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Abstract 

 

Streptomyces coelicolor is a Gram-positive, filamentous, high G-C content 

bacterium with a complex developmental life cycle involving differentiation into 

distinct tissues, such as the vegetative hyphae, aerial hyphae and spores. Unlike in 

other bacteria, cell division in Streptomyces. coelicolor is only required for sporulation 

rather than for viability. The key protein FtsZ, which assembles into Z-rings, marks the 

positions for future, regularly spaced septation that transforms the aerial hyphae into 

spores, is essential for septation during sporulation in S. coelicolor. The function of 

several genes, located between ftsZ (SCO2082) and divIVA (SCO2077) in the 

chromosome, have not been well characterised, despite the fact they are 

downstream of ftsZ in many Gram-positive bacteria, including Streptomyces. In this 

study we mainly focus on three genes SCO2081, SCO2080, SCO2079 (sepF), located 

downstream of ftsZ. SepF was previously shown to tether the Z-ring to the membrane 

in Bacillus. subtilis and promote FtsZ protofilament formation. Considering the 

chromosomal location, important roles in cell division or cell-wall synthesis were 

anticipated.  

In this work, we generated knockout mutant strains by the deletion of these three 

genes and confirmed the mutant strains generated. We characterized the mutant 

phenotypes using macroscopic observations and extensive microscopic analysis 

focusing on possible effects on the division process and cell-wall synthesis. We also 

monitored the localisation of the SepF protein during development of S. coelicolor in 

order to explore its role during the Z-ring assembly and positioning. The severe defect 

of septum formation in the the sepF (SCO2079) knockout mutant suggested a key role 

for SepF in the early stages of cell division in Streptomyces, which is different to the 

role of the B. subtilis SepF in the late stages of septum formation. The gene knockouts 

of the surrounding genes SCO2080 and SCO2081 resulted in less severe, more subtle 

phenotype, nevertheless affecting the efficiency of septation and cell division in 

Streptomyces.  
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1 Introduction  

 

The bacterial cell cycle includes two major events, DNA replication and 

cytokinesis (septation). Studies in E. coli indicate that the regulatory that control 

these two events converge on two proteins, DnaA for DNA replication and FtsZ for 

cytokinesis (Figure 1.1). DnaA, which assembles into an oligomer on oriC, is required 

to unwind the DNA so that DnaB, the replicative helicase, can be loaded and the 

replication forks started (Bramhill and Kornberg 1988; Erzberger et al., 2006). FtsZ 

assembles into the Z-ring, a cytoskeletal element that determines the site of 

Figure 1.1. Regulatory of cell cycle control converge on two key proteins, DnaA and FtsZ. 

DnaA-ATP assembles on oriC to initiate DNA replication. FtsZ assembles into a Z ring 

that determines the division plane by organizing the machinery to synthesize the 

septum. Whereas DnaA-ATP assembles on the oriC template, the Z-ring does not have 

a landmark and is a self-organizing organelle that assembles where conditions are 

favorable (Lutkenhaus and Du, 2017).  
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cytokinesis and functions as a scaffold to recruit additional division proteins to 

synthesize septal peptidoglycan (PG) (Bi and Lutkenhaus, 1991). These two major 

events are not obligatorily coupled, since DNA replication and segregation can 

continue in the absence of cytokinesis (Lutkenhaus and Du, 2017).  

 

1.1 Bacterial Cell Division 

 

In bacteria, cells divide by binary fission which leads to physical cell separation 

achieved by the formation of a single septum between two replicated chromosomes 

at the mid-point of cells to produce two identical offsprings containing a single 

complete chromosome (Wu and Errington, 2012). Septum formation is driven by a 

macromolecular complex known as a divisome and various of bacterial cytoskeletal 

proteins (Adams and Errington, 2009). The divisome is assembled through the 

polymerisation of a key protein FtsZ, which initially localises at the mid-point of the 

cell to assemble protofilaments through polymerisation via head-to-tail interactions 

in a GTP-dependent manner (Bi and Lutkenhaus, 1991; de Boer et al., 1992; 

RayChaudhuri and Park, 1992; Mukherjee et al., 1993; Stricker et al. 2002; Jindal and 

Panda, 2013). These protofilaments are bundled together by non-uniform lateral 

interactions to form a ring-like structure, Z-ring (Michie et al., 2006; Fu et al., 2010). 

The Z-ring serves as a scaffold for the recruitment of other cytokinesis proteins and 

activates the divisome to synthesize a PG-based septum at the future division site 

(mostly in mid-point of cells) (Addinall and Lutkenhaus, 1996; Goehrung and 

Beckwith, 2005; Osawa et al., 2008; Adams and Errington, 2009; Egan et al., 2015). 

The formation of the septum leads to invagination of the cytoplasmic membrane at 

the midpoint of the cells so that the progeny cells can separate (Lutkenhaus et al., 

1997; Chen et al., 2005; Michie et al., 2006; Gerding et al., 2009; Fu et al., 2010). To 

complete this complex process, many essential proteins are involved and an 

increasing number of nonessential proteins have partially overlapping functions 

(Goehring and Beckwith, 2005; Vicente and Rico, 2006; de Boer, 2010). 
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1.1.1 FtsZ and the Z-ring assembly 

 

FtsZ has a tertiary structure that is considered to be the homologue of eukaryotic 

tubulin (Löwe and Amos, 1998; Nogales et al., 1998). FtsZ was the first component of 

a prokaryotic cytoskeleton identified and consists of two globular domains, the N-

terminal domain and C-terminal peptide domain (Erickson, 2001; Vaughan et al., 

2004). The N-terminal region contains a conserved globular core domain containing 

a GTP binding region and the T7 synergy loop required for GTP hydrolysis. The 

globular core domain is sufficient for interactions for FtsZ polymerisation. The C-

terminal peptide region includes a C-terminal conserved region and a C-terminal 

variable region. These two regions are reported to directly interact with positive 

regulators of FtsZ (Rothfield, 1997; Lutkenhaus, 2012). 

Assembly of the Z-ring at the division site is the earliest event in bacterial 

cytokinesis (Bi and Lutkenhaus, 1991). The Z-ring was the first cytoskeletal element 

to be described in bacteria and is assembled from FtsZ filaments formed by the 

polymerization of FtsZ (Ma and Margolin, 1999), the ancestral homologue of 

eukaryotic tubulin (Lowe and Amos 1998). It is a very dynamic structure (Chen and 

Figure 1.2. FtsZ formation in bacteria. 
FtsZ initially forms spiral patterns, which eventually form the Z-ring mid-cell in a GTP 
dependent manner during division. The FtsZ ring contracts with the loss of FtsZ subunits 
from the ring as the cell divides. Taken from (Margolin, 2005) 
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Erickson, 2005), formed by the coalescence of FtsZ filaments attached to the 

membrane (Figure 1.2).  

In rod-shape bacteria, such as Escherichia coli and Bacillis subtilis, FtsZ is essential 

for their viability. (Bi et al., 1991; Wang et al., 2001). The best studied example of FtsZ 

driving cell division is in E.coli where bacterial cytokinesis can be separated into three 

main stages (de Boer, 2010). The initial stage occurs with the assembly of a polymeric 

FtsZ to form a ring structure (Z-ring) at the future site of cell division (Bi and 

Lutkenhaus, 1991). Polymerisation of FtsZ is regulated by GTP in which filamentation 

occurs when FtsZ is in the GTP bound form before the polymers disassemble as GTP 

is hydrolysed into GDP (Erickson et al., 1996). After a considerable lag, the Z-ring 

undergoes maturation through the recruitment of the other cell division proteins, 

many of which are essential, forming the complete divisome. Finally, the divisome 

begins to constrict concomitantly with the synthesis of a septum and splitting of 

septal peptidoglycan, resulting in invagination and division of the bacteria into two 

daughter cells (Gerding et al., 2009; Goley et al., 2011).  

 

1.1.2 Regulating of Z-ring  

 

The regulatory processes that act upon the Z-ring can be separated into two 

categories: the proteins that positively regulate Z-ring formation helping formation 

and tethering of the Z-ring onto membrane, and the negative regulators, such as the 

Min system and Nucleoid occlusion system that inhibit Z-ring formation near the 

poles or over chromosomes (Huang et al., 2013). The positioning of FtsZ at future cell 

division site is negatively regulated by two distinct systems, Min system and nucleoid 

occlusion system (Adams and Errington, 2009; Harry et al., 2006; Barák and 

Wilkinson, 2007; Wu and Errington, 2012).  
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1.1.2.1 Min System 

 

The spatial regulation to ensure that the Z-ring is assembled at mid-cell, between 

segregated chromosomes is essential for cell division (Lutkenhaus, 2007). The Min 

system spatially regulates Z-ring positioning by an oscillation mechanism which limits 

FtsZ polymerisation in the cell poles. Absence of the Min system in E.coli leads to an 

increase in the frequency of Z-ring formation near the pole of cells and thus the 

formation of mini-cells lacking chromosomes. In E. coli, Min system consists of three 

cooperating proteins MinC, MinD and MinE, which cooperate to dominate FtsZ 

placement (Wu, 2011; Margolin, 2001). MinC is an antagonist of FtsZ assembly, which 

inhibits lateral interactions between FtsZ filaments which are crucial for the assembly 

of the Z ring and for its structural integrity. MinC is recruited to the membrane by a 

membrane-associated ATPase, MinD, which binds to the membrane by its C-terminus 

when bound to ATP (Barak and Wilkinson, 2007; Wu and Errington, 2012). MinD is 

evenly distributed on the membrane where it activates MinC inhibiting FtsZ 

polymerization close to the cell poles (De Boer et al., 1989; Hu et al., 1999; Raskin 

and De Boer 1999). This MinCD complex is regulated by MinE, which can allocate the 

Z-ring assembled at the mid-point of cell through its ability to stimulate the ATPase 

activity of MinD and the release of MinD from the membrane (Hu et al., 2002; Shih 

et al., 2003). 

This system is not static and the Min proteins rapidly oscillate between the poles 

of the cell to dominate Z-ring forming at mid-point of cell (Meinhardt and De Boer, 

2001). Pole to pole oscillation of Min system ensures that there is an increase in the 

concentration of the MinCD complex at cell poles in a time dependent manner and 

results in lower concentrations of the complex at mid-cell where cell division takes 

place (Dajkovic et al., 2008). To establish this oscillation, MinD and MinC accumulate 

at one pole and are flanked by a MinE ring. As this ring moves closer to the pole, MinC 

and MinD are released and they re-assemble at the other pole, flanked again by a 

MinE ring (Fu et al., 2001; Hale et al., 2001) (Figure 1.3).  
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In B. subtilis, MinC and MinD proteins were identified by sequence homology to 

their E. coli counterparts (Levin et al., 1992). The B. subtilis Min system is now known 

to consist of at least four proteins: MinC, MinD, MinJ and DivIVA (Figure 1.4). MinD 

localisation is not achieved by oscillation but rather through static localization to the 

poles of cell and newly synthesised division septa via the polar marking protein 

DivIVA. Like in E. coli, inhibition of FtsZ polymerisation at poles is carried out by MinC 

which is activated in an ATP dependent mechanism by MinD associated with the 

membrane bound MinD ATPase (Karoui and Errington, 2001; Barak and Wilkinson, 

2007; Wu and Errington, 2012). However, while ATP binding is important for MinD 

activity, no regulatory mechanism for the ATPase activity of MinD, such as MinE in E. 

coli, has been shown in B. subtilis. Localisation of MinD to the pole is dependent on 

the localisation of DivIVA facilitated by the intermediary protein MinJ, which interacts 

with both DivIVA and MinD (Patrick and Kearns, 2008). While it was originally thought 

that localisation of DivIVA to the site of division was due to an interaction with the 

maturing divisome complex, it has instead been shown that this localisation is due to 

the initial constriction of the membrane during septum formation which generates 

the negative curvature that localises DivIVA (Ramamurthi and Losick, 2009; 

Ramamurthi and Losick, 2009; Eswaramoorthy et al., 2011). Localisation of MinCD to 

the site of septum formation prevents any aberrant secondary FtsZ rings from 

forming close to the mid cell during or after division. E. coli lacks counterparts of the 

MinJ and DivIVA proteins and instead uses an amazing oscillating MinCD mechanism 

to prevent division at the cell poles (Lutkenhaus 2007).  



 7 

 

 

Release of MinCD  

Assembly of a new patch  

Z-ring formation in mid-cell  

Figure 1.3. Inhibition of polar cell-division events by the Min system in E. coli. 

MinD, bound to the cell division inhibitor MinC, assembles on the cytoplasmic membrane, 

forming a cap-like polymeric layer that prevents FtsZ ring formation in the polar region of 

the cell. MinE is organized into a ring-shaped structure that gradually displaces MinCD from 

the membrane. Free MinC and MinD subunits reassemble at the opposite cell pole, thus 

establishing a new polar cap and restarting the cycle.  
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Although Min system has a significantly effect on spatial control of assembly of 

Z-ring, other factors which makes positioning more accurate and precise in nucleated 

cells are important as well. The nuclear occlusion system, which prevents the 

formation of the Z-ring over the nucleoid, Noc (in B.subtilis) or SlmA (in E.coli), 

displays similar localization patterns, binding to the nucleoid with highest 

    

Divisome 

Figure 1.4. MinD localisation in B. subtilis.  

In B. subtilis, MinD is statically localised to the pole by the polar localising protein DivIVA 

which recruits the intermediary MinJ. MinD then recruits MinC to the poles which inhibits 

FtSZ polymerisation at the poles. MinD is also localised to the mid-cell once the division 

membrane starts to form. This prevents secondary division events from occurring mid-cell. 

Image curtesy of Dr Marc Bramkamp. 



 9 

concentration at the pole in cell (Wu and Errington, 2004; Bernhardt and de Boer, 

2005). The absence of the Noc or SlmA leads to the formation of septa in 

unsegregated cells. 

 

1.1.2.2 Nucleoid occlusion and SlmA  

 

A variety of mechanisms prevent assembly of FtsZ filaments in the wrong places, 

to ensure positioning of the Z-ring on the membrane at mid-cell and also to help co-

ordinate cell division with chromosome segregation. The negative regulators of FtsZ 

that we have discussed so far are involved in promoting mid-cell location of the FtsZ 

ring. While this is important, within itself it does not protect the chromosome from 

being guillotined during the formation of the septum. In fact, even chromosome 

segregation would not be enough to prevent this as usually the terminator region of 

the DNA is found within the closing septa and DNA translocases are required to 

transport these ends into the correct compartment before the septa fully closes 

(Touzain et al., 2011). Actually, a long-standing observation in bacterial cell biology is 

that cytokinesis over the nucleoid, which would result in guillotining of the 

chromosome, is rarely observed (Woldringh et al., 1990). To ensure that 

chromosomes are not guillotined during cell division, bacteria have developed the 

nucleoid occlusion mechanism exerted a negative effect on Z-ring assembly over the 

nucleoid (Figure 1.5) (Yu and Margolin, 1999; Hajduk et al., 2016). This mechanism 

inhibits FtsZ ring formation from occurring over the DNA, and so far two proteins, 

SmlA in E. coli and Noc in B. subtilis, have been implicated in this system (Wu and 

Errington, 2004). In E. coli, the nucleoid occlusion factor SlmA, interacts directly with 

FtsZ on the surface of each nucleoid, specially inhibits Z ring assembly nearby and 

thus protects the nucleoid from being bisected (Cho et al., 2011; Tonthat et al., 2013). 

In B. subtilis, however, the nucleoid occlusion protein Noc is functionally analogous 

but does not interact directly with FtsZ (Adams et al., 2015). 
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While there is no sequence homology between these two proteins, with SmlA 

having no homologues of known function and Noc belonging to the ParB family of 

proteins with 40% identity to Spo0J, both proteins share similar characteristics 

(Sievers et al., 2002). They both bind to specific region of the chromosome, SlmA 

binding sites (SBS) and Noc binding sites (NBS), which are distributed around the 

chromosome everywhere except for the region surrounding the terminus (Cho et al., 

2011; Wu et al., 2009; Du and Lutkenhaus, 2014). The binding pattern of these two 

proteins would support the idea that as the chromosomes are segregated during 

division, a process driven from the origin, the areas covered by these nucleoid 

occlusion proteins would vacate the mid-cell first, leaving the uncoated terminal 

regions at the site of division. FtsZ can then form over this uncoated terminal region 

of the chromosome and begin the process of septum formation. Then, as mentioned, 

the terminus region of the chromosome can be removed from the closing septum by 

DNA translocases (Wu and Errington, 2004).  

In E. coli, there are two proposed models for the action of SmlA. The first 

suggestion is that when SmlA binds to SBS sites around the chromosome, SmlA is able 

to bind to the C-terminal tail of FtsZ where it competes for binding with the other 

Figure 1.5. Nucleoid occlusion. 
The nucleoid occlusion proteins SlmA (E. coli) and Noc (B. subtilis) inhibit FtsZ-ring 
formation from occurring over the chromosome. Taken from (Hajduk et al., 2016). 
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regulatory proteins of FtsZ, such as ZapD, MinC, FtsA and even other FtsZ molecules. 

This would not only promote further interactions of SmlA with FtsZ but eventually 

lead to the breakdown of FtsZ protofilaments (Du and Lutkenhaus, 2014). The second 

suggestion is that SlmA spreads along DNA as a dimer of dimers forming higher order 

nucleoprotein complexes which sequester FtsZ preventing its formation into Z-Rings 

(Tonthat et al., 2013). Both of these models would indicate a negative regulation of 

FtsZ polymerisation that is independent of the GTPase activity of FtsZ (Cabre et al., 

2015). In contrast to SmlA, Noc is not thought to have any direct interaction with FtsZ. 

Instead, Noc acts by binding the chromosome to the membrane along the lateral wall 

and physically occupying the space that FtsZ requires in order to polymerise into the 

Z ring (Adams et al., 2015). Noc is a site-specific DNA-binding protein with recognition 

sites (NBS) distributed all over the chromosome, except in the replication terminus 

region, where binding sites are scarce (Wu and Errington, 2004; Wu et al., 2009).  

 

1.1.2.3 Stabilising the Z-ring 

 

Positive regulators of the Z-ring consist of proteins that actively promote 

stabilisation of the Z-ring and anchor it to the membrane at sites of future cell division. 

Gram-negative bacteria, such as E. coli, achieve this through the presence of one of 

the two trans-membrane proteins FtsA and ZipA both of which interact directly on 

FtsZ and provide the membrane connection necessary to complete division (Pichoff 

and Lutkenhaus, 2002). These two proteins interact at the earliest stage of Z-ring 

formation and are essential for recruitment of the next set of proteins of divisome 

(Pichoff and Lutkenhaus, 2005).  

While ZipA is only found among Gram-negative bacteria, FtsA homologues are 

also found among numerous Gram-positive bacteria. In fact besides FtsZ, FtsA is the 

most widely conserved member of the divisome found across bacteria (Haeusser and 

Margolin, 2016). FtsA is an actin-like protein and able to form actin-like 
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protofilaments (Szwedziak et al., 2012). It links FtsZ filaments to the plasma 

membrane and also to the other components of the divisome in many bacteria, 

although other FtsZ membrane anchors exist (Haeusser and Margolin, 2016). FtsA is 

known to interact with a number of proteins encoded by genes that are located 

downstream of ftsA (Karimova et al., 2005). In E. coli, Z-ring can form with either FtsA 

or ZipA providing the membrane connection (Pichoff and Lutkenhaus, 2002). 

Of these two proteins, FtsA plays a more important role in divisome assembly, 

since mutations in ftsA can bypass ZipA (Geissler et al., 2003). The ftsA mutations that 

bypass ZipA were found to reduce the ability of FtsA to self-interact, therefore it led 

to a model in which FtsA monomer are the form of FtsA active in the recruitment of 

the downstream proteins (Pichoff et al., 2012). In E. coli, ZipA has some overlapping 

functions with FtsA in tethering the Z-ring to the membrane. ZipA interacts with FtsZ 

at the C-terminus of ZipA, while the N-terminus contains a membrane embedded 

domain which helps to anchor the Z-ring, reinforcing its placement (Ohashi et al., 

2002; Pichoff and Lutkenhaus, 2002). However, in mutant strains with depleted ZipA 

filaments, Z-rings, while still being able to assemble, do so less frequently and more 

variably than wild-type E. coli (Hale and de Boer, 1999).  

In B. subtilis, FtsA was identified by its conserved location immediately upstream 

of and adjacent to FtsZ (Beall et al., 1988). Unlike E. coli, ftsA mutants of B. subtilis 

are viable, though they are substantially deficient in division (Beall and Lutkenhaus, 

1992). The ftsA mutations demonstrate a loss of function suggesting that 

polymerisation is required for the recruitment of divisome related proteins encoded 

by genes that are located downstream of ftsA (Szwedziak et al., 2012). This has led to 

uncertainty as to the exact role of FtsA polymerisation in cytokinesis, particularly 

surrounding its mechanism for recruiting other proteins to the divisome (Huang et 

al., 2013). In addition, due to lack of ZipA homologues in B. subtilis, SepF partially 

carried out the role of ZipA. Ishikawa et al. (2006) detected the formation of a SepF-

SepF self-interaction and SepF interaction with FtsZ using yeast 2-hybrid experiments. 

Meanwhile, Hamoen et al. (2006) identified sepF as a candidate cell division gene 

from its conserved position (in Gram-positive bacteria) between ftsZ and divIVA and 
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found that deletion of sepF gene resulted in cell defects and aberrant septum 

formation (Hamoen et al., 2006; Ishikawa et al., 2006). In addition, overexpression of 

SepF counters division defects seen in ftsA mutants, indicating an overlapping of 

function, while ftsA-sepF double mutants are synthetically lethal and are unable to 

form Z-rings (Ishikawa et al., 2006). SepF localises to the division site in B. subtilis, 

which is dependent upon its interaction with FtsZ (Hamoen et al., 2006; Ishikawa et 

al., 2006). It is essential for correct septum formation with sepF-depletion strains, 

showing a deformed septum which does not fully close (Hamoen et al., 2006). Recent 

data suggests that SepF promotes the correct formation of FtsZ polymers required 

for proper cell division (Gundogdu et al., 2011). As demonstrated by transmission 

electron microscopy (TEM), SepF in vitro assemble into large rings with a diameter of 

50 nm. These rings are able to bundle FtsZ protofilaments into long tubular structures 

(Figure 1.6). This suggests that SepF rings act to bundle FtsZ protofilaments probably 

to aid in the formation of the FtsZ rings (Gundogdu et al., 2011). 

 

Figure 1.6. SepF bundling of FtsZ protofilaments. 

SepF rings (red) bundle FtsZ protofilaments (grey) in order to help promote FtsZ- ring 

formation. Taken from (Gundogdu et al., 2011)  
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1.1.3 Maturation of the Z-Ring 

 

Once the FtsZ ring has been successfully formed and tethered to the membrane 

at the division site, maturation of the ring can begin. In the two most widely studied 

bacteria, E. coli and B. subtilis, maturation of the Z-ring occurs in a slightly different 

fashion, although with many of the same proteins being involved. In E. coli this is a 

linear process whereby each protein or protein complex is required to be localised 

before the next protein can be localised (Figure 1.7). In B. subtilis however, divisome 

formation could be considered to be a two stage process in which stabilisation of the 

Z-ring occurs, after which the proteins responsible for maturation all localise 

interdependently forming the divisome (Harry et al., 2006). 

In E. coli the first protein recruited to the FtsZ ring after it is tethered to the 

membrane is the DNA translocase protein FtsK, which is conserved across bacteria 

(Margolin, 2000). FtsK is involved in cell division through the recruitment of the next 

protein required for maturation and in chromosome segregation. At the same time 

the C-terminus of the protein has been implicated in the resolution of sister 

chromosomes into their respective daughter cells thus linking both cell division and 

chromosome segregation (Aussel et al., 2002; Bigot et al., 2004). The B. subtilis 

homologue of FtsK, SpoIIIE has thus far only been found to play a role in DNA 

translocation during sporulation (Sharp and Pogliano, 2003).  

Post FtsK localisation in E. coli the next proteins involved in Z-ring maturation 

are FtsQ, FtsL and FtsB, which form a protein complex, and as shown using co-

immunoprecipitation of FLAG-tagged proteins, formation of the FtsQLB complex 

occurs prior to septal localization (Buddelmeijer and Beckwith, 2004). These are 

represented in B. subtilis by the homologues DivIB, FtsL and DivIC respectively. All of 

these proteins are very similar in structure with a short cytoplasmic region, a single 

transmembrane segment, and a larger periplasmic domain. Although the function of 

FtsQ/DivIB is unknown, crystal structure data reveals that it has an α-domain with 

similarity to polypeptide transport-associated domains (van den Ent et al., 2008) and 
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is essential for cell survival in E. coli (Storts et al., 1989) but only at high temperatures 

in B. subtilis (Beall and Lutkenhaus, 1992; Katis et al., 2000). Further data on FtsL 

suggests that it may play a role in regulating Z-ring constriction in B. subtilis through 

recruitment regulation of later acting division proteins to allow constriction (Kawai 

and Ogasawara, 2006). FtsB/DivIC are known to be essential genes for cell survival in 

their respective bacteria, although their function is still unknown (Buddelmeijer and 

Beckwith, 2004; Levin and Losick, 1994). 

 The next protein recruited to the divisome in E. coli is FtsW which is a transporter 

of lipid-linked precursors for peptidoglycan synthesis, such as lipid II, across the 

membrane (Mohammadi et al., 2011). FtsI and its homologue PBP2B (Penicillin-

Binding Protein 2B) are both located just downstream of ftsW in their respective 

organisms. They are involved in the final stages of PG synthesis and were identified 

through their ability to bind penicillins (Goffin and Ghuysen, 1998). FtsN is not a well-

conserved protein and is only found in enteric bacteria and Haemophilus spp. 

(Errington, 2003). In E. coli, FtsN localises in a ring pattern at the septum late in the 

division cycle. It is an essential gene with depletion mutants losing viability after 

forming long filaments (Dai et al., 1993). More recent data has suggested that it 

interacts with PBPIB (Penicillin Binding Protein 1B), stimulating its murein synthesis 

activity (Muller et al., 2007; Ursinus et al., 2004). The final protein localised to the 

maturing Z-ring in E. coli is the amidase AmiC, an enzyme involved in cleaving murein 

crosslinks, which is required for septal cell wall degradation and hence cell separation 

(Bernhardt and de Boer, 2003; Weiss, 2004). 
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1.2 Bacterial Growth  

 

Beside the most common site of growth that occurs during cell division at mid-

cell driven by FtsZ (Carballido-Lopez and Errington, 2003; Cabeen and Jacobs-

Wagner, 2005). There are another two mechanisms of growth both contributing to 

bacterial cell elongation for their shape. The first one is the lateral growth that occurs 

along the lateral wall, found in B. subtilis and E. coil. This is driven by MreB, the 

bacterial homologue of eukaryotic actin. The second mechanism of bacterial growth 

found mainly in Actinomycetes, is polar growth which occurs at the poles. This form 

of growth is driven by DivIVA, a protein that currently is not currently considered to 

Figure 1.7. Stabilisation and maturation of the Z-ring. 

After stabilisation of the Z-ring with the localisation of FtsZ, FtsA, ZipA and SepF the Z-ring 

undergoes maturation. (A) In E. coli this is a linear process where the recruitment of 

proteins is sequential and dependent upon localisation of the previous protein. (B) In B. 

subtilis maturation is a single step process whereby all proteins required for maturation 

localise concurrently in an interdependent manner (Harry et al., 2006). 
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be a homologue of any class of eukaryotic protein (Flardh, 2003a). After growth in 

both lateral and polar locations, rod-shape bacteria then undergo the same FtsZ-

dependent division event (Cabeen and Jacobs-Wagner, 2005).  

 

1.2.1 Lateral growth 

 

For lateral growth of bacteria, one of the first proteins identified to contribute to 

this mode of growth are the MreB proteins, which were first described in E. coli and 

B. subtilis (Levin et al., 1992; Wachi et al., 1987). The distribution of these proteins 

correlates to the shape of the organism, with most rod shape bacteria containing at 

least one MreB homologue, while the vast majority of spherical bacteria lack a 

homologue of this protein (Cabre et al., 2015; Daniel and Errington, 2003). Across 

most bacteria containing an MreB homologue, the gene encoding this protein is 

found in a gene operon containing mreC and mreD, creating the mreBCD operon 

(Carballido-Lopez and Errington, 2003; Doi et al., 1988; Levin et al., 1992; Varley and 

Stewart, 1992). The role of these other genes in the operon are yet to be determined 

although, in E. coli, they are required for correct localisation of MreB and are 

assumed to form a complex with MreB based upon interactions between all three 

proteins, MreB, MreC and MreD (Kruse et al., 2005). Further searches for 

homologues of MreB have thus far revealed that some bacteria contain multiple 

MreB proteins with two, Mbl (MreB-like) and MrebH (MreB homologue), being found 

in B. subtilis (Jones et al., 2001; Varley and Stewart, 1992). Studies on these proteins 

have shown that all are required to form a rod shape. However, the effect on shape 

of the absence of each protein is unique, suggesting that they interact with different 

components of the cell wall synthesis machinery (Carballido-Lopez et al., 2006; Defeu 

Soufo and Graumann, 2006; Dominguez-Cuevas et al., 2013; Kawai et al., 2009). 

Initial localisation of MreB and Mbl, using immunofluorescence of an epitope-tagged 

MreB and detection of Mbl-GFP fussion, in B. subtilis revealed that they form helical 

filaments that wrap around the cell wall longitudinally from pole to pole (Jones et al., 
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2001). This localisation pattern suggested that the proteins had an actin-like function 

within bacteria which was confirmed when the structure of MreB was solved and 

found to be a structural homologue of the eukaryotic actin (van den Ent et al., 2001a; 

van den Ent et al., 2001b). Localisation of the sites of cell wall insertion in B. subtilis 

showed that this also occurs in a helical pattern suggesting that MreB proteins 

contribute to the control of location of cell wall synthesis in bacteria (Daniel and 

Errington, 2003). The initial localisation pattern of these proteins were challenged by 

data observing MreB filaments using electron cryotomography (ECT) which 

suggested that in fact MreB localises as discreet disconnected patches that follow a 

helical path through the cell and are moved through coupling to the cell wall synthetic 

machinery (Dominguez-Escobar et al., 2011; Garner et al., 2011; Swulius et al., 2011; 

van Teeffelen et al., 2011). More recently, data observing MreB in vitro has tilted the 

model of MreB localisation back towards the initial helical filaments. MreB has been 

shown to form antiparallel filaments that interact extensively with membranes (Salje 

et al., 2011; van den Ent et al., 2014). In addition, observations of MreB localisation 

using high-end microscopy methods such as structured illumination microscopy (3D-

Sim) have shown helical filaments once again in actively grown cells (Olshausen et al., 

2013; Reimold et al., 2013). All of this data leads to the current suggested model 

(Figure 1.8) in which MreB filaments associate to the membrane and elongate upon 

a uniform and favourable cylindrical shape, where they recruit multiple cell wall 

synthetic complexes. These complexes create new peptidoglycan strands which are 

guided by the motion of the MreB helices (Errington, 2015). 
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1.2.2 Polar growth 

 

While lateral growth is the predominant form of growth in the bacteria that have 

thus far been characterised, a significant number of bacteria exhibit an alternative 

form of growth – polar growth. This mode of growth is especially prevalent in the 

Gram-positive Actinobacteria and the Gram-negative Rhizobium and Agrobacterium 

genera (Brown et al., 2012; Daniel and Errington, 2003). The first protein implicated 

in driving polar growth was DivIVA, which was found in both S. coelicolor and 

Brevibacterium lactofermentum and is an essential protein (Flardh, 2003a; Ramos et 

al., 2003). Homologues of DivIVA have since been shown to be essential for growth 

in other Actinobacteria, including the pathogenic Mycobacterium tuberculosis (Kang 

et al., 2008; Nguyen et al., 2007). DivIVA was originally identified in B. subtilis, where 

it plays a role in division (Cha and Stewart, 1997). In this organism, DivIVA is located 

to the poles where it recruits MinD via the intermediary protein MinJ (Patrick and 

Kearns, 2008). As I will discuss later, MinD is part of the septum-site determining Min 

system (Margolin, 2001). As DivIVA in S. coelicolor was identified due to its homology 

Figure 1.8. Model for the role of MreB in shape determination 

MreB filaments (solid and dashed lines) elongate along the cell wall due to the cylindrical 

shape of the bacteria. The filaments are able to recruit peptidoglycan synthetic complexes 

(orange circles) which in turn generate new peptidoglycan strands. Taken from (Errington, 

2015). 
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with the division associated DivIVA protein from B. subtilis, it was named accordingly 

(Cha and Stewart, 1997; Flardh, 2003a). Although DivIVA has two functions in 

different bacteria e.g. division in B. subtilis and growth in S. coelicolor, in all cases the 

protein is localised to the poles (Flardh, 2003a; Marston et al., 1998). This suggests 

that DivIVA homologues all share similar characteristics from which bacteria has 

adapted their function whether in growth or division. In Actinobacteria, DivIVA is 

thought to localise key components of the cell wall synthesis machinery and has been 

shown to make direct contact with penicillin-binding protein 3 (PBP3) in 

Mycobacterium (Mukherjee et al., 2009). Interestingly, while partial 

complementation of the divIVA null mutant in Corynebacterium glutamicum by 

DivIVA homologues from other Actinobacteria was possible, DivIVA homologues 

from the Firmicutes, such as B. subtilis, failed to sustain viability in C. glutamicum 

suggesting an evolutionary divergence among DivIVA homologues (Letek et al., 

2008). More recently the use of super-resolution microscopy has suggested that in 

Mycobacterium growth is not occurring right at the tip, but at a sub-polar location 

that is just behind the pole (Meniche et al., 2014). It remains to be seen whether sub 

polar growth is a feature of all bacteria that show polar growth or is specific to 

Mycobacteria and most likely other Actinobacteria. While DivIVA has been implicated 

in numerous Actinobacteria in driving growth, there are no homologues of DivIVA 

found in Gram-negative bacteria (Oliva et al., 2010). Thus far in Gram-negative 

bacteria that exhibit polar growth, there is no mechanism identified that controls 

polar growth (Oliva et al., 2010). Across bacteria that have polar growth there is great 

diversity in how growth at different poles is regulated to produce a variety of shapes 

and nuances to growth (Figure 1.9), with the filamentous Streptomyces, the bi-

directional growth of Corynebacterium, the asymmetrical bi directional growth of 

Mycobacterium and the uni-directional growth of Agrobacterium (Aldridge et al., 

2012; Allan and Pearce, 1983; Brown et al., 2012; Meniche et al., 2014; Sieger et al., 

2013). 
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Figure 1.9. Polar growth in bacteria. 

Bacteria that exhibit polar growth do so in a variety of mechanisms such as in (A) 

Agrobacterium where only the newly generated cell pole grows during the next cell 

cycle (unidirectional growth) and (B) Mycobacterium, where there is slower growth at 

the newly generated cell pole compared to the rate of growth seen at the old pole (bi-

directional asymmetric growth). Taken from (Cameron et al., 2015). 

 

 A 

B 
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1.3 Chromosome segregation  

 

So far, we have discussed the importance of FtsZ in the formation of bacterial 

septa as well as the process that cells use to create a stable Z-ring that will allow 

division to occur. While septum formation is important for generating progeny, in 

itself it is not sufficient to in generating identical progeny. To achieve identical 

progeny two events must be coordinated, the segregation of chromosomes and 

placement of the septa mid cell such that the chromosomes are not guillotined during 

division. Given the coordination required between these two processes in order that 

efficient division can occur, it is not surprising that both of these processes are 

performed by a single superfamily of proteins; the ParA/MinD superfamily 

(Lutkenhaus, 2012). Beyond the obvious functional similarity of this family, all 

ParA/MinD proteins share a deviant walker ATPase motif characterised by the amino 

acid sequence GXGGXHKTS, which is located within a nucleotide-binding P-loop near 

the N-terminus of the protein (Koonin, 1993). This superfamily can broadly be 

assigned to two subgroups based upon the function of the individual protein 

(Lutkenhaus, 2012). That is, those involved in chromosome segregation, the Par 

proteins, and those involved in septum positioning, the Min proteins (Lutkenhaus, 

2012). Even within these subgroups we find enormous diversity in how 

mechanistically the proteins carry out their function. This is likely to be due to the 

unique environmental factors that different bacteria have been exposed to, which 

has given rise through evolution to adaptations that increase the reproductive fitness 

of the bacteria. While this is clearly the case, we have very limited understanding of 

why these different mechanistic processes developed (Lutkenhaus, 2012). 

In order for viable daughter cells to be produced during cell division, correct 

segregation of the chromosome prior to construction of the Z-Ring is essential. 

Originally it was thought that the chromosome was tethered to the cell membrane 

and segregation driven by cellular elongation, dragging the chromosome into the 

daughter cell (Jacob and Brenner, 1963). However, with advances in understanding, 
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that cell elongation occurs throughout the cell and the inability of cell growth to 

match the speed at which chromosomes move in the cell, it became clear that a 

different regulatory system was responsible (Nanninga, 1998; Viollier et al., 2004). 

The first system of protein driven DNA segregation in bacteria came with the 

discovery of the Type 1 plasmid partitioning system. This plasmid partitioning system, 

which has been most widely studied in E. coli, generally consists of three 

components, a cis-acting centromeric DNA site; either parS or parC, a Walker Box 

ATPase; ParA or ParA-like protein, and a DNA binding; ParB or SopB (Davis et al., 

1992; Ebersbach and Gerdes, 2001; Mori et al., 1989; Viollier et al., 2004; Watanabe 

et al., 1989). The ParAB system is built upon several characteristics, which appear to 

be present in all of these systems characterised thus far, and defines the ParA 

subfamily of proteins. The ParA protein in these systems is a very weak ATPase whose 

activity is upregulated through interaction with the ParB protein. This interaction 

requires the presence of ATP bound form of ParA, with ParA mutants deficient for 

ATP binding unable to interact with ParB. The ParA forms a dimer in the presence of 

ATP and a monomer after hydrolysis of ATP has occurred. This creates a mechanism 

by which dimerisation or oligomerisation of ParA is regulated by the presence of 

ParB.  

 

1.4 Streptomyces coelicolor 

 

After discussing the proteins which provide the mechanism for the bacterial life 

cycle we will now turn our attention to introducing Streptomyces coelicolor, a model 

organism for filamentous growth from the Actinobacteria phylum and the subject 

organism of this study.  

S. coelicolor is a high G-C content, Gram-positive, soil dwelling, filamentous 

bacterium, which belongs to a genus of the phylum Actinobacteria. It is a good model 

organism for a genus that produces many biologically active secondary metabolites 

including antibiotics, anticancer agents and immunosuppressants, as well as 
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industrial enzymes (Kieser et al, 2000; Hopwood, 2007). Streptomyces play a 

significant role in medicine because they produce over two-thirds of the naturally 

derived antibiotics in current use (Kurtuboke 2012, Tauqeer et al., 2011) and many 

other pharmaceuticals such as anti-tumour agents and immunesuppressants 

(Jakimowicz, 2005; van Wezel, 2012). In addition, their broad range of metabolic 

processes make a highly valuable contribution to carbon recycling (Bentley et al., 

2002). S. coelicolor is the most studied Streptomyces (Bentley et al., 2002) and it has 

unique mycelial and sporulating life cycle involving complex regulation of gene 

expression resembling that of other differentiated and multicellular organisms, which 

makes it a good “model organism” and a tool for fundamental knowledge studying, 

such as studying of the functions, interactions and spatial and temporal expression 

of regulatory genes controlling aerial mycelium formation and the metamorphosis of 

aerial hyphae into spore chains. Moreover, Streptomyces genetics and 

developmental biology can be applied to improve Mycobacterium genetics and to 

understand its resting stage physiology, with applications for the understanding and 

possible control of diseases such as tuberculosis and leprosy.  

Unlike most other bacteria Streptomyces have linear chromosomes (Lin et al., 

1993), with S. coelicolor containing 7,825 genes and 20 possible gene clusters coding 

for secondary metabolites within its 8 Mbp chromosome (Bentley et al., 2002). The 

chromosome consists of a central core region containing many of the primary 

metabolic genes and the replication origin (oriC) which is flanked by two unstable 

terminal arm regions containing non-essential genes, often implicated in secondary 

metabolism (Bentley et al., 2002). Predictions suggest that approximately 12.5% of 

genes encode regulatory proteins including putative sigma factors, two component 

systems and DNA binding proteins reflecting its complexity of development (Bentley 

et al., 2002). 
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1.4.1 Life cycle of S. coelicolor  

 

Unlike most other bacteria that divide by binary fission, S. coelicolor undergoes 

a far more complex life cycle and its growth resembles that of filamentous fungi 

(Flardh and Buttner, 2009) (Figure 1.10). The life cycle of Streptomyces starts from a 

Figure 1.10. The life cycle of S. coelicolor. A spore germinates branching hyphae and grow 

into a solid medium ("vegetative mycelium", step 0-2). Then the developed vegetative 

mycelium break the surface and grow toward the surface ("aerial mycelium", step 3-4). The 

aerial mycelium spirals (step 5), and then the polynycleated aerial filaments are partitioned 

(step 6). The resulting sheaths will become spores, and the cycle continues. The secondary 

metabolites including antibiotics are secreted during the generation of aerial hyphae from 

the vegetative mycelium. 
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single uni-genomic spore which germinates with the production of either one or two 

germ tube under favourable conditions and nutrient-rich environment (Jyothikumar 

et al., 2008). This subsequently develops into a network of vegetative mycelium 

allowing for the uptake of nutrients which grow in a polar manner through tip 

extension and branching events that occur along the lateral wall of the hyphae in a 

similar fashion to filamentous fungi (Chater and Losick, 1997; Errington et al., 2003). 

These branching events allow for the increase in growth rate which is also 

proportionate to the rate of DNA replication (Chater, 1993; Flardh, 2003b).  

During vegetative growth in S. coelicolor, cell division is suspended with the 

placement of cross walls that separate the hyphae into connected compartments 

rather than full cell-cell separation, whereby each compartment contains multiple 

copies of the chromosome (Claessen et al., 2014). In the suspended cell division, new 

poles are not generated at the hyphal septa. Instead, tips are generated at lateral 

hyphal locations, usually far behind an existing growing tip, which in turn extend as 

branches of the original filament. Thus, exponential growth can only be achieved 

through the increase in number of growing tips and branching (Claessen et al., 2014). 

This makes Streptomycetes a rare example of a multicellular bacterium. At this stage 

of growth, colonies display the classic bald phenotype and are shiny in appearance 

on nutrient medium. Under the depletion of environmental nutrients, a signaling 

cascade is initiated, which results in the erection of aerial hyphae that break the 

surface tension of the media to rise towards the air (Kelemen and Buttner, 1998). The 

production of antibiotics is temporally correlated to this phase of the Streptomyces 

life cycle (Bibb, 2005; van Wezel and McDowall, 2011). Aerial hyphae grow as single 

multi-genomic individual hyphae with less branching and appear as fuzzy white 

colonies as seen in colonies blocked at this stage of development.  

During the next stage, a chain of spores is formed by the differentiating apical 

compartment which arrests aerial hyphae extension and initiates sporulation (Flardh 

et al., 1999). After that, sporulation septation is induced by protein FtsZ, which 

assembles into cytokinetic structure Z-ring that can recruit cell-division proteins to 

allow cytokinesis (McCormick et al., 1994; Margolin, 2005). Completion of the septa 
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is followed by the maturation of spores involving spore wall assembly. Pre-spores are 

rounded up by thick lysozyme-resistant spore wall. Mature spores are held together 

in chain shape and then develop a characteristic grey pigment as they mature (Mazza 

et al., 2006).  

 

1.4.1.1 Growth in S. coelicolor – TIPOC 

 

In S. coelicolor, polar growth is achieved by extending the hyphal filaments at 

their tip ends, which is opposed to lateral cell wall extension, a mechanism wide-

spread in most rod-shaped bacteria (Flardh, 2003). Polar growth in S. coelicolor is 

driven by the multiprotein assembly that constitutes the Tip Organising Centre 

(TIPOC), otherwise known as the polarisome, which is present at the tip of all actively 

growing hyphae (Flardh et al., 2012; Holmes et al., 2013). This polar complex includes 

the positional marker DivIVA, the molecular organizer Scy (Streptomyces Cytoskeletal 

element) and the intermediate filament-like protein FilP, which have been implicated 

in growth and branching (Holmes et al.,2013). These cytoskeletal proteins all share a 

similar basic coiled-coil structure and bioinformatics analysis reveals some 

interesting structural domains. 

DivIVA was the first of these proteins to be characterised in S. coelicolor, named 

as a homologue of the division associated protein DivIVA in B. subtilis (Flardh, 2003a). 

In S. coelicolor, coiled-coil DivIVA has an indispensable role which has a profound 

impact on tip extension, branching and cell shape (Flardh, 2003). Partial depletion of 

DivIVA produces irregular hyphae and branching while overproduction affects tip 

extension and results as hyphae branching (Hempel et al., 2008). These observations 

strongly imply that DivIVA is necessary to cell-wall assembly in apical extension in S. 

coelicolor (Letek et al., 2008). DivIVA may act as a signal protein which recruits the 

cell-wall biosynthetic machinery directly or indirectly to new sites (Flardh and 

Buttner, 2009). Moreover, recent studies suggest that Scy protein together with 

DivIVA localize to the extended hyphae tip and also to the lateral sites positioning the 
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future branches and new cell wall assembly (Holmes et al., 2013). Furthermore, 

special compositional cues of membrane might also act as site-specific markers for 

tip extension. While DivIVA consists of two classical heptad coil-coiled domains 

flanking a long linker region, both Scy and FilP share an unusual domain structure 

consisting of N-terminal heptad coiled-coils, a linker, and a C-terminal 51mer coiled-

coil (Walshaw et al., 2010). The DivIVA homologue in S. coelicolor is found to localise 

to the poles, and its function, as determined by the manipulation of its expression 

levels, is in tip growth and branching. Low expression levels of DivIVA results in 

irregular shaped short hyphae with branching close to existing tips. While, higher 

level DivIVA expression induces hyperbranching and leads to swollen tips that lyse 

(Flardh, 2003a). Moreover, in S. coelicolor DivIVA is an essential gene, which 

combined with the fact that cell division is a dispensable process in this organism 

underlines its importance to growth rather than division, although DivIVA has been 

localised to vegetative cross walls. Time lapse imaging techniques also demonstrate 

that DivIVA localises to sites of branching long before the emergence of new tips, 

which when DivIVA is overexpressed localises as discrete foci along the length of the 

hyphae where hyperbranching occurs (Hempel et al., 2008; Richards et al., 2012). 

This was established after monitoring tip localised DivIVA-EGFP patches which appear 

to break of and localise at sites of future branching. (Flardh et al., 2012; Hempel et 

al., 2012; Saalbach et al., 2013).  

The second protein to make up the TIPOC is Scy (Streptomyces cytoskeletal 

protein), a large alanine/glutamate (1326 amino acids) protein with homologues 

found exclusively amongst filamentous Actinomycetes. Scy is also found to localise to 

tips during active growth in S. coelicolor suggesting it has a role in growth (Holmes et 

al., 2013). This is evident in the scy mutant strain which produces smaller colonies 

compared to the wild-type, is developmentally delayed and exhibits an over-

branching phenotype. Moreover, overexpression of Scy also results in 

hyperbranching suggesting that, like DivIVA, Scy is important for the proper 

placement of branch sites and normal growth. In fact, manipulation of Scy expression 

levels in S. coelicolor shows that in the presence of elevated Scy levels, DivIVA 
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localisation is perturbed with localisation comparable to that seen when DivIVA is 

overexpressed and in fact co-localises with Scy at these ectopic locations. Moreover, 

with Scy and DivIVA interaction shown through both pelleting assays, bacterial two 

hybrid and co-elution experiments, it is clear that the two proteins act together, 

possibly forming a complex assembly, to ensure that correct growth and branching 

occurs. Interestingly, the scy mutant also shows perturbed spore formation with 

irregular spore size, aberrant DNA segregation and branched aerial hyphae 

suggesting that aberrant growth has either an indirect effect on division or there is a 

mechanistic regulation between growth and division via Scy (Ditkowski et al., 2013; 

Holmes et al., 2013). 

The final protein to make up the TIPOC is the intermediate filament-like protein, 

FilP. Originally, FilP was identified in S. coelicolor when the genome was mined for 

proteins containing a similar domain architecture to crescentin in Caulobacter 

crescentus, a protein that is responsible for the signature curvature of the organism. 

It was not however, the first Streptomyces homologue for that gene to be described. 

Originally that gene locus was characterised in Streptomyces reticuli and was 

identified due to its affinity to avicel, a crystalline form of cellulose and the property 

that led to its name avicel binding protein (AbpS) (Walter et al., 1998). The 

homologue in S. coelicolor was characterised through its relationship to growth and 

its cytoskeletal properties, including its similarity to crescentic, and thus its name was 

changed to filamentous Intermediate-like protein (FilP) (Bagchi et al., 2008). FilP was 

originally found to localise to the tip and to inner hyphal curvatures forming long 

cables when expressed with a fluorescent tag, although more recent immuno-

localisation suggests that it forms a network which extends along the hyphae from 

just behind the tip (Bagchi et al., 2008; Fuchino et al., 2013). While its role in growth 

and branching still remains a mystery, with the mutant strain showing no obvious 

effect on this process, it has been suggested that FilP could play a role in both the 

strength of the wall behind the growing tip and establishing new polarity centres in 

response to osmotic pressures (Bagchi et al., 2008; Fuchino et al., 2017).  
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1.4.1.2 DNA replication and segregation 

 

Bacterial development requires accurate scheduling of the expression of 

different sets of genes for among others metabolism, morphogenesis, cell division 

and DNA replication. Chromosome replication needs to be synchronized with 

cytokinesis to guarantee that each daughter cell obtains a single copy of the 

chromosome. The initiation of chromosome replication is tightly controlled with the 

life cycle. In bacteria, chromosome replication starts with binding of DnaA (trans-

acting element) to DnaA boxes (cis-regulatory element) in the oriC region (Fuller et 

al., 1984; Kaguni, 2006; Katayama et al., 2010; Leonard and Grimwade, 2010). 

Streptomycetes have a large linear and GC-rich chromosome and the oriC region has 

19 DnaA boxes instead of the five found in E. coli (Majka et al., 1999; Majka et al., 

2001; Jakimowicz et al., 1998). The spacing, orientation and position of these 19 DnaA 

boxes are conserved among Streptomyces spp (Wolański et al., 2014). In contrast to 

DnaA of E. coli, the DnaA protein-mediated unwinding of Streptomyces oriC has not 

been detected (Jakimowicz et al., 1998), perhaps due to the absence of an AT-rich 

region within the oriC region (Jakimowicz et al., 1998). To make sure that 

chromosome replication only occurs once per cell cycle, the availability and activity 

of both oriC region and DnaA need to be strictly controlled. ATP hydrolysis is the most 

common strategy to inactivate ATP-DnaA (the active form of DnaA) (Zakrzewska-

Czerwińska et al., 2007).  

In Streptomyces hyphal compartments, multiple chromosomes remain 

uncondensed until the final stages of sporulation, and replication in both vegetative 

and aerial hyphae seems asynchronous (Ruban-Ośmiałowska et al., 2006). Little is 

known of DNA segregation during normal growth, but replicating chromosomes 

follow the growing hyphal tip (Wolanski et al., 2011). A dynamic oriC partitioning 

system was identified, called the Par system (Abeles et al., 1985). This system is 

widely distributed, since over 70% of all bacteria contain par loci on their genomes 

(Livny et al., 2007). Par system includes the ParA and ParB proteins, and the cis-acting 
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centromere-like site(s) parS sites. ParA and ParB protein likely play a role in the 

control of chromosome replication. Indeed, ParA directly affects DnaA function in B. 

subtilis (Murray and Errington, 2008; Schole eld et al., 2012). It is yet unclear if similar 

interactions occur in Streptomyces.  

In S. coelicolor, parA and parB form an operon and in total 24 parS sites were 

found in the region near oriC (Jakimowicz et al., 2002). ParB specifically recognizes 

parS sites, and ParA is a Walker-type ATPase, which likely provides the energy 

required for ParB-mediated chromosome segregation (Jakimowicz et al., 2002; 

Jakimowicz et al., 2005; Leonard et al., 2005a; Leonard et al., 2005b). Surprisingly, 

deletion of parAB does not cause major defects in chromosome segregation during 

vegetative growth of Streptomyces, which may be explained by the fact that the large 

multinucleoid hyphal compartments contain many non-segregated chromosomes 

(Jakimowicz et al., 2005). However, in the absence of parAB, aberrant chromosome 

segregation was observed in the spores (Dedrick et al., 2009; Jakimowicz et al., 2005). 

Unlike in rod-shaped bacteria, where ParB drives origin regions to the poles of the 

dividing cell, in Streptomyces ParB complexes align the chromosomes regularly along 

the aerial hyphae to ensure that each of the many prespore compartments receives 

a single copy of the chromosome (Jakimowicz et al., 2005; Jakimowicz and van Wezel, 

2012; Dedrick et al., 2009).  

 

1.4.1.3 Cell division in S. coelicolor 

 

The cell cycle of S. coelicolor involves a highly complicated and a number of 

carefully coordinated complex processes involving cell-wall assembly, cell division 

and chromosome segregation. Unlike the other rod-shaped bacteria, cell division is 

only essential for sporulation but not for the whole growth and viability of 

Streptomyces (Jakimowicz and Van Wezel, 2012). During the vegetative growth phase 

of S. coelicolor development, crosswalls are formed in an irregular pattern in an FtsZ-

dependent manner similar to the septa formed during sporulation. However, these 
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crosswalls fail to undergo the cell-cell separation stage of cell division (Grantcharova 

et al., 2005). In S. coelicolor, the aerial hyphae differ substantially from vegetative 

hyphae. One major difference is that aerial hyphae of wild-type cells do not branch, 

are nearly twice as wide as vegetative hyphae and undergo rapid growth and 

concomitant chromosome replication. The process of cell division is also completely 

different: while cross walls divide the vegetative hyphae into multi-genomic 

compartments, during sporulation-specific cell division in aerial hyphae many septa 

are formed nearly simultaneously, followed by formation of spore compartments and 

cell fission, which then results in chains of spores that each contain a single copy of 

the chromosome. The study of cell division in Streptomyces is particularly interesting 

for several reasons. The switch from vegetative to aerial division is a crucial step in 

the developmental pathway leading to sporulation.  

 

1.4.2 FtsZ and Septation in S. coelicolor 

 

Like rod-shape bacteria, cell division in S. coelicolor is driven by protein FtsZ 

which leads to the formation of bacterial septum that allows division to occur. Unlike 

majority of bacteria, ftsZ is not an essential gene for viability in Streptomyces and in 

fact S. coelicolor is still viable in the absence of division (McCormick et al., 1994). 

While viable, in the sense that the strain can be passaged, not only is the strain 

inhibited in sporulation and therefore unable to produce spores but the crosswalls in 

vegetative hyphae do not grow. This lack of compartmentalisation in vegetative 

hyphae leads to colonies that are severely impaired in growth compared to the wild-

type strain. Therefore, while cross-wall formation in vegetative hyphae is not 

essential to growth, compartmentalization of the hyphae is required in order to 

maintain healthy colonies (McCormick et al., 1994). The fact that cell division is a 

dispensable process in S. coelicolor makes it an important organism in which to study 

this process. Cell division proteins that are essential in other bacteria, and thus harder 
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to characterise, are not essential in Streptomyces creating the opportunity for gaining 

insights into their mechanisms. 

During late development in S. coelicolor FtsZ has been shown to form a series of 

classical Z-rings, a precursor to septum formation, that are evenly spaced along the 

length of aerial hyphae in what is often termed a ladder-like formation (Schwedock 

et al., 1997). In order to generate such an even spacing of approximately 1.3 µm, FtsZ 

has been shown to develop rings through a series of intermediary localisation 

patterns which begin in late development with an upregulation of ftsZ gene 

expression. The ftsZ gene is transcribed from three distinct promoters, which 

regulate its expression levels throughout the life cycle of S. coelicolor (Flardh et al., 

2000). The first promoter, P1, is expressed during vegetative growth while the third 

promoter, P3 is constitutively expressed throughout the life cycle. The second 

promoter, P2, is developmentally regulated, with a strong upregulation in aerial 

hyphae prior to the onset of the division process (Flardh et al., 2000). At the onset of 

the division process, an FtsZ ring is localised to the base of the aerial hyphae, which 

gives rise to a basal septum which compartmentalizes the hyphae into a sporogenic 

hyphae and the sub-apical stem compartment (Dalton et al., 2007; Kwak et al., 2001). 

After upregulation, FtsZ initially forms into spiral-like intermediates from a dispersed 

pattern. The spirals then condense into helical filaments, before further 

condensation results in the many, 20-50 Z-rings which form along the length of the 

hyphae marking the future sites of septation (Grantcharova et al., 2005). The 

compartmentalisation of the aerial hyphae into sporogenic hyphae and the sub apical 

stem is important for containment of the elevated FtsZ levels and promote its 

condensation into Z-rings. The Z-rings only occur transiently before giving way to the 

rise of septa (Grantcharova et al., 2005). Time lapse imaging revealed that Z-rings are 

also present, as expected, in the vegetative hyphae, which give rise to the cross-walls 

that compartmentalises the vegetative hyphae. Here, while the spiral intermediates 

are seen, the helical filaments are not, possibly due to the more dispersed formation 

in vegetative hyphae (Jyothikumar et al., 2008).  
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In S. coelicolor, the transition of the multi-genomic hyphae into uni-genomic pre-

spore compartments is a highly-orchestrated but poorly-understood process (Flardh 

and Buttner, 2009; Jakimowicz and van Wezel, 2012; McCormick and Flardh, 2012). 

This is followed by the re-organisation of the chromosomes and the appearance of 

regularly positioned FtsZ rings, generating the so-called FtsZ “ladder” that marks the 

positions of the division machinery, the divisome, where cross-walls are built. Once 

septation is completed, each pre-spore compartment carries a single chromosome 

(Figure 1.11). During filamentous growth cell division is suspended, therefore, it is not 

surprising that components of the divisome, including the key division protein, FtsZ, 

are not essential for growth in Streptomyces. Knockout mutants of divisome 

components effect on septation but not hyphal growth (McCormick et al., 1994; 

Schwedock et al., 1997; Jakimowicz and van Wezel, 2012; McCormick and Flardh, 

2012). This is in stark contrast to uni-genomic bacteria, where deletion of 

components of the divisome is lethal. Composition of the divisome itself is also 

different in Streptomyces, lacking either FtsA or ZipA that are important for the 

membrane association of the FtsZ ring in E. coli or B. subtilis (Hale and de Boer, 1997; 

Raychaudhuri, 1999; Donachie et al., 1979; Pichoff and Lutkenhaus, 2002; Szwedziak 

et al., 2012; van den Ent and Lowe, 2000).  
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1.4.3 Cell division site regulation in S. coelicolor 

 

The cell division machinery itself is generally well conserved in Streptomyces 

when compared to bacteria that undergo binary fission, but the control of division-

site selection and FtsZ recruitment in the long and multinucleoid hyphae is entirely 

different. In the multi-genomic filaments of Streptomyces, the coordinated 

polymerisation of FtsZ at regular intervals during sporulation require a complex 

Figure 1.11. Septum formation during the life cycle of S. coelicolor.  

During vegetative growth S. coelicolor produces irregular septum that compartmentalise 

hyphae (a). These septa do not undergo cell-cell separation typical of cell division. When aerial 

hyphae form a single basal septum forms in order to compartmentalise aerial hyphae (b). 

During sporulation many septa are placed along the length of aerial hyphae that do undergo 

the cell-cell separation seen in division (c). (Kelemen, 2017) 
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organisation that is not yet fully understood. No direct homologs of MinC are found 

in S. coelicolor, and MinD-like proteins that are there have not yet been characterised 

and are not thought to play a role in the control of cell division (Jakimowicz and van 

Wezel, 2012). DivIVA is present in S. coelicolor, but instead of playing a role in the 

regulation of cell division, the protein is required to drive tip growth, and is therefore 

essential for viability (Flardh, 2003a). In addition, sporulation septa formation 

precedes full chromosome segregation (Flardh and Buttner, 2009), so a nucleoid 

occlusion mechanism, in the strictest sense, is unlikely in S. coelicolor. 

Importantly, a significant increase in cellular FtsZ levels is required for the 

synchronous septation of aerial hyphae, which is achieved via the activation of one 

of the ftsZ promoters by the transcription factors, WhiA and WhiB (Bush et al., 2016). 

On the other hand, FtsZ positioning in S. coelicolor is proposed to be under positive 

regulation through an FtsZ partner protein SsgB, which in turn depends on SsgA 

(Willemse et al., 2011). SsgA and SsgB are small, 130–145 amino acid long, proteins 

that are exclusive to the morphologically more complex Actinomycetales (Noens et 

al., 2005; Traag and van Wezel, 2008). 

Previous studies showed that null mutants lacking these proteins were 

blocked at a stage preceding the onset of sporulation specific cell division, indicating 

a role in control of this process (Keijser et al., 2003; van Wezel et al., 2000). The 

progression towards fully formed FtsZ rings begins with the localisation of SsgA 

starting at the hyphal tips followed by evenly spaced distinct foci which occur the 

length of the young aerial hyphae. SsgA then recruits SsgB to the side wall in an evenly 

spaced manner alternating between the two sides of the hyphae in early division 

stage. FtsZ then forms long spiral-like filaments along the length of the hyphae 

interacting with the alternately placed SsgB. At this point small SsgB foci are seen on 

the opposite side wall of the hyphae from the SsgA recruited SsgB. FtsZ then co-

localises with SsgB as distinct foci along the hyphal length forming foci on opposite 

sides of the hyphae. FtsZ and SsgB then co-localise as rings with both forming the 

classical laddering seen in FtsZ localisation. SsgA localises before the appearance of 
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the other two proteins suggesting that its localisation is not dependent on FtsZ or 

SsgB.  

Indeed, SsgA was shown to correctly localise in an ftsZ mutant background. 

FtsZ on the other hand failed to localise correctly in either the ssgA or ssgB null 

mutants suggesting that its localisation is dependent on both of these proteins. 

Interestingly, in these mutant strains, FtsZ forms sparsely spaced ring-like structures 

which are similar to the distribution of septa in vegetative hyphae, and show the 

same lack of constriction associated with these non-dividing septa suggesting that at 

least part of the difference in septa formation between vegetative and aerial hyphae 

is the presence of SsgA and SsgB. While, SsgB is not able to localise correctly in a ssgA 

mutant background, which does not form regular foci on the lateral wall to Z-ring 

formation. What SsgB is not able to do it is correctly form the rings associated with 

the formation of FtsZ rings (Willemse et al., 2011). And finally, of all the proteins that 

are involved in Z-ring assembly and stabilization, only SepF is present in 

Streptomyces. This raises the question as to how division site selection is controlled 

in Streptomyces in the absence of the canonical control systems (Figure 1.12).  
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Figure 1.12. Controlling FtsZ-ring formation. 

(a) Polymers of FtsZ at mid-cell of the rod-shaped E. coli or B. subtilis rely on both nucleoid occlusion 

where proteins that are associated with the chromosomes (red) block FtsZ (green) assembly at sites 

that are occupied by DNA and the negative regulation of FtsZ assembly by MinD (red), which interacts 

with the division inhibitor MinC and sequesters it to the cell poles, allowing FtsZ polymerisation at 

the mid-cell position.  (Wu and Errington, 2003; Lutkenhaus, 2012).  

(b) In the multi-genomic laments of S. coelicolor, the co-ordinated polymerisation of FtsZ at regular 

intervals during sporulation requires a complex organisation that is not yet fully understood. S. 

coelicolor has no obvious MinC homologue nor a nucleoid occlusion mechanism, in the strictest sense. 

Instead, FtsZ positioning is proposed to be under positive control by an FtsZ partner protein SsgB 

(Willemse et al., 2011). Comparison of the divisome compositions demonstrates that Streptomyces 

lacks some of the key proteins known for FtsZ stabilisation on the membrane (Jakimowicz and van 

Wezel, 2012; McCormick and Flardh, 2012). As shown in the figure, many other FtsZ positive 

regulation proteins including FtsK, FtsQ/DivIB, FtsL etc. are conserved in S. coelicolor. 
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1.4.4 Linear chromosome of S. coelicolor  

 

The strain Streptomyces coelicolor A3 (2) which we used as a study material is 

the genetically most characterized representative of the genus and is one of the 

largest completely sequenced bacterial genomes at 8.67 Mbp. In 2002, Bentley et al. 

sequenced and annotated the genome of a plasmid-free prototrophic derivative 

strain M145 (SCP1, linear, 365 kb, and SCP2, circular, 31 kb, which have been 

separately sequenced). The sequenced genome has revealed the single linear 

chromosome of 8,667,507 bp and 7,825 predicted genes. This was the largest 

number of genes discovered in a bacterium at that time. This complex genome is 

almost twice the size of Bacillus subtilis (Kunst et al, 1997) and Escherichia coli 

(Blattener et al, 1997). The genome of S. coelicolor consists of three regions: a central 

core region, left arm region and right arm region (Figure 1.13). The core region 

Figure 1.13. Circular representation of the Streptomyces coelicolor genome. The core 

region and the arms regions of the chromosome are shown as dark blue and light blue 

respectively (Bentley et al, 2002).  
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comprises of approximately half the chromosome and appears to extend from 

around 1.5 Mb to 6.4 Mb, thus giving uneven arm lengths of approximately 1.5 Mb 

(left arm) and 2.3 Mb (right arm) (Bentley et al., 2002). 

The essential genes involved in cell division, such as DNA replication, 

transcription and translation, are located within the core. Sequencing has revealed 

over 20 potential gene clusters that might encode secondary metabolites, including 

the pigmented antibiotics actinorhodin and undecylprodigiosin, and the polyketide 

synthase which produces the grey pigment associated with mature spore production 

(Bently et al., 2002). Studies of many Streptomyces have showed that extensive 

deletions and amplifications of more than a million base pairs of DNA at either end 

of the chromosomes does not compromise viability under laboratory conditions 

(Volff and Altenbuchner, 1998), which suggests that essential genes are conserved in 

the core region (Friend and Hopwood, 1971). 

 

Aims  

 

S. coelicolor has a complex life cycle which culminates in the 

compartmentalisation of multipule aerial hyphae into uni-genomic sproes. Many of 

the genes involved in cell division and cell-wall synthesis are located in the dcw 

(division and cell wall biosynthesis) cluster. The gene order and many of the 

components of the dcw cluster are quite well conserved in different bacteria, 

whereby the genes can be classified into those encoding components of the divisome 

and those that encode cell-wall biosynthetic enzymes (Mingorance et al., 2004; 

Tamames et al., 2001).  

A key question of cell division is how the GTP-induced polymerisation of FtsZ is 

orchestrated in the three-dimensional space of a bacterial cell. In rod-shaped E. coli 

or B. subtilis, the formation of a ring of FtsZ polymers at mid-cell relies on two 

mechanisms, each involving negative regulation of FtsZ assembly: (1) nucleoid 

occlusion, where proteins associated with the chromosomes block FtsZ assembly at 
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sites that are occupied by DNA, or (2) the negative regulation of FtsZ assembly, MinD, 

in complex with the inhibitor protein MinC; these proteins, when sequestered to the 

cell poles, allow FtsZ polymerisation only at the mid-cell position ( Wu and Errington 

2003; Lutkenhaus 2012). But in Streptomyces, neither Min system or NO system was 

found. Therefore, we attempt to address several major questions: What are the 

specific proteins to control the positioning of the septum formation temporally and 

spatially in aerial hyphae? And how do they avoid the damage to the chromosomes 

during synchronous multiple cell division in multi-nucleoid hyphae? One interesting 

place in S. coelicolor to investigate is the dcw cluster which contains genes related to 

cell wall synthesis and cell division. The function of several genes between ftsZ 

(SCO2082) and divIVA (SCO2077) have not been well characterised, despite the fact 

they are downstream of ftsZ in many Gram-positive bacteria, including Streptomyces. 

In this study we mainly focus on three genes SCO2081, SCO2080, SCO2079 (sepF). 

SepF was previously shown to tether the Z-ring to the membrane in B. subtilis and 

promote FtsZ protofilaments formation (Hamoen et al., 2006; Ishikawa et al., 2006). 

In addition, the genes SCO2081 and SCO2080 are located adjacently downstream of 

ftsZ. Considering this location, important roles in cell division or cell-wall synthesis 

were anticipated.  

In this work, we will generate the knockout mutant strains by deletion of these 

three genes respectively, to characterize the phenotype and identify their effects on 

the division process and cell-wall synthesis. We also plan to localise the protein SepF 

to explore its activity during the Z-ring assembly and positioning.  
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2 Materials and Methods 

2.1 Bacterial strains and plasmids 

Table 2.1: E. coli strains used in this study. 

Strain  Genotype Growth temperature 
DH5α 
(Hanahan, 1983) 

F-λ- endA1 glnV44 thi-1 recA1  
relA1 gyrA96 deoR nupG 
Φ80dlacZΔM15 Δ(lacZYA-
argF)U169 hsdR17(rK

- mK
+) 

37⁰C 

BW25113/pIJ790 
(Datsenko and 
Wanner, 2000) 

λ- Δ(araD-araB)567 
ΔlacZ4787(::rrnB-4), lacIp-
4000(lacIQ) 
rpoS369(Am) rph-1 Δ(rhaD-
rhaB)568 hsdR514 

30⁰C 

ET12567 
(MacNeil et al., 1992) 

F- dam::Tn9 dcm6 hsdM hsdR 37⁰C 

DH5a/BT340 DH5α/pCP20 30⁰C 

 

 

Table 2.2: Streptomyces strains used in this study. 

Strain Genotype 
M145 (Hopwood et al., 1985) SCP1- SCP2- Pgl+ 
ΔsepF M145 sepF::ApraR 
Δ2080 M145 2080::ApraR 
Δ2081 M145 2081::ApraR 
ΔsepF/pMS82/ΔP-sepF M145 sepF::ApraR containing sepF gene  

ΔsepF/pMS82/P-sepF 
M145 sepF::ApraR containing sepF gene 
under the control of its promoter 

ΔsepF/pMS82/2080-sepF 
M145 sepF::ApraR containing sepF gene and 
2080 gene 

ΔsepF/pMS82/P-sepF-egfp 
M145 sepF::ApraR containing sepF gene 
under the control of its native promoter and 
egfp fusion 

ΔsepF/pMS82/2080-sepF-egfp 
M145 sepF::ApraR containing 2080 gene 
sepF gene and egfp fusion 

∆2080/pMS82/P2080-2080 
M145 2080::ApraR containing 2080 gene  
and its putative promoter 
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∆2080/pMS82/PftsZ-2080 
M145 2080::ApraR containing 2080 gene  
and putative promoters of gene ftsZ 

∆2080/pMS82/P2080+ftsZ-2080 
M145 2080::ApraR containing 2080 gene  
and putative promoter of gene 2080 and 
promoters of gene ftsZ 

Δ2080/pMS82/ΔP-sepF M145 2080::ApraR containing sepF gene  

Δ2080/pMS82/P-sepF 
M145 2080::ApraR containing sepF gene 
under the control of sepF promoter 

Δ2080/pMS82/2080-sepF 
M145 2080::ApraR containing sepF gene and 
2080 gene 

 

Table 2.3: Plasmid/Cosmid DNA used in this study. 

Plasmid  Genotype 
pIJ773 (Gust et al., 2003) aac(3)IV oriT bla apramycin resistant 
pIJ790 (Gust et al., 2003) araC-ParaB, γ, β, exo, cat, repA101ts, oriR101 
 
4A10 

Supercos Cosmid with a 50 Kbp 
chromosomal fragment with cell division 
genes used in this study.  

4A10/sepF::aac(3)IV Cosmid 4A10 with sepF::ApraR allele 
4A10/2080::aac(3)IV Cosmid 4A10 with 2080::ApraR allele 
4A10/2081::aac(3)IV Cosmid 4A10 with 2081::ApraR allele 
4A10/ftsZ-2081::ApraR2 Cosmid 4A10 with ftsZ-2081 (long)::ApraR 

allele 
4A10/ftsZ-2081::ApraR3 Cosmid 4A10 with ftsZ-2081 (short)::ApraR 

allele 
4A10/ftsZ-2081::Scar2 Flipped Cosmid 4A10 with ftsZ-2081 

(long)::ApraR allele, leaving a 81 bp scar 
4A10/ftsZ-2081::Scar3 Flipped Cosmid 4A10 with ftsZ-2081 

(short)::ApraR allele, leaving a 81 bp scar 
pMS82 (Gregory et al., 2003) ori pUC18, hyg, oriT RK2, int ФBT1, attP 
pMS82/P2080-2080 pMS82 derivative containing 2080 gene 

under the control of its putative promoter 
pMS82/PftsZ-2080 pMS82 derivative containing 2080 gene 

under the control of ftsZ promoters 
pMS82/P2080+ftsZ-2080 pMS82 derivative containing 2080 gene 

under the control of ftsZ promoter and 2080 
putative promoter 

pMS82/∆P-sepF pMS82 derivative containing sepF gene  
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pMS82/P-sepFp pMS82 derivative containing sepF gene 
under the control of its native promoter 

pMS82/2080-sepF pMS82 derivative containing sepF gene and 
2080 gene 

pMS82/P-sepF-egfp  pMS82 derivative containing sepF gene  
under the control of its native promoter and 
egfp fusion  

pMS82/2080-sepF-egfp pMS82 derivative containing sepF gene  
2080 gene and egfp fusion 

 

2.2 Media 

Solid Media 

SFM (Soya Flour Mannitol): For general growth and phenotypic analysis of S. 

coelicolor strains. 

Mannitol  60 g 

Tap Water 3000 ml 

 

The mannitol was dissolved in Tap water while 6 g soya flour and 6 g agar was 

measured into 500 ml Duran bottles. The dissolved mannitol media was dispensed in 

300 ml aliquots into Duran bottles and twice autoclaved.  

 

Lennox Broth (LB) Agar (Kieser et al., 2000): For growing of E. coli strains and spore 

titres of S. coelicolor strains. 

 

Tryptone 16 g 

Yeast Extract 8 g 

NaCl  8 g 

Glucose 1.6 g 

dH2O  up to 1600 ml 
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The above ingredients were dissolved in dH2O, while 4 g of agar was measured into 

500 ml Duran bottles. The dissolved media was dispensed in 400 ml aliquots into 

Duran bottles and autoclaved. 

 

Liquid Media 

Lennox Broth (LB) (Kieser et al., 2000): For growing E. coli strains. 

 

Tryptone 10 g 

Yeast Extract 5 g 

NaCl  5 g 

Glucose 1 g 

dH20  up to 1000 ml 

 

Once dissolved, the media was dispensed, either in 10 ml aliquots into universals or 

in 50 ml aliquots into 250 ml conical flasks, and autoclaved. 

 

SOB (Super Optimal Broth) : For growing E. coli BW25113/ pIJ790. 

 

Tryptone 10 g 

Yeast Extract 2.5 g 

NaCl (5 M) 1 ml 

KCl  0.093 g 

MgCl2 (1 M) 5 ml 

MgSO4   3 g 

dH2O  up to 500 ml 

 

Once dissolved, the media was dispensed in 10 ml aliquots into universals and 

autoclaved. 
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2.3 Bacterial growth conditions and storage 

S. coelicolor strains 

S. coelicolor strains were grown on SFM containing the appropriate antibiotics and 

incubated at 30°C until the required developmental stage. For storage (spore 

preparation), S. coelicolor spores were streaked on a single SFM plate to generate a 

confluent lawn and incubated at 30°C until mature spores developed. Spores were 

harvested by rubbing spores in a layer of water using a cotton bud. The spore 

suspension was collected in a 15 ml falcon tube using a pastor pipette. The spores 

were centrifuged for 10 minutes at 4500 g at 4°C and the supernatant removes. The 

spores were re-suspended in approximately 1 ml 20% glycerol and stored at -20°C in 

a 2 ml microcentrifuge tube with a screw cap. The viable spore concentration was 

determined by plating out a dilution series on LB agar plates containing the 

appropriate antibiotics (Table 2.4). 

 

E. coli strains 

E. coli strains were grown in either LB solid or liquid media and incubated at 37°C, 

except for BW25113/pIJ790, which was grown at 30°C due to the presence of a 

temperature sensitive plasmid (pIJ790). Glycerol stocks were generated by making a 

1:1 mixture of culture to 100% glycerol, and stored at -20°C. 

 

Table 2.4: Antibiotic concentrations used in this study. 

 
Antibiotic 

 
Stock 
(mg/ml) 

Streptomyces final 
concentration (μg/ml) 

E. coli final 
concentration (μg/ml) 

SFM LB 

Ampicillin 100 - 100 
Apramycin 100 50 50 
Chloramphenicol 25 - 25 
Hygromycin 50 50 50 
Kanamycin 100 50 50 
Nalidixic Acid 25 25 - 
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2.4 General Molecular Biology Methods 

Plasmid DNA isolation from E. coli 

Solution 1: 50 mM Tris/HCl, 10 mM EDTA pH 8 

Solution 2: 200 mM NaOH, 1% SDS 

Solution 3: 3 M potassium acetate pH 5.5 

 

A single colony of DH5α (or BW25113 for cosmids after cassette targeting) containing 

the desired plasmid DNA was inoculated into 50 ml LB supplemented with the 

appropriate antibiotic. The inoculum was grown overnight at 37°C (shaking 250 rpm). 

The overnight growth was collected in a 50 ml falcon by centrifugation for 5 minutes 

at 5000 g at 4°C. The cells were washed in 40 ml Solution 1 and centrifuged for 5 

minutes at 5000 g at 4°C. The supernatant was discarded and cells re-suspended in 1 

ml Solution 1 before the addition of 2 ml Solution 2. The cells were mixed gently by 

turning the falcon tube and incubated for 4 minutes on ice. After incubation 1.5 ml 

Solution 3 was added and the lysate shaken vigorously. The lysate was incubated for 

10 minutes on ice before centrifugation for 10 minutes at 5000 g at 4°C. The 

supernatant was transferred to a 15 ml falcon and mixed with 500 µl of 1:1 

phenol:chloroform. The extract was vortexed for 30 seconds and centrifuged for 5 

minutes at 5000 g. After centrifugation the aqueous phase was collected in a fresh 

15 ml falcon and 7 µl of 30 mg/ml RNase was added. The extract was incubated for 1 

hour at 37 °C. After incubation another phenol: chloroform extraction was performed 

as before. After collecting the aqueous phase the DNA was precipitated by mixing 1:1 

with isopropanol kept at -20°C, the solution was mixed by inversion and incubated 

on ice for 30 minutes. The precipitated DNA was centrifuged for 15 minutes at 5000 

g at 4°C. The supernatant was discarded and the DNA pellet washed with 2 ml 70% 

ethanol kept at -20°C. The DNA was centrifuged for 5 minutes at 5000 g at 4°C and 

the supernatant was discarded. The DNA pellet was allowed to air dry for 5 minutes 

before re-suspension in 200-400 µl sterile dH20. DNA was stored at -20°C. 
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Agarose gel electrophoresis of DNA 

50x TAE:             2M Tris acetate, 50 mM EDTA pH 8 

10x Loading dye: 50 mM Tris, 50 mM EDTA, 50% Glycerol pH 7.4 -Autoclave- 0.05% 

Xylene Cyanol, 0.05% Bromophenol Blue  

Agarose gels were cast using the Bio-Rad Mini-Sub and Sub-cell trays. Gels were made 

in a range between 0.7% and 1% agarose in 1x TAE buffer with the addition of 0.5 

µg/ml ethidium bromide. DNA was mixed with 1x loading dye a run in gels submerged 

in 1x TAE buffer. Gels were imaged with UV light using a Bio-Rad trans-illuminator. A 

size marker of λ DNA digested with HindIII, and EcoRI was used to estimate band sizes. 

 

PCR 

All PCR reactions were performed using a BioRAD DNA Engine® Peltier Thermal Cycler. 

 

Hi-Fidelity PCR using Phusion High-Fidelity DNA Polymerase (Thermofisher) 

Used for the generation of PCR fragments used for cloning 

 

Reaction conditions: 1x Phusion GC Buffer, 200 µM of each of the four dNTPs, 1.5 

mM MgCl2, 3% DMSO, 1 µM of each primer, 0.02 U/µl Phusion 

DNA polymerase. 

 

Conditions: 

1. Initial Denaturation  98°C for 2 minutes 

2. Denaturation   98°C for 20 seconds 

3. Primer Annealing   x*°C for 30 seconds             

4. Extension    72°C for x** seconds 

5. Repeat steps 2-4 with 25 cycles 

6. Final Extension   72°C for 5 minutes 

7. Cool down   20˚C for 5 minutes 
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* Primer annealing temperature set according to melting temperature calculator at 

www.thermoscientific.com/pcrwebtools. Calculated temperature was adjusted 

down 5°C due to addition of DMSO. 

 

** Extension time was proportional to the length of the product calculate at 30 

seconds per 1 Kbp. 

 

Low-Fidelity PCR using Go Taq DNA Polymerase (Invitrogen) 

Used for diagnostic purposes and for the generation of disruption cassettes. 

 

Reaction conditions: 1 x Go Taq polymerase buffer, 200 µM of each of the four 

dNTPs, 2.5 mM MgCl2, 5% DMSO, 1 µM of each primer, 0.02 

U/µl Go Taq DNA polymerase. 

 

Conditions: 

1. Initial Denaturation 96°C for 5 minutes 

2. Denaturation 98°C for 20 seconds 

3. Primer Annealing 55°C* 30 seconds             

4. Extension 72°C for x** seconds 

5. Repeat steps 2-4 for 30 cycles 

6. Final Extension, 72°C for 5 minutes 

7. Cool down 20˚C for 5 minutes 

 

*Primer annealing temperature was initially set at 55°C, but altered if no product 

visible. 

 

** Extension time was proportional to the length of the product calculate at 30 

seconds per 500 bp. 

 

Conditions for generation of disruption cassette: 

1. Initial Denaturation 94°C for 2 minutes 

2. Denaturation 94°C for 45 seconds 
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3. Primer Annealing 50°C 45 seconds             

4. Extension 72°C for 90 seconds 

5. Repeat steps 2-4 for 10 cycles 

6. Denaturation 94°C for 45 seconds 

7. Primer Annealing 55°C 45 seconds             

8. Extension 72°C for 90 seconds 

9. Repeat steps 6-7 for 15 cycles 

10. Final Extension, 72°C for 5 minutes 

11. Cool down 20˚C for 5 minutes 

 

Table 2.5: Oligonucleotide sequences 

Primer 5’-3’ Sequence 
SepF KO FRW  GTCAGCAGATCCACCACAGAGCGGAGGACTCAGAGCATG 
SepF KO2 REV  ACACCAAACCGGCCGCAAAGTCGACAAGTCGCTTCGCAT 
SepF XbaBgl Prom FRW GATCACTCTAGATCTCGGGTAACGTCGCCAAGAAGTCG 
SepF 3’ END GCCTTGCCGGGTTGCCACGAGC 
SepFp2 XbaBgl FRW GATCACTCTAGATCTGACCGTGGCCCCGCTCAGCGG 

SepF FWR 
CAAGGCCCGTATCGCAGAGGGCGGGTTCTTCAACCAGAG
CCCGGTCGCCACCGTGAGCAAGG  

SepF REV 
GTCCCGGGCCCGTGTTCTTGCTCTGTACCGGTAGTGCGTC
CATATGTGTAGGCTGGAGCTGC  

FP Eco REV GGATCGAATTCTTACTTGTACAGCTCGTCCATGCCG 
mCherry Eco REV GGATCGAATTCTTACTTGTACAGCTCGTCCATG 

2080 KO FRW 
CGGCTCGCGGGCTATGTGTGGCTGGACTGATGGGGCATG
ATTCCGGGGATCCGTCGACC  

2080 KO REV 
CCATATTTTCTGCTGTGGTCCGACTTCTTGGCGACGTTATG
TAGGCTGGAGCTGCTTC 

2080 Bgl Prom FRW GATCACAGATCTGCGGCCGGTGCTACGAGGTGC 
2080 3’ END TCGGGTTCCGGGTCCAGTTCGG 
2080 Xbal Nde FWR  CGGGCGACACGTAACTCGAGGCGAGAGGCCTTCGACGTG

ATTCCGGGGATCCGTCGACC 
2080 Nde REV GATCACCATATGCCCGAGCCTGGGTCGGACTCC 
2081 KO2 Apra REV CACCTCGGCGCGCATCTCCTCGGGCACCTCGTAGCACCGT

GTAGGCTGGAGCTGCTTC 
2081 KO REV CGCGGCGAGTTCGTGCTTACGGTCCGTCATGCCCCATCAT

GTAGGCTGGAGCTGCTTC 
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2081 Nde REV GATCACCATATGCCCGAGCCTGGGTCGGACTCC 
2081 KO2 FRW GGCCGAGGAACTGGACGTGCCGGACTTCCTGAAGTGATA

ATTCCGGGGATCCGTCGACC 
2081 KO2 REV CGCGGCGAGTTCGTGCTTACGGTCCGTCATGCCCCATCAT

GTAGGCTGGAGCTGCTTC 
FtsZ KO FRW CGCGGCGAGTTCGTGCTTACGGTCCGTCATGCCCCATCAT

GTAGGCTGGAGCTGCTTC 
FtsZ XbaNde FRW GGATCATCTAGAGCATATGGCAGCACCGCAGAACTACC 
Apra 5’ REV CGCACCTGGCGGTGCTCAACG 

 

Restriction digest 

Table 2.6. Concentration and restriction sites of enzymes used in these experiments. 

Restriction enzyme Concentration (U/μl) Restriction site 
EcoRI 10 5’..G   AATTC..3’ 

3’..CTTAA   G..5’    
XbaI 10 5’..T   CTAGA..3’ 

3’..AGATC   T..5’ 
EcoRV 10 5’..GAT   ATC..3’ 

3’..CTA   TAG..5’ 
 

Restriction digests for the analysis of plasmids containing recombinant DNA 

and cosmids successfully mutagenised were carried out in 20 µl. DNA was digested 

with 10 U of the appropriate restriction enzyme from Roche in 1x of the 

recommended digestion buffer. Digests were incubated for 4 hours (plasmids) or 

overnight (cosmids) at 37°C. Reactions were stopped by heating to 65°C for 10 

minutes before the digested DNA was cooled on ice before loading onto agarose gel 

and analysed by electrophoresis. 

 

Isolation of DNA fragments by agarose 

After the separation of fragments generated by a preparative restriction digest, the 

gels were visualised using long-wavelength UV light (310 nm). Desired fragments 

were excised using a razor blade and purified using the Qiagen QIAquick Gel 

Extraction kit. Fragments were stored in sterile dH20 and stored at -20°C. 
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Ligation of DNA fragments 

Linearised vector and insert fragments were mixed in approximately 1:3 molar ratio 

in 11.5 µl volume made up with sterile dH20. The fragments were mixed and 

incubated for 2 minutes at 65°C. After cooling on ice, 3 µl of 5x ligation buffer and 0.5 

µl of T4 DNA ligase from Invitrogen was added. The ligation was incubated on ice 

overnight at 4°C. Ligations were desalted using a self-made G75 sephadex column 

prior to transformation by electroporation. 

Transformation of competent E. coli cells by electroporation 

A single colony of the appropriate E. coli strain was inoculated into 10 ml LB 

supplemented with the appropriate antibiotics and grown overnight with shaking at 

either 30°C or 37°C depending on the strain. After overnight growth, the culture was 

subcultured, using 1% of the volume of the fresh media, into either 10 ml or 50 ml LB 

supplemented with the appropriate antibiotics. The fresh culture was incubated at 

the appropriate temperature with shaking until it achieved an OD600 ~0.7. The cells 

were collected by centrifugation for 5 minutes at 5000 g at 4°C. The supernatant was 

removed and the cells washed twice in 10% glycerol centrifuging for 5 minutes at 

5000 g at 4°C. The pellet was re-suspended to a final volume between 100 µl and 250 

µl in 10% glycerol. For transformation 50 µl of cells were mixed with either 1 µl of 

plasmid or cosmid DNA, or 5 µl of ligation. Electroporation was carried out in an ice 

cold 0.2 cm electroporation cuvette using a BioRad Gene Pulser 2 set to 200 Ω, 25 µF 

and 2.5 kV. After electroporation, cells were mixed with 1 ml ice cold LB and allowed 

to recover during a 1 hour incubation at either 30°C or 37°C before plating onto LB 

agar plates supplemented with the appropriate antibiotics. Plates were incubated 

overnight at either 30°C or 37°C. 

 

Transformation of competent E. coli cells by chemical competence 

A single colony of the appropriate E. coli strain was inoculated into 10 ml LB 

supplemented with the appropriate antibiotics and grown overnight with shaking at 

either 30°C or 37°C depending on the strain. After overnight growth the cells were 
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subcultured by transferring 500 µl into fresh 50 ml LB supplemented with the 

appropriate antibiotics. The fresh culture was incubated at the appropriate 

temperature with shaking until it achieved an OD600 ~0.4-0.6. The cells were 

collected by centrifugation for 5 minutes at 5000 g at 4°C. The supernatant was 

removed and the cells washed with 10 mM NaCl centrifuging for 5 minutes at 5000 g 

at 4°C. The pellet was re-suspended in 30mM CaCl2, 10 mM RbCl2 and incubated on 

ice for 1 hour at 4°C. After incubation the cells were centrifuged for 5 minutes at 5000 

g at 4°C before the pellet was re-suspended with 500 µl and 250 µl of 30mM CaCl2, 

10 mM RbCl2. For transformation 50 µl of cells were mixed with either 1 µl of plasmid 

or cosmid DNA, or 5 µl of ligation and incubated for 30 minutes on ice. The cells were 

then heat shocked at 42°C for 1 minute before being placed immediately in ice. After 

heat shock, the cells were mixed with 1 ml LB and allowed to recover during a 1 hour 

incubation at either 30°C or 37°C before plating onto LB agar plates supplemented 

with the appropriate antibiotics. Plates were incubated overnight at either 30°C or 

37°C. 

 

Conjugation into S. coelicolor 

Conjugation of vectors containing oriT into S. coelicolor was achieved using the E. coli 

strain ET12567/pUZ8002. A single colony of ET12567/pUZ8002 containing the 

desired plasmid or cosmid for conjugation was inoculated into 10 ml LB containing 

kanamycin, chloramphenicol and the antibiotic for which the plasmid or cosmid 

confers resistance, and grown overnight with shaking at 37°C. After overnight growth 

the cells were subcultured by transferring 100 µl into fresh 10 ml LB supplemented 

with the appropriate antibiotics. The fresh culture was incubated with shaking at 37°C 

until it achieved an OD600 ~0.4-0.6. The cells were collected by centrifugation for 5 

minutes at 5000 g at 4°C. The supernatant was removed and the cells washed twice 

with 10 ml LB centrifuging for 5 minutes at 5000 g at 4°C. The pellet was re-suspended 

in 250 µl LB and kept on ice. Approximately 108 spores of the desired S. coelicolor 

strain were added to 500 µl LB and germination activated by heating at 50°C for 10 

minutes before cooling on ice. After cooling the germinating spores were mixed with 

re-suspended ET12567/pUZ8002 cells containing the plasmid/cosmid and 
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centrifuged for 2 minutes at 16,000 g at 4°C. The supernatant was removed and the 

pellet re-suspended in 300 µl sterile dH20. A dilution series was set up in which three 

10x dilutions were made. The stock and 3 dilutions were then plated into SFM 

containing 10 mM MgCl2 and incubated at 30°C. After overnight incubation the plates 

were overlaid with 500 µl sterile dH20 containing nalidixic acid and the appropriate 

antibiotics. The plates were then incubated at 30°C until the appearance of colonies 

which had developed mature spores (5-8 days). Successful ex-conjugants were 

selected streaked for single colonies on SFM supplemented with nalidixic acid and 

the appropriate antibiotics and grown at 30°C until spores were produced. Spore 

preparations of the strain were then generated, originating from a single colony of 

the streaked plate. 

 

Replica plating 

Determination of double crossover ex-conjugants during the generation of mutant 

strains of S. coelicolor was achieved through replica plating. Double crossover events 

lead to strains that are apramycin resistant but kanamycin sensitive. Spores were 

transferred from the SFM conjugation plate to first an LB plate containing kanamycin 

and nalidixic acid and then immediately an LB plate containing apramycin and 

nalidixic acid using a single sterile velveteen cloth such that both LB plates become a 

replica of the original SFM plate. The replica plates were incubated for 2 days at 30°C 

before being analysed for colonies present on the apramycin containing plate that 

were absent from the kanamycin containing plate. These colonies were identified on 

the original SFM conjugation plate and picked and streaked for single colonies on SFM 

supplemented with nalidixic acid and apramycin and grown at 30°C until spores were 

produced. Another round of replica plating was performed on the streaks once they 

had produced spores, after which spore preparations were generated for the 

successful double crossover strain. 
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2.5 Microscopy of S. coelicolor 

Coverslip microscopy 

Approximately 105 spores of an S. coelicolor was plated in a 1 cm2 confluent patch 

(0.5 cm by 2 cm) on SFM containing the appropriate antibiotics. A glass coverslip, 22 

x 22 mm with a thickness of 0.13-0.17 mm, was inserted into the patch at an 

approximate angle of 70˚ to the horizontal plain of the medium. Plates were 

incubated at 30°C with coverslips removed at regular intervals after approximately 

45 hours growth in order to visualise the developmental stages of S. coelicolor. 

 

Coverslip staining 

Plates containing coverslips were allowed to dry for 30 minutes in order to ensure 

that aerial hyphae stuck to the surface of the coverslip. Coverslips were removed 

from the media and placed on filter paper with the sample face up. The sample was 

fixed with 100% methanol (kept in the freezer) for 1 minute, after which the excess 

methanol was removed and the remainder allowed to evaporate. The sample was 

stained with the application of WGA-Alexa Fluor 488 conjugate (50 μg/ml) and 

propidium iodide (25 μg/ml) to each coverslip on the growth line. The samples were 

incubated for 30 minutes in total darkness at room temperature. The coverslips were 

washed 4 times by pipetting 1 ml PBS onto the surface before allowing the slides to 

dry. After drying the slides were mounted face down onto microscope slides (76 x 26 

mm (thickness 1.0 – 1.2 mm) with an 8 µl drop of 20% glycerol on the surface. Excess 

liquid was removed from the edge of the coverslip before it was sealed with a fine 

coat of nail varnish applied around the edge. 

 

Visualisation of microscope slides 

Samples were visualised using an Axioplan 2 Imaging E (Carl Zeiss) Universal 

microscope with an AxioCamMR camera. A Plan Apochromatic 100x/1.40 Oil (440780) 

objective was used in combination with FS 38 GFP and FS 45 TxR filters. AxioVs40x64 

V 4.9.1.0 software was used for image capture and measurement of distances 

between septa. 
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Chapter 3  SepF - an essential component for septum formation 

 

Introduction 

 

The protein SepF was first identified by Hamoen et al. (2006) and Ishikawa et 

al. (2006) and found to be essential for the completion of cell division in B. subtilis. 

SepF is conserved among Gram-positive bacteria and has been best characterized in 

B. subtilis. The B. subtilis sepF null mutant displays a cell division defect in which septa 

are formed slowly, aberrantly and ultimately fail to fully close. In addition, SepF has 

been shown to self-interact forming polymers that assemble into rings of ~50 nm 

when the overexpressed and purified protein is visualized by transmission electron 

microscopy (Figure 3.1) (Hamoen et al., 2006; Ishikawa et al., 2006; Duman et al. 

Figure 3.1. Current model of SepF function in B. subtilis.  The SepF protein (red) 
polymerises on the membrane at the time of membrane invagination at the division 
site. SepF polymers aid the membrane anchoring of FtsZ (yellow). Taken from Duman 
et al., 2013. 
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2013).  The N-terminus of SepF has also been discovered to interact with the cell 

membrane whilst the C-terminus of SepF was shown to interact with the C-terminal 

end of FtsZ and is  responsible for the correct localization and ring formation of FtsZ 

(Duman, 2013).  In E. coli, the FtsZ filaments are anchored to the cell membrane by 

the FtsA and ZipA proteins. In B.subtilis, in addition to FtsA and ZipA, SepF is involved 

in anchoring FtsZ to the membrane. In fact, an FtsA knockout of B. subtilis was 

rescued by the overexpression of SepF (Ishikawa et al., 2006). However, 

Actinomycetes, including Streptomyces lack FtsA. According to the proposed model, 

SepF might take the role of FtsA of E. coli and is proposed to be involved in the 

anchoring of FtsZ polymers to the cell membrane.  Interestingly, SepF has been found 

in those archaea, which possesses FtsZ, but lacks FtsA (Makarova and Yutin, 2010). 

This might suggest that SepF is the archeotype of FtsZ anchoring proteins. SepF has 

been partially characterized in the Gram-positive bacterium Streptococcus 

pneumoniae and two cyanobacteria as well. The S. pneumoniae sepF null mutant 

strain displayed a similar phenotype compared to the B. subtilis sepF null mutant: 

cells of various sizes and shapes as well as multiple and thinner septa forming during 

an early stage of constriction (Fadda et al., 2003). In cyanobacteria, SepF (previously 

named Cdv2 for Cell Division Protein 2) was found to be essential, and depletion of 

SepF in Synechococcus elongatus (rod-shaped) and Synechocystis Strain PCC6803 

(spherical) led to cell filamentation and giant cells, respectively (Miyagishima et al., 

2005; Marbouty et al., 2009). SepF also localises to the Synechocystis septum at mid-

cell site and stimulates the assembly of FtsZ protofilaments (Marbouty et al., 2009). 

In B.subtilis, SepF promotes the assembly and bundling of FtsZ protofilaments.  

Existing as a dimer, SepF can be seen uniformly distributed along the protofilaments, 

stabilizing lateral interactions of FtsZ. It is also thought to decrease the critical 

concentration of FtsZ assembly, prevent dilution-induced disassembly of FtsZ and 

suppress FtsZ GTPase activity which promotes disassembly (Singh et al., 2008). SepF 

forms complexes with many divisome proteins such as FtsA, EzrA and ZapA, as well. 

Over expression of the sepF gene can compensate for the absence of other divisome 

stabilizing proteins, such as FtsA, highlighting the redundancy of some of the 

divisome proteins. However, sepF mutants exhibit abnormally thick septa and partial 

impairment of cell division in B. subtilis. Z-rings have been shown to assemble in the 
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absence of SepF but fail to initiate septum synthesis, resulting in the production of 

elongated cells due to the delay in cell division suggesting that SepF acts downstream 

of FtsZ localization (Adams and Errington, 2009; Singh et al., 2008). 

SepF was characterized in Mycobacterium, where it was shown to be an 

essential component of cell division (Gola et al., 2015; Gupta et al., 2015). SepF of M. 

smegmatis was shown to interact with FtsZ and was localized to the developing 

septum, forming a ring, similar to the FtsZ rings. Depletion of SepF resulted in the 

formation of elongated filaments that did not complete cell division (Gola et al., 2015; 

Gupta et al., 2015). 

S. coelicolor produces both vegetative crosswalls, which are responsible for 

compartmentalization of vegetative hyphae and sporulation septa, which are crucial 

for the formation of spores. It is therefore surprising that several divisome 

homologues, such as ZipA and FtsA, are absent from the genome in S. coelicolor 

(McCormick, 2009; Bentley et al., 2002). The C-terminal domain of FtsZ contains 

highly conserved sequences and has been shown to contain a binding site for several 

division proteins, including SepF in B. subtilis. Compared to most characterised 

bacteria, Streptomyces have been found to be viable upon deletion of ftsZ, with the 

mutant exhibiting severely impaired vegetative growth and failing to generate spores 

(Adams and Errington, 2009). This is because Streptomyces does not rely on cell 

division for its filamentous growth. During hyphal growth FtsZ in dispensible and it is 

only essential during sporulation, where a synchronous septation event takes place. 

Intriguingly, the S. coelicolor chromosome encodes three SepF homologues, one of 

which is encoded in the same gene cluster that carries the ftsZ and divIVA genes. 

In this chapter we present the initial characterisation of sepF and its role in 

septation in S. coelicolor. 

• First, we identified potential SepF homologues in S. coelicolor using 

bioinformatics. 

• We used the “REDIRECT” technology to generate a knockout sepF2 mutant in S. 

coelicolor. 

• We confirmed the knockout mutants generated. 
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• We characterized the phenotype of the knockout mutant using macroscopic 

observations, followed by epi-fluorescent microscopy and confocal microscopy. 

 

3.1  Identification of SepF homologues in S. coelicolor 

 

In order to identify potential SepF homologues encoded in the S. coelicolor 

genome we performed a Blast search (Figure 3.2) using the SepF amino acid sequence 

from B. subtilis (UniProt O31728) and StrepDB (http://strepdb.streptomyces.org.uk ) 

a Streptomyces database that allows access to gene sequence data for several 

Streptomyces species. In S. coelicolor, we found three SepF homologues, encoded by 

genes SCO1749, SCO2079 and SCO5967, which are given the names as sep1, sepF2 

and sepF3, respectively.  When the genome sequencing of Streptomyces was 

completed (Bentley et al., 2002), gene annotation assigned a SCO number to each 

gene, starting numbering from one end of the chromosome to the other. Therefore, 

these SCO numbers also indicate chromosomal locations of genes. In this thesis, I 

often use these SCO numbers without the SCO prefix. The 213 amino acids long S. 

coelicolor SepF2 (2079) exhibited the greatest level of sequence identity with the B. 

subtilis SepF (151 amino acids), despite the fact that SepF1 (1749) and SepF3 (5967) 

have a similar amino acid length (151 amino acids; Figure 3.2).  

Figure 3.2. Homologues of SepF encoded in the S. coelicolor genome. 
The amino acid sequence of SepF (UniProt O31728) from B. subtilis was used in a BlastP 
search against the translated S. coelicolor genome. There are three SepF homologues found 
encoded in the S. coelicolor genome. 
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Gene sepF1 (1749) and sepF2 (2079) are located in the core region of S. 

coelicolor chromosome and sepF3 (5967) is located in the arm region (Figure 3.3). S. 

coelicolor has a very large genome that contains many duplicated genes, therefore it 

is not surprising that there are multiple sepF-like genes. However, we did not find 

multiple copies of the key cell division genes such as ftsZ and divIVA in S. coelicolor 

chromosome. In addition, sepF2 (2079) is located in the cell division gene cluster 

containing the essential cell division gene ftsZ. This might suggest that the role of 

Figure 3.3. The S.coelicolor genome (Bentley et al., 2002) highlighting the position of the 
three sepF genes. 
(A) Gene sepF1 (SCO1749) and sepF2 (SCO2079) are located in the core region of S. 
coelicolor chromosome (dark blue) and sepF3 (SCO5967) is located in the arm region (light 
blue). (B) Comparisons of the three SepFs of S. coelicolor. 
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SepF2 potentially is more linked to the role of FtsZ assembly during cell division. We 

carried out sequence alignment between the three SepF homologues encoded within 

S. coelicolor genome sequence from StrepDB (strepdb.streptomyces.org.uk) and 

SepF from B. subtilis (Table 3.1) using the software  Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/ ). SepF1 encoded by 1749 shares 50.6% 

identity with S. coelicolor SepF2 encoded by 2079 while SepF3 encoded by 5967 

shares less identity with SepF2, that is 32.35%. SepF1 and SepF2 share the highest 

level of sequence identity amongst the three S. coelicolor homologues (Figure 3.4; 

Table 3.1).  Interestingly, the residues that are involved in the interaction with FtsZ 

are conserved amongst all three SepFs of S. coelicolor (Figure 3.4). The SepF 

homologue with the greatest sequence identity to the B. subtilis SepF is S. coelicolor 

SepF2 (2079) with 29.8% identity (Figure 3.5; Table 3.1). 
 

Figure 3.4. Protein sequence alignment of the three SepF homologues from S. coelicolor. 
(*) indicates positions which have a conserved residue, (:) represents conservation 
between groups of amino acids with strongly similar properties, and (.) indicates 
conservation between groups with weakly similar properties. The sequence alignment was 
generated using Clustal Omega 

(http://www.ebi.ac.uk/Tools/msa/clustalo/). Residues AK and F that are implicated in the 
interaction with FtsZ are highlighted (Gupta et al.; 2015) 
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The comparison of the three S. coelicolor SepFs highlighted areas of 

conservation (Figure 3.4). The residues that are involved in the interaction between 

FtsZ and SepF have been described in B. subtilis and in Mycobacterium smegmatis 

(Duman et al., 2013; Gupta et al., 2015). Interestingly, these residues are conserved 

in all three Streptomyces SepFs suggesting that all three SepFs might be able to 

interact with FtsZ.  

Table 3.1. Sequence identity resulting from the amino acid sequence alignments between 
SepF homologues identified in S. coelicolor (sepF1, sepF2 and sepF3) and sepF in B. subtilis.  
 

 sepF2 sepF1 sepF3 B. subtilis 

sepF2 100% 50.00% 32.35% 29.80% 

sepF1 50.00% 100% 33.33% 23.74% 

sepF3 32.35% 33.33% 100% 21.32% 

B. subtilis 29.80% 23.74% 21.32% 100% 

 

Figure 3.5. Protein sequence alignment of the SepF homologues from B. subtilis (B. su) and 
SepF2 (SCO2079) from S. coelicolor (sepF2). (*) indicates positions which have a conserved 
residue, (:) represents conservation between groups of amino acids with strongly similar 
properties, and (.) indicates conservation between groups with weakly similar properties. 
The sequence alignment was generated using Clustal Omega 
(https://www.ebi.ac.uk/Tools/msa/clustalo/ ). Residues that are involved in FtsZ biding are 
highlighted (Gupta et al., 2015; Duman et al, 2013). 

sepF2 MAGAMRKMAVYLGLVEDDGYDGRGFDPDDDFEPELDPEPERDHRRHEPAHQSHGAHQSQR
B.su       -MSMKNKLKNFFS-MEDEEY-----------EYEYIET----------ERESHEEHEQK-

.  .*:  ::. :**: *           * *               ::**  *:.: 

sepF2 DEEVRVVQPPAQREPMPRAASLAAESSRPARIAPVASITQERASLEKSAPVIMPKVVSER
B.su       -------EKPA------------YNGNKPAGKQNVV------------------SLQSVQ

: **             :..:**    *.                  .: * :

sepF2 EPYRITTLHPRTYNEARTIGEHFREGTPVIMNLTEMDDTDAKRLVDFAAGLVFGLHGSIE
B.su       KSSKVVLSEPRVYAEAQEIADHLKNRRAVVVNLQRIQHDQAKRIVDFLSGTVYAIGGDIQ

:  ::.  .**.* **: *.:*:::   *::** .::. :***:*** :* *:.: *.*:

sepF2 RVTQKVFLLSPANVDVTAEDKARIAEGGFFNQS*
B.su       RIGSDIFLCTPDNVDVSGTISELISEDEHQRW--

*: ..:** :* ****:.  .  *:*. . .   
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Next, we were looking for the genes surrounding the sepF genes. In bacteria 

gene density is very high and genes that are involved in the same biological process 

often form operons and are located adjacent to each other in the chromosome. The 

gene sepF2 (2079) is located in the conserved position within the cell division gene 

cluster between ftsZ and divIVA (Figure 3.6). Upstream of sepF2 is 2080, which 

encodes a protein that shares a high level of homology with alanine racemases, finally 

2081, which encodes a laccase, and 2082, which encodes FtsZ. Downstream of sepF2 

is 2077, which encodes DivIVA, a cytoskeletal protein involved in polar growth and 

branching (Flardh, 2003), and 2078, encoding a small hypothetical membrane protein 

(Figure 3.6A). Analysis of the gene organisation around sepF1 identified upstream of 

sepF1, 1746 encoding a secreted serine protease, 1747 encoding a conserved 

hypothetical protein and 1748 encoding a probable transcriptional regulator. 

Downstream of sepF1 is 1750 encoding a probable acyl-CoA dehydrogenase and 1751 

encoding a putative transmembrane transport protein.  

 

Figure 3.6. Gene organisation containing three sepFs and their surrounding genes. 
A. Gene organization of sepF1(1749) and its surrounding genes. Gene sepF1 is located on 
the reverse strand of core region in chromosome, shortly downstream of sepF2.  
Gene organization of sepF2(2079) and its surrounding genes with their respective lengths 
(bp), which is involved in targeting studying in this thesis. sepF2 gene is situated on the 
reverse strand of the core region in chromosome of S. coelicolor.  
C. Gene organization of sepF3(5967) and its surrounding genes. Gene sepF3 is situated on 
the forward strand of the right arm of chromosome.  
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These five surrounding genes all maintain a reverse orientation compared to 

sepF1 (Figure 3.6 B). Upstream of sepF3 is 5964 which encodes a putative membrane 

protein, 5965 which encodes a putative integral membrane protein and 5966 

encoding a putative oxidase. Downstream of sepF3 is 5968, which encodes a putative 

bldA-regulated nucleotide binding protein and 5969 encoding a conserved 

hypothetical protein. Among these five surrounding genes of sepF3, 5068 and 5069 

are in the same orientation as sepF3, so these including seF3 might form an operon 

(Figure 3.6 C). None of the genes surrounding sepF1 or sepF2 have been characterised. 

As SepF2 is encoded in the gene cluster that includes the cell division gene ftsZ and 

the gene for the cytoskeletal polarity determinant protein, DivIVA, we decided to 

focus our work on sepF2.  

 

Figure 3.7. The distribution of SepF proteins amongst prokaryotes. SepF is well 
represented amongst the Phylae Firmicutes, Actinobacteria and Cyanobacteria according 
to the PFAM search (https://pfam.xfam.org/family/PF04472.1). Interestingly, SepFs are 
also found amongst Archaea.  
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Intriguingly, although SepF is widely represented amongst some bacterial 

phyla such as the Actinobacteria and Firmicutes, it is also absent in some, such as 

Proteobacteria. Interestingly, SepF is present amongst Archaea (Figure 3.7). We then 

compared the three SepFs of S. coelicolor with some SepF proteins of the 

Actinobacteria phylum, where Streptomyces also belongs. Sequence alignment for 

selected SepFs showed quite poor conservation amongst these actinomycete 

sequences (Figure 3.8), which is a bit surprising. SepF1 and SepF2 from S. coelicolor 

have more similarity to each other than SepF3 (Table 3.1). In this research, we 

focused on the SepF protein encoded by sepF2 in the ftsZ – divIVA cell division gene 

cluster.  

In addition, the percentage of identity increased when we omitted the 

Bifidobacterium and Corynebacterium sequences (Figure 3.9). The sequence identity 

between SepF2 of S. coelicolor and M. tuberculosis is 40.59% that is expectedly much 

higher than between the Streptomyces SepF2 and SepF of B. subtilis (29.80%). In this 

work I characterised only one of the sepF genes, sepF2, therefore in future 

descriptions I simply refer to sepF rather than sepF2. 
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Figure 3.8.  Sequence alignment of actinobacterial SepFs. The sequences shown, together with 
the uniprot numbers in brackets, are the following: SCsepF1, Streptomyces coelicolor (Q9EWX7); 
SCsepF2, Streptomyces coelicolor (Q9S2X2); SCsepF3, Streptomyces coelicolor (Q93JG0); Msme, 
Mycobacterium smegmatis mc2 (A0R008); Mtub, Mycobacterium tuberculosis H37Rv (P9WGJ5); 
Cglu, Corynebacterium glutamicum (Q8NNN6); Cdip, Corynebacterium diphtheriae (Q6NGD3); 
Pacn, Propionibacterium acnes (Q6A9P7); Blon, Bifidobacterium longum (Q8G7W6); Basu, B. 
subtilis (O31728). (A) The sequence alignement was generated using Clustal Omega 
(https://www.ebi.ac.uk/Tools/msa/clustalo/). (*) indicates positions which have a conserved 
residue, (:) represents conservation between groups of amino acids with strongly similar 
properties, and (.) indicates conservation between groups with weakly similar properties. (B) 
Simple phylogenetic tree generated using the same software (Clustal Omega). 
  

A 
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We also tested the gene organization around the sepF gene in different 

bacteria that possess sepF gene. We used BLAST searches and also the KEGG 

database (http://www.genome.jp/kegg/) for establishing gene syntheny amongst 

the microorganisms (Figure 3.9). Amongst the Actinobacteria, the gene order and 

organization between ftsZ and sepF was highly conserved, with two genes in between, 

encoding an alanine racemase and a putative copper binding protein, encoded by 

SCO2080 and SCO2081, respectively in S. coelicolor. Not surprisingly, in B. subtilis the 

gene organization is somewhat diverged. However, even here the arrangement of 

sepF and the two upstream genes are maintained, with the ftsZ gene located 7 genes 

more upstream and with an additional gene downstream of sepF (Figure 3.10).  

Figure 3.9. Sequence alignment of actinobacterial SepFs. The sequences shown, together 
with the uniprot numbers in brackets, are the following: Scoe, Streptomyces coelicolor 
(Q9S2X2); Msme, Mycobacterium smegmatis mc2 (A0R008); Mtub, Mycobacterium 
tuberculosis H37Rv (P9WGJ5); Pacn, Propionibacterium acnes (Q6A9P7).  
The sequence alignment was generated using Clustal Omega 
(https://www.ebi.ac.uk/Tools/msa/clustalo/ ). (*) indicates positions which have a 
conserved residue, (:) represents conservation between groups of amino acids with 
strongly similar properties, and (.) indicates conservation between groups with weakly 
similar properties. 
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3.2  Generation of the S. coelicolor sepF mutant strain 

 

The sepF mutant strain was generated using REDIRECT© PCR-directed 

mutagenesis (Gust et al., 2002). The gene sepF was knocked out by replacing it with 

an apramycin resistance disruption cassette. To generate a sepF gene knockout 

mutant, an apramycin resistance cassette containing 40 bp flanking regions that are 

homologous to the flanking regions of sepF gene can be used to disrupt the target 

gene (Figure 3.11).  Once the disruption cassette was generated using PCR, it was 

used to replace the sepF gene with the apramycin resistance gene via homologous 

Figure 3.10. Gene organization of S. coelicolor, M. tuberculosis, C.  glutamicum, P. acnes, 
B. longum and B.subtilis. Identical colour represents homologous protein products as 
identified using BLAST searches and the KEGG database.  

ftsZ 2081 2080 2078sepF divIVA

ftsZ Rv2149c Rv2148c Rv2146c divIVAsepF

ftsZ PPA0762 PPA0764 divIVAsepF

ftsZ Ncgl2074 Ncgl2073 Ncgl2071 divIVAsepF

ftsZ BL0120 divIVAsepF

ftsZ ylmD ylmE divIVAsepF
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C. glutamicum

B. longum
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B. subtilis ylmG ylmH
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recombination between the PCR generated cassette and the appropriate cosmid DNA 

that carried sepF and its surrounding genes in E. coli. The homologous recombination 

is promoted by the lambda RED recombinase. After the recombination event the 

cosmid that now contained the sepF null allele was introduced to Streptomyces using 

conjugation. As the cosmid itself cannot replicate in Streptomyces, it can only 

recombine with the chromosomal DNA generating a double crossover, full gene 

knock out (Figure 3.12). 

The apramycin resistant cassette with oriT from plasmid pIJ773 was excised 

from pIJ773 using restriction enzymes EcoRI and HindIII and then purified from 0.7% 

SepF KO FRW 

SepF KO2 REV 

Figure 3.11. PCR amplification of the ampramycin resistant cassette from PIJ773 for gene 
2080 knockout using primers SepF KO FRW and SepF KO2 REV. The apramycin resistant 
cassette contained an oriT site, an apramycin resistance gene, and FLP recognition targets 
(FRT) required to excise the resistance marker. Primers were used containing DNA 
complementary to the DNA sequences (20 nt) of the template and DNA complementary to 
sequences flanking the region of DNA we wanted to replace (40 nt). PCR was used to create 
the disruption cassettes with appropriate combinations of primers (Gust, et al., 2002). 
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ApraRoriT

FRT

FRT

40nt 20nt

40nt20nt

ApraRoriT
FRT

FRT

40nt40nt
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agarose gel using gel extraction. This apramycin resistance disruption cassette  

(~1.3kb)  from pIJ733 was PCR amplified using the primers SepF KO FRW and SepF 

KO2 REV which are complimentary to the flanking sequences of target for knockout 

gene sepF (Figure 3.11). The resulting PCR product was then desalted using a self-

made mini gel filtration column. This PCR product of apramycin cassettes produced 

for the knockout of sepF was analysed on a 0.7% agarose gel (Figure 3.13) which 

confirmed that PCR reactions resulted in correct amplification of the expected ~ 1.3 

kb extended apramycin cassette.  

Figure 3.12. Knock out design for the generation of the sepF null mutant in S. coelicolor. 
In a cosmid containing sepF and its flanking genes, the sepF gene was replaced with an 
apramycin resistance cassette (Apra R) (A). Then the resulting cosmid (B) was conjugated 
into S. coelicolor (C). The apramycin resistance cassette replaced the sepF gene in S. 
coelicolor chromosome (D) after a double crossover event (B-D). 
 

ApraR

ftsZ 2081 2080 sepF 2078 divIVA

KanaR
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The cosmid 4A10, containing S. coelicolor chromosomal DNA that carried the 

sepF (sepF2) gene and its surrounding genes, was used to target the apramycin 

resistance disruption cassette. The cosmid 4A10 was transformed into the E. coli 

strain BW25113 carrying pIJ790 plasmid, which encoded the phage lambda RED 

recombinase (λ RED) genes gam, bet and exo which are transcribed by the L-

arabinose inducible promoter ParaBAD. The λ RED recombinase allows the homologous 

recombination between the flanking regions of the extended apramycin resistance 

cassette and flanking regions of target gene in order to replace the target gene with 

the cassette (Datsenko and Wanner, 2000). 

The apramycin resistance disruption cassette was then electroporated into 

the E. coli strain BW25113 carrying the S. coelicolor cosmid 4A10. The addition of L-

arabinose to the media growing the E. coli BW25113 cells causes expression of the 

recombinase enzyme which initiates a homologous recombination event between 

the flanking regions of the apramycin resistance cassette and the reciprocal sequence 

Figure 3.1.3. A. Amplification of apramycin disruption cassette using primers SepF KO 
FRW and SepF KO2 REV for knockout of gene sepF. 
Gel analysis of the PCR amplification of apramycin disruption cassettes for the targeted 
knockout of sepF2 (lane 4) using lambda DNA cut with EcoRI and HindIII as a molecular 
weight marker (lane 1). For this chapter, the product in lane 4 was produced using primers 
SepF KO FRW and SepF KO2 REV. Lanes 2 and 3 are not relevant here. 

1      2       3      4       5      6      7       8
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flanking the gene sepF. The plasmid pIJ790 contains a temperature sensitive origin of 

replication which results in its loss when the BW strain is grown at temperatures 

higher than 30oC.  Therefore, after the disruption cassette was transformed into the 

BW25113, cells containing the 4A10 cosmid obtained from the transformation were 

plated onto LB containing apramycin, to select for successful recombination events 

and grown at 37oC to induce the loss of pIJ790. We picked several single apramycin 

resistant transformants, extracted the cosmid DNA from the cultured single colony 

using large scale cosmid extraction to obtain the cosmid DNA that had been disrupted.  

To confirm the replacement of the sepF gene by the apramycin cassette in the 

cosmid, a restriction digest of the extracted cosmid DNA was conducted using EcoRI 

and XbaI enzymes. An “in-silico” restriction digest map was generated (Figure 3.14) 

using ARTEMIS (Rutherford et al., 2000) highlighting the fragment sizes (Table 3.2). 

The in silico design confirmed that if the mutant cosmid was successfully generated, 

using EcoRI and XbaI enzymes we expected the wild-type ~20 kb fragment to be 

replaced by three fragments of ~12 kb, 7.8 kb and 1.3 kb in the mutant cosmid. The 

wild-type 4A10 cosmid digest generated four fragments between 5-20 kb, which 

corresponded to the sizes determined by the restriction map (Figure 3.15). According 

to the restriction maps the 20 kb fragment should be absent in the knockout gene 

cluster whilst the 6.7 kb, 8 kb and 14 kb fragments should remain uniform. This was 

confirmed in the knockout cosmid indicating that the apramycin cassette had been 

successfully incorporated within the targeted gene cluster. In the mutant cosmid the 

20 kb fragment was replaced by four new fragments, three of which were visible on 

the gel. A 1.3 kb fragment, representing the apramycin cassette, could be seen 

further confirming its incorporation into the cosmid (Figure 3.15). 
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Table 3.2. The expected fragments that are generated by restriction digest using 
endonucleases EcoRI and Xbal of the wild-type 4A10 cosmid and 4A10/sepF::ApraR 
cosmid. Shaded fragments represent those that remain the same in both cosmid digests. 

 
4A10 4A10/sepF::ApraR
20714 -

14318 14318

- 12320

8145 8145

- 7830

6792 6792

- 1288

- 34

Figure 3.15. Confirmation of the mutant cosmid 4A10/sepF::ApraR using restriction digest 
with EcoRI and Xbal. The restriction digest of the extracted cosmids were run on a 0.7% 
agarose. The wild-type 4A10 cosmid (lane 2) and two 4A10/sepF::ApraR cosmids (lane 3 
and 4) were digested with EcoRI and Xbal and the digests were analysed on a 0.7% 
agarose gel. Lambda DNA cut with EcoRI and HindIII was used as a molecular weight 
marker (Lane 1), sizes shown in bp. The 1.3 kb fragment carrying the apramycin resistance 
cassette is shown by the orange arrow. The gel images represent the same gels. The 
bands with an arrow were too weak to be visible, so I over exposed the gel in the image 
on the right to detect this band. 
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After confirmation of the cosmid 4A10/sepF::ApraR, it was transformed into 

a methylation-deficient E.coli strain ET12567/pUZ8002 and then conjugated into the 

wild-type S. coelicolor strain, M145 (Figure 3.15 B). Selection of exconjugants 

containing the apramycin cassette was achieved by overlaying the plates using 

apramycin to which the mutant strain is resistant. We also used nalidixic acid to kill 

the E. coli bacteria. However, the selection using apramycin was not able to 

differentiate between the desired double crossover event and single crossover event. 

The double crossover event generates a single copy of the gene cluster including the 

knockout mutation and the single crossover event results in two copies of the gene 

locus, one wild-type and the other carrying the knockout mutation. To distinguish 

colonies that had undergone a double crossover event and thus contain a single copy 

of the gene cluster without the sepF gene, we used replica plating to identify colonies 

that were sensitive to kanamycin but resistant to apramycin. It was very difficult to 

identify double crossover recombinants, as the presumed sepF mutants did not 

produce enough spores and therefore could not be transferred well using replica 

plating. Instead, we picked colonies from the primary conjugation plates that did not 

transfer during replica plating and streaked them onto SFM plates with apramycin 

and tested them also on SFM plates with kanamycin. The selected colonies identified 

as potential double crossovers were streaked on SFM medium with a cellophane 

layer on top and streaked for making stock for future analysis. As the potential sepF 

mutants were sickly and appeared not to sporulate, we did not attempt to collect 

spores, instead we collected whole cells from the top of the cellophane after 5-6 days 

growth and stored the mycelia in a special storage medium at -20oC. 
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3.3 Confirmation of the S. coelicolor sepF mutant strain 

 

To confirm whether the sepF gene was successfully replaced with the 

apramycin resistant disruption cassette in the chromosome of S. coelicolor, we 

performed PCR tests using different primer pairs using chromosomal DNA from wild-

type and the sepF mutant strains. We extracted chromosomal DNA from cells grown 

on the surface of cellophane on SFM medium. In the PCR test we also included the 

original cosmid 4A10 and the mutant cosmid 4A10/sepF::ApraR as controls. 

Firstly, we used two external flanking primers of the sepF gene, one (SepF 

XbaBgl Prom FRW) located upstream of the sepF gene and the other (SepF 3’ END) 

situated downstream of the sepF gene. With these two primers, a PCR product will 

be generated using both wild-type and the ∆sepF mutant chromosome extracts but 

with different sizes. The size of the apramycin disruption cassette (~1.3kb) is larger 

than size of sepF (642bp) therefore the PCR product generated from the chromosome 

or cosmid of the sepF mutant (1773bp) will be larger than the PCR product generated 

from chromosome or cosmid from the wild-type (922 bp) (Table 3.3 and Figure 3.16). 

In the second PCR, we used SepF KO2 REV, which was used to generate the knockout, 

which means that it can prime at the 3’ end of the apramycin resistant cassette (Table 

Table 3.3. The expected sizes of PCR fragments using selected oligo pairs in wild-type strain 
and sepF mutant strain. 
```````` 

Oligos Size in wild-type Size in ∆sepF mutant

SepF XbaBgl Prom FRW
SepF 3’END

922 bp 1773 bp

SepF XbaBgl Prom FRW
SepF KO2 REV

- 1518 bp
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3.3 and Figure 3.16). The pairs SepF XbaBgl Prom FRW and SepF KO2 REV were used 

to generate PCR product only in the ∆sepF mutant strain. The expected size of PCR 

fragments are shown in Table 3.3. The PCR products were run on a 0.7% agarose gel 

(Figure 3.17). 

Figure 3.16. Confirmation of the sepF mutant using PCR. 
(A) The primer SepF XbaBgl Prom FRW and sepF 3’ END were used to generate PCR 
products to test whether the sepF gene was successfully replaced with the apramycin 
resistant disruption cassette in the chromosome of S. coelicolor. The expected sizes of PCR 
products showed difference in wild-type strain M145 and sepF mutant strain due to the 
replacement of apramycin resistant cassette (Apra R cassette). (B) The primers SepF 
XbaBgl Prom FRW and SepF KO REV will generate a PCR product only in the sepF mutant. 
 

2080 sepF2

SepF XbaBgl Prom FRW SepF 3 ’ END
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2078
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mutant
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When using the flanking primers, SepF XbaBgl Prom FRW and SepF 3’ END we 

generated two distinct PCR products corresponding to the expected sizes (Figure 3.17 

lanes 2-5 and Table 3.3) depending whether wild-type or mutant DNA was used as 

templates.  Importantly, there were no wild-type sized PCR products using the 

mutant DNAs confirming that the knockout strain does not contain the wild-type 

allele. When using the primers SepF XbaBgl Prom FRW and SepF KO2 REV, we only 

generated PCR product of the expected size when mutant DNA was used as a 

template (Figure 3.17 lanes 6-9 and Table 3.3). This is expected as the SepF KO2 REV 

primer will anneal to the apramycin resistance cassette that is only present in the 

mutant DNA.  

 

Figure 3.17. Confirmation of the sepF knockout mutant. Chromosomal DNA and 
relevant cosmid DNA was used as templates in PCR reactions. 
Lane 1: Lambda DNA digested with EcoRI and HindIII, sizes shown in bp. Lane 2 and 
lane 6: wild-type M145 chromosome; Lane 3 and lane 7: ∆sepF mutant chromosome; 
Lane 4 and lane 8: 4A10 cosmid; Lane 5 and lane 9: 4A10/sepF::ApraR cosmid.  
Lanes 2-5 were tested using primers SepF XbaBgl Prom FRW and SepF 3’END.  
Lanes 6-9 were tested using primers SepF XbaBgl Prom FRW and SepF KO2 REV.  
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3.4 The S. coelicolor sepF mutant strain has a severe developmental 

phenotype  

 

3.4.1 Analysis of the macroscopic phenotype of the sepF mutant strain 

 

To determine the macroscopic phenotype of the sepF mutant strain, it was 

plated onto SFM medium along with the wild-type control, M145. The spores were 

plated in a triangle shape with all the triangles of equal size to ensure that 

development was unaffected by the plating. Development is linked to nutrient 

depletion so it is important to make sure that each confluent triangle has access to 

the same nutrients. The plate then was grown at 30oC and it was observed daily 

(Figure 3.18). After one day (~24hrs), we can observe the matt appearance layer of 

the bacteria which corresponded to the development of vegetative hyphae of both 

the wild-type and the sepF mutant strains. After two days (~48-50hrs) of 

development, the colonies of both strains showed a developed fuzzy and white 

morphology which was consistent with growth of aerial hyphae. In this stage, the 

wild-type M145 strain exhibited faster growth than the sepF mutant strain and 

started to show divergence in development. After three days (~72hrs), the sepF 

mutant strain and wild-type M145 strain had obvious difference in development. The 

wild-type M145 strain presented classic grey pigment associated with mature spores 

that is produced at the end of the life cycle. After three days (~72hrs), similar to the 

most severe division mutants, the sepF mutant presented a white phenotype, which 

suggests that the sepF mutant was blocked for sporulation. After four days, the sepF 

mutant produced large amounts of the blue pigmented antibiotic, actinorhodin that 

typically is secreted into the surrounding medium in the wild-type strain. However, 

the sepF mutant not only secreted blue actinorhodin into the medium but it produced 

blue aerial hyphae suggesting that the actinorhodin was either produced in the aerial 

hyphae or it is diffused there. The fact that the sepF mutant failed to become grey 

even after 5-6 days incubation suggested that the sepF mutant failed to produce 

spores in the final stages.  
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Figure 3.18. Macroscopic phenotype analysis of the sepF mutant strain. 
Wild-type M145 and the sepF mutant strain were plated in a triangle patch on a plate 
using SMF medium. The plate was incubated and monitored at regular time intervals 
(A) 1 day, (B) 2 days, (C) 3 days and (D) 4 days. It was observed that wild-type 
developed faster than the sepF mutant and produced grey pigment associated with 
spore maturation. The sepF mutant failed to become grey suggesting that it failed to 
sporulate. Unlabelled strain is not related to this experiment. 
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3.4.2 Analysis of the sepF mutant phenotype using microscopy 

 

To confirm that the sepF mutant failed to sporulate we performed microscopy 

analysis of the wild-type M145 strain and sepF mutant. We monitored hyphal 

morphology during vegetative growth and we particularly focussed on the 

developmental stage when the aerial hyphae transform into spore chains.  The 

microscopic phenotype of wild-type M145 strain acted as a control representing the 

different developmental stages from vegetative growth, aerial growth and 

sporulation. The spores of wild-type M145 strain were inoculated as patches onto 

SFM plates. Then we embedded sterilized glass coverslips at a 70° angle from 

horizontal plain of the medium into the inoculation streak line and grew the plates at 

30oC. In order to monitor different stages of growth during cell differentiation in S. 

coelicolor, we stained the samples that adhered to the coverslips collected at 

different time points during growth and then detected the phenotype using epi-

fluorescence microscopy. To properly visualise the formation of septa and 

segregation of chromosomes, we stained the cells using two dyes: wheat germ 

agglutinin (WGA) Alexa Flour® 488 and propidium iodide (PI). Wheat germ agglutinin 

(WGA) Alexa Flour® 488 emits green fluorescence when excited at 488nm and it has 

affinity to the cell wall, particularly newly synthesized cell wall stains more intensely. 

Propidium iodide is a DNA intercalator and its emission is at ~530nm, generating red 

fluorescence. Wild-type strain was monitored microscopically to act as a comparison. 

The first sample was collected and stained using WGA and PI after 42 hours of 

inoculation. At this early stage, we detected branching hyphal growth of wild-type 

M145. Using the staining we can detect vegetative crosswall formation in the 

vegetative hyphae, which separates compartments within the hyphae (Figure 3.19). 

The PI stained chromosomes (red) show continuous signal that is interrupted at the 

site of crosswall formation. The even staining of the chromosomes does not allow us 

to distinguish individual chromosomes within the hyphae (Figure 3.19). 
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 After two days (48hrs - 50hrs) of growth, the wild-type strain developed aerial 

hyphae that can be recognised by non-branching and curly hyphae (Figure 3.20 A). 

The early aerial hyphae have even DNA staining (Figure 3.20 A) suggesting that the 

individual chromosomes were not separated. Later, there is some sign of DNA 

organisation as the DNA stain displays small packages of red staining. At this stage 

there is no septation yet and the cell wall stain is less effective in staining the cell wall. 

This might be because of changes in the cell wall of the aerial hyphae that becomes 

covered by a hydrophobic coat, including the chaplins and rodlins. These aerial 

hyphae then underwent sporulation septation together with chromosome 

segregation into the developing pre-spore compartments. The multiple septa, which 

were detected using the WGA-Alexa 488 stain, were laid down in the aerial hyphae 

Figure 3.19. Microscopy of vegetative hyphae of the wild-type M145 strain. 
Spores of the wild-type strain M145 were plated on SFM medium and incubated at 30oC 
before staining with PI (red-DNA) and WGA-Alexa 488(green-cell wall). The vegetative 
hyphae grew to straight style with slightly curves and developed branches hyphae. We 
can see vegetative cross-wall appearing in the vegetative hyphae, which then disrupt 
the chromosomal DNA staining. Size bar represents 1µm. 
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as ladder-like structure. At the same time, the chromosomes have undergone 

complete segregation with clear gaps between each individual DNA and each single 

chromosome were enclosed within a single pre-spore compartment (Figure 3.20 C 

and D). Synthesis of the new septum starts as a ring which is seen in the confocal 

microscopy image shown in Figure 3.4.2.2D. The pre-spore compartments underwent 

maturation to produce mature spores with thickened cell wall (not shown).  As we 

were focusing on the event of the initiation of septation, we did not characterise late 

septation.  

C 
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Figure 3.20. Fluorescent microscopy showing the developmental stages when the aerial 
hyphae transformed into spore chains  in the wild-type strain M145. 
Spores of the wild-type strain M145 were plated on SFM medium  and incubated at 30oC 
before staining with PI (red-DNA) and WGA-Alexa 488 (green-cell wall). Size bar 
represents 1µm.  
(A) Stage 1. Growth of the aerial hyphae with coiling tips; (B) Stage 2. The chromosomes 
start to condense but not yet fully separated; (C-D) Stage 3. The regular septa placed in 
the hyphae separating individual chromosomes.  (A-C) epi-fluorescence microscopy; (D) 
confocal microscopy. 
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To assess the sepF mutant phenotype, we stained cells of the sepF mutant 

strain after 40 hours of growth using WGA Alexa 488 and PI and observed it using 

fluorescent microscopy. We found that the sepF mutant was severely blocked in 

Figure 3.21.  The phenotype of the sepF mutant.  
The sepF mutant was plated on SFM medium and incubated at 30oC before staining with 
PI (red-DNA) and WGA-Alexa 488 (green-cell wall). Size bar represents 1µm.  
(A) Vegetative hyphae including branching but no sign of cross-wall formation. (B-D) 
Aerial hyphae of the sepF mutant lack septation but chromosome condensation and 
segregation are detectable.  
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crosswall formation at the stage of vegetative growth (Figure 3.21 A), when we can 

easily detect vegetative crosswalls in the wild-type strain (Figure 3.19). We did not 

find any crosswalls after testing ~20 independent slides. However, after 48 hours we 

did find that vegetative hyphae are compartmentalised. We do not know whether 

this means that the sepF mutant can, even if inefficiently, generate some crosswalls 

eventually or whether what we observed as crosswalls were generated by a different 

mechanism.  At 48 hours after inoculation, the wild-type M145 strain exhibited 

sporulation where single chromosomes condensed into pre-spore compartments and 

separated by septa. The sepF mutant strain exhibited only DNA condensation and 

partial segregation in aberrant shapes (Figure 3.21 B and C) but did not form 

sporulation septa. Old samples of 3-5 days did produce deformed spore-like 

Figure 3.22. Spore-like structures of old samples of the sepF mutant. 5 days old 
samples grown on SFM medium were stained and visualised using fluorescence 
microscopy. Top: phase contrast image; Middle: WGA-alexa 488 staining of cell wall; 
Bottom: DNA staining using PI.  Size bar represents 1 µm. 
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structures (Figure 3.22), with longer spore compartments than the wild-type strain. 

Interestingly, the septa that was stained in these spore-like chains were spiral shaped, 

unevenly positioned and very irregular (Figure 3.22). This confirms that SepF is a key 

contributor of normal septum development and lack of SepF prevents normal septum 

formation in Streptomyces. 

In summary, microscopic analysis of the sepF mutant strain revealed that its 

ability to generate septa is severely affected, which is consistent with the white 

appearance of its macroscopic phenotype. However, the absence of sporulation 

septation did not block chromosome segregation in the aerial hyphae, which suggests 

that chromosome segregation does not rely on septum formation.  

 

3.5 Complementation of the sepF mutant strain 

 

3.5.1 Complementation using construct containing sepF and different 

upstream sequences 

 

To ensure that the discernible non-sporulating phenotype of the sepF mutant 

was caused by the deletion of the sepF gene rather than some other genetic mutation 

during the generation of the knockout mutant, we carried out complementation 

experiment with different DNA fragments containing the sepF gene. If introduction 

of the complementing DNA fragment into the mutant strain in trans restored the 

wild-type phenotype, we can confirm that the mutant phenotype was caused by the 

absence of the sepF gene. However, we don’t have precise information about the 

positions where transcription of sepF is initiated. There are 128 bp between the end 

of the upstream gene 2080 and the translational start of sepF. We decided to create 

two complementing constructs in the first instance, one construct (named ∆P-sepF, 

as later established) contained the entire sepF gene and 128 bp upstream sequences 

and the other construct (named 2080-sepF) that carried the sepF gene and ~848 bp 

upstream sequences that included the promoter-less 2080 gene (Figure 3.23).  
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The plasmid pMS82 integrates at the ΦBT1 attachment site in the S. coelicolor 

chromosome (Gregory et al., 2003), so each chromosome contains a single copy of 

the plasmid with a hygromycin resistance gene. This allows selection of the presence 

of this plasmid in the apramycin resistant sepF mutant strain.  

The primers SepF XbaBgl Prom FRW and SepF 3’END were used to amplify the 

∆P-sepF (978bp) fragment using cosmid 4A10 as a template. Similarly, primers 2080 

Xba Nde FWR and SepF 3’ END were used to create the 2080-sepF (1643 bp) fragment 

(Figure 3.24). Then these two complementing fragments were ligated into the EcoRV 

site of pMS82. The ligation mixes for pMS82/∆P-sepF and pMS82/2080-sepF were 

transformed into E. coli DH5α and grew on media LB (no salt) containing hygromycin. 

We screened the transformants using colony PCR with primers SepF XbaBgl Prom 

FRW and SepF 3’END (Figure 3.25). Then the positive colonies were used for large 

scale plasmid preparation. Sequencing of the cloned fragments was used to confirm 

the successful generation of the complementation constructs pMS82/∆P-sepF and 

pMS82/2080-sepF.    
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After confirming the successful constructs, we transformed these two 

constructs into the non-methylating E. coli strain ET12567/pUZ8002 and then 

conjugated them into the sepF mutant to create ∆sepF/pMS82/∆P-sepF and 

∆sepF/pMS82/2080-sepF. The empty vector pMS82 was also conjugated into the 

sepF mutant in order to generate a control strain, ∆sepF/pMS82 to ensure that vector 

does not affect the complementation. The exconjugant strains were then processed 

to generated spore preparations.  

Figure 3.24. Complementation strategy. A. Fragment ∆P-sepF (978 bp) containing the 
sepFgene and ~128 bp upstream sequence. B. Fragment 2080-sepF (1643 bp) containing the 
sepFgene and ~848 bp upstream sequence. 

sepF
978bp

ftsZ 2081 2080 2078sepF divIVAA

sepF XbaBgl FRW sepF 3’END

sepF2080
1643bp

ftsZ 2081 2080 2078sepF divIVA�

2080 Xba Nde FRW sepF 3’END

∆P-sepF 

2080-sepF 

SepF 

SepF 

sepF
978bp

SepF 
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To assess whether constructs pMS82/∆P-sepF and pMS82/2080-sepF 

complemented the sepF mutant strain we first analysed the phenotype using 

macroscopic observations (Figure 3.26). The wild-type control M145/pMS82, the 

mutant control strain ∆sepF/pMS82, together with the complementation test strains, 

∆sepF/pMS82/∆P-sepF and ∆sepF/pMS82/2080-sepF were streaked in a triangle 

shape of equal size on SFM medium containing hygromycin. These strains were 

incubated at 30oC and their development was monitored daily. After one day, we 

detected that all of these strains developed vegetative hyphae presenting a brownish 

layer on the medium and the mutant control strain ∆sepF/pMS82 showed much 

slower growth than the other three strains (Figure 3.264 A). After two days, strains 

began to generate fuzzy white aerial hyphae (Figure 3.26 B). At three days after 

inoculation of spores, ∆sepF/pMS82/∆P-sepF and ∆sepF/pMS82/2080-sepF started 

to produce grey pigments similarly to the wild-type strain M145/pMS82 (Figure 3.26 

C). After four days, the control strain, ∆sepF/pMS82 still exhibited white/blue 

phenotype and lacked the grey pigments associated with mature spores whilst the 

Figure 3.25. Colony PCR for testing the transfomants. (A) Testing the putative pMS82/∆P-
sepF constructs using primers indicated (red). Lane 1: λ EcoRI-HindIII ladder; Lane 3-16: 
each lane represents a PCR product from a single colony. Lane 2: Positive control using the 
4A10 cosmid as template. (B) Testing the putative pMS82/2080-sepF constructs using 
primers indicated (red). Lane1: λ EcoRI-HindIII ladder, Lane 3-16: each lane represents a 
PCR product from a single colony. Lane 2: Positive control using the 4A10 cosmid as 
template. The positive colonies that were selected are circled. 
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other three strains developed grey mature patches (Figure 3.26 D). This suggested 

that the sepF mutant strain was complemented by both constructs.   

However, to confirm full complementation, further microscopic analysis was 

needed. We inoculated ∆sepF/pMS82/∆P-sepF and ∆sepF/pMS82/2080-sepF 

alongside a coverslip inserted into SFM medium containing hygromycin and hyphae 

were visualized at 48 hours when the wild-type strain shows regular septation. 

Figure 3.26. Macroscopic analysis of the complementation. The positions of the different 
strains are shown using the illustration in the middle. 
The strains were plated in a triangle patch on SMF medium containing hygromycin. The 
plates were incubated and monitored at regular time intervals (A) 1 day, (B) 2 days, (C) 3 
days and (D) 4 days.  
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Interestingly, in spite of the fact that the macroscopic observations showed grey 

patches, the aerial hyphae of ∆sepF/pMS82/∆P-sepF failed to produce regular 

septation (Figure 3.27). Instead, we observed uneven spore compartments with 

deformed, spiral-shaped septum formation and uneven chromosome distribution. 

Occasionally a small DNA patch was trapped at the deformed septum (Figure 3.27). 

This suggested that the construct pMS82/∆P-sepF did not complement the sepF 

Figure 3.27. Fluorescent microscopy of strain ∆sepF/pMS82/∆P-sepF. After 48 hours of 
growth on SFM medium containing hygromycin the ∆sepF/pMS82/∆P-sepF strain was stained 
with PI (red-DNA) and WGA-Alexa 488 (green-cell wall). A, B, C, D all show growth in aerial 
hyphae. All images were generated using confocal microscopy. Size bar represents 1µm.   
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mutation. On the other hand, the ∆sepF/pMS82/2080-sepF strain showed wild-type 

septation evenly distributed along the aerial hyphae (Figure 3.28). For comparison, 

Figure 3.28. Fluorescent microscopy of ∆sepF/pMS82/2080-sepF. After 48 hours of growth on 
SFM medium containing hygromycin the ∆sepF/pMS82/2080-sepF strain was stained with PI 
(red-DNA) and WGA-Alexa 488 (green-cell wall). A, B, C, D all show growth in aerial hyphae. 
(A) epi-fluorescence microscopy (B-D) confocal microscopy. Size bar represents 1µm. 
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see wild-type sporulation septation in Figure 3.20 D. This confirmed that the 

pMS82/2080-sepF construct fully complemented the sepF mutation. 

 

3.5.2 Complementation of the sepF mutant using construct P-sepF 

 

In previous complementation experiments, the sepF mutant was only partially 

complemented by pMS82/∆P-sepF but was fully complemented by pMS82/2080-

sepF, suggesting that the 128 bp sequence upstream of the sepF gene was not 

sufficient for normal SepF expression, but the 848 bp upstream sequence did contain 

the promoter(s) of sepF. However, the pMS82/2080-sepF construct contained the full 

2080 gene and we wanted to exclude the possibility that the complementation was 

affected by the presence of the 2080 gene. Therefore, we tried to shorten the 

upstream sequences. During our efforts, research from Jeong and colleagues (2016) 

identified transcriptional start points for all S. coelicolor genes using RNA seq analysis. 

This work has identified two transcriptional start points for sepF. Interestingly only 

one of the transcriptional start point was included in the pMS82/∆P-sepF construct, 

which explains why this construct failed to fully complement the sepF mutant. Our 

Figure 3.29. Generation of construct P-sepF (1199 bp) to complement the sepF mutant.  
This construct contains gene sepF and its putative promoters.  

sepF putative promoters P1 and P2 (sepFp)

sepF
1199bp

sepFp

ftsZ 2081 2080 2078sepF divIVA

SepFp2 Xba Bgl FRW SepF 3’END

P1P2
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final construct carrying P-sepF was designed to contain both promoters according to 

Jeong et al. (2016). This fragment was amplified from the 4A10 cosmid using primers 

SepFp2 Xbagl FRW and SepF 3’ END by PCR (Figure 3.29). The PCR product was 

consequently introduced to the EcoRV site of pMS82 Single colonies, which 

potentially contained the fragment P-sepF were tested using colony PCR with primers 

SepFp2 Xbagl FRW and SepF 3’ END by PCR (Figure 3.30). One of the positive colonies 

was used to generate a large plasmid preparation that was confirmed using 

sequencing.  

 

 

After transformation of pMS82/P-sepF into the E. coli strain 

ET12567/pUZ8002 and conjugation into the sepF mutant strain we created the strain 

∆sepF/pMS82/P-sepF. To analyse the macroscopic appearance of the colonies, the 

∆sepF/pMS82/P-sepF strain was compared to the wild-type M145 and the sepF 

mutant strains (Figure 3.31). After 48 and 72 hours of growth, the ∆sepF/pMS82/P-

sepF patch resembled the wild-type patch, developing the characteristic grey surface, 

Figure 3.30. Colony PCR for testing the transfomants. Testing the putative pMS82/P-sepF 
constructs using primers indicated (red).  Lane 1: λ EcoRI-HindIII ladder, Lane 2-19: each 
lane represent a PCR product from a single colony. Lane 20: Positive control using the 4A10 
cosmid as template. The positive colony that was selected is circled. 
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while the sepF mutant stayed white.  This suggested that the sepF mutant was 

successfully complemented by the pMS82/P-sepF construct. 

Microscopy analysis confirmed the full complementation by pMS82/P-sepF 

(Figure 3.32). Regularly spaced septation identical to that of the wild-type strain was 

observed when development of ∆sepF/pMS82/P-sepF was monitored. This confirms 

that the upstream DNA fragment in pMS82/P-sepF was sufficient for normal sepF 

expression. 

  

 

 

 

Figure 3.31. Monitoring morphological development for testing complementation. The 
wild-type strain (left) the sepF mutant (middle) and the ∆sepF/pMS82/P-sepF (right) are 
grown on SFM medium. The plates were incubated and monitored after 48h and 72h 
growth. 
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Figure 3.32 Fluorescent microscopy of ∆sepF/pMS82/P-sepF After 48 hours of growth on 
SFM medium containing hygromycin the ∆sepF/pMS82/P-sepF strain was stained with PI 
(red-DNA) and WGA-Alexa 488 (green-cell wall). (A) shows growth in vegetative hyphae; 
(B, C) show development in aerial hyphae. All images were generated using epi-
fluorescence microscopy.  Size bar represents 1µm. 
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3.6 Summary 

 

In this chapter, we begun the characterization of one of the SepF homologues 

of S. coelicolor.  

• Bioinformatic searches identified three SepF homologues in S. coelicolor, one of 

which is encoded within the ftsZ – divIVA gene cluster. We analysed the gene 

organisation around the sepF genes in S. coelicolor and in other bacteria. Some of 

the neighboring genes and gene organisation were conserved not only amongst 

the Actinomycetes but also in B. subtilis. 

• Using PCR targeting, we have generated a sepF knockout mutant of S. coelicolor 

and confirmed the mutant by analysis of its chromosomal DNA by PCR. 

• The sepF mutant has a white, non-sporulating phenotype, and this was confirmed 

by using microscopic analysis. Neither vegetative cross-wall formation nor 

sporulation septation was detected in the sepF mutant, suggesting that SepF was 

required for septum formation.  In B. subtilis, the sepF mutant is not blocked in 

septation and only the late stages of septum formation is affected.  However, in 

addition to SepF B. subtilis has FtsA and ZipA, while Streptomyces lacks these two 

latter proteins. This might explain why the sepF mutant phenotype is more severe 

in Streptomyces and also in Mycobacterium, which also lacks FtsA ans ZipA. 

• To test whether the sepF mutant phenotype was indeed due to the absence of 

SepF, we attempted complementing the knockout mutant using three different 

constructs. We could fully complement the sepF mutant using two of the 

constructs, whilst the third construct, which contained presumably only one of 

the promoters of sepF, only partially complemented the sepF mutant. 
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Chapter 4 Localisation of SepF protein in vivo 

 

Introduction 

 

In S. coelicolor, FtsZ is a component of the cytoskeleton for cell division and 

septum formation. This protein is a bacterial tubulin homologue and is vital for two 

processes: the occasional cross-wall formation during filamentous growth and 

synchronous septa formation resulting in the compartmentalisation of aerial hyphae 

into spores (Jakimowicz and van Wezel, 2012). The crosswall formation in the 

vegetative hyphae does not lead to cell-cell separation and division. During 

sporulation the synchronous formation of 50-100 septa is followed by separation of 

the pre-spore compartments into ovoid spores, which can disperse. We know that 

FtsZ is involved both in the vegetative cross wall formation and also in sporulation 

septation. However, it is not known, why the first process fails to lead to cell-cell 

separation, whilst during sporulation division is completed. It is likely that the 

difference between these two septation process lies in differences of the proteins 

that are recruited by FtsZ to the developing septum. FtsZ recruits components of the 

so called “divisome” that are involved in the synthesis of the developing septum. The 

divisome components include FtsK, FtsQ/DivIB, FtsL, FtsB/DivIC, FtsW and FtsI 

(McCormick and Flardh, 2012) but these proteins have not been fully characterised.  

A high level of coordination is needed to recruit the FtsZ protein at specific sites 

on the membrane of the aerial hyphae before FtsZ can polymerise in the presence of 

GTP into the regularly spaced Z-rings that are often described as FtsZ ladders 

(Grantcharova et al., 2005). In Streptomyces the only protein that has been shown to 

position FtsZ is the SsgB protein (Willemse et al., 2011), which is shown to positively 

regulate FtsZ polymerisation. SsgB belongs to an actinomycete-specific protein family 

(Keijser, et al., 2003) and it has been shown to co-localise with FtsZ in vivo (Willemse 

et al., 2011). In the absence of SsgB, FtsZ fail to form rings, and cells don’t initiate 
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sporulation.  

The proteins that stabilise FtsZ filaments in B. subtilis include FtsA, ZapA and SepF 

(Duman et al., 2013). However, Streptomyces lacks both FtsA and ZapA, but has SepF, 

in fact it has three SepF proteins (see Chapter 3). This protein has been found to be 

conserved across Gram-positive bacteria with sepF disruption resulting in cell division 

impairment (Singh et al., 2008). Electron microscopy has shown that SepF 

polymerises into rings which bundle FtsZ into structures similar to eukaryotic 

microtubules at the midpoint of the cells (Gundogdu et al., 2011).  

One main contrast to FtsZ in S. coelicolor compared to that in in rod-shaped 

bacteria is that the protein is not completely necessary for the bacterium’s survival, 

with a knockout mutation of ftsZ not being lethal to the bacterium. An ftsZ knockout 

mutant of S. coelicolor develops slower than the wild-type and it does not develop 

grey colonies indicative of sporulation, instead the ftsZ null mutant stays white even 

after prolonged incubation (McCormick et al., 1994; Celler et al., 2013). The sepF 

mutant generated in Chapter 3 has a similar phenotype to the ftsZ mutant. The sepF 

mutant failed to develop dark grey pigments that are associated with sporulation and 

the surface of the colonies stayed white with some blue colouration, which is the blue 

actinorhodin antibiotic, although very old samples did develop some elongated spore 

like structures. The fact that the sepF mutant phenotype is similar to the FtsZ 

phenotype suggests that SepF might have a key role in FtsZ polymerisation to produce 

the FtsZ-rings. Therefore, we wanted to have in vivo data on the cellular localisation 

of SepF in S. coelicolor during differentiation. FtsZ has been localised in S. coelicolor 

using translational fusion to Enhanced Green Fluorescent Protein (EGFP) by 

introducing an FtsZ-EGFP fusion in addition to the native ftsZ gene. Fluorescence 

microscopy revealed that FtsZ polymerised into rings at regular intervals along the 

aerial hyphae prior to sporulation. This ‘ladder’ like organisation was not observed in 

the vegetative hyphae, however here the protein was found to localise to the sites 

where vegetative cross-wall was formed (Grantcharova et al., 2005). SepF has only 
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been localised in B. subtilis with the protein accumulating at the sites of cytokinesis, 

(Hamoen et al., 2006). The suggested model positions SepF to the FtsZ-ring after the 

initial invagination of the cell membrane (Duman et al., 2013). This would mean that 

SepF is positioned after FtsZ polymerisation. However, in S. coelicolor the sepF mutant 

phenotype is much more severe that of in B. subtilis, where lack of SepF had an effect 

on the late stages of septum formation. We therefore wanted to monitor SepF 

localisation in S.coelicolor to establish the timing of SepF localisation compared to 

FtsZ-ring formation. We also wanted to assess SepF localisation together with 

monitoring the chromosomal DNA, using specific dye the DNA intercalating agent, 

propidium iodide. This will allow us to test whether SepF localisation precedes 

chromosome condensation and separation in the sporulating hyphae. Streptomyces 

is thought not to have a nucleoid occlusion system, which would suggest that SepF 

and FtsZ might localise “over” not separated nucleoid. However, it is conceivable that 

chromosomes begin their separation, even if they don’t fully complete separation, at 

the time of FtsZ and SepF localisation. If this was the case, a nucleoid occlusion could 

exist in Streptomyces.  

In this chapter we present localisation studies of SepF in S. coelicolor using 

Enhanced Green Fluorescent Protein, an altered version of the Green Fluorescent 

Protein gene found in the fluorescent Jellyfish Aequorea victoria and has been 

described as an efficient reporter in Streptomyces by Sun et al. (1999). The REDIRECT© 

protocol described by Gust et al. (2002), uses a PCR based approach to knock out 

gene function in S. coelicolor. Our experiment will instead modify this process to fuse 

EGFP carboxy-terminally to SepF. We will generate SepF-Egfp fusion using three 

different approaches: 

• First, we replaced the wild-type sepF gene with the sepF-egfp gene in S. coelicolor 

using the modified REDIRECT technology. In the generated strain there is a single 

copy of sepF-egfp gene at the original chromosomal location. To confirm that the 



 103 

sepF-egfp fusion is fully functional, we assessed the phenotype of this strain to 

confirm that its development was indistinguishable from the wild-type strain.  

• Our second and third approach made use of the sepF-egfp fusion generated using 

the REDIRECT technology. We used PCR to amplify and clone sepF-egfp also 

including upstream sequences of two different lengths, for potential promoter 

sites, using the pMS82 plasmid that integrates into a specific chromosomal 

location in the S. coelicolor genome. In these approaches we had the wild-type 

sepF gene at its native location and an additional sepF-egfp copy at a different (in 

trans) genetic location. To confirm that (a) the sepF-egfp fusion was functional 

and (b) the cloned fragments carried the promoters for sepF transcription, we 

used these constructs to complement the sepF null mutant. Full 

complementation of the sepF null mutant using the clones carrying the sepF-egfp 

fusion will indicate that the fusion (a) is fully functional and (b) expresses SepF-

Egfp as in its native location.    

 

4.1 Localisation of SepF-EGFP using the knock in construct sepF-egfp. 

 

4.1.1 Generation of the knock-in construct in E. coli. 

 

To determine the localisation of SepF in S. coelicolor, a SepF-EGFP translational 

fusion was created and expressed at its native location in the chromosome as the only 

copy of SepF. To express the egfp (enhanced green fluorescent protein), we fused it 

to the 3’ end of sepF gene. This was conducted through an extended PCR cassette 

(Figure 4.1) that allows the insertion of the egfp-ApraR cassette at the 3’end of the 

gene via recombination. To allow for selection of generated fusion, the cassette 

included an apramycin resistance gene (ApraR).  
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Extended egfp-ApraR cassette was created by PCR using primers SepF FWR and 

SepF REV, in such a way that the product had 40 bp extensions corresponding to the 

targeted genomic location. The PCR product was analysed on 0.7% agarose gel (Figure 

4.2). The bright band in lane 4 corresponds to the expected 2.2 kbp PCR product 

corresponding to the extended cassette for targeting the sepF gene.  

 

 

 

 

Figure 4.1. Design of the egfp-ApraR cassette for delivering successful recombination at 
the 3’ end of the sepF gene. Primers SepF FRW and SepF REV containing sequences from 
both the sepF and egfp-ApraR cassette, were used to generate an extended cassette. 

sepF STOP

egfp ApraR

40nt 40nt20nt 20nt

SepF FRW SepF REV

egfp ApraR40nt 40nt
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After the PCR product was obtained, we electroporated it into E. coli BW25113 

cells containing the cosmid 4A10 which contains the region of S. coelicolor genome 

encoding the cell division gene cluster. The recombination between the 40 bp long 

extensions of the PCR cassette and the same 40 bp regions at the 3’ end of the sepF 

gene in the cosmid 4A10 generated the sepF-egfp fusion, which was selected for by 

plating the E. coli cells onto LB containing apramycin. The cosmid DNA was extracted 

of cells from one of these apramycin resistant colonies and then the cosmid was 

digested using restriction enzymes EcoRI and XbaI to determine whether the egfp-

ApraR cassette was correctly inserted to the 3’ end of sepF gene. Theoretical fragment 

lengths for the EcoRI/XbaI reaction were determined by constructing restriction maps 

of the 4A10 cosmid and the 4A10/sepF::sepF-egfp-ApraR (Figure 4.3).  

Figure 4.2. Gel electrophoresis of the sepF PCR cassette. Lane 1: Lamba DNA digested with 

EcoRI and HindIII, sizes are shown in bp. Lane 4: sepF specific PCR cassette. Lane 2 and lane 

3 are not related to this experiment. 



 106 

 

Fi
gu

re
 4

.3
. 

Re
st

ric
tio

n 
m

ap
s 

of
 4

A1
0 

co
sm

id
 a

nd
 4

A1
0/

se
pF

::s
ep

F-
eg

fp
-A

pr
aR

 co
sm

id
. 

Th
e 

co
sm

id
 d

ra
w

in
g 

is
 n

ot
 t

o 
sc

al
e.

 E
co

RI
 

re
st

ric
tio

n 
si

te
s a

re
 m

ar
ke

d 
as

 re
d 

da
sh

es
, w

ith
 p

os
iti

on
 (i

n 
bp

) g
iv

en
 a

nd
 w

ith
 fr

ag
m

en
ts

 o
f t

he
 E

co
RI

/X
ba

I d
ou

bl
e 

di
ge

st
 p

re
se

nt
ed

 in
 

m
ap

 B
. 

 
 

49
99
9

Ec
oR

I
Ec
oR

I

Xb
al

Xb
al

Ec
oR

I
Ec
oR

I

14
31
4

22
45
9

20
81

20
80

14
31
4

81
45

92
48

12
00

12
26
5

67
91

4A
10
/s
ep

F:
:s
ep

F-
eg

fp
-A
pr
aR

43
20
8

0

A B

se
pF
-e
gf
p

A
pr
aR

4A
10

49
99
9

0

Ec
oR

I
Ec
oR

I
Ec
oR

I
Ec
oR

I

14
31
4

22
45
9

20
81

20
80

se
pF

43
20
8

14
31
4

81
45

67
91

20
68
8

A B



 107 

The gel image (Figure 4.4) confirms the 4 different fragments for the 4A10 cosmid 

(lane 2), 20688 bp, 14314 bp, 8145 bp and 6791 bp. The fragments generated from 

the cosmid 4A10/sepF::sepF-egfp-ApraR (lane 4) confirms that three fragments, 

14314 bp, 8145 bp and 6791 bp, are unchanged compared to fragments of cosmid 

4A10 . However, the 20688 bp fragment of cosmid 4A10 is replaced by three different 

fragments in the cosmid 4A10/sepF::sepF-egfp-ApraR (lane 4), namely 12265 bp, 

9284 bp and 1200 bp. The expected 12265 bp, 9284 bp fragments are clearly 

detectable whilst the 1200 bp fragment, although there, is marked by the red arrow 

to aid detection. The presence of these bands in 4A10/sepF::egfp-ApraR suggests that 

the cassette was successfully inserted to the correct location.  

 

 

Figure 4.4. Restriction digest using EcoRI and XbaI enzymes. Cosmid 4A10 (lane 2) and 

4A10/sepF::sepF-egfp-Apra (lane 4). Ladder (Lambda digested with EcoRI and HindIII) was 

loaded into lane 1 to act as a molecular marker, labels are given (bp). Red arrow marks 

position of 1200 bp bands. Lane numbers were given.  
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Once the methylation deficient E. coli ET12567 had been successfully 

transformed with cosmid 4A10/sepF::sepF-egfp-ApraR using electroporation with the 

construct, it was used to move the cosmid DNA into S. coelicolor M145 using 

conjugation. Due to the possibility of two different recombination events occurring 

within the exconjugants, they had to be selected for. Single crossover events would 

result in the bacterium possessing the egfp tagged gene along with another copy of 

the wild type 4A10 cosmid. These colonies would be resistant to both kanamycin and 

apramycin. Double crossover events would result in the bacterium possessing only 

the Egfp tagged gene, therefore these colonies would only be resistant to apramycin. 

Replica plating onto LB containing nalidixic acid + kanamycin and LB containing 

nalidixic acid + apramycin was used to determine which colonies were single or 

double crossovers. Nalidixic acid was included in the medium to kill E. coli after the 

conjugation. We have collected spores from both representative single and double 

crossover strains. Interestingly, the single crossover strains, where in addition to the 

sepF-egfp copy a wild-type sepF gene was also present together with a duplication of 

all other cosmid genes, were very sickly and formed very small colonies. This might 

be because of gene dosage effect of cell division genes or other genes present on the 

4A10 cosmid. The double crossover strains, where the wild-type sepF gene was 

replaced by the sepF-egfp allele, looked phenotypically wild-type. This suggested that 

SepF-Egfp fusion protein was functional and the fusion did not have a polar effect on 

downstream genes. Due to the poor growth of the single crossovers, only the double 

crossovers were characterised using microscopy. 
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4.1.2 Microscopic visualisation of SepF-EGFP in the wild-type strain 

 

The double crossover strain S. coelicolor M145/ sepF::sepF-egfp-ApraR was used 

to monitor the localisation pattern of SepF-Egfp throughout the life cycle of S. 

coelicolor. S. coelicolor spores were inoculated onto SFM medium in a rectangular 

patch and microscope coverslips were inserted at a ~70° angle to the horizontal plane 

of this patch. Hyphae were grown at 30oC and then stained using propidium iodide 

(PI) to allow staining the chromosomes and samples were visualised at regular 

intervals during the different stages of development. The first sample was collected 

after 42 hours so that SepF-Egfp localisation could be observed in the vegetative 

hyphae (Figure 4.5).  

During vegetative hyphae, SepF-Egfp presents as discrete irregular foci localising 

throughout the hyphae. During this stage of development, the chromosomes remain 

uncondensed and unsegregated as demonstrated by the DNA stain PI. However, while 

the majority of chromosomes are unsegregated, there are occasional gaps in the 

chromosomal staining and some irregular staining that might suggest local changes 

in chromosome organisation within the hyphae. Interestingly, often these gaps or 

changes in chromosomal staining coincide with the appearance of the SepF-Egfp foci. 

(Figure 4.5) suggesting that SepF-Egfp localizes to patches devoid of DNA. This raises 

the question whether SepF is actively involved in organizing the chromosomes or 

whether SepF localizes to DNA free positions. The latter would mean that DNA 

organisation might be a positional cue for SepF localisation. As the available cell wall 

dye, wheat germ agglutinin Alexa-488, emits green fluorescence, it was not possible 

to establish whether any of the SepF-Egfp foci localise to the positions where 

vegetative crosswalls were formed.  
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The second sets of samples were collected and stained using PI after 46-48 hours 

to observe SepF localisation in the developing aerial hyphae (Figures 4.6-4.8). The 

fluorescence images shows that in the early stages of aerial hyphae development, 

when the chromosomal DNA was still largely uncondensed and septal synthesis had 

Figure 4.5. Monitoring of SepF-EGFP localisation in vegetative hyphae using epi-

fluorenscence microscopy. The M145/ sepF::sepF-egfp-ApraR strain was grown for ~42 

hours on SFM medium, then were stained using PI for DNA visualisation and viewed using 

a x100 lens (A) phase contrast image, (B) SepF-Egfp, green (C) DNA, red. (D) Overlayering 

of the red and green channels. Size bar represents 1 µm.
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not yet initiated, as assessed by the phase contrast images, SepF-EGFP begun to form 

regular foci along the aerial hyphae (Figures 4.6-4.8). Most of the signals are lines 

perpendicular to the hyphal axis, although there are some tilted patterns, too. Careful 

comparison of the SepF-Egfp signal and the red DNA staining confirmed the previous 

finding in the vegetative mycelium that SepF-Egfp was found at places devoid of DNA 

staining. Whilst the ladder-like regular SepF-Egfp signal is very similar to the FtsZ rings 

developing in the sporulating aerial hyphae, the resolution of the epi-fluorescence 

microscopy did not allow us to confirm that the green signal perpendicular to the 

hyphal axis was indeed a ring viewed from the side. 

In order to get higher resolution images of SepF-Egfp localisation, we used 

confocal microscopy to visualise SepF-Egfp. We prepared samples after 48 hours of 

growth and stained as before (4.9-4.10)  
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Figure 4.6. Monitoring of SepF-EGFP localisation in early aerial hyphae using epi-

fluorenscence microscopy. The M145/ sepF::sepF-egfp-ApraR strain was grown for ~46 

hours on SFM medium, then were stained using PI for DNA visualisation and viewed 

using a x100 lens (A) phase contrast image, (B) SepF-Egfp ,green (C) DNA , red. (D) 

Overlayering of the red and green channels. Size bar represents 1 µm.
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Figure 4.7. Monitoring of SepF-EGFP localisation in early aerial hyphae using epi-

fluorenscence microscopy. The M145/ sepF::sepF-egfp-ApraR strain was grown for ~46 

hours on SFM medium, then were stained using PI for DNA visualisation and viewed 

using a x100 lens. (Left) SepF-Egfp, green (Middle) DNA , red. (Right) Overlayering of the 

red and green channels. Size bar represents 1 µm.
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Figure 4.8. Monitoring of SepF-EGFP localisation in early aerial hyphae using epi-

fluorenscence microscopy. The M145/ sepF::sepF-egfp-ApraR strain was grown for ~46 

hours on SFM medium, then were stained using PI for DNA visualisation and viewed using 

a x100 lens (A) phase contrast image, (B) SepF-Egfp, green (C) DNA, red. (D) Overlayering 

of the red and green channels. Size bar represents 1 µm.  

A B 

C D 
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Figure 4.9. Monitoring of SepF-EGFP localisation in early aerial hyphae using confocal 

microscopy. The M145/ sepF::sepF-egfp-ApraR strain was grown for ~46 hours on SFM 

medium, then were stained using PI for DNA visualisation and viewed using a x63 lens. 

(Left) SepF-Egfp, green (Middle) DNA, red. (Right) Overlayering of the red and green 

channels. Size bar represents 1 µm. Yellow solid arrows represent SepF-Egfp rings and 

dashed arrows point at spiral SepF-Egfp patterns.
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In both confocal images (Figures 4.9 and 4.10) we can easily identify SepF-Egfp 

ring structures, which confirms that SepF, just as FtsZ, does form rings at the time of 

sporulation in Streptomyces. Interestingly, we can also find spiral SepF-Egfp 

Figure 4.10. Monitoring of SepF-EGFP localisation in early aerial hyphae using confocal 

microscopy. The M145/ sepF::sepF-egfp-ApraR strain was grown for ~46 hours on SFM 

medium, then were stained using PI for DNA visualisation and viewed using a x63 lens. (Left) 

SepF-Egfp, green (Middle) DNA , red. (Right) Overlayering of the red and green channels. Size 

bar represents 1 µm. Dashed arrows (yellow) point at spiral SepF-Egfp patterns .
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intermediates, presumably these later coalesce into rings. Spiral intermediates have 

also been found when monitoring FtsZ (Gundogdu,2011; Krol et al., 2012), suggesting 

that SepF localisation is very similar to FtsZ localisation.   

 

4.2 SepF-EGFP localisation by introducing sepF-egfp in trans  

 

4.2.1 Generation of a sepF-egfp clone with a large upstream sequence 

including the coding region of 2080 

 

In the previous section 4.1, we generated cosmid 4A10/sepF::sepF-egfp-Apra 

where the sepF gene was replaced by the sepF-egfp fusion. In Chapter 3 we fully 

complemented the sepF null mutant strain using the DNA fragment containing 2080-

sepF fragment, suggesting that this fragment carried the essentials for expression of 

sepF.  Therefore, we first created a plasmid construct carrying the 2080-sepF-egfp 

DNA fragment to further investigate the localisation of SepF-Egfp in the wildtype 

M145 strain. The fragment 2080sepF-egfp was amplified from the cosmid 

4A10/sepF::sepF-egfp-ApraR using primers 2080 Xba Nde FRW and mCherry Eco REV 

using PCR (Figure 4.11). The reverse primer, although designated as mCherry Eco REV, 

does prime on the egfp gene, as both mCherry and egfp have identical nucleotide 

sequences at their 3’ ends. The obtained PCR product 2080-sepF-egfp was introduced 

into the plasmid pMS82, which integrates as a single copy at a single chromosomal 

location in S. coelicolor. Once the construct was created, screened for using colony 

PCR (Figure 4.12) and confirmed by sequencing, pMS82/2080-sepF-egfp was then 

transformed into the non-methylating E. coli strain ET12567/pUZ8002 and 

conjugated into wild-type M145 strain. In order to test that the 2080-sepF-egfp 

fragment expressed a fully functional SepF-Egfp fusion, pMS82/2080-sepF-egfp was 

also introduced into the sepF knockout mutant strain. Exconjugants were selected 
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using hygromycin and at least two representatives of each strains, 

M145/pMS82/2080-sepF-egfp and ∆sepF/pMS82/2080-sepF-egfp were then 

processed to generate spore preparations.  

 

 

B 

A 

Figure 4.11. Design of the plasmid pMS82/2080-sepF-egfp. The fragment 2080-sepF-egfp 

was amplified from the cosmid 4A10/sepF::sepF-egfp-ApraR. (A) using primers 2080 Xba 

Nde FRW and mCherry Eco REV using PCR. The amplified fragment. (B) was introduced into 

the EcoRV site of plasmid pMS82 plasmid to generate pMS82/2080-sepF-egfp. 

2080

2188 bp

ftsZ 2081 2080 2078 divIVA

2080 Xba Nde FRW mCherry Eco REV

sepF-egfp ApraR

sepF-egfp
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4.2.2 Complementation of the sepF mutant with pMS82/2080-sepF-

egfp  

 

If the 2080-sepG-egfp fragment expresses a fully functional SepF-Egfp, then the 

strain ∆sepF/pMS82/2080sepF-egfp should have a wild-type phenotype. To test this, 

the spores of strains M145/pMS82/2080-sepF-egfp and strain ∆sepF/pMS82/2080-

sepF-egfp were streaked onto SFM medium containing hygromycin. Introduction of 

fragment pMS82/2080sepF-egfp into the sepF mutant strain restored sporulation 

and produced colonies indistinguishable from the wild-type (Figure 4.13). We also 

tested the strain ∆sepF/pMS82/2080-sepF-egfp using microscopic analysis by 

staining samples grown on SFM + hygromycin medium for 48 hours using the cell wall 

stain WGA-Alexa 488. We observed cross-wall development in vegetative hyphae and 

regular septation in the aerial hyphae of the ∆sepF/pMS82/2080-sepF-egfp strain 

very similar to that of the wild-type, which demonstrated that the sepF mutant was 

Figure 4.12. Colony PCR for testing the transfomants.  

Lane 1: λ EcoRI-HindIII ladder; lane 2-11: each lane represents a PCR product from a single 

colony; lane 12: Positive control using the 4A10/sepF::sepF-egfp-ApraR cosmid as 

template. 
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fully complemented by the pMS82 construct carrying 2080-sepF-egfp and that this 

fragment expressed a fully functional SepF-Egfp (Figure 4.14). 

 

 

 

 

 

 

A B 

Figure 4.13. Analysis of the macroscopic phenotypes of (A) ΔsepF/pMS82/2080-sepF-

egfp and (B) M145/pMS82/2080-sepF-egfp. Stocks were streaked onto SFM medium 

containing hygromycin and were grown for 4 days at 30oC. 
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4.2.3 Monitoring SepF-Egfp using pMS82/2080-sepF-egfp 

 

Epi-fluorescence microscopy was used to investigate SepF-EGFP localization in 

both M145/pMS82/2080-sepF-egfp and ∆sepF/pMS82/2080-sepF-egfp strains. 

Spores were inoculated onto SFM medium containing hygromycin in a rectangular 

patch and coverslips were inserted at a ~70° angle to the horizontal plane of the 

Figure 4.14. The microscopic analysis ∆sepF/pMS82/2080-sepF-egfp by staining samples. 

The ∆sepF/pMS82/2080-sepF-egfp strain was grown for ~48 hours on SFM+ hygromycin 

medium, then were stained using WGA-Alexa 488 for cell wall and PI for DNA visualisation 

and viewed using a x100 lens (A) phase contrast image; (B) Cell wall, green; (C) DNA , red; 

(D) Overlayering of the red and green channels. Size bar represents 1 µm.  
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medium. Hyphae were then visualized at regular intervals to sample the different 

stages of development. Samples were collected after 42, 46, 48 and 50 hours growth 

so that SepF-Egfp localisation could be observed at different stages of cellular 

development (Figures 4.15-4.20).  
 

 

 

 

Figure 4.15. Monitoring of SepF-EGFP localisation in a young aerial hyphae of 

M145/pMS82/2080-sepF-egfp using fluorenscence microscopy. The strain was grown for 

~46 hours on SFM medium containing hygromycin, then was stained using PI for DNA and 

viewed using fluorescence microscopy (A) Phase contrast image, (B) SepF-Egfp (green), (C) 

DNA (Red), (D) Overlayering of the red and green channels. Size bar represents 1 µm.
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Figure 4.16. Monitoring of SepF-EGFP localisation in a young aerial hyphae of 

M145/pMS82/2080-sepF-egfp using fluorenscence microscopy. The strain was grown for 

~46 hours on SFM medium containing hygromycin, then was stained using PI for DNA and 

viewed using fluorescence microscopy (A) Phase contrast image, (B) SepF-Egfp (green), (C) 

DNA (Red), (D) Overlayering of the red and green channels. Size bar represents 1 µm.
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Figure 4.17. Monitoring of SepF-EGFP localisation in a young aerial hyphae of 

M145/pMS82/2080-sepF-egfp using fluorenscence microscopy. The strain was grown for 

~46 hours on SFM medium containing hygromycin, then was stained using PI for DNA and 

viewed using fluorescence microscopy. (A) Phase contrast image, (B) SepF-Egfp (green), (C) 

DNA (Red), (D) Overlayering of the red and green channels. Size bar represents 1 µm.
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The SepF-Egfp localisation in strain M145/pMS82/2080-sepF-egfp displayed a 

very similar pattern as in the knockin strain, M145/ sepF::sepF-egfp-ApraR. During 

vegetative growth, SepF-Egfp localised to discrete irregular foci throughout the 

hyphae. In the early aerial hyphae (Figure 4.15) a strong diffuse green signal 

accumulated in the part of the aerial hyphae that was to become the spore chain. 

This suggested that in the sporogenic aerial hyphae SepF expression was upregulated, 

which first generated the diffuse green signal, which is then followed by the 

rearrangement of SepF-Egfp into regular rings, although the epi-fluorescent 

microscopy doesn’t allow us to fully visualise the rings. As before in the M145/ 

sepF::sepF-egfp-ApraR strain, in M145/pMS82/2080-sepF-egfp the SepG-Egfp “rings” 

are observed in the nucleoid-free zones in the aerial hyphae (Figure 4.15-4.17). 

Although at the time of the formation of the SepF-Egfp rings the chromosomes are 

not fully segregated, the PI staining does show patches of uneven DNA staining that 

suggests that the chromosomes started their re-organisation prior to sporulation. 

SepF-Egfp forms regular ring structures well before the chromosomes are fully 

segregated and the septa begin to form, but we cannot rule out the possibility that 

SepF localisation is controlled by nucleoid free zones.  

In the strain ∆sepF/pMS82/2080SepF-EGFP, SepF-EGFP localised in the same 

manner as in the wild-type strain, suggesting that the fact that SepF-Egfp was 

expressed at a different chromosomal location in this strain did not affect SepF 

function (Figure 4.18 – 4.20).  
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Figure 4.18. Monitoring of SepF-EGFP localisation in a young aerial hyphae of 

ΔsepF/pMS82/2080-sepF-egfp using fluorenscence microscopy. The strain was grown for 

~46 hours on SFM medium containing hygromycin, then was stained using PI for DNA and 

viewed using fluorescence microscopy. (A) Phase contrast image, (B) SepF-Egfp (green), (C) 

DNA (Red), (D) Overlayering of the red and green channels. Size bar represents 1 µm.
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Figure 4.19. Monitoring of SepF-EGFP localisation in a young aerial hyphae of ΔsepF 

/pMS82/2080-sepF-egfp using fluorenscence microscopy. The strain was grown for ~46 

hours on SFM medium containing hygromycin, then was stained using PI for DNA and 

viewed using fluorescence microscopy. (A) Phase contrast image, (B) SepF-Egfp (green), (C) 

DNA (Red), (D) Overlayering of the red and green channels. Size bar represents 1 µm.



 128 

 

 

Figure 4.20. Monitoring of SepF-EGFP localisation in a late development stage of aerial 

hyphae of ΔsepF /pMS82/2080-sepF-egfp using fluorenscence microscopy. The strain was 

grown for ~46 hours on SFM medium containing hygromycin, then was stained using PI 

for DNA and viewed using fluorescence microscopy. (A) Phase contrast image, (B) SepF-

Egfp (green), (C) DNA (Red), (D) Overlayering of the red and green channels. Size bar 

represents 1 µm.
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4.2.4 Generation of a sepF-egfp clone with a shorter upstream sequence  

The previous construct used to monitor SepF localisation contained a large DNA 

fragment upstream of the sepF gene to ensure all information needed for sepF 

expression. However, this construct then carried the 2080 gene, although without any 

of its promoters. We wanted to test whether we could use a shorter upstream 

sequence for sepF expression. We have not carried out any transcriptional mapping 

to determine the transcriptional start site(s). However, Y. Jeong et al (2016) have 

performed RNA seq to identify the transcriptional start sites for all the genes in S. 

coelicolor. Whilst none of the transcriptional starts were confirmed by independent 

methods, interestingly, they identified two potential transcriptional starts for sepF. In 

our design, we included both transcriptional starts and their putative promoters using 

primers sepFp2 Xbagl FRW and FP Eco REV, to amplify by PCR using the cosmid 

4A10/sepF::sepF-egfp-ApraR generated in chapter 4.2.1 (Figure 4.21). This fragment 

contained 343 bp upstream of the sepF translational start site. The PCR product was 

A 

B 

Figure 4.21. Design of the plasmid pMS82/P-sepF-egfp.  The fragment P-sepF-egfp was 

amplified from the cosmid 4A10/sepF::sepF-egfp-ApraR. (A) using primers SepFp2 XbaBgl 

FRW and FP Eco REV using PCR. The amplified fragment. (B) was introduced into the 

EcoRV site of plasmid pMS82 plasmid to generate pMS82/P-sepF-egfp. 

 

sepFp

1719 bp

ftsZ 2081 2080 2078 divIVAsepF-egfp ApraR

sepF-egfp

FP Eco REVSepFp2 XbaBgl FRW
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ligated into the EcoRV site of vector pMS82 and then transformed into E. coli DH5α 

strain. Then single colonies, which potentially contain the fragment P-sepF-egfp were 

tested by PCR using the same primers used to generate the fragment (Figure 4.22). 

After further confirmation by sequencing, we transformed pMS82/P-sepF-egfp into 

the non-methylating E. coli strain ET12567/pUZ8002 and conjugated into the wild-

type M145 strain and the sepF mutant strain to create strains M145/pMS82/P-sepF-

egfp and ∆sepF/pMS82/P-sepF-egfp. The exconjugants were used to generate spore 

stocks.  

To test whether this construct with a shorter upstream sequence fully expressed 

SepF we tested if this construct could complement the sepF knockout mutant. The 

strain ∆sepF/pMS82/P-sepF-egfp together with the control strains M145 and ∆sepF, 

both carrying the insert free pMS82 plasmid, were streaked in a triangle patch on 

plate SFM containing hygromycin. The fragment pMS82/P-sepF-egfp was introduced 

into the sepF mutant strain restored sporulation and spore viability (Figure 4.23). We 

Figure 4.22. Colony PCR for testing the transformants.  

Lane 1: Positive control using the 4A10/sepF::sepF-egfp-ApraR cosmid as template; lane 

2-7: each lane represents a PCR product from a single colony. Lane 7 shows the positive 

colony which contains the pMS82/P-sepF-egfp fragment. 
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also stained cells of ∆sepF/pMS82/P-sepF-egfp using WGA-Alexa 488 and observed 

cross wall development both in vegetative hyphae and aerial hyphae the same way 

as in the wild-type strain, which demonstrates that the sepF mutant is fully 

complemented by construct P-sepF-egfp (Figure 4.24). 

Fluorescence microscopy was used to investigate SepF-EGFP localisation in both 

wild-type M145 (Figures 4.25 - 4.27) and the sepF mutant. The cells were grown 

alongside a microscope coverslip as before and were grown ~46-48 hours in SFM 

medium containing hygromycin before stained using PI. Representative samples of 

M145/pMS82/P-sepF-egfp are shown (Figures 4.25 - 4.27), confirming that SepF-Egfp 

localisation using the pMS82/P-sepF-egfp construct was indistinguishable from SepF-

Egfp localisation observed using the pMS82/2080-sepF-egfp or the knock-in 

construct sepF::sepF-egfp-ApraR.  
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Figure 4.23. Analysis of the macroscopic phenotype of ∆sepF/pMS82/P-sepF-egfp. 

The ∆sepF/pMS82/P-sepF-egfp strain and control strains M145/pMS82 and ∆sepF/pMS82 

were streaked in a triangle patch onto SFM medium containing hygromycin. The plate was 

incubated at 30 oC and monitored at regular time intervals (A) 1 day, (B) 2 days, (c) 3 days 

and (D) 4 days. The sporulation that indicated by the dark grey spore pigment is restored by 

pMS82/P-sepF-egfp in strain ∆sepF/pMS82/P-sepF-egfp. The unlabeled strain is not related 

to this experiment. 
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Figure 4.24. The microscopic analysis ∆sepF/pMS82/P-sepF-egfp by staining samples. 

The ∆sepF/pMS82/P-sepF-egfp strain was grown for ~48 hours on SFM+ hygromycin 

medium, then were stained using WGA-Alexa 488 for cell wall and PI for DNA 

visualisation and viewed using a x100 lens. (A) phase contrast image; (B) Cell wall, 

green; (C) DNA , red; (D) Overlayering of the red and green channels. Size bar 

represents 1 µm. 
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Figure 4.25. Monitoring of SepF-EGFP localisation in a young aerial hyphae of 

M145/pMS82/P-sepF-egfp using fluorenscence microscopy. The strain was grown for ~46 

hours on SFM medium containing hygromycin, then was stained using PI for DNA and 

viewed using fluorescence microscopy. (A) Phase contrast image, (B) SepF-Egfp (Green), 

(C) DNA (Red), (D) Overlayering of the red and green channels. Size bar represents 1 µm. 
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Figure 4.26. Monitoring of SepF-EGFP localisation in a young aerial hyphae of 

M145/pMS82/P-sepF-egfp using fluorenscence microscopy. The strain was grown for ~46 

hours on SFM medium containing hygromycin, then was stained using PI for DNA and 

viewed using fluorescence microscopy. (A) Phase contrast image, (B) SepF-Egfp (Green), (C) 

DNA (Red), (D) Overlayering of the red and green channels. Size bar represents 1 µm. 
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Figure 4.27. Monitoring of SepF-EGFP localisation in a late aerial hyphae of M145/pMS82/P-

sepF-egfp using fluorenscence microscopy. The strain was grown for ~46 hours on SFM 

medium containing hygromycin, then was stained using PI for DNA and viewed using 

fluorescence microscopy. (A) Phase contrast image, (B) SepF-Egfp (G), (C) DNA (Red), (D) 

Overlayering of the red and green channels. Size bar represents 1 µm. 
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4.3 Summary  

 

In this chapter we generated SepF-Egfp translational fusions using three different 

constructs and approaches and monitored fluorescence during Streptomyces 

development.  

• The first approach generated S. coelicolor M145/ sepF::sepF-egfp-ApraR, where 

the sepF gene was replaced by the sepF-egfp fusion in the original chromosomal 

location. The strain M145/ sepF::sepF-egfp-ApraR had a wild-type phenotype, 

which confirmed that the SepF-Egfp fusion in this strain is fully functional. 

• The second and third approach introduced the sepF-egfp fusion using a plasmid 

that integrates into a specific chromosomal site in a single copy. Constructs 

pMS82/2080-sepF-egfp and pMS82/P-sepF-egfp contained 848 bp and 343 bp 

DNA upstream of the translational start of sepF, respectively. Introduction of both 

of these constructs into the sepF knockout mutant restored the wild-type 

phenotype. This confirms that SepF-Egfp is functional and expresses at native 

levels even when using the shortest, 343 bp upstream sequences. This suggests 

that in the plasmid pMS82/P-sepF-egfp contained all that was needed for sepF 

transcription, which was suggested by the RNA Seq data by Young et al., 2016.  

• Monitoring SepF-Egfp throughout the developmental cycle of the three different 

constructs of S. coelicolor generated the same localisation patterns. SepF-Egfp 

localised to positions of possible future cross-wall formation or septation in the 

vegetative and aerial mycelium, respectively. 

• SepF-Egfp formed a ring-like structures that was visualised using confocal 

microscopy and occasionally spiral-like patterns at the early stages. SepF-Egfp 

patterns looked like lines perpendicular to the hyphal wall using epi-fluorescence 

microscopy, or ladders in the aerial hyphae. When fully formed, these ladders had 

the ~1.2 µm spacing that is characteristic of the distance between sporulation 

septa. 
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• The SepF-Egfp ladders in the aerial hyphae formed well before any signs of 

septation and even chromosome segregation. However, SepF-Egfp signal were 

visible at places where there was less or no DNA staining, which might suggests 

that SepF localises to places devoid of DNA. 
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Chapter 5   Investigation of the role of ftsZ downstream genes, SCO2080  

 

Introduction 

 

During bacterial cell division, peptidoglycan synthesis needs to be 

coordinated with the increase of the cell size, timely genome replication and 

segregation and septum synthesis followed by cell fission. The prokaryotic cell 

division scaffold is formed by the tubulin homolog FtsZ (Bi and Lutkenhaus, 1991), 

which forms a contractile ring (or Z-ring) that mediates the recruitment of the cell 

division machinery to the mid-cell position (Goehring and Beck, 2005; Adams and 

Errington, 2009). In unicellular bacteria, cell division results in two identical daughter 

cells that each contain a single copy of the chromosome.  

Cell division in S. coelicolor is different from that in the other rod-shape 

unicellular bacteria such as E. coli, B. subtilis. It lacks the homologues of MinC and 

MinE (Marston et al., 1998; Autret and Errington, 2001), the Noc system and Z-ring 

anchoring proteins such as FtsA and ZipA (Errington et al., 2003; Lowe et al., 2004), it 

is yet unclear how exactly FtsZ polymers are positioned at regular intervals to 

produce the distinctive FtsZ-ring ladders during cell division. In the previous chapters 

we characterized sepF located within the ftsZ-divIVA gene cluster (Figure 3.6). But 

several other genes in this cluster of genes, namely SCO2080, SCO2081 and SCO2078 

have not been fully characterized.  We assumed that they might play some role in 

FtsZ-rings positioning during cell division. By analysing this gene cluster (Figure 3.6), 

SCO2077 encodes DivIVA, a cytoskeletal protein essential for polar growth and 

branching (Flardh, 2003), SCO2078 encodes a small hypothetical membrane protein, 

SCO2079 encodes SepF, SCO2080 encodes a protein that shares a high level of 

homology with alanine racemase, SCO2081 encodes a laccase and SCO2082 encodes 

FtsZ. The gene cluster containing these genes locates in core region of S. coelicolor 

linear chromosome and were defined as cell division gene cluster (Bentley et al., 

2002).  
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As we have seen in Chapter 3, the gene organisation of this gene cluster is 

conserved amongst Streptomyces, Mycobacterium and Corynebacterium (Figure 

3.10). In B. subtilis, the gene organisation is very similar but here there are 7 genes 

between ftsZ and homologues of SCO2081, SCO2080 and sepF. Interestingly, E. coli 

does not have a SepF homologue, but it does have homologues of SCO2081 and 

SCO2080, although the genes are not located in the vicinity of the ftsZ gene (Figure 

5.1). The gene SCO2080 in S. coelicolor and its homologous genes in M. tuberculosis, 

B. subtilis and E. coli have not been yet fully characterised.  

SCO2080 lies between ftsZ (SCO2082) and sepF in the S. coelicolor genome. 

SCO2080 orthologues are wide spread in Gram-positive bacteria, and particularly in 

firmicutes (Bacillus, Staphylococcus) and in actinobacteria, but are also occasionally 

found in Gram-negative bacteria. D-amino acids are generated by racemases and 

they are important for cell wall synthesis. Recently, it was shown that D-amino acids 

can also inhibit biofilm formation in B. subtilis, where overexpression of ylmE, which 

Figure 5.1. Gene organization of S. coelicolor, M. tuberculosis, B.subtilis and E. coli. 
Identical colour represents homologous protein products as identified using BLAST 
searches and the KEGG database.  

S. coelicolor
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yfiH

yggS
E.coli 

ftsZ 2081 sepF2080

ftsZ Rv2149c Rv2148c sepF

ftsZ ylmD ylmC sepF7 genes

M. tuberculosis

B. subtilis ylmE 
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encodes a racemase homologous to SCO2080, resulted in lack of biofilm formation 

(Kolodkin-Gal et al., 2010). Mutants of E. coli lacking the gene yggS, encoding the 

orthologue of SCO2080, had a radical change in their amino acid pool, with enhanced 

concentrations of the branched chain amino acids valine and leucine, as well as of α-

ketoglutarate (Ito et al., 2013). This led to reduced levels of coenzyme A (CoA), which 

was supported by the full restoration of yggS mutants by the CoA precursor 

pantothenate (Vitamin B5). Interestingly, introduction of ylmE, encoding the 

orthologue of SCO2080 from B. subtilis, also complemented the yggS null mutant. 

These data suggest a role for SCO2080 in amino acid metabolism. As before, to 

simplify the designations, we often use gene numbers without the SCO prefix. 

In this chapter our aim is to begin the characterization SCO2080 in S. coelicolor. 

• Bioinformatic analysis of 2080. 

• Generation of a 2080 knockout mutant using the PCR based REDIRECT 

technology first in E. coli. The mutant cosmid was then introduced into S. 

coelicolor, where homologous recombination generated the 2080 knockout 

mutant. 

• Confirmation of the 2080 knockout mutant in S. coelicolor. 

• Characterisation of the phenotype of the 2080 knockout mutant strain. 

• Complementation of the 2080 knockout mutant in S. coelicolor using different 

complementing clones. 

 

5.1 Bioinformatics analysis of 2080, a putative racemase 

 

To investigate the role of protein 2080 encoded by gene 2080 in cell division, 

the amino acid sequence of protein 2080 was obtained from the StrepDB 

Streptomyces annotation server (http://strepdb.streptomyces.org.uk) and analysed 

using the software tool SMART (http://smart.embl-heidelberg.de/). BLAST reaches 

revealed that the protein encoded by gene 2080 (UniProt Q9S2X1) shared high level 

of similarity alanine racemases (Alr; E.C. 5.1.1.1) which belong to the Fold Type III of 

pyridoxal phosphate (PLP) dependent enzymes (Tassoni et al., 2017) and play an 
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indispensable role in the assembling of the peptidoglycan layer of bacteria cell walls 

(Im et al., 2011).  

The peptidoglycan biosynthetic pathway is a critical process for the 

generation of the bacterial cell wall. The synthesis of the bacterial cell wall is initiated 

with uridine diphosphate (UPD)-N-acetylmuramic acid, L-alanine (L-Ala), D-glutamic 

acid (D-Glu) and meso-diaminopimelic acid to generate UDP-N-acetylmuramyl-L-Ala-

D-Glu-meso-diaminopimelate (Shaw et al., 1997; Lovering et al., 2012). D-alanine (D-

Ala) is an essential amino acid that can be added onto the growing amino acid chain 

as a D-Ala dipeptide to generate UDP-N-acetylmuramyl-tripeptide-D-Ala-D-Ala, 

which is subsequently incorporated into the growing PG peptide chain (Wei et al., 

2016). The D-Ala dipeptide is synthesized by two enzymes: Alanine racemase (Alr) 

and D-Ala ligase. Alr is a unique enzyme responsible for the racemization to convert 

L-Ala to D-Ala (Wasserman et al., 1984) and D-Ala-D-Ala ligase is involved in 

generation of the D-Ala dipeptide (Shaw et al., 1997; Cava et al., 2011). The final D-

Ala is exchanged for a D-lactic acid (D-Lac) in the case of vancomycin resistance 

(Vollmer et al., 2008). Specific enzymes catalyze the transamination and racemization 

of L-amino acids to the D-enantiomer (Radkov and Moe, 2014). One of these enzymes 

is alanine racemase (Alr), which is essential for growth in most bacteria (Hols et al., 

1997; Milligan et al., 2007). 

Previous studies have revealed that Alr is essential for the survival of 

numerous Gram-positive bacteria, such as B. subtilis and M. tuberculosis. Knockout 

of the alr gene in these bacteria resulted in a strict exogenous D-Ala-dependent 

growth phenotype (Ferrari et al., 1985; Awasthy et al., 2012; Tassoni et al., 2017). 

Similar growth arrest and extensive cell lysis were also observed in the alr null mutant 

of Gram-negative bacteria, such as E. coli due to deficiency of D-Ala (Wijsman et al., 

1972).  
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First, I compared the protein 2080 with the corresponding proteins from M. 

tuberculosis, B. subtilis, and E. coli, respectively (Figures 5.2-5.4) using Clustal Omega 

software. The level of similarity between 2080 of S. coelicolor and Rv2184c of M. 

tuberculosis Rv2148 is 42.74% identity, between 2080 of S. coelicolor and YlmE 

(Uniprot No: O31727) from B. subtilis is 30.22% identity, between 2080 of S. coelicolor 

and YggS (Uniprot No: C3SV52) from E. coli is 33.04% identity. I showed the pairwise 

sequence alignments because when we aligned all four proteins, the level of 

similarity was low and the pairwise alignments indicate the level of similarities more 

accurately.   

 

 

 

Figure 5.2. Protein sequence alignment of 2080 protein of S. coelicolor and Rv2184c (Uniprot 
No: O53518) from M. tuberculosis. (*) indicates positions which have a conserved residue, (:) 
represents conservation between groups of amino acids with strongly similar properties, 
and (.) indicates conservation between groups with weakly similar properties. The sequence 
alignment was generated using Clustal Omega 
(https://www.ebi.ac.uk/Tools/msa/clustalo/ ).  
 

SCO2080          -------MTDRKHELAANLAKVEQRITDACAAAGRPRQDVTLIVVTKTYPADDVRILSEL
M.tuRv2148c      MAADLSAYPDRESELTHALAAMRSRLAAAAEAAGRNVGEIELLPITKFFPATDVAILFRL

**: **:  ** :..*:: *. ****   :: *: :** :** ** ** .*

SCO2080          GVRHVAENRDQDAAPKAAACS----------DLPLSWHFVGQLQTNKVRSVVGYADVVQS
M.tuRv2148c      GCRSVGESREQEASAKMAELNRLLAAAELGHSGGVHWHMVGRIQRNKAGSLARWAHTAHS

* * *.*.*:*:*: * *  .          .  : **:**::* **. *:. :*...:*

SCO2080          VDRARLVTALSKEAVRA------GREVGCLLQVALDAEEGGRGERGGVPPAGIEELADLV
M.tuRv2148c      VDSSRLVTALDRAVVAALAEHRRGERLRVYVQVSLDG-DGSRGGVDSTTPGAVDRICAQV

** :******.: .* *      *..:   :**:**. :*.**  ... *..::.:.  *

SCO2080          AGSEGLRLDGLMTVAPLSGEYAGRQQAAFEHLMDLSTRVRRTHPAANMVSAGMSADLEQA
M.tuRv2148c      QESEGLELVGLMGIPPLDWD----PDEAFDRLQSEHNRVRAMFPHAIGLSAGMSNDLEVA

****.* *** : **. :     : **::* .  .***  .* *  :***** *** *

SCO2080          VAAGATHVRVGTAVLGVRPRLG*
M.tuRv2148c      VKHGSTCVRVGTALLGPRRLRSP

*  *:* ******:** *   . 
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Figure 5.3. Protein sequence alignment of 2080 protein of S. coelicolor  and YlmE (Uniprot 
No: O31727) from B. subtilis (top) and YggS (Uniprot No: C3SV52) from E.coli . (*) 
indicates positions which have a conserved residue, (:) represents conservation between 
groups of amino acids with strongly similar properties, and (.) indicates conservation 
between groups with weakly similar properties. The sequence alignment was generated 
using Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/ ).  

SCO2080       MTDRKHELAANLAKVEQRITDACAAAGRPRQDVTLIVVTKTYPADDVRILSELGVRHVAE
B.suYlmE -----MRVVDNLRHINERINEACNRSGRSSDEVTVIAVTKYVSPERAQEAVDAGITCLGE

.:. ** ::::**.:**  :**  ::**:*.***    : .:   : *:  :.*

SCO2080       NRDQDAAPKAAACSDLPLSWHFVGQLQTNKVRSVVGYADVVQSVDRARLVTALSKEAVRA
B.suYlmE NRDAELLRKQELM-KGNPEWHFIGSLQSRKAKSVVNSVSYIHSLDRLSLAKEIEK---RA

*** :   *     .   .***:*.**:.*.:***. .. ::*:**  *.. :.*   **

SCO2080       GREVGCLLQVALDAEEGGRGERGGVPPAGIEELADLVAGSEGLRLDGLMTVAPLSGEYAG
B.suYlmE EGTVRCFVQVNTSLEPSKHGMK----KEEVIPFIQELSGFEHILVAGLMTMAPLTDDQDQ

* *::**  . * . :* :       :  : : ::* * : : ****:***:.:   

SCO2080       RQQAAFEHLMDLST---RVRRTHPAANMVSAGMSADLEQAVAAGATHVRVGTAVLGVRPR
B.suYlmE -IRSCFRSLRELRDQVQKLNQPNAPCTELSMGMSNDFEIAIEEGATYIRIGSSLVGNETG

::.*. * :*     ::.: :  .. :* *** *:* *:  ***::*:*::::* .  

SCO2080       LG*-
B.suYlmE GVQQ

SCO2080        MTDRKHELAANLAKVEQRITDACAAAGRPRQDVTLIVVTKTYPADDVRILSELGVRHVAE
EcoliYggS ----MNDIAHNLAQVRDKISAAATRCGRSPEEITLLAVSKTKPASAIAEAIDAGQRQFGE

:::* ***:*.::*: *.: .**  :::**:.*:** **. :    : * *:..*

SCO2080        NRDQDAAPKAAA---CSDLPLSWHFVGQLQTNKVRSVVGYADVVQSVDRARLVTALSKEA
EcoliYggS NYVQEGVDKIRHFQELGVTGLEWHFIGPLQSNKSRLVAEHFDWCHTIDRLRIATRLNDQR

*  *:.. *       .   *.***:* **:** * *. : *  :::** *:.* *..: 

SCO2080        VRAGREVGCLLQVALDAEEGGRGERGGVPPAGIEELADLVAGSEGLRLDGLMTVAPLSGE
EcoliYggS PAELPPLNVLIQINISD----ENSKSGIQLAELDELAAAVAELPRLRLRGLMAIPAPESE

:. *:*: :.     ...:.*:  * ::***  **    *** ***::   ..*

SCO2080        YAGRQQAAFEHLMDLSTRVRRTHPAANMVSAGMSADLEQAVAAGATHVRVGTAVLGVRPR
EcoliYggS YVRQFEVARQMAV-AFAGLKTRYPHIDTLSLGMSDDMEAAIAAGSTMVRIGTAIFGARDY

*. : :.* :  :   : ::  :*  : :* *** *:* *:***:* **:***::*.*  

SCO2080        LG*
EcoliYggS SKK
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By using SMART searches, we identified 5 possible Alr proteins in S. coelicolor 

(encoded by gene 1609, 2080, 3903, 4757 and 6438), 4 Alr proteins in M. tuberculosis, 

3 Alrs in B. subtilis and 4 Alrs in E. coli. Tassoni (2017) generated the alr (SCO4757) 

null mutant by deletion of gene SCO4757 in S. coelicolor. The alr mutant strain was 

dependent on D-Ala for its growth, which suggests that SCO4757 is the main alanine 

racemase that is essential for cell wall synthesis. The 2080 protein shares only 25.23% 

identity with SCO4757, Alr (Figure 5.4). We considered that the protein encoded by 

2080 could also be involved in cell wall synthesis in S. coelicolor at a specific stage 

during development. We hypothesized that there might be a separate enzyme 

generating D-amino acids at septum formation that would be independent on the 

SCO2080      MTD---RK---------H--E---LAANLAKVEQRITDACAAAGRPRQDVTLIVVTKTYP
SCO4745      MSETTARRDADAVLRARAEIDLAALRANVRALRERA---------PGAALMAVVKADAYG

*::   *:            :   * **:  :.:*          *   :  :* :.:* 

SCO2080      ADDVRI---LSELGVRHVAENRDQDAAPKAAACSDL-----PLSWHFV--GQLQTNKVRS
SCO4745      HGAIPCARAAVAAGATWLGTATPQEALALRAAEPGLPDDVRIMCWLWTPGGPWREA-VEA

. :         *.  :.    *:*    **  .*      :.* :.  *  :   *.:

SCO2080      VVGYADVVQSVDRARLVTALSKEAVRAGREVGCLLQVALDAEEGGRGERGGVPPAGIEEL
SCO4745      ---RLDV--SVSAMW----AMEEVTGAARAAGVPARVQLKAD-TGLGRGGCQPGADWERL

**  **.         :*.. *.* .*   :* *.*:  * *. *  * *. *.*

SCO2080      ADLVAGSEGLRLDGLMTVAPLSGEYAGRQQAAFEHLMDLSTRVRRTHPAANMVSAGMSAD
SCO4745      VG---AALRAEEEGLLRVTGLWSHFACADEPGHPSIAAQLTRFREMTAY--AEQRGLRPE

..   .:   . :**: *: * ..:*  :: ..  :    **.*.        . *:  :

SCO2080      LEQ---------AVAAGATHVRVGTAVLGVRPRL--G*----------------------
SCO4745      VRHIANSPATLTLPDAHFDLVRPGIAMYGVSPSPEIGTPADFGLRPVMTLAASLALVKQV

:.:            *    ** * *: ** *    *                       

SCO2080      ------------------------------------------------------------
SCO4745      PGGHGVSYGHHYTTPGETTLGLVPLGYADGIPRHASSSGPVLVDGKWRTVAGRIAMDQFV

SCO2080      ---------------------------------------------------------
SCO4745      VDLGGDRPEPGAEAVLFGPGDRGEPTAEDWAQAAGTIAYEIVTRIGSRVPRVYVNE*

Figure 5.4. Sequence alignment of proteins encoded by the SCO2080 and SCO4745 (alr) from 
S. coelicolor. (*) indicates positions which have a conserved residue, (:) represents 
conservation between groups of amino acids with strongly similar properties, and (.) indicates 
conservation between groups with weakly similar properties. The sequence alignment was 
generated using Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/ ).  
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main Alr, which would be essential for growth and perhaps localized at the hyphal 

tips. We already referred to ylmE of B. subtilis that was shown to be involved in the 

generation of the D-amino acid pool in B. subtilis, which in turn, affected biofilm 

formation (Kolodkin-Gal et al., 2010).  

 

5.2 Generation of the 2080 knockout mutant   

 

After the bioinformatic analysis, we studied the role of gene 2080 in cell 

division of S. coelicolor by creating a knockout mutant using the REDIRECT© PCR-

Figure 5.5. PCR amplification of the ampramycin resistance cassette from PIJ773 for gene 
2080 knockout using primers 2080 KO FRW and 2080 KO REV. The apramycin resistance 
cassette contained an oriT site, an apramycin resistance gene, and FLP recognition targets 
(FRT) required to excise the resistance marker. Primers were used containing DNA 
complementary to the DNA sequences (20 nt) of the template and DNA complementary to 
sequences flanking the region of DNA we wanted to replace (40 nt). PCR was used to create 
the disruption cassettes with appropriate combinations of primers (Gust, et al., 2002). 

 

2080

ApraRoriT

FRT

FRT

40nt 20nt

40nt20nt

ApraRoriT

FRT

FRT

40nt40nt

40nt 40nt

2080 KO FRW 

2080 KO REV 
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targeting system (Gust et al., 2003). As in Chapter 3, to generate a 2080 gene 

knockout mutant (Figure 5.5), an apramycin resistance cassette containing 40 bp 

flanking regions that are homologous to the flanking regions of target gene can be 

used to disrupt the target gene. As before, cosmid 4A10 containing S. coelicolor 

chromosomal DNA inserted into supercos-1 was used to be targeted with the 

apramycin resistance disruption cassette (Figure 5.6). 

  The apramycin resistant cassette (~1.3 kb) from plasmid pIJ773 was PCR 

amplified to generate the cassette for the knockout of 2080 using primers 2080 KO 

FRW and 2080 KO REV (Figure 5.5). The PCR resulting product of apramycin cassettes 

produced for the knockout of 2080 was desalted using a self-made mini gel filtration 

column and analysed on a 0.7% agarose gel (Figure 5.7) which confirmed that PCR 

reactions resulted in correct amplification of the expected ~ 1.3 kb apramycin 

Figure 5.6. Knockout design for the generation of the 2080 null mutant in S. coelicolor. 
In a cosmid containing 2080 and its flanking genes, the 2080 gene was replaced with an 
apramycin resistance cassette (ApraR) (A). Then the resulting cosmid (B) was conjugated 
into S. coelicolor (C). The apramycin resistance cassette replaced the 2080 gene in S. 
coelicolor chromosome (D) after a double crossover event (B-D). 

ftsZ 2081 2080 sepF 2078 divIVA

KanaR

Recombination
ApraR

Conjugation to S. coelicolor

ftsZ 2081 sepF 2078 divIVA

KanaR

ApraR

ftsZ 2081 sepF 2078 divIVA2080

ftsZ 2081 sepF 2078 divIVAApraR

A

B

C

D
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cassette.  

Then this apramycin resistance disruption cassette was electroporated into 

the E. coli strain BW25113 carrying the S. coelicolor cosmid 4A10. The addition of L-

arabinose to the media growing the BW25113 cells induces the expression of the 

recombinase enzyme which initiates a homologous recombination event between 

the flanking regions of the apramycin resistance cassette and the reciprocal sequence 

flanking the gene 2080. The plasmid pIJ790 contains a temperature sensitive origin 

of replication which results in its loss when the BW strain is grown at temperatures 

higher than 30oC. Therefore, after the disruption cassette was transformed into the 

BW25113, cells containing the 4A10 cosmid obtained from the transformation were 

plated onto LB containing apramycin, to select for cells that underwent successful 

recombination events, and grown at 37oC to induce the loss of pIJ790. We picked 

single BW transformants and then extracted their cosmid DNA.  

To test whether the 2080 gene was successfully replaced with the apramycin 

cassette from cosmid 4A10, we conducted a restriction digest of the extracted cosmid 

DNA using EcoRI and XbaI. An “in-silico” restriction digest map was generated (Figure 

Figure 5.7. Amplification of the apramycin disruption cassette using primers 2080 KO FRW 
and 2080 KO REV. Gel analysis of the PCR amplification of the apramycin disruption 
cassette for the targeted knockout of 2080 (lane 6). Lane 1: lambda DNA cut with EcoRI and 
HindIII as a molecular weight marker (sizes are shown in bp). Lanes 2, 3, 4 and 5 are not 
relevant here. 
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5.8) using ARTEMIS (Rutherford et al., 2000) highlighting the fragment sizes (Table 

5.1).The restriction digest of the extracted cosmids were run on a 0.7% agarose gel 

(Figure 5.9). The 4A10 cosmid digest generated four fragments between 5-20 kb 

which corresponded to the sizes determined by the restriction map. According to the 

restriction maps the 20 kb fragment should be absent in the knockout gene cluster 

whilst the 6.7 kb, 8.0 kb and 14.0 kb fragments should remain uniform. The apramycin 

cassette introduced three new restriction sites causing the replacement of the 20 kb 

fragment to with four new fragments, three of which were visible on the gel. A 1.3 kb 

fragment, representing the apramycin cassette, the 7.0 kb and the 13.0 kb fragments 

are all seen in the knockout sample confirming the knockout cosmid.  

 

 

Table 5.1. The expected fragments that are generated by restriction digest using 
endonucleases EcoRI and Xbal of the wild-type 4A10 cosmid and 4A10/2080::ApraR cosmid. 
Shaded fragments represent those that remain the same in both cosmid digests. 

4A10 4A10/2080::ApraR

20714 -

14318 14318

- 13072

8145 8145

- 7000

6792 6792

- 1288

- 34
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After confirmation, the cosmid 4A10/2080::ApraR was transformed into the 

methylation-deficient E. coli strain ET12567/pUZ8002 which can overcome the 

methyl-specific restriction endonuclease system to allow conjugation of 

cosmid/plasmid containing oriT into S. coelicolor by the action of non-transmissible 

pUZ8002 (MacNeil et al., 1992). Then we conjugated the ET cells carrying the 

modified cosmid without gene 2080 into S. coelicolor wildtype stain M145. After 

conjugation, we selected the colonies that had successfully carried the modified 

cosmid by overlaying the conjugation plates with both apramycin that the cosmid 

4A10/2080::ApraR was resistant to and nalidixic acid to kill E. coli cells. However, the 

selection using apramycin was not able to differentiate between the desired double 

crossover event and single crossover event. In order to distinguish two events, we 

used replica plating to detect double crossover mutants by selection for apramycin 

Figure 5.9. Confirmation of the mutant 4A10/2080::ApraR cosmid using restriction digest 
with EcoRI and Xbal. The restriction digest of the extracted cosmids were run on a 0.7% 
agarose. The wild-type 4A10 cosmid (lane 2) and two 4A10/2080::ApraR cosmids (lane 3 
and 4) were digested with EcoRI and Xbal and the digests were analysed on a 0.7% agarose 
gel. Lambda DNA cut with EcoRI and HindIII was used as a molecular weight marker (Lane 
1), sizes shown in bp. The 1.3 kb fragment carrying the apramycin resistance cassette is 
shown by the orange arrow. The gel images represent the same gels. The bands with an 
arrow are too weak to be visible, so I over exposed the gel image on the right to detect 
these bands. 

1    2    3   4 1      2     3     4 
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resistant, kanamycin sensitive colonies, which can identify the double crossover 

event. Mutant colonies identified as double crossover were then streaked and stocks 

were generated by growing the strains on the surface of cellophane discs and 

collecting all hyphal fragments into a storage medium. These stocks were stored at -

20oC for further analysis.  

 

5.3 Confirmation of the 2080 mutant  

 

To confirm whether the gene 2080 was successfully knocked out from 

chromosome of S. coelicolor, the chromosome extracts of the 2080 mutant and wild-

type were tested by PCR using primers. We used two external flanking primers of 

2080 gene, one (2080 BglProm FRW) located within its upstream gene 2081 and the 

other (2080 3’ END) located in the downstream gene sepF (Figure 5.10 A). With these 

two primers, a PCR product will be generated from both M145 wild-type and the 

2080 mutant chromosome extract. The size of apramycin disruption cassette (~1.3kb) 

is larger than size of 2080 (720 bp), therefore the PCR product generated from the 

2080 mutant chromosome (1878 bp) will be larger than the PCR product generated 

from the wildtype chromosome (1240 bp) (Table 5.2). In addition, we performed 

another test to confirm 2080 gene knockout in the chromosome. The chromosomal 

DNA extracts of the 2080 mutant and wild-type M145 were PCR tested using two 

different pairs of primers. The primers Apra 5’ FRW and Apra 3’ REV, which are 

situated in apramycin resistant cassette, were used to cooperate with primer 2080 

Bgl Prom FRW and primer 2080 3’ END to test the presence of the apramycin 

resistance disruption cassette in the 2080 mutant. The primer 2080 Bgl Prom FRW is 

located outside the apramycin resistant cassette and primer Apra 3’ REV is located 

inside the apramycin cassette (Figure 5.10 B). These two primers only can generate 

PCR products in the presence of apramycin resistant cassette at the correct location, 

therefore only the 2080 mutant containing apramycin resistance cassette can 

provide the PCR resulting products while M145 will not show PCR resulting products. 

In the same way, primer Apra 5’ FRW is located inside the apramycin resistant 
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cassette and primer 2080 3’ END is situated outside the apramycin cassette (Figure 

5.10 B), which will generate PCR products only in the 2080 mutant chromosome 

A 

Figure 5.10.  PCR design for the confirmation of the 2080 knockout mutant. 
(A) The primers 2080 Bgl Prom FRW and 2080 3’ END generate PCR products of 
different sizes depending on the template DNA.  (B) The primers 2080 Bgl Prom FRW 
and Apra 3’ REV will generate a PCR product only in the 2080 mutant. (C) The primers 
Apra 5’ FRW and 2080 3’ END will generate a PCR product only in the 2080 mutant. 

 

B 

2081 sepFApraR
Apra 5’ FRW

377 bp
2080 3’ END

∆2080 
mutant

2081 sepFApraR∆2080 
mutant 

375 bp
2080 Bgl Prom FRW Apra 3’ REV

2081 sepFApraR

1878 bp

∆2080 
mutant 

2080 Bgl Prom FRW 2080 3’ END

1240 bp

2081 2080 sepF

2080 Bgl Prom FRW 2080 3’ END

M145 
wild-type

C 
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extract. The expected size of fragments generated by the different primer pairs are 

shown in table 5.2.  

 

 

The PCR products were run on a 0.7% agarose gel and then analysed (Figure 

5.11). Using the external primers, 2080 BglProm FRW and 2080 3’ END both wild-type 

and the 2080 mutant DNA generated PCR products at their expected sizes of 1240 bp 

and 1878 bp, respectively (Figure 5.11 A). There was no fragment of  1240 bp when 

the mutant DNA was tested, which confirms that in the generated the 2080 mutant  

the 2080 gene was fully replaced by the apramycin resistance cassette. When one of 

the primers was priming in the apramycin resistance cassette, only the 2080 mutant 

DNA generated a PCR product of around 375 bp (Figure 5.11 B). All these confirmed 

that the 2080 knockout mutant was successfully generated. 

 

 

 

 

Table 5.2. The expected sizes of PCR fragments using selected oligo pairs in the wild-type 
strain and the 2080 mutant strain. 

Oligos Size in wild-type Size in ∆sepF mutant

2080 Bgl Prom FRW

2080 3’END
1240 bp 1878 bp

2080 Bgl Prom FRW

Apra 3’REV
- 375 bp

Apra 5’ FRW

2080 3’ END
- 377 bp
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5.4 Analysis of the phenotype of the 2080 mutant. 

 

5.4.1 Macroscopic observations of the 2080 mutant. 

 

To determine the phenotype of the 2080 mutant strain, it was plated onto 

SFM medium along with the wild-type control M145 and the sepF mutant generated 

in Chapter 3. The plates were grown at 30oC and observed daily (Figure 5.12). After 

one day, the development of the wild-type strain was ahead of both the 2080 and 

sepF mutant strains (Figure 5.12 A). However, we inoculated the wild-type strain from 

Figure 5.11. Confirmation of the 2080 knockout mutant. Chromosomal DNA generated from 
the selected strains was used as a template in PCR reactions. 
A. Lane 1: Lambda DNA digested with EcoRI and HindIII, sizes shown in bp. Lane 2: wild-

type M145 chromosome. Lane 3 and lane 4: 2080 mutant chromosome. 
M145 wild-type and 2080 mutant chromosome extracts were PCR tested using primers 
2080 BglProm FRW and 2080 3’ END. 

B. Lane 1: the λ EcoRI-HindIII ladder. Lane 2: wild-type M145 chromosome. Lane 3 and 
lane 4: The 2080 mutant chromosome. Lane3: 2080 BglProm FRW and Apra 3’ REV; 
Lane 4: Apra 5’ FRW and 2080 3’ END. M145 wild-type and the2080 mutant 
chromosome extracts were PCR tested using two primer pairs. 
The ~ 375 bp fragment is marked by the orange arrow. 

 

1           2           3          4 

A B 

1         2       3       4 

375 bp 
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spore stocks whilst the 2080 and sepF mutants were inoculated from “hyphae” stocks 

as mutants cannot produce spores. We could not make sure that we have inoculated 

the same amount of “cells”. Therefore, any observation related to delayed growth 

might just be the result of the different inoculation. After two days, the colonies 

developed the fuzzy and white morphology which indicated the growth of aerial 

hyphae (Figure 5.12 B). After three to four days, the 2080 mutant strain and wild-

type M145 strain showed clear differences in development. The wild-type M145 

strain presented the classic grey pigment associated with spore maturation. In the 

same time, the 2080 mutant strain showed white morphology suggesting that the 

Figure 5.12. Macroscopic analysis of the 2080 mutant strain. 
Wild-type M145, the 2080 and sepF mutant strains were plated in a triangle patch on a 
plate using SMF medium. The plate was incubated and monitored at regular time intervals 
(A) 1 day, (B) 2 days, (C) 3 days and (D) 4 days. The wild-type strain developed faster than 
2080 mutant and produced grey pigment associated with spore maturation. While the 
2080 mutant failed to become grey suggesting that it failed to sporulate. The sepF mutant 
was also included for comparison. 
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colonies have not yet produced spores (Figure 5.12 C and D). Interestingly, the 2080 

mutant differed from the sepF mutant as the latter produced the blue pigment that 

showed in the aerial surface, whilst the 2080 mutant stayed white. 

 
5.4.2 Microscopic analysis of the 2080 mutant.  
 

After observation of the macroscopic phenotype of the wild-type M145 strain 

and the 2080 mutant, the microscopic phenotype of these strains was also 

investigated using epi-fluorescence microscopy where wild-type M145 strain acted 

as a control.  These two strains were inoculated into patches onto SFM media with 

coverslips at an ~ 70° angle and were incubated at 30oC. In order to monitor different 

stages of the growth during cell division in S. coelicolor, we stained the cells using 

wheat germ agglutinin (WGA) Alexa Flour® 488 and propidium iodide (PI) for cell wall 

and chromosome visualisation, respectively.  

The vegetative hyphae of the 2080 mutant was very similar to that of the wild-

type strain (Figure 5.13). Vegetative crosswalls developed in both strains. However, 

 Vegetative hyphae 

M145 2080 

Figure 5.13. Epi-fluorescence microscopy of the vegetative hyphae of the wild-type M145 
(left) and 2080 mutant strain (right). Spores of the wild-type strain M145 and 2080 mutant 
strain were plated on SFM medium and incubated at 30oC before staining with WGA-Alexa 
488 (green-cell wall). Vegetative cross-walls are marked by the red arrows. Size bar 
represents 1µm. 
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the aerial development of the 2080 mutant was very different from the wild-type as 

it failed to develop any spores (Figure 5.14).  We firstly detected smooth and curly 

aerial hyphae of the 2080 mutant with even DNA staining and very little sign of 

chromosomes being organized into packages. Later samples showed more clear 

chromosome organisation and segregation but still no septation could be detected 

(Figure 5.14). Unlike in the wild-type strain where we detected evenly placed septa 

flanked with well segregated individual chromosomes, for reference see Figure 3.20 

(Chapter 3.4.2), the 2080 mutant lacked any regular septation. However, the 

chromosomes of the 2080 mutant segregated and condensed into small packages 

very similarly to the DNA segregation and condensation during sporulation in the 

wild-type strain, suggesting that only septation but not chromosome segregation was 

affected in the 2080 mutant.  This was very similar to what we observed when we 

characterized the sepF mutant phenotype in Chapter 3.  
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Figure 5.14. Fluorescence microscopy showing the developmental of the 2080 mutant 
strain. The 2080 mutant strain was plated onto SFM medium and incubated at 30oC before 
staining with PI (red-DNA) and WGA-Alexa 488 (green-cell wall).  Size bar represents 1µm. 
(A-C) Growth of the aerial hyphae with coiling tips; (D-E) The chromosomes begun to 
condense and segregate but no septa were placed separating individual chromosomes.  (A-
C, E) epi-fluorescence microscopy; (D) confocal microscopy. 
 

A 

B 

C 

D 

E 
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5.5 Complementation attempts of the 2080 mutant 

 

To confirm that the observed non-sporulation phenotype of the 2080 mutant 

is the result of the absence of 2080, we attempted to complement the mutant by 

introducing a single copy of a complementing construct containing gene 2080 (Figure 

5.15). If the wild-type phenotype is restored but the constructs, then we could 

conclude that the mutant phenotype was a true reflection of the effects of 2080 

deletion in S. coelicolor.  

 

 

5.5.1 Complementation experiments of the 2080 mutant using 

constructs containing the 2080 gene 

 

There are only 6 bp that separate the genes 2080 and 2081 (Figure 5.16). In 

addition, at the time of performing the complementation experiments, we did not 

have any information about transcriptional start sites for 2080 transcription. We 

hypothesized that there might be a putative promoter (here designated as P2080) 

Figure 5.15. Strategy for the complementation of the 2080 mutant. Different 
complementing fragments were cloned and introduced into the 2080 mutant to test 
whether wild-type phenotype could be restored in the mutant strain.  
 

Complementing plasmid

∆2080 mutant chromosome

ftsZ 2081 sepF

Vector pMS82

Complementing 
fragment

ApraR

Complementing 
fragment ftsZ 2081 sepFApraR
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somewhere at the end of the upstream gene 2081. Moreover, gene 2080 lies 

downstream of ftsZ in the S. coelicolor genome. Because of the high gene density, we 

had to consider that there might be transcription reading through from the ftsZ gene. 

It has been shown that ftsZ is transcribed from three promoters located upstream of 

the ftsZ gene, one constitutive, one transcribed during vegetative growth and one 

transcribed during sporulation (here designated as PftsZ; Flardh, et al., 2000).  

We designed three constructs, which included different possible promoters 

including the putative promoter(s) of gene 2080 and/or the three ftsZ promoters, PftsZ 

and assumed 2080 promoter, P2080 (Figure 5.16 and 5.17). For delivering the three 

different complementing constructs into S. coelicolor we used the plasmid pMS82, a 

vector that can integrate at the ΦBT1 attachment site in S. coelicolor leading each 

chromosome to contain a single copy of the plasmid (Gregory et al., 2003). This vector 

also contains the hygromycin resistance gene, which allows for selection in the 

apramycin resistant S. coelicolor mutant strain. 

The three complementing constructs all carry entire 2080 sequence but with 

different upstream sequences (Figure 5.17). The first construct (referred as P2080-

2080) consists purely of the 2080 gene and its putative promoter P2080 which was 

assumed at the end of 2801 (Figure 5.17 A). This Construct 1 can be directly amplified 

from the 4A10 cosmid using PCR and appropriate primers without any further genetic 

Figure 5.16. The gene operon in S. coelicolor containing ftsZ, 2081 and 2080. Three known 
promoters upstream of ftsZ are shown (ftsZp) along with 2080 promoter 2080p. The 
complementation constructs had to be designed under consideration of both the ftsZ and 
2080 promoters (Flardh, et al., 2000). 

2080 (719)2081(728)ftsZ(1199)

ftsZ 3promoters (ftsZp)
Putative 2080 promoter (2080p)

3 2 1

6 bp
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manipulation. The second construct, construct 2 (referred as PftsZ-2080) contains 

gene 2080 and three ftsZ promoters PftsZ. This construct can be generated using PCR 

once the ftsZ and 2081 genes are knocked out, first by replacing them with the 

apramycin resistance disruption cassette, and then removing the apramycin 

resistance cassette using the Flip recombinase. The third construct, construct 3 

(referred as PftsZ+2080-2080) carries the three ftsZ promoters PftsZ, the putative 

promoter P2080 and the 2080 gene (Figure 5.17 C). To generate this construct we 

needed to replace the ftsZ gene and large part of the 2081 gene with the apramycin 

resistance cassette and then remove this cassette using Flip recombinase.  This 

mutant cosmid then could be used in a PCR reaction to amplify the final construct. 

Figure 5.17. Complementation strategy. (A) Construct 1: P2080-2080 containing 2080 gene 
and its putative promoter. (B) Construct 2: PftsZ-2080 containing 2080 gene and 3 ftsZ 
promoters. (C) Construct 3: PftsZ+2080-2080 containing 2080 gene, 3 ftsZ promoters and 2080 
putative promoter. The purple box represents a scar which is left by removing the 
apramycin resistant mark gene. 

2080p

2081 2080 2080

ftsZp ftsZp

2080

2080p

A B C 
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To generate construct 1, PCR amplification using primers 2080 Bgl Prom FRW 

and 2080 3’ END and the 4A10 cosmid as a template (Figure 5.18). This PCR product 

included 258 bp upstream of the 2080 gene.   

To create the next two constructs PftsZ-2080 and PftsZ+2080-2080 we needed to 

replace DNA fragments of the 4A10 cosmid using the PCR targeting we used before 

Construct 1: P2080-2080 

Figure 5.18. Generation of Construct 1, P2080-2080 (1223bp). The construct 1 was directly 
amplified from the 4A10 cosmid using primers 2080 Bgl Prom FRW and 2080 3’ END. 

ftsZp

2081 2080ftsZ

2080p

2080p

2081 2080

2080 Bgl Prom FRW 2080 3’END REV

1223 bp

Construct Direction Oligos
Construct 2 Forward FtsZ KO FRW

Reverse 2081 KO REV

Construct 3 Forward FtsZ KO FRW

Reverse 2081 KO2 Apra REV

Figure 5.19. Primers used for the generation of the apramycin resistance cassette.  

ApraRoriT

FRT

FRT

40nt40nt
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for knockout generation. Firstly, an apramycin resistance cassette containing oriT and 

FLP recognition targets (FRT) was amplified using appropriate primers (Figure 5.19), 

which contain DNA complementary sequences flanked the cassette and DNA 

complementary sequences flanked the genes which need to be knocked out. The 

presence of the FRT sites allow us later to remove the apramycin resistance gene 

using the Flip recombinase that will excise the DNA fragment between the FRT sites 

(Figure 5.19). The PCR cassette of 1.3 kb was analysed in Figure 5.20.  

 

 

We electroporated the apramycin resistance disruption cassette into E. coli 

BW25113 cells containing cosmid 4A10 and selected for transfomants resistant to 

apramycin. In order to confirm whether the target genes were successfully replaced, 

the restriction enzymes EcoRI/XbaI and HindIII/Xbal were used to digest the obtained 

cosmids. The Xbal restriction enzymes site is absent in cosmid 4A10 but exists in the 

apramycin resistance cassette. Therefore, the Xbal restriction enzyme can be used to 

confirm whether the target genes are successfully replaced with apramycin 

disruption cassette after recombination. An “in-silico” restriction digest map was 

generated (Figure 5.21) using ARTEMIS (Rutherford et al. 2000) highlighting the 

Figure 5.20. Amplification of the apramycin disruption cassette. 
Lane 1: lambda EcoRI HindIII ladder; lane 2: Amplification of apramycin disruption 
cassette using primers FtsZ KO FRW and 2081 KO REV for constructs 2; lane 3: 
Amplification of apramycin disruption cassette using primers FtsZ KO FRW and 2081 KO2 
Apra REV for constructs 3.  

 

 

 
  1584   

1375 

      1         2       3 
 

bp 
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different fragment sizes (Table 5.2 A). At this step, these two cosmids were referred 

as 4A10/ftsZ-2081::ApraR2 and 4A10/ftsZ-2081::ApraR3.  

The digestion using EcoRI and Xbal can distinguish between the 4A10 cosmid 

and the 4A10/ftsZ-2081::ApraR2 or the 4A10/ftsZ-2081::ApraR3 cosmids. But from 

these sizes of PCR resulting products, it is hard to distinguish cosmids between 

4A10/ftsZ-2081::ApraR2 and 4A10/ftsZ-2081::ApraR3. Therefore, we decided to use 

restriction enzymes HindIII and Xbal to digest these two constructs. The expected size 

of fragments was shown in Figure 5.21 and table 5.2 B.  
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Figure 5.21. Restriction maps of 4A10 cosmid, 4A10/ftsZ-2081::ApraR2 and 4A10/ftsZ-
2081::ApraR3. The cosmid drawing is not to scale. The restriction sites are marked as red 
dashes for EcoRI, blue dashes for Xbal and green dashes for HindIII, with positions (in bp) 
given in the maps. 4A10 has no XbaI sites. 
4A10/ftsZ-2081::ApraR2 and 4A10/ftsZ-2081::ApraR3 have XbaI sites because of the 
introduction of the apramycin resistance cassette.  
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The expected sizes of digested cosmids were analysed using gel 

electrophoresis (Figure 5.22). After digestion using EcoRI and Xbal, the ~20kb 

fragment of the 4A10 cosmid was replaced by three fragments in the mutant 

cosmids, 13.7-14.0 kb, 5.1 kb and 1.3 kb fragments all detectable (Figure 5.22). The 

agarose gel was not able to separate the 13.7-14.0 kb and the 14.4 kb fragments, but 

the absence of the 20 kb fragment and the appearance of the 5.1 kb and 1.3 kb 

fragments in the mutant cosmids did confirm that the mutant cosmids were 

successfully generated. The digestion using HindIII and Xbal allowed the distinction 

between 4A10/ftsZ-2081::ApraR2 and 4A10/ftsZ-2081::ApraR3. The 1779 bp 

fragment generated from 4A10/ftsZ-2081::ApraR2 (Lane 5) and the 2022 bp 

fragment generated from 4A10/ftsZ-2081::ApraR3 (lane 6) confirmed the difference 

between these two constructs (Figure 5.22).  

 

 

Table 5.2. Expected fragment sizes after digestion of the apramycin marked knockout 
cosmids with (A) EcoRI/XbaI and (B) HindIII/Xbal. 4A10 cosmid digested with same enzymes 
is used as a control. 

A B 
4A10 4A10/ftsZ-

2081::ApraR2

4A10/ftsZ-

2081::ApraR3

20714 - -
14348 14348 14348

- - 14006
- 13763 -

8145 8145 8145
6792 6792 6792
- 5091 5091
- 1298 1298

4A10 4A10/ftsZ-

2081::ApraR2

4A10/ftsZ-

2081::ApraR3

35784 - -
- 32145 32145

14215 14215 14215
- - -
- - -

- - 2022
- 1779 -

- 1298 1298

Xbal and EcoRI Xbal and HindIII
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After confirmation of the construct 4A10/ftsZ-2081::ApraR2 and 4A10/ftsZ-

2081::ApraR3, we removed the apramycin resistant cassette from these two 

constructs by FLP-recombinase in E. coli, leaving an 81 bp scar where the resistance 

cassette was, to generate the unmarked constructs. It is necessary to remove the 

apramycin cassette because it may interfere the transcription of the 2080 gene. To 

remove the resistance cassette, we moved the mutant cosmids into E. coli 

DH5α/BT340 cells, which contain the temperature sensitive FLP recombination 

plasmid encoding a FLP-recombinase (FLP). The FLP recognises FRT (FLP recognition 

targets) sites surrounding the apramycin resistance gene (Figure 5.19). FLP is 

expressed by growing the cells at 42oC which lead to the loss of the temperature 

sensitive plasmid.  After “flipping” and an 81 bp scar sequence will be left in the 

constructs. After the incubation at 42oC the single colonies were tested for the loss 

of the apramycin resistance gene by streaking onto LB plates containing either 

Figure 5.22. Gel analysis of the knockout cosmids 4A10/ftsZ-2081::ApraR2 and 
4A10/ftsZ-2081::ApraR3.  
Lane 7: lambda DNA digested using EcoRI and HindIII, sizes shown in bp. Lanes 1 and 4: 
4A10 cosmid; Lanes 2 and 5: 4A10/ftsZ-2081::ApraR2; lanes 3 and 6: 4A10/ftsZ-
2081::ApraR3. Lanes 1-3: digestion using EcoRI and XbaI, lanes 4-6: digestion using HindIII 
and XbaI.    

1       2    3       4     5     6       7 

21226

5148
4268
3530

2027
1584
1375

bp 
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apramycin or kanamycin. The successful flipped cosmids were apramycin sensitive 

and kanamycin resistant.  

 The flipped cosmids were confirmed by using both EcoRI/Xbal and 

HindIII/Xbal restriction enzymes. The restriction map was generated and shown in 

Figure 5.23. The expected size of the fragments are shown in table 5.3. After removal 

of the apramycin resistance cassette, the cosmids 4A10/ftsZ-2081::ApraR2 and 

4A10/ftsZ-2081::ApraR3 were named as 4A10/ftsZ-2081::Scar2 and 4A10/ftsZ-

2081::Scar3. The restriction digests were analysed on an agarose gel. As the predicted 

(Figure 5.23), after flipping the apramycin resistance cassette, the 1.3 kb fragments 

in the knockout cosmids were absent (Figure 5.24).  
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Figure 5.23. Comparison of the restriction maps of the knockout 4A10 cosmids and the 
flipped cosmids. The cosmid drawing is not to scale. (A) map with EcoRI/XbaI; (B) map 
with HindIII/XbaI. Restriction enzyme sites are shown as coloured lines: EcoRI in red, XbaI 
in green, HindIII in blue. 
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Table 5.3. The expected fragment sizes after restriction digestion of the knockout cosmids 
4A10/ftsZ-2081::ApraR2 and 4A10/ftsZ-2081::ApraR3 and the flipped knockout cosmids 
4A10/ftsZ-2081::Scar2 and 4A10/ftsZ-2081::Scar3 with EcoRI /XbaI (top) and HindIII/Xbal 
(bottom).  

4A10 4A10/ftsZ-
2081::ApraR2

4A10/ftsZ-
2081::ApraR3

4A10/ftsZ-
2081::Scar2

4A10/ftsZ-
2081::Scar3

35784 - - - -

- 32145 32145 32145 32145

14215 14215 14215 14215 14215

- - - - -

- - 2022 - 2022

- 1779 - 1779 -

- - - 21 21

Xbal and HindIII

4A10 4A10/ftsZ-
2081::ApraR2

4A10/ftsZ-
2081::ApraR3

4A10/ftsZ-
2081::Scar2

4A10/ftsZ-
2081::Scar3

20714 - -

14348 14348 14348 14138 14138

- - 14006 - 14006

- 13763 - 13763 -

8145 8145 8145 8145 8145

6792 6792 6792 6792 6792

- 5091 5091 5091 5091

- 1298 1298 - -

- - - 21 21

Xbal and EcoRI

4A10 4A10/ftsZ-
2081::ApraR2

4A10/ftsZ-
2081::ApraR3

4A10/ftsZ-
2081::Scar2

4A10/ftsZ-
2081::Scar3

35784 - - - -

- 32145 32145 32145 32145

14215 14215 14215 14215 14215

- - - - -

- - 2022 - 2022

- 1779 - 1779 -

- - - 21 21

4A10 4A10/ftsZ-
2081::ApraR2

4A10/ftsZ-
2081::ApraR3

4A10/ftsZ-
2081::Scar2

4A10/ftsZ-
2081::Scar3

20714 - -

14348 14348 14348 14348 14348

- - 14006 - 14006

- 13763 - 13763 -

8145 8145 8145 8145 8145

6792 6792 6792 6792 6792

- 5091 5091 5091 5091

- 1298 1298 - -

- - - 21 21
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After the knockout cosmids were flipped successfully, the complementing 

clones were generated by PCR amplification using primers FtsZ Bgl Prom FRW and 

2080 3’ END and the introduction of the PCR product into first the pGEM Easy cloning 

vector (Figure 5.25), which encodes the gene lacZ allowing blue and white screening. 

 

 

 

Figure 5.24. Gel analysis the of flipped knockout cosmids 4A10/ftsZ-2081::Scar2 and 
4A10/ftsZ-2081::Scar3. 
Lane 7: lambda DNA digested with EcoRI and HindIII ladder; Lanes 1 and 4: 4A10 cosmid; 
lanes 2 and 5: 4A10/ftsZ-2081:ApraR2; lanes 3 and 6: 4A10/ftsZ-2081::ApraR3; lanes 8 and 
10: 4A10/ftsZ-2081::Scar2; lanes 9 and 11: 4A10/ftsZ-2081::Scar3.  
Lanes 1, 2, 3, 8, 9: digestion with EcoRI and XbaI, lanes 4, 5, 6, 9, 10: digestion with HindIII 
and XbaI.   
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Construct 3: PftsZ+2080-2080 Construct 2: PftsZ-2080 

Figure 5.25.  The final design of construct 2 and construct 3. A: knockout of ftsZ-2081 genes. 
B: PCR amplification using the knock-out cosmids with primers FtsZ Bgl Prom FRW and 
2080 3’END to generate construct 2 and 3. 
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A small-scale plasmid preparation was made from two white single colonies 

and then the plasmids were digested using EcoRI, which flanks the cloned inserts and 

analysed on an agarose gel (Figure 5.26).  

 

In gel image, the smallest fragments (lane 2,4,6,8 and 10) are the cloned 

inserts at the expected sizes: 1223 bp, 1343 bp, and 1586 bp for construct 1, 2 and 3. 

The pGEM vector (3015 bp) is the middle fragment, whilst the top fragments indicate 

that the plasmids were only partially digested (Figure 5.26).  The pGEM clones were 

sequenced and their inserts were moved into the plasmid pMS82.  The transformants 

following the cloning onto pMS82 were grid streaked on LB (no salt) containing 

hygromycin. To identify the correct clones, colony PCR was carried out using primers 

2080 Xbal Nde FRW and 2080 Nde REV (Figure 5.27).  

Figure 5.26. Gel analysis of EcoRI digested plasmid constructs. Lane 1: lambda DNA digested 
with  EcoRI/HindIII. Lanes 2-5: two putative construct 1 plasmids; lanes 6-9:two putative 
construct 2 plasmids; lanes 10-11: one putative construct 3 plasmid. Lanes 2-11: even 
numbers contain the plasmids digested with EcoRI, odd numbers contain the non-digested 
plasmids. 

bp 
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The colony PCR suggested that most colonies contained relevant inserts 

(Figure 5.27). One representative was picked from each set and large-scale plasmid 

preparations were generated. The extracted plasmids were then moved into E. coli 

strain ET12567/pUZ8002 by electroporation and then conjugated into the 2080 

mutant using nalidixic acid and hygromycin for selection. In addition, the vector 

pMS82 was also conjugated into the 2080 mutant and the wild-type M145 strains to 

test that complementation was due to the presence of the complementing fragments 

and not the plasmid pMS82 alone. We picked the grown healthy single colonies and 

grew them on media SFM containing hygromycin to generate stocks. To test for 

Figure 5.27. Colony PCR identify successful integration of the correct inserts into pMS82 
plasmid.  
(A) Lane 1: λ EcoRI-HindIII ladder, Lane 2-19: each lane represents a single transformant for 
pMS82 P2080-2080, Lane 20: positive control. (B) Lane1: λ EcoRI-HindIII ladder, Lane 2-19: 
each lane represents a single transformant for pMS82 PftsZ-2080, Lane 20: positive control. 
(C) Lane1: λ EcoRI-HindIII ladder, Lane 2-20: each lane represents a single transformant for 
pMS82 PftsZ+2080-2080.  
Primer 1 is 2080 Xbal Nde FRW and primer 2 is 2080 Nde REV. Red circle represents 
constructs that were further used. 
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complementation, these strains were plated on SFM medium containing hygromycin 

and incubated at 30°C monitoring their macroscopic phenotype daily (Figure 5.28). 

Surprisingly after four days growth, the strains ∆2080/pMS82/P2080-2080, 

∆2080/pMS82/PftsZ-2080 and ∆2080/pMS82/P2080+ftsZ-2080 all stayed white just as 

the control strain ∆2080/pMS82. The strain M145/pMS82 control strain developed 

the dark grey colour that is characteristic of the mature, sporulating colonies. This 

result indicated that none of the designed DNA fragments complemented the mutant 

phenotype of the 2080 knockout strain, which was unexpected. One possible 

explanation for the failure in complementation was that transcription of 2080 did not 

Figure 5.28. The macroscopic analysis of the complementation assays. Strains 
∆2080/pMS82/P2080-2080, ∆2080/pMS82/PftsZ-2080 and ∆2080/pMS82/P2080+ftsZ-2080 and 
the control strains, the wild-type M145/pMS82 and ∆2080/pMS82 were streaked onto 
SFM medium containing hygromycin and were viewed after 4 days at 30oC. 
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originate from the 3 ftsZ promoters but initiated from a promoter that was more 

upstream than we assumed. This we could have tested by cloning a new fragment 

with a larger upstream sequence. The other possibility was that the 2080 mutant had 

a polar effect on the expression of the downstream gene sepF. This was quite possible, 

taking into consideration the fact that the 2080 and sepF mutant phenotypes were 

very similar. At the time of attempting complementation of the 2080 mutant, the 

paper of Young et al., 2016 was not published. However, in the light of the 

transcriptional starts identified by Young et al., 2016, it is clear that by deleting the 

2080 gene completely, we also removed one of the sepF promoters and might have 

affected the expression even from the second sepF promoter. Even without knowing 

about the positions of the sepF promoters, we did consider the possibility that the 

2080 mutant was in fact a 2080-sepF double mutant, or at least a 2080 knockout with 

an altered, highly reduced sepF expression. So next, we tested whether we could 

complement the 2080 mutant with a clone expressing sepF.  

 

 5.5.2 Complementation experiments of the 2080 mutant using 

constructs containing the sepF gene. 

 

To attempt complementation of the 2080 mutant, we used three constructs 

created already in Chapter 3.5. Construct ∆P-sepF (978 bp) contains the entire sepF 

gene with 128 bp upstream sequences, which potentially contain one of the sepF 

promoters. Construct P-sepF (1199 bp) contains entire sepF gene and both of its 

putative promoters. This construct did fully complement the sepF knockout mutant.  

Construct 2080-sepF (1643 bp) contains entire gene sepF together with its upstream 

gene 2080 (Figure 5.29).  
In chapter 3.5, we have introduced these fragments into pMS82, generating 

pMS82/∆P-sepF, pMS82/P-sepF and pMS82/2080-sepF. These constructs were 

introduced to the 2080 mutant to create the strains ∆2080/pMS82/∆P-sepF, 

∆2080/pMS82/P-sepF and ∆2080/pMS82/2080-sepF. Stocks of these strains were 

generated and stored.  
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We firstly tested the ∆2080/pMS82/∆P-sepF, ∆2080/pMS82/2080-sepF 

strains together with the control strains, M145/pMS82 and ∆2080/pMS82 on SFM 

containing hygromycin (Figure 5.30 A and B). After one and two days the 2080 

knockout mutant grew slower than all the other strains. After 3-4 days incubation at 

30oC three of the strains produced the dark grey pigment suggestive of sporulation, 

and only the control 2080 mutant strain stayed white (Figure 5.30 C and D). This 

suggested that the 2080 mutant might have been successfully complemented by 

these two complementation constructs containing gene sepF.  However, we have 

seen before with the sepF mutant, that macroscopic observation of grey pigment 

formation does not necessarily mean full complementation and fully restored 

sporulation.   

Figure 5.29. The complementation strategy.  
A: Construct ∆P-sepF (978 bp) containing the sepFgene and ~128 bp upstream 
sequence. B: Construct P-sepF (1199 bp) contains entire sequencing of gene sepF 
and its putative promoter present. C: Construct 2080-sepF (1643 bp) containing the 
sepF gene and ~848 bp upstream sequence. 
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The third construct was tested in a separate experiment by monitoring the 

development of ∆2080/pMS82/P-sepF on SFM containing hygromycin together with 

the control strains, wild-type M145 and the 2080 mutant on SFM medium (Figure 

5.31). As we have generated spore preparations from both the wild-type M145 and 

∆2080/pMS82/P-sepF strains, we could inoculate the same number of spores when 

generating the patches, which allowed direct comparisons of the development of 

these two patches. Interestingly, after 2 days (48h), the development of the wild-type 

Figure 5.30.  Macroscopic analysis of the complementation strains. The positions of 
the different strains are shown using the illustration in the middle. The strains were 
plated in a triangle patch on SMF medium containing hygromycin. The plates were 
incubated and monitored at regular time intervals (A) 1 day, (B) 2 days, (C) 3 days 
and (D) 4 days. 

A B 

C D 
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was ahead of the ∆2080/pMS82/P-sepF strain, while the growth of the 2080 mutant 

was further delayed (Figure 5.31). Three days (72h) after inoculation, the 

∆2080/pMS82/P-sepF appeared very similar to the wild-type strain, showing the dark 

grey pigmentation, suggesting that the 2080 mutant was complemented with a 

construct that contained only the sepF gene (Figure 5.31). 

 

To confirm that the grey pigment formation reflected full complementation 

using all three constructs, we also monitored aerial hyphae development in the three 

strains ∆2080/pMS82/∆P-sepF, ∆2080/pMS82/2080-sepF and ∆2080/pMS82/P-sepF 

using fluorescence microscopy. First, we monitored development of the 

∆2080/pMS82/∆P-sepF strain (Figure 5.32). Compared to the 2080 mutant 

phenotype (Figure 5.14), the ∆2080/pMS82/∆P-sepF strain showed some sporulation 

septation, which was consistent with grey colonies (Figure 5.30) on SFM medium. 

Figure 5.31. Monitoring morphological development for testing complementation of 
the 2080 mutant. The wild-type strain (left) the 2080 mutant (middle) and the 
∆2080/pMS82/P-sepF (right) are grown on SFM medium. The plates were incubated 
and monitored after 48h and 72h growth. 
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However, this was not a full complementation as we detected very uneven septation 

and the septa often were not fully completed. The chromosomes were arranged 

around these incomplete septa with the possibility that septation could also 

guillotine some of the chromosomes. The fact that a construct containing only the 

sepF gene partially complemented the 2080 mutant suggested that the knockout 

mutation indeed had a polar effect on the downstream gene, sepF. 

When the ∆2080/pMS82/P-sepF strain was monitored, we observed regular 

septation and chromosome segregation very similar to that of the wild-type (Figure 

5.33). This construct contains the sepF gene with its promoters sufficient for full 

complementation of the sepF knockout mutant, which suggests that the severe 

developmental, non-sporulating phenotype of the 2080 mutant was mainly caused 

by the absence of sepF expression in this mutant. Interestingly, the development of 

this strain was somewhat delayed compared to that of the wild-type strain (Figure 

5.31) and there are perhaps some irregularities during septum formation of the 

∆2080/pMS82/P-sepF strain (Figure 5.33), which might account for the “true” 2080 

knockout phenotype. If so, further confirmation of this is needed by generating 

statistical analysis of septum placement and confocal microscopy.   

The third strain generated, ∆2080/pMS82/2080-sepF, which carried both the 

2080 and the sepF genes, showed full complementation where the sporulation 

septation was very regular generating identical compartments with a single 

chromosome in each compartment (Figure 5.34) which was identical to the 

developing spore chains of the wild-type strain (Figure 3.20).  

 



 182 

 

 
 
 
 
 
 

Figure 5.32. Fluorescence microscopy of ∆2080/pMS82/∆P-sepF after 48 hours of growth 
on SFM medium containing hygromycin. The ∆2080/pMS82/∆P-sepF strain was stained 
with PI (red-DNA) and WGA-Alexa 488 (green-cell wall). (A-B) confocal microscopy (C) epi-
fluorescence microscopy.  Size bar represents 1µm. 
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Figure 5.33. Fluorescence microscopy of ∆2080/pMS82/P-sepF after 48 hours of growth on 
SFM medium containing hygromycin.  The ∆2080/pMS82/P-sepF strain was stained with PI 
(red-DNA) and WGA-Alexa 488 (green-cell wall). All images were generated using epi-
fluorescence microscopy.  Size bar represents 1µm. 
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Figure 5.34. Fluorescence microscopy of ∆2080/pMS82/2080-sepF after 48 hours of 
growth on SFM medium containing hygromycin. The ∆2080/pMS82/2080-sepF strain 
was stained with PI (red-DNA) and WGA-Alexa 488 (green-cell wall). All images were 
generated using confocal microscopy. Size bar represents 1µm. 
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5.6 Summary 
 

In this chapter we focused on the characterization of the 2080 gene. Although 

homologues of 2080 were found wide-spread amongst bacteria, including B. subtilis 

and E. coli, we do not fully understand the role of this protein.  

• Bioinformatic analysis suggested that 2080 is homologous to alanine racemases, 

so it might have a function producing D-amino acids in the cell. This was 

supported by studies of ylmE in B. subtilis, where this gene was shown to 

contribute to the bacterium’s D-amino acid pool and was affecting biofilm 

formation.  

• We generated a gene knockout mutant in S. coelicolor using the REDIRECT 

technology and we confirmed the mutants generated by PCR tests using 

chromosomal DNA preparations made from the mutant strains. 

• We characterized the mutant phenotype that was not identical but very similar 

to that of the sepF mutant, failing to develop sporulation septation. 

• We have attempted to complement the 2080 mutant using constructs that 

carried the 2080 gene and different promoter combinations, however, not of our 

constructs complemented the white, non-sporulating phenotype of the 2080 

mutant.  

• We hypothesized that the lack of complementation using the 2080 gene 

constructs was because in the 2080 knockout not only the 2080 gene was absent 

but also the sepF gene was not (fully) expressed.  

• We then attempted to complement the 2080 mutant using constructs carrying 

the sepF gene either alone or together with the 2080 gene. Interestingly, the 

clone that carried the sepF gene with all upstream fragments required for full 

complementation of the sepF knockout mutant, did complement the 2080 

mutant, suggesting that the non-sporulating phenotype of the 2080 mutant was 

due to lack of SepF in this mutant. It is conceivable, that the ∆2080/pMS82/P-

sepF stain has a subtle delay in development and have slight irregularities during 

septation, which might just be the “true” 2080 mutant phenotype. If so, lack of 

the putative racemase and consequently reduced D-amino acid pool could have 

delayed sporulation in the 2080 mutant, but this needs to be confirmed by testing 
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the D-amino acid content of the 2080 mutant. It will also be important to localise 

the 2080 protein in S. coelicolor to test whether its localisation sheds any light on 

its possible function.  

• Full complementation was confirmed when a DNA fragment carrying both 2080 

and sepF genes were used. 
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Chapter 6  Brief characterisation of the 2081 gene 

 

Introduction 

 

Cell division within bacteria is a complex and not completely understood process. 

Most bacteria use binary fission, where the division septum forms at the mid-point 

of the rod-shaped cell (Wu and Errington, 2012). Within rod-shaped bacteria cell 

division is controlled by a macromolecular complex known as a divisome and 

bacterial cytoskeletal proteins (Adams and Errington, 2009). Positioning of the 

septum at the mid-point of the cell maximises the collective fitness of the progeny, 

with neither cell possessing incomplete genomes which could arise if this did not 

occur. For this positioning, cell division has to be highly regulated. The key 

cytoskeletal protein that begins the assembly of the divisome is FtsZ. Protofilaments 

of FtsZ are formed through polymerisation of the FtsZ subunits in the presence of 

GTP, before forming a Z-ring at the mid-point of the cell. This ring acts as a scaffold 

for recruiting other downstream components of the divisome, with mutations in this 

ring structure resulting in abnormal septa formation (Addinall and Lutkenhaus, 1996; 

Adams and Errington, 2009). GTP binding allows for polymerisation of FtsZ to occur, 

with the intrinsic GTPase activity of FtsZ resulting in constant remodelling of the Z-

ring (Stricker et al. 2002; Jindal and Panda, 2013). 

Cell division in Streptomyces is more complex and still not fully understood. Some 

genes in the division and cell wall (dcw) cluster remain uncharacterized. One notable 

example is the gene 2081 which is located immediately downstream of ftsZ and 

slightly overlapped with ftsZ that the start codon of 2081 overlaps with the stop 

codon of ftsZ. In the Streptomyces genomes analysed, ftsZ, 2081 and 2080 most likely 

form an operon, with overlapping start and stop codons between ftsZ and 2081 and 

only 6 bp spacing between 2081 and 2080 (Świątek et al., 2013; Świątek, 2012). The 

gene 2081 is less studied in Streptomyces but its location suggest that it may play a 

role in cell division. 
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In this brief chapter, we focus on the generation and initial characterisation of a 

2081 knockout mutant.   

 

6.1 Bioinformatics study of gene 2081  

 

To investigate the role of the 2081 protein in cell division, the amino acid 

sequence was obtained from the StrepDB Streptomyces annotation server 

(http://strepdb.streptomyces.org.uk) and analysed using SMART (http://smart.embl-

heidelberg.de/) software. The BLAST results revealed that the protein 2081 (UniProt: 

P45497) was identified as a Cu-oxidase which is able to oxidise their substrate by 

accepting electrons at a mononuclear copper center and transferring them to a 

trinuclear copper center (Vashchenko et al., 2013). Multi-copper oxidases have been 

studied in terms of their structure and sequence, some of which have lost the ability 

to bind copper. The 2081 protein is located downstream of FtsZ a gene organisation 

that is well conserved amongst the Actinobacteria (Figure 5.1, Chapter 5). In B. 

subtilis, the 2081 homologue, YlmD is encoded 7 genes downstream of ftsZ, but it is 

clustered with genes encoding the 2080 and SepF homologues. In E. coli, the 2081 

homologue, YfiH is not located in the vicinity of either the ftsZ or 2080 genes (Figure 

5.1, Chapter 5). Comparisons of 2081 from S. coelicolor and its M. tuberculosis 

homologue (Figure 6.1) revealed 49.79 % identity. Whilst, the similarity between the 

Streptomyces and Bacillus proteins is somewhat lower, 30.17 % identity (Figure 6.2) 

and also lower when compared to the E. coli homologue, YfiH, with 38.89 % identity 

(Figure 6.3).    
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Figure 6.1. Protein sequence alignment of 2081 from S. coelicolor and its homologue, 

Rv2149 (Uniprot No.: P9WKD5) from M. tuberculosis. (*) indicates positions which have 

a conserved residue, (:) represents conservation between groups of amino acids with 

strongly similar properties, and (.) indicates conservation between groups with weakly 

similar properties. The sequence alignment was generated using Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/ ). 
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Figure 6.2. Protein sequence alignment of 2081 from S. coelicolor and its homologue, 

YlmD (Uniprot No.: O31726) from B. subtilis. (*) indicates positions which have a 

conserved residue, (:) represents conservation between groups of amino acids with 

strongly similar properties, and (.) indicates conservation between groups with weakly 

similar properties. The sequence alignment was generated using Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/ ). 
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6.2 Generation of knockout 2081 mutant 

 

We created 2081 gene knockout mutant using the REDIRECT© PCR-targeting 

system as before for the sepF and 2080 gene knockout (Chaper 3 and 5). To generate 

a 2081 gene knockout mutant, an extended apramycin resistance cassette containing 

40 bp flanking regions that are homologous to the flanking regions of target gene was 

used to disrupt the target gene (Figure 3.11 from chapter 3). We amplified a 

apramycin resistance disruption cassette from pIJ733 using primers 2081 KO2 FRW 

and 2081 KO2 REV by PCR (Figure 6.4). The PCR product was run on 0.7% agarose gel 

for analysis. The size of PCR product is around 1.3 kb which corresponded to the 

expected size (Figure 6.5). 

 

Figure 6.3. Protein sequence alignment of the 2081 from S. coelicolor and its homologue, 

YfiH (Uniprot No.: P33644) from E. coli. (*) indicates positions which have a conserved 

residue, (:) represents conservation between groups of amino acids with strongly similar 

properties, and (.) indicates conservation between groups with weakly similar 

properties. The sequence alignment was generated using Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/ ).  
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This apramycin disruption cassette was transformed into E. coli BW25113 cells 

carrying the S. coelicolor cosmid 4A10 by electroporation. The addition of L-arabinose 

to the media growing the BW25113 cells causes expression of the recombinase 

enzyme which initiates a homologous recombination event between the flanking 

regions of the apramycin resistance cassette and the reciprocal sequence flanking the 

gene 2081. Therefore, after the disruption cassette was transformed into the 

BW25113, cells containing the 4A10 cosmid obtained from the transformation were 

plated onto LB containing apramycin, to select for cells that underwent successful 

ftsZ 2081 2080 sepF 2078 divIVA

KanaR

Recombination
ApraR

Conjugation to S.coelicolor

ftsZ sepF 2078 divIVA

KanaR

ApraR

ftsZ 2081 sepF 2078 divIVA2080

A

B

C

2080

ftsZ sepF 2078 divIVAApraR D2080

Figure 6.4. Knock out design for the generation of the 2081 null mutant in S. coelicolor. 
In a cosmid containing 2081 and its flanking genes, the 2081 gene was replaced with an 
apramycin resistance cassette (ApraR) (A). Then the resulting cosmid (B) was conjugated 
into S. coelicolor (C). The apramycin resistance cassette replaced the 2080 gene in S. 
coelicolor chromosome (D) after a double crossover event (B-D). 
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recombination events and grown at 37 oC to induce the loss of pIJ790. We picked the 

single BW transformants and then extracted the cosmid DNA from the cultured single 

colony using large scale cosmid extraction to obtain the cosmid DNA that had been 

disrupted.  

To test whether the gene 2081 has been successfully replaced with apramycin 

resistant disruption cassette, as before, we used restriction enzymes EcoRI/Xbal to 

digest the extracted plasmid. An “in-silico” restriction digest map was generated 

(Figure 6.6) illustrating the fragment sizes (Table 6.1). The restriction digest of the 

extracted cosmids were run on a 0.7% agarose gel. Results of gel analysis shown in 

Figure 6.2.4 suggest that the apramycin cassette has been successfully replaced the 

target fragment by gene recombination. The ~20kb fragment in the 4A10 cosmid was 

replaced by three fragments of 14.0 kb, 6.3 kb and 1.3 kb fragments. Unfortunately, 

the 14.0 kb and 6.3 kb fragments of the mutant cosmid run close to the 14.3 kb and 

6.7 kb fragments that are unchanged between the original 4A10 and the mutant 

cosmids. However, we can clearly confirm that the 20 kb fragment was absent in the 

mutant cosmids, and the ~14.0 kb and 6.3 kb fragments looked more intense, 

Figure 6.5. Amplification of apramycin disruption cassette using primers 2081 KO2 FRW 

and 2081 KO2 REV of gene 2081. 

Gel analysis of the PCR amplification for the targeted knockout of 2081 (lane 2) using 

lambda DNA cut with EcoRI and HindIII as a molecular weight marker (lane 1). Sizes shown 

in bp. For lane 2, 2081 KO2 FRW and 2081 KO2 REV primers were used. 
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suggesting the presence of two similarly sized fragments. The diagnostic 1.3 kb 

fragment was detectable in the mutant cosmid (Figure 6.7).  
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Figure 6.7. Confirmation of the mutant 4A10/2081::ApraR cosmid using restriction digest 

with EcoRI and Xbal. The restriction digest of the extracted cosmids were run on a 0.7% 

agarose. The wild-type 4A10 cosmid (lane 2) and 4A10/2081::ApraR cosmids (lane 3) 

were digested with EcoRI and Xbal and the digests were analysed on a 0.7% agarose gel. 

Lambda DNA cut with EcoRI and HindIII was used as a molecular weight marker (Lane 1), 

sizes shown in bp. The 1.3 kb fragment carrying the apramycin resistance cassette is 

shown by the orange arrow. 

Table 6.1. The expected fragments that are generated by restriction digest using 

endonucleases EcoRI and Xbal of the wild-type 4A10 cosmid and 4A10/2081::ApraR 

cosmid. Shaded fragments represent those that remain the same in both cosmid digests. 

4A10 4A10/2081::ApraR

20714 -

14348 14348

- 14036

8145 8145

6792 6792

- 6319

- 1288
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After confirmation of the cosmid 4A10/2081::ApraR, it was transformed into 

methylation-deficient E.coli strain ET12567/pUZ8002 and then conjugated into the 

wildtype S. coelicolor strain M145. Selection of exconjugants containing the 

apramycin cassette was achieved by overlaying plates using apramycin and nalidixic 

acid. To distinguish colonies that had undergone a double crossover event and thus 

contain a single copy of the gene cluster without the 2081 gene, we used replica 

plating to identify colonies that were sensitive to kanamycin but resistant to 

apramycin. The selected colonies identified as double crossover were streaked on 

SFM medium and spores of the 2081 mutant was collected for making stock for future 

analysis.  

 

6.3 Confirmation of 2081 mutant strain  

 

To confirm that the gene 2081 was successfully knocked out from the 

chromosome of S. coelicolor, chromosomal DNA was obtained from the 2081 mutant 

and was PCR tested using different primer pairs. We firstly used two external flanking 

primers of 2081 gene, one (FtsZ XbaNde FRW) located within the upstream gene ftsZ 

and the other (2080 Nde REV) situated in the downstream gene 2080, to PCR test the 

extracted chromosomes of wild-type and ∆2081 mutant. With these two primers, PCR 

products were expected from both M145 wild-type and 2081 mutant but with 

different sizes. The size of apramycin disruption cassette (~1.3 kb) is larger than size 

of 2081 (729 bp), therefore the PCR product generated from the 2081 mutant 

chromosome (3303 bp) will be larger than the PCR product generated from the wild-

type chromosome (2649 bp) (Figure 6.8). In addition, we used another two primers, 

one located in ftsZ gene and the other one situated in apramycin cassette, to further 

test the presence of apramycin resistant cassette in mutant strain. These primers will 

produce PCR products in 2081 mutant strain but not in wild-type, with expected sizes 

shown in table 6.2. All the expected PCR products were confirmed when the PCR 
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products were analysed on an agarose gel (Figure 6.9), confirming that the 2081 

mutant was successfully generated.  

 

A 

B 

Figure 6.8. Experimental design for the confirmation of the 2081 mutant using PCR. 

(A) The primers FtsZ XbaNde FRW and 2081 Nde REV were used to generate PCR products to 

test whether the 2081 gene was successfully replaced with the apramycin resistant 

disruption cassette in the chromosome of S. coelicolor. The expected sizes of PCR products 

showed difference in wild-type strain M145 and 2081 mutant strain due to the replacement 

of apramycin resistant cassette (ApraR cassette). (B) The primers FtsZ XbaNde FRW and Apra 

5’ REV will generate a PCR product only in the 2081 mutant. 

 

ftsZ ApraR 2080∆2081
mutant

1315 bpFtsZ XbaNde Apra 5’ REV

ftsZ 2081

FtsZ XbaNde 2081 Nde REV

M145 
wild-type 2080

2649 bp

ftsZ ApraR 2080∆2081
mutant

3303 bpFtsZ XbaNde 2081 Nde REV
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Table 6.2. The expected size of PCR products using wild-type and the 2080 mutant 

chromosomal DNA as templates. 

Oligos Size in wild-type Size in ∆2081 mutant
FtsZ XbaNde
2080NdeREV

2649 bp 3303 bp

FtsZ XbaNde
Apra 5’REV

- 1315 bp

Figure 6.9. The gel analysis of the PCR products generated using chromosomal DNA of M145 

wild-type and the 2081 mutant strains for confirmation of the 2081 mutant. 

A. Chromosome extracts from M145 wild-type and the 2081 mutant were PCR tested using 

primers FtsZ XbaNde FRW and 2080 Nde REV. Lane 1, the λ EcoRI-HindIII ladder, sizes shown 

in bp. Lane 2 and 3, two independent 2081 mutants. Lane 4, M145 wild-type. 

B. Chromosome extracts from M145 wild-type and the 2081 mutant were PCR tested using 

FtsZ XbaNde FRW and Apra 5’ REV. Lane 1, λ EcoRI-HindIII ladder, sizes shown in bp. Lane 2 

and 3, two independent 2081 mutants. Lane 4, M145 wild-type. 
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6.4 Characterisation of the 2081 mutant phenotype 

 

6.4.1 Macroscopic analysis of the 2081 mutant 

 

After we generated the mutant, the spores of wildtype and the 2081 mutant 

strains were grown on SFM medium at 30oC and observed daily to determine the 

phenotype. The fact that we generated a spore stock from the 2081 mutant 

suggested that the mutant phenotype is not as severe as that of the sepF mutant for 

example, where the white colonies prompted us to store hyphal fragments collected 

from cells grown on the surface of cellophane disks for storage. We monitored the 

phenotypes daily but we did not observe any major difference when the wild-type 

strain was compared to the 2081 mutant (Figure 6.10). After three days (72hrs), the 

Wild-type M145 2081 mutant 

Figure 6.10. Macroscopic phenotype analysis of 2081 mutant strain. 

Wild-type M145 and 2081 mutant strains were grown on SMF medium for 3 days. The 

plates were incubated and monitored at regular time intervals. It was observed that 2081 

mutant produced the grey pigment associated with spore maturation, and its appearance 

was very similar to the wild-type strain M145.  
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2081 mutant strain and wild-type M145 strain had very similar appearance which 

presented classic grey pigment associated with mature spores.  

However, in some of the previous complementation experiments we found that 

the grey appearance of a bacterial loan can be misleading, and it is wrong to assume 

no effect on sporulation. In fact, the Δ2080/pMS82/ΔP-sepF stain was grey when 

grown on SFM medium but its sporulation septation was severely affected (Chapter 

5, Figure 5.5.2.4). To test whether the grey phenotype of the 2081 mutant reflected 

normal sporulation septation, we used fluorescence microscopy together with 

staining the cell walls (WGA-Alexa 488) and the cellular DNA (PI) analysing samples 

taken at different stages during development.   

 

6.4.2 Microscopic analysis of 2081 mutant  

 

We inoculated spores of the 2081 mutant onto SFM in a rectangular patches and 

inserted coverslips at a 70° angle to the horizontal plane of the media. The hyphae 

were then visualized, using WGA-Alexa 488 for cell wall stain and PI for chromosomes, 

at regular intervals to follow the different stages of development. 

When the first sample was collected and stained after 42 hours of growth, we 

observed that vegetative hyphae of the 2081 mutant developed hyphae as network 

of branching mycelium where the chromosome is dispersed throughout the hyphae 

(Figure 6.11 A), which remained same performance as wild-type. After 48 hours of 

growth, after aerial hyphae have formed, we could detect the somewhat curled 

hyphae starting to undergo the sporulation septation where single chromosomes 

were divided into compartments with condensed nucleoids, separated by 

sporulation septa. Although many of the sporulation septa was placed at regular 



 201 

intervals, we found that there were also larger pre-spore compartments developing 

Figure 6.11. Fluorescence microscopy of the 2081 mutant strain. 

Spores of the 2081 mutant strain were plated onto SFM medium and incubated at 30oC 

before staining with PI (red-DNA) and WGA-Alexa 488 (green-cell wall). (A) The vegetative 

hyphae, (B-F) septum development in the aerial hyphae. Size bar represents 1µm. A, B and 

D were generated using epi-fluorescence microscopy, C, E and F were generated using 

confocal microscopy. 
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into mature spores. We found septa laid down at uneven intervals throughout the 

aerial hyphae which often created compartments containing two chromosomes. This 

observation suggests that the 2081 mutant might have a subtle mutant phenotype 

that is different from the wild-type strain M145 (Figure 6.11 and 6.12).  

 

 

 

 

 

 

Figure 6.12. Sporulation septation in the wild-type M145 (top) and the 2081 mutant 

(bottom). Cell wall (green) stained with WGA-Alexa 488 (left) and DNA (red) stained 

with PI (middle) are shown, together with the overlayered image (right). Images were 

generated using confocal microscopy.  

Δ2081 

M145 
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6.4.3 Quantitative analysis of septum placement in the 2081 mutant 

 

To quantify the irregularity of septum placement observed in the 2081 mutant, 

we measured the distance between septa in both the 2081 mutant and wild-type 

M145 strains and compared the results. Images were analysed using the Zeiss 

Axiovision software which has a measurement tool, with data collated in excel and 

histograms generated. The frequency bar chart for the 2081 mutant strain was 

plotted against the wild-type strain to demonstrate the differences in septum 

placement in the 2081 mutant strain compared to that of the wild-type strain M145 

(Figure 6.13). 

The 2081 mutant strain had a larger range of distances between neighboring 

septa with some smaller and some larger than the average 1.09 μm. Interestingly, 

the median of both the wild-type and the 2081 mutant were around 1.1 μm, which 

is the average distance between two septa. The standard error is low, so we have 

confidence in the data (Figure 6.13). However, the 2081 mutant shows bimodal 

distribution, suggesting that the septa are either placed regularly or, in some cases, 

the septum is placed with around 1.8 μm distance, representing compartments with 

two chromosomes (Figure 6.12). Although this phenotype of the 2081 mutant is 

subtle, it is significant and confirmed that 2081 protein did effect septum formation 

in S . coelicolor. 
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Figure 6.13. The statistical analysis of 2081 mutant strain. Top: General statistics of the septal 

distances measured. Bottom: Frequency bar chart is shown, the wild-type M145 is blue and 

the 2081 mutant is orange. 539 distances were measured for the wild-type strain and 1514 

for the 2081 mutant strain. The unit of septal distances is µm.    

M145 2081

Mean 1.121725 Mean 1.162497
Standard Error 0.007687 Standard Error 0.007914
Median 1.1 Median 1.09
Mode 1.15 Mode 1.03
Standard Deviation 0.178472 Standard Deviation 0.307924
Sample Variance 0.031852 Sample Variance 0.094817
Range 1.61 Range 2.23
Minimum 0.76 Minimum 0.63
Maximum 2.37 Maximum 2.86
Count 539 Count 1514
Largest(1) 2.37 Largest(1) 2.86
Smallest(1) 0.76 Smallest(1) 0.63
Confidence Level(95.0%) 0.015101 Confidence Level(95.0%) 0.015523

M145 
2081 
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6.5 Summary 

 

The gene 2081 lies immediately downstream of, and most likely in operon with, 

ftsZ, which plays key role in cell division. Homologues of 2081 are found in many 

bacteria but their role is largely unknown.  

• In this chapter we generated the 2081 gene knockout mutant using the PCR 

targeting.  

• We have confirmed the generated mutant by performing a series of PCR reactions 

using chromosomal DNA extracted from the putative mutant strains. 

• We characterized the mutant phenotype using fluorescence microscopy and 

found that this mutant produced unevenly spaced septa with ~10% of the 

compartments were larger, likely containing two chromosomes. This suggests 

that 2081 has a role in septum placement in S. coelicolor.  

• We measured the distances between septa in the 2081 mutant, with wild-type 

strain M145 as a control. The statistical analysis showed that the 2081 mutant 

strain had a larger range of septal distances with a bimodal characteristics, with 

some compartments containing two chromosomes, hence some of the longer 

septal distances.   

• We did not have time to confirm the mutant phenotype by complementing the 

knockout mutant. 
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Chapter 7  General Discussion 

 

Streptomyces have a complex life cycle. Firstly, unlike in uni-genomic bacteria, 

where cell growth and cell division are essentially interlinked, in Streptomyces cellular 

growth can take place in the absence of cell division. The two phases, cellular growth 

and fully completed cell division are separated both in time and space. Cell division 

in Streptomyces differs from cell division in most bacteria, mainly because of its 

mycelial life style. There are two different types of cell division in Streptomyces: 

cytokinesis and cell fission are only fully completed during sporulation of the aerial 

hyphae, while in the vegetative hyphae, cell division is suspended at the formation of 

cross-walls, a stage, which is not followed by cell-cell separation (McCormick and 

Flardh, 2012; Claessen et al., 2014; Kelemen, 2017). Secondly, the regulation of cell 

division is also very unique. In most model bacteria, such E. coli and B. subtilis, cell 

division and septum formation is dependent on FtsZ polymerization into the so called 

Z-ring. FtsZ polymerization at the mid-point of the cells is primarily negatively 

controlled, preventing division septum formation at places near the poles (Min 

system) or avoiding damage to the nucleoid (NO system) (Huang et al., 2013). 

Whereby the septum is formed only at the middle of the cell and safely out of the 

way when the DNA is duplicated. This immediately highlights a major difference in 

Streptomyces, as the long hyphae of do not have a clear mid-cell position. In addition, 

the positive regulators, such as ZipA, FtsA and SepF, can actively promote the 

stablilisation of the Z-ring and its anchor to the cell membrane, which are necessary 

to complete division (Pichoff and Lutkenhaus, 2002; Willemese et al., 2011). However 

Streptomyces lacks the Min and NO systems and it does not have ZipA or FtsA, 

therefore Streptomyces possesses only SepF, amongst the proteins that control FtsZ 

organisation in other bacteria. It is not clear how septum placement is governed 

properly in time and space in the long and multi-nucleoid hyphae of Streptomyces 

during sporulation. Therefore we investigated three genes which potentially play 

indispensable role in cell division.  
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There were several major questions we attempted to address. What are the 

specific proteins that control the positioning of the septum formation temporally and 

spatially in aerial hyphae? And how do they avoid the damage to the chromosomes 

during synchronous multiple cell division in multi-nucleoid hyphae? One interesting 

place to start our investigation is the dcw cluster which contains genes related to cell 

wall synthesis and cell division. The function of several genes between ftsZ (SCO2082) 

and divIVA (SCO2077) have not been well characterised, despite the fact they are 

downstream of ftsZ in many Gram-positive bacteria, including Streptomyces. All four 

genes located in this region are gene SCO2081, SCO2080, SCO2079 (sepF) and 

SCO2078. In this study we mainly focus on the first three genes due to special role of 

SepF which was previously shown to tether the Z-ring to the membrane in B. subtilis 

and promote FtsZ protofilament formation (Hamoen et al., 2006; Ishikawa et al., 

2006).  

Therefore, in this study we set out to begin the characterization of these genes 

in Streptomyces to better understand their role in the interplay with FtsZ and its 

polymerisation during sporulation. First, we created the knockout mutant strains of 

these genes and explored their mutant phenotypes. 

 

SepF, required for septation in S. coelicolor 

 

SepF is a protein involved in septum development and was first identified by 

Hamoen et al (2005) and Ishikawa et al (2006). SepF was found to be essential for the 

completion of cell division in B. subtilis, but not for the initiation of septation. SepF 

has also been discovered to interact with both the cell membrane and the C-terminal 

end of FtsZ and is in fact responsible for the correct localization and ring formation of 

FtsZ (Duman, 2013). This protein is conserved among Gram-positive bacteria but it is 

not essential for viability in B. subtilis. However, in B. subtilis SepF is not the only 

protein that can sequester FtsZ to the membrane, FtsA and ZipA also play a role in 

membrane anchoring FtsZ. In contrast, Streptomyces lacks FtsA and ZipA but its 
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chromosome encodes three SepF homologues, SepF1, SepF2 and SepF3. SepF2 

encoded by gene SCO2079 shares the highest identity with SepF of B. subtilis. In 

addition, sepF2 (SCO2079) is located in the cell division gene cluster containing the 

essential cell division gene ftsZ. This might suggest that the role of SepF2 potentially 

is more linked to the role of FtsZ assembly during cell division. Therefore we focused 

on SepF2, using the designation of SepF in this study. 

We generated a sepF knockout mutant strain by replacement of sepF gene with 

an apramycin resistant cassette using PCR-directed mutagenesis (Gust et al., 2002) to 

characterise its role in cell division in S. coelicolor. The sepF mutant strain showed a 

severe developmental mutant phenotype. When the wild-type strain presented 

classic grey pigment associated with mature spores, the sepF mutant produced white 

colonies with blue colony surface on solid media, which suggests that septation in 

mutant is blocked in sporulation stage. Microscopic analysis of the sepF mutant strain 

revealed that the deletion of the sepF gene resulted in severe defect in generation of 

septa, which is consistent with the white colonies of its macroscopic phenotype. In 

wild-type strain M145, we followed the formation of the vegetative septa in 

vegetative hyphae and the regularly placed sporulation septa in the aerial hyphae 

generating a ladder-like structure. The sepF mutant fail to develop any septation 

during both vegetative and aerial growth. However, the absence of the septa did not 

affect chromosome segregation. The chromosomes in the aerial hyphae of the sepF 

mutant still underwent some segregation albeit without generating fully segregated 

single chromosomes. 

To confirm that the noticeable non-sporulating phenotype of the sepF mutant is 

caused by deletion of gene sepF, we carried out complementation experiments with 

different constructs containing the sepF gene. We generated three different 

constructs and introduced them into the sepF mutant to monitor their development. 

Firstly, the construct ∆P-sepF only contained sepF and a very short upstream 

sequence, potentially containing only one of the promoters of sepF (Jeong et al, 2016) 

was induced into the sepF mutant strain generating ∆sepF/pMS82/∆P-sepF. This 

strain produced grey pigments, which was identical to the wild-type strain. However, 
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microscopic analysis confirmed that ∆sepF/pMS82/∆P-sepF did not look like the wild-

type, as we observed deformed septa placed at uneven positions. Some septa were 

spiral shaped and enclosed either quite small or large patches of chromosomes, 

which suggests this construct did not contain a DNA fragment that fully expressed 

SepF. The second construct 2080-sepF that contained the sepF gene and its upstream 

gene 2080 confirmed this. When we induced this construct into the sepF mutant 

strain we found that the wild-type phenotype was fully restored in mutant strain both 

macroscopically and microscopically. In this strain, ∆sepF/pMS82/2080-sepF we can 

see the regular septa laid down in the aerial hyphae between two evenly segregated 

chromosomes. However, we were not sure of the location of the sepF promoters until 

Jeong (2016) provided some large scale data on Streptomyces promoters. Our last 

construct, P-sepF contained the sepF gene and its putative promoters, and was 

introduced into the sepF mutant strain generating ∆sepF/pMS82/P-sepF. This strain 

presented the same phenotype as that of the wild-type strain which produced grey 

pigment and regular septation during sporulation.   

As the mutant generated was fully confirmed, we can state that the sepF mutant 

failed to generate septa in general, which suggests that SepF has a key role in 

septation in Streptomyces. In B. subtilis, the sepF mutant was not affected in the early 

stages of septation and only the septum closure was defective in the sepF mutant 

(Hamoen et al., 2006). But B. subtilis possesses FtsA and ZipA that are anchoring FtsZ 

to the membrane during the early stages of septum formation. It seems, that lack of 

FtsA and ZipA in Streptomyces, and in the other Actinomycetes, such as M. 

tuberculosis, SepF has a major role in FtsZ positioning. It is not clear whether there is 

any structural difference in the SepF proteins from the Actinomycetes themselves that 

supports this major role. It is also intriguing that Streptomyces has 3 SepF proteins, 

and it will be important to characterise the role of the other two SepF proteins and 

whether they are also involved in cell division. 
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SepF localisation to the future septum sites 

 

After the characterisation of the sepF mutant strain, we turned to the analysis of 

SepF localisation to explore how it aids FtsZ polymerisation in S. coelicolor during 

sporulation. In B. subtilis, SepF oligomerises to form large rings that bundle FtsZ 

protofilaments into tubular structures similar to microtubules (Gündoğdu et al., 2011). 

It is possible that S. coelicolor FtsZ protofilaments are bundled via a similar 

mechanism. In order to establish that, future work is needed to overexpress and 

purify both SepF and FtsZ from E. coli and perform in vitro assays using the purified 

proteins.  

SepF has been localised in B. subtilis with the protein accumulating at the sites of 

cytokinesis, (Hamoen et al., 2006). The suggested model positions SepF to the FtsZ 

ring after the initial invagination of the cell membrane (Duman et al., 2013), which 

suggests that SepF is positioned after FtsZ polymerisation. SepF localization was 

monitored also in M. tuberculosis (Gola et al., 2015) and in the cyanobacterium, 

Synechocystis (Marbouty et al., 2009), in both cases SepF localised to the developibg 

septum.  

We generated SepF-Egfp translational fusions using three different constructs 

and approaches and monitored fluorescence during Streptomyces development. The 

first approach generated S. coelicolor M145/sepF::sepF-egfp-ApraR, where the sepF 

gene was replaced by the sepF-egfp fusion in the original chromosomal location. The 

strain M145/sepF::sepF-egfp-ApraR had a wild-type phenotype, which confirmed 

that the SepF-Egfp fusion in this strain is fully functional. The second and third 

approach introduced the sepF-egfp fusion using a plasmid that integrated into a 

specific chromosomal site in a single copy. Constructs pMS82/2080-sepF-egfp and 

pMS82/P-sepF-egfp contained 848 bp and 343 bp DNA upstream of the translational 

start of sepF, respectively. Introduction of both of these constructs into the sepF 

knockout mutant restored the wild-type phenotype. This confirms that SepF-Egfp is 

functional and expresses at native levels even when using the shortest, 343 bp 
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upstream sequences. This suggests that in the plasmid pMS82/sepFp2-egfp contained 

all that was needed for sepF transcription, which was suggested by the RNA Seq data 

by Young et al., 2016. Monitoring SepF-Egfp throughout the developmental cycle of 

the three different constructs of S. coelicolor generated the same localisation patterns. 

SepF-Egfp localised to positions of possible future cross-wall formation or septation 

in the vegetative and aerial mycelium, respectively. SepF-Egfp formed ring-like 

structures that were visualised using confocal microscopy and occasionally spiral-like 

patterns were observed at the early stages. SepF-Egfp patterns looked like lines 

perpendicular to the hyphal wall using epi-fluorescence microscopy, or ladders in the 

aerial hyphae. When fully formed, these ladders had the ~1.2 µm spacing that is 

characteristic of the distance between sporulation septa. The SepF-Egfp ladders in 

the aerial hyphae formed well before any signs of septation and even chromosome 

segregation. However, SepF-Egfp signal were visible at places where there was less or 

no DNA staining, which might suggests that SepF localises to places devoid of DNA.  

We assume that SepF and FtsZ interacts in Streptomyces, as this was shown in B. 

subtilis and M. tuberculosis  (Hamoen et al., 2006; Gupta et al., 2009; Gola et al., 

2015) and our bioinformatics analysis revealed that the residues in SepF that are 

involved in making contact with FtsZ are conserved and are present in the 

Streptomyces SepFs (Figure 3.1.3). What we cannot state at this stage is exactly what 

the order of appearance is of FtsZ and SepF, and whether any of them is dependent 

on the other. For this, we need to localise FtsZ in the sepF mutant and SepF in the ftsZ 

mutant. We have tried to monitor FtsZ-Egfp in the sepF mutant and we could not 

detect any FtsZ-Egfp rings, instead, some green foci could be seen in the aerial hyphae 

that did not develop into rings. This suggest that SepF is required for FtsZ 

polymerization at the correct location. We could not test the reciprocal experiment, 

which is to monitor SepF-Egfp in the ftsZ mutant as we do not have an ftsZ knockout 

in the lab. The current model based on studies in B. subtilis, is that SepF accumulates 

at initial invagination of the cell membrane (Duman et al., 2013), which is a late event. 

It is conceivable that in Streptomyces, and maybe also amongst other Actinomycetes, 

SepF is required for FtsZ ring formation and acts much earlier than in B. subtilis. To 
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test this we, could use membrane stains and check whether SepF-Egfp localises at 

membrane invagination sites. What we definitely can say is that SepF-Egfp localised 

at positions where there was a lack of DNA staining. This might suggest that either 

SepF is involved in chromosome organisation leading to full chromosome segregation 

later, or that SepF localises to nucleoid free zones. 

 

2080, an role in cell wall/ septum synthesis? 

  

Most of the genes in the dcw cluster for proteins involved in cell division and 

cell-wall biosynthesis have been studied extensively and their functions have been 

well characterized. Little is known of the genes SCO2080 that lie immediately 

downstream of ftsZ (SCO2082) on the S. coelicolor genome. SCO2080 is wide spread 

in Gram-positive bacteria, and particularly in firmicutes (Bacillus, Staphylococcus) and 

in actinobacteria, but are also occasionally found in Gram-negative bacteria.  

The gene SCO2080 was previously implicated in the production of D-amino acids 

for cell-wall synthesis (Kolodkin-Gal et al., 2010). During bacterial cell division, 

peptidoglycan synthesis needs to be coordinated with the increase of the cell size, 

timely genome replication, segregation and septum synthesis followed by cell fission. 

Mutants of E. coli lacking the yggS, the orthologue of SCO2080, had a radical change 

in the amino acid pool, with enhanced concentrations of the branched chain amino 

acids valine and leucine, as well as of α-ketoglutarate (Ito et al., 2013). This most likely 

led to reduced levels of coenzyme A (CoA), which was supported by the full 

restoration of yggS mutants by the CoA precursor pantothenate (Vitamin B5). These 

suggest a role for SCO2080 in amino acid metabolism.  

We generated a 2080 knockout mutant strain by replacement of 2080 gene with 

an apramycin resistant cassette using PCR-directed mutagenesis (Gust et al., 2002) to 

characterise its role in cell division in S. coelicolor. In this work, the 2080 mutant strain 

produced white colonies, which suggested that the mutant was blocked in 

sporulation septation. Monitoring microscopically the 2080 mutant strain indicated 
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that the absence of gene 2080 resulted in a phenotype that was very similar to that 

of the sepF mutant, apart from the fact that this mutant did produce some vegetative 

septa and it did not have a blue aerial surface when grown on solid SFM medium.  

However, when we attempted to complement this 2080 mutant using a range of 

constructs carrying the 2080 gene, we did not get any complementation. This raised 

the possibility that the deletion of the 2080 gene in this mutant caused a polar effect 

on its downstream gene sepF. 

Therefore, we used the three constructs which we previously used for the 

complementation of the sepF mutant strain. Confirming that the 2080 mutant indeed 

had a polar effect on the gene sepF, all three constructs restored the grey pigment 

production when introduced into the 2080 mutant strain. However, microscopic 

analysis revealed that the construct ∆P-sepF containing only one of the sepF 

promoters, only partially complemented the 2080 mutant. In the strain 

∆2080/pMS82/∆P-sepF, we detected many half closed septa and irregularly 

segregated chromosomes. The second construct containing sepF and its putative 

promoters (Jeong et al., 2016) restored regular septum formation when introduced 

to the 2080 mutant, although we observed some delay in development in this 

∆2080/pMS82/P-sepF strain, together with some signs that the septation was not as 

regular as that in the wild-type. However, to confirm this, we need to provide 

statistical analysis of the septal distances in this strain. The third construct, which 

contain both the 2080 and sepF genes, fully restored the wild-type phenotype with 

regular septation and even septal distances. 

What is then the role of 2080 in septation in Streptomyces? We cannot answer 

this question, yet. But after the confirmation of the phenotype of the 

∆2080/pMS82/P-sepF strain, together with the generation of a new knockout strain 

for 2080, where the two promoters of sepF are not affected, we will be able to answer 

this question. More studies are also needed to address whether the 2080 protein is 

an amino acid racemase and if so, how the generation of D-amino acids affect 

septation.  
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Can 2081 protein affect the efficiency of septum synthesis? 

 

It is well known that the tubulin-like protein FtsZ is essential for septation 

process. There are still some genes in the Streptomyces division and cell wall (dcw) 

cluster that remain uncharacterized. One notable example is the gene SCO2081 

which locates adjacently downstream of ftsZ and is slightly overlaps with ftsZ. In all 

Streptomyces genomes analysed, ftsZ, 2081 and 2080 most likely form an operon, 

with translational coupling between ftsZ and 2081 (overlapping start and stop 

codons), suggesting the gene 2081 may play a prominent role in cell division (Świątek 

et al., 2013; Świątek, 2012). By bioinformatics studies, 2081 was identified as a Cu-

oxidase which is able to oxidise their substrate by accepting electrons at a 

mononuclear copper center and transferring them to a trinuclear copper center 

(Vashchenko et al., 2013).  

We generated the 2081 knockout mutant strain by replacement of 2080 gene 

with an apramycin resistant cassette in S. coelicolor. This mutant did not show an 

obvious mutant phenotype, as it produced grey pigment in a similar manner to the 

wild-type strain. However, microscopic analysis of the 2081 mutant strain revealed 

that there is a subtle but significant difference between septal distances in the 2081 

mutant and the wild-type strain. To understand the irregularity of septum placement 

observed in 2081 mutant, we measured the distances between septa in both 2081 

mutant and wild-type M145 and compared the results. From this analysis, the 2081 

mutant generated bimodal distribution of septal distances, suggesting that this 

mutant occasionally failed to generate a septum, producing the occasional “double-

sized” compartments with more than one nucleoid. This phenotype was so subtle 

after the initial observation that we did not create a complementing clone. However, 

as we now have a tool (septal distance measurements), the mutant phenotype will 

need to be confirmed by complementation. This again will need some consideration, 

to generate a construct that will fully express 2081.  
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The protein 2081 will also need to be characterised to answer the question 

whether and how a copper oxidase can influence the efficiency of cell division. It will 

be also interesting to test whether FtsZ interacts with either 2080 or 2081, or 

whether 2080 and 2081 interacts with each other or with SepF. These interactions 

can be tested using the bacterial two hybrid assays initially and further confirmed by 

biochemical assays.  
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