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Abstract 

Spatial navigation is emerging as a critical factor in identifying preclinical Alzheimer’s disease (AD). 

However, the impact of inter-individual navigation ability and demographic risk factors (eg APOE, 

age, sex) on spatial navigation make it difficult to identify ‘at-high-risk’ of AD people in the 

preclinical stages. In the current study we use spatial navigation Big Data (n=27,108) from the Sea 

Hero Quest (SHQ) game to overcome these challenges by investigating whether Big Data can be used 

to benchmark a highly phenotyped healthy ageing lab cohort into high vs. low risk people based on 

their genetic (APOE) and demographic (sex, age, educational attainment) risk factors.  

Our results replicate previous findings in APOE ε4 carriers, indicative of grid-cell coding errors in the 

entorhinal cortex, the initial brain region affected by AD pathophysiology. We also show that 

although baseline navigation ability differs between men and women, sex does not interact with the 

APOE genotype to influence the manifestation of AD related spatial disturbance. Most importantly, 

we demonstrate that such high-risk preclinical cases can be reliably distinguished from low-risk 

participants using Big Data spatial navigation benchmarks (n=27,108). By contrast, participants were 

undistinguishable on neuropsychological episodic memory tests.  

Taken together, we present the first evidence to suggest that in the future, SHQ normative benchmark 

data can be used to more accurately classify spatial impairments in ‘at-high-risk’ of AD healthy 

participants at a more individual level, therefore providing the stepping stone for individualised 

diagnostics and outcome measures of cognitive symptoms in preclinical AD. 

 

Keywords: Alzheimer’s disease; Sex differences; Spatial navigation; APOE genotype; Personalised 

Healthcare 
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Significance Statement 

We report that assessment of navigational behaviour using the Sea Hero Quest App provides a means 

of discriminating healthy ageing from genetically at-risk individuals of Alzheimer’s disease. It further 

highlights that the global Sea Hero Quest database can be employed as a normative benchmark data 

set to efficiently determine the significance of spatial abnormality suspected to be indicative of 

incipient AD on an individual level. 
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INTRODUCTION 

Spatial navigation is a promising cognitive fingerprint for underlying Alzheimer’s disease 

pathophysiology (1–8) and has been adopted by many high profile clinical trials (such as the the 

European Prevention of Alzheimer's Dementia Consortium) to improve the sensitivity of 

neurocognitive testing and assess the efficacy of potentially disease-modifying treatments. In fact, 

brain areas affected by AD pathophysiology in the preclinical stage (including the entorhinal cortex, 

posterior cingulate cortex, precuneus) form the key nodes in the spatial navigation network (6, 9–13). 

Recent evidence suggests that abnormal spatial navigation patterns may be present before episodic 

memory deficits, which are the current gold standard for AD diagnosis (6, 14, 15).  
 

A major challenge at this stage, however, is to understand how inter-individual and demographic 

factors that affect spatial navigation in order to identify earliest pathological spatial navigation 

changes in AD (16–19). Understanding diversifying factors that influence variability in spatial ability 
in the healthy population and individuals at risk to develop AD will advance the diagnostic power of 

the spatial tests and support more personalised diagnostics and treatment approaches (17, 20–23). 
Among factors underlying navigation, age is a well-documented predictor of declining spatial 

abilities, as older adults show a strong bias toward egocentric rather than allocentric strategies (24, 

25) leading to suboptimal navigation performance (26).  Age-related decline in allocentric process are 

due to changes in coding patterns of place, grid, border and head direction cells that underpin our 
ability to form cognitive maps of the environment and integrating environmental and self-motion cues 
to optimise navigational performance (27–29). However, decline in other cognitive domains such as 

general planning and cognitive control abilities(30) also contribute to spatial deficits in old age, 

suggesting that like most diagnostic tests, age-range normative cut-off scores are required (30, 31).  
Similarly, sex differences in navigation behaviour and underlying neuroanatomy have generated 

arguments for sex-specific clinicopathological AD phenotypes (17, 21, 32–35). Rodent models of the 

Morris Water Maze have shown that male rats consistently outperform females (36) and human 

studies display similar sex differences favouring males (37–40) across 57 countries in both map-

dependent allocentric and map-independent egocentric navigational strategies (27). Therefore, 

although spatial navigation tools must retain sensitivity and specificity to preclinical AD 

pathophysiology, it will be critical to develop diagnostic tools that can adjust for underlying sex 

differences.  

 

Finally, one of the biggest challenges in preclinical AD studies is to identify those who are at-high-

risk to develop symptomatic AD in the future. Genetic variation in the apolipoprotein E 4  allele 

carriers is currently the strongest known genetic risk factor for sporadic AD (7, 41–43). Compared to 

the ε3/ε3 carriers, those with the ε3ε4 show a three-four fold increased risk for AD (43, 44). 

Phenotypic characteristics of apoE e4 allele show that the cognitive profile of e4 carriers changes over 

the lifespan, with some cognitive advantage seen in young adulthood (39) and cognitive disturbances 

in mnemonic and spatial process in mid adulthood (45–47). Recent findings also show that temporal 

grid-cell like representation in the entorhinal cortex of apoE4 carriers are functionally unstable 

leading to a boundary-driven error correction during wayfinding (48). 
 

Taken together, there is increasing evidence that spatial deficits, in particular related to wayfinding, 

are present in preclinical AD long before episodic memory symptom emerge. However, at this stage it 

is very difficult to employ such knowledge on a clinical level, due to unknown inter-individual 

variability in navigation behaviour across people, which is vital for sensitive and specific diagnostics 

on an individual level. In the current study we address this issue by using Big Data (n=27,308) for 

navigation behaviour from the Sea Hero Quest App (49) to: i) determine whether we can replicate 

previous wayfinding affects in apoE4 carriers compared to the Big Data; ii) to further disentangle 

inter-individual the effects of genetic risk for AD from the effects of sex, age and baseline cognition 

on spatial discrepancies; and iii) to explore whether AD specific spatial navigation changes can be 

detected on an individual level, when using the Big Data as benchmark comparison. We predicted that 

i) we would replicate previous APOE spatial navigation findings (7); ii) sex differences would make a 

significant impact on navigation behaviour; and iii) AD specific navigation changes can be detected in 

an individual level when using the normative benchmark Big Data of Sea Hero Quest.  



                                 Cognitive diagnostics of ‘at risk’ Alzheimer’s disease 
                   

5 
 

  
METHODS AND MATERIALS 

Participants 

APOE genotyped cohort. 
Between Feb, 2017 and June, 2017, 150 people between 50 to 75 years of age were recruited to 

participate in a research study at the University of East Anglia. All 150 participants were pre-screened 

for a history of psychiatric or neurological disease, history of substance dependence disorder or any 

significant relevant comorbidity. All participants had normal or corrected-to-normal vision. Family 

history of AD and history of antidepressant treatment with serotonin reuptake inhibitor (SSRI) drugs 

was retrospectivity obtained. Saliva samples were collected from those who passed this screening and 

apoE genotype status was determined.  
 

In total, 69 participants underwent cognitive testing. As just 23% of the population carry APOE ε3/ε4, 

all participants in our sample who tested positive for the ε3/ε4 allele completed cognitive testing. We 

selected a subset of the ε3/ε3 carriers that form the majority of the population (75%) to match the 

ε3/ε4 risk group for age and sex (see Table 1 supplementary materials for group background 

characteristics). We did not include a third genetic subgroup of homozygous APOE-ε4carriers from 

the tested cohort, because they were too rare (n=5) although their scores are reported in the 

supplementary materials. E2 carriers were also excluded. 

During testing, three participants showed signs of distress and their data was excluded from 

subsequent analyses. One participant scored lower than 86 on the Addenbrooke’s Cognitive 

Examination and was classified as mildly cognitively impaired and excluded from the study. The final 

group sizes (post-exclusion) were: apoE ε3/ε3, n=29 and apoE ε3/ε4, n=31). Written consent was 

obtained from all participants and ethical approval was obtained from Faculty of Medicine and Health 

Sciences Ethics Committee at the University of East Anglia Reference FMH/2016/2017–11. 
 

The Benchmark Population.  

A unique population level benchmark dataset was generated by extracting a subset of the global Sea 

Hero Database (50) that matched the demographic profile of our lab-based genotype cohort, namely 

players from the UK aged 50-75 years old. Following extraction, 14,470 British men and 12,710 

British women (N = 27,108) remained as a representative normative sample of heathy navigation 

performance on the basis that epidemiological studies have shown that the majority of the general 

population (~75%) are non-apoE4 carriers (36).  Participants from the benchmark sample were given 

the option to opt in or opt out of the data collection when they played the game on their personal 

mobile phone, iPad or tablet. If a participants’ response was to opt in, their SHQ data was anonymised 

and stored securely by the T-Systems’ datacentre under the regulation of German data security law. 

Ethical approval was previously granted by Ethics Research Committee CPB/2013/015. *For more 

information on the global SHQ database see www.seaheroquest.com 

 

 

Outcome Measure 

Sea Hero Quest (SHQ)  

The SHQ app was developed in 2015 by our team and funded by Deutsche Telekom and Alzheimer’s 

Research UK. The app was created to be a reliable and valid measure of spatial navigation 

performance both in monitored research settings and unmonitored at-home settings (49). It was made 

available for free on the App Store and Play Store from May 2016 and since then over 4 million 

people have downloaded the App worldwide. The game performance is divided into two main 

domains: goal-oriented wayfinding and path integration. 
 

Goal-orientated wayfinding. In wayfinding levels, players initially see a map featuring a start location 

and several checkpoints to find in a set order, as illustrated in Fig 1. Checkpoints are buoys with flags 

marking the checkpoint number. Participants study a map of the level for a recorded number of 

seconds. When participants exit the map view, they are asked to immediately find the checkpoints (or 

goals) in the order indicated on the map under timed conditions. As participants navigate the boat 

through the level, they must keep track of their location using self-motion and environmental 

http://www.seaheroquest.com/
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landscape cues such as water-land separation. The initiation time is zero as the boat accelerates 

immediately after the map disappears. If the participant takes more than a set time, an arrow appears 

pointing in the direction along the Euclidean line to the goal to aid navigation. To familiarize 

themselves with the virtual environment and game controls, participants started with two easy 

learning levels 1 and 2. Wayfinding levels generate two measures of interest: 
▪ Wayfinding distance travelled to visit all required checkpoints is defined as the Wayfinding 

distance between all points recorded and is a proxy for navigation efficiency. To navigate 

efficiently, individuals need to form and retain a cognitive map of the environment (after 

viewing the map at the start of the level) and then consistently update self-location in that 

cognitive map based on the visual cues from the SHQ game.  

▪ Wayfinding duration, is defined as the time in seconds to complete a wayfinding level. While 

inefficient navigation also results in longer time to visit all checkpoints, increased duration is 

primarily due to the amount of acceleration that the player used. By “swiping up”, one can 

increase the speed of the boat temporarily, therefore reducing travel time but not changing 

the distance travelled at all. Since speeding up requires confidence in one’s sense of 

direction, the resulting wayfinding duration score we take duration as less representative of 

participants’ ability to navigate along the shortest path and more representative of non-

navigational factors such as confidence or the tendency to sample more cues before speeding 

up.  

 

Flare Accuracy. In path integration levels (in the game this is measured by flare accuracy on levels 9 

and 14), participants are not provided with an allocentric map. Instead, they immediately navigated 

along a river to find a flare gun. Once they find the flare gun at the end of the river, the boat rotates by 

180°, and participants are asked to choose one of three possible directions (right, front, left) that they 

believe points to the starting point. This level requires participants to a) form an accurate 

representation of the starting point relative to their position and b) integrate this representation with a 

representation of the direction they are facing after the rotation. (see video clip in supplementary 

materials and Tu and colleagues for a similar path integration based experimental design(15)). In this 

case, gaming proficiency was not advantageous because participants simply view navigate a single 

passage and are then required to choose A,B,C direction as a single response. Depending on their 

accuracy, players receive either one, two or three stars. 
 

 

Procedure 
Data collection 
Spatial navigation data was collected for both the APOE genotyped cohort and benchmark datasets 

using Sea Hero Quest, a digital game that we pre-designed to measure human navigation ability. 

Decisions on level selection was made by considering which levels had the most normative data and 

level type/difficulty (wayfinding or path integration). Level 1 and 2 were included for learning and 

practice navigating the boat, as well as normalising the data for App interaction with player 

proficiency. Level 3-5 were excluded as they did not challenge participants’ navigation skills and 

were intended to ease the players into the game. Further, starting with level 14, the sample size of the 

benchmark population drops substantially. This then left us with three wayfinding levels (6,8,11) and 

two path integration levels (9 and 14). Participants in the lab-based APOE cohorts provided their 

demographic information during a screening call and were then invited to the UEA to play SHQ. 

Participants from the benchmark population provided information regarding their sex, age, location 

and educational attainment (high-school, college, university) demographics in-app before playing 

SHQ  
 
 

APOE Genotyping   
DNA was collected using a Darcon tip buccal swab (Fisher Scientific, Leicestershire, United 

Kingdom, LE11 5RG). Buccal swabs were refrigerated at 2-4°C until DNA was extracted using the 

QAIGEN QIAamp DNA Mini Kit (QAIGEN, Manchester, United Kingdom, M15 6SH). DNA was 

quantified by analysing 2 μL aliquots of each extraction on a QUBIT 3.0 Fluorometer (Fisher 



                                 Cognitive diagnostics of ‘at risk’ Alzheimer’s disease 
                   

7 
 

Scientific, Leicestershire, United Kingdom, LE11 5RG). Successful DNA extractions were confirmed 

by the presence of a DNA concentration of 1.5μg or higher per 100μg AE buffer as indicated on the 

QUBIT reading. PCR amplification and plate read analysis was performed using Applied Biosystems 

7500 Fast Real-Time PCR System (Thermo Fisher Scientific, Ashford, United Kingdom, TN23 4FD). 

TaqMan Genotyping Master Mix was mixed with two single nucleotide polymorphisms of APOE 

(rs429358 at codon 112 and rs7412 at codon 158). These two single nucleotide polymorphisms 

determine the genotype of APOE2, Ε3, and Ε4 (Applied Biosystems, 2007). 
 

Statistical Analysis 
The data was analysed using SPSS (Version 23), RStudio (Version 1.0.153) and MATLAB (R2017a). 
Chi square and simple two tailed t-tests were used to test the significance of any demographic or 

neuropsychological differences between the genetic groups in our lab cohort. When quantifying the 

group differences, Cohen’s d was used as a measure of effect size. To control for the influence of 

player proficiency on digital devices, the SHQ data was pre-processed in MATLAB and participant 

performance on each level within the game was divided by the sum of the two practice levels: 

𝑙𝑒𝑣𝑒𝑙 𝑁 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 = ln( 
𝑙𝑒𝑣𝑒𝑙 𝑁

(𝑙𝑒𝑣𝑒𝑙 1 + 𝑙𝑒𝑣𝑒𝑙 2)
) 

To assess the fixed effects of genotype and sex, we first compared competing statistical models with 

the inclusion and exclusion of different demographic factors using the nlme package in R 

(https://cran.r-project.org/web/packages/nlme/index.html) that allows fitting fixed and random effects 

to evaluate the most appropriate model for data. In each model, subject-level random effects were 

included to vary the intercept for each subject and importantly to account for interdependence 

between repeated measures from playing multiple levels of the game. Three sets of linear models 

were fitted that included the following outcome variables: a) wayfinding distance and b) wayfinding 

duration, using scores from SHQ levels 6, 8 and 11 completed by each subject and c) flare accuracy 

on each of the two path integration levels (9 and 14). Model selection was based on relative goodness 

of fit and model simplicity (determined using gold standard Akaike and Bayesian information 

criterion, AIC and BIC, respectively).  
 

Age, sex and genotype, were retained as explanatory variables for the final model for each of the 

outcome variables. ACE defined by total score on the Addenbrooke’s Cognitive Examination-III 

screening tool (52), education, occupation, time spent on viewing the wayfinding maps (see Figure 1 
for maps) and non-verbal episodic memory (defined by 3minute delayed recall on Rey–Osterrieth 

Complex Figure Test; ROCF (53) ), were tested in the final model but did not exhibit a significant 

main effect and were excluded to retain the maximum degrees of freedom (the overall F statistics for 

explanatory variables in additional models are shown in supplementary Table 2). Once the best fit 

model was identified, standardised residuals were extracted and plotted against fitted values to 
examine underlining assumption of normal distribution and heteroscedasticity. We also tested for an 

interaction between genotype and sex. All statistical tests are two-tailed, p<0.05. 
 

To ensure that the benchmark population reflected the demographic profile of our lab-based cohort, 
we could only use a sub-population of our global SHQ database. We developed a data extraction 

method using MATLAB (scripts available on request) that allowed us to generate the population level 

database. This data was then pre-processed using the same normalisation procedure as detailed above. 

Linear mixed models examined the effects of sex and age on a population level benchmark. Finally, 

logistic regression was used to quantify how well SHQ variables such as distance travelled could 

classify APOE risk status using both the lab-based sample and the benchmark population. ROC 

curves were used as measures of sensitivity and specificity of SHQ as opposed to standard memory 

tasks such as the ROCF test to detect preclinical AD. 
 

RESULTS 
Background Characteristics and Neuropsychology 
In the lab-based cohort, the ε3ε3 and ε3ε4 groups did not differ in terms of their demographic 

characteristics (see supplementary Table 1) or their neuropsychological examination (Table 2). We 

https://cran.r-project.org/web/packages/nlme/index.html
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examined the relationship between the three SHQ outcome variables: Wayfinding distance travelled 

and wayfinding duration correlate (Pearson r = 0.61, p < 0.001); duration and flare accuracy correlate 

(r = −0.309, p < 0.001); but wayfinding distance travelled and flare accuracy are not correlated r = 

0.04, p =.795); suggesting dissociable neural correlates that underlie performance, corroborating 

current notions that wayfinding distance relies more on grid-cell based navigational processes (51), 

and flare accuracy relies more on retrosplenial mediated processes (15). We consider wayfinding 

distance as the primary outcome measure (and the other outcomes are secondary) as early AD is 

characterised by abnormal changes in the grid cell code of the entorhinal cortex.  

 

Genotype effects on wayfinding  
There was a main effect of genotype (b=0.22; p=0.004; Figure 2 A) on wayfinding distance, with 

ε3ε3 carriers (M=3.79, SD=0.63) travelling a shorter distance during wayfinding relative to ε3ε4 
carriers (M=4.45, SD=0.94) after controlling for age and sex. The mixed model for wayfinding 

duration (i.e. time taken to complete wayfinding levels) showed no main effect of genotype between 

ε3ε3 (M=4.66, SD=2.65) and ε3ε4 carriers (M=4.97, SD=1.36; Figure 2 B). See Table 2 for group 

mean values and Table 3 for the effects of genotype on wayfinding distance and duration. Please refer 

to supplementary materials for results including a small high-risk ε4/ε4 carrier group, which showed 

an even larger effect for distance travelled (supplementary figure 1 A).  
 

To further examine the different routes taken by the two genetic groups, we plotted the exact 

trajectory of each participant on wayfinding level 6, 8 and 11 using (x,y) coordinates generated during 

gameplay and found that ε3/ε4 carriers show a lower average distance to border than their ε3/ε3 

counterparts (Figure 2 D-F). On level 6 and 8, ε3/ε4 carriers deviate from the shortest distance 

between the checkpoints and travel toward the border of the environment compared to the ε3ε3 

carriers, who tend to navigate along the centre of the virtual environment. To check if the increase in 

wayfinding distance in ε3/ε4 carriers compared to the ε3/ε3 group was driven by any specific level, 

fixed effects linear models were fitted for level 6, 8 and 11 to test if the properties in one specific level 

captured this effect, or if this effect was an accumulative error over the three wayfinding levels. Using 

the same explanatory variables as in the final base model, the e4 allele was found to increase 

wayfinding distance on level 6 (F60=5.48, p=0.023) and level 8 (F60=4.08, p=0.04) but not on level 11 

(see supplementary figure 2).  

 

Genotype and sex effect on wayfinding  
No effects of sex were found on wayfinding distance as men (M=4.06, SD=0.87) and women 

(M=4.22, SD=0.91; b=0.02, p=0.12) took similarly efficient paths, but sex did affect duration taken to 

complete wayfinding levels, with men (M=4.33, SD=1.09) requiring less time to complete levels than 

women (M=5.26, SD=2.17; b=0.39, p=0.02; Figure 3 A supplementary materials). Importantly, no 

interactive effects of genotype and sex on wayfinding distance or wayfinding duration were 

uncovered. 
 

Genotype and sex effects on path integration 
We then tested the effects of genotype and sex levels on flare accuracy, a measure of path integration. 
No main effect of genotype (b=0.04, p=0.14; Figure 2 C) and no genotype*sex interactions were 

found. However, sex had a significant main effect on flare accuracy, with men (M=5.11, SD=1.3) 
scoring higher than women (M=4.31, SD=1.4; b=-0.36, p=0.04; Figure 3 B supplementary materials).  
 

Memory and spatial navigation as predictors of APOE genotype 

The sensitivity and specificity of a traditional memory task to predict APOE genotype compared to 

spatial navigation on SHQ was done using logistic regression and ROC curves. This was motivated by 

the prediction that memory deficits would not be detectable on current gold standard episodic memory 

tasks. Covarying for gender, non-verbal episodic memory (three-minute total recall score for the 

ROCF) and wayfinding distance in SHQ were used separate predictors in two logistic regression 

analyses. The regression model for wayfinding distance x2 (2) = 9.1, p=0.03, was statistically 

significant and correctly classified 71.3% of the APOE genotyped cohort (75%:ε3ε3 63.3%:ε3ε4). As 

predicted, the model for ROCF delayed recall was not significant x2 (2) = 9.1, p=0.393. An ROC 
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curve was then computed showing both navigation and delayed recall as predictors of APOE 

genotype (Figure 3). Consistent with the above, area under the curve values indicated that wayfinding 

distance (AUC .714, SE .068, 95% CI .555 - .822; pink curve), but not delayed recall (AUC .541, SE 

.074, 95% CI .286 - .578; gold curve) has a significant level of diagnostic accuracy.  

            

Benchmark data validates an effect of APOE4 on wayfinding. Having determined the diagnostic 

utility of SHQ for APOE genotype compared to standard memory test, we wanted to examine the 

utility of the population-level benchmark dataset as a normative control sample which could be used 

by clinicians in diagnostic settings. We took advantage of the fact that the benchmark SHQ dataset-as 

a representative of the population-predominantly includes ε3/ε3 carriers (75%) and performed a ROC 

curve with the ε3ε4 and the benchmark data as a representative of non-risk controls. Area under the 

curve values indicated a very similar significant level of diagnostic accuracy as was demonstrated 

with the lab only cohort (AUC .701 SE .031 95% CI .639 - .759; see Figure 3 [dark pink curve]). 

Finally, to further representation the diagnostic utility of the benchmark population, we plotted each 

ε3ε4 carrier’s score over their age sex, education matched sub-population from the normal distribution 

of the UK population (see Figure 4).  

 

DISCUSSION  
Our results show that i) we can replicate previous wayfinding changes in APOE gene carriers; ii) sex 

differences significantly impact on wayfinding behaviour but the effect of sex is negligible compared 

to APOE genetic risk; iii) healthy ‘at-genetic-risk’ of AD with no memory deficits can be 

distinguished on wayfinding measures on an individual level. 

   

In more detail, using navigation benchmark Big Data and smaller APOE genotyped cohorts, we show 

that adults ‘at-genetic-risk’ of AD with no clinically detectable cognitive deficits, not only navigate 

further during wayfinding, but show a bias in navigating towards the border of the virtual SHQ 

environment in large open areas. This supports the hypothesis that suboptimal navigation performance 

is present in preclinical AD and that this is detectable on levels of the SHQ game, even when a closely 

matched demographic sample is provided by the global SHQ data set. We also show that while sex 

accounts for variation in navigation performance, sex does not reduce the sensitivity of SHQ to 

discriminate healthy ageing from genetically at-risk individuals of Alzheimer’s disease. 

 

Although adults at-genetic risk of AD deviate from the shortest route (often the Euclidean between the 

checkpoints) towards the environmental border of the SHQ environment, they successfully completed 

the wayfinding levels albeit sub-optimally. Thus, we hypothesis that the navigational deficits detected 

here reflect an error corrective strategy (48) for which environmental boundaries hold valuable 

navigational cues that aid the navigators’ ability to self-localise and find their way through the 

environment when navigational uncertainty ensues. The neural substrates that give rise to the 

navigational uncertainty in the genetically at-risk group is most likely induced by errors in the grid 

cell system within the entorhinal cortex (see SI for further discussion). The entorhinal cortex is not 

only one of the first cites of AD pathology in the brain (13) but is also crucial for facilitating shortcut 

wayfinding behaviours and optimal navigation behaviour (56). Given that grid cells compute large-

scale information (30, 31) and encode representations of self-location by measuring distance travelled 

by the navigator (32, 33), it is not surprising grid cell dysfunction results in navigational discrepancies 

in at-risk individuals of AD.  

 

Given that phenotypic heterogeneity currently reduces the diagnostic and prognostic power of 

neurocognitive evaluations for early AD, we also sought to investigate if demographic and 

neuropsychology diversity impact navigation. The effect of the genotype that was most prominent 

when the environmental space was large and open (level 6 and 8). In terms of sex, we did find strong 

evidence of better performance in males on baseline navigation ability but no evidence to suggest that 

males at-genetic-risk were less vulnerable (in the preclinical stage at least) to the effect of the APOE 

e4 genotype than women at-genetic-risk. In our opinion, this is a critical finding as it suggests that sex 
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difference may not act on the phenotypic presentation of navigation deficits in the early asymptomatic 

stage of the disease. A recent meta-analysis (54) reports that women are particularly vulnerable to 

early underlying pathology between the ages of 55 and 70. Thus whether sex and genotype interact to 

predict navigational ability on SHQ in later preclinical or prodromal stages of AD remains to be 

investigated. In the interest of diagnostic sensitivity, the time at which an increased female 

susceptibility to underlying pathology manifests behaviourally is a high priority. Although we found a 

sex-independent navigational deficit in adults at genetic risk of AD, evidence for strong spatial 

disparities on navigation performance across the sexes globally (55) suggest that it is indeed 

appropriate to consider the need to stratify risk assessment by sex. For example, when genotype status 

is unknown, considering sex difference may hold prognostic value as many high profile previous 

studies already suggest (17, 21, 56).  

 

Based on data presented here on a population level and elsewhere, we now know that demographic 

diversity based on age, sex and nationality act on navigation proficiency, and men perform better at 

digital and real-life spatial navigation tasks  (57). This finding, coupled with a plethora of pre-existing 

evidence for natural age-related decline in spatial navigation (26), means that we must establish 

personalised normative measures to accurately assess spatial disturbances that have not been well-

established as a underlying feature in preclinical AD pathology. From a clinical standpoint, clinicians 

and researchers should be advised to consider not only age but also the sex of their putative patient 
before inferring pathological related spatial impairment. From a research perspective, researchers 

should work towards providing demographically corrected benchmarked scores for standardised 

neuropsychological test. To date, obtaining normative data of this nature has been challenged by 

heterogeneity in methodological approaches used to measure spatial navigation and uncertainty about 

population level differences in cognitive performance. Consistency across our non-risk control group 

and the benchmark scores is compelling evidence that SHQ may provide unique benchmarking data, 

on a global scale, by controlling for the demographical factors such as sex, advanced age and cultural 

background; factors which will alter how individuals perform on SHQ. Although level of education 

was included to refine the population data, education did not have a compelling effect on navigation 

performance in the global SHQ database. Further research is required to determine what demographic 

factors beyond age, sex and nationality will increase the sensitivity and specificity of navigation test 

for underlying preclinical AD.  

 

Despite illustrating for the first time the clinical utility of new epidemiological data gathered on a 

global scale using the SHQ game, our study has several limitations. Firstly, we focus on preclinical 

rather than symptomatic Alzheimer’s disease, seeking to evaluate the prognostic value of SHQ rather 

than validate SHQ data as a potential diagnostic tool. However, given that many excellent cognitive 

diagnostics measures exist for symptomatic AD, we question whether navigation measures have true 

utility in this aspect. Instead, identification of subtle cognitive preclinical changes will be of greater 

future importance to complement other biomarkers as diagnostic and treatment outcome measures. 

Secondly, only 47% of all ε3/ε4 carriers develop symptomatic AD. This is consistent with about 50% 

of the ε3/ε4 individuals in this study being impaired relative to the demographically corrected 

benchmark L longitudinal studies are needed to truly determine how predictive spatial navigation 

combined with genotypic information is in the preclinical stages of the disease however. Further 

replication of our findings with preclinical cohorts defined by multiple cognitive, genetic and 

neurological markers is desirable, although it is promising that we replicate previous boundary 

findings (Kunz 2015). Moreover, although education was considered in the individualised approach to 

diagnosis of ‘at-risk’ AD, approx. 40% of the genotyped cohort has 15 years+ of education and 50% 

of the cohort working in "professional" fields vs. skilled or low-skilled / manual, potentially leading to 

an over-representation at the educated individuals in this genotyped sample. Lastly, although best 

efforts were made to control for gaming proficiency, we cannot completely rule out a potential 

influence of previous gaming experience contributing to the observed male advantage in the data. 

Still, considering that we are investigating a 50-75 year old cohort, gaming proficiency should not 

play such a large role. More importantly, the difference of male and females in the SHQ data across 

ages does not change, suggesting that gaming proficiency plays only overall a minor role in assessing 

spatial navigation via an online App. 
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In conclusion, our work supports the hypothesis that navigational discrepancies are present in 

preclinical AD and can be captured by Sea Hero Quest available on iOS and Android platforms.  We 

show for the first time promising evidence that normative data generated from the 3.7 million people 

who played SHQ worldwide, may in the future help us to create a prognostic test based on 

navigational proficiency – to help us to understand how the very earliest symptoms of AD is isolation 

of potentially confounding demographic factors such as sex, advancing age, educational attainment or 

cultural background. This should reduce the problematic nature of phenotype variation obscuring the 

assessment of spatial disorientation as a first symptom of AD and offer the promise of individually 

tailored solutions in healthcare settings. Thus, spatial navigation emerges as a promising cognitive 

fingerprint, which can complement existing biomarker for future AD diagnostics and disease 

intervention outcome measures.   
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Figure 1. SHQ Goal-orientated Wayfinding levels (A) 6, (B) 8 and (C) 11. Players initially see a map featuring a start location and several checkpoints (in red) 

to find in a set order. Checkpoints are buoys with flags marking the checkpoint number. Participants study a map of the level for a recorded number of 

seconds. When participants exit the map view, they are asked to immediately find the checkpoints (or goals) in the order indicated on the map under timed 

conditions. As participants navigate the boat through the level, they must keep track of their location using self-motion and environmental landscape cues 

such as water-land separation. The initiation time is zero as the boat accelerates immediately after the map disappears. If the participant takes more than a 

set time, an arrow appears pointing in the direction along the Euclidean line to the goal to aid navigation. (D) In flare accuracy levels (here level 9 and 14), 

participants are not provided with an allocentric map. Instead, they immediately navigated along a river to find a flare gun. Once they find the flare gun at 

the end of the river, the boat rotates by 180°, and participants are asked to choose one of three possible directions (right, front, left) that they believe 

points to the starting point. This level requires participants to i) form an accurate representation of the starting point relative to their position and ii) 

integrate this representation with a representation of the direction they are facing after the rotation. Depending on their accuracy, players receive either 

one, two or three stars
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Figure 2. Mixed effects models, with subject level random effects, adjusted for age, sex and baseline 

cognitive ability show A Main effect of genotype (b=0.22; p=0.004) on Wayfinding distance; e3e4 

carriers participants deviate from the more Euclidean trajectory leading to an overall greater 

distance travelled to complete the wayfinding levels relative to the e3e3 carriers. B No main effect of 

genotype on wayfinding duration (i.e. time taken to complete wayfinding levels); both groups used 

the same boat acceleration during wayfinding. C No main effect of genotype on flare accuracy which 

required participants to integrate newly acquired allocentric information with egocentric-viewpoint 

based cues presented at the end of the level. The spatial trajectory of each participant (colours red 

and green was used to differentiate the trajectories by the genetic groups) on wayfinding level 6 D 

level 8 E and level 11 F using x and y coordinates generated during gameplay. The maps generated 

illustrated a drift like navigation tendency in the e3e4 group that can be characterised as 

navigational preference to deviate from the most Euclidean path and travel toward the border of the 

environment compared to the e3e3 who demonstrated a preference to navigate more along the 

direct path to the checkpoint goal. A by level analysis on Wayfinding distance in the three levels 

showed that the e4 allele increased Wayfinding distance on level 6 (F=5.48, p=0.023) and level 8 

(F=4.08, p=0.04)  
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Figure 3 ROC curves for SHQ distance (pink line [lab-cohort]; dark pink line [lab – benchmark 

combined]) and non-verbal episodic memory (gold line [lab-cohort]) predicting APOE genotype. SHQ 

(lab-cohort) AUC .714, SE .068, 95% CI .555 - .822 | SHQ distance (lab – benchmark combined) AUC 

.701 SE .031 95% CI .639 - .759 | Non-verbal episodic memory (lab-cohort):  AUC .541, SE .074, 95% CI 

.286 - .578 
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Figure 4 Each e3e4 carrier score (red line) on SHQ distance plotted against the normal distribution of 

scores from an age-sex-education matched sub-population of the benchmark dataset (green 

histogram). Wayfinding distance scores are on the x axis and frequency of the benchmark population 

on the y axis. Sex is represented by M = male, F = female sex. Age is illustrated under each distribution 

right of sex. 
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Table 1: Neuropsychology background for lab-cohort genetic groups 

Measure Genotype Mean SD p value 

Addenbrooke’s Cognitive Exam (n=60) ε3ε3  94.9 3.44 p>0.05 
 

ε3ε4 92.7 3.77 
 

        ACE Memory (n=60) ε3ε3  24.9 1.86 p>0.05 
 

ε3ε4 23.9 1.69 
 

       ACE Visuospatial Ability (n=60) ε3ε4 15.0 1.36 p>0.05 

 ε3ε4 14.7 1.48  

RCFT Immediate Recall (n=59) ε3ε3  33.1 2.83 p>0.05 
 

ε3ε4 32.3 2.58 
 

RCTF 3-minute delay recall (n=59) ε3ε3  20.8 6.59 p=0.10 
 

ε3ε4 18.5 5.39 
 

ACE* Addenbrooke’s Cognitive Examination used as a measure of general cognitive ability.  

RCFT* Rey Complex Figure Task. Recall task was administered three minutes following RCFT copy task 

 

Table 2. Mean SHQ performance for each sample group 

Performance Variable  ε3ε3 carriers ε3ε4 carriers Benchmark players 

n 29 31 27108 

Mean Wayfinding Distance  3.791 (0.638) 4.455 (0.946) 3.918 (1.536) 

Mean Wayfinding Duration 4.661 (2.652) 4.973 (1.361) 4.744 (2.147) 

Mean Flare Accuracy 4.723 (1.162) 4.612(1.542) 4.932 (1.011) 

Data are Mean (SD) 

 

 

Table 3. Mixed effects of APOE genotype and demographic factors on SHQ performance  

Mixed Linear Model Outcome Fixed Effect b coefficient Std. Error F value p value 

SHQ Wayfinding Distance   
 

APOE* 

 

0.22 

 

0.07 

 

9.30 
 

>0.005 

 Sex 0.02 0.084 0.44 0.12 

 Age 0.01 0.006 0.18 0.67 

SHQ Wayfinding Duration 

 

 

APOE 

 

0.04 

 

0.15 

 

0.07 
 

0.77 

 Sex* 0.39 0.17 5.45 0.02 

 Age 0.01 0.01 0.11 0.74 

SHQ Flare Accuracy    
 

 

 APOE 0.04 0.01 2.19 0.14 

 
Sex* -0.36 0.26 3.88 0.04 

  Age -0.02 0.39 1.08 0.30 

Prior to the main analysis, competing mixed effect models were tested to examine the best model fit and model simplification 

based on standard Akaike and Bayesian information criterion. The final model in the table above (featuring subject-level 

random effects) was adopted since it demonstrated the best model fit for the data and was retained for the main analysis. 

Higher values on Wayfinding distance and wayfinding duration indicate poorer performance, conversely higher values on Flare 

accuracy indicate better performance. *p<0.05 


