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Abstract. The quantum Satake correspondence relates dihedral Soergel bimodules
to the semisimple quotient of the quantum sl2 representation category. It also establishes
a precise relation between the simple transitive 2-representations of both monoidal cate-
gories, which are indexed by bicolored ADE Dynkin diagrams.

Using the quantum Satake correspondence between affine A2 Soergel bimodules and
the semisimple quotient of the quantum sl3 representation category, we introduce trihedral
Hecke algebras and Soergel bimodules, generalizing dihedral Hecke algebras and Soergel
bimodules. These have their own Kazhdan–Lusztig combinatorics, simple transitive 2-
representations corresponding to tricolored generalized ADE Dynkin diagrams.
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1. Introduction

Non-negative integral representation theory. In pioneering work
[KL], Kazhdan–Lusztig defined their celebrated bases of Hecke algebras for
Coxeter groups. Crucially, on these bases the structure constants of the alge-
bras belong to N = Z≥0. This started a program to study N-algebras, which
have a fixed basis with non-negative integral structure constants; see e.g.
[Lu2], [EK], where these algebras are called Z+-rings.

As proposed by the work of Kazhdan–Lusztig, for N-algebras it makes
sense to study and classify N-representations, i.e. representations with a fixed
basis on which the fixed bases elements of the algebra act by non-negative
integral matrices (see e.g. [EK]). The first examples are the so-called cell
representations, which were originally defined for Hecke algebras [KL], but
can be defined for all N-algebras (and even R≥0-algebras, see [KM]). As it
turns out, N-representations are interesting from various points of view, with
applications and connections to e.g. graph theory, conformal field theory,
fusion/modular tensor categories and subfactor theory.

Categorical analogs of N-algebras are monoidal categories, which we con-
sider as one-object 2-categories, or 2-categories. These decategorify to N-
algebras, because the isomorphism classes of the indecomposable 1-mor-
phisms form naturally a N-basis. For example, Hecke algebras of Coxeter
groups are categorified by Soergel bimodules [So2] such that indecompos-
able bimodules decategorify to the Kazhdan–Lusztig basis elements [EW1].

The categorical incarnation of N-representation theory is 2-representation
theory. Any 2-representation decategorifies naturally to a N-representation,
with the N-basis given by the isomorphism classes of the indecomposable
1-morphisms. However, not all N-representations can be obtained in this
way.

In 2-representation theory, the simple transitive 2-representations play
the role of the simple representations [MM3]. Although their decategorifi-
cations need not be simple as complex representations, they are the “sim-
plest” 2-representations, as attested e.g. by the categorical Jordan–Hölder
theorem [MM3]. This naturally motivates the problem of classification of
simple transitive 2-representations of 2-categories. Just as the cell repre-
sentations form a natural class of N-representations of any N-algebra, cell
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2-representations form a natural class of simple transitive 2-representations
of any finitary 2-category (i.e. 2-categories with certain finiteness conditions
[MM1]). A crucial difference is that cell 2-representations are always simple
transitive, while cell representations are usually not simple.

In this paper, we restrict our attention to certain subquotients of the
Hecke algebra of affine type A2, which we call trihedral Hecke algebras,
and their categorification by subquotients of Soergel bimodules of affine
type A2, which we call trihedral Soergel bimodules. These should have 2-
representations indexed by tricolored generalized ADE Dynkin diagrams with
trihedral zigzag algebras making their appearance. As we explain below, we
think of these as rank three analogs of dihedral Hecke algebras, dihedral So-
ergel bimodules and zigzag algebras, respectively. Finally, [AT] established
a relation between dihedral Soergel bimodules and the non-semisimple cat-
egory of tilting modules of quantum sl2 at roots of unity. Relying on that
result and on [RiWi], we expect there to be an interesting relation between
trihedral Soergel bimodules and a non-semisimple, full subcategory of tilting
modules of sl3 at roots of unity (or in prime characteristic).

The dihedral story. For finite Coxeter types, the classification of the
simple transitive 2-representations of Soergel bimodules is only partially
known (see e.g. [KMMZ], [MMMZ], [Zi]). There are two exceptions: For
Coxeter type A, the cell 2-representations exhaust the simple transitive 2-
representations of Soergel bimodules [MM3], so the classification problem
has been solved. For Coxeter type I2(e+2), which is the type of the dihedral
group with 2(e + 2) elements, there also exists a complete classification of
simple transitive 2-representations [KMMZ], [MT] (for e = 10, 16 or 28 the
classification is only known under the additional assumption of gradeabil-
ity), which is completely different from the one for type A. In this case, the
simple transitive 2-representations of rank greater than one are classified by
bicolored ADE Dynkin diagrams, with the cell 2-representations being the
ones corresponding to Dynkin diagrams of type A. The others, correspond-
ing to Dynkin types D and E, are not equivalent to cell 2-representations
and revealed interesting new features in 2-representation theory, e.g. the two
bicolorings of type E7 give non-equivalent 2-representations which categorify
the same N-representation [MT]. For completeness, we remark that there
are precisely two rank-one 2-representations corresponding to the highest
and the lowest two-sided cells, which categorify the trivial and the sign rep-
resentation of the Hecke algebra. We note that going to the small quotient De
by annihilating the highest cell avoids the worry about the categorical analog
of the trivial representation.

This case is particularly interesting because of Elias’ quantum Satake
correspondence [El3], [El2] betweenQe(sl2) and De. HereQe(sl2) denotes the
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semisimple quotient of the monoidal category of finite-dimensional quantum
sl2-modules (of type 1), where the quantum parameter η is a primitive,
complex 2(e+2)th root of unity. This correspondence is given by a nice, but
slightly technical 2-functor, so we omit further details at this stage.

Note that, when q is generic, the quantum Satake correspondence also
exists, but between the whole category of finite-dimensional quantum sl2-
modules Qq(sl2) and Soergel bimodules of the infinite dihedral type I2(∞),
which coincides with affine type A1.

One consequence of Elias’ Satake correspondence is a precise relation
between the simple transitive 2-representations of Qe(sl2) and De. However,
the corresponding 2-representations are not equivalent, because Qe(sl2) is
semisimple while De is not.

Let us explain this in a bit more detail. Equivalence classes of simple
transitive 2-representations of finitary 2-categories (or graded versions of
them) correspond bijectively to Morita equivalence classes of simple algebra
1-morphisms in the abelianizations of these 2-categories. This was initially
proved for semisimple tensor categories [Os] and later generalized to certain
finitary 2-categories with duality [MMMT]. Kirillov–Ostrik [KO] classified
the simple algebra 1-morphisms in Qe(sl2) up to Morita equivalence, under
some natural assumptions, in terms of ADE Dynkin diagrams. From their
results, via the quantum Satake correspondence, we can get all indecompos-
able algebra 1-morphisms, up to Morita equivalence, in De. (The latter is
additive but not abelian, which is why we get indecomposable instead of
simple algebra 1-morphisms.)

Given an ADE Dynkin diagram Γ and the corresponding algebra 1-
morphism AΓ, the category underlying the 2-representation of Qe(sl2) is
equivalent to the category of AΓ-modules in Qe(sl2). The quiver of this cat-
egory is trivial: its vertices coincide with those of Γ, but it has no edges
because Qe(sl2) is semisimple. However, the quiver underlying the corre-
sponding simple transitive 2-representation of De is the so-called doubled
quiver of type Γ, which has two oppositely oriented edges between each pair
of adjacent vertices. Its quiver algebra, the zigzag algebra, was for example
studied by Huerfano–Khovanov [HK]. It has very nice properties and shows
up in various mathematical contexts nowadays.

Kirillov–Ostrik’s classification can be seen as a quantum version of the
McKay correspondence between finite subgroups of SU(2) and ADE Dynkin
diagrams. The vertices of such a Dynkin diagram Γ correspond to the simple
AΓ-modules in Qe(sl2). These module categories decategorify to N-represen-
tations of the Grothendieck group of Qe(sl2), the so-called Verlinde algebra,
which were classified by Etingof–Khovanov [EK]. The Verlinde algebra is iso-
morphic to a polynomial algebra in one variable quotient by the ideal gener-
ated by the (e+ 1)th Chebyshev polynomial Ue+1(X) (normalized and of the
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second kind). Thus, Etingof–Khovanov basically classified all non-negative
integer matrices which are killed by Ue+1(X). (Note that not all of them come
from 2-representations of Qe(sl2), because some correspond to graphs which
are not Dynkin diagrams of type ADE.)

Similarly, the Hecke algebra Hv(I2(e + 2)) of Coxeter type I2(e + 2) can
be obtained as a quotient of the Hecke algebra Hv(Ã1) of affine type A1,
where v is a generic parameter (the decategorification of the grading within
the Soergel 2-category). Let θs, θt denote the Kazhdan–Lusztig generators
corresponding to the simple reflections, in both Hv(I2(e + 2)) and Hv(Ã1).
Furthermore, let θw0 be the Kazhdan–Lusztig basis element in Hv(I2(e+ 2))
for the longest word in the dihedral group. Then there are two ways to write
θw0 as a linear combination of alternating products of θs and θt, which only
differ by the choice of the fixed final Kazhdan–Lusztig generator in each prod-
uct. The coefficients in both linear combinations are precisely the coefficients
of Ue+1(X). (This observation is implicit in [Lu3].) Then Hv(I2(e+ 2)) is ob-
tained from Hv(Ã1) by declaring both these linear combinations to be equal
to each other. By declaring them to be equal to zero, we obtain the small quo-
tient De of Hv(I2(e+ 2)), which is precisely the algebra that corresponds to
the Verlinde algebra under the quantum Satake correspondence. Moreover,
one can show that these algebras have a very similar N-representation theory.

To conclude, one could say that Elias’ quantum Satake correspondence
[El3], [El2] categorifies the relation between the Verlinde algebra and the
small dihedral quotient, while the results from [KMMZ], [MT], [MMMT]
categorify the relations between their N-representations.

The trihedral story. Now let us get to the topic of this paper. Elias
also defined a quantum Satake correspondence between Qe = Qe(sl3) and
the 2-category of Soergel bimodules of affine type A2 [El2]. In this paper, we
study certain subquotients of these Soergel bimodules, depending on a choice
of a primitive, complex 2(e+ 3)th root of unity η, and their 2-representation
theory. Our construction uses the quantum Satake correspondence with Qe,
whose Grothendieck group is isomorphic to a polynomial algebra in two
variables quotient by the ideal generated by a set of polynomials Um,n(X, Y),
for m + n = e + 1,m, n ∈ N. These polynomials were introduced to the
field of orthogonal polynomials by Koornwinder [Ko] and they generalize the
Chebyshev polynomials. To the best of our knowledge, these subquotients
are new and have not been studied before.

In fact, even their decategorifications, which are certain subquotients of
the Hecke algebra Hv(Ã2) of affine type A2, seem to be new. For each e ∈ N,
we call the corresponding subquotient the trihedral Hecke algebra of level
e and denoted it by Te. These algebras have their own Kazhdan–Lusztig
combinatorics and interesting N-representations. We see the trihedral Hecke
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algebras as rank three analogs of the small quotients of the dihedral Hecke
algebras. There are many similarities, but also some differences. For example,
as far as we can tell, the trihedral Hecke algebras are not deformations of any
group algebra. But they are semisimple algebras and the classification of their
irreducible representations runs in parallel to the analogous classification for
dihedral Hecke algebras, and their N-representation theory also has a very
similar behavior.

Now to the categorified story: In the trihedral case, the quantum Sa-
take correspondence for q being generic only gives a 2-subcategory of the
affine type A2 Soergel 2-category. We call this the 2-category of trihedral
Soergel bimodules of level ∞ and denote it by T∞. The 2-category T∞ ad-
mits quotients Te, the trihedral Soergel bimodules of level e, which via the
quantum Satake correspondence for η is related to Qe. The corresponding
decategorifications are the trihedral Hecke algebras T∞ and Te.

Coming back to representation theory, people have studied the N-repre-
sentations of the Grothendieck group of Qe, as they arise in conformal field
theory and the study of fusion/modular tensor categories; see e.g. [Ga], [EP],
[Sc] and related works. This time, four families of graphs play an important
role and, by analogy with the sl2 case, their types are called A, conjugate A,
D and E, although they are not Dynkin diagrams. Their adjacency matrices,
which are non-negative integral matrices, are annihilated by Koornwinder’s
polynomials, just as in [EK]. Furthermore, the type A graphs can be seen as
a cut-off of the positive Weyl chamber of sl3, just as the usual type A Dynkin
diagrams can be seen as cut-offs for sl2. Finally, the type D graphs for sl3
come from a Z/3Z-symmetry of these cut-offs, just as the type D Dynkin
diagrams come from a Z/2Z-symmetry.

Simple algebra 1-morphisms in Qe and the corresponding simple transi-
tive 2-representations have also been studied e.g. in [Sc] and are closely re-
lated to these ADE type graphs. Via the quantum Satake correspondence, we
therefore get indecomposable algebra 1-morphisms in Te and the correspond-
ing simple transitive 2-representations of the trihedral Soergel bimodules.
Since we are not familiar with some of the ingredients in the construction
of algebra 1-morphisms in [Sc], we have given an alternative construction,
using the symmetric sl3-web calculus, as in [RT], [TVW]. For this reason, our
construction so far only works for types A and D, so we restrict our atten-
tion to those two types. Almost by construction, the cell 2-representations
are equivalent to the simple transitive 2-representations of type A. The ones
of type D have a different rank and are therefore inequivalent. For the other
types, we have no conjectures at all, and we are not even sure whether they
correspond to 2-representations.

Computing the quiver algebras explicitly proved to be much harder this
time. We define type A quiver algebras which, up to scalars, are the ones
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underlying the cell 2-representations of Te. These algebras are the trihedral
analogs of the zigzag algebras of type A, e.g. the endomorphisms algebras of
their vertices are the cohomology rings of the full flag variety of flags in C3,
instead of the flags in C2 as in the dihedral case. For this reason, we call
them trihedral zigzag algebras. The type D trihedral zigzag algebras can be
obtained from these by using the Z/3Z-symmetry, just as the D dihedral
zigzag algebras can be obtained from the type A via a Z/2Z-symmetry, but
we have not worked out the details.

Finally, let us stress that our trihedral zigzag algebras are different from
Grant’s [Gr] higher zigzag algebras, which are only subalgebras of the trihe-
dral zigzag algebras of type A, although both underlying graphs come from
a cut-off of the positive Weyl chamber of sl3.

The Nhedral story. We expect that our story generalizes to slN for
arbitrary N ≥ 2: the Soergel bimodules of affine type AN−1 are known,
the quantum Satake correspondence is conjectured to exist, the analogs
of Koornwinder’s Chebyshev polynomials are also known, and the corre-
sponding generalized ADE type graphs appear in the mathematical physics
literature on fusion algebras or the classification of subgroups of quantum
SU(N) (see e.g. [DFZ], [Oc]). We expect that there exist Nhedral algebras
and Nhedral Soergel bimodules of level e (where η would be a primitive,
complex 2(e+N)th root of unity), and Nhedral zigzag algebras of ADE-type
quivers such that the endomorphism algebra of every vertex is isomorphic
to the cohomology ring of the full flag variety of CN .

Remark about colors. We use colors in this paper (we recommend
reading the paper online), and the colors which we need are blue, red, yellow,
green, orange and purple.

Quantum conventions. The notation v will mean a generic param-
eter which plays the role of the decategorification of the grading which we
will meet in Section 4.

In contrast, q will also denote a generic parameter, but it will turn up
on the categorified level as our quantum parameter. Moreover, η will be a
primitive, complex 2(e + 3)th root of unity, η2(e+3) = 1, which is a special-
ization of q, but never of v. Here e ∈ N = Z≥0 will usually be arbitrary, but
fixed, and is called the level.

The ground field will always be Cv = C(v), Cq = C(q) or C = C(η), if not
stated otherwise. Sometimes, instead of working over a ground field, we will
work over rings as e.g. Z[v] = Z[v, v−1] or semirings as e.g. N[v] = N[v, v−1]
and their quantum counterparts. (It will be clear from the notation whether
we work with v or q. Moreover, a subscript [ ] will always indicate that we
are in the case of (semi)rings rather than fields.) In this context, we use the
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v-numbers, factorials and binomials, where s ∈ Z, t ∈ Z≥1:

(1-1) [s]v = vs−v−s
v −v−1 , [t]v! = [t]v[t−1]v . . . [1]v,

[
s

t

]
v

= [s]v[s−1]v...[s−t+1]v
[t]v[t−1]v...[1]v ,

all of which are in Z[v]. By convention, [0]v! = 1 =
[
s
0

]
v
. Note that [0]v = 0 =[

0≤s<t
t

]
v
and [−s]v = −[s]v. Similarly with q or η instead of v.

2. Some sl3 combinatorics. This section is mostly a collection of
known results, formulated in our notation.

2.1. Quantum sl3. Throughout, m,n, k, l will denote non-negative in-
tegers.

Some conventions. We always use the following conventions when work-
ing with sl3. Denote by ε1, ε2, ε3 the standard basis vectors of R3. We en-
dow R3 with the usual symmetric bilinear form (εi, εj) = δij and let E =
{(x1, x2, x3) ∈ R3 | x1 +x2 +x3 = 0} be the Euclidean subspace of R3 (with
induced symmetric bilinear form). We also fix two simple roots α1 = ε1− ε2
and α2 = ε2−ε3, and coroots α∨1 and α∨2 such that 〈αi, α∨j 〉 = (αi, αj) = aij ,
for i, j = 1, 2, are the entries of the (usual) Cartan matrix

(
2 −1
−1 2

)
of sl3. The

(integral) weights are X = {λ ∈ E | 〈λ, α∨1 〉 ∈ Z and 〈λ, α∨2 〉 ∈ Z}. The dom-
inant (integral) weights are X+ = {λ ∈ E | 〈λ, α∨1 〉 ∈ N and 〈λ, α∨2 〉 ∈ N}.
We identify X = Z2 and X+ = N2 (cf. (2-1)), with X+ also called the posi-
tive Weyl chamber. We also use the fundamental weights ω1, ω2 ∈ E (which
are characterized by 〈ωi, α∨j 〉 = δi,j), and λ = (m,n) ∈ X+ for us means
λ = mω1 + nω2.

The following picture summarizes our root and weight conventions for
e = 3:

X+ = N2

e = 3

e+ 1 = 4

e+ 2 = 5

α1α2

H

H

HH

F

H

H

H

F F

H

H

H

FF

N N N N N N

N N N N N N N

(2, 2)

(1, 2)

(0, 2)
(2-1)

We have also indicated an example of a cut-off, denoting its weights by H,
which depend on the level e, i.e. the integral points X+(e) = {λ ∈ X+ |
〈λ, α∨1 〉 ≤ e and 〈λ, α∨2 〉 ≤ e and 〈λ, α∨1 + α∨2 〉 ≤ e}. Such cut-offs play an
important role in our paper. Moreover, we usually quotient by data associ-
ated to the line e+ 1 as illustrated by the symbols F in (2-1).
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Generic quantum sl3. Let Uq(sl3) denote the quantum enveloping
(Cq-)algebra associated to sl3. We refer the reader to [Ja, Chapters 4–7]
(whose conventions we tacitly adopt using the root and weight setting from
above) for details. We denote by Qq = Uq(sl3)-Mod the category of finite-
dimensional (left) Uq(sl3)-modules (of type 1, cf. [Ja, Section 5.2]). Recall
that Qq is semisimple with a complete set of pairwise non-isomorphic, irre-
ducible Uq(sl3)-modules parametrized by (the integral part of) the positive
Weyl chamber

{Lm,n | (m,n) ∈ X+}.

The subscripts m,n indicate the highest weight mω1+nω2 of the irreducible
module, by which it is uniquely determined. Moreover, Uq(sl3) is a Hopf
algebra, so we can tensor Uq(sl3)-modules and take duals. Thus, if [ ]⊕
denotes the (additive) Grothendieck group, then

{[Lm,n] = [Lm,n]⊕ ∈ [Qq]⊕ | (m,n) ∈ X+}

is a Z-basis of [Qq]⊕, and [Qq]⊕ is a ring. Extending the scalars to C, we get
a C-algebra:

[Qq]
C
⊕ = [Qq]⊕ ⊗Z C.

Throughout the paper, we will use notations similar to [ ]C⊕, indicating scalar
extensions.

Remark 2.1. Since q is generic, we can identify [Qq]⊕ with the corre-
sponding Grothendieck ring of the category of complex, finite-dimensional
representations of sl3 (cf. [Ja, Theorems 5.15 and 5.17]). This means that
all our calculations below follow from standard results in the representation
theory of sl3.

The two Uq(sl3)-modules

X = L1,0, Y = L0,1(2-2)

are called the fundamental representations of sl3. Note that they are dual,
i.e. X∗ ∼= Y as Uq(sl3)-modules. More generally, we have (Lm,n)∗ ∼= Ln,m for
all m,n ∈ N.

In the following we write Xk = X⊗k, Yl = Y⊗l and XY = X ⊗ Y for short,
and below we will consider these as variables in some polynomial ring.

Remark 2.2. Every Lm,n appears as a direct summand of a suitable
tensor product of X and Y. Moreover, Qq is braided monoidal, so XY ∼= YX

as Uq(sl3)-modules. Hence, the Grothendieck group of Qq is a commutative
ring and

{[XkYl] | (k, l) ∈ X+}

is an alternative basis of [Qq]⊕ and [Qq]
C
⊕.
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Using the above, in particular Remark 2.2, we define dk,lm,n ∈ Z as follows:

[Lm,n] =
∑
k,l

dk,lm,n · [XkYl].(2-3)

Clearly, dk,lm,n = 0 unless k + l ≤ m+ n. Thus, the sum in (2-3) is finite.
Note that the dk,lm,n can be computed inductively (cf. Example 2.6). More-

over, we have dk,lm,n = dl,kn,m and dm,nm,n = 1 = dk,lk,l.

Definition 2.3. For later use, let us define colors associated to the L’s:

χc(Lm,n) =


g if m+ 2n ≡ 0 mod 3,

o if m+ 2n ≡ 1 mod 3,

p if m+ 2n ≡ 2 mod 3.

(2-4)

We call χc(Lm,n) the central character of Lm,n.

(To explain our choice of name: The center of SU3 is Z/3Z. The gener-
ator of Z/3Z can act on any irreducible SU3-module as multiplication by a
primitive, complex, third root of unity. This is what is encoded by χc.)

Observe that χc(X) = o and χc(Y) = p, while the representation theory
of sl3 immediately shows that tensoring with X changes the central character
by adding 1 mod 3, while tensoring with Y adds 2 mod 3. Thus:

Lemma 2.4. All irreducible summands of XkYl have central character
χc(Lk,l).

The semisimplified root of unity case. Let Uη(sl3) be the specialization
of (the integral form of) Uq(sl3) obtained by specializing q to η (see e.g.
[Lu1], [APW] for details).

Its category Qη = Uη(sl3)-Mod of finite-dimensional (left) Qη-modules
(of type 1) is far from being semisimple. However, it has a semisimple quo-
tient Qe, which is roughly obtained by killing the so-called tilting modules of
quantum dimension zero. We refer to [AP] for details, but all the reader needs
to know for our purposes is that all Uq(sl3)-modules Lm,n with 0 ≤ m+n ≤ e
can also be regarded as irreducible Uη(sl3)-modules. Moreover,

{[Lm,n] | 0 ≤ m+ n ≤ e}, {[XkYl] | 0 ≤ k + l ≤ e}
are bases of [Qe]⊕ and [Qe]C⊕, and the quantum fusion product endows Qe
with the structure of a monoidal category, so [Qe]⊕ is a ring and [Qe]C⊕ is an
algebra.

Note also that the rank of [Qe]⊕, respectively the dimension of [Qe]C⊕, is
equal to the triangular number

te = (e+ 1)(e+ 2)/2,

which follows from the fact that Qe is only supported on a triangular cut-off
of the positive Weyl chamber of sl3 (cf. (2-1)). In other words, since Qe is
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semisimple, we have
[Qe]C⊕ ∼= Cte

as vector spaces.

2.2. Chebyshev-like polynomials for sl3. We now recall certain poly-
nomials introduced in the context of orthogonal polynomials by Koornwinder
[Ko], but phrased in a more convenient way for our purposes.

The sl3-polynomials. Consider the polynomial ring Z[X, Y], in which X

and Y from (2-2) are treated as formal variables.
Definition 2.5. For each m,n we define Um,n(X, Y) ∈ Z[X, Y] by

Um,n(X, Y) =
∑
k,l

dk,lm,n · XkYl,(2-5)

with dk,lm,n ∈ Z as in (2-3).
For fixed e, we often consider all the polynomials Um,n(X, Y) withm+n =

e+ 1 together, cf. Example 2.6.
Example 2.6. The first few of these polynomials are U0,0(X, Y) = 1 and:

e=0 U1,0(X, Y)=X, U0,1(X, Y)=Y

e=1 U2,0(X, Y)=X2−Y, U1,1(X, Y)=XY−1, U0,2(X, Y)=Y2−X

e=2
U3,0(X, Y)=X3−2XY+1, U2,1(X, Y)=X2Y−Y2−X,

U1,2(X, Y)=XY2−X2−Y, U0,3(X, Y)=Y3−2XY+1

e=3

U4,0(X, Y)=X4−3X2Y+Y2+2X, U3,1(X, Y)=X3Y−2XY2−X2+2Y,

U2,2(X, Y)=X2Y2−X3−Y3,

U1,3(X, Y)=XY3−2X2Y−Y2+2X, U0,4(X, Y)=Y4−3XY2+X2+2Y

e=4

U5,0(X, Y)=X5−4X3Y+3XY2+3X2−2Y, U4,1(X, Y)=X4Y−3X2Y2−X3+Y3+4XY−1,

U3,2(X, Y)=X3Y2−X4−2XY3+X2Y+2Y2−X, U2,3(X, Y)=X2Y3−Y4−2X3Y+XY2+2X2−Y,

U1,4(X, Y)=XY4−3X2Y2−Y3+X3+4XY−1, U0,5(X, Y)=Y5−4XY3+3X2Y+3Y2−2X

Note that the ones with m+ n = e+ 1 correspond to the e+ 1-line in (2-1).
By convention, Um,n(X, Y) and Lm,n with negative subscripts m or n are

zero.
Lemma 2.7. We have the following Chebyshev-like recursion relations:

Um,n(X, Y) = Un,m(Y, X),

XUm,n(X, Y) = Um+1,n(X, Y) + Um−1,n+1(X, Y) + Um,n−1(X, Y),

YUm,n(X, Y) = Um,n+1(X, Y) + Um+1,n−1(X, Y) + Um−1,n(X, Y).

Together with the starting conditions for e = 0, 1 as in Example 2.6, these
recursion relations determine the polynomials Um,n(X, Y) for all m,n.
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Proof. The relation Um,n(X, Y) = Un,m(Y, X) boils down to X ∼= Y∗. More-
over, by standard results in the representation theory of sl3, we obtain

X⊗ Lm,n ∼= Lm+1,n ⊕ Lm−1,n+1 ⊕ Lm,n−1,(2-6)
Y⊗ Lm,n ∼= Lm,n+1 ⊕ Lm+1,n−1 ⊕ Lm−1,n,(2-7)

which proves the two recursions.

Lemma 2.8. The polynomial Um,n(X, Y) has a non-zero constant term if
and only if m ≡ n mod 3 and m 6≡ 2 mod 3. This constant term is equal to 1
if m ≡ n ≡ 0 mod 3, and equal to −1 if m ≡ n ≡ 1 mod 3.

Proof. The claim follows inductively from Example 2.6 and Lemma 2.7.

Their complex roots. The following definition will be crucial for us.

Definition 2.9. For fixed level e, let Je be the ideal generated by

{Um,n(X, Y) | m+ n = e+ 1} ⊂ Z[X, Y].

We call Je the vanishing ideal of level e. Associated to it is the vanishing set
of level e,

Ve = {(α, β) ∈ C2 | p(α, β) = 0 for all p ∈ Je} ⊂ C2,

which we consider as a complex variety.

Since X and Y generate Qe, we have

[Qe]C⊕ ∼= C[X, Y]/Je ∼= Cte(2-8)

as vector spaces, where te = (e+ 1)(e+ 2)/2 denotes the triangular number.
Note that the left isomorphism in (2-8) is actually an isomorphism of al-
gebras, which follows from the explicit form of the fusion rules for Qe (which
can be deduced from e.g. [Sa, Corollary 8] or [Sc, Proposition 3.2.2]).

Using this, we can compute #Ve, the number of points in Ve, i.e. the
number of common roots of the polynomials in Je.

Lemma 2.10. We have #Ve = te.

Before we prove Lemma 2.10, let us fix some notation for complex num-
bers: i denotes

√
−1 (in the positive upper half-plane), ζ = exp(2πi13) and z

will denote the complex conjugate of a complex number z ∈ C.

Proof of Lemma 2.10. By (2-8) and a corollary of Hilbert’s Nullstellen-
satz [Fu, Corollary I.7.4], we immediately see that #Ve ≤ te.
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To get equality, consider the following functions, due to [Ko]:

Z : C2→C, Z(σ, τ) = exp(iσ) + exp(−iτ) + exp(i(−σ + τ)),

E−a,b : C2→C, E−a,b(σ, τ) = exp(i(aσ + bτ))− exp(i((a+ b)σ − bτ))

+ exp(i(−(a+ b)σ + aτ))− exp(i(−bσ − aτ))

+ exp(i(bσ − (a+ b)τ))

− exp(i(−aσ + (a+ b)τ)),

where a, b ∈ N.
The functions Z and E−a,b are clearly 2π-periodic in both variables, i.e.

they define functions on a 2-torus T2. As one easily checks, Z is invariant
and E−a,b is antiinvariant under the reflections (σ, τ) 7→ (−σ + τ, τ) and
(σ, τ) 7→ (σ, σ−τ), which generate the symmetric group S3. The fundamental
domain of the quotient T2/S3 is equal to

D = {(σ, τ) | 0 ≤ σ + τ ≤ 2π, σ/2 ≤ τ ≤ 2σ}.
Note that all zeros of E−1,1 lie on the boundary of D. Therefore Z and
E−m+1,n+1/E

−
1,1 define functions on the interior of D.

As explained in [Ko], Z and its complex conjugate Z map D bijectively
onto the (3-cusp) discoid d3 = {z = (x, y) ∈ C | −z2z2 + 4z3 + z3 − 18zz
+ 27 ≥ 0} bounded by the deltoid curve d = {z = 2 exp(it) + exp(−2it) |
t ∈ [0, 2π[} (also called Steiner’s hypocycloid):

−3 3 x

−3

3
y

3 exp(2πi 1
3
)

3 exp(2πi 2
3
)

C

d = {z = 2 exp(it) + exp(−2it)

| t ∈ [0, 2π[}

d3 = {z = (x, y) ∈ C |
−z2z2+4z3+z3

−18zz+27≥0}

The discoid d3 = d3(sl3) bounded by the deltoid curve d

(2-9)

The discoid d3 has a Z/3Z-symmetry, given by (z, z) 7→ (ζ±1z, ζ∓1z), and its
singularities are the primitive, complex third roots of unity multiplied by 3.

For any a, b ∈ N, the zeros of E−a,b are known (cf. [EP, Section 7.1]).
However, let us give an independent proof.

Lemma 2.10.Claim. Let a, b ∈ N, a+ b = s ≥ 2. Then E−a,b(σ, τ) = 0 if

(2-10) (σ, τ) =

(
2π(2c+ d+ 3)

3s
,
2π(c+ 2d+ 3)

3s

)
with c, d ∈ N.
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Proof of Lemma 2.10.Claim. We have

ζ
a(2c+d)+b(c+2d)

s = ζ
a(2c+d)+b(c+2d)−3(a+b)(c+d)

s = ζ
−b(2c+d)−a(c+2d)

s ,

where we have used a + b = s, (2c + d) + (c + 2d) = 3(c + d) and ζ3 = 1.
Similarly,

ζ
(a+b)(2c+d+3)−b(c+2d+3)

s = ζ
(a+b)(2c+d+3)−b(c+2d+3)+3(a+b)(c+d+2)

s

= ζ
2(a+b)(2c+d+3)+a(c+2d+3)

s = ζ
−(a+b)(2c+d+3)+a(c+2d+3)

s ,

ζ
b(2c+d+3)−(a+b)(c+2d+3)

s = ζ
b(2c+d+3)−(a+b)(c+2d+3)−3(a+b)(c+d+2)

s

= ζ
−a(2c+d+3)−2(a+b)(c+2d+3)

s = ζ
−a(2c+d+3)+(a+b)(c+2d+3)

s .

This gives E−a,b(σ, τ) = 0 for (σ, τ) as in (2-10), and completes the proof of
Lemma 2.10.Claim.

Next, for any m,n, we have

Um,n(Z(σ, τ), Z(σ, τ)) = E−m+1,n+1(σ, τ)/E−1,1(σ, τ).

Let (σ, τ) be as in (2-10) with a = m + 1 and b = n + 1, and assume
(σ, τ) is in the interior of D. Then we have Um,n(Z(σ, τ), Z(σ, τ)) = 0 by
Lemma 2.10.Claim.

To make the connection with our earlier notation, let m+ n = e+ 1 and
k = c, l = d. By the above, for all

(2-11) (σ, τ) =

(
2π(2k + l + 3)

3(e+ 3)
,
2π(k + 2l + 3)

3(e+ 3)

)
with 0 ≤ k + l ≤ e,

we have Um,n(Z(σ, τ), Z(σ, τ)) = 0.
Thus, #Ve ≥ #{(k, l) ∈ X+ | 0 ≤ k + l ≤ e} = te. Since we already

know that #Ve ≤ te, equality must hold.

Remark 2.11. Applying Z to (2-11) gives the precise form of the ele-
ments of Ve:

Ve = {(α, β) ∈ C2 | α = Z(σ, τ), β = Z(σ, τ)}

for (σ, τ) as in (2-11). For a fixed level, the common roots of the polynomials
Um,n(X, Y) all lie in the interior of the discoid from (2-9).

Example 2.12. The polynomials for e = 1, 2, 3 are given in Example 2.6.
The first (or X) entries of their common zeros are

e = 1: {roots of (X − 1)(X2 +X + 1)},
e = 2: {roots of (X2 −X − 1)(X4 +X3 + 2X2 −X + 1)},
e = 3: {roots of X(X − 2)(X2 + 2X + 4)(X6 −X3 + 1)}.
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The second (or Y) entries are the complex conjugates. Plotted in C one gets

−3 3
x

−3

3
y

C

•
•

•
••

•

•

•

•
• •

•

•

•

•

•

•

•
•

inner is e = 1
middle is e = 2
outer is e = 3

For e� 0, these approximate the deltoid curve d (layerwise).

3. Trihedral Hecke algebras. As before, k, l,m, n etc. will be non-
negative integers, and e will denote the level. We are now going to introduce
trihedral Hecke algebras. The reader possibly spots the analogies with the
dihedral Hecke algebra right away, but, for completeness, we have also listed
some of them in Section 3.4.

3.1. Some color conventions. Throughout we will use the set of pri-
mary colors BRY = {b, r, y}, the elements of which are blue b, red r and
yellow y, the set of secondary colors GOP = {g, o, p}, the elements of which
are green g = {b, y}, orange o = {y, r} and purple p = {b, r}, and the color
white ∅. We also use dummy colors u,v ∈ GOP , and from now on u,v etc.
will always denote arbitrary elements in GOP .

Moreover, we fix a cyclic ordering, and its inverse, of the secondary colors:

(3-1)
p o

g
ρ : g ←[ p← [ o← [ g

p o

g
ρ−1 : g ← [ o← [ p←[ g

Note that we usually read from right to left, i.e. we use the operator notation.
The action of ρ on GOP can be read off from (3-1): ρ(g) = o, ρ(o) = p

and ρ(p) = g, and ρk−l only depends on (k − l) mod 3, for any k, l.

3.2. The trihedral Hecke algebra of level ∞. In this section and in
Section 3.3, we work over Cv = C(v), with v being a generic parameter.

The underlying Coxeter group. Let W be the Coxeter group of affine
type A2, generated by three reflections that we denote by b, r, y, i.e.

33

3

•
b

•r•y
Ã2  

W = 〈b, r, y | b2 = r2 = y2 = 1, brb = rbr, byb = yby, ryr = yry〉.
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In order to simplify notation, we identify the vertices in the Coxeter diagram
of W with the corresponding reflections.

Moreover, let g, o and p be the maximal proper parabolic subsets, and let
Wg,Wo and Wp be the corresponding standard parabolic subgroups of W,
which are all isomorphic to the (finite) type A2 Weyl group. Furthermore,
let

wg = byb = yby ∈Wg, wo = ryr = yry ∈Wo, wp = brb = rbr ∈Wp

(3-2)

denote the longest elements in these parabolic subgroups.

The trihedral Hecke algebra. We now define the trihedral Hecke algebra
of level ∞.

Definition 3.1. Let T∞ be the associative, unital (Cv-)algebra gener-
ated by three elements θg, θo, θp subject to the following relations:

θ2g = [3]v! θg, θ2o = [3]v! θo, θ2p = [3]v! θp,(3-3)

θgθoθg = θgθpθg, θoθgθo = θoθpθo, θpθgθp = θpθoθp.(3-4)

Here, [3]v! is the v-factorial from (1-1).

Let Hv = Hv(Ã2) denote the Hecke algebra of affine type A2 (see e.g.
[So1, Section 2]). Recall that Hv can be defined as the associative, unital
(Cv)-algebra generated by θb, θr and θy subject to

θ2b = [2]vθb, θ2y = [2]vθy, θ2r = [2]vθr,(3-5)

(θwg =) θbθyθb − θb
= θyθbθy − θy,

(θwo =) θrθyθr − θr
= θyθrθy − θy,

(θwp =) θbθrθb − θb
= θrθbθr − θr.

(3-6)

For any w ∈W, let θw be the corresponding Kazhdan–Lusztig (KL for short)
basis element of Hv, e.g. the expression θwu in (3-6). (Note that θw is denoted
Hw in [So1, Section 2], while the standard basis is denoted Hw therein.)

Lemma 3.2. The algebra homomorphism given by

θg 7→ θwg , θo 7→ θwo , θp 7→ θwp

defines an embedding T∞ ↪→ Hv of algebras.

Proof. By (3-5), (3-6) and the identity [2]3v − [2]v = [2]v[3]v, we obtain

θ2wg = [3]v! θwg , θ2wo = [3]v! θwo , θ2wp = [3]v! θwp .

This shows that (3-3) holds in Hv.
Proving (3-4) is harder. Let us indicate how to prove θwgθwoθwg =

θwgθwpθwg . (The other two follow by exchanging colors.) By (3-6), this is
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equivalent to proving

(3-7) (θbθyθb − θb)(θbθrθb − θb)(θbθyθb − θb)
= (θyθbθy − θy)(θyθrθy − θy)(θyθbθy − θy).

By (3-5), the right-hand side in (3-7) is equal to

(3-8) [2]2v(θyθbθyθrθyθbθy − θyθbθyθrθy
− θyθrθyθbθy − θyθbθyθbθy + 2θyθbθy + θyθrθy − θy)

(3-6)
= [2]2v(θyθbθyθrθyθbθy − θyθbθyθrθy − θyθrθyθbθy − [3]vθwg + θyθrθy).

Similarly, the left-hand side in (3-7) is equal to

[2]2v(θbθyθbθrθbθyθb − θbθyθbθrθb − θbθrθbθyθb − [3]vθwg + θbθrθb).(3-9)

One can obtain (3-9) from (3-8) by systematically using (3-6) and the fact
that wg, wo, wp have two equivalent expressions each. For example, by (3-6),
we have θyθbθy = θbθyθb + θb − θy. Using this to rewrite the first term in
(3-8) and carefully continuing in this way yields the claimed equality.

Finally, by using an appropriate integral form, Hv specializes to C[W] for
v = 1. Moreover, recall that C[W] has a faithful representation P1, which
is induced by the regular W-action on the set of alcoves obtained from the
hyperplane arrangement associated to W, and that P1 can be v-deformed
to Pv (cf. [So1, Section 4 and Lemma 4.1]). The v-deformation Pv stays
faithful: Each standard basis element Hw ∈ C[W] is mapped to a different
C-linear operator by P1, so each KL basis element θw ∈ Hv is mapped to a
different Cv-linear operator by Pv, due to the particular form of the change
of basis

θw ∈ Hw +
∑

w′≤Bw

vZ[v]Hw′ .

Here ≤B is the Bruhat order (see e.g. [So1, Claim 2.3]). By pulling back Pv

to T∞ along the algebra homomorphism in this lemma, injectivity of the
latter follows from the faithfulness of the representation.

The trihedral Kazhdan–Lusztig combinatorics. We are going to define
a quotient of T∞. In order to do that, we first have to introduce certain
elements. For any k, l,u, let

hk,lu = hk,lu (θ) = θuk+l · · · θu1θu0 ,(3-10)

where ui for all 0 ≤ i ≤ k + l is given by u0 = u, ui+1 = ρ(ui) for (any) k
values of i, and ui+1 = ρ−1(ui) for the remaining values of i. Note that

h0,0u = θu for any u.

Moreover, by convention, hk,lu = 0 in case k or l are negative. We call u the
(right) starting color of hk,lu . The fact that hk,lu is well-defined is established
by the following lemma.
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Lemma 3.3. For any k, l,u, the element hk,lu only depends on k and l,
not on the chosen sequence uk+l, . . . ,u1,u0 = u.

Proof. We claim that there is a normal form, i.e. any word representing
hk,lu is equivalent to the word θuk+l · · · θu0 such that u0 = u and

(3-11)
ur = ρ(ur−1) for all 1 ≤ r ≤ k,

ur = ρ−1(ur−1) for all k + 1 ≤ r ≤ k + l,

which is clear if l = 0. Otherwise, any word representing hk,lu involves k
counterclockwise rotations and l clockwise rotations of GOP . Hence, if such
a word is not in normal form, then we will find a subsequence of the form

θuiθρ−1(ui)θui
(3-4)
= θuiθρ(ui)θui ,

which we rewrite as above. We can then continue recursively until we
get (3-11).

Similarly, we can define
k,l
vh = hk,lu such that v = ρk−l(u),(3-12)

for k, l,v. Lemma 3.3 implies, mutatis mutandis, that k,lvh is also independent
of the chosen sequence v = uk+l, . . . ,u0.

Remark 3.4. We can view X and Y as acting via counterclockwise respec-
tively clockwise rotation of (3-1). By Lemma 3.3, we can view the elements
hk,lu as being associated to XkYl (after fixing a starting color u), because
its definition involves k times the application of ρ and l times that of ρ−1.
Lemma 3.3 then translates into the equality XY = YX.

Example 3.5. Let us fix g as a starting color. Then

h2,0g = θpθoθg
! X2Y0

h1,1g = θgθpθg = θgθoθg
! X1Y1 = Y1X1

h0,2g = θoθpθg
! X0Y2

where we think of the color changes g ←[ p ←[ o ←[ g as corresponding to
multiplication by X, and g ← [ o←[ p←[ g as corresponding to multiplication
by Y.

Recall that dk,lm,n denote the numbers from Section 2, coming from the
representation theory of sl3. For each pair m,n, we define three colored KL
basis elements:

(3-13)

cm,ng =
∑
k,l

[2]−k−lv dk,lm,n hk,lg , cm,no =
∑
k,l

[2]−k−lv dk,lm,n hk,lo ,

cm,np =
∑
k,l

[2]−k−lv dk,lm,n hk,lp .
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Note that the three sums are finite, because dk,lm,n = 0 unless k + l ≤ m+ n,
as mentioned after (2-3). Moreover, by convention, ck,lu = 0 in case k or l are
negative.

Furthermore, by (2-3) and Lemma 2.4, dk,lm,n = 0 if k− l 6≡ m− n mod 3.
This implies that, for any m,n,u, all terms hk,lu of cm,nu in (3-13) have the
same left-most factor θv, where v = ρm−n(u), by (3-12). Therefore, we can
also define

m,n
vc = cm,nu such that v = ρm−n(u).(3-14)

We call cm,ng , cm,no and cm,np the (right) colored KL elements. As before,

c0,0u = θu for any u.

Example 3.6. For a fixed u, the element cm,nu (or alternatively m,n
uc)

is associated to the orthogonal polynomial Um,n(X, Y) from Section 2.2 (cf.
Example 3.6). For example, fix g as a starting color. Then

c2,0g = [2]−2v θpθoθg − [2]−1v θpθg
! U2,0(X, Y) = X2 − Y

c1,1g = [2]−2v θgθpθg − θg
! U1,1(X, Y) = XY− 1

c0,2g = [2]−2v θoθpθg − [2]−1v θoθg
! U0,2(X, Y) = Y2 − X

Similarly for the other colors.

As we will see, Proposition 4.31 identifies the colored KL elements with
the Grothendieck classes of the indecomposables in a certain 2-full 2-sub-
category of singular Soergel bimodules. In particular, the next lemma and
proposition need some notions from categorification which we only recall in
Section 4. Consequently, we postpone their proofs until the end of Section 4.

Lemma 3.7. For all m,n,u,v, we have

θucm,nv =


[3]v! cm,nv if ρm−n(u) = v,

[2]v(c
m+1,n
v + cm−1,n+1

v + cm,n−1v ) if ρm+1−n(u) = v,

[2]v(c
m,n+1
v + cm+1,n−1

v + cm−1,nv ) if ρm−(n+1)(u) = v,

(3-15)

where terms with negative indices are zero.

By (3-14) and Lemma 3.7, we also have

cm,nv θu =


[3]v! cm,nu if u = v,

[2]v(c
m+1,n
u + cm−1,n+1

u + cm,n−1u ) if ρ(u) = v,

[2]v(c
m,n+1
u + cm+1,n−1

u + cm−1,nu ) if ρ−1(u) = v,

(3-16)

where again terms with negative indices are zero. Moreover, there are also
the evident versions of (3-15) and (3-16) using m,n

vc instead of cm,nv .
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Example 3.8. The reader should compare (3-15) and (3-16) with the re-
cursion formulas from Lemma 2.7. This is no coincidence, keeping Remark 3.4
and Example 3.6 in mind. For example, one can easily check directly that

c0,1o θg = ([2]−1v θgθo)θg

= [2]v([2]−2v θgθoθg − θg) + [2]vθg = [2]v(c
1,1
g + c−1,1g︸︷︷︸

=0

+c0,0g ),

θgc
0,1
o = θg([2]−1v θgθo) = [3]v! ([2]−1v θgθo) = [3]v! c0,1o ,

and similarly for right or left multiplication by θo or θp.

Proposition 3.9. Each of the four sets

H∞ = {1} ∪ {hk,lu | (k, l) ∈ X+, u ∈ GOP},
C∞ = {1} ∪ {cm,nu | (m,n) ∈ X+, u ∈ GOP},
∞H = {1} ∪ {k,luh | (k, l) ∈ X+, u ∈ GOP},
∞C = {1} ∪ {m,nuc | (m,n) ∈ X+, u ∈ GOP}

is a basis of T∞.

As for Lemma 3.7, the proof of Proposition 3.9 is postponed until Section 4.
As we will see, the bases H∞ and ∞H could be called Bott–Samelson bases.

Following [KL], we can define left, right and two-sided cells for T∞. We
have chosen to work with the basis C∞.

Definition 3.10. We define a left preorder on C∞ by declaring that
cm,nu ≥L cm

′,n′
v if there exists an element Z ∈ C∞ such that cm,nu appears as

a summand of Zcm
′,n′

v when the latter is written as a linear combination of
elements in C∞.

This preorder gives rise to an equivalence relation by declaring that
cm,nu ∼L cm

′,n′
v whenever cm,nu ≥L cm

′,n′
v and cm

′,n′
v ≥L cm,nu . The equivalence

classes of ∼L are called left cells.
Similarly, right multiplication gives rise to a right preorder ≥R, a right

equivalence relation ∼R and right cells R. Multiplication on both sides gives
rise to a two-sided preorder ≥J, a two-sided equivalence relation ∼J and
two-sided cells J.

Clearly, 1 ∈ T∞ forms a cell {1} on its own, which is left, right and
two-sided at once, and always the lowest cell. We call {1} the trivial cell.
The other cells are as follows.

Proposition 3.11. The non-trivial cells for the algebra T∞ are

Lu = {cm,nu | (m,n) ∈ X+}, uR = {m,nuc | (m,n) ∈ X+}, for u ∈ GOP ,
J = {cm,nu | (m,n) ∈ X+, u ∈ GOP} = {m,nuc | (m,n) ∈ X+, u ∈ GOP},

where Lu, uR and J are left, right and two-sided cells respectively.
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Proof. Fix g as a starting color. Applying (3-16) to θucm,ng yields cm+1,n
g

≥L cm,ng for u being chosen such that we can apply the middle cases. We
also obtain cm,ng ≥L cm+1,n

g , by applying (3-16) to θvcm+1,n
g for appropriate v.

Thus, cm,ng ∼L cm+1,n
g . Similarly, we deduce cm,ng ∼L cm,n−1g , cm,ng ∼L cm,n+1

g

and cm,ng ∼L cm−1,ng . Thus, for fixed m we see that all c
m,
g are in the same

left cell, and similarly for fixed n all c
,n
g are in the same left cell. We can

also deduce that cm,ng ∼L cm−1,n+1
g and cm,ng ∼L cm+1,n−1

g . In summary, all
cm,ng belong to the same left cell. Since left multiplication will never change
the rightmost color of a word, we conclude that Lg is indeed a left cell.

Analogously, one can show that Lo and Lp are left cells, and, mutatis
mutandis, that uR is a right cell, for u. Finally, the statement about two-
sided cell follows from (3-15).

3.3. The quotient of level e

Its definition. We are now ready to define interesting, finite-dimensional
quotients of T∞, which are compatible with the cell structure.

Definition 3.12. For fixed level e, let Ie be the two-sided ideal in T∞
generated by

{cm,nu | m+ n = e+ 1, u ∈ GOP} = {m,nuc | m+ n = e+ 1, u ∈ GOP}.

We define the trihedral Hecke algebra of level e as

Te = T∞/Ie

and we call Ie the vanishing ideal of level e.

Remark 3.13. We point out that Te is the trihedral analog of the so
called small quotient in the dihedral case (cf. The dihedral story 3.24).

Proposition 3.14. Each of the two sets

Ce = {1} ∪ {cm,nu | 0 ≤ m+ n ≤ e, u ∈ GOP} ,
eC = {1} ∪ {m,nuc | 0 ≤ m+ n ≤ e, u ∈ GOP}

is a basis of Te. Thus, dimCv Te = 3(e+ 1)(e+ 2)/2 + 1 = 3te + 1.

Proof. By Lemma 3.7, T∞ is an N-filtered algebra with T∞ ∼=
⋃
i∈N(T∞)i

such that (T∞)0 = {1} and, for any i ∈ Z≥1, we have

(T∞)i = Cv{cm,nu | 0 ≤ m+ n ≤ i− 1, u ∈ GOP}.

Note that c0,0u = θu has filtration degree 1, so the multiplication rule in
Lemma 3.7 is compatible with this filtration.

Since Ie is generated by homogeneous elements, Te is also an N-filtered
algebra. In order to prove finite-dimensionality, consider the associated
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N-graded algebra
E(Te) =

⊕
i∈N

(Te)i/(Te)i−1,

where (Te)−1 = {0}, by convention. Note that

cm,nu ≡ hm,nu mod (Te)m+n

for all m,n. We have E(Te)e+2 = {0}, by Lemma 3.7, and E(Te)i = {0} for
all i ≥ e+ 3, also by Lemma 3.7.

The first statement follows, since {cm,nu | m + n = i − 1, u ∈ GOP} is,
by Proposition 3.9, a basis of E(Te)i, for all 1 ≤ i ≤ e + 1. The dimension
formula is then clear.

The version with m,n
uc can be shown verbatim.

Corollary 3.15. The non-trivial cells for the algebra Te are as in
Proposition 3.11, but intersected with the bases from Proposition 3.14.

In particular, the non-trivial left and right cells each have cardinality
te = (e+ 1)(e+ 2)/2. The non-trivial two-sided cell is the disjoint union of
them all, so it has cardinality 3te.

Example 3.16. The left cells correspond to the generalized type A Dyn-
kin diagrams Ae in Appendix A.1, which are cut-offs of the positive Weyl
chamber as in (2-1), such that the basis elements of the left cells correspond
to the vertices of the diagram.

The prototypical examples to keep in mind are

c0,0g

c1,0gc0,1g

?
��

Lg for e = 1

c0,0g

c1,0g

c0,2g

c0,1g

c1,1g
c2,0g

?

•
�

� �

�

Lg for e = 2

c0,0g

c1,0g

c2,1g
c3,0g

c1,1g

c0,2g

c0,3g

c0,1g

c2,0g

c1,2g

?

•
••

�

�

�

�

�

�

Lg for e = 3

where we also display the associated colored KL basis elements. The starting
(rightmost) color is indicated by ?. The color of any vertex is the color
of the leftmost θu in any of the terms of the corresponding colored KL
basis element. The arrows of the same type, emanating from a given vertex,
indicate the terms which appear on the right-hand side of the multiplication
rule in (3-16).

Trihedral simples. Next, we classify all simple representations of Te on
(Cv-)vector spaces (see (3-20)). To this end, note that the ideal Ie defining
T∞ is built such that we can use Koornwinder’s Chebyshev polynomials and
their roots as in Section 2.2.
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First, the one-dimensional representations of Te are easy to define, since
they correspond to characters. Each such character

Mλg ,λo,λp : Te → Cv

is completely determined by its value on the generators

θg 7→ λg, θo 7→ λo, θp 7→ λp.

Therefore, we can identify Mλg ,λo,λp with a triple (λg, λo, λp) ∈ C3
v.

Lemma 3.17. The table

(3-17)
e ≡ 0 mod 3 e 6≡ 0 mod 3

M0,0,0, M[3]v! ,0,0,

M0,[3]v! ,0, M0,0,[3]v!

M0,0,0

gives a complete, irredundant list of one-dimensional Te-representations.

Proof. Let us first check which triples (λg, λo, λp) give a well-defined
character of Te: by (3-3), we see that λu has to be zero or [3]v! . Moreover,
(3-4) implies that either all θu act by zero, precisely one of them acts by [3]v! ,
or all of them act by [3]v! . Further restrictions are imposed by requiring the
representation to vanish on Je.

Let us now give the details. The representation M0,0,0 vanishes on Je,
because, by definition, cm,ng , cm,no , cm,np have no constant term for all m,n,
since their starting color is always θu.

The representation M[3]v! ,[3]v! ,[3]v! does not vanish on Je, since all poly-
nomials Um,n(X, Y) have a unique term of highest degree. This follows from
the representation theory of of sl3, since XmYn has a unique highest sum-
mand. The coefficient of this term contributes a maximal power of v when
evaluated, which cannot be canceled by the coefficients of other terms, e.g.

X2−Y! [2]−2v θpθoθg− [2]−1v θpθg 7→ [2]−2v [3]v! [3]v! [3]v! − [2]−1v [3]v! [3]v! 6= 0.

Thus, M[3]v! ,[3]v! ,[3]v! is not a representation of Te.
When e ≡ 0 mod 3, there are three more characters, namely

M[3]v! ,0,0, M0,[3]v! ,0, M0,0,[3]v! .

To see this, note that, for m + n = e + 1 and e ≡ 0 mod 3, we have
m + n ≡ 1 mod 3. Hence, m ≡ n ≡ 0, 1 mod 3 is impossible in this case.
By Lemma 2.8, this means that Um,n(X, Y) does not have a non-zero con-
stant term. It follows that all terms in cm,ng , cm,no , cm,np contain a factor θvθu
for some u 6= v. For any of the three M[3]v! ,0,0, M0,[3]v! ,0 or M0,0,[3]v! , we
therefore have θvθu 7→ 0. This shows that cm,ng , cm,no , cm,np 7→ 0.

The three corresponding one-dimensional representations are clearly non-
isomorphic.
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Let us now study the simple representations of dimension three, which
depend on a complex number z ∈ C. To this end, we define three matrices

Mz(g) = [2]v


[3]v z z
0 0 0
0 0 0

, Mz(o) = [2]v


0 0 0
z [3]v z
0 0 0

,

Mz(p) = [2]v


0 0 0
0 0 0
z z [3]v

.
(3-18)

Let Mtot
z = Mz(g) + Mz(o) + Mz(p).

Next, we use the explicit description of the elements in Ve (cf. Re-
mark 2.11).

Lemma 3.18. The matrices Mz(g),Mz(o),Mz(p) define a representation
Mz of Te on C3

v such that

θg 7→ Mz(g), θo 7→ Mz(o), θp 7→ Mz(p)

if and only if (z, z) ∈ Ve.

Proof. Two short calculations show that Mz(u) respects the relations
(3-3) and (3-4). The fact that Mz vanishes on Je if and only if (z, z) ∈ Ve

follows from the proof of Lemma 2.10, as we defined cm,ng , cm,no and cm,np in
terms of Um,n(X, Y). Note that in the calculation of Mz(c

m,n
u ) the positive

powers of [2]v, due to (3-18), cancel out the negative powers of [2]v, which
appear in (3-13), up to an overall factor [2]v.

Recall that ζ = exp
(
2πi13

)
.

Lemma 3.19. Let (z, z), (z′, z′) ∈ Ve, z 6= z′.

(3.19.a) Mz
∼= Mz′ as representations of Te if and only if z′ = ζ±1z.

(3.19.b) Mz is simple if and only if z 6= 0.

Proof. (3.19.a): Suppose that z′ = ζ±1z. Then we have the following
base change between Mtot

z and Mtot
z′ :

[2]v


[3]v z′ z′

z′ [3]v z′

z′ z′ [3]v

 = [2]v


ζ∓1 0 0
0 1 0
0 0 ζ±1




[3]v z z
z [3]v z
z z [3]v



ζ±1 0 0
0 1 0
0 0 ζ∓1

.
This shows that Mz

∼= Mz′ as Te-representations.
To see the converse, we compute the eigenvalues and eigenvectors of Mtot

z :

[2]v(z + z + [3]v) [2]v(ζ
−1z + ζz + [3]v) [2]v(ζz + ζ−1z + [3]v)

(1, 1, 1) ∈ C3
v (1, ζ, ζ−1) ∈ C3

v (1, ζ−1, ζ) ∈ C3
v

(3-19)

Since v is generic, these are three non-zero eigenvalues with three linearly
independent eigenvectors, showing that Mtot

z can be diagonalized.
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Now suppose Mz
∼= Mz′ . Then Mtot

z and Mtot
z′ must have the same eigen-

values, so the above implies that one of the following three triples of equations
must hold:

z + z = z′ + z′, ζz + ζ−1z = ζz′ + ζ−1z′, ζ−1z + ζz = ζ−1z′ + ζz′;

z + z = ζz′ + ζ−1z′, ζz + ζ−1z = ζ−1z′ + ζz′, ζ−1z + ζz = z′ + z′;

z + z = ζ−1z′ + ζz′, ζz + ζ−1z = z′ + z′, ζ−1z + ζz = ζz′ + ζ−1z′.

One easily checks that these are satisfied if and only if z = z′ (top triple),
z = ζz′ (middle triple) or z = ζ−1z′ (bottom triple).

(3.19.b): In case z = 0, one clearly has

M0
∼= M[3]v! ,0,0 ⊕M0,[3]v! ,0 ⊕M0,0,[3]v! ,

where the one-dimensional representations were defined in (3-17).
Now suppose that z 6= 0 and that Mz is reducible. Then it must have a

subrepresentation of dimension one or two. The explicit description of the
eigenvalues and eigenvectors of Mtot

z from (3-19) shows that this is impos-
sible.

To see this, first note that the restriction of Mtot
z to the vector space

underlying the potential subrepresentation would be diagonalizable as well.
Secondly, in case the eigenvalues in (3-19) are all distinct, at least one

eigenvector therein is also an eigenvector for the restriction. However, apply-
ing Mz(g), Mz(o) and Mz(p) to any of the three eigenvectors in (3-19) gives
three linear independent vectors, which shows that no subrepresentation can
exist in case of distinct eigenvalues.

Thirdly, assume that two of the three eigenvalues in (3-19) coincide. Then
there must exist a linear combination of the corresponding two eigenvectors
which is an eigenvector for the restriction. Applying Mz(g), Mz(o) and Mz(p)
to that eigenvector would give three linear independent vectors, as can easily
be checked. We get a contradiction again.

Finally, since z 6= 0, not all eigenvalues in (3-19) can be equal, so we are
done.

Recall from the proof of Lemma 2.10 the functions Z and Z, which map
D bijectively onto the discoid d3, and which determine Ve. If e 6≡ 0 mod 3,
then Z(σ, τ) 6= 0 for all (σ, τ) as in (2-11). By Lemma 3.19, this implies
that the total number of pairwise non-isomorphic Mz is equal to te/3. If
e ≡ 0 mod 3, then that number is equal to (te− 1)/3, because Z(σ, τ) = 0 if
and only if 2k + l = e = k + 2l if and only if k = l = e/3.

Summarizing, we have the following non-isomorphic, simple Te-represen-
tations:
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e ≡ 0 mod 3 e 6≡ 0 mod 3

one-dim. M0,0,0, M[3]v! ,0,0,
M0,[3]v! ,0, M0,0,[3]v!

M0,0,0

quantity 4 1

three-dim. Mz, (z, z) ∈ Vζ
e − {(0, 0)} Mz, (z, z) ∈ Vζ

e

quantity (te − 1)/3 te/3

(3-20)

Here Vζ
e denotes the set of Z/3Z-orbits in Ve under the action (z, z) 7→

(ζz, ζ−1z).

Example 3.20. By (3-20), the three-dimensional simple representations
of Te are indexed by the Z/3Z-orbits of points in the interior of d3 (cf.
Example 2.12.), e.g.

−3 3
x

−3

3
y

C

• •

•

•

•

•

•

•

•
•

case e = 3
#(V3−{0, 0}) = 9

te − 1 = 9

Here the arrows indicate the Z/3Z-symmetry.

We are now ready to provide a classification of simple Te-representations.

Theorem 3.21. The table (3-20) gives a complete, irredundant list of
simple Te-representations. Furthermore, the algebra Te is semisimple.

Proof. By Proposition 3.14, Te is of dimension 3(e + 1)(e + 2)/2 + 1.
From the representation theory of finite-dimensional algebras we thus have

dimCv Te = 3(e+ 1)(e+ 2)/2 + 1 = 3te + 1 ≥
∑
M

(dimCv M)2,(3-21)

where the sum is taken over any set of pairwise non-isomorphic, simple Te-
representations M. If equality holds in (3-21) for such a set, then that set is
complete and Te is semisimple.

Case e 6≡ 0 mod 3. We use the data from (3-20) in (3-21) and obtain∑
M

(dimCv M)2 =
te
3
· 32 + 1 · 12 = 3te + 1,

which shows both statements.
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Case e ≡ 0 mod 3. Similarly, we compute∑
M

(dimCv M)2 =
te − 1

3
· 32 + 4 · 12 = 3(te − 1) + 4 = 3te + 1,

which again shows both statements.

3.4. Generalizing dihedral Hecke algebras. We finish this section
by listing some analogies to the dihedral case. The crucial link between
the dihedral and the trihedral case is the following: The sl2-version of the
polynomial Um,n(X, Y) from Section 2.2 is the Chebyshev polynomial Um(X)
(normalized and of the second kind). Using the convention that the Um(X)
are zero for negative subscripts, they satisfy the recursion relation

U0(X) = 1, U1(X) = X, XUm(X) = Um+1(X) + Um−1(X).

Here, X corresponds to the fundamental representation of sl2. The analog of
the discoid d3 from (2-9) is the interval d2 = [−2, 2], whose boundary is the
pair of primitive, complex second roots of unity, multiplied by 2. (Note the
evident Z/2Z-symmetry of d2.)

The dihedral story 3.22. Let D∞ = Hv(I2(∞)) = Hv(Ã1) denote the
dihedral Hecke algebra of the infinite dihedral group, i.e. the Weyl group of
affine type A1, and Hv(I2(e + 2)) the dihedral Hecke algebra of dimension
2(e + 2), which is of finite Coxeter type I2(e + 2). The first analogy of our
story to the dihedral case is provided by Lemma 3.2, the difference being
that the trihedral Hecke algebra is a proper subalgebra of Hv. The entries of
the change-of-basis matrix from the (colored) KL basis to the Bott–Samelson
basis of D∞ are precisely the coefficients of the polynomials Um(X) (see for
example [El3, Section 2.2]).

The dihedral story 3.23. By Proposition 3.11, all non-trivial cells of
T∞ are infinite, and there are three non-trivial left and right cells, one for
each u ∈ GOP , whose disjoint union forms the only non-trivial two-sided
cell. This is another analogy to the dihedral case: the algebra D∞ has two
non-trivial left and right cells, one for each of its Coxeter generators, whose
disjoint union forms the only non-trivial two-sided cell.

The dihedral story 3.24. Let De denote the small quotient of
Hv(I2(e+ 2)), obtained by killing the top cell. Section 3.3 provides the third
analogy: De can be obtained as a quotient of D∞ by the ideal generated
by the two elements related to the irreducible sl2-module Le+1 under the
quantum Satake correspondence; the non-trivial left cells of De have order
e+ 1 and dimCv De = 2(e+ 2)− 1 = 2e+ 3.

The dihedral story 3.25. Theorem 3.21 provides another analogy
to the dihedral case: De is semisimple over C, and all of its simples are
either one- or two-dimensional, with the number of their isomorphism classes
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depending on whether e ≡ 0 mod 2 or e ≡ 1 mod 2. Analogously to (3-18),
the two-dimensional simples can be defined by matrices whose off-diagonal,
non-zero entries are the roots of the Chebyshev polynomials Ue+1(X), i.e. its
(colored) KL generators are sent to

(
[2]v z
0 0

)
and

(0 0
z [2]v

)
, where z = z is a root

of Ue+1(X).

4. Trihedral Soergel bimodules. The purpose of this section is to
categorify the trihedral Hecke algebras T∞ and Te from Section 3, where
e still denotes the level. As before, we have collected some analogies to the
dihedral case at the end of the section (see Section 4.4).

4.1. Bott–Samelson bimodules for affine A2. First, we recall the
diagrammatic 2-category sBS [q] from [El2, Section 3.3]. We call it the (2-
category of) singular Bott–Samelson bimodules of affine type A2.

2-categorical conventions. For generalities and terminology on 2-cate-
gories, we refer for example to [Le] or [ML].

Convention 4.1. We use 2-categories given by generators and relations.
This means that 1-morphisms are obtained by compositions ◦ of the generat-
ing 1-morphisms, and 2-morphisms are obtained by horizontal ◦h and vertical
◦v compositions of 2-generators whenever this makes sense. (In particular,
the interchange law leads to additional relations in our 2-categories, called
height relations.) Relations are supposed to hold between 2-morphisms. De-
tails about such 2-categories can be found e.g. in [Ro, Section 2.2].

Convention 4.2. We read 1-morphisms from right to left, using the op-
erator notation, and 2-morphisms from bottom to top and right to left. These
conventions are illustrated in Definition 4.6 below. Note that we usually omit
the 1-morphisms in the pictures, and we simplify diagrams by drawing them
in a more topological fashion, using e.g. Example 4.8.

Convention 4.3. A (Z-)graded 2-category for us is a 2-category whose
2-hom spaces are (Z-)graded, meaning that 2-generators have a given de-
gree, the relations are homogeneous and the degree is additive under hori-
zontal and vertical composition. Moreover, 1-morphisms are formal shifts of
generating 1-morphisms, indicated by {a} for a ∈ Z, so there is a formal
Z-action on 1-morphisms such that {k}(F{a}) = F{a+ k} for all k ∈ Z. Fi-
nally, a 2-morphism f : F{0} → G{0}, homogeneous of degree d, is of degree
d − a + b seen as a 2-morphism f : F{a} → G{b}. For more information on
such 2-categories, see e.g. [La, Section 5.1].

The definition of sBS [q]. Let C[q] = C[q, q−1] and R[q] = C[q][αb, αr, αy],
where αb, αr, αy are formal variables. We define an action of the affine Weyl
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group W from Section 3.2 on R[q]:

(4-1)

αb αr αy

b −αb αb + αr q−1αb + αy

r αb + αr −αr qαr + αy

y αb + qαy αr + q−1αy −αy

One easily checks that (4-1) is well-defined. This also gives rise to an action
of the secondary colors on R[q] by using (3-2) (recalling that e.g. g = {b, y}).
Thus, we can introduce

Definition 4.4. For any c ∈ BRY and u ∈ GOP , let Rc
[q] and Ru

[q] denote
the subrings of R[q] consisting of all c-invariant and u-invariant elements,
respectively.

Recall that we always use u,v ∈ GOP as secondary dummy colors, and
we also use the primary dummy colors c, d ∈ BRY from now on. Moreover,
identifying our colors with proper subsets of BRY , including the empty
subset, we say that two of them are compatible if one is a subset of the
other, e.g. as the colors connected by an edge below.

(4-2)
p g o

b r y

∅

p g o

b r y

∅

p g o

b r y

∅

Example 4.5. The color b is compatible with ∅, g and p, but not with
r, y or o.

We will define the 2-category of singular Soergel bimodules as a quotient
of the following 2-category, which we view as a free version of it.

Definition 4.6. Let sBS ∗[q] be the 2-category defined as follows.

Objects of sBS ∗[q]. The objects are proper subsets of BRY = {b, y, r},
including the empty subset ∅. The one-element subsets are identified with
b, y, r, the two-element subsets are identified with g, o, p, using the color
conventions from Section 3.1.

1-morphisms of sBS ∗[q]. By definition, there is one generating 1-mor-
phism for each pair of distinct compatible colors. Namely, including all
other compatible variations using the conventions from (4-2) and writing
e.g. b∅ = b ◦ ∅ for short:

∅b : ∅ ← b, b∅ : b← ∅, bg : b← g, yg : y ← g, gb : g ← b, gy : g ← y, etc.
compatible as in (4-2)
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2-morphisms of sBS ∗[q]. The 2-morphisms are generated by two kinds
of 2-generators. The first kind are cups, caps and crossings given as follows.

(4-3)
∅

∅

b ∅

:

∅
⇑
∅b∅

degree 1
b

b

∅ b
degree −1

y

y

o y

degree 2

o

o

y o

degree −2

∅

∅

r

b

p

p
degree 0

(We frame ∅-colored regions for readability.) The generators displayed in
(4-3) are all generators up to colored variations: each strand separates two
regions colored by subsets of BRY that differ by a primary color, which is
used to color that strand. The strands are oriented so that the region colored
by the smaller subset of BRY lies to their left.

The second kind of 2-generators are decorations of the regions by polyno-
mials in R[q] that are invariant under the parabolic subgroup corresponding
to the color of the region, i.e.

p

p∈R∅[q]=R[q]

p

p ∈ Rb
[q]

p

p ∈ Rr
[q]

p

p ∈ Ry
[q]

p

p ∈ Rg
[q]

p

p ∈ Ro
[q]

p

p ∈ Rp
[q]

(4-4)

The polynomials are allowed to move around as long as they do not cross
any strand.

Grading on sBS ∗[q]. We endow sBS ∗[q] with the structure of a graded
2-category by giving the generators from (4-3) and (4-4) the following degree:

I Clockwise cups and caps between ∅ and c have degree 1, while their an-
ticlockwise counterparts have degree −1.

I Clockwise cups and caps between c and a compatible u have degree 2,
while their anticlockwise counterparts have degree −2.

I Crossings are of degree 0.
I Homogeneous polynomials are graded by twice their polynomial degree,

i.e. the formal variables αb, αr, αy are of degree 2.

We have indicated some of these in (4-3).

Example 4.7. In general, a 1-morphism is a finite string of generating 1-
morphisms, which are indicated by their source and target, e.g. yorpb∅ : y ←
o ← r ← p ← b ← ∅. (By convention, we identify the objects c,u with the
identity 1-morphisms on them.) Furthermore,

is an example of the coloring of facets and strands.
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Example 4.8. As usual, one can define sideways crossings, e.g.

=

degree 1

=

degree 1

Note that these are of degree 1.

Remark 4.9. The 2-category sBS ∗[q] depends on q, since the quantum
parameter is in the definition of the rings R[q] (cf. (4-1)).

Before we can go on, we need some algebraic notions.

An interlude on Frobenius extensions. The relations of sBS [q] actually
come from a cube of Frobenius extensions. (For details on Frobenius exten-
sions see e.g. [ESW].)

Definition 4.10. A (commutative) Frobenius extension is an extension
of commutative rings R′ ⊂ R with R being a free R′-bimodule of finite rank,
together with an R′-bilinear trace map ∂ : R → R′ which gives rise to a
non-degenerate bilinear pairing

〈·, ·〉 : B× B? → R′.

Moreover, for a Frobenius extension there exist two R′-bases B,B? of R such
that for any x ∈ B there is precisely one element x? ∈ B? satisfying

〈x, x′〉 = ∂(xx′) = δx′,x? .

The elements x and x?, respectively the bases B and B?, are called dual to
each other.

The number of elements #B = #B? is called the rank.
Such an extension is called graded if R,R′ are graded rings, R is graded

as an R′-bimodule, B,B? consist of homogeneous elements, and ∂ is a ho-
mogeneous map.

Note that the dual elements x, x? satisfy deg(x) + deg(x?) = −deg(∂).

Definition 4.11. We let ∂c : R[q] → Rc
[q] be defined via the formula

∂c(f) = (f − c(f))/αc. We call these the primary Demazure operators. Sim-
ilarly, we define

∂bg = q∂b∂y : Rb
[q] → Rg

[q], ∂yg = ∂y∂b : Ry
[q] → Rg

[q],

∂ro = q−1∂r∂y : Rr
[q] → Ro

[q], ∂yo = ∂y∂r : Ry
[q] → Ro

[q],

∂bp = ∂b∂r : Rb
[q] → Rp

[q], ∂rp = ∂r∂b : Rr
[q] → Rp

[q],
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which we call the mixed Demazure operators. Finally, we define

∂g = q∂b∂y∂b = ∂y∂b∂y : R[q] → Rg
[q],

∂o = q−1∂r∂y∂r = ∂y∂r∂y : R[q] → Ro
[q],

∂p = ∂b∂r∂b = ∂r∂b∂r : R[q] → Rp
[q],

which we call the secondary Demazure operators.

Note that the action on the linear terms determines the whole action
since we have the twisted Leibniz rule

∂c(fg) = ∂c(f)g + c(f)∂c(g).

Moreover, a straightforward calculation (cf. [El2, (3.9)]) yields

q∂b∂y∂b = ∂y∂b∂y, q−1∂r∂y∂r = ∂y∂r∂y, ∂b∂r∂b = ∂r∂b∂r,

showing that the mixed Demazure operators are well-defined. (The careful
reader might additionally want to check that the primary Demazure opera-
tors are well-defined by checking that ∂c(f) is a c-invariant polynomial.)

Remark 4.12. Recalling that the root variables are of degree 2, one
easily observes that the primary, mixed and secondary Demazure operators
are homogeneous of degree −2,−4 and −6, respectively.

Lemma 4.13. We have Frobenius extensions

∂c : R[q] → Rc
[q], ∂cu : Rc

[q] → Ru
[q], ∂u : R[q] → Ru

[q],

of rank 2, 3 and 6, respectively, which are compatible in the sense that
∂c = ∂cu∂u.

Proof. One can prove this lemma by computing explicit dual bases. (Note
that this requires 2 and 3 to be invertible.) We do not need them here and
omit the calculations.

Definition 4.14. Choose any pairs of dual bases Bc,B
?
c of ∂c : R[q] → Rc

[q],
Bc

u, (B
c
u)? of ∂cu : Rc

[q] → Ru
[q] and Bu,B

?
u of ∂u : R[q] → Ru

[q]. Let

∆c =
∑
a∈Bc

a⊗ a?, ∆c
u =

∑
a∈Bcu

a⊗ a?, ∆u =
∑
a∈Bu

a⊗ a?,(4-5)

where a? denotes the basis element dual to a.

Note that the elements ∆ are well-defined, i.e. do not depend on the
choice of dual bases (see e.g. [El2, Section 2.4]).
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Definition 4.15. We define the following elements µ in R[q].

b, y b y ∅
g q−1αb + αy αyµ

b,y
g αbµ

b,y
g αbαyµ

b,y
g

r, y r y ∅
o qαr + αy αyµ

r,y
o αrµ

r,y
o αbαyµ

r,y
o

b, r b r ∅
p αb + αr αrµ

b,r
p αbµ

b,r
p αbαrµ

b,r
p

(4-6)

This is to be read as e.g. µb,yg = q−1αb+αy and µ∅g = µg = αbαy(q
−1αb+αy)

etc.

Continuation of definition of the sBS [q]

Definition 4.16. Let sBS [q] be the 2-quotient of the additive, C[q]-
linear closure of sBS ∗[q] defined as follows.

Relations of sBS [q]. (We only give the relations for one choice of com-
patible colors and comment on the other choices, where ‘Var.: comp. color.’
means that the analogous relation holds for other compatible colorings in
the sense of (4-2).)

First, polynomial multiplication, i.e. polynomial decorations on a facet
multiply, and isotopy relations:

(4-7) = = = =

Var.: comp. color.

Then various relations involving circles, called circle removals:

= αb

Var.: comp. color.,
using αr or αy.

(4-8)

= µbp

Var.: comp. color.,
using µcu.

(4-9)
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p = ∂yg (p)

Var.: comp. color.,
using ∂c or ∂cu.

(4-10)

(Note that there is also a variation of (4-10) with a circular ∅-region in the
middle bounded by a primary colored region outside.)

Moreover, we have polynomial sliding and neck cutting relations:

p = p , p ∈ Ro
[q]

Var.: comp. color.,
for p ∈ Rc

[q] or p ∈ Ru
[q].

(4-11)

= ∆r
p

Var.: comp. color.,
using ∆c or ∆c

u.

(4-12)

The notation in the neck cutting relations (4-12) indicates that one has put
the tensor factors of the various summands of the ∆ in the corresponding
regions (i.e. left tensor factors in the leftmost region and right tensor factors
in the rightmost region) (cf. Example 4.22).

Next, Reidemeister-like relations:

=

Var.: comp. color.

(4-13)

= ∂∆o

Var.: comp. color.,
using ∂∆u.

(4-14)

= µb,rp

Var.: comp. color.,
using µc,du .

(4-15)

where the notation ∂∆o in (4-14) means

∂∆o = ∂y(∆
r
o(1))⊗∆r

o(2) = ∆y
o(1)⊗ ∂r(∆y

o(2)),

which is to be read again in the corresponding regions.
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Finally, the square relations, which we exemplify by the case in which
y∅b is at the bottom and b∅y is at the top:

= + q−1

Var.: comp. color.; in case y∅r replace q−1  q; in case p∅b replace q−1  1.

(4-16)

(We stress that (4-16) is not invariant under color change.)

Definition 4.17. The 2-category of regular Bott–Samelson bimodules is
defined as

BS [q] = sBS [q](∅, ∅),
i.e. the 2-full 2-subcategory of sBS [q] generated by diagrams whose left-
and rightmost color is ∅. Note that BS [q] has only one object, namely ∅.

The 2-category of maximally singular Bott–Samelson bimodules is defined
as

mBS [q] =
⊕

u,v∈GOP
sBS [q](u,v),

i.e. the 2-full 2-subcategory of sBS [q] generated by diagrams whose left-
and rightmost colors are secondary.

Note that we can always extend scalars to e.g. Cq = C(q) and we indicate
this by changing the subscript [q] to q.

Remark 4.18. sBS [q] is an additive, C[q]-linear, graded 2-category,
which is, however, not idempotent closed. This is remedied by considering
its Karoubi envelope Kar(sBS [q]), which we take as the definition of the
2-category of singular Soergel bimodules of affine type A2.

Thus, we have:

I The 2-category of singular Bott–Samelson bimodules, whose notation con-
tains an s.

I The 2-category of regular Bott–Samelson bimodules, whose notation has
no s.

I The 2-category of maximally singular Bott–Samelson bimodules, whose
notation contains an m. As we will see, the degree-zero part of this 2-
subcategory, for a fixed choice of shifts of the 1-morphisms, is semisimple.

I The corresponding 2-categories of singular, regular and maximally singu-
lar Soergel bimodules are the Karoubi envelopes of these, by definition.

I Various scalar extensions of these, indicated by subscripts.

We use similar notations throughout, e.g. for scalar extensions of 2-
functors.

Remark 4.19. By [El2, Theorem A.1], the decategorification of the 2-
category Kar(sBS q), via the split Grothendieck group, is isomorphic to
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the affine A2 Hecke algebroid. As explained for example in [Wi, Section 2.3]
(under the name of Schur algebroid), this is a multi-object version of the
affine Hecke algebra Hv from Section 3.2. Moreover, the 2-full 2-subcategory
Kar(BS q) decategorifies to Hv (see e.g. [EW2, Theorem 3.17]).

Examples and further comments

Example 4.20. In accordance with (4-2), we have the following Frobe-
nius extensions:

Rp
[q] Rg

[q] Ro
[q]

Rb
[q] Rr

[q] Ry
[q]

R[q]

Rp
[q] Rg

[q] Ro
[q]

Rb
[q] Rr

[q] Ry
[q]

R[q]

Rp
[q] Rg

[q] Ro
[q]

Rb
[q] Rr

[q] Ry
[q]

R[q]

with the corresponding trace maps going upwards. Moreover,

∂(αb) = 2, ∂bg(µ
b
g) = 3, ∂g(µg) = 6,(4-17)

as an easy calculation shows. Similar results hold for other colors.
Note that the numbers in (4-17), which follow from (4-8)–(4-10), are

precisely the ranks of the corresponding Frobenius extensions.

Example 4.21. When working with sBS [q], it is important to remember
that the polynomial 2-generators of a given facet are invariant under the
action of the parabolic subgroup which corresponds to the color of that
region. For example, µyg is an element of Ry

[q], and applying ∂yg to it will make
it additionally b-invariant. In fact,

(4-9)
= µyg

(4-10)
= ∂yg (µyg) = 3

We also get

(4-9)
= µyo

(4-10)
= ∂yg (µyo) = [3]q

which we will need below.

Example 4.22. We have

(4-14)
= ∂∆g =

∑
x∈Bbg

∂y(x) x? =
∑
y∈Byg

y ∂b(y
?)
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More generally (cf. [El2, (3.15d)]), the relations in Definition 4.16 imply

p =
∑
x∈Bbg

∂y(px) x? =
∑
y∈Byg

y ∂b(py
?) , p ∈ R[q].

As usual, similar relations hold for other colors.

4.2. The trihedral Soergel bimodules of level ∞

The definition. We first consider a 2-subcategory categorifying T∞.

Definition 4.23. Let T∞,[q] be the additive closure of the 2-full 2-
subcategory ofBS [q], whose 1-morphisms are generated by the color strings
that have at least one secondary color and have ∅ as the left- and rightmost
color but nowhere else in the string.

Its scalar extension is denoted by T∞ = T∞,q.
Example 4.24. The prototypical 1-morphisms of T∞,[q] are ∅ and all

compatible color variation of

∅bgb∅, ∅ygy∅, ∅ygb∅, ∅bgy∅, ∅bgyoy∅, ∅bgyor∅, etc.

All other 1-morphisms in T∞,[q] are direct sums of these, e.g. ∅ygyoy∅⊕∅yoy∅.
Some lemmas. We note the following lemma, which follows directly

from (4-13).

Lemma 4.25. The following diagrams commute in sBS [q]:

∅bg
id∅bg

22
// ∅yg // ∅bg ∅yg

id∅yg
22

// ∅bg // ∅yg(4-18)

In particular, ∅bg ∼= ∅yg. The same holds for color variations with compatible
colors.

The following, where we tacitly use Lemma 4.25, should be compared to
Lemma 3.2.

Lemma 4.26. In Kar(T∞), the 1-morphism ∅bgb∅ ∼= ∅ygy∅ is isomorphic
to the indecomposable direct summand of ∅b∅y∅b∅ or of ∅y∅b∅y∅ which corre-
sponds to the word wg = byb = yby ∈Wg. The same holds for all compatible
color variations.

Recall thatBS q decategorifies to Hv(Ã2) (cf. Remark 4.19), so that the
indecomposable 1-morphisms inBS q decategorify to the KL basis elements
of the affine type A2 Weyl group W. Since T∞ is a 2-full 2-subcategory
of BS q, its indecomposable 1-morphisms are also indecomposable as 1-
morphisms of the latter. Therefore, Kar(T∞) decategorifies to a subalgebra
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of Hv(Ã2), with a basis consisting of a particular subset of the KL basis
elements.

Proof of Lemma 4.26. By (4-16), we have

∅ b ∅ y ∅ b ∅ = q ∅ b g b ∅ − q ∅ b ∅(4-19)

It is not hard to check, using the relations in Definition 4.16, that (4-19)
gives a decomposition into orthogonal idempotents.

Note that the first idempotent on the right-hand side shows that ∅bgb∅ is a
direct summand of ∅b∅y∅b∅, as indicated in (4-19), i.e. ∅b∅y∅b∅ ∼= ∅bgb∅⊕∅b∅.
This decomposition decategorifies to

θwg
(3-6)
= θbθyθb = θbyb + θb,

and it then follows from [El2, Theorem A.1] that the idempotents on the
right-hand side of (4-19) are primitive. This shows the lemma in the case of
b, y and g. The other cases are analogous.

Lemma 4.27. We have b∅b ∼= b{+1}⊕b{−1} in sBS [q]. A similar result
holds for all compatible color variations, keeping the color ∅.

Note that Lemma 4.27 is only true for primary colors, since ∅ is never
compatible to a secondary color.

Proof of Lemma 4.27. This follows from the following diagram:

b{+1}
1
2

))
b∅b

αb

55

))

b∅b

b{−1}

1
2

αb

55

Observing that ∂b(αb) = 2, ∂b(α2
b) = 0 and ∆b = 1

2(αb ⊗ 1 + 1 ⊗ αb), and
using the relations in Definition 4.16 , one can check that the left and right
columns in this diagram define mutual inverses: In this setup 2-morphisms
correspond to matrices of diagrams, so that composition corresponds to ma-
trix multiplication. The two 2-morphisms above corresponding to the column
matrices are each other’s inverses with respect to this composition. Similar
arguments can be used for all other compatible color variations.

Remark 4.28. Using Lemma 4.27 we simplify our diagrams and do not
illustrate ∅ colored regions in the middle, if not necessary. For example,
θgθg should be thought of as corresponding to ∅bgbgb∅ instead of ∅bgb∅bgb∅.
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However, the grading shift appearing in this simplification is exactly the
reason for the scaling by powers of [2]−1v in Section 3.

Definition 4.29. Define the following 2-morphisms in sBS [q] (and sim-
ilar ones for other colors):

= + q−1

= + q

(4-20)

Lemma 4.30. The following diagrams commute in sBS [q]:

gbpbg
idgbpbg

11
// gyoyg // gbpbg gbpbg

idgbpbg
11

// gyoyg // gbpbg

(4-21)

In particular, gyoyg ∼= gbpbg. A similar result holds for other colors.

Proof. We only prove that the left diagram commutes. To this end, we
write f1 and q−1f2 for the two summands on the right-hand side of the
top equality in (4-20), and similarly g1 and qg2 for the bottom equality.
Using (4-16), followed by (4-13) and [El2, Claim 3.14], we get g1 ◦v f1 =
idgbpbg + h. Moreover, by first using (4-13) and (4-15) (and ∂bµ

r,y
o = −[2]2q),

and then (4-10) and Example 4.22, we get g1 ◦v q−1f2 + qg2 ◦v f1 = −[2]2qh.
Finally, qg2 ◦v q−1f2 = [3]qh follows from Example 4.21, and we are done
since [3]q = [2]2q − 1.

Categorifying T∞

Proposition 4.31. The assignment given by

θg 7→ [∅bgb∅] = [∅ygy∅], θo 7→ [∅ror∅] = [∅yoy∅], θp 7→ [∅bpb∅] = [∅rpr∅]

defines an isomorphism T∞
∼=−→ [Kar(T∞)]Cv

⊕ of algebras.
Under this isomorphism, the elements of the basis C∞ (or of ∞C) from

Proposition 3.9 correspond to a complete set of indecomposables in Kar(T∞)
(up to grading shift).

Proof. This follows now directly from Remark 4.19, and Lemmas 3.2,
4.25 and 4.26.

4.3. The 2-quotient of level e. The quotient Te of T∞ from Defi-
nition 3.12 is defined by killing certain elements which correspond to the
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irreducibles Lm,n for m+n = e+ 1 in the representation category of sl3. We
follow the same strategy on the categorified level.

From sl3 to singular bimodules: the generic case. Recall from Section 2.1
that Qq denotes the category of finite-dimensional Uq(sl3)-modules (with Cq

being the ground field). The central character (2-4) allows us to view Qq as
a 2-category QGOP

q :

Definition 4.32. For u, let Qu
q denote the full subcategory of Qq gen-

erated by the irreducibles with central character u.

Note that the subcategoriesQu
q are not monoidal. However, by Lemma 2.4,

tensoring with X or Y defines functors between them,

ρ(u)Xu = X⊗ : Qu
q → Q

ρ(u)
q ρ−1(u)Yu = Y⊗ : Qu

q → Q
ρ−1(u)
q ,(4-22)

which the reader should compare with (3-1). We will (reading right to left)
depict them by

oXg =

X

X

: Qgq → Qoq gYo =

Y

Y

: Qoq → Qgq gYo ◦ oXg =

X

X

Y

Y

etc. The orientation is such that the color on the left-hand side comes directly
after the color on the right-hand side in the cyclic ordering determined by ρ
in (3-1). (We omit the X and the Y in the pictures from now on.)

Definition 4.33. We define QGOP
q to be the additive Cq-linear closure

of the 2-category whose objects are the categories Qu
q , whose 1-morphisms

are composites of the functors in (4-22), and whose 2-morphisms are natural
transformations.

A natural transformation between composites of the functors from (4-22)
is the same as an Uq(sl3)-equivariant map (see e.g. [EGNO, Proposition
2.5.4]). Therefore, we define

:

YX

↪→

Cq

:

XX

↪→

Y

:

Cq

�

YX

:

Y

�

XX

:

XY

↪→

Cq

:

YY

↪→

X

:

Cq

�

XY

:

X

�

YY

(4-23)

to be the corresponding inclusions respectively projections, which are well-
defined up to scalars. We do this in all color variations.

In this way we can view QGOP
q as being generated by the diagrams as

in (4-23).
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By fixing scalars appropriately (which we will do below), it is not hard
to see that we get

= =(4-24)

=(4-25)

=(4-26)

=[3]q(4-27)

=−[2]q(4-28)

= +(4-29)

together with those obtained by varying the orientation and the colors, and
the vertical mirrors of (4-25) and (4-26).

The following result is a consequence of [Ku, Theorem 6.1].

Lemma 4.34. The Uq(sl3)-equivariant maps/diagrams from (4-23) to-
gether with the relations (4-24)–(4-29) give a generator-relation 2-presenta-
tion of QGOP

q .

Following [El2, Section 3] we define a Satake 2-functor.

Definition 4.35. For u let Sq : QGOP
q →mBS q be the 2-functor de-

fined as follows: on objects by Sq(Qu
q ) = u, on 1-morphisms by Sq(ρ(u)Xu) =

ρ(u)cu and Sq(ρ−1(u)Yu) = ρ−1(u)cu, and on 2-morphisms by
Sq7−→
Sq7−→

Sq7−→
Sq7−→

Sq7−→
Sq7−→

Sq7−→
Sq7−→

(4-30)

together with similar assignments for the other generators.

The following lemma recalls [El2, Claim 3.19]. We sketch its proof for the
convenience of the reader and refer to [El2, Proof of Claim 3.19] for more
details.

Lemma 4.36. The 2-functor Sq is well-defined.



42 M. Mackaay et al.

Proof. We only need to show that (4-24)–(4-29) hold in the image of Sq.
The isotopies (4-24)–(4-26) are clearly preserved. For (4-27) we have already
verified this in Example 4.21, while (4-28) follows from (4-15), (4-13) and
(4-10) together with ∂b(µ

r,y
o ) = −[2]q. The relation (4-29) is a bit more

involved (but not hard), and can be proved by using (4-16) on the Sq-image
of the square.

We say that a 2-functor from an ungraded 2-category (whose 2-mor-
phisms are all of degree zero, by convention) to a graded 2-category is a
degree-zero 2-equivalence if it is a bijection on objects, essentially surjec-
tive on 1-morphisms, faithful on 2-morphisms, and full on degree-zero 2-
morphisms. With this notion, the quantum Satake correspondence can be
formulated as in [El2, Theorem 3.21]:

Theorem 4.37. The 2-functor Sq is a degree-zero 2-equivalence.

Remark 4.38. Elias actually proves Theorem 4.37 in much more gener-
ality. For us the important case is over the ring C[q] = C[q, q−1], which then
implies that Theorem 4.37 holds over any ground ring we are going to use.

Let pm,ng = pm,ng (XmYn) denote the (unique) projection of XmYn onto
the irreducible direct summand Lm,n, regarded as a 2-morphism in QGOP

q

with rightmost color g. We call pm,ng the (right-green) sl3-clasp. Similarly, we
define pm,no , pm,np and m,n

gp, m,nop, m,npp. Note that there is actually a different
clasp for each product of m factors X and n factors Y, but these clasps are all
closely related, as we will see in Lemma 4.42. For now, it suffices to consider
only the one for XmYn.

Remark 4.39. The sl3-clasps have a diagrammatic incarnation, obtained
by coloring the diagrammatic clasps from [Ki, Theorem 3.3] (which gives the
sl3-clasps in terms of a recursion), or (using slightly different conventions)
from [El1, (1.8) and Section 3.2].

The colored sl3-clasps are 2-morphisms in mBS q, but do not belong
to T∞, since their left- and rightmost colors are always secondary colors.
Thus, we need to ‘biinduce them up to ∅’ in order to have their appropriate
analogs in T∞:

Definition 4.40. The colored (right-u) clasps cm,nu are defined by

cm,nu = id∅dv ◦h pm,nu ◦h iduc∅

with ◦h being the horizontal composition in sBS q. Here pm,nu has leftmost
color v, and c, d are compatible colors where we prefer b over r over y. We
define m,n

uc similarly.

The colored clasps are idempotent 2-morphisms in T∞, which depend
on the same choices as the colored sl3-clasps, and additionally on the choice
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of c,u. Again, this dependence is not essential, as we will show in Lemma 4.42,
so we abuse notation.

Example 4.41. Using [Ki, Theorem 3.3], one can write down the colored
sl3-clasps explicitly, e.g. in the case e+ 1 = 2:

p2,0g = + 1
[2]q

p1,1g = − 1
[3]q

p0,2g = + 1
[2]q

Using Sq and biinduction, we get for example

c1,1g = − 1
[3]q

(The outer b-regions come from our choice in Definition 4.40.)

The next lemma shows that the colored clasps are independent of the
choices that we made in their definition:

Lemma 4.42. Let cm,nu be a colored clasp and let (cm,nu )′ be defined simi-
larly, but with some difference in the choices involved. Then there exists an
invertible 2-morphism f in T∞ such that cm,nu ◦v f = f ◦v (cm,nu )′.

Proof. If the ordering of the factors X and Y for cm,nu and (cm,nu )′ dif-
fers by precisely one pair, then Lemma 4.30 yields the claim. If cm,nu and
(cm,nu )′ differ by precisely one choice of compatible color for ‘biinduction’,
then Lemma 4.25 applies. The general statement then follows by induction.

Corollary 4.43. If a two sided 2-ideal in T∞ contains a colored
clasp cm,nu , then it contains all colored clasps (cm,nu )′ which differ from cm,nu

by some of the choices involved in their definition.

From sl3 to singular bimodules: the root of unity case. From now on
we work over C by specializing q to η which, as usual, is a 2(e + 3)th
primitive, complex root of unity. Formally this is done by repeating the
above for the C[q]-linear 2-categories which are scalar extended to C[e] =
C[q, q−1, [2]−1q , . . . , [e+1]−1q ]. We denote these using [e] as a subscript, and
the specialization at q = η is denoted by ⊗C[e]

C. We also exclude the case
e = 0, which is a bit special and can easily be dealt with later on.

First of all, all previous definitions and results in the generic case are still
valid in this case, except Lemma 4.34 (which we do not need in the following)
and the definition of the (various) clasps for m + n > e + 1. In particular,
Lemma 4.36 and Theorem 4.37 still hold for the specialization at q = η.
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Lemma 4.44. The colored clasps are well-defined in T[e] (seen as a 2-
subcategory of BS [e]) for 0 ≤ m + n ≤ e + 1, and uniquely determined up
to conjugation by an invertible 2-morphism.

Proof. Decomposing XmYn generically, i.e. for Uq(sl3), works similarly to
the root of unity case as long as m + n ≤ e + 1 (see e.g. [AP, Section 3]).
Thus, one can use the specializations of the projectors from the generic case
in the root of unity case. (Alternatively, using Remark 4.39, one checks that
the coefficients of the colored sl3-clasps specialize properly.) Finally, note
that Lemmas 4.36 and 4.42 also hold for q being specialized to η.

Having all the above established, we can define the 2-category of trihedral
Soergel bimodules of level e:

Definition 4.45. Let Ie be the two-sided 2-ideal, called the vanishing
2-ideal of level e, in T[e] ⊗C[e]

C generated by

{cm,nu | m+ n = e+ 1, u ∈ GOP} = {m,nuc | m+ n = e+ 1, u ∈ GOP},
where we write e.g. cm,nu = cm,nu ⊗C[e]

1 for simplicity. We define

Te = (T[e] ⊗C[e]
C)/Ie,

which we call the 2-category of trihedral Soergel bimodules of level e.

Remark 4.46. Note that we specialize before taking the quotient, as
Andersen–Paradowski do in order to define Qe in [AP], where they take
the quotient of the already specialized category Qη by the ideal of so-called
negligible modules. (This is explicitly described e.g. in [BK, Section 3.3].)
Similarly, we always specialize first throughout.

Let He be the two-sided 2-ideal in QGOP
[e] ⊗C[e]

C generated by

{pm,nu | m+ n = e+ 1, u ∈ GOP} = {m,nup | m+ n = e+ 1, u ∈ GOP}.
The maximally singular version of Te is

mTe = (mT[e] ⊗C[e]
C)/Sη(He).

Here we again specialize q to η and use the same conventions as before. We
state a non-trivial consequence of the quantum Satake correspondence from
Theorem 4.37 and Remark 4.38.

Lemma 4.47. S[e] gives rise to a degree-zero 2-equivalence Se : QGOP
e →

mTe.

Proof. Because S[e] is a degree-zero 2-equivalence before quotienting by
any clasps, by Remark 4.38, it sends indecomposable 1-morphisms in QGOP

[e]

to indecomposable 1-morphisms in mT[e], and the cell structures of QGOP
[e]

and mT[e] are isomorphic under S[e].
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Clearly, S[e] specializes to Sη : mT[e] ⊗C[e]
C → QGOP

[e] ⊗C[e]
C, which de-

scends to the 2-functor Se : QGOP
e → mTe. Both Sη and Se are essentially

surjective on 1-morphisms and full onto degree-zero 2-morphisms. What
is not immediately clear is that Se : QGOP

e → mTe is also faithful on 2-
morphisms: since T[e] has 2-morphisms of negative degree, the degree-zero
part of Ie could a priori be bigger than Sη(He). To show that that is not
the case, we use the following roundabout argument.

From [AP] (cf. Remark 4.46) we know that we have an equivalence of
2-categories

(QGOP
[e] ⊗C[e]

C)/He
∼= QGOP

e .

Hence, the indecomposable 1-morphisms F in QGOP
[e] ⊗C[e]

C for which
idF ∈ He are strictly greater than the ones for which idF 6∈ He, in the two-
sided cell preorder. By the observations in the first paragraph, the same must
hold for the indecomposable 1-morphisms in T[e]⊗C[e]

C with respect to the 2-
ideal Ie, which is generated by Sη(He). This shows that Se : QGOP

e →mTe
is faithful on 2-morphisms, since QGOP

e is semisimple.

Proposition 4.48. The isomorphism from Proposition 4.31 gives an iso-
morphism Te

∼=−→ [Kar(Te)]Cv
⊕ of algebras.

Proof. This follows from the discussion above: By Corollary 4.43 and
also by Lemma 4.44 the vanishing 2-ideal of level e contains all colored
clasps of level e + 1. By Proposition 4.31 these decategorify to the cm,nu in
the definition of Te, while Lemma 4.47 ensures that the Grothendieck classes
of the remaining cm,nu form a basis of [Kar(Te)]Cv

⊕ .

4.4. Generalizing dihedral Soergel bimodules. As before, we list
certain analogies to the dihedral case.

The dihedral story 4.49. The Hecke algebra Hv(Ã1) of The dihedral
story 3.22 is categorified by Soergel bimodules of affine type A1. Here the
Hecke algebra Hv(Ã2) is categorified by Soergel bimodules of affine type A2.
The difference is that now biinduction of the maximally singular bimodules
only gives a proper 2-subcategory.

The dihedral story 4.50. The Satake 2-functor from (4-30) exists in
the dihedral case as well, with a bicolored version of quantum sl2-modules
as the source 2-category. This 2-category has a diagrammatic incarnation in
terms of a 2-colored Temperley–Lieb calculus [El3, Section 4.3]. The Soergel
bimodules of finite Coxeter type I2(e+2) can then be defined by annihilating
the ideal generated by the colored Jones–Wenzl projectors (i.e. colored sl2
clasps) of level e + 1 in this 2-colored Temperley–Lieb calculus. Moreover,
while the colored sl3-clasps satisfy the recursion in Lemma 2.7, their sl2
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counterparts satisfy the Chebyshev recursion from The dihedral story 3.24.
Finally, the analogs of Propositions 4.31 and 4.48 hold as well.

Missing proofs from Section 3

Proof of Lemma 3.7. Recall that the 2-category BS q categorifies Hv,
i.e.

Hv

∼=−→ [Kar(BS q)]
Cv
⊕ ,(4-31)

so that the KL elements are sent to the Grothendieck classes of the inde-
composable 1-morphisms (with a fixed choice of grading) (cf. [El2], [EW2]
or Remark 4.19). Furthermore, by Lemma 3.2, the algebra T∞ can be em-
bedded into Hv by sending the colored KL elements in T∞ to KL elements
in Hv. Thus, we can identify elements of T∞ with Grothendieck classes in
[Kar(BS q)]

Cv
⊕ :

The element hk,lu = θuk+l · · · θu1θu0 ∈ Hv, with u0 = u, corresponds to

[∅ck+luk+lck+l∅ · · · ∅c1u1c1∅c0u0c0∅] ∈ [Kar(BS q)]
Cv
⊕ ,(4-32)

where we can choose any compatible primary colors by Lemma 4.25. In fact,
with Lemma 4.25 in mind, we will denote all compatible primary colors
simply by c from now on.

Using Lemma 4.27, we see that the element in (4-32) is equal to

[2]k+lv [∅cuk+lc · · · cu1cu0c∅] ∈ [Kar(BS q)]
Cv
⊕ .

Next, we use Sq from (4-30). By definition, [Sq] maps [XkYl] ∈ [QGOP
q ]Cv

⊕
to

[∅cuk+lc · · · cu1cu0c∅] ∈ [Kar(BS q)]
Cv
⊕ ,

and to similar expressions with a different rightmost color. By Remark 2.2,
this implies that [Sq] maps [Lm,n] to∑

k,l

[2]−k−lv dk,lm,n[∅cuk+lc∅ · · · ∅cu1c∅cu0c∅],(4-33)

and again to similar expressions with a different rightmost color.
By Theorem 4.37, Sq is a degree-zero 2-equivalence. In particular, it

sends the simple 1-morphisms to indecomposable 1-morphisms. This im-
plies that the element in (4-33) is the Grothendieck class of an indecom-
posable 1-morphism of sBS q. Biinduction preserves indecomposability, so
our element cm,nu corresponds to the Grothendieck class of an indecompos-
able 1-morphism in [BS q]

Cv
⊕ . By the categorification theorem from (4-31),

we see that cm,nu corresponds to a KL basis element in Hv, and hk,lu to the
Grothendieck class of a Bott–Samelson bimodule.

From the above, we obtain the first equation in (3-15), since

[∅cuc∅cuc∅] = [2]v[∅cucuc∅] = [3]v! [∅cuc∅],
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by Lemma 4.27 and Example 4.21. Using [Sq] and (2-6), we deduce the
second equation in (3-15). Similarly, one can prove the third equation in
(3-15) using (2-7).

Proof of Proposition 3.9. Let u be fixed for now. Recalling the notation
from Section 2, by Lemma 3.7 and its proof given above, there is a Cv-
linear isomorphism between the scalar extension [QGOP

q ]Cv
⊕ and Cv{hk,lu |

(k, l) ∈ X+}, defined by

[XkYl] 7→ [2]−k−lv hk,lu .

This shows that the hk,lu are all linearly independent, and they are also lin-
early independent of 1, of course.

Since u was arbitrary and there are no relations in T∞ which allow us
to change the rightmost color in a word, it follows that

{1} ∪ {hk,lu | (k, l) ∈ X+, u ∈ GOP}

is a basis of T∞.
Because dm,nm,n = 1, and dk,lm,n = 0 if k+ l > m+n, the above immediately

implies that
{cm,nu | (m,n) ∈ X+, u ∈ GOP}

is also a basis, since the transformation between the two sets of elements
defined by (3-13) is triangular with diagonal factors [2]−m−nv 6= 0.

5. Trihedral 2-representation theory. Keeping all notations from the
previous sections, we are now going to explain the 2-representation theory
of the trihedral Soergel bimodules. Again, we have collected the analogies to
the dihedral case at the end in Section 5.4.

Background. Let us briefly recall some terminology and results from
2-representation theory as in e.g. [MM2] or [MM3], where we also need the
graded setup as in [MT, Section 3].

N[v]-representation theory. We start with the decategorified picture. Re-
call that v denotes a generic parameter, N[v] = N[v, v−1], Z[v] = Z[v, v−1] and
Cv = C(v).

Following various authors (see e.g. [EK, Section 1], [EGNO, Chapter 3]
or [KM] and the references therein), we introduce

Definition 5.1. A pair (P,BP) of an associative, unital (Cv-)algebra P
and a finite basis BP with 1 ∈ BP is called an N[v]-algebra if

xy ∈ N[v]B
P for all x, y ∈ BP.
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Definition 5.2. Let (M,BM) be a pair of a (left) (P,BP)-representa-
tion M and a choice of a finite basis BM for it. We call (M,BM) an N[v]-rep-
resentation if

M(z)m ∈ N[v]B
M for all z ∈ BP,m ∈ BM.

Example 5.3. These N[v]-algebras and N[v]-representations arise natu-
rally as the decategorification of 2-categories and 2-representations, which
will be recalled in the next section.

Abusing notation, we sometimes write P instead of (P,BP) and M instead
of (M,BM).

Definition 5.4. Two N[v]-representations M,M′ are N[v]-equivalent, de-
noted by M ∼=+ M′, if there exists a bijection BM → BM′ such that the
induced linear map M→ M′ is an isomorphism of P-representations.

Example 5.5. M ∼=+ M′ implies M ∼= M′ (meaning that they are iso-
morphic as P-representations over Cv), but not vice versa:

First of all, M might be isomorphic over Cv to a P-representation M′

that is not an N[v]-representation. For example, consider the (Cv-)group al-
gebra of any finite group with its basis given by the group elements. Its
regular representation is an N[v]-representation on this basis, and over Cv

this representation decomposes into simple modules. However, most simple
modules are not N[v]-representations and the decomposition cannot usually
be obtained via base change matrices with entries from N[v].

Secondly, even if M ∼= M′ are two isomorphic N[v]-representations, they
may not be N[v]-equivalent. For example, the dihedral Hecke algebra of type
I2(12) has two N[v]-representations, associated to the Dynkin type E6, which
are isomorphic over Cv but not N[v]-equivalent (cf. [MT, Theorem II(iii)]).

Cells. For any N[v]-algebra P one can define cell theory as in Defini-
tion 3.10, e.g. x ≥L y for x, y ∈ BP if there exists z ∈ BP such that x appears
as a summand of zy when the latter is written as a linear combination of
elements in BP. We hence obtain (left, right and two-sided) cells L, R and J,
and we can write L′ ≥L L etc. See also e.g. [KM] (incorporating v) for details.
The same notions can be defined for any N[v]-representation M, e.g. m ≥L n
for m,n ∈ BM if there exists some z ∈ BP such that m appears in M(z)n
with non-zero coefficient when written in terms of BM.

Definition 5.6. We call an N[v]-representation M transitive if all basis
elements belong to the same ∼L-equivalence class.

Remark 5.7. Consider the graph with vertices given by BM and with an
oriented edge from n to m whenever m ≥L n. Transitivity of M means that
this graph is strongly connected.
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Similarly, we can also define the notion of a transitive Z[v]-representation
associated to a strongly connected graph. (Note that m ≥L n also makes
sense over Z[v].)

Definition 5.8. Fix L. Let M(≥L), respectively M(>L), be the N[v]-
representations spanned by all x ∈ BP in the union of all left cells L′ ≥L L,
respectively L′ >L L. (These are well-defined by [KM, Proposition 1].) We
call CL = M(≥L)/M(>L) the (left) cell module for L.

By definition, all cell modules are transitive N[v]-representations.

Example 5.9. Coming back to Example 5.5: There is only one left (right,
two-sided) cell for the group algebra of a finite group. The associated cell
module is the regular representation.

However, for a different basis this might change considerably: The Hecke
algebras for (finite) Coxeter groups are N[v]-algebras, where the KL basis
plays the role of the basis BP (see [KL]). Their cell modules are Kazhdan–
Lusztig’s original cell modules. In the case of the symmetric group, these cell
modules are the simple modules, but in general cell modules are not simple
(since most simples are not N[v]-representations).

Example 5.10. Decategorifications of cell 2-representations, which will
be recalled below, are key examples of cell modules.

Given any cell module CL, the results in [KM, Section 8] show that there
exists a unique maximal two-sided cell, called apex, which does not annihi-
late CL. The same is true for general transitive N[v]-representations by [KM,
Section 9.2]. Thus, we can restrict the study of transitive N[v]-representations
to a given apex.

2-representations of finitary 2-categories. Let R be a ring. An additive,
R-linear, (Z-)graded 2-category C (with the same grading conventions as in
Convention 4.3), which is idempotent complete and Krull–Schmidt, is called
graded finitary if:

I It has finitely many objects, and all identity 1-morphisms are indecom-
posable.

I 2-hom spaces are free of finite R-rank in each degree, and their grading
is bounded from below.

I Consider the 2-subcategory of C having the same objects and 1-mor-
phisms, but only degree-preserving 2-morphisms. Its split Grothendieck
group is a free Z[v]-module, with v corresponding to the grading shift,
which we assume to be of finite Z[v]-rank.

(Note that the last point above implies that a graded finitary 2-category has
only finitely many equivalence classes of indecomposable 1-morphisms up to
grading shift.)
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Similarly, a graded locally finitary 2-category is as above, but with the
condition on the Grothendieck group relaxed by requiring it to be of count-
able Z[v]-rank.

We also use graded finitary categories (having graded hom-spaces which
are free of finite R-rank), which are the objects of a 2-category A f

gr with 1-
morphisms being additive, R-linear, degree-preserving functors and 2-mor-
phisms being homogeneous natural transformations of degree zero.

Let (A f
gr)

? denote the 2-category obtained from A f
gr by adding formal

shifts to the 1-morphisms. Its 2-hom spaces are given by

H om(A f
gr)

?(i, j) =
⊕
s∈Z
H omA f

gr
(i{s}, j).

Example 5.11. All 2-categories in Section 4 become graded (locally)
finitary after taking their Karoubi envelope.

Example 5.12. Let B be a graded R-algebra which is free of finite R-
rank. The category of free, finite R-rank, graded (left) B-representations is a
prototypical object ofA f

gr. For example, the graded representation categories
of the quiver algebras ∇e in Section 5.3 below are objects of A f

gr.

A graded finitary 2-representation of C is an additive, R-linear 2-functor

M : C → (A f
gr)

?

which is degree-preserving and commutes with shifts as in [MT, Defini-
tion 3.4].

Example 5.13. The principal 2-representation Pi = C (i, ), where i is
an object of C , is a graded finitary 2-representation of C .

Graded finitary 2-representations of C form a graded 2-category (in the
sense of Convention 4.3; see [MM2] for details, which can be adapted to the
graded setting). In particular, there exists a well-defined notion of equiva-
lence between such 2-representations.

For simplicity, we say 2-representation instead of graded finitary 2-repre-
sentation etc. from now on, i.e. we omit the graded finitary.

2-cells. As in the case of N[v]-algebras, one can define cells and cell 2-
representations of finitary 2-categories: Let X and Y be indecomposable 1-
morphisms in a finitary 2-category C . Set X ≥L Y if X is isomorphic to
a direct summand of ZY, up to a degree shift, for some indecomposable
1-morphism Z. Similarly one defines ≥R and ≥J. The equivalence classes for
these are called the respective cells, denoted by L, R or J. All these notions
can be defined in a similar way for 2-representations as well.

A finitary 2-representation M is transitive (see [MM3, Section 3.1], or
[MT, Definition 3.6] in the graded setup) ifM is supported on one i ∈ C ,
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and if all indecomposable objects O, P ∈ M (i) are in the same ∼L-equiv-
alence class. A transitive 2-representation is simple transitive (see [MM3,
Section 3.5], or [MT, Definition 3.6] in the graded setup) if it does not have
any non-zero, proper C -invariant ideals.

Remark 5.14. By [MM3, Section 4], any 2-representation has a weak
Jordan–Hölder series with simple transitive subquotients, which are unique
up to permutation and equivalence. Therefore, it is natural to ask for the
classification of simple transitive 2-representations. Moreover, by [MM3, Sec-
tion 3], any transitive 2-representation has a unique maximal C -stable ideal
which one can quotient by to get a simple transitive 2-representation, called
the simple transitive quotient.

Every (graded) finitary 2-category comes with a natural class of simple
transitive 2-representations:

Definition 5.15. Fix L. Then there exists i ∈ C such that all 1-
morphisms in L start at i. LetM (≥L) be the 2-representations ofC spanned
by the additive closure of all indecomposable 1-morphisms F, in

∐
j∈C Pi(j),

which belong to the union of all left cells L′ ≥L L. Let Z (≥L) be the
unique, proper two-sided 2-ideal in M (≥L). (All of this is well-defined by
[MM3, Section 3.3 and Lemma 3].) We call CL = M (≥L)/Z (≥L) the cell
2-representation for L.

Note that cell 2-representations are always simple transitive.

Example 5.16. In case of Soergel bimodules for the symmetric group,
these exhaust all simple transitive 2-representations and categorify the sim-
ple modules [MM3]. However, both these facts are false in general, as the
example of dihedral Soergel bimodules shows (see e.g. [KMMZ], [MT]).

Remark 5.17. On the decategorified level, the cell representation is ob-
tained as the quotient of M(≥L) by M(>L) (see Definition 5.8). At the level
of 2-representations, the proper maximal two-sided 2-ideal Z (≥L) strictly
contains the two-sided 2-ideal generated by the 2-subrepresentationM (>L)
in general.

Again, there is a unique maximal two-sided cell, called 2-apex, which
does not annihilate a given cell 2-representation. The same works for general
transitive 2-representations. See [CM, Section 3.2] for more details.

(Co)algebra 1-morphisms. An algebra 1-morphism in C is a triple
(A, µ, η), where A is a 1-morphism and µ : AA → A and η : 1 → A are
2-morphisms satisfying the usual axioms for the multiplication and unit of
an algebra.

Furthermore, there are compatible notions of module 1-morphism over
an algebra 1-morphism A, and of 2-homomorphism between these. In this
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way, we get the 2-categoriesModC (A) (or (A)ModC ) of right (or left) A-
module 1-morphisms in C . By post-composition,ModC (A) becomes a left
2-representation of C . Similarly, by pre-composition, (A)ModC becomes a
right 2-representation of C .

One defines coalgebra 1-morphisms (C, δ, ε) in C and their respective
comodule 2-categories, which are also 2-representations of C , dually.

Finally, there are also compatible notions of bimodule 1-morphism over
an algebra 1-morphism and 2-homomorphism between bimodule 1-mor-
phisms. By definition, a Frobenius 1-morphism F in C is an algebra 1-
morphism which is also a coalgebra 1-morphism, such that the comultiplica-
tion 2-morphism is a 2-homomorphism between F-F-bimodule 1-morphisms.

We refer to [MMMT] or [EGNO, Chapter 7] for further details.

Remark 5.18. Suppose that C is additionally fiat (meaning that it has
a certain involution [MM1, Section 2.4]). Then [MMMT, Theorem 9] as-
serts that, for any simple transitive 2-representation M of C , there exists
a simple algebra 1-morphism A in C (the projective abelianization of C ,
as introduced in [MMMT, Section 3.2]) such that M is equivalent (as a 2-
representation of C ) to the subcategory of projective objects ofModC (A).
Hence, the classification of simple transitive 2-representations of C is equiv-
alent to the classification of simple algebra 1-morphisms in C , or dually
to the classification of cosimple coalgebra 1-morphisms in C , the injective
abelianization of C .

The fiat 2-categories C in this paper are special, because they are closely
related to semisimple 2-categories by the quantum Satake correspondence,
and the simple algebra 1-morphisms which we study in this paper all belong
to C .

5.1. Decategorified story

Trihedral transitive N[v]-representations. From Sections 3.2 and 3.3, in
particular the connection to the representation theory of sl3, the following
is evident.

Proposition 5.19. The trihedral Hecke algebras are N[v]-algebras, i.e.
for the bases C∞ and Ce from Propositions 3.9 and 3.14 we have

xy ∈ N[v]C
∞ and x′y′ ∈ N[v]C

e

for all x, y ∈ C∞ and x′, y′ ∈ Ce. The same holds for the left colored KL
bases.

This is our starting point for studying N[v]-representations of trihedral
Hecke algebras. From now on, we fix the right colored KL bases for T∞
and Te, as in Proposition 5.19.
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Example 5.20. Most of the three-dimensional Te-representations in
(3-20) are not N[v]-representations (for any choice of basis).

For e > 1, the one-dimensional representations M[3]v! ,0,0, M0,[3]v! ,0 and
M0,0,[3]v! are not N[v]-representations either: e.g. by Example 3.6, the action
of c1,1g on M[3]v! ,0,0 is given by

c1,1g = [2]−2v θgθpθg − θg 7→ −[3]v! ,

and thus M[3]v! ,0,0 is not an N[v]-representation.

Our next goal is to define several families of N[v]-representations of tri-
hedral Hecke algebras. Recall from Proposition 3.11 and Corollary 3.15 that
trihedral algebras have one trivial and one non-trivial two-sided cell, both of
which can be the apex of a transitive N[v]-representation. For the trivial cell
there is only one such representation:

Example 5.21. The simple M0,0,0 (cf. (3-20)) is a transitive N[v]-repre-
sentation of T∞, which also descends to Te for any e, and its apex is the
trivial cell. By (3-17) and Example 5.20, there are no other transitive N[v]-
representations whose apex is the trivial cell.

From now on we will only consider transitive N[v]-representations whose
apex is the unique non-trivial two-sided cell. For this purpose, we consider
tricolored graphs, denoted by Γ etc., fixing certain conventions as follows.

Graph-theoretic recollections. For us a graph Γ is an undirected, con-
nected, finite graph without loops, but possibly with multiple edges. We will
also need graphs with directed edges and we indicate these by adding the
superscript X or Y.

We call Γ = (Γ, V = {G,O, P}, E = {B,R, Y }) tricolored, with colors
g, o, p, if V and E can be partitioned into three disjoint sets G,O, P and
B,R, Y such that(

• � ∈ Y ⇒
• ∈ G and � ∈ O

)
,

(
� � ∈ R⇒
� ∈ O and � ∈ P

)
,

(
� • ∈ B ⇒
� ∈ P and • ∈ G

)
.

(We usually denote a tricolored graph simply by Γ, suppressing the tricol-
oring.)

The vertices of any tricolored graph Γ can be ordered so that the adja-
cency matrix A(Γ) is of the following form:

(5-1)

A(Γ) =

G O P

G 0 AT C

O A 0 BT

P CT B 0

, A(ΓX) = A(ΓY)T =

G O P

G 0 0 C

O A 0 0

P 0 B 0

.
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Here A,B,C are matrices with entries in N, encoding the connections G→ O
(matrix A), O → P (matrix B), and P → G (matrix C). We will always
consider vertex-orderings of this form. Moreover, Γ has two associated di-
rected graphs ΓX and ΓY whose adjacency matrices are A(ΓX) and A(ΓY) as
in (5-1). They have the same vertex sets as Γ, but their edges are oriented
according to (3-1).

We write i ∈ Γ (i ∈ G etc.) to mean that i is a (g-colored etc.) vertex
of Γ. Furthermore, we denote by SΓ the spectrum of Γ, i.e. the multiset of
eigenvalues of A(Γ), and we use similar notations for ΓX and ΓY.

Example 5.22. Our main examples of tricolored graphs are all displayed
in Appendix A.1. Their spectra play an important role for us.

Example 5.23. The simplest examples, which are, however, fundamental
for this paper, are the generalized Dynkin type A diagrams, e.g.

A1 =
1

11 •
��

AX
1 = •

��

AY
1 = •

��

A = (1) B = (1) C = (1)

A2 =

1

1

22

1

2

•

•
�

� �

� AX
2 =

•

•
�

� �

� AY
2 =

•

•
�

� �

�

A =

(
1 1
0 1

)
B =

(
1 1
1 0

)
C =

(
1 0
1 1

)

A3 =

1

1

2

3 3

2

4

1

3

2

•

•
••

�

�

�

�

�

�

AX
3 =

•

•
••

�

�

�

�

�

�

AY
3 =

•

•
••

�

�

�

�

�

�

A =

1 1 0 0
0 1 0 1
0 1 1 0

 B =

1 1 0
1 0 1
0 1 1

 C =


1 0 0
1 1 1
0 1 0
0 0 1


(The matrices A,B,C are given with respect to the ordering of the vertices
as indicated in the unoriented graphs.) The vertices of these graphs can be
identified with the cut-offs of the positive Weyl chamber of sl3 (cf. (2-1)),
where e.g. the vertex with label 4 in A3 corresponds to the sl3-weight (0, 3).

Moreover, the spectra of these graphs are

SAX
1

= {roots of (X − 1)(X2 +X + 1)},
SAX

2
= {roots of (X2 −X − 1)(X4 +X3 + 2X2 −X + 1)},

SAX
3

= {roots of X(X − 2)(X2 + 2X + 4)(X6 −X3 + 1)}.
The reader should compare these to Example 2.12.
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Next, recall that an oriented graph Γor is called strongly connected if
there is a path from i to j for any i, j ∈ Γor. Further, we say that Γor is
quasi regular if, for all i, j ∈ Γor, the number of two-step paths i → ← j
going first with and then against the orientation is the same as the number of
two-step paths i← → j going first against and then with the orientation.

Example 5.24. Recall that an oriented graph is called weakly regular if
the numbers of incoming and outgoing edges coincide at each vertex, with
r parallel edges counted r2 times (e.g. a vertex with two incoming parallel
edges must have two outgoing parallel edges or four outgoing single edges).
By considering i = j, we see that any quasi regular graph is weakly regular,
with the latter being a local condition which one easily checks. (In particular,
each vertex is of even degree.) However, the converse is not true: e.g.

Γor = •
�

�

�

�

is weakly regular, but not quasi regular.

By convention, we call Γ as above strongly connected, respectively quasi
regular, if ΓX and ΓY are both strongly connected, respectively quasi regular.

Definition 5.25. A graph Γ is called admissible if it admits a tricoloring
such that Γ is strongly connected and quasi regular.

Example 5.26. All of our main examples from Appendix A.1 are admis-
sible.

Lemma 5.27. The matrices A,B,C in (5-1), which are blocks of A(Γ),
satisfy

ATA = CCT, AAT = BTB, CTC = BBT(5-2)

if and only if Γ is quasi regular.

In particular, AAT, ATA, BBT, BTB, CCT and CTC have the same
non-zero eigenvalues for any quasi regular graph Γ.

Proof of Lemma 5.27. Assume that Γ is quasi regular. Then, in ΓX, the
entries of ATA count the number of two-step paths G→ O ← G, while the
entries of CCT count the number of two-step paths G← P → G. A similar
statement holds for the other colors and matrix equalities in (5-2). Hence,
all equalities in (5-2) hold if and only if Γ is quasi regular.

Some trihedral N[v]-representations. Let Cv{G,O, P} be the free
(Cv-)vector space on the vertex set of Γ.
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Definition 5.28. We define a T∞-representation

MΓ : T∞ → EndCv(Cv{G,O, P})
by associating the following matrices to the generators θg, θo, θp:

(5-3)

MΓ(θg) = [2]v


[3]vId AT C

0 0 0
0 0 0

, MΓ(θo) = [2]v


0 0 0
A [3]vId BT

0 0 0

,

MΓ(θp) = [2]v


0 0 0
0 0 0
CT B [3]vId

.
Here A,B,C are as in (5-1).

Note that

Mtot
Γ = MΓ(θg) + MΓ(θo) + MΓ(θp) = [2]v([3]vId +A(Γ)).

Remark 5.29. The three-dimensional simple Te-representations Mz in
(3-18) are similar to the MΓ in (5-3). In MΓ the complex entry z of Mz

has been replaced by N-matrices A,B,C which have these complex numbers
as eigenvalues, as we will see in Corollary 5.38 below. However, in MΓ the
matrices A,B,C need not be equal, whereas in Mz we only have one complex
number.

We always choose {G,O, P} as a basis. Recalling the setup from Sec-
tion 5.1 we get

Lemma 5.30. MΓ is well-defined if and only if Γ is quasi regular.

Proof. By direct computation, one immediately sees that (3-3) always
holds, irrespective of A,B and C. Furthermore, MΓ preserves the relations
in (3-4) if and only if the equalities in (5-2) hold. The claim then follows
from Lemma 5.27.

From now on we assume that Γ is quasi regular whenever we write MΓ.
Proving that these are N[v]-representations is hard and follows from categori-
fication. However, if we drop the positivity condition, then the following is
clear by noting that the scalars [2]−k−lv appearing in the definition of the
colored KL elements cancel out the positive powers of [2]v in (5-3).

Lemma 5.31. MΓ is a transitive Z[v]-representation if and only if Γ is
admissible.

Example 5.32. Take e = 2 and the graph A2 as in Appendix A.1. Fix
g as a starting color. Then the six non-trivial, colored KL basis elements
of T2 act on MA2 via matrices whose entries are all in N[v]. For c0,0g = θg,
c1,0g = [2]−1v θoθg and c0,1g = [2]−1v θpθg this is immediately clear. For the other
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basis elements, one can check the claim by calculation. For example, c2,0g =
[2]−2v θpθoθg − [2]−1v θpθg, since U2,0(X, Y) = X2 − Y, so

MA2(c2,0g ) = [2]v


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 [3]v 1 1 1 1

[3]v 0 1 0 1 0

 .

The matrices associated to c1,1g and c0,2g can be computed similarly. The fact
that we get an N[v]-representation is non-trivial, because the expressions for
the cm,ng in terms of the hk,lu have negative coefficients.

The following can be proved as in the dihedral case [MT, Section 5.4].

Lemma 5.33. Let Γ and Γ′ be admissible graphs. Then MΓ
∼=+ MΓ′ if

and only if Γ and Γ′ are isomorphic as tricolored graphs.

Example 5.34. For the graphs from Appendix A.1 we get the following.
The graph Ae allows three non-isomorphic tricolorings in case e ≡ 0 mod 3,
but only one otherwise. The graph De can always be tricolored in three
non-isomorphic ways, while the graph cAe admits only one tricoloring up to
isomorphism. Finally, in type E there are always three non-isomorphic tricol-
orings except for the graph E5 which has only one such tricoloring up to iso-
morphism. Thus, Lemma 5.33 gives us the corresponding Z[v]-representations
which are not N[v]-equivalent.

Lemma 5.35. Let M be a transitive N[v]-representation of T∞ which sat-
isfies

M(θu)m = am + N[v](B
M−{m}) =⇒ a ∈ {0, [3]v! }, for all u,m,

a = [3]v! only if M(θu)m = am.

Then there exists an admissible graph Γ with M ∼=+ MΓ.

Proof. Recall that M has a fixed basis BM on which all elements of the
colored KL basis act by matrices with entries in N[v], that θ2u = [3]v! θu and
that the trace of an idempotent matrix is equal to its rank (which thus
holds for [3]v!

−1M(θu)). In particular, the assumption implies that for each
generator θu there is an ordering of BM such that

M(θu) =

(
[3]v! Id D

0 0

)
(5-4)

for some matrix D with entries in N[v]. The rest of the proof now follows the
lines of [Zi, Corollary 5.5] or [KMMZ, Section 4.3]:
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I First observe that each m is a [3]v! -eigenvector of some θu, since otherwise
M(θg)+M(θo)+M(θp) would have a zero row by (5-4), which contradicts
transitivity.

I Secondly, m is not a [3]v! -eigenvector for all the θu. To see this, assume
the contrary. Then, by transitivity, M has to be one-dimensional with all
θu acting by [3]v! . However, as in Lemma 3.17, this contradicts M being
a Te-representation.

I Finally, m is not a common [3]v! -eigenvector of two of the θu. Assume
on the contrary that θg and θo have such a common eigenvector. Then
M(θg)m = M(θo)m = [3]v! m and M(θp)m = 0. This contradicts (3-4).

Together with Lemmas 5.27, 5.30 and 5.31, this proves the claim.

The classification problem. Back to the polynomials Um,n(X, Y) from Def-
inition 2.5. Observe that quasi regularity implies that

A(ΓX)A(ΓY) =

CCT 0 0
0 AAT 0
0 0 BBT

(5-5)

(5-2)
=

ATA 0 0
0 BTB 0
0 0 CTC

 = A(ΓY)A(ΓX).

Thus, we can formulate the following classification problem.

CP 5.36. Classify all admissible graphs Γ such that

Um,n(A(ΓX), A(ΓY)) = 0 for all m+ n = e+ 1.

(In other words, classify all admissible graphs Γ such that z ∈ SΓX only if
(z, z) ∈ Ve.)

Proposition 5.37. A graph Γ is a solution of CP 5.36 if and only if
MΓ descends to a transitive Z[v]-representation of Te.

Proof. Recall that admissible graphs are always strongly connected.
Thus, the claim about transitivity is clear and it remains to check the other
claims.

To this end, fix m,n. Observe that Um,n(A(ΓX), A(ΓY)) has at most one
non-zero block matrix entry in each of the G-, O- and P -rows (as indicated
in (5-1)), since A(ΓX) and A(ΓY) just permute the G-, O- and P -blocks,
and multiply them by A,B,C or their transpose. Let us denote these block
matrix entries by NG

m,n, NO
m,n and NP

m,n.
Let us fix g as a starting color; the other two cases work verbatim. In

this case an easy calculation yields
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MΓ(cm,ng ) =



[2]v

(
NG
m,n·[3]vId NG

m,n·AT NG
m,n·C

0 0 0
0 0 0

)
if m+ 2n ≡ 0 mod 3,

[2]v

(
0 0 0

NO
m,n·[3]vId NO

m,n·AT NO
m,n·C

0 0 0

)
if m+ 2n ≡ 1 mod 3,

[2]v

(
0 0 0
0 0 0

NP
m,n·[3]vId NP

m,n·AT NP
m,n·C

)
if m+ 2n ≡ 2 mod 3.

As in the proof of Lemma 3.18, we note that in the calculation of MΓ(cm,ng )
the positive powers of [2]v, due to (5-3), cancel out the negative powers of [2]v,
which appear in (3-13), up to an overall factor [2]v. We see that MΓ(cm,ng )
vanishes if and only if Um,n(A(ΓX), A(ΓY)) = 0.

Our main examples of solutions of CP 5.36 are the graphs from Appen-
dix A.1. Indeed, as can be seen in Appendix A.2, their spectra are such that
Proposition 5.37 applies:

Corollary 5.38. The generalized ADE Dynkin diagrams from Appen-
dix A.1 give transitive Z[v]-representations MΓ for the associated level e.

By Lemmas 5.33, 5.35 and Proposition 5.37, classifying all Z[v]-representa-
tions of Te boils down to CP 5.36. We have already seen that the generalized
ADE Dynkin diagrams give solutions of CP 5.36. So two questions remain:
whether these are all solutions and whether these are N[v]-representations
(transitivity is clear because the graphs are strongly connected).

We do not have a complete answer to these questions. However, we are
able to prove

Proposition 5.39. Let g, o, p indicate the starting color. Then we have
(at least) the following transitive N[v]-representations of Te:

e ≡ 0 mod 3 e 6≡ 0 mod 3

N[v]-reps.
MAg

e
, MAo

e
, MAp

e
,

MDg
e
, MDo

e
, MDp

e

MAg
e

quantity 6 1

(5-6)

Moreover, the representations MAe are the cell modules of Te.

Proof. Except for the claim about positivity, this is clear by Corol-
lary 5.38, Lemmas 5.31, 5.33 and the construction.

For example, if e 6≡ 0 mod 3, then there is only one type A represen-
tation up to N[v]-equivalence, since all tricolorings of Ae give isomorphic
tricolored graphs. To see this, note that a tricoloring of the lowest trian-
gle fixes the tricoloring of the whole graph, and there are six choices. When
e 6≡ 0 mod 3, they all give isomorphic tricolored graphs, as can be easily seen.
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When e ≡ 0 mod 3, we get three different isomorphism classes of tricolored
graphs, which are determined by the color of the corner vertices. Note that
there is one more vertex with that color, e.g. g, than vertices with one of the
other two colors, e.g. o resp. p. This explains why tricolored graphs whose
corner vertices have different colors are not isomorphic. Finally, for any fixed
color of the corner vertices, there are two tricolored graphs which are iso-
morphic by a Z/2Z-symmetry in the bisector of the angle at that vertex.

Positivity follows from Theorem 5.48 which we prove later on.

In contrast to simples, the transitive N[v]-representations of Te can get ar-
bitrarily large as e grows (see (3-20) and (5-6)). We only know their complete
classification for small values of e.

Classification for small levels

Theorem 5.40. Let e ∈ {0, 1, 2, 3}. An admissible graph Γ provides a
solution to CP 5.36 if and only if Γ is a generalized ADE Dynkin diagram of
the corresponding level or

Γ = •
��

for e = 3,(5-7)

called the special solution. (Note the double edges.)

Proof. We do the hardest case where e = 3 and omit the others, all of
which can be proven similarly. In this case, the vanishing ideal J3 is generated
by

{U4,0(X, Y),U3,1(X, Y),U2,2(X, Y),U1,3(X, Y),U0,4(X, Y)} ⊂ Z[X, Y]

with the polynomials as in Example 2.6. We proceed as follows: Consider
the polynomials

{Y4U4,0(X, Y), Y2U3,1(X, Y), Y3U2,2(X, Y), YU1,3(X, Y), Y2U0,4(X, Y)} ⊂ Z[X, Y],

(5-8)

which are now polynomials in the variables x = XY and y = Y3. Clearly, any
solution of CP 5.36 gives an admissible graph Γ such that (x = A(ΓX)A(ΓY),
y = A(ΓY)3) is annihilated by the polynomials in (5-8). Hence, one can solve
CP 5.36 by first classifying all solutions of (5-8) in terms of x and y and then
checking which give solutions of CP 5.36 in terms of A(ΓX) and A(ΓY).

To this end, we can use the theory of Gröbner bases, for the lexicograph-
ical ordering on monomials induced by x < y, to rewrite (5-8). This shows
that Γ solves CP 5.36 if and only if x and y satisfy

(5-9) x3−5x2 +4x = 0 & xy−y−2x2 +2x = 0 & y2−y−5x2 +6x = 0.
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We observe further that the polynomial x3 − 5x2 + 4x evaluated at
A(ΓX)A(ΓY) vanishes if and only if it vanishes when evaluated at the sym-
metric matrix ATA (cf. Lemma 5.27 and (5-5)). Thus, it suffices to solve the
first equation in (5-9) for x = ATA, and then to check whether the candidate
solutions one obtains satisfy CP 5.36. The upshot is that the first equation
in (5-9) is then an equation in one symmetric matrix ATA with entries
from N.

In order to check which matrices ATA are annihilated by x3 − 5x2 + 4x
we first note that the complex roots of the polynomial x3 − 5x2 + 4x =
x(x − 1)(x − 4) are 0, 1, 4, and that

(
0 AT

A 0

)
is the adjacency matrix of

the connected, bicolored subgraph of Γ obtained by erasing P (and all
edges with a vertex in P ). Moreover, the eigenvalues of

(
0 AT

A 0

)
are the

square roots of the eigenvalues of ATA (this linear algebra fact follows
from e.g. [Si, Theorem 3]), and hence have to be 0,±1,±2. Therefore,(
0 AT

A 0

)
has to be the adjacency matrix of a finite or affine type ADE

Dynkin diagram, by the classification in [Sm], [BH, Section 3.1.1], with
its Perron–Frobenius eigenvalue being 1 or 2, provided it is not zero. Fur-
thermore, again by the classification in [Sm], [BH, Section 3.1.1], the only
connected graph such that

(
0 AT

A 0

)
has Perron–Frobenius eigenvalue 1 is

of finite type A2, all those with Perron–Frobenius eigenvalue 2 correspond
to affine types. But for finite type A2 we get A = AT = ( 1 ), which by
(5-2) and strong connectivity implies B = BT = C = CT = ( 1 ), and
thus (5-9) is not satisfied. Hence, we only need to consider affine type
ADE Dynkin diagrams whose only eigenvalues are 0,±1,−2 in addition
to 2.

Using the list of eigenvalues from [BH, Section 3.1.1], we obtain the fol-
lowing possibilities for the associated bicolored graph:

Ã1 = • � Ã3 =
• �

� •
Ã5 =

• �

• �

� •

D̃G=1
4 =

�

�
•
�

�
D̃G=4
4 =

•

•
�
•

•
D̃5 =

•

•
� •

�

�

ẼG=3
6 =

� • � • �
•
�

ẼG=4
6 =

• � • � •
�
•

(Ã2, which has eigenvalues −1,−1, 2, is ruled out since it does not allow a
bicoloring.) The same holds for the other colors, of course.

One can now write down all candidate solutions for the bicolored sub-
graphs:
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Γg,o Ã1 Ã1 Ã3 Ã5 Ã5 Ã5 Ã5 Ã5 D̃G=1
4 D̃G=4

4

Γo,p Ã1 D̃O=1
4 Ã3 Ã5 Ã5 D̃5 D̃5 ẼO=3

6 D̃O=4
4 Ã1

Γp,g Ã1 D̃P=4
4 Ã3 Ã5 D̃5 Ã5 D̃5 ẼP=4

6 Ã1 D̃P=1
4

(5-9)? (5-7) Dp3 cA3 no no no no Ap3 Do3 Dg3

Γg,o D̃5 D̃5 D̃5 D̃5 D̃5 ẼG=3
6 ẼG=3

6 ẼG=4
6 ẼG=4

6

Γo,p Ã5 Ã5 D̃5 D̃5 ẼO=3
6 ẼO=4

6 ẼO=4
6 Ã5 D̃5

Γp,g Ã5 D̃5 Ã5 D̃5 ẼP=4
6 Ã5 D̃5 ẼP=3

6 ẼP=3
6

(5-9)? no no no no no Ao3 no Ag3 no

Here we have indicated whether all equations in (5-9) are satisfied or not.
The remaining possibilities give solutions to CP 5.36.

The solution (5-7) is not on the list of generalized ADE Dynkin diagrams,
and we do not know whether this is an exception for e = 3 or whether there
exist more solutions which are not generalized ADE Dynkin diagrams for
e > 3.

Example 5.41. For e = 0, 1, 2, 3 the list of transitive N[v]-representations
given in (5-6) is almost complete. Adding a representation McA3 to this list,
for any color by Lemma 5.33, and a representation for the special solution
(5-7) completes the list, where one can check by hand that these are N[v]-
representations.

5.2. Categorified story. Recall that [Te]C⊕ ∼= Te by Proposition 4.48
(excluding e = 0), and assume that we have a transitive 2-representationM
of Te. Then [M ]C⊕ is a transitive N[v]-representation of Te. So, by the discus-
sion in Section 5.1, the classification of simple transitive 2-representations
of Te boils down to CP 5.36 together with the construction of the correspond-
ing 2-representations (i.e. their categorification). We are going to explain this
construction for types A and D.

Satake and 2-representations. Let us first sketch how Theorem 4.37 gives
rise to a correspondence between the simple transitive 2-representations
of QGOP

e and those of Te. We will discuss the details in the sections below.
Recall that there is a bijection between the equivalence classes of simple

transitive 2-representations of QGOP
e and the Morita equivalence classes of

simple algebra 1-morphisms in QGOP
e [MMMT, Theorem 9].

For Te the situation is more complicated, because it is additive, but
not abelian. However, it is still true that if A is an indecomposable algebra
1-morphism in Te, then ModTe(A) is a transitive 2-representation of Te.
By taking its simple quotient, as described in Remark 5.14, we get a simple
transitive 2-representation associated to A.
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As we will see, any algebra 1-morphism in A in Qe gives rise to an
algebra 1-morphism Au in QGOP

e (u,u). (Without loss of generality, we will
concentrate on the case u = g below.)

The Satake 2-functor from Lemma 4.47 transports Ag to an algebra 1-
morphism in mTe(g, g) (where we keep the same notation). Biinduction,
which means gluing white outer regions to the diagrams which define mul-
tiplication and unit 2-morphisms (see also Example 4.41), then gives an
algebra 1-morphism Bg = B(Ag) ∈ Te = mTe(∅, ∅). As we will show, the
algebra 1-morphism also has to be translated (which would correspond to
shifting the grading if the algebra 1-morphism were given by a graded bi-
module), so that the final degree of the unit and multiplication 2-morphisms
becomes zero.

The fact that Bg is associative and unital follows almost immediately
from the associativity and unitality of Ag. (For a detailed proof we refer to
[MMMT, Section 7.3].) By construction, Bg is indecomposable if A is simple.

Thus, given a simple transitive 2-representation M of QGOP
e , let A be

the corresponding simple algebra 1-morphism in QGOP
e and takeMg to be

the simple quotient (as recalled in Remark 5.14) ofModTe(B
g).

Remark 5.42. Note that all simple algebra 1-morphisms in QGOP
e arise

via coloring from simple algebra 1-morphisms in Qe. So our first task below
is to recall the latter, which are already known (see e.g. [Sc]). However, we
present a self-contained construction. As a service to the reader, we also recall
the proof of the known classification of their simple module 1-morphisms
in Qe.

Type A 2-representations. The object AAe = L0,0
∼= C is clearly a simple

algebra object in Qe, because it is the identity object. Thus, coloring gives
us a simple algebra 1-morphism AAge in QGOP

e . After applying the Sa-
take 2-functor, we get Se(A

Age ) = g, which is the identity 1-morphism in
mTe(g, g).

Therefore, we have BAge = ∅bgb∅{−3} ∈ Te, which is an indecomposable
1-morphism in Te. Recall that ∅bgb∅ ∼= ∅ygy∅, by Lemma 4.25. We have
translated ∅bgb∅ by −3, so that the final degree of the unit and multiplication
2-morphisms below becomes zero. Note further that BAe is a Frobenius 1-
morphism, and its (co)unit and (co)multiplication 2-morphisms (with their
respective unshifted degrees) are given by

unit

degree 3

counit

degree −3

multiplication

degree −3

comultiplication

degree 3
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By construction, the corresponding simple transitive 2-representation
MAge of Te is equivalent to a cell 2-representation and decategorifies to MAge
from Definition 5.28; similarly for the secondary colors o and p.

Type D 2-representations. Let e ≡ 0 mod 3. In this case, the decompo-
sition of the algebra 1-morphism into simple 1-morphisms in Qe is given
by

ADe ∼= L0,0 ⊕ Le,0 ⊕ L0,e.

In order to define the multiplication and unit 2-morphisms of ADe in Qe,
recall from the representation theory of sl3 that

(Le,0)
∗ ∼= (Syme(C3))∗ ∼= Syme((C3)∗) ∼= L0,e,

where ∗ means the dual module and Syme the eth symmetric power. Note
that, by using e.g. [BZ, Proposition 2.11], we have similar isomorphisms in
the quantum case as well. Thus, in order to delineate the monoidal subcate-
gory generated by the quantum symmetric powers, we can use the symmet-
ric web categories described in [RT], [TVW], after adding the duals as in
[QS]. These symmetric web categories are built from certain labeled, triva-
lent graphs, and we need the monoidal subcategory of these web categories
generated by the objects e, e∗ and the morphisms

e e∗ e∗ e

ee∗ e∗e

e e

e∗ e e

e∗ e∗ e∗

e e∗ e∗

e

(our reading conventions are still from bottom to top), subject to some rela-
tions which are all stated e.g. in [RoWa, Section 2.1]. (We stress that some of
the cited papers work with gl instead of sl, and we also semisimplify according
to the cut-off as in (2-1). In diagrammatic terms this amounts to a slightly
different web calculus where e.g. an edge of label 2e in [RoWa, Section 2.1]
is identified in our notation with an edge of label e∗ with the orientation re-
versed.) These are basically thick, but uncolored versions of the webs which
we met in Section 4.3, and the object e corresponds to the eth quantum
symmetric power of L1,0, which is Le,0, and e∗ to its dual, which is L0,e.

Hence, we can use the diagrammatic calculus of symmetric webs to de-
scribe the intertwiners in Qq that we need. So far, we have assumed that q is
a generic parameter. By putting it equal to a primitive, complex 2(e+ 3)th
root of unity η, we get a projection onto Qe, and we can use the specialized
relations of the symmetric web calculus.

To be absolutely clear, we do not claim that the symmetric web calculi
are equivalent to the monoidal subcategories in question. All we need is that
the functor from the web calculus to Qe is full, which is true.
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We use the following shorthand:

L0,0! ∅, Le,0! e, L0,e! e∗,

and Le,0 ⊗ L0,e! ee∗ etc., where we omit the ⊗ symbol.

Proposition 5.43. ADe has the structure of a Frobenius object in Qe with
unit ι : ∅ → ADe, ι(1) = 1, counit ε : ADe → ∅, ε(1) = 1 and multiplication
m : ADe ⊗ ADe → ADe given by

∅∅ ∅e ∅e∗ e∅ ee ee∗ e∗∅ e∗e e∗e∗

∅ ∅ 0 0 0 0
e e∗

0
e∗ e

0

e 0
e

e
0

e

e
0 0 0 0

e∗ e∗

e

e∗ 0 0
e∗

e∗

0
e e

e∗

0
e∗

e∗

0 0

(5-10)

The comultiplication ∆: ADe → ADe ⊗ADe is given by transposing (5-10) and
turning the symmetric webs upside down.

We omit the edge labels (which are always e or e∗) from now on, and
also sometimes tacitly identify e∅ = e etc.

Proof of Proposition 5.43. First, we observe that the relations in the sym-
metric web calculus are invariant under horizontal and vertical reflections,
which reduces the number of cases we need to verify. For example, checking
the unitality of ADe boils down to checking the commutativity of

e //

!!

e∅

��
e

which follows directly from the symmetric web calculus.
Next, we show that m and ∆ are (co)associative. Up to symmetries and

trivial compositions, we need to check that

eee //

��

e∗e

��

ee∗ // ∅

eee∗ //

��

e∗e∗

��
e∅ // e

ee∗e //

��

∅e

��
e∅ // e

commute. The leftmost case is just an isotopy in the symmetric web calculus.
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The other two cases follow by observing that we have

(5-11) = = 1 and = and =

by specializing the relations for symmetric powers in [RoWa, (12), (14), (15)].
(As recalled above, a labelm+n = 2e in their picture corresponds to e∗ in our
notation and allm+n = 2e in [RoWa, (12), (14), (15)] are then to be replaced
by e.) Here it is crucial that η is a 2(e + 3)th root of unity. For example,
[e+1]η = [2]η in this case, which implies that

[
e+2
e

]
η

= [e+1]η[2]−1η = 1.
Next, the relations in (5-11) give

= and =

= and =

(5-12)

which are needed to show associativity.
For ADe to be Frobenius, we additionally need to check that

ee //

��

e∅e

��
e∗ // ee

ee∗ //

��

e∗e∗e∗

��

∅ // e∗e

ee∗ //

��

eee

��

∅ // e∗e

commute, which follows from (5-12). The other diagrammatic equations,
which prove the compatibility between multiplication and comultiplication,
are immediate.

Proposition 5.44. The rank of the module category associated to ADe is
equal to (te − 1)/3 + 3, the number of nodes of the graph De.

Note here that te = (e + 1)(e + 2)/2 ≡ 1 mod 3 since e ≡ 0 mod 3, by
assumption.

Proof of Proposition 5.44. We first recall some facts. By [BK, Section
3.3] or [Sc, Lemma 3.2.1], the so-called twist of ADe is the identity morphism.
(This is false when e 6≡ 0 mod 3.) Note also that ADe is simple as an algebra
1-morphism since it cannot have a proper, non-zero two-sided ideal, because
any ideal containing e or e∗ has to contain ee∗ = e∗e, which is isomorphic
to the unit object by e.g. (5-11) and (5-12). Moreover, let ηdim(O) denote
the quantum dimension of O ∈ Qe, which is defined by specializing the
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generic quantum dimension at the primitive, complex root of unity η (see
e.g. [EGNO, Section 4.7]). By Weyl’s character formula [Ja, Theorem 5.15]
and its specialization, we have

ηdim(Lm,n) = [2]−1η [m+ 1]η[n+ 1]η[m+ n+ 2]η.

Hence, ηdim(ADe) = 3 6= 0. By [KO, Lemma 1.20], this implies that ADe is
rigid, as defined in [KO, Definition 1.11].

Therefore,ModQe(A
De) is a semisimple category with finitely many iso-

morphism classes of simples, by [KO, Theorem 3.3]. Furthermore, any simple
module in ModQe(A

De) is a direct summand of F(O) for a certain O ∈ Qe,
by [KO, Lemma 3.4]. Here F: Qe →ModQe(A

De) is the free functor defined
by F(O) = O ⊗ ADe . By [KO, Lemma 1.16], this functor is biadjoint to the
forgetful functor G: ModQe(A

De)→ Qe. As a last ingredient recall that

Lm,n ⊗ Le,0 ∼= Le−m−n,m,

Lm,n ⊗ L0,e
∼= Ln,e−m−n,

in Qe by e.g. [Sa, Corollary 8].
It is now easy to determine the simples in ModQe(A

De). Let us write
e = 3r.

I Assume that (m,n) 6= (r, r). Then

GF(Lm,n) ∼= Lm,n ⊕ Le−m−n,m ⊕ Ln,e−m−n.

These three summands form a three-element orbit of the cut-off of the
positive Weyl chamber under rotation by 2π/3. Therefore,

dimC HomADe (F(Lm,n),F(Lm,n)) = dimC HomQe(Lm,n,GF(Lm,n)) = 1.

By the categorical version of Schur’s lemma (see e.g. [EGNO, Lemma
1.5.2]), F(Lm,n) is a simple ADe-module object. Note further that
GF(Lm,n) ∼= GF(Le−m−n,m) ∼= GF(Ln,e−m−n). Thus,

dimC HomADe (F(Lm,n),F(Le−m−n,m))

= dimC HomADe (F(Lm,n),F(Ln,e−m−n)) = 1,

by adjointness of F and G. Thus,

F(Lm,n) ∼= F(Le−m−n,m) ∼= F(Ln,e−m−n).

Finally, we have F(Lm,n) 6∼= F(Lm′,n′) if (m′, n′) 6∈ {(m,n), (e−m−n,m),
(n, e−m− n)}, because in that case GF(Lm,n) 6∼= GF(Lm′,n′).

I Assume that (m,n) = (r, r). Then

GF(Lr,r) ∼= Lr,r ⊕ Lr,r ⊕ Lr,r.
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Here Lr,r is the fixed point in the cut-off of the positive Weyl chamber
under the rotation by 2π/3. Therefore,

(5-13)
dimC HomADe (F(Lr,r),F(Lr,r)) = dimC HomQe(Lr,r,GF(Lr,r)) = 3.

This shows that F(Lr,r) decomposes into three simples, each of which
is mapped to Lr,r by G, but which are pairwise non-isomorphic as ADe-
module objects. (Otherwise, the dimension in (5-13) would be 5 or 9.)

The statement now follows by counting.

Example 5.45. In case e = 3 (illustrated in Figure A-2 below, left), we
have ten simple objects in Qe:

I L0,0,L3,0,L0,3, with quantum dimension [1]η = 1 each.
I L1,0,L2,1,L0,2 and L0,1,L1,2,L2,0, with quantum dimension [3]η = 2 each.
I L1,1, with quantum dimension [2]η[4]η = 3.

In contrast, the simple AD3-module objects are:

I L0,0 ⊕ L3,0 ⊕ L0,3, with quantum dimension 3[1]η = 3.
I L1,0 ⊕ L2,1 ⊕ L0,2 and L0,1 ⊕ L1,2 ⊕ L2,0, both with quantum dimension

3[3]η = 6.
I Three non-isomorphic copies of L1,1, with quantum dimension 3 each.

(The reader should compare this with the Z/3Z-symmetry in Figure A-2 and
the identification respectively splitting of the vertices illustrated therein.)

Remark 5.46. The above classification is consistent with the following
analog of (3-21). Let

ηdim(Qe) =
∑

0≤m+n≤e
ηdim(Lm,n)2.

Since ADe is rigid, we have

ηdim(ADe)ηdim(Qe) =
∑
S

ηdim(S)2(5-14)

where we sum over a complete set of pairwise non-isomorphic, simple ADe-
module objects S. The formula in (5-14) follows e.g. from [EGNO, Example
7.16.9(ii)]. Note that in this example ηdim(O) equals the Perron–Frobenius
dimension of O as used in [EGNO, Example 7.16.9(ii)] because ADe is rigid.

By Proposition 5.43, we see that ADe can be regarded as a Frobenius al-
gebra 1-morphism in QGOP

e . Hence, we get a Frobenius algebra 1-morphism
BDge{−3} in Te.
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Remark 5.47. In this case it would be hard to write down explicitly
the diagrams which define the structural 2-morphisms of BDge , i.e. unit, mul-
tiplication, counit and comultiplication. The reason is that the symmetric
web calculus suppresses the clasps corresponding to Le,0 and L0,e, i.e. the
quantum symmetrizers and antisymmetrizers on e strands in Kuperberg’s
web calculus [Ku] (cf. Example 4.41).

By Proposition 5.44,MDge does not correspond to the cell 2-representa-
tion if e ≡ 0 mod 3, and, by construction, it categorifies MDge from Defini-
tion 5.28, and similarly for o and p.

Some simple transitive 2-representations. Note that an equivalence of
simple transitive 2-representations decategorifies to an N[v]-equivalence of
transitive N[v]-representations. Hence, the following is the summary of the
above and Lemma 5.33:

Theorem 5.48. Let us indicate by g, o, p the starting color. Then we
have (at least) the following simple transitive 2-representations of Te.

e ≡ 0 mod 3 e 6≡ 0 mod 3

2-reps.
MAg

e
,MAo

e
,MAp

e
,

MDg
e
,MDo

e
,MDp

e

MAg
e

quantity 6 1

(5-15)

Moreover, the 2-representationsMAe are the cell 2-representations of Te, and
all of these decategorify to the corresponding Te-representations in (5-6).

We note here that the case e = 0 is not included in our discussion above,
but Theorem 5.48 holds in this case as well (but types A and D coincide),
which can be checked directly.

5.3. Trihedral zigzag algebras. We are going to describe a weak cate-
gorification of the N[v]-representations MA∞ and MAe from Section 5.1 using
a certain quiver algebra. (By weak categorification we mean the same as e.g.
in [KMS, Definition 1].)

Below we let i, j, k always be different elements in {x, y, z}. Moreover,
we write im,n for the idempotent at a given vertex labeled by (m,n), and
a path from im,n to jm′,n′ is denoted by j|i = jm′,n′ ◦ j|i ◦ im,n (abusing
notation, we omit the idempotents) with compositions k|j ◦ j|i = k|j|i and
j|i ◦ αk = j|iαk etc.

The trihedral zigzag algebra of level ∞. We work over C in this section.
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Definition 5.49. Let ∇∗ be the path algebra of the following quiver:

y0,2 x1,1 z2,0

z0,1 y1,0

x0,0

αx

αy

αz y|z
z|y

αx
αyαz

z|x
x|z

x|z
z|x

x|y
y|x

αx

αy

αzy|z
z|y

z|x
x|z

αx

αy

αz z|x
x|z

αx

αy

αzx|y
y|x

y|z
z|y

αx

αy

αz

... ... ...

living on the A∞ graph

We view ∇∗ as being graded by putting paths j|i and loops αi in degree 2.

Definition 5.50. Let ∇∞ be the quotient algebra of ∇∗ by the following
relations:

(5.50a) Leaving a triangular face is zero: Any oriented path of length two
between non-adjacent vertices is zero.

(5.50b) The relations of the cohomology ring of the variety of full flags in C3:
αiαj = αjαi, αx + αy + αz = 0, αxαy + αxαz + αyαz = 0 and
αxαyαz = 0.

(5.50c) Sliding loops: j|iαi = −αjj|i, j|iαj = −αij|i and j|iαk = αkj|i
= 0.

(5.50d) Zigzag: i|j|i = αiαj.
(5.50e) Zigzig equals zag times loop: k|j|i = k|iαi = −αkk|i.

We call ∇∞ the trihedral zigzag algebra of level ∞.

The relations (5.50a)–(5.50e) are homogeneous with respect to the degree
defined in Definition 5.49, which endows ∇∞ with the structure of a graded
algebra, and we write vdim( ) ∈ N[v] for the graded dimension, viewing v as
a variable of degree 1. Note that ∇∞ is zero in all odd degrees, by definition.

Some basic properties

Proposition 5.51. ∇∞ is quadratic, i.e. it is generated in degree 2 and
the relations are generated in degree 4.
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Proof. All relations except αx + αy + αz = 0 and αxαyαz = 0 are of
degree 4.

The degree two relation shows that our presentation is redundant: we
could give a presentation with fewer generators and no degree two relation.
We prefer our presentation, which is more symmetric and therefore easier to
write down. But one could get rid of the degree two relation by using only
two degree two loops per vertex.

Thus, up to base change, it remains to show that αxαyαz = 0 is a conse-
quence of degree 4 relations, which can be done as follows:

αxαyαz
(5.50d)

= x|y|xαz
(5.50c)

= 0.

This finishes the proof that ∇∞ is quadratic.

Lemma 5.52. Let S = {(m±1, n), (m±1, n∓1), (m,n±1)}.

(5-16)

HomC(im,n, im′,n′) =


C{im,n, αi, αj,
αiαj, αiαk, α

2
iαj} if (m,n) = (m′, n′),

0 else,

HomC(im,n, jm′,n′) =

{
C{j|i, j|iαi} if (m′, n′) ∈ S,

0 else.

Moreover, the non-trivial graded dimensions are

vdim(HomC(im,n, im,n)) = v3[3]v! , vdim(HomC(im,n, jm′,n′)) = v[2]v,

when (m′, n′) ∈ S.

Proof. This is clear for the trivial hom-spaces by (5.50a). So let us focus
on the non-trivial ones. To this end, we first consider homogeneous linear
combinations of loops of degree 2, 4, 6:

(5-17)

αx+αy = −αz,
α2
x+αxαy = −αxαz, αxαy+α2

y = −αyαz, αxαz+αyαz = −α2
z,

α2
xαz = αxα

2
y = αyα

2
z = −α2

xαy = −α2
yαz = −αxα2

z.

These relations follow immediately from (5.50b), and show that the endo-
morphism space of any vertex is spanned by the ones in (5-16).

Next, we consider all homogeneous elements of degree 4 in ∇∗. The ones
that are composites of two paths leaving a triangular face are zero by (5.50a),
and the remaining ones are linear combinations of those appearing in (5.50c),
(5.50d), (5.50e).

The homogeneous elements of degree 6 that are not annihilated by (5.50a)
are

i|k|j|i (5.50e)
= i|k|iαi

(5.50d)
= α2

iαk
(5-17)
= −α2

iαj
(5.50d)

= −i|j|iαi
(5.50e)

= −i|j|k|i,
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j|i|j|i (5.50d)
= j|iαiαj

(5.50b)
= j|i(−αiαk − αjαk)

(5.50c)
= 0,

k|i|j|i (5.50d)
= k|iαiαj

(5.50c)
= 0,

including versions obtained by changing sources and targets.
Finally, we claim that all homogeneous elements of degree > 6 in ∇∗ are

zero in ∇∞. For paths leaving a face or composites of only loops, there is
nothing to show by (5.50a) and (5.50b). For paths of length four around one
triangular face, we get

j|i|k|j|i (5.50e)
= j|i|k|iαi

(5.50d)
= j|iα2

iαk
(5.50c)

= 0,

k|i|k|j|i (5.50e)
= k|i|k|iαi

(5.50d)
= k|iα2

iαk
(5-17)
= −k|iα2

iαj
(5.50c)

= 0,

i|j|i|j|i (5.50d)
= i|j|iαiαj

(5.50d)
= α2

iα
2
j

(5-17)
= 0,

i|k|i|j|i (5.50d)
= i|k|iαiαj

(5.50d)
= α2

iαjαk
(5.50b)

= 0.

Again, there are analogous relations obtained by changing sources and tar-
gets. Altogether this shows that the sets in (5-16) span the hom-spaces.

To show linear independence, we consider the following linear map, which
on monomials in the path algebra is given by

tr : ∇∞ → C, tr(a) =


1 if a ∈ {α2

xαz, αxα
2
y, αyα

2
z},

−1 if a ∈ {α2
xαy, α

2
yαz, αxα

2
z},

0 else.

Note that tr is well-defined, which can be checked by showing that the re-
lations are preserved. It is also easy to see that tr is a non-degenerate and
symmetric trace form, e.g.

tr(y|x · x|z|y) = tr(x|z|y|x)
(5.50e)

= tr(x|y|xαx)
(5.50d)

= tr(α2
xαy)

(5-17)
= tr(−αxα2

y)
(5.50d)

= −tr(αyy|x|y)
(5.50e)

= tr(y|x|z|y) = tr(x|z|y · y|x).

We can now write down sets of morphisms which are dual to the ones from
(5-16) with respect to tr, e.g.

(im,n, αx, αy, αxαy, αxαz, α
2
xαz)! (α2

xαz, αxαz, αxαy, αy, αx, im,n),

(j|i, j|iαi)! (±i|jαj,±i|j).

Since these sets span the corresponding hom-spaces, we are done.

The following result follows immediately from the proof of Lemma 5.52.

Corollary 5.53. ∇∞ is a positively graded, symmetric Frobenius
algebra.
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The quotient of level e

Definition 5.54. For fixed level e, let Ke be the two-sided ideal in ∇∞
generated by

{im,n | m+ n ≥ e+ 1}.
We define the trihedral zigzag algebra of level e as

∇e = ∇∞/Ke

and we call Ke the vanishing zigzag ideal of level e.
Clearly,∇e has a basis given by the elements in (5-16) form+n ≤ e. Thus,

∇e is a finite-dimensional, positively graded algebra, which is a symmetric
Frobenius algebra by Corollary 5.53. By the proof of Proposition 5.51 it is
also quadratic, as long as e 6= 0.

Weak categorification. Following ideas from [KS], [AT] and [MT, Sec-
tion 2], we let Pim,n , respectively im,nP, denote the left, respectively right,
ideals in∇∞ generated by im,n. These are indecomposable, graded projective
∇∞-modules, and all indecomposable, graded projective left, respectively
right, ∇∞-modules are of this form, up to grading shifts.

By the above, Pim,n ⊗ im,nP is a biprojective ∇∞-bimodule, i.e. it is
projective as a left and as a right ∇∞-module. Therefore,

Θg( ) =
⊕
xm,n

(Pxm,n ⊗ xm,nP{−3})⊗∇∞ ,

Θo( ) =
⊕
ym,n

(Pym,n ⊗ ym,nP{−3})⊗∇∞ ,

Θp( ) =
⊕
zm,n

(Pzm,n ⊗ zm,nP{−3})⊗∇∞ ,

define endofunctors on the category∇e-pModgr of finite-dimensional, graded
projective (left) ∇e-modules. Here ⊗ denotes ⊗C.

To state the weak categorification we denote by End(∇e-pModgr) the
category of endofunctors on ∇e-pModgr. Considering T∞ as a one-object
category with the formal object ∗ and morphisms being its elements, we get
the following.

Lemma 5.55. The functor T∞ → End(∇e-pModgr) given by the assign-
ment ∗ 7→ ∇e-pModgr and

θg 7→ Θg( ), θo 7→ Θo( ), θp 7→ Θp( )

is well-defined. Moreover, decategorification gives the transitive N[v]-represen-
tation MA∞ of T∞.

Proof. Let us first show that ΘgΘg
∼= Θ

⊕[3]v!
g , with the superscript

⊕[3]v! meaning six degree-shifted copies of Θg, with v corresponding to
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a degree-shift by one. Similar arguments show that the same holds for Θo

and Θp, of course. Note that ΘgΘg is given by tensoring with the bimodule⊕
xm,n

Pxm,n ⊗ xm,nP⊗∇∞ Pxm,n ⊗ xm,nP{−6},

with all other direct summands being zero. By definition, this is isomorphic
to⊕
xm,n

Pxm,n ⊗ End∇∞(xm,n)⊗ xm,nP{−6} ∼=
⊕
xm,n

(Pxm,n ⊗ xm,nP{−3})⊕[3]v!,

where the displayed isomorphism follows from Lemma 5.52.
Next, we show that ΘgΘoΘg

∼= ΘgΘpΘg. Again, similar arguments show
the analogous result in the remaining cases. The functor ΘgΘoΘg is given
by tensoring with

⊕
Pxm,n ⊗ xm,nP⊗∇∞ Pym′,n′ ⊗ ym′,n′P⊗∇∞ Pxm′′,n′′ ⊗ xm′′,n′′P{−9},

(5-18)

where the direct sum is over all neighboring pairs (m,n), (m′, n′) and (m′, n′),
(m′′, n′′), i.e. (m′, n′) ∈ {(m±1, n), (m,n±1), (m±1, n∓1)} and (m′′, n′′) ∈
{(m,n), (m± 1, n± 1), (m± 2, n∓ 1), (m± 1, n∓ 2)}. This is isomorphic to

(5-19)⊕
Pxm,n ⊗Hom∇∞(xm,n, ym′,n′)⊗Hom∇∞(ym′,n′ , xm′′,n′′)⊗ xm′′,n′′P{−9}

∼=
⊕

(Pxm,n ⊗ xm′′,n′′P{−7})⊕[2]2v ,

where the superscript⊕[2]2v should be interpreted as before. The isomorphism
displayed in (5-19) follows from Lemma 5.52.

The functor ΘgΘoΘg is given by tensoring with the ∇∞-bimodule ob-
tained from the one in (5-18) by replacing ym′,n′ with zm′,n′ , which is also
isomorphic to the ∇∞-bimodule in (5-19). Although the neighboring pairs
change when we replace ym′,n′ with zm′,n′ , their total number is equal by
symmetry. Thus, the final number of direct summands in (5-19) is the same
in both cases. This finishes the proof that ΘgΘoΘg

∼= ΘgΘpΘg.

Proposition 5.56. The functor from Lemma 5.55 descends to a functor
Te → End(∇e). Moreover, decategorification gives the transitive N[v]-repre-
sentation MAe of Te.

Proof. Recall that the N[v]-representation MAe of Te from Definition 5.28
satisfies

Mtot
Γ = MΓ(θg) + MΓ(θo) + MΓ(θp) = [2]v([3]vId +A(Γ)).
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Up to natural isomorphism, the same holds for the functors Θg,Θo and
Θp when they are applied to Pxm,n ,Pym,n and Pzm,n , by Lemma 5.52. The
proof uses exactly the same sort of arguments as the proof of Lemma 5.55.
We therefore omit further details. The statement then follows from Corol-
lary 5.38.

Remark 5.57. The quiver algebra defined in [Gr] is (in the case of Ae
graphs) a subalgebra of ∇e. We do not know any further connection between
these two algebras.

In fact, up to certain scalars, the defining relations of the quiver algebra
in Definition 5.50 are the ones of the quiver algebra underlying the cell 2-
representations of Te. Those scalars can be computed for small values of e,
but we have not been able to compute them for general e, unfortunately.
However, even without the correct scalars, we thought that the trihedral
zigzag algebra, and its connection to [Gr], were too nice to exclude them
from this paper.

One also wonders whether any of the constructions involving the zigzag
algebras in [HK] have an analogue for the trihedral zigzag algebras.

5.4. Generalizing dihedral 2-representation theory

The dihedral story 5.58. Yet another analogy to the dihedral case
De is provided by CP 5.36 and Proposition 5.37: One can define transitive
N[v]-representations of D∞ analogously to the N[v]-representations MΓ, where
in the dihedral case Γ is any connected, bicolored graph. These descend to
the finite-dimensional De if and only if Ue+1(A(Γ)) = 0, where Ue+1( ) is
the Chebyshev polynomial as in The dihedral story 3.24. (This follows from
[KMMZ] and, a bit more directly, from [MT].) In that case, the analog of
CP5.36 has awell-understood answer, namelyΓhas to be ofADEDynkin type.

The dihedral story 5.59. In the dihedral case, the classification of
simple transitive 2-representation is an ADE-type classification (assuming
gradeability) (cf. [KMMZ] and [MT]). This follows from the classification of
graphs recalled in The dihedral story 5.58 and the associated 2-representa-
tions, which, in analogy to Section 5.2, can be constructed by using algebra
1-morphisms in the sl2 analog of Qe (cf. [MMMT, Section 7]).

The dihedral story 5.60. The quiver underlying the cell 2-representa-
tions in the dihedral case is the zigzag algebra from [HK], which could be pre-
sented as in our setup, although this is never done in the literature, using two
loops αx, αy at each vertex, subject to the relations of the cohomology ring
of the variety of full flags in C2, i.e. αxαy = αyαx = 0, αx+αy = 0. (To make
the connection with [HK], note that this cohomology ring is isomorphic to
C[X]/(X2).) The same holds for all other simple transitive 2-representations
(in the dihedral case) with the zigzag algebra for the corresponding graph
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(see [MT]). Thus, Section 5.3 can be seen as the trihedral version of this. We
think it would be interesting to work out the trihedral quiver algebras for
other simple transitive 2-representations of Te.

Appendix: Generalized ADE Dynkin diagrams. In this appendix
we list certain solutions to CP 5.36. Following [Zu], we call these the general-
ized ADE Dynkin diagrams. The graphs below depend on the level e, which
is the same as e.g. in Section 2 and is indicated as a subscript.

A.1. The list. The following are the generalized ADE Dynkin diagrams.
There are three infinite families, displayed in Figures A-1, A-2 and A-3, and
a finite number of exceptions, displayed in Figure A-4.

A0
?

A1

•
��

A2

•

•
�

� �

�

A3
?

•
••

�

�

�

�

�

�

A4

•

•
••

•

�

�

�

� �

�

�

�

��

. . .

Fig. A-1. The infinite family of (generalized) type A, indexed by e ∈ N. The graph of type
Ae can be obtained by cutting off the sl3-weight lattice at level e+ 1, as in (2-1).
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D6
?

•
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• •

•
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�

�

�

�
. . .

Fig. A-2. The infinite family of (generalized) type D, indexed by e ≡ 0 mod 3 and e 6= 0.
The graph of type De comes from the Z/3Z-symmetry of the graph of type Ae with the
fixed points splitting into three copies (cf. Example 5.45). (Note the double edges.) By
convention, A0 = D0.

All the above graphs exist for color variations as well. Note further that
we have also indicated a starting vertex ? in case such a choice is essential,
i.e. in case different tricolorings give non-isomorphic tricolored graphs.
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cA1
∼= A1

•
��

cA2
∼= A2

•

•
�

�

�

�
cA1

cA3

•
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•
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�

�

�

�

· · ·

Fig. A-3. The infinite family of conjugate type A, indexed by e ∈ N. The graph of type
cAe comes from an iterative procedure on the graph of type Ae. By convention, A0 = cA0.
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Fig. A-4. The finite exceptional family of (generalized) type E, indexed as indicated and
denoted by Ee. (Note that there are four for e = 9.)
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We point out that the above list was obtained from [Oc, Section 4] by
excluding the graphs that are not tricolorable.

A.2. The spectra. The spectra of the graphs from Appendix A.1 are
known (cf. [EP, Section 2]). Let us sketch what they look like. To this end,
recall the vanishing set Ve of level e and the discoid d3 from Section 2.2.

Claim A. z ∈ SAX
e
if and only if (z, z) ∈ Ve.

Proof (sketch). Observe that AX
e and AY

e are the graphs encoding the
action of [X⊗ ], respectively of [Y⊗ ], on [Qe]C⊕, and the claim follows.

Claim DE. We have, without counting multiplicities of the zero eigen-
value, SΓX ⊂ SAX

e
for any Γ as in Appendix A.1.

Proof (sketch). For graphs of type De this holds by construction and by
using the Z/3Z-symmetry of Ae graphs. In fact, one can get the eigenvalues of
A(De) from the ones of A(Ae) by deleting two out of every three eigenvalues
and adding two additional eigenvalues 0, e.g. for e = 3:

−3 3
x

−3

3
y

C

•1 •

•

•

•

•

•

•

•
•

spectrum of AX
3

 −3 3
x

−3

3
y

C

•3 •

•

•

spectrum of DX
3

The case of cAe can be shown similarly (precisely which eigenvalues of SAe also
belong to ScAe depends on e mod 3), with a prototypical example given by

−3 3
x

−3

3
y

C

• • •

•

•

•

•

•

•

•

•

•

•

•
•

spectrum of AX
4

 −3 3
x

−3

3
y

C

• • •

•

•

•

•

•

•

spectrum of cAX
4

For the exceptional type E graphs the claim can be checked case-by-case.
In particular, the spectra of the generalized ADE Dynkin diagrams are

all inside d3.
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Example A.1. The spectra of AX
1,A

X
2 and AX

3 are given in Example 5.23.
(Again, these should be compared to Example 2.12.) Additionally we have

SDX
3

= ScAX
3

= {roots of X3(X − 2)(X2 + 2X + 4)}.
Forgetting the multiplicity of zero, we get the inclusion of the corresponding
spectra.

Example A.2. The graphs DX
3 and cAX

3 have the same spectrum (cf.
Example A.1). However, they are not isomorphic as graphs, e.g. D3 has a
double edge and cAX

3 does not. Both observations are true in general for De

and cAe.

A.3. Zuber’s classification problem and CP 5.36. Zuber (relying
on joint work with Di Francesco [DFZ] and Petkova [PZ]) introduced the
notion of a generalized ADE Dynkin diagram. These graphs appear in various
disguises in the literature, e.g. in conformal field theories, integrable lattice
models, topological field theories for 3-manifold invariants and subfactor
theory.

Zuber wrote down a list of six axioms which these graphs should satisfy
[Zu, Section 1.2], and asked for the classification of such graphs. Ocneanu
[Oc] argued that Zuber’s classification problem is related to the classification
problem of the so-called quantum subgroups of SU(N). He also proposed a
list of graphs which should solve Zuber’s classification problem. The ones
that are tricolorable are the graphs that we reproduced in Appendix A.1.
However, we already saw in Theorem 5.40 that we get solutions which are
not on Ocneanu’s list, so we do not know whether CP 5.36 and Zuber’s
classification problem are the same or not, or even how they are related.
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