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Abstract: In Northwest China, quantifying city-level CO2 emissions is fundamental to CO2 

alleviation but encounters difficulties in data availability and quality. Further, structuring city-

level emissions could be conductive to CO2 reduction. This study applies a practical methodology 

to 16 northwestern Chinese cities to grasp their historical trajectories of CO2 emissions. Then, 

structuring CO2 emissions is explored in terms of industrial structure, energy mix and urban-rural 

disparities for 8 northwestern Chinese cities. Results show that: (1) for 16 cities (2010-2015), 

capital and industrial cities generated most emissions. Meanwhile, CO2 emissions were mostly 

incompatible with CO2 intensity, but consistent with CO2 per capita; (2) for 8 cities (2006~2015), 

energy producing sectors, heavy manufacturing sectors, and coal remained major drivers of 

emissions. Then, the interconnection between industrial structure and energy mix exerted 

temporally varying impacts on emissions from energy producing sectors and heavy 

manufacturing sectors. Besides, urban gas consumption and rural coal use continued affecting 

most of household consumption emissions and household consumption emissions per capita. 

Moreover, the interplay between emissions and population was changed when emissions by 

energy type were decomposed among urban and rural households; and (3) uncertainty results 

averagely fall in the range of -39% to 6%. Finally, implications for CO2 reduction and future 

work are proposed. 

Highlights 

• CO2 intensity differs from CO2 emissions and CO2 per capita across most cities 

• Structural changes in CO2 emissions are city-specific in Northwest China (2006~2015) 

• Energy producing sectors and coal are still main drivers of emissions 

• Rural coal use remains a vital concern to curb rural household consumption emissions 

• The interplay between emissions and household population changes with energy types 
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1. Introduction 

Climate change has been regarded as one of six sustainability challenge across the globe (Pandey 

et al., 2011). Climate change mitigation and adaptation need joint endeavors at spatial levels 

(Peters, 2010). China, the world’s largest CO2 emitter since 2006 (Mi et al., 2017a), has strived to 

achieve peak CO2 emissions by 2030 (Climate Council, 2014) and the commitment of reducing 

CO2 emissions intensity (i.e. carbon emissions per unit of gross domestic product) in 2030 by 60-

65% as compared with the 2005 level (The Chinese Government, 2015). Besides, to meet this 

objective, the State Council of China has set tailored targets of CO2 reduction at the province 

level to ensure fairness because provinces are different significantly in resource endowment, 

economic development levels and energy consumption patterns (Chang and Chang, 2016). 

Furthermore, Chinese cities, marked by the high concentration of economic activities and 

population, have made contributions to about 85% of total CO2 emissions, while cities of the 

United States and Europe have accounted for 80% and 65%, respectively (Dhakal, 2009, 2010). 

Therefore, Chinese cities are considered to be vital participants of assuming CO2 responsibilities 

(Shan et al., 2019a). 

City-level absolute emissions have gained support in academia although city-scale carbon 

mitigation policies have been correlated with CO2 intensity. Supportive reasons are as follows: (1) 

absolute emissions and CO2 intensity may generate varied directions in guiding CO2 reduction. 

For instance, although the service sector of a city is less emission intensive, the city is also likely 

to contribute to a large amount of CO2 emissions (Zheng et al., 2018); (2) although some studies 

hold that absolute emissions as a single indicator could only assess partial carbon performance 

(Zhang and Wei, 2015; Zhou et al., 2010), absolute emissions could be more effective than CO2 

intensity when multi-faceted factors are considered together in an integrated and optimization 

model (Mi et al., 2015); (3) absolute emissions could be measured based on carbon footprint 

concept which helps generate improvements in climate policy making, cooperate carbon 

management, lifestyle assessment, and public awareness (Lin et al., 2015; Pandey et al., 2011; 

Schaltegger and Csutora, 2012); (4) the need to study absolute emissions is stronger after 

understanding the published reports on CO2 inventories in China are only confined to the national 

level, instead of the city level (Shan et al., 2017); and (5) although CO2 per capita could reflect 

regional disparities and then are considered as more acceptable than absolute values in emissions 

distribution (Criado and Grether, 2011), the related main focus is on the national scale with the 

strict prerequisite that the convergence in CO2 per capita is supposed to exist (Criado and Grether, 

2011). 

To calculate city-scale absolute emissions, comparisons have been conducted among scope 1 

(direct emissions from onsite fossil fuel consumption), scope 2 (indirect emissions from 

consuming energy such as purchased electricity, stream and heat) and scope 3 (other indirect 

emissions) (Lombardi et al., 2017). In addition, as for the accounting systems involved, concepts 

and contents of territorial, production- and consumption-based systems have been introduced 

(Lombardi et al., 2017), making accounting boundaries clear. Thus, two main methods have been 
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widely applied, including the IPCC method and the lifecycle assessment (LCA). The IPCC 

method is a top-down method to track territorial CO2 emissions (Shan et al., 2017; Yang et al., 

2017). By contract, LCA is a method featuring a system thinking that the environmental 

influences of a product, process or activity on their entire lifecycle could be examined through 

process-based, input-output-based and hybrid LCA, encompassing both a top-down thinking and 

a bottom-up one (Lin et al., 2013; Mi et al., 2016; Wang et al., 2016; Yang et al., 2018). However, 

data constraints have challenged the city-level absolute emissions accounting. For one thing, 

existing data for energy consumption and industrial products have failed to aid in comparative 

assessments. It is because megacities and some capital cities are equipped with energy balance 

tables and other energy information while other cities are not (Guan et al., 2017; Shan et al., 2017; 

Xi et al., 2011; Xie et al., 2007). For another, other kinds of data (e.g. remote sensing images, 

interviews with local households and/or local officials, alongside published reports and literatures) 

could not probably perform well in data consistency and accuracy (Shan et al., 2017), or lack 

uncertainty analyses (Tong et al., 2018). Facing these two challenges, China Emission Accounts 

and Datasets (CEADs, www.ceads.net) has completed the methodology capable of being applied 

to different data status at the city level (Shan et al., 2017), along with case studies (Xu et al., 

2018).  

Structuring calculated CO2 emissions over time and space in an absolute manner had increasingly 

been regarded as the potential approach to discontinuing CO2 emissions (Cai et al., 2018; Liu et 

al., 2010; Liu et al., 2012; Tan and Lu, 2015). On one hand, structural analysis techniques 

(basically including structural decomposition analysis, index decomposition analysis and 

production-theoretical decomposition analysis) (Li et al., 2017a; Wei et al., 2017) and 

econometric models (Guan et al., 2018; Meng et al., 2011) have been widely employed in 

exploring structural patterns in the form of aggregate relative importance, without discussing the 

role of absolute values in absolute emissions. On the other hand, structural patterns (in the form 

of absolute values) of absolute emissions have been investigated more at the national level than at 

the city level. But the national-level angles could inform cities in and outside China of how to 

structure absolute emissions with respect to industrial structure, energy mix and the urban-rural 

disparity. It is because: (1) identifying key sectors and forming clusters could be beneficial to 

improving material efficiency, promoting sustainable consumption and production, and achieving 

environmental sustainability (Liang et al., 2013; Wang and Liang, 2013); (2) the role of primary 

energy mix (Marrero, 2010), renewable energy greening energy structure and associated feasible 

matching with fossil fuel demand (Foidart et al., 2010) has been highlighted in CO2 reduction; 

and (3) To alleviate HCE in an efficient and fair manner, it is crucial to explore urban-rural 

divides in HCE (Wiedenhofer et al., 2017), HCE by energy type (Fan et al., 2015), HCE per 

capita (Gill and Moeller, 2018), and HCE  per capita by energy type (Roberts, 2010). 

Northwest China consists of five provinces and autonomous regions. The environment in this area 

is fragile under climate change threats when it comes to the glacial melt water and river runoff in 

Xinjiang (Shi et al., 2007), permafrost thawing and glacial retreat on Qinghai-Tibetan Plateau 

(Chen et al., 2013), and potential environmental threats such as water shortage and CO2 
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increments (Li et al., 2015). High CO2 emissions, the vital contributor of climate change, have 

become one of the main problems in western China (Guan et al., 2017) where CO2 intensity has 

continued being higher than the national average or the level of eastern and central China (Guan 

et al., 2017; Liang et al., 2016). Besides, western China has been suffering from CO2 leakage and 

environmental inequality due to its trade with other regions in and outside China (Feng et al., 

2013; Mi et al., 2017b). Moreover, CO2 emissions induced by peasants and herdsmen were not 

fallen outside the research agenda, highlighting the equity in CO2 responsibility allocation (Qu et 

al., 2013).  

When it comes to absolute CO2 emissions and associated structural patterns in northwestern 

Chinese cities over time, research gaps are as follows: (1) absolute emissions have not been paid 

more attention to in CO2 alleviation than CO2 intensity (Guan et al., 2017; Li et al., 2016). Further, 

northwestern Chinese cities have encountered constraints in data availability (Guan et al., 2017; 

Xie and Fan, 2014) and quality (Xie et al., 2007); (2) spatiotemporal measurements of emissions 

have not been enough although current researches for other areas have emphasized spatial, 

temporal or spatiotemporal changes of emissions (Shan et al., 2018; Tong et al., 2018; Xu et al., 

2018); (3) detailed comparative analyses across cities have not been sufficient; (4) regarding 

structural patterns of absolute emissions in light of industrial structure and energy mix, studies 

have mainly focused on decomposition techniques (Guan et al., 2017),  and econometric methods 

(Yang and Meng, 2019) to gain the relative importance of influential factors, rather than the 

absolute shares of these factors, in absolute emissions; and (5) although some studies have 

explored HCE and HCE per capita (Li et al., 2016), and HCE from peasants and herdsmen (Qu et 

al., 2013), urban-rural disparities in HCE by energy type and HCE per capita by energy type have 

not been explored. 

Therefore, to explore the historical trajectory of CO2 emissions and emissions-related indicators, 

16 cities (2010 ~ 2015) are taken as an example. Then, to grasp the structural patterns of 

emissions in terms of industrial structure, energy mix and urban-rural divides, 8 cities are chosen 

from the above 16 cities to cover a longer time period (i.e., from 2006 to 2015). Also, 

socioeconomic indicators in relation to CO2 emissions and HCE are analyzed. The reminder is 

organized as follows: section 2 introduces the methodology and data, section 3 illustrates CO2 

emissions of northwestern Chinese cities, section 4 provides socioeconomic indicators of 

northwestern Chinese cities, and section 5 summarizes conclusions, policy implications, and 

future work. 

2. Methodology, data and datasets 

2.1. Scope 

The territorial accounting system is employed in this study. Then, the IPCC method within the 

city boundary is applied to calculate the emissions from fossil fuel combustion and industrial 

process. It does not measure the emissions from imported energy and heat used during the inter-

city transportation process. There are some merits of using this accounting system although 
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calculating both direct and indirect emissions could help provide a holistic view of CO2 inventory. 

First, the territorial accounting system could contribute to coping with difficulties in data 

availability and quality. On the contrary, it is both labor- and time-consuming to measure indirect 

emissions based on input-output tables for most Chinese cities (Mi et al., 2016). Second, this 

system could inform domestic energy and emissions intensities of 47 socioeconomic sectors, 

which is another limit facing the application of input-output model(s) in Chinese cities (Mi et al., 

2016). Third, this system could provide information to develop other accounting systems as it 

helps form structural patterns of emissions in light of industrial structure, energy mix and the 

urban-rural disparity (Mi et al., 2017a). Finally, this system could help fill the research gaps 

mentioned in section 1.  

2.2. Emission accounts 

CO2 emissions in this study are divided into energy- and process-related emissions. In detail, 

energy-related emissions are measured in the Eq. (1). Further, the emissions factors are based on 

the experiment results of 4243 state-owned coal mines in China (Liu et al., 2015b) and from 

(Shan et al., 2019a). Then, when diverse data situations in northwestern Chinese cities are 

considered, the different formulas proposed in Shan et al. (2017) could help with comparative 

city-level studies in a consistent manner.   

�� = ∑ ∑ ������ = ∑ ∑ ���� × 
��� × ����� × 
��,� ∈ �1,17�, � ∈ �1,47�        

(1) 
Where ��  are energy-related CO2 emissions. ����  refer to CO2 emissions from sector � 

consuming fossil fuel �, ���� represents the consumption of fossil fuel � by sector �, 
��� is 

net caloric value, ��� stand for emission factors and 
�� is oxygenation efficiency. � ∈ �1,17� 

consists of 3 primary energy sources (i.e. coal, oil and gas) and 14 secondary energy sources 

transformed from primary energy sources. � ∈ �1,47� is composed of primary, secondary and 

tertiary industry, as well as their sub-sectors.  

Also, the process-based CO2 emissions are from 9 industrial processes and calculated in Eq. (2). 

It is noted that process-based emissions are caused by the chemical and physical reactions during 

the production process, rather than the energy combustion by industrial sectors. 

CP = ∑ ���� × ���, � ∈ �1,9�             (2) 

Where CP  are CO2 emissions from industrial process � , ���  represents the production of 

industrial process �, and ��� is the emission factor of industrial process �. � ∈ �1,9� consists of 9 

industrial processes such as cement and lime production (Shan et al., 2019b). 

2.3. Data source 

To be compatible with the accounting method of measuring CO2 emissions in Shan et al. (2017) , 

data and data processing adjust themselves correspondingly. The first category of data are energy-

related data. Energy balance table (EBT), industrial fossil fuel consumption data and industrial 
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products’ production data are adopted from the municipal bureau of statistics. So energy accounts 

could be formed for 47 socioeconomic sectors consuming 17 fossil fuels and for 9 industrial 

processes. Besides, to avoid double counting, chemical raw materials (introduced as non-energy 

use in EBT), energy loss during the transportation, and non-burning fossil fuels input during the 

energy conservation process are removed. However, when these energy-related data are lacking, 

socioeconomic data (as the second category of data) from the same data source are used to aid in 

the data processing according to detailed formulas in Shan et al. (2017). The availability status of 

city-level data could be found in SI from Table S3 to Table S19. The third category of data are 

the emissions factors we believe suits China and are from (Liu et al., 2015b; Shan et al., 2019a). 

They are available from (Table S1 and Table S2 in SI). Thus, the final category of data (including 

remaining emissions factors, net caloric value and oxygenation efficiency representing different 

combustion technology levels) are from IPCC (2006).  

Then, data in relation to this study will be updated in CEADs, a platform where all data available 

are freely accessible for academic use after registration to achieve the goal of sharing free, 

transparent and robust data. Updated data cover the CO2 inventories complied from production 

and consumption perspectives, energy and socioeconomic inventories at the national, provincial 

and city levels. Additionally, corresponding methods, applications and publications from CEADs 

would be the most up-to-date outcomes. 

2.4. Uncertainty 

Given the uncertainty issues featuring emissions inventories, the corresponding analysis is 

necessitated to enhance emissions inventories. Monte Carlo simulations are the method 

empowering the uncertainty to be measured, supported and applied by IPCC (IPCC, 2006). In this 

study, the term “uncertainty” follows Shan et al. (2018),  referring to the upper and lower bounds 

of a ±48.75 % confidence interval (CI) around the central estimate. Considering the whole 

process of CO2 calculation within the territorial accounting system, there are two major 

uncertainty sources, that is, fossil fuel energy consumption and emissions factors. Also, because 

industrial processes could consume fewer energy and cause fewer uncertainties, related 

uncertainty analysis is not involved here, which also follows and is consistent with Shan et al. 

(2017). In this context, the Monte Carlo simulations are repeated for 20000 times to calculate the 

uncertainties of total emissions from 16 northwestern Chinese cities (2010-2015), and from 8 

northwestern Chinese cities (2006-2015). In addition, the detailed coefficients of variations (CV) 

of fossil fuel energy use data and emissions factors are adopted according to Shan et al. (2017).  

Generally, the uncertainty of total emissions of the cities fall in the range of 10%-20% for non-

OECD countries (Marland, 2008; Olivier and Peters, 2002). Also, these results are in consistent 

with those from Shan et al. (2017). So the results based on the uncertainty analysis turn out 

acceptable within a 97.5% convenience level. In particular, the uncertainty of total emissions of 

the 16 cities (2010-2015) is at a range of (-39% to -9%) to (-29% to 6%). Among these 16 cities, 

Lanzhou is the most important player (-13%, 4%) while Weinan possesses the smallest share (-

39%, -29%). Secondly, the uncertainty of total emissions of the 8 cities (2006-2015) is at a range 
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of (-26%, -9%) to (-14%, 6%). Among these cities, Lanzhou contributes the most (-13%, 5%) but 

Jiayuguan is responsible for the smallest share (-26%, -14%). At the sector level, coal mining and 

dressing sector accounts for the most to the uncertainty of total emissions, with the average 

uncertainty ranging from (-20%) to 21%, which could be also impacted by the large uncertainty 

existing in coal’s emission factors and a large number of coal consumption (Shan et al., 2017). 

However, this result does not align with the results in the context of other regions Shan et al. 

(2017), which indicates regional disparities also exist in the uncertainty analysis (Shan et al., 

2019a). 

3. Emissions of northwestern Chinese cities 

3.1. Study areas 

From 2006 to 2015, CO2 emissions in northwestern Chinese cities have been influenced 

specifically in several years. In detail, accompanying the West Development Strategy since 2001, 

increasing CO2 emissions has been featuring the urbanization and industrialization phases in 

Northwest China (Guan et al., 2017; Xie et al., 2007). After the year 2008 when the global 

financial crisis occurred, although Chinese CO2 flows have reversed across regions, Northwest 

remained the largest contributor to CO2 emissions outflows (Mi et al., 2017b). Policies related to 

climate change have also been characterized by temporal changes. For provinces in Northwest 

China, CO2 intensity was considered as formal since the 12th Five-Year Plan (2011-2015), which 

had been proposed at the nation level since the 11th Five-Year Plan (2006-2010) (Xu et al., 2017). 

However, at the city level, emissions intensity was not accepted more widely until the 13th Five-

Year Plan (2016-2020). Moreover, the Silk Road Economic Belt proposed in 2013 has been 

increasingly regarded as a future stimulus combining economic growth with probable 

environmental degradation (Cai et al., 2016; Li et al., 2017b).  

Meantime, due to difficulties in data availability, there is a balance between spatial and temporal 

data for northwestern Chinese cities. To illustrate, the historical analysis of CO2 emissions is 

conducted across 16 cities from 2010 to 2015, while the structural patterns of emissions are 

studied among 8 cities from 2006 to 2015†. These 8 cities are selected from the above 16 cities, 

and include all the capitals available.  

3.2. Total emissions 

Between 2010 and 2015, capital and industrial cities had remained the vital contributors to most 

cumulative emissions (Fig.1). But at the same time, the temporal changes in CO2 emissions had 

been diverse across 16 cities.  For instance, Lanzhou (the capital of Gansu), Weinan (an industrial 

city), Yulin (an industrial city), Yinchuan (the capital of Ningxia) and Shizuishan (an industrial 

                                                           
† However, due to limited data availability, some city-scale data in a certain year (including Shangluo in 
2013, Weinan in 2011, Yan’an in 2015, Shizuishan in 2010, and Wuwei in 2012) are not included in the 
case study of 16 cities (2010-2015). Neither are related data of Yan’an in 2015 and those of Xining in 2006 
and 2007 in the case study of 8 cities (2006-2015). But to ensure the constant studies in 8 cities, data of 
Yulin in 2006 are supplemented by those in 2005. 
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city) had generated most cumulative emissions. However, Lanzhou and Shizuishan had 

experienced some fluctuations in total emissions. By contrast, Weinan and Yulin had witnessed 

an increase in total emissions. Therefore, based on these results, there is a need to establish a 

time-series CO2 account at the city level.  

Moreover, some capital cities (i.e. Xi’an, the capital of Shanaxi, and Xining, the capital of 

Qinghai), and relatively developed cities (i.e. Xianyang, Baoji, and Wuwei) experienced an 

emission peak in 2013 or 2014 based on the up-to-date results of this study. These, studying the 

historical trajectory of CO2 emissions in these typical cities could be crucial because this process 

could help cities struggling with tackling climate change to reduce emissions (Dhakal, 2009; 

Hoornweg et al., 2011; Wang et al., 2008; Yang and Meng, 2019). 

 

Fig. 1. CO2 emissions of 16 northwestern Chinese cities over time.  

3.3. Emissions by sectors and energy types 

For most cities, energy production sectors (EP) and heavy manufacturing sectors (HM) persisted 

in contributing the most to emissions during11th and 12th Five-Year Plans (i.e., from 2006 to 
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2015) (Fig.2). This result supports that optimizing industrial structure (Guan et al., 2017) or 

promoting energy efficiency (Jiang et al., 2015; Wang and Wei, 2014) could be effective in CO2 

reduction for most cities. Also, developing circular economy has been recommended based on the 

reality of this area (Cheng et al., 2019). But it is also noted that, driven by the growing 

interregional trade, Northwest China has been the major contributor to embodied CO2 transfers 

(Zhou et al., 2018). In this sense, to reduce CO2 emissions, the final demand perspective (or a 

consumption-based perspective) will be highlighted when contributions of energy producers and 

users to emissions are clarified (Zhang et al., 2016).  

When it comes to individual cities,  if the production-based CO2 responsibility is considered 

(Zhang, 2013), sectors could assume different responsibilities in Northwest China. According to 

Fig.2, for Xi’an and Yinchuan, the decarbonization of EP could be prioritized. For Lanzhou, 

Xianyang and Yulin, both EP and HM need decarbonization. For Jiayuguan, and Xining, 

decarbonizing HM is more significant. For Yan’an, although there were some fluctuations in 

sectoral shares of total emissions, EP and HM require further decarbonization based on the latest 

results in 2013 and 2014. However, other considerations concerning sectoral CO2 responsibilities 

could be rethought (Mi et al., 2019; Zhang, 2013), partly because sectoral CO2 accounting from 

multiple perspectives could promote efficient low-carbon policies (Li et al., 2018). 

Then, energy mix had contributed stably to emissions from 2006 to 2015 (Fig.2). Generally, most 

cities were characterized by the largest share of emissions from coal, further hindering the 

decoupling process from economic growth in this area (Dong et al., 2016). Specifically, oil-

related emissions in Lanzhou were the largest among those in these 8 cities, which were 

generated from petroleum processing and coking. Likewise, the process-related emissions in 

Jiayuguan were larger than those in other 7 cities, mainly consisting of emissions from ferrous 

and nonferrous metals smelting and pressing. Also, coal tends to be more carbon intensive than 

other fossil fuels like natural gas (Pan et al., 2013). Therefore, energy transition could be another 

feasible approach to alleviating emissions (Yang and Meng, 2019; Zhuang et al., 2010). However, 

during the energy transition process, some barriers could occur (Geng et al., 2016; Ren et al., 

2015).  
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Fig. 2. CO2 emissions by sector and energy type in 8 northwestern Chinese cities over time (Unit: 
MtCO2e). Notes: For each subfigure, all the solid lines refer to the y-axis on the right while all the 
bar graphs refer to the y-axis on the left. 

However, for each city, the interconnection between industrial structure and energy mix had 

exerted temporally varying impacts on CO2 emissions from EP and HM (Fig.3). For example, in 

Xi’an and Lanzhou, the ratios of coal-related emissions from EP to total emissions (i.e., the sum 

of emissions from EP and HM across 8 cities) decreased obviously. In Xi’an, Yan’an and 

Lanzhou, the proportions of oil-related emissions from EP to total emissions achieved an obvious 
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decline. However, in Yinchuan and Yulin, the shares of coal-related emissions from EP in total 

emissions increased apparently. Thus, regarding this phenomenon, one possible explanation is 

that interregional CO2 flows may occur more evidently, but to explore the exact CO2 flows, 

establishing a multi-region input-output table across regions is necessary (Meng et al., 2018; 

Zheng et al., 2019).  

 

Fig. 3. Contributions of energy types to CO2 emissions from EP and HM in 8 northwestern 
Chinese cities in 2006, 2010, 2011, and 2015, respectively (Unit: MtCO2e) 

4. Emission-socioeconomic indictors of northwestern Chinese cities 

4.1 Joint analysis of total emissions, intensity, and per capita emissions 

For most cities, CO2 emissions were not compatible with CO2 intensity, but consistent with CO2 

per capita, which is similar to the results in developed cities in China (Liu et al., 2015a). This 

phenomenon supports three points. First, for most cities, the drivers of CO2 emissions appeared to 

be diverse, not limited to variations in CO2 intensity, which aligns with (Guan et al., 2017). 

Second, experience and lessons from Chinese developed cites could be learnt by cities in this area 
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in the field of CO2 alleviation (Khanna et al., 2014). Finally, CO2 emissions and CO2 intensity 

could be advocated simultaneously in the policymaking process. 

For individual cities, Weinan, one industrial city in Shaanxi, stood for the city where the decline 

in CO2 intensity continued accompanying the increase in CO2 emissions (Fig.4a). On the contrary, 

there are another two types of cities. First, Wuwei represented the city where the development 

pathway between CO2 emissions and CO2 intensity remained consistent (Fig. 4b). The situation in 

Wuwei was also similar to that in Shangluo. Second, in Lanzhou, the interconnection between 

CO2 emissions and CO2 intensity was inconsistent in several years (Fig. 4c). Most cities 

experienced this similar situation, including Ankang, Baoji, Xi’an, Yulin, Xianyang, Yan’an, 

Shizuishan, Yinchuan, Xining, Jiayuguan, Baiyin, and Dingxi. 

Moreover, in practice, some provinces in Northwest China, such as Shaanxi (The People's 

Government of Shaanxi Province, 2018) and Gansu (The People's Government of Gansu 

Province, 2017), have emphasized the role of emissions intensity and absolute emissions being 

considered simultaneously in climate change mitigation. Thus, these provinces have selected pilot 

cities, expecting these cities’ pragmatic experience will be applied to others. Despite this, since 

the interconnection between CO2 emissions and CO2 intensity across most cities were slightly or 

largely different, these cities could critically and carefully learn from others succeeding in climate 

change mitigation and adaptation. 
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Fig. 4. CO2 emissions, CO2 intensity (Unit: tCO2e per one thousand yuan in constant 2010 price), 

and CO2 per capita (Unit: tCO2e per capita) across time at the city level. 

4.2. Emissions in related to household energy consumption 

Generally, urban gas consumption and rural coal use were the major contributors to HCE and 

HCE per capita (Fig.5). This result helps make reducing rural coal-related emissions the vital task 

of reducing emissions from rural household consumption. Then, some measures could be 

implemented, such as upgrading and greening energy consumption patterns (Jiang, 2016; Niu et 

al., 2011), encouraging sustainable consumption patterns and lifestyles (Li et al., 2016; Liu et al., 

2011), and making full use of the importance of income and education levels to CO2 reduction 

(Guan et al., 2017; Xing et al., 2017).  

Then, when HCE and HCE per capita were decomposed by energy type, they developed an 

inconsistent development pathway across cities in terms of the rural-urban disparity (Fig.5). In 

light of HCE, in Xi’an, Xianyang, Yulin, Yan’an, Yinchuan and Xining, the urban-rural divide in 

gas-related HCE maintained the largest. In Jiayuguan, the urban-rural disparity in HCE by all 

energy types was smaller. In Lanzhou, between 2013 and 2015, the urban-rural divergence in 

HCE caused by oil was larger. Then, with respect to HCE per capita, in Xi’an, Xianyang, Yulin 

and Yan’an, the urban-rural divide continued being centered in gas; in Lanzhou, Jiayuguan and 

Yinchuan, this divide kept focusing on coal; and in Xining, this divide had the stable focus on 

coal and gas. So there are further explorations in the region-specific factors influencing the urban-

rural disparities in HCE by energy type and HCE per capita by energy type, which is in line with 

the results exploring the factors affecting HCE and HCE per capita in Northwest China (Guan et 

al., 2017; Li et al., 2016). 

Furthermore, although the relation between CO2 emissions and CO2 per capita across cities was 

consistent, the interplay between emissions and population could be changed when HCE by 

energy type and HCE per capita by energy type are further decomposed among rural and urban 

households. So some polices related to HCE could think seriously of this probable change, to 

promote the fairness among urban and rural households, in terms of CO2 responsibility allocation 
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(Gill and Moeller, 2018; Qu et al., 2013; Roberts, 2010) and help address associated urban 

concerns (Wang et al., 2018; Wang et al., 2017). 

 

Fig. 5. HCE by energy type (Unit: MtCO2e) and HCE per capita by energy type (Unit: tCO2e per 
capita) in 8 northwestern Chinese cities across time.  

5. Conclusion and policy implication 

5.1. Conclusion 

In Northwest China, the historical trajectory of CO2 emissions is reflected in 16 cities from 2010 

to 2015. Then, the structural patterns of emissions are grasped in 8 cities from 2006 to 2015 with 

respect to industrial structure, energy mix and urban-rural divides. Also, socioeconomic 

indicators in relation to CO2 emissions and HCE are also analyzed. Besides, to validate these 

constructed CO2 accounts, Monte Carlo analysis is applied to explore the uncertainties featuring 

the CO2 accounting process. 

For 16 cities (2010-2015), First, capital and industrial cities kept contributing the most to 

emissions. Then, Xi’an, Xining, Xianyang, Baoji, and Wuwei experienced an emission peak in 
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2013 or 2014 based on the updates in this study. Second, CO2 emissions were mostly consistent 

with CO2 per capita, but incompatible with CO2 intensity.  

For 8 cities (2006-2015), first, EP, HM, and coal contributed the most to emissions. Further, the 

interconnections between industrial structure and energy mix exerted temporally varying impacts 

on CO2 emissions from EP and HM. Second, urban gas consumption and rural coal use were the 

major contributors to HCE and HCE per capita. Third, when HCE and HCE per capita were 

decomposed by energy type, they developed an inconsistent development pathway across cities in 

terms of the rural-urban disparity. Finally, the interplay between emissions and population could 

be changed when HCE by energy type and HCE per capita by energy type are further 

decomposed among urban and rural households. 

Uncertainty analysis results show that the overall uncertainty of emissions fall in the reasonable 

range for non-OECD countries. When it comes to city-scale contributions to the uncertainty 

(2010~2015), Lanzhou contributed the most while Weinan experienced the opposite. For 

corresponding contributions from 2006 to 2015, Lanzhou remained the major player but 

Jiayuguan is responsible for the smallest share. Additionally, coal mining and dressing sector 

accounts for the most to the uncertainty of total emissions. 

5.2. Policy implication 

For 16 cities (2010-2015), first, establishing a time-series CO2 account is necessary on the city 

scale. Moreover, studying the historical trajectory of CO2 emissions in typical cities could help 

cities struggling with tackling climate change to reduce emissions. Second, it is meaningful to 

explore city-specific drivers of CO2 emissions, dissimilate experience and lessons from Chinese 

developed cites to cities in this area in the field of CO2 alleviation, and support the simultaneous 

but critical thinking of CO2 emissions and CO2 intensity in the policymaking process.  

For 8 cities (2006-2015), first, optimizing industrial structure, promoting energy efficiency, and 

developing circular economy could be effective in CO2 reduction. Additionally, a consumption-

based perspective could be highlighted when contributions of energy producers and users to 

emissions are clarified. Second. energy transition could be another feasible approach to 

alleviating emissions. Third, to explore the CO2 flows within the interregional network informing 

industrial structure and energy mix, establishing a multi-region input-output table across regions 

is recommended. Forth, to reduce rural coal-related HCE, some countermeasures could be taken 

into account, including upgrading and greening energy consumption patterns, encouraging 

sustainable consumption patterns and lifestyles, and making full use of the importance of income 

and education levels to CO2 reduction. Fifth, further explorations are encouraged in the field of 

region-specific factors influencing the urban-rural disparities in HCE by energy type and HCE 

per capita by energy type. Finally, some polices related to HCE could detail the relation between 

emissions and population to cope with CO2 reduction and associated urban concerns. 

5.3. Future work 
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Although the up-to-date data collected in this study are those that we can ever find, it could be 

more informative when more spatiotemporal data are involved.  Also, as the socioeconomic data 

are sometimes supplementary to the required but missing energy data, uncertainties could exist. 

In this sense, collecting and compiling more data related to this area could be one direction of our 

future work. The second direction is to combine the methodology with other methods such as 

input-output models and econometric methods. For instance, it is useful to establish a MRIO to 

identify the role that interregional trade has played in the field of economy and environment. A 

third direction is to combine this top down thinking with a bottom up one to compile CO2 

emissions inventories for northwestern Chinese cities. For instance, some household surveys have 

been conducted for cities in this area (Li et al., 2016; Qu et al., 2013), although the relevant 

uncertainty analyses need further explorations. 

Acknowledgement 

This work was supported by the National Key R&D Programme of China (2016YFA0602604), 

the Natural Science Foundation of China (71533005, 41629501, 71873059), Chinese Academy of 

Engineering (2017-ZD-15-07), the UK Natural Environment Research Council (NE/N00714X/1 

and NE/P019900/1), the Economic and Social Research Council (ES/L016028/1), the Royal 

Academy of Engineering (UK-CIAPP/425). 

The authors acknowledge the efforts and “crowd-sourcing” work of the Applied Energy Summer 

School 2017 and 2018 held in Nanjing Normal University and Tsinghua University. All the data 

and results has been uploaded to the China Emission Accounts and Datasets (www.ceads.net) for 

free re-use. 

References 

Cai, B., Guo, H., Cao, L., Guan, D., Bai, H. (2018) Local strategies for China's carbon mitigation: An 

investigation of Chinese city-level CO2 emissions. Journal of Cleaner Production 178, 890-902. 

Cai, B., Wang, J., He, J., Geng, Y. (2016) Evaluating CO2 emission performance in China’s cement 

industry: an enterprise perspective. Applied energy 166, 191-200. 

Chang, K., Chang, H. (2016) Cutting CO2 intensity targets of interprovincial emissions trading in 

China. Applied Energy 163, 211-221. 

Chen, H., Zhu, Q., Peng, C., Wu, N., Wang, Y., Fang, X., Gao, Y., Zhu, D., Yang, G., Tian, J. (2013) 

The impacts of climate change and human activities on biogeochemical cycles on the 

Qinghai-Tibetan Plateau. Global change biology 19, 2940-2955. 

Cheng, H., Dong, S., Li, F., Yang, Y., Li, Y., Li, Z. (2019) A circular economy system for breaking the 

development dilemma of ‘ecological Fragility–Economic poverty’vicious circle: A CEEPS-SD 

analysis. Journal of Cleaner Production 212, 381-392. 

Climate Council. (2014) The US-China joint announcement on climate change and clean energy 

cooperation: What’s the big deal. Climate Council of Australian Ltd. 

Criado, C.O., Grether, J.-M. (2011) Convergence in per capita CO2 emissions: A robust 

distributional approach. Resource and energy economics 33, 637-665. 

Dhakal, S. (2009) Urban energy use and carbon emissions from cities in China and policy 

implications. Energy policy 37, 4208-4219. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

17 

 

Dhakal, S. (2010) GHG emissions from urbanization and opportunities for urban carbon 

mitigation. Current Opinion in Environmental Sustainability 2, 277-283. 

Dong, J.-F., Deng, C., Wang, X.-M., Zhang, X.-L. (2016) Multilevel index decomposition of energy-

related carbon emissions and their decoupling from economic growth in Northwest China. 

Energies 9, 680. 

Fan, J.-L., Yu, H., Wei, Y.-M. (2015) Residential energy-related carbon emissions in urban and 

rural China during 1996–2012: From the perspective of five end-use activities. Energy and 

Buildings 96, 201-209. 

Feng, K., Davis, S.J., Sun, L., Li, X., Guan, D., Liu, W., Liu, Z., Hubacek, K. (2013) Outsourcing CO2 

within China. Proceedings of the National Academy of Sciences 110, 11654-11659. 

Foidart, F., Oliver-Solá, J., Gasol, C., Gabarrell, X., Rieradevall, J. (2010) How important are 

current energy mix choices on future sustainability? Case study: Belgium and Spain—

projections towards 2020–2030. Energy Policy 38, 5028-5037. 

Geng, W., Ming, Z., Lilin, P., Ximei, L., Bo, L., Jinhui, D. (2016) China׳ s new energy development: 

Status, constraints and reforms. Renewable and Sustainable Energy Reviews 53, 885-896. 

Gill, B., Moeller, S. (2018) GHG emissions and the rural-urban divide. A carbon footprint analysis 

based on the German official income and expenditure survey. Ecological Economics 145, 

160-169. 

Guan, D., Meng, J., Reiner, D.M., Zhang, N., Shan, Y., Mi, Z., Shao, S., Liu, Z., Zhang, Q., Davis, S.J. 

(2018) Structural decline in China’s CO2 emissions through transitions in industry and energy 

systems. Nature Geoscience 11, 551. 

Guan, Y., Kang, L., Shao, C., Wang, P., Ju, M. (2017) Measuring county-level heterogeneity of CO2 

emissions attributed to energy consumption: A case study in Ningxia Hui Autonomous 

Region, China. Journal of Cleaner Production 142, 3471-3481. 

Hoornweg, D., Sugar, L., Trejos Gomez, C.L. (2011) Cities and greenhouse gas emissions: moving 

forward. Environment and Urbanization 23, 207-227. 

IPCC. (2006) IPCC guidelines for national greenhouse gas inventories. Institute for Global 

Environmental Strategies (IGES), Kamiyamaguchi Hayama, Japan. 

Jiang, J. (2016) China's urban residential carbon emission and energy efficiency policy. Energy 

109, 866-875. 

Jiang, Y., Cai, W., Wan, L., Wang, C. (2015) An index decomposition analysis of China's 

interregional embodied carbon flows. Journal of Cleaner Production 88, 289-296. 

Khanna, N., Fridley, D., Hong, L. (2014) China's pilot low-carbon city initiative: A comparative 

assessment of national goals and local plans. Sustainable Cities and Society 12, 110-121. 

Li, A., Zhang, A., Yao, X., Zhou, Y.X. (2017a) Decomposition analysis of factors affecting carbon 

dioxide emissions across provinces in China. Journal of Cleaner Production 141, 1428-1444. 

Li, J., Huang, X., Yang, H., Chuai, X., Li, Y., Qu, J., Zhang, Z. (2016) Situation and determinants of 

household carbon emissions in Northwest China. Habitat International 51, 178-187. 

Li, J.S., Zhou, H., Meng, J., Yang, Q., Chen, B., Zhang, Y. (2018) Carbon emissions and their drivers 

for a typical urban economy from multiple perspectives: A case analysis for Beijing city. 

Applied Energy 226, 1076-1086. 

Li, P., Qian, H., Howard, K.W., Wu, J. (2015) Building a new and sustainable “Silk Road economic 

belt”. Environmental Earth Sciences 74, 7267-7270. 

Li, P., Qian, H., Zhou, W. (2017b) Finding harmony between the environment and humanity: an 

introduction to the thematic issue of the Silk Road. Environmental Earth Sciences 76, 105. 

Liang, H., Dong, L., Luo, X., Ren, J., Zhang, N., Gao, Z., Dou, Y. (2016) Balancing regional industrial 

development: analysis on regional disparity of China's industrial emissions and policy 

implications. Journal of Cleaner Production 126, 223-235. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

18 

 

Liang, S., Zhang, T., Jia, X. (2013) Clustering economic sectors in China on a life cycle basis to 

achieve environmental sustainability. Frontiers of Environmental Science & Engineering 7, 

97-108. 

Lin, J., Hu, Y., Cui, S., Kang, J., Ramaswami, A. (2015) Tracking urban carbon footprints from 

production and consumption perspectives. Environmental Research Letters 10, 054001. 

Lin, J., Liu, Y., Meng, F., Cui, S., Xu, L. (2013) Using hybrid method to evaluate carbon footprint of 

Xiamen City, China. Energy Policy 58, 220-227. 

Liu, L.-C., Wang, J.-N., Wu, G., Wei, Y.-M. (2010) China’s regional carbon emissions change over 

1997–2007. International Journal of Energy and Environment 1, 161-176. 

Liu, L.-C., Wu, G., Wang, J.-N., Wei, Y.-M. (2011) China’s carbon emissions from urban and rural 

households during 1992–2007. Journal of Cleaner Production 19, 1754-1762. 

Liu, Z., Feng, K., Hubacek, K., Liang, S., Anadon, L.D., Zhang, C., Guan, D. (2015a) Four system 

boundaries for carbon accounts. Ecological modelling 318, 118-125. 

Liu, Z., Guan, D., Wei, W., Davis, S.J., Ciais, P., Bai, J., Peng, S., Zhang, Q., Hubacek, K., Marland, G. 

(2015b) Reduced carbon emission estimates from fossil fuel combustion and cement 

production in China. Nature 524, 335. 

Liu, Z., Liang, S., Geng, Y., Xue, B., Xi, F., Pan, Y., Zhang, T., Fujita, T. (2012) Features, trajectories 

and driving forces for energy-related GHG emissions from Chinese mega cites: the case of 

Beijing, Tianjin, Shanghai and Chongqing. Energy 37, 245-254. 

Lombardi, M., Laiola, E., Tricase, C., Rana, R. (2017) Assessing the urban carbon footprint: An 

overview. Environmental Impact Assessment Review 66, 43-52. 

Marland, G. (2008) Uncertainties in accounting for CO2 from fossil fuels. Journal of Industrial 

Ecology 12, 136-139. 

Marrero, G.A. (2010) Greenhouse gases emissions, growth and the energy mix in Europe. Energy 

Economics 32, 1356-1363. 

Meng, J., Zhang, Z., Mi, Z., Anadon, L.D., Zheng, H., Zhang, B., Shan, Y., Guan, D. (2018) The role 

of intermediate trade in the change of carbon flows within China. Energy Economics 76, 303-

312. 

Meng, L., Guo, J.e., Chai, J., Zhang, Z. (2011) China’s regional CO2 emissions: characteristics, 

inter-regional transfer and emission reduction policies. Energy Policy 39, 6136-6144. 

Mi, Z.-F., Pan, S.-Y., Yu, H., Wei, Y.-M. (2015) Potential impacts of industrial structure on energy 

consumption and CO2 emission: a case study of Beijing. Journal of Cleaner Production 103, 

455-462. 

Mi, Z., Meng, J., Guan, D., Shan, Y., Liu, Z., Wang, Y., Feng, K., Wei, Y.-M. (2017a) Pattern changes 

in determinants of Chinese emissions. Environmental Research Letters 12, 074003. 

Mi, Z., Meng, J., Guan, D., Shan, Y., Song, M., Wei, Y.-M., Liu, Z., Hubacek, K. (2017b) Chinese CO2 

emission flows have reversed since the global financial crisis. Nature communications 8, 

1712. 

Mi, Z., Zhang, Y., Guan, D., Shan, Y., Liu, Z., Cong, R., Yuan, X.-C., Wei, Y.-M. (2016) Consumption-

based emission accounting for Chinese cities. Applied Energy 184, 1073-1081. 

Mi, Z., Zheng, J., Meng, J., Zheng, H., Li, X., Coffman, D.M., Woltjer, J., Wang, S., Guan, D. (2019) 

Carbon emissions of cities from a consumption-based perspective. Applied Energy 235, 509-

518. 

Niu, S., Zhang, X., Zhao, C., Ding, Y., Niu, Y., Christensen, T.H. (2011) Household energy use and 

emission reduction effects of energy conversion in Lanzhou city, China. Renewable energy 

36, 1431-1436. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

19 

 

Olivier, J., Peters, J. 2002. Uncertainties in global, regional and national emission inventories, 

Non-CO2 greenhouse gases: scientific understanding, control options and policy aspects. 

Proceedings of the Third International Symposium, Maastricht, Netherlands, pp. 525-540. 

Pan, K.-x., Zhu, H.-x., Chang, Z., Wu, K.-h., Shan, Y.-l., Liu, Z.-x. (2013) Estimation of coal-related 

CO2 emissions: the case of China. Energy & Environment 24, 1309-1321. 

Pandey, D., Agrawal, M., Pandey, J.S. (2011) Carbon footprint: current methods of estimation. 

Environmental monitoring and assessment 178, 135-160. 

Peters, G.P. (2010) Carbon footprints and embodied carbon at multiple scales. Current Opinion 

in Environmental Sustainability 2, 245-250. 

Qu, J., Zeng, J., Li, Y., Wang, Q., Maraseni, T., Zhang, L., Zhang, Z., Clarke-Sather, A. (2013) 

Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-

alpine regions, China. Energy Policy 57, 133-140. 

Ren, J., Tan, S., Goodsite, M.E., Sovacool, B.K., Dong, L. (2015) Sustainability, shale gas, and 

energy transition in China: assessing barriers and prioritizing strategic measures. Energy 84, 

551-562. 

Roberts, T.M. (2010) Mitigating the Distributional Impacts of Climate Chance Policy. Wash. & Lee 

L. Rev. 67, 209. 

Schaltegger, S., Csutora, M. (2012) Carbon accounting for sustainability and management. Status 

quo and challenges. Journal of Cleaner Production 36, 1-16. 

Shan, Y., Guan, D., Hubacek, K., Zheng, B., Davis, S.J., Jia, L., Liu, J., Liu, Z., Fromer, N., Mi, Z. 

(2018) City-level climate change mitigation in China. Science advances 4, eaaq0390. 

Shan, Y., Guan, D., Liu, J., Mi, Z., Liu, Z., Liu, J., Schroeder, H., Cai, B., Chen, Y., Shao, S. (2017) 

Methodology and applications of city level CO2 emission accounts in China. Journal of 

Cleaner Production 161, 1215-1225. 

Shan, Y., Liu, J., Liu, Z., Shao, S., Guan, D. (2019a) An emissions-socioeconomic inventory of 

Chinese cities. Scientific Data 6, 190027. 

Shan, Y., Zhou, Y., Meng, J., Mi, Z., Liu, J., Guan, D. (2019b) Peak cement‐related CO2 emissions 

and the changes in drivers in China. Journal of Industrial Ecology in press. 

Shi, Y., Shen, Y., Kang, E., Li, D., Ding, Y., Zhang, G., Hu, R. (2007) Recent and future climate 

change in northwest China. Climatic change 80, 379-393. 

Tan, F., Lu, Z. (2015) Current status and future choices of regional sectors-energy-related CO2 

emissions: The third economic growth pole of China. Applied energy 159, 237-251. 

The Chinese Government. (2015) Enhanced Actions on Climate Change: China's Intended 

Nationally Determined Contributions. 

http://www4.unfccc.int/ndcregistry/PublishedDocuments/China%20First/China%27s%20Firs

t%20NDC%20Submission.pdf/ (accessed 30 June 2015). 

The People's Government of Gansu Province. (2017) The 13th Five-Year work plan for 

greenhouse gas emission control in Gansu Province. 

http://www.gansu.gov.cn/art/2017/2/13/art_4785_300006.html/ (accessed 7 February 2017). 

The People's Government of Shaanxi Province. (2018) The 13th Five-Year work plan for 

greenhouse gas emission control in Shaanxi Province. 

http://www.shaanxi.gov.cn/info/iList.jsp?tm_id=416&cat_id=14715&info_id=102092&node
_id=GKszfbgt/ (accessed 02 February 2018). 

Tong, K., Fang, A., Li, Y., Shi, L., Wang, Y., Wang, S., Ramaswami, A. (2018) The collective 

contribution of Chinese cities to territorial and electricity-related CO2 emissions. Journal of 

Cleaner Production 189, 910-921. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

20 

 

Wang, G., Xia, D., Liu, X., Chen, F., Yu, Y., Yang, L., Chen, J., Zhou, A. (2008) Spatial and temporal 

variation in magnetic properties of street dust in Lanzhou City, China. Chinese Science 

Bulletin 53, 1913-1923. 

Wang, K., Wei, Y.-M. (2014) China’s regional industrial energy efficiency and carbon emissions 

abatement costs. Applied Energy 130, 617-631. 

Wang, Y., Li, X., Sun, M., Yu, H. (2018) Managing urban ecological land as properties: Conceptual 

model, public perceptions, and willingness to pay. Resources, Conservation and Recycling 

133, 21-29. 

Wang, Y., Liang, S. (2013) Carbon dioxide mitigation target of China in 2020 and key economic 

sectors. Energy Policy 58, 90-96. 

Wang, Y., Sun, M., Song, B. (2017) Public perceptions of and willingness to pay for sponge city 

initiatives in China. Resources, Conservation and Recycling 122, 11-20. 

Wang, Y., Yang, X., Sun, M., Ma, L., Li, X., Shi, L. (2016) Estimating carbon emissions from the 

pulp and paper industry: A case study. Applied energy 184, 779-789. 

Wei, J., Huang, K., Yang, S., Li, Y., Hu, T., Zhang, Y. (2017) Driving forces analysis of energy-

related carbon dioxide (CO2) emissions in Beijing: an input–output structural decomposition 

analysis. Journal of Cleaner Production 163, 58-68. 

Wiedenhofer, D., Guan, D., Liu, Z., Meng, J., Zhang, N., Wei, Y.-M. (2017) Unequal household 

carbon footprints in China. Nature Climate Change 7, 75. 

Xi, F., Geng, Y., Chen, X., Zhang, Y., Wang, X., Xue, B., Dong, H., Liu, Z., Ren, W., Fujita, T., Zhu, Q. 

(2011) Contributing to local policy making on GHG emission reduction through inventorying 

and attribution: A case study of Shenyang, China. Energy Policy 39, 5999-6010. 

Xie, Y., Fan, S. (2014) Multi-city sustainable regional urban growth simulation—MSRUGS: a case 

study along the mid-section of Silk Road of China. Stochastic environmental research and 

risk assessment 28, 829-841. 

Xie, Y., Ward, R., Fang, C., Qiao, B. (2007) The urban system in West China: A case study along 

the mid-section of the ancient Silk Road–He-Xi Corridor. Cities 24, 60-73. 

Xing, R., Hanaoka, T., Kanamori, Y., Masui, T. (2017) Greenhouse Gas and Air Pollutant Emissions 

of China’s Residential Sector: The Importance of Considering Energy Transition. 

Sustainability 9, 614. 

Xu, S.-C., Han, H.-M., Zhang, W.-W., Zhang, Q.-Q., Long, R.-Y., Chen, H., He, Z.-X. (2017) Analysis 

of regional contributions to the national carbon intensity in China in different Five-Year Plan 

periods. Journal of cleaner production 145, 209-220. 

Xu, X., Huo, H., Liu, J., Shan, Y., Li, Y., Zheng, H., Guan, D., Ouyang, Z. (2018) Patterns of CO2 

emissions in 18 central Chinese cities from 2000 to 2014. Journal of Cleaner Production 172, 

529-540. 

Yang, X., Lou, F., Sun, M., Wang, R., Wang, Y. (2017) Study of the relationship between 

greenhouse gas emissions and the economic growth of Russia based on the Environmental 

Kuznets Curve. Applied energy 193, 162-173. 

Yang, X., Wang, Y., Sun, M., Wang, R., Zheng, P. (2018) Exploring the environmental pressures in 

urban sectors: An energy-water-carbon nexus perspective. Applied energy 228, 2298-2307. 

Yang, Y., Meng, G. (2019) The decoupling effect and driving factors of carbon footprint in 

megacities: The case study of Xi’an in western China. Sustainable Cities and Society 44, 783-

792. 

Zhang, B., Qiao, H., Chen, Z., Chen, B. (2016) Growth in embodied energy transfers via China’s 

domestic trade: Evidence from multi-regional input–output analysis. Applied Energy 184, 

1093-1105. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

21 

 

Zhang, N., Wei, X. (2015) Dynamic total factor carbon emissions performance changes in the 

Chinese transportation industry. Applied Energy 146, 409-420. 

Zhang, Y. (2013) The responsibility for carbon emissions and carbon efficiency at the sectoral 

level: evidence from China. Energy Economics 40, 967-975. 

Zheng, B., Zhang, Q., Davis, S.J., Ciais, P., Hong, C., Li, M., Liu, F., Tong, D., Li, H., He, K. (2018) 

Infrastructure Shapes Differences in the Carbon Intensities of Chinese Cities. Environmental 

science & technology. 

Zheng, H., Meng, J., Mi, Z., Song, M., Shan, Y., Ou, J., Guan, D. (2019) Linking city‐level input–
output table to urban energy footprint: Construction framework and application. Journal of 

Industrial Ecology. 

Zhou, D., Zhou, X., Xu, Q., Wu, F., Wang, Q., Zha, D. (2018) Regional embodied carbon emissions 

and their transfer characteristics in China. Structural Change and Economic Dynamics 46, 

180-193. 

Zhou, P., Ang, B., Han, J. (2010) Total factor carbon emission performance: a Malmquist index 

analysis. Energy Economics 32, 194-201. 

Zhuang, J., Gentry, R.W., Yu, G.-R., Sayler, G.S., Bickham, J.W. (2010) Bioenergy sustainability in 

China: potential and impacts. Environmental management 46, 525-530. 

 


