the test lines re-ordered by increasing strain-rate invariant 2I , with 

columns for  ,  ,  ,  , 
1

6
2I , 

1

9
3( )I , 

1 , 
2 , and 2 1= /R   . Specifically, the two 

invariants are shown as the more useful magnitudes 
1

6
2I  and 

1

9
3( )I , and the response functions 

as 

 

7 15 line test         
1

6
2I  

1
9

3( )I  1  
2  R  

  1 13 4.90 0 1.7923 0 1.2147 0 2.4500 ? ? 

O X 2 14 4.90 0.61 1.6595 0.7302 1.2194 0.9865 2.8012 1.4057 0.50 

  3 8 - 

11 

0 2.45 0 2.5224 1.3613 0 2.4500 0 0 

 X 4 21 3.92 1.47 3.3190 1.0621 1.5161 1.1580 1.9087 -3.0600 -1.60 

 X 5 15 4.90 2.45 2.5224 9.2932 2.1275 1.8188 1.3611 -4.4954 -3.30 

  6 2 1.60 4.80 17.2588 7.3018 2.6562 2.1346 -0.2569 -13.6551 53.16 

  7 7 8.50 0 19.9140 0 2.7105 0 4.2500 ? ? 

O X 8 4 4.90 4.20 10.6208 17.9226 2.7516 2.4692 5.0620 0.3530 0.07 

 X 9 6 9.00 1.90 24.5606 4.1156 2.9202 1.9544 4.4640 -7.1307 -1.60 

  10 1, 

12 

0 4.90 0 30.5348 3.1256 0 4.9000 0 0 

 X 11 5 7.30 3.20 31.1986 2.1905 3.1507 1.7446 3.5551 -42.2374 -11.88 

  12 3 3.40 4.60 17.9226 27.2158 3.1941 2.8715 21.3098 28.7313 1.35 
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 X 13 24 4.90 4.90 29.8710 19.2502 3.2877 2.8141 1.3079 -9.2052 -7.04 

 X 14 18 9.80 2.45 37.8366 4.5138 3.3651 2.0930 4.8219 -15.9732 -3.31 

O X 15 25 2.45 4.90 12.6122 36.5090 3.3803 2.9479 5.6332 1.3754 0.24 

O X 16 20 9.80 3.67 53.7678 43.1470 4.1004 3.5942 6.4815 0.7919 0.12 

 X 17 19 9.80 1.22 73.0180 3.1199 4.1810 2.0742 4.8828 -23.7177 -4.86 

 X 18 23 7.35 4.90 92.9320 15.2674 4.5497 3.0321 3.3617 -27.2243 -8.10 

O X 19 22 9.80 4.90 73.0180 73.0180 4.6915 4.1797 6.9296 0.0000 0 

O X 20 17 9.80 9.80 146.036 318.624 7.0506 6.2630 10.0702 -1.7042 -0.17 

O X 21 16 19.60 4.90 438.108 192.502 7.8218 6.3265 10.5465 -1.7850 -0.17 

Table 1: Stress, strain-rate and response functions’ data 

 

 
1

2
1 2 1 2 3 2 2 2 2 3= ( , ), = ( , ),I I I I I I    (5.1) 

calculated from (4.10) which is applicable to general dependence on 2I  and 3I . However, we 

will be correlating data with the simplified form (2.10)2 with dependence only on 2I , and 

expressing the corresponding 1q  and 2q  as functions of 
1

6
2= I  by 

 

1

6
1 2 1 2 2 2 2

ˆ ˆ( ) = ( ), ( ) = ( ), = .q q q qI I I       (5.2) 

The constitutive relation (2.10)2 then has the normalised form 

 
1

2 2
1 2 2

ˆ ˆˆ = ( ) ( )[ 2 / 3], = ,q q I    D D I D D  (5.3) 

and the final column is the ratio 

 
1

2
2 2 2 2 1 2 2 1

ˆ ˆ( ) = ( ) / ( ) = ( ) / ( ),q q q qR I I I I      (5.4) 

which is a measure of the significance of the quadratic term at each strain-rate level. This is an 

important measure at high strain-rates where both 1q  and 2q  tend to zero, and this column 

makes it clear that the calculated 2  is significant at the majority of the data points. Thus, 

Steinemann’s conjecture that a co-axial relation with dependence on two invariant arguments 

could reconcile the independent uni-axial and shear stress tests is not supported by this data. Note 

that the tests extend to larger stresses than those in Glen’s experiments (Glen, 1955), where the 

maximum uni-axial stress was roughly 54 10 Pa  and the strain-rate maximum was roughly 
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118 a   at melt temperature, though at the same stress in a cold ice-sheet the rate factor would 

lower this considerably. 

Tests 1 and 12 (line 10 in Table 1) are simple shears at the same 5= 4.90 10 Pa  , but 

with different minimum strain-rates 1=18.6 a   and 110.4 a   respectively, which we replace by 

a single data point with the average strain-rate 1=14.5 a  , then scale by 1( ) = 2.1049a T  to 

convert to our normalised strain-rate measure. The four tests 8–11 (line 3) are simple shears at the 

same 5= 2.45 10 Pa  , with strain-rates   ranging from 1.135  to 11.261a   which we replace 

by a single data point with the mid-value strain-rate 1=1.198 a  , and then scale by 2.1049. Lines 

1 and 7 are the two uni-axial compression tests, but note that while /   is bounded as 0   

with finite viscosity, (4.10)2 is indeterminate, so the limit ratio for 
2  must be obtained from the 

correlation of all the non-zero   points. For each line of this stress and strain-rate data, the 

invariants 2I  and 3I  are calculated by (4.6), and 
1

ˆ
q  and 

2
ˆ

q  are calculated by (4.10) and 

(5.1), with 
2  indeterminate in the uni-axial stress tests, shown by the question marks ‘?’. 

Further, a uni-axial stress response is not consistent with the approximation = 0xxD  applied to all 

the other tests, so the data points in lines 1 and 7 are ignored in the correlation. Since (3.13)3 shows 

that 1  and the shear response ( )S   determine each other, independent of 2 , the simple shear 

data in lines 3 and 10, implying zero 
2

ˆ
q , are also ignored in the correlation. Additionally, we see 

that lines 6 and 12 show anomalous values for both 
1

ˆ
q  and 

2
ˆ

q , so are ignored in the 

correlation. In summary, lines 1, 3, 6, 7, 10, 12 are ignored, leaving 15 data points for the 

correlations of both 
1

ˆ
q  and 

2
ˆ

q , shown in Table 1 by X in the column headed 15. Further, the 7 

lines shown by O in the column headed by 7 are selected as giving a coherent variation of 
1

ˆ
q , 

and the 7 lines shown by a  as giving a coherent variation of 
2

ˆ
q . Note these are distinct sets of 

tests chosen to describe 1
ˆ

q  and 
2

ˆ
q  respectively. They are also applied, as well as the 15 

points, to determine alternative correlations for 
1

ˆ
q  and 

2
ˆ

q . 

The conventional Glen’s power law for 1 2( )c J  with exponent n , and equivalent 1 2( )c I  

Morland and Johnson, 1980; Smith and Morland, 1981), are 
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11 1

22
( ) ( )

1 2 2 1 2 2

2 4
( ) =1.5 (3 ) , ( ) = [ )] ,

3 3

nn
n n

c cJ k J I k I 
  

 (5.5) 

with the Glen (1955) data correlation = 0.17k  and = 3.17n , though the correlation suggested a 

disjointed power law with different n  for different stress ranges, losing the algebraic simplicity. 

Note that 
1c  is unbounded at 2 = 0I , infinite viscosity. Smith and Morland (1981) determined a 

closer correlation for 
1 2( )c J  over the complete range with a polynomial representation yielding 

finite viscosity at 
2 = 0J . Based on a dislocation theory analysis (Cole and Durell, 2001) Dr Cole 

suggested that the conventional assumption that in uni-axial stress the strain-rate behaves like 

stress to the power 3 is good at large strain-rates, which implies that both 
1

ˆ
q  and 

2
ˆ

q  behave 

like 
1

6
2( ) =I   as   . Finite 1  and 

2  as 2I  approaches zero requires that 
1

ˆ
q  behaves 

like 
1

32
2 =I   and 

2
ˆ

q  behaves like 6

2 =I   as 0  . We have therefore examined 

representations with this behaviour at large and small strain-rate with 2 2M   arbitrary 

coefficients: 

 2 2 3 2 3 2 2

1 2 1 2 2 0 2 1

=1

ˆ ( ) = [1 exp( )] exp( ), = / 2,
M

q m M m M M M

m

c c c c c              (5.6) 

 2 2 6 2 6 2

2 2 1 2 2

=1

ˆ ( ) = [1 exp( )] exp( ).
M

q m M m M M

m

b b b b             (5.7) 

0  is the viscosity at 2 = 0I . The correlations below are least squares minimisations. 

Figure 2 first shows the 15 considered data points for 
1

ˆ ( )q  , which still reveal significant 

inconsistencies, and a correlation (5.6)1 with =1M  is shown as a continuous line; this has 

coefficients 

 1 2 3 4 0=1.1266, =15.5063, = 0.0350, = 0.0000, = 0.0012.c c c c   (5.8) 

We have also correlated 7 selected data points which exhibit a consistent trend, marked by circles, 

with the correlation shown as a dashed line; this has coefficients 

 1 2 3 4 0=1.1756, = 2.9070, =1.7906, =1.1902, = 3.2064.c c c c   (5.9) 

Clearly selecting points appearing to lie on a smooth line will yield a better correlation, but such a 

choice is not unique, so this selection is only an example. Much more consistent data is required to 

be confident in a correlation. 
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Figure 3 shows the 15 data points for 
2

ˆ ( )q  , which still show significant inconsistencies, 

and a correlation (5.7)2 with =1M , shown as a continuous line, has coefficients 

 
1 2 3 4= 0.0000, =1.3461, =1.8228, =1.3337.b b b b  (5.10) 

We have also correlated with 7 selected data points which exhibit a consistent trend, shown by 

squares, with the correlation shown as a dashed line; this has coefficients 

 
1 2 3 4=1.1431, =1.6270, = 0.2527, = 0.8450.b b b b  (5.11) 

Note that this selection of 7 data points shown by squares is distinct from the earlier correlation set 

shown by circles. Here the two correlations are widely different because the 15 data points are 

widely scattered. Again the 7 point correlation exhibits a closer smooth correlation, but the data 

inconsistency means this is only an example. While the data points are too scattered to reflect any 

convincing correlation, they show clearly that the calculated quadratic response function 
2

ˆ
q  is 

significant at the majority of the data points. 

As illustration, we can now apply the 
1

ˆ ( )q   and 
2

ˆ ( )q   obtained by the above 

correlations to determine the consequent uni-axial stress and simple shear stress responses given 

by (3.5) and (3.13)3. Let these at melt be denoted by ( )U   and ( )S  , then 

 

1

2 3
1 1

ˆ( ) = ( ) = ( ),q qS      (5.12) 

1 1 11 1

2 2 3 3 62 2
1 2 1 2

ˆ ˆ( ) = 3 (3 / 4) (3 / 4) = 3 ( ) ( ), = (3 / 4) = 0.9532.q q qU           (5.13) 

The 
1

6
2= I  maximum of 7.8218, line 21 and column 9 in the data Table 1, yields a maximum 

3= = 479   in (5.12) and a maximum 
1

3 2= 2 / 3 = 553   in (5.13), but the above combination 

of response functions leads to much higher stresses. Accordingly we have determined both ( )S   

and ( )U   over the same argument range 0 – 400. Figure 4 shows the determined ( )S   as a 

continuous line and a dashed line respectively for the 15 and 7 data point correlations, quite close 

since depending only on the close 
1

ˆ
q  correlations. The 2 simple shear points, lines 3 and 10 in 

Table 1, are marked by circles. Figure 5 shows ( )U   as a continuous line with the two 15 point 

correlations, and a dashed line with the two 7 point correlations, with the 2 uni-axial stress points, 

lines 1 and 7 in Table 1, marked by squares. In addition, the melt temperature response with 
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bounded viscosity correlated from Glen’s (1955) data by Smith and Morland (1981), assuming the 

simple co-axial relation which in the present variables (Morland, 1984) has the inverse form 

 2 4= 0.2224 0.0711 0.0011 ,     (5.14) 

is shown as the dash-dot line marked G . 

The two correlations for the shear response are quite close as a result of the two 

correlations for 
1( ) , shown in Figure 2, being close, since ( )S   is independent of 

2 ( ) . 

However, the two correlations for the uni-axial stress are very different because of the dependence 

on 
2 ( ) , for which the correlations, shown in Figure 3, are very different. In addition, 

comparison with Glen’s pioneering uni-axial stress experiments in the 1950’s, shown by the dotted 

line marked G, shows a rough agreement with the 15 point correlations but much lower stress than 

the 7 point correlations, again due to the very different 2 ( )  correlations. 

Which data points should be selected or rejected, and why, is not obvious. The choices 

above based on “trends” give sensible looking uni-axial and shear responses, but of course are 

based on an analysis adopting the unconfirmed Melbourne approximation 
11 = 0D . 

 

Conclusions 

This analysis was prompted by the publication of data from combined compression and shear tests 

on ice at the University of Melbourne. It focusses on the initial isotropic viscous response, and how 

this data rejects the simple co-axial relation with dependence on one strain-rate invariant, or 

equivalently dependence on one deviatoric stress invariant, which is still the common assumption 

in ice-sheet flow modelling. Starting from the general frame-indifferent viscous fluid relation, the 

relation between the uni-axial compression response and simple shear response which must hold if 

a co-axial relation is valid, is determined. It is also shown that the Steinemann conjecture, that 

when this relation is not satisfied a co-axial relation with general dependence on two strain-rate 

invariants could suffice, is not valid. The Melbourne data Table 1 has only two distinct uni-axial 

compression and two distinct simple shear points, not sufficient to determine uni-axial and simple 

shear responses, and only 21 distinct data points which are too sparse to determine response 

functions of two invariant arguments. We then focus on the quadratic (non-co-axial) relation, but 

with the two response function coefficients depending on only one invariant, a measure of the 
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shear strain-rate magnitude squared. The two response functions could be determined by sufficient 

uni-axial and shear data points, but we have not found such data. 

The Melbourne combined stress and shear configurations determine relations for the two 

response functions in terms of the stress and strain-rate points, but neither the longitudinal nor 

lateral strain-rate was measured so we had to adopt the Melbourne approximation that the 

longitudinal strain-rate is (approximately) zero. Inferences and conclusions are therefore 

dependent on this approximation. We have expressed the Melbourne data Table 1 in dimensionless 

normalised variables, and re-ordered the table into data lines with increasing strain-rate 

magnitude. Noting immediate inconsistencies in the Melbourne data, we reduced our Table 1 to 15 

lines for first correlations of the two response functions. However, the 15 point correlations show 

wide differences between points and correlated response functions, so separate sets of 7 points 

showing consistent response function variations were applied for second correlations. The 

correlations were made by least squares minimisation with representations using base functions 

with imposed behaviour at small and large strain-rates, explained in the text. Table 1 and Figure 3 

show immediately that the quadratic response function in the viscous flow law (2.10)2 is 

significant at the majority of the data points, which rejects a co-axial relation, and in consequence, 

as analysed, rejects any relation between the shear strain-rate invariant and shear stress invariant, 

and hence between the octahedral strain-rate and stress. 

Finally, with the separate 15 and 7 point response function correlations for the quadratic 

viscous law, we calculated the consequent simple shear stress and uni-axial stress responses, 

shown in Figures 4 and 5 respectively. The two correlations for the shear response are quite close 

as a result of the two correlations for 
1( ) , shown in Figure 3, being close, since ( )S   is 

independent of 2 ( ) . However, the two correlations for the uni-axial stress are very different 

because of the dependence on 2 ( ) , for which the correlations, shown in Figure 3, are very 

different. In addition, comparison with Glen’s pioneering uni-axial stress experiments in the 

1950’s, shown by the dotted line marked G, shows a rough agreement with the 15 point 

correlations but much lower stress than the 7 point correlations, again due to the very different 

2 ( )  correlations. 

We must re-emphasise that the assumption of vanishing longitudinal strain-rate, instead of 

measurement, means that our data analysis is only reliable if this Melbourne assumption is in fact a 
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good approximation. Further, the rejection of several anomalous data points left 15 which were 

still widely dispersed, but were applied in a first correlation of 
1  and 

2 . Second correlations 

with separate subsets of 7 data points, which showed consistent variations of 
1  and 

2  

respectively, were made. The consequent simple shear and uni-axial responses were determined 

for each of the 
1  and 

2  correlations. The 15 and 7 point correlations gave very different 
2  

and in turn very different uni-axial stress responses. The analysis, however, shows how reliable 

uni-axial and simple shear responses can be correlated to determine the response functions of a 

viscous law of the quadratic form (2.10)2, and determine the relation between uni-axial and simple 

shear responses which would support the simpler co-axial relation (2.9)2. 
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Figures 

Figure 1: Data points in invariants plane defined by axes 
1

6
2I  and 

1

9
3( )I . 

 

Figure 2: 
115 ( )  data points shown by   with correlation shown as continuous line, and 7 

selected points shown by circles with correlation shown as dashed line. 

 

Figure 3: 215 ( )  data points shown by   with correlation shown as continuous line, and 7 

selected points shown by squares with correlation shown as dashed line. 

 

Figure 4: Shear stress as function of   from data correlations, continuous and dashed lines 

corresponding to 15 and 7 point correlations respectively; 2 Melbourne simple shear data points 

marked by circles. 

 

Figure 5: Uni-axial stress as function of   from data correlations, continuous and dashed lines 

corresponding to 15 and 7 point correlations respectively; 2 Melbourne uni-axial data points 

marked by squares. The Glen data correlation shown as a dotted line is marked G . 
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Highlights 

 A constitutive relation describing viscous response of isotropic polar ice is constructed.  

 In contrast to the customary approach in which stress tensor is a linear function of 
strain-rate tensor, a more general relation is considered in which stress tensor is a quadratic 
function of strain-rate tensor.  

 The constitutive model parameters are determined by correlation with experimental results 
obtained in laboratory and published in 2012 and 2013.  
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