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Abstract 

Transmission electron microscopy (TEM) was used for the first time to study the 

anterior adhesive apparatus of the monogeneans Macrogyrodactylus clarii Gussev, 1961 and 

M. congolensis (Prudhoe, 1957) Yamaguti, 1963 inhabiting gills and skin respectively of the 

same catfish Clarias gariepinus. Despite the different microhabitats occupied by these 

parasites, the present study revealed that they have a similar anterior adhesive system. In both 

parasites, the anterior adhesive apparatus consists of three types of gland cells: G1 cells that 

produce rod-shaped bodies (S1), G2 cells manufacture irregularly shaped bodies (S2) and G3 

cells form mucoid-like secretions (S3). In the cytoplasm of G1 cells, a single layer of 

microtubules encloses each developing rod-shaped body. A unique feature of S1secretory 

bodies is that some fully developed S1 bodies are attached to each other, forming large 

condensed globules in the cytoplasm of G1 gland cells and terminal portion of the G1 ducts, but 

none were detected in the adhesive sacs outside the ducts. In the adhesive sacs, G1 ducts open 
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with multiple apertures whereas each of the G2 and G3 ducts have a single opening. The 

adhesive sacs are lined with two types of tegument (st1 and st2). A third tegument type (st3) 

connects the st2 tegument with the general body tegument. Only st1 has microvilli. Each 

adhesive sac is provided with a spike-like sensillum and single uniciliated sense organ. The 

possible functions of microvilli in increasing the surface area and assistance in spreading and 

mixing of the adhesive secretion, and the role of sense organs associated with the adhesive 

sacs are discussed.  

 

Key words: Platyhelminthes, Monogenea, fish ectoparasite, temporary adhesion, adhesive 

apparatus, ultrastructure 

1. Introduction 

Monogenean ectoparasites attach to their hosts primarily with their posterior attachment 

organ (haptor), which is equipped with hamuli and marginal hooklets [1], but in order to 

move from one position to another they rely on their anterior adhesive apparatus [2]. 

Typically, monogeneans move on the host or artificial substrates by stretching out their 

bodies and attaching with head lobes to the host tissue, releasing and moving the haptor to 

attach close to the adhesive areas of the head lobes, and then they detach the head lobes to 

move anteriorly where they attach again to a new site. Some can move in a similar leech-like 

manner upside down, using the water surface tension [3].  

The anterior adhesive apparatus has been studied with transmission electron microscopy 

(TEM) and/or scanning electron microscopy (SEM) in many monogenean parasites, 

including the gyrodactylids [4,5,6], dactylogyrids [7,8], entobdellids [2,9], acanthocotylids 

[10], monocotylids [11.12] and ancyrocephalids [13]. They have various kinds of gland cells 

that open either into the outer syncytial tegumental layer [7,14], or onto the specialized 
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haptoral [13,15,16,17] or ventrally-located head regions (see for example, El-Naggar and 

Khidr [8], Wong et al. [13]). The monogenean anterior adhesive apparatus produces one to 

three types of secretion bodies. Species with rod-shaped bodies (S1), spherical bodies (S2) 

and irregularly-shaped, electron-lucent vesicles (S3) include Gyrodactylus eucaliae (see 

Kritsky, 1978) [4], G. sprostonae (see Yuan and Long [18]), Dactylogyrus amphibothrium 

and D. hemiamphibothrium (see El-Naggar and Kearn [7]), D. aristichthys (see Yuan and 

Long [19]), Cichlidogyrus halli (see El-Naggar and Khidr [8]) and Merizocotyle icopae (see 

Cribb et al. [20]). Two types of secretion, rod-shaped bodies (S1) and spherical bodies (S2), 

were reported in Entobdella soleae (see Kearn and Evans-Gowing [9]), Acanthocotyle 

lobianchi (see Rees and Kearn [10]) and Caballeria liewi (see Wong et al. [13]). Only one 

kind of secretion, rods, is produced in the anterior adhesive apparatus of Monocotyle 

spiremae (see Cribb et al. [11]) and spherical bodies in Enterogyrus cichlidarum (see Khidr 

et al. [21]). 

Two gyrodactylid monogeneans of the Nile catfish, Clarias gariepinus, 

Macrogyrodactylus clarii [22] and M. congolensis [23,24] infect the gills [25], and the skin 

and fins [26], respectively. Although the haptors of M. clarii and M. congolensis show the 

same basic structure, there are some differences [25,26] possibly reflecting the different 

habitats of the parasites. The haptor of M. clarii possesses two lateral rows of tegumental 

papillae, whilst that of M. congolensis has three rows (two lateral and one anterior). The 

dorsal bar consists of two articulating sclerites in M. clarii and just one in M. 

congolensis. Moreover, the ventral bar of M. clarii is posteriorly associated with three long 

accessory sclerites, while that of M. congolensis has two long horns and possesses two 

posterior accessory sclerites [25,26]. 

Light microscopy of the anterior adhesive apparatus of M. clarii (see El-Naggar and 

Serag [25] and M. congolensis (see El-Naggar et al. [26]) revealed two kinds of gland cells, 
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one producing two types of secretion (rod-shaped bodies and spherical bodies) and the other 

manufacturing irregularly-shaped bodies. With the exception of Kritsky [4], no ultrastructural 

studies have been conducted on the anterior adhesive apparatus of gyrodactylid parasites. 

However, SEM has been used to study the head lobes of Gyrodactylus groschafti (see El-

Naggar [5]), M. clarii (see El-Naggar [6]) and M. congolensis (see Arafa et al. [27]). In these 

three gyrodactylids, each head lobe bears a single, ventrally-located adhesive sac provided 

with emergent papillae which are densely covered with microvilli and perforated by gland 

duct openings [5,6,27].  

The present study assesses whether there are any adaptive differences in the anterior 

adhesive apparatus of M. clarii and M. congolensis based on their microhabitat. M. clarii 

lives on the gill filaments of Clarias gariepinus and are exposed to strong gill ventilating 

water currents, while M. congolensis parasitizes the skin and fins of the same host.  

 

2. Materials and Methods 

Specimens of the Nile catfish Clarias gariepinus (Burchell, 1822) were caught from the 

Demietta branch of the River Nile near Mansoura City, Daqahlia Province, Egypt and 

transported alive to the Faculty of Sciences, Mansoura University. Here, fish were maintained 

for a few days in an aquarium containing aerated river water at room temperature (25 ± 5 °C) 

with natural daylight. The catfish (n = 50) were killed by pithing and severing the spinal cord. 

The gills, fins and scrapings of the skin were removed and placed in Petri dishes containing 

filtered river water. Gills were searched for Macrogyrodactylus clarii, while fins and scrapings 

of the skin were searched for M. congolensis using a dissecting microscope. Some living 

specimens of both species were flattened between a glass slide and a coverslip and stained with 

light green and eosin according to El-Naggar et al. [23]. Living and stained flattened specimens 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

5 

(N=10) were examined using light and phase-contrast microscopy with oil immersion, and the 

different kinds of gland cells were counted. 

For TEM, specimens of M. clarii and M. congolensis were washed in distilled water and 

then fixed in 2.5% glutaraldehyde buffered to pH 7.3 with 0.1 M sodium cacodylate-HCl 

buffer at 4 °C for 2 h. They were then washed for at least 1 h in several changes of cold 

buffer (0.1 M sodium cacodylate-HCl containing 3% sucrose and 0.1 M CaCl2), post-fixed in 

1% osmium tetroxide in sodium cacodylate buffer at 4 °C for 1 h, washed overnight in the 

same buffer, then dehydrated using an ascending series of ethanol solutions before transfer to 

a 1 : 1 mixture of propylene oxide and Spurr resin. Specimens were transferred into gelatin 

capsules containing pure resin and placed in an oven overnight at 60 °C. Ultrathin sections 

were cut at 70–90 nm using an LKB NOVA ultramicrotome and glass knives. The sections 

were mounted on single-hole and 75 mesh coated grids and stained in a solution of 1-2% 

aqueous or alcoholic uranyl acetate for about 30 min followed by 2-3% lead citrate for 5 min. 

The sections were examined using a JEOL 100SX transmission electron microscope 

operating at 80 kV. Measurements of different secretory bodies are based on >10 organelles 

from electron micrographs.  

3. Results 

The head region of both Macrogyrodactylus clarii and M. congolensis consists of two 

head lobes. Each bears a single adhesive sac located ventrally at its distal extremity and 

terminates in a single spike-like sensillum (Fig. 1). The lateral regions of the head contain 

numerous unicellular glands with their ducts converging on and opening into the two 

adhesive sacs (Fig. 1). Three kinds of gland cells (G1, G2 and G3) are present in both M. 

clarii and M. congolensis. Generally, the anterior adhesive apparatus of M. congolensis 

resembles that of M. clarii with just minor differences in the number of G2 gland cells. In M. 

congolensis, the G2 glands comprise at least 10 cells while in M. clarii they constitute only 
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seven cells. The Gl gland cells produce rod-shaped bodies (Sla) and relatively large spherical 

globules (S1b) (Fig. 1). On each lateral side of the head of both M. clarii and M. congolensis, 

there are sixteen G1 cells that are arranged in three groups, one lies lateral to the cerebral 

region and comprises five cells and the second consists of six cells and lies lateral to the 

anterior region of the pharynx, while the third comprises five cells and lies lateral to the 

anterior unbranched region of the intestine. In both M. clarii and M. congolensis, the G2 cells 

are found in a single group lying lateral to the posterior region of the pharynx and the anterior 

unbranched region of the intestine. The G2 cells are larger than the G1 cells and produce 

irregularly-shaped secretory bodies (S2). In both M. clarii and M. congolensis, the G3 cells 

are three in number located lateral to the cerebral region and produce translucent mucoid 

secretory bodies (S3) (Fig. 1).  

3.1 Gland cells 

TEM of both M. clarii and M. congolensis revealed that each G1 gland cell has a nearly 

spherical nucleus with granular nucleoplasm, conspicuous nucleolus and condensed chromatin 

(Fig. 2). The cytoplasm is moderately electron-dense and contains abundant granular 

endoplasmic reticulum (GER), numerous ribosomes (Figs. 2-5), a few Golgi bodies, small 

electron-lucent vesicles and mitochondria. The dilated cisternae of the GER enclose an 

amorphous, finely granular material with an electron density slightly higher than that of the 

basal cytoplasm (Fig. 2). Generally, each fully-developed, rod-shaped S1 body is of high 

electron density and measures 0.3-0.5 (average 0.4) µm in diameter. The maximum length 

measured in sections is 4- 6.5 (average 6) µm. These bodies are membrane bounded and contain 

a finely granular dense matrix in which small particles are embedded within higher electron-

dense material (Figs. 2-5). In sections, immature S1 bodies have a greater diameter than that of 

the fully developed ones (Figs. 4, 6). They measure 0.4-0.7 (average 0.6) µm in M. congolensis 

and M. clarii and contain granular material, with electron-density lower than that of the smaller 
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S1 bodies (Figs. 4, 6). Each of the large, immature, less electron-dense bodies and some of the 

small highly electron-dense bodies are enclosed by a single layer of microtubules, which appear 

to be parallel with each other and with the long axis of the rod (Figs. 4-6). Some of the less 

electron-dense S1 bodies contain a peripheral layer of small electron-dense granules and have no 

bounding membrane (Fig. 4). In cross sections, some fully developed S1 bodies attach to each 

other, forming large condensed globules with various sizes and shapes (Figs. 2, 4, 5). Their 

number varies from 3-7 S1 bodies in each globule. In a few sections of M. congolensis, some 

fully formed S1 secretory bodies with peripheral translucent vesicles were detected (Fig. 7).  

Each G2 cell is enclosed by a layer of fibrous interstitial material. They have an irregularly 

shaped nucleus with a relatively large, conspicuous nucleolus, granular nucleoplasm, small 

chromatin patches and nuclear membrane with characteristic nuclear pores (Fig. 8). The 

cytoplasm is moderately electron-dense, but it is slightly darker than that of the G1 cells. It 

contains abundant GER, free ribosomes, and numerous Golgi complexes, which in many 

sections are aggregated (in groups of 2-4) in close proximity to the nuclear membrane (Fig. 9). 

Each Golgi complex consists of 3-5 narrow parallel cisternae terminating with small and large 

vesicles (Fig. 9). Both cisternae and vesicles are filled with homogeneous, highly electron-dense 

material. In sections, the irregularly shaped bodies (S2) have different sizes ranging from 0.7-1.5 

(average 1.2) µm in diameter. They are abundant and contain granular, highly electron-dense 

material (Figs. 8, 9). However, in M. clarii with higher magnification, each S2 body contains 

tubular structures with lower electron-density, which are embedded in highly electron-dense 

ground substance (Fig. 10). In most regions of the G2 cells, fully developed S2 bodies are 

surrounded by cytoplasm characterized by translucent ground substance (Figs. 8, 10). 

Each G3 gland cell has a nearly oval nucleus with granular nucleoplasm, conspicuous 

nucleolus and condensed chromatin patches (Fig. 11). Some GER have dilated cisternae. The 
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mucoid secretory bodies (S3) are abundant, irregularly shaped (1-1.9, average 1.4, µm) and 

contain granular moderately electron-dense material (Fig. 11).  

3.2 Gland ducts and adhesive areas 

Ducts of the G1, G2 and G3 gland cells carrying the secretory bodies S1, S2 and S3, 

respectively, extend anteriorly as cytoplasmic processes where they converge on adhesive 

papillae through which they open into the adhesive sacs (Figs. 1, 12-21). As the gland ducts 

approach the adhesive sac, they dilate and become closely packed (Figs. 12,19). At this point, 

some of the gland ducts are associated with muscle fibers that are present beneath the tegument 

lining the adhesive sac (Fig. 13). Most ducts of the G1 cells are filled with completely formed 

rod-shaped bodies (Figs. 12,13,14), but in some sections, a few condensed globules of attached 

rods are found beside S1 bodies (Fig. 15). There are no microtubules in any of the gland ducts. 

Each G1 gland duct opens to the exterior via multiple apertures (Figs. 14-16). At the openings of 

the G1 ducts, five layers, three electron-dense and two electron-lucent (Fig. 16), bound each 

aperture. The outer layer membrane connects with the surrounding tegument by means of 

septate desmosomes (Fig. 14). Each one of the multiple apertures allows passage of a single rod 

(Fig. 14). Although large globules were detected in the terminal portion of the G1 ducts just 

beneath the multiple apertures, none of them were seen passing through the openings or outside 

the body (Fig.15). Each of the G2 and G3 gland ducts opens to the exterior by a single aperture 

(Figs.17-20).  

The adhesive sac is lined with three types of tegumental layer (st1, st2 and st3) (Figs. 14, 

15, 17, 22, 24). The first (st1) represents the outer tegumental layer covering the ventral 

surface of the adhesive papillae surrounding the gland duct openings (Figs. 12, 14, 15), while 

st2 represents the outer tegumental layer covering the lateral surfaces of the adhesive papillae 

(Figs. 12, 14, 22). The third type (st3) is the outer tegumental layer of the inner rim of the 
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adhesive sac and connects st2 and the tegumental layer of the general body surface (i.e. the 

outer surface of the head lobe) (Figs. 12, 22). Comparing the three tegumental layers, the st1 

layer is relatively thin, electron-dense and has numerous microvilli but lacks secretory bodies 

(Figs. 14, 15). The st2 layer is highly electron-dense and contains abundant electron-dense 

bodies (Figs. 14, 22). No cytoplasmic organelles like mitochondria, Golgi bodies, GER or free 

ribosomes were found in st1 or st2 tegument. The st3 tegumental layer connects with the st2 

tegument by means of junctional complexes (Fig. 22) and contains a few translucent vesicles 

containing moderately electron-dense particles (Fig. 24). These vesicles are restricted to the 

outer region of the tegument. Some electron-dense granular bodies, abundant rod-shaped, 

electron-dense bodies and a few mitochondria were also seen (Fig. 22 inset). The general body 

tegument contains abundant translucent vesicles and some electron-dense granular secretory 

bodies, but no rod-shaped bodies (Fig. 22). 

No experimental work was performed to study the mechanism of attachment and 

detachment of the head lobes of Macrogyrodactylus species. However, in most sections the 

terminal portions of G1 ducts, homogeneous particulate material was detected around the S1 

bodies (Figs. 14, 15) while sections of the terminal portions of G2 and G3 ducts revealed 

considerable change in appearance of the secretory bodies particularly S2 and S3. The S3 bodies 

lose their membranes and their secretory components form homogeneous particulate material 

(Figs. 18,19), while S2 bodies become slightly smaller in size and their particulate components 

diffuse into the lumen of the duct in-between bodies that are still membrane-bounded (Figs. 

19,21). Moreover, in the same region, these sections show a network of homogeneous material 

covering the surface of the adhesive papilla (Figs. 19, 21).  

 TEM revealed the presence of a single sensillum on each adhesive papilla (Fig. 20), in the 

intervening region between the adhesive sac and general body tegument (Fig. 23) and on the 

anterior region, which is covered by general body tegument (Fig. 24). Each sensillum has an 
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elongated nerve bulb, which terminates in a single opening through which a single cilium 

protrudes (Figs. 20, 23, 24). Close to the opening, there is an electron-dense thickening and the 

lining of the opening is connected with the intervening tegument st3 via desmosomes (Figs. 23, 

24). The nerve bulb contains neurotubules, electron-dense bodies and mitochondria (Figs. 23, 

24). 

4. Discussion 

This is the first ultrastructural study of the anterior adhesive apparatus of the monogeneans 

Macrogyrodactylus clarii [22] from the gills of Clarias gariepinus and M. congolensis 

[23,24] from the skin and fins of the same host. TEM revealed that the anterior adhesive 

apparatus of both parasites consists of three types of gland cells (G1, G2 and G3). The G1 cells 

produce rod-shaped bodies (S1) and roughly spherical large globules, G2 cells secrete 

irregularly shaped, highly electron-dense bodies with tubular contents (S2) and G3 cells 

manufacture irregularly shaped, mucoid-like secretion (S3). These glands resemble those of the 

anterior adhesive apparatus of other monogenean parasites [28,29,30]. Previous studies 

illustrated that congeners in the same microhabitat tend to have similar types of anterior 

adhesive secretions [7,29,31]. In the present study, the anterior adhesive apparatus of M. clarii 

and M. congolensis have the similar morphological features, despite the differences in their 

microhabitat, with the exception of the number of G2 cells: 10 pairs in M. congolensis and 7 

pairs in M. clarii. Morphological similarities, however, do not exclude the possibility of 

chemical and/or functional differences [30]. 

In D. amphibothrium, El-Naggar and Kearn [7] found that S1 bodies in the G1 ducts 

connect with each other by membrane-like structures and a similar feature of interlinking band-

like structures was observed between S1 bodies and S2 bodies in Bravohollisia gussevi and 

Caballeria liewi (see Wong et al. [13,16], respectively). Also, the bounding membranes of S1 

bodies in Entobdella australis and Entobdella spp. (see Whittington and Cribb [29]) showed 
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periodic dense bandings. None of these structures, however, were observed in either M. 

congolensis or M. clarii. A unique feature of these parasites though is the presence of large 

globular bodies in the cytoplasm and ducts of the G1 cells, in addition to fully formed S1 bodies. 

With TEM, it became evident that these globules are aggregations of S1 bodies. There was no 

evidence that S2 or S3 bodies in M. clarii and M. congolensis aggregate and coalesce in the 

cytoplasm of their cells but they become closely packed as they reach the terminal portions of 

the ducts. Another important feature of M. clarii and M. congolensis is that S2 bodies contain 

tubular structures, a feature not reported in any other monogeneans studied by TEM. In addition, 

the present study indicates that the fully formed rods in M. clarii and M. congolensis are 

considerably larger than the S1 bodies in Entobella spp. (see Whittington and Cribb [29]).  

During the early stage of assembly, the large, less electron-dense rods, and some of the 

smaller highly electron-dense rods of M. clarii and M. congolensis are enclosed by 

microtubules. The microtubules disappear when the rods are fully formed and become bounded 

by membrane. Microtubules have been reported in most other monogeneans studied (see for 

example Wong et al. [13]) except for monocotylids [11,12] and Benedenia spp. [32]. Moreover, 

the rods of Monocotyle spiremae have no bounding membrane and possess an outer electron-

dense cortex and a more electron-lucent core [11]. El-Naggar and Kearn [7] suggested that 

encircling microtubules may play a role in transporting products from different parts of the cell 

prior to assembly of the secretory bodies. In addition, the microtubules may orientate the rods 

during their passage from within the gland cells to the lumen of their gland ducts, and help to 

maintain the parallel arrangement of rods into bundles [7]. 

The monogeneans M. clarii and M. congolensis resemble other gyrodactylids in that the 

secretions of the anterior adhesive apparatus open into a single pair of adhesive sacs, one 

situated antero-ventrally on each of the two head lobes [4]. Other monogeneans, with the 

exception of gyrodactylids and some monocotylids, have three distinct zones on each side of the 
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head for the release of secretions (see, for example, El-Naggar and Kearn [7]). Such 

organization into six separate points of contact presumably allows the parasite to be more 

resistant to detachment caused by water currents [10].  

In the present study of Macrogyrodactylus spp., it has been established that the rod-shaped 

bodies and roughly spherical large globules produced by G1 gland cells are transported through 

ducts terminating with multiple apertures. Each aperture apparently permits the passage of only 

one rod but there is no evidence that the large globules pass through multiple apertures. Multiple 

apertures were reported in G. eucaliae, Entobdella soleae and M. spiremae (see Kritsky [4]). 

[2,11], respectively. However, in D. amphibothrium and D. hemiamphibothrium the rod-shaped 

bodies are released from ducts with single apertures (see El-Naggar and Kearn [7]). The unique 

feature of M. clarii and M. congolensis is that the ducts that carry the rod-shaped bodies also 

carry larger globules of the same secretion, but the globules were not seen passing through duct 

apertures. It is possible that the multilayered boundary of one of the small multiple openings 

dilate to permit passage of the larger globules. Alternatively, the large spherical globules may 

liquefy or fragment before passing through the multiple apertures. Presence of material similar 

to the contents of S1 bodies and large globules in the terminal portion of G1 ducts (Figs. 10, 11) 

supports the latter suggestion. There is also some evidence that the large globules in the G1 cells 

are composite structures, perhaps made by accumulation of rod-shaped bodies or components of 

them. If correct, then the globules might escape from the duct openings after disintegration into 

their small rod-like components. Moreover, in M. clarii and M. congolensis, the S2 and S3 

bodies showed considerable change in their appearance inside the terminal portions of the ducts 

indicating that they are released from duct openings in a liquid form. A similar feature was 

reported by Kearn and Evans-Gowing [9] who found that the spheroidal secretory bodies 

associated with the anterior adhesive apparatus of E. soleae transform within the duct 

terminations immediately prior to attachment of the head region.  
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A characteristic feature of M. clarii and M. congolensis is that each adhesive sac is lined 

with three types of tegument (st1, st2, and st3) that are different from the general body surface. 

The first kind (st1) is thickly covered with microvilli, a feature that has been reported in the 

adhesive areas of many monogeneans [2,4,5,  7 ,9,11,33,34]. These specialized microvilli may be 

important during attachment of the head lobes by increasing the surface area available for 

binding the adhesive secretions to the head region. Lyons [34] suggested that these microvilli in 

Gyrodactylus spp. may assist in spreading the adhesive secretion of the head glands over the 

skin of the host into a thin "tacky" film. The microvilli may help to mix the products of different 

gland cells, which might have to interact with each other or with water before the sticky 

properties are developed. 

Rod-shaped bodies are the most abundant component of the anterior adhesive apparatus of 

M. clarii and M. congolensis. These bodies also represent the main component of the anterior 

adhesive secretions of many monogeneans, which produce two or three types of secretory bodies 

such as D. amphibothrium and D. hemiamphibothrium (see El-Naggar and Kearn [7]) and E. 

soleae (see Kearn and Evans-Gowing [9]). Furthermore, rod-shaped bodies are the only 

secretory body recorded in the anterior adhesive apparatus of the monocotylid, Monocotyle 

spiremae (see Cribb et al. 11]). 

The mechanism of attachment of M. clarii and M. congolensis may involve adhesion of 

the adhesive sac rim to the host tissues, protrusion of the adhesive papillae by means of 

associated muscles and release of secretory bodies through gland duct openings. The spike 

sensillum and other ciliary structures may serve as chemoreceptors that control attachment of the 

adhesive sacs. In monogeneans, it was suggested that stickiness could be a property of one type 

of secretory body or could develop by mixing between two types of secretion [2,7,20,35]. 

Interaction between secretory bodies and water [2] or between secretory bodies and host mucus 

[11] are possible alternative mechanisms.  
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Detachment of the head lobes of M. clarii and M. congolensis may occur mechanically by 

contraction of muscle fibres attached to the anterior region [11]. In E. soleae, tegument of the 

adhesive pads may play a part in detachment of the head region, by release of secretory bodies, 

which are abundant in this layer, or by some other physical or chemical change mediated via the 

tegumentary membrane [9]. In M. spiremae, where only one type of secretion (rods) was found, 

detachment may involve additional glue, physical detachment by muscle contraction or 

extrusion of material surrounding the rods [11]. Experimental studies are still needed in this field 

to determine which secretion is responsible for attachment and how detachment takes place: a 

potentially lucrative area for industry in relation to binding agents in water. 

Regarding parasite-host specificity, it has been reported that the epidermal mucous cells of 

specific fish hosts may influence parasite attachment (see review in Whittington et al. [31]). The 

anterior attachment region of Gyrodactylus derjavini contains mannose-rich glycoproteins, 

which are implicated in stimulating the alternative complement pathway in the host [36]. 

Specific differences in host fish epithelium and differences in monogenean anterior adhesive 

chemistry or in the chemistry of the specialized tegument of the anterior adhesive area may all 

contribute to host specificity amongst monogeneans [30]. 
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 Figures 

Fig. 1. Diagrammatic representation of the anterior adhesive apparatus and anterior region of the 

digestive system of Macrogyrodactylus clarii (ventral view). aph, Anterior region of the 

pharynx; as, adhesive sac; co, cerebral organ; G1, gland cell producing rod-shaped bodies 

(Sla) and roughly spherical bodies (S1b); G2, gland cell producing irregularly-shaped 

bodies (S2); G3, gland cell producing translucent secretory bodies (S3). gd, gland duct; hl, 

head lobe; it, intestine; mo, mouth opening; oes, oesophagus; pph, posterior region of the 

pharynx; sp, spike-like sensillum; ui, unbranched region of the intestine. 

Fig. 2. G1 gland cell of Macrogyrodactylus clarii containing S1 rod-shaped bodies and large 

spherical globules (lg). dS1, Developing rod-shaped bodies; ch, chromatin; GER, granular 

endoplasmic reticulum; N, nucleus; Nu, nucleolus; r, ribosomes; S1, rod-shaped secretory 

bodies.  

Fig. 3. Cytoplasm of the G1 gland cell of Macrogyrodactylus clarii containing fully formed S1 

rod-shaped bodies and granular endoplasmic reticulum (GER). r, Ribosomes. 

Fig. 4. G1 gland cell of Macrogyrodactylus congolensis containing fully formed rod-shaped 

bodies (S1), large globule (lg) and developing S1 (dS1) secretory bodies. Note that the 

developing rod-shaped bodies (ds1) have different sizes and are surrounded by 

microtubules (mt). Note also that some of the developing S1 bodies contain a peripheral 

layer of small electron-dense granules (arrows) and have no bounding membrane. GER, 

granular endoplasmic reticulum. 

Fig. 5. G1 gland cell of Macrogyrodactylus congolensis containing fully formed rod-shaped 

bodies (S1) and large globules (lg) each containing many S1 bodies (arrow). Note the 

presence of small translucent vesicles (v) and developing rod-shaped bodies (dS1). 
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Fig. 6. G1 gland cell of Macrogyrodactylys congolensis showing longitudinal sections of the 

large developing rod-shaped bodies (dS1) and fully formed rod-shaped bodies (S1). Note 

the microtubules (mt) associated with dS1. 

Fig. 7. Magnified S1 secretory bodies of Macrogyrodactylus congolensis with translucent 

vesicles (arrow heads).  

Fig. 8. G2 gland cell of Macrogyrodactylus clarii surrounded by fibrous interstitial material (fm) 

and containing large nucleus (N) with conspicuous nucleolus (Nu) and irregularly shaped 

secretory bodies (S2) surrounded by translucent area (*). 

Fig. 9. Magnified part of G2 gland cell of Macrogyrodactylus clarii with Golgi bodies (Go), 

granular endoplasmic reticulum (GER), ribosomes (r) and irregularly shaped secretory 

bodies (S2).  

Fig. 10. Magnified S2 of Macrogyrodactylus clarii containing tubular structures with lower 

electron density and surrounded by a translucent area (*). 

Fig. 11. G3 gland cell of Macrogyrodactylus clarii containing nucleus (N) with chromatin (ch), 

dilated cisternae of granular endoplasmic reticulum (dGER) and translucent mucoid 

secretory bodies (S3).  

Fig. 12. Section through adhesive sac (as) of Macrogyrodactylus clarii showing the ventral 

surface of adhesive papillae (ap) covered with st1 tegument. S1, rod-shaped bodies. 

Fig. 13. Section through adhesive sac (as) of Macrogyrodactylus clarii showing muscle fibres 

(mf) in between S1 ducts. S1, rod-shaped bodies.  

Fig. 14. Adhesive papilla of Macrogyrodactylus clarii showing S1 body protruding from its 

aperture. Note the st1 tegument covering the ventral surface of the adhesive papillae and 
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st2 tegument covering the lateral surface of adhesive papillae. as, Adhesive sac; mi, 

microvilli; *, homogeneous material around S1 bodies. 

Fig. 15. Duct of G1 gland cell of Macrogyrodactylus congolensis containing rod-shaped bodies 

(S1) and large globules (lg) close to the multiple apertures. Note that the membrane 

bounding the outer layer of the multiple apertures is connected to the adjacent tegument 

(st1) by means of septate desmosomes (d) and presence of homogeneous material (*) 

around S1 bodies. mi, Microvilli; st1, tegument covering the ventral surface of adhesive 

papillae.  

Fig. 16. Cross section of the multiple apertures of a G1 gland duct of Macrogyrodactylus 

congolensis showing that each aperture is bounded by five layers (l), three electron-dense 

and two electron-lucent. S1, rod-shaped bodies. 

Fig. 17. Terminal portion of G2 gland duct of Macrogyrodactylus congolensis carrying S2 

secretory bodies. f, fibrous layer; mi, microvilli; st1, microvillous tegument.  

Fig. 18. Section through adhesive sac of Macrogyrodactylus clarii showing terminal portions of 

gland ducts carrying S1, S2 and S3 bodies. Note that secretory bodies of S3 bodies form 

particulate material. 

Fig. 19. Terminal portions of G1, G2 and G3 gland cells of Macrogyrodactylus clarii containing 

S1, S2 and S3 secretory bodies, respectively. Note that the component of S2 bodies (*) 

diffuse into the lumen of the duct. mf, muscle fibres. 

 Fig. 20. Duct of G2 gland cell carrying S2 secretory bodies of Macrogyrodactylus clarii. c, 

Cilium; nb, nerve bulb; nt, neurotubule; St1, tegument covering the ventral surface of 

adhesive papillae. 
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Fig. 21. The terminal portions of G2 gland ducts of Macrogyrodactylus clarii showing that the 

components of S2 bodies (*) diffuse into the duct lumen.  

Fig. 22. Intervening tegument (st3) connecting the sac tegument of type st2 with the general 

body tegument (gt) of Macrogyrodactylus congolensis. Note that st3 tegument and st2 are 

connected by a junctional complex (j). gb, Electron-dense granular secretory bodies; rb, 

rod-shaped electron-dense bodies; v, translucent vesicle with electron-dense granule. 

Inset: magnified st3 with abundant electron-dense, rod-shaped bodies (rb), few electron-

lucent vesicles with dark granules (v) and electron-dense granular bodies (gb), similar to 

those in the general body tegument.  

Fig. 23. Section through the terminal part of ciliary sensillum of Macrogyrodactylus clarii. c, 

Cilium; edb, electron-dense bodies; et, electron-dense thickening; m, mitochondria; nb, 

nerve bulb; nt, neurotubules. 

 Fig. 24. Section through ciliary sensillum of Macrogyrodactylus clarii. c, cilium; d, 

desmosomes; et, electron-dense thickening; gt, general body tegument; m, mitochondria; r, 

root of the cilium; st3, intervening tegument. 
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