doi: 10.1016/j.bja.2018.11.026 Advance Access Publication Date: 3 January 2019 Review Article

REVIEW ARTICLES

Safety of 80% vs 30—35% fraction of inspired oxygen in patients undergoing surgery: a systematic review and meta-analysis

Katharina Mattishent¹, Menaka Thavarajah¹, Ashnish Sinha¹, Adam Peel¹, Matthias Egger², Joseph Solomkin³, Stijn de Jonge⁴, Asad Latif^{5,6}, Sean Berenholtz^{5,6}, Benedetta Allegranzi^{7,*} and Yoon Kong Loke¹

¹Norwich Medical School, University of East Anglia, Norwich, UK, ²Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland, ³Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA, ⁴Department of Surgery, Amsterdam Gastroenterology and Metabolism, Amsterdam Infection and Immunity, Amsterdam UMC, Location AMC, University of Amsterdam, the Netherlands, ⁵Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA, ⁶Armstrong Institute for Patient Safety and Quality, Johns Hopkins Medicine, Baltimore, MD, USA and ⁷Infection Prevention and Control Global Unit, Service Delivery and Safety, World Health Organization, Geneva, Switzerland

*Corresponding author. E-mail: allegranzib@who.int

This article is accompanied by an editorial: Perioperative hyperoxia: why guidelines, research and clinical practice collide by C.S. Meyhoff, Br J Anaesth 2019:122:289–291, doi: https://doi.org/10.1016/j.bja.2018.12.016.

Abstract

Background: Evidence-based guidelines from the World Health Organization (WHO) have recommended a high (80%) fraction of inspired oxygen (FiO₂) to reduce surgical site infection in adult surgical patients undergoing general anaesthesia with tracheal intubation. However, there is ongoing debate over the safety of high FiO₂. We performed a systematic review to define the relative risk of clinically relevant adverse events (AE) associated with high FiO₂. **Methods:** We reviewed potentially relevant articles from the WHO review supporting the recommendation, including an updated (July 2018) search of EMBASE and PubMed for randomised and non-randomised controlled studies reporting AE in surgical patients receiving 80% FiO₂ compared with 30–35% FiO₂. We assessed study quality and performed meta-analyses of risk ratios (RR) comparing 80% FiO₂ against 30–35% for major complications, mortality, and intensive care admission. **Results:** We included 17 moderate–good quality trials and two non-randomised studies with serious-critical risk of bias. No evidence of harm with high FiO₂ was found for major AE in the meta-analysis of randomised trials: atelectasis RR 0.91 [95% confidence interval (CI) 0.59–1.42); cardiovascular events RR 0.90 (95% CI 0.32–2.54); intensive care admission RR 0.93 (95% CI 0.7–1.12); and death during the trial RR 0.49 (95% CI 0.17–1.37). One non-randomised study reported that high FiO₂ was associated with major respiratory AE [RR 1.99 (95% CI 1.72–2.31)].

Conclusions: No definite signal of harm with 80% FiO_2 in adult surgical patients undergoing general anaesthesia was demonstrated and there is little evidence on safety-related issues to discourage its use in this population.

Editorial decision: 8 November 2018; Accepted: 8 November 2018

© 2018 World Health Organization. Published by Elsevier Ltd. on behalf of British Journal of Anaesthesia.

For Permissions, please email: permissions@elsevier.com

Keywords: adverse events; general anaesthesia; high FiO₂; hyperoxia; peri-operative outcome; surgical site infection; surgical wound infection

Editor's key points

- While guidelines from the WHO recommend a high FiO₂ to reduce surgical site infection in adult surgical patients undergoing general anaesthesia, there is ongoing debate over its safety.
- This systematic review and meta-analysis of 17 RCTs did not find robust evidence that perioperative 80% FiO₂ is associated with a significant risk of harm compared with 30-35% oxygenation.
- The available evidence indicated that high FiO₂ has no significant deleterious effect on hard outcomes, such as ICU admissions and mortality.
- Future studies should focus on adverse events as the main predefined outcome with rigorous monitoring and transparent reporting.

In 2016, the WHO issued a set of recommendations on practical measures to prevent surgical site infection (SSI).^{1,2} As part of the WHO guideline development process, a systematic review and meta-analyses were conducted on the effect of a high fraction of inspired oxygen (FiO₂) on SSI. The reviewers reported that 80% FiO₂ showed a significant benefit in reducing SSI when compared with a standard FiO₂ of 30% or 35% in intubated patients without any evidence of harm.³ Nevertheless, concerns regarding the potential harmful effects of high FiO₂ have generated intense discussion on the benefit vs harm balance of high FiO2 in preventing SSI, and a recent meta-analysis found that liberal oxygen use in acutely ill patients was associated with increased mortality.^{4–7}

The trade-off between the benefits and risks of high FiO₂ continue to be debated in the scientific literature, with concerns raised regarding increased risk of respiratory and cardiovascular adverse events (AE) and mortality.⁸⁻¹⁰ One specific criticism was that the WHO systematic review and guidelines had failed to adequately analyse the potential negative effects of high FiO₂.⁸⁻¹⁰ These concerns about the harms of high FiO₂ have been countered by the observation that the studies cited were based on evidence from animal studies and clinical settings differing from perioperative care.¹¹ Nevertheless, this ongoing debate highlighted the urgent need for a thorough evaluation of studies examining AE associated with high FiO₂ in patients undergoing surgery. We conducted a systematic review aimed specifically at extracting AE data from randomised trials (including those reported in the accompanying efficacy review) and nonrandomised studies related to the perioperative administration of 80% FiO₂ (I) compared with 30-35% (C) in patients undergoing surgery (P) for the purpose of reducing the risk of SSI (O).12

Methods

Study selection criteria

Our inclusion criteria for studies followed those of the original WHO guidelines¹ by using the same intervention and comparators as the efficacy review, but with the additional parameter of the inclusion of non-randomised studies. We selected relevant studies that had: (i) between-group comparisons, either of a randomised or a non-randomised design; (ii) patients of any age undergoing any type of surgical procedure; and (iii) perioperative administration of high FiO₂ (80%) *vs* a control or comparator group, where the comparator was the perioperative administration of standard FiO₂ (30–35%).

Search strategy

We identified potentially relevant studies from several sources, starting with a new database search with no restriction on study design or outcome. This specific search focusing on articles with AE terms is fully reported in Supplementary Table S1 and was first conducted on June 5, 2017 based on free-text and the indexing terms used in PubMed and EMBASE. To capture all relevant new articles, we set up automated notifications from PubMed (most recent update, July 2018). We then went on to evaluate all the trials included in the accompanying efficacy review.¹² As there may have been studies of a non-randomised design or trials that had not reported on SSIs relevant to the efficacy endpoint, but could contribute AE data, we also checked all full-text articles classified as 'wrong design' or 'wrong outcome' in the efficacy review. Finally, we checked reference lists of included articles and systematic reviews and consulted with experts from WHO in the event that they might be aware of other potentially relevant articles that specifically reported AE associated with high FiO₂.

Study selection

Two reviewers (Y.K.L. and K.M.) independently screened titles and abstracts of retrieved references for relevant studies based on population, intervention, and comparator. At this time, we did not exclude articles based on the absence of AE reporting in the abstract, as these data may not have been mentioned, even if present in the full article. We then retrieved full-text versions of these articles and both reviewers further checked these against the inclusion criteria.

Outcomes of interest

We examined the effect of high FiO_2 on the following prespecified adverse outcomes of interest: (i) mortality; (ii) ischaemic vascular events affecting coronary and cerebral circulation; (iii) respiratory AE (e.g. respiratory failure, acute respiratory distress syndrome, number of ventilator days, and lung complications, for example, pneumonia or atelectasis, reintubation or prolonged intubation); and (iv) length of hospital stay. In addition, we used a hypothesis generating/scoping approach to capture any new or unexpected serious AE that may have been reported.

Data extraction

Two reviewers (A.S. and A.P., or Y.K.L. and K.M.) independently extracted data from all included studies onto a preformatted form. To avoid a bias towards the null that could arise from attempting to evaluate AE in patients who had never received the intervention, participant numbers were extracted based on the study population that had received the assigned intervention and where outcomes had been measured.

Assessment of study validity

The risk of bias of the RCTs included in the effectiveness review was assessed by two authors (J.S. and S.W.),¹² whereas another two pairs of reviewers (A.S. and A.P., and Y.K.L. and K.M.) were involved in the independent assessment of the validity of included AE studies using the Cochrane

Collaboration tools for assessing the risk of bias in nonrandomised studies of interventions (ROBINS-I),^{13,14} and components from the specific McMaster Harms tool for AE trials.¹⁵ We focused on whether AE were pre-specified, the degree of rigour of postoperative monitoring, and the amount of reported detail on AE. We aimed to assess publication bias using a funnel plot if there were more than 10 studies in a meta-analysis and the absence of significant statistical heterogeneity.¹⁶

For the overall body of evidence, we used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology (GRADE Pro software; http://gradepro.org/).

Statistical analysis

We focused our analysis on the measure of relative effect measure between intervention and control to minimise the impact of the fact that the monitoring, measurement, and case definition of participants and their AE were often *ad hoc* or *post hoc* in studies, thus leading to inconsistencies in absolute rates. Assuming that randomisation was adequate and both

study arms were measured in the same (good or bad) way, the relative effect should be a more consistent measure that allows pooling and a comparison between trials. This is because any misclassification is non-differential within that study and any relative difference between study arms is maintained. Meta-analyses of the risk of AE were conducted using Review Manager v 5.3 (Nordic Cochrane Centre, Copenhagen, Denmark) if there were quantitative data of sufficient quantity and similarity. Depending on the reported effect measures and extent of statistical heterogeneity (assessed using the I² statistic), we planned to pool risk ratios (RR) or mean differences with a fixed effects model if there was an absence of heterogeneity and random effects models when substantial heterogeneity (50% or above) was detected.^{17,18} If the data were sparse or clinically heterogeneous, we aimed to report a narrative synthesis.

Results

We identified 32 full-text articles, and subsequently excluded five reports (Fig. 1).^{19–49} One article was a symposium report that contained atelectasis data from another trial,²² and four trials (one has already been retracted) had discrepant findings in the statistical analysis. We have not included these latter studies pending a request for further clarification.^{37,38,48,49} A total of 27 studies were included in the final analysis. These consisted of two non-randomised studies^{43,46} and 17 separate RCTs with eight post hoc or subgroup analyses.^{19–36,39–42,44,45,47} Several trials had overlapping or multiple reports. Outcome data of participants in the RCT by Greif and Sessler³² were also mentioned in other publications (i.e. data on imaging for pulmonary complications from Akça and colleagues,¹⁹ on atelectasis from Horn,²² and on long-term mortality from Podolyak and colleagues²⁶). Long-term mortality from the trial of Kurz and colleagues²³ was reported in the article by

Podolyak and colleagues.²⁶ The Meyhoff and colleagues³⁴ PROXI trial was further described in several subsequent reports: Fonnes and colleagues²¹ reported on cerebrovascular outcomes; Meyhoff and colleagues²⁴ on long-term mortality; Meyhoff and colleagues²⁵ on cancer; Staehr and colleagues²⁸ on a subgroup of patients with obesity; and Staehr²⁷ on a subgroup with ovarian cancer at a single centre.²⁸ The key features of the RCTs are fully reported in the accompanying article related to the systematic review on effectiveness.¹² To avoid duplication, Table 1 shows the baseline characteristics of the non-randomised studies and Supplementary Table S2 reports full details on outcomes and monitoring of AE across all studies.

RCTs

Sample sizes ranged from 30 to 2050 patients with a wide range of international locations. Age groups were wideranging between trials, but comparable between intervention and comparator groups. Of the 17 original RCTs, a broad range of surgical procedures was studied. These included colorectal surgery (n=5), appendectomy (n=2), Caesarean section (n=5), laparotomy (n=1), orthopaedic surgery for fractures (n=1), and mixed surgery (n=3). Most trials were conducted in intubated patients; five trials were performed in participants who were non-intubated or given regional anaesthesia.^{30,31,39,42,45}

Non-randomised studies

Two non-randomised studies were identified.^{43,46} The first was a retrospective cohort study that analysed 73 922 intubated patients undergoing non-cardiothoracic surgery in a large university teaching hospital and two community hospitals in the USA.^{43,46} Patients were divided into five groups based on a quintile of the median FiO_2 between the time of intubation and extubation. As this was a retrospective non-

Table 1 Study characteristics of non-randomised studies. IQR, inter-quartile range; sD, standard deviation

Study (and year)	Study design, setting, type of surgery	Patient characteristics	Intervention	Control
Kurz and colleagues ⁴⁶ (2018)	Two-weekly alternating intervention study in operating rooms in the Cleveland Clinic, USA Major intestinal surgery January 2013 to March 2016	Total number of patients: 5749 30% O ₂ : 2853 80% O ₂ : 2896 Mean age (sD): 30% O ₂ : 52 yr (17) 80% O ₂ : 52 yr (17) % Male: 48 in both groups	Notices and signs on each anaesthesia machine with an alert system if FiO ₂ <70% or >90% Median FiO ₂ delivered was 80% (IQR 77–82%)	Enough oxygen to achieve oxygen saturations of >95% in addition to an alert system if $FiO_2 > 35\%$ Median FiO_2 delivered was 39% (IQR 35-52%)
Staehr-Rye and colleagues ⁴³ (2017)	Retrospective cohort Massachusetts General Hospital and two community hospitals, USA Non-cardiothoracic surgery January 2007– August 2014	Total number: 73922 Mean age 30% O ₂ : 55 yr 80% O ₂ : 57 yr % Male 30% O ₂ : 47 80% O ₂ : 44 Excluded: age <18 yr, previous surgery within the last 4 weeks, missing information in any of the variables used in the primary regression model	Five patient groups, of which Group 1 had received median 30% O ₂ and Group 5 median 80% O ₂ Quintiles of groups defined by median intraoperative FiO ₂ between intubation and extubation	Non-randomised study with no protocolised intervention before start of study Duration of anaesthetic Group 1: median 155 min Group 5: median 89 min

randomised study, there was no description of whether preoperative, perioperative, and postoperative interventions were protocolised or standardised among the patient groups. The second study was a quality improvement project that evaluated outcomes in 5749 patients undergoing major intestinal surgery in a US single centre where operating rooms alternated between 30% and 80% FiO₂.²³ The inspired fraction was changed every 2 weeks on a non-randomised basis; clinicians were not blinded to the FiO₂ received by the patient. As this was not a prospective RCT with a pre-specified follow-up, clinical outcomes were obtained from the clinical registry and hospital billing system.

Study quality (risk of bias)

The internal validity of the RCTs was considered to be moderate—good overall; details are fully reported in the accompanying effectiveness review.¹² In general, there were no major areas with consistently high risk of bias,²³ although one trial was at risk of selective outcome reporting, while another was affected by lack of blinding.³⁹ However, our review included several subgroup or post hoc analyses of completed trials, which may be of lower quality and at greater risk of bias than the original publications. The definitions, measurement, and reporting of pulmonary and cardiovascular AE were clearly specified in only two trials; these two studies were judged as adequate overall.^{34,35} All the other trials were judged to have inadequate areas in their measurement and reporting of AE data (Table 2).

In particular, the study by Staehr-Rye and colleagues⁴³ was considered to be at critical risk of bias based on several of the ROBINS-I criteria (Table 3). Although a large set of variables was used in the regression model, these were applied in a blanket manner to all outcomes, rather than tailored to the specific outcome as stipulated in the ROBINS-I

criteria.¹⁴ We considered it highly unlikely that the relevant adjustment of confounding variables for pneumonia would be the same as those for pulmonary oedema, and even less likely for wound dehiscence or stroke (all of which would be affected by completely different factors). At baseline, there was an imbalance between Group 1 and Group 5 in the proportion of patients with an ASA physical status 3 and above (i.e. 25% in Group 1 compared with 39% in Group 5). The type of surgery also differed with 16% vs 40% having general surgery in Group 1 and Group 5, respectively. This raises the possibility of other residual confounding causing bias (e.g. co-morbid conditions such as cancer or congestive heart failure). Other major areas of concern were the absence of blinding for outcome assessors, lack of specification of how and when AE were coded, and the exclusion of more than 35 000 potentially eligible study participants, because of missing information on single covariates such as height, BMI, age and multi-morbidity score. Co-interventions (such as wound care and antibiotics) were not equally delivered between groups (e.g. median duration of anaesthesia was 155 min in the quintile that received low FiO₂ compared with 89 min in the quintile that received high FiO₂). Finally, the protocolspecified outcome of SSI was not reported in the study and the analysis appears to have been changed to the outcome of 'wound dehiscence' instead.

We judged the alternating intervention study by Kurz and colleagues⁴⁶ to be at serious risk of bias (Table 3) according to the ROBINS-I scale. Major weaknesses included lack of blinding and the use of registry and billing data, rather than investigator-led outcome ascertainment. We identified deviation from the intervention in the 30% FiO₂ group where the median inspired fraction was 39%, with an inter-quartile range of 35–52%, thus indicating that 25% of patients were receiving >52% FiO₂. This would have reduced the ability of the trial to differentiate between high and low FiO₂. Finally, we noted that

Table 2 Adequacy of collection, measurement, and reporting of adverse events data (adapted from components of the McHarm quality scale)

Study (and year)	Adequate specification or definition of pulmonary or cerebrovascular adverse events	Adequate method and frequency of pulmonary or cerebrovascular monitoring	Independent data safety monitoring	Completeness of follow-up	Comprehensive reporting of adverse events	
Belda and colleagues ²⁰ (2005)	Inadequate	Inadequate	Adequate	Adequate	Inadequate	
Bickel and colleagues ²⁹ (2011)	Inadequate	Inadequate	Inadequate	Adequate	Inadequate	
Chen and colleagues ⁴⁴ (2013)	Inadequate	Inadequate	Inadequate	Adequate	Inadequate	
Duggal and colleagues ³⁰ (2013)	Inadequate	Inadequate	Inadequate	Inadequate	Inadequate	
Fariba and colleagues ⁴⁵ (2016)	Inadequate	Inadequate	Inadequate	Inadequate	Inadequate	
Gardella and colleagues ³¹ (2008)	Inadequate	Inadequate	Inadequate	Adequate	Inadequate	
Greif and Sessler ³² (2000)	Adequate for	Inadequate	Inadequate	Adequate	Adequate for	
	pulmonary				pulmonary	
Kurz and colleagues ²³ (2015)	Inadequate	Inadequate	Inadequate	Adequate	Inadequate	
Kurz and colleagues ⁴⁶ (2018)	Inadequate	Inadequate	Inadequate	Inadequate	Adequate	
Mayzler and colleagues ³³ (2005)	Inadequate	Inadequate	Adequate	Adequate	Inadequate	
Meyhoff and colleagues ³⁴ (2009)	Adequate	Adequate	Adequate	Adequate	Adequate	
Myles and colleagues ³⁵ (2007)	Adequate	Adequate	Adequate	Adequate	Adequate	
Pryor and colleagues ³⁶ (2004)	Inadequate	Inadequate	Inadequate	Adequate	Inadequate	
Scifres and colleagues ³⁹ (2011)	Inadequate	Inadequate	Inadequate	Adequate	Inadequate	
Staehr-Rye and colleagues ⁴³ (2017)	Inadequate	Inadequate	Inadequate	Inadequate	Adequate	
Stall and colleagues ⁴⁰ (2013)	Inadequate	Inadequate	Adequate	Adequate	Inadequate	
Thibon and colleagues ⁴¹ (2012)	Inadequate	Inadequate	Inadequate	Adequate	Inadequate	
Wasnik and colleagues ^{4/} (2015)	Inadequate	Inadequate	Inadequate	Inadequate	Inadequate	
Williams and colleagues ⁴² (2013)	Inadequate	Inadequate	Inadequate	Adequate	Inadequate	

Study (and year)	Bias as a result of confounding	Bias in selection	Bias in classification of intervention	Bias as a result of deviation from intervention	Bias as a result of missing data	Bias in measurement of outcomes	Bias in selection of the reported results	Overall ROBINS-I judgment
Kurz and colleagues ⁴⁶ (2018)	Moderate	Low	Low	Serious	Moderate	Serious	Serious	Serious
(2017) (2017)	Critical	Low	Serious	Serious	Critical	Critical	Serious	Critical

Table 2 Assessment of study validity of non-randomized studies, BORINE I, risk of hiss in non-randomized studies of interventions

the protocol had a pre-specified SSI composite outcome, but this had been changed in the study to a composite of mortality and surgical infection.

Results of individual studies

We listed the number of study participants that received the assigned intervention (per protocol) and had analysable outcome data (Table 4). Included studies reported on the following AE: atelectasis; pneumonia; respiratory complications and serious AE that included respiratory failure, pneumothorax, cough, and respiratory difficulty; ICU admission; cardiovascular events; thromboembolic events; death (shortand long-term); and length of hospital stay. Overall, no evidence of statistically significant harm was observed in any of the adverse outcomes. However, AE data were sparsely and inconsistently reported (Table 4).

Outcomes: atelectasis

Three studies reported on atelectasis with 219/1932 events in the high FiO₂ arm and 255/1966 events in the low FiO₂ arm (Fig. 2).^{32,34,35} Overall, high FiO₂ was not associated with an increased risk of atelectasis {pooled RR 0.91 [95% confidence interval (CI) 0.59–1.42]}. There was considerable heterogeneity in the analysis (I^2 =85%).

Outcomes: pneumonia

Three trials reported on pneumonia with 57/1712 events in the high FiO₂ arm and 75/1746 events in the low FiO₂ arm (Fig. 2). The pooled estimates did not demonstrate a significant association between high FiO₂ and pneumonia [overall pooled RR 0.78 (95% CI 0.55–1.09)].^{21,35,44} There was mild heterogeneity (I^2 =29%). In contrast, the observational study reported an adjusted odds ratio (OR) of 1.72 (95% CI 1.30–2.28) for pneumonia in the high FiO₂ group.

Outcomes: composite measure of respiratory AE

Two studies reported on composite measures of respiratory AE. Myles and colleagues³⁵ described respiratory complications (pneumonia, atelectasis, pneumothorax, and pulmonary embolism), and Meyhoff and colleagues³⁴ mentioned serious respiratory AE, but with no further definition. However, the composite data were not pooled because of variations in case definitions when constructing the composite. We did not identify any significant harm related to high FiO₂ in either study. In contrast, the observational study reported an adjusted OR of 1.99 (95% CI 1.72–2.31) for major respiratory complications in the high FiO_2 group.

Outcomes: ICU admission

Five studies reported on ICU admission with 190/2165 events in the high FiO₂ arm and 208/2189 events in the low FiO₂ arm (Fig. 2).^{20,32,34–36} High FiO₂ was not associated with an increased likelihood of ICU admission [RR 0.93 (95% CI 0.77–1.12)]. Low heterogeneity was observed in the analysis (I^2 =3%). In contrast, the observational study by Staehr-Rye and colleagues⁴³ reported an adjusted OR of 1.64 (95% CI 1.38–1.95) for ICU admission in the high FiO₂ group. However, we noted that the raw or crude OR for ICU admission was actually 0.94 (95% CI 0.82–1.08). Notably, the statistical adjustment appears to have converted a non-significant decrease in risk to a statistically significantly association in increased risk with high FiO₂.

Outcomes: cardiovascular AE

Three studies reported on cardiovascular AE, consisting of acute coronary syndrome and myocardial infarction with 25/ 1705 events in the high FiO₂ arm and 25/1744 events in the low FiO₂ arm (Fig. 2).^{21,35,44} Overall, high FiO₂ was not associated with cardiovascular AE [pooled RR 0.90 (95% CI 0.32-2.54)]. One of the trials had sparse raw data and there was significant heterogeneity ($I^2=58\%$). We conducted a sensitivity analysis including myocardial infarction rather than acute coronary syndrome as the outcome measure from the Fonnes and colleagues²¹ study, and this yielded an overall pooled RR of 0.94 (95% CI 0.28-3.21). Similarly, there were no significant associations reported for myocardial infarction and stroke in the observational study. However, our analysis of the raw or crude OR found that high FiO₂ was associated with a reduced risk of stroke [OR 0.52 (95% CI 0.38-0.71)], but the regression model subsequently generated an adjusted OR of 0.90 (95% CI 0.59–1.37) for stroke in the high FiO_2 group.

Outcomes: thromboembolic events

Two studies reported adjusted estimates on thromboembolic events, one on pulmonary embolism and one on any thromboembolic event (Fig. 2).^{21,35} There was no significant association between high FiO₂ and thromboembolic events [pooled RR 0.89 (95% CI 0.28–2.91)], but there was heterogeneity (l^2 =74%).

Table 4 Matrix of adverse events. Outcomes reported by the included trials showing numbers of patients affected by adverse events/total number, according to intervention of high (80%) FiO₂ compared with low (30–35%) FiO₂. ACS, acute coronary syndrome; NR, not reported; OR, odds ratio; PE, pulmonary embolism; SAE, serious adverse event; sD, standard deviation.

Study (and year)	Number of patients	Atelectasis	Pneumonia	Other respiratory adverse events	Cardiovascular adverse events	ICU admission	Length of stay [days (sd)]	Mortality (n)	Other (e.g. cancer, stroke, embolism, SAE)
Belda and colleagues ²⁰ (2005)	Low FiO ₂ =143 High FiO ₂ =148	NR	NR	NR	NR	Low FiO ₂ : 5/143 High FiO ₂ : 4/148	Low FiO ₂ : 10.5 (4.4) High FiO ₂ : 11.7 (7.0)	Low FiO ₂ : 2/143 High FiO ₂ : 0/148	NR
Bickel and colleagues ²⁹ (2011)	Low FiO ₂ =103 High FiO ₂ =107	NR	NR	NR	NR	NR	Low FiO ₂ : 2.9 High FiO ₂ : 2.5	NR	NR
Chen and colleagues ⁴⁴ (2013)	Low FiO ₂ =30 High FiO ₂ =30	NR	Low FiO ₂ : 1/30 High FiO ₂ : 1/30	NR	Low FiO ₂ : 3/30 High FiO ₂ : 1/30	NR	NR	Low FiO ₂ : 0/30 High FiO ₂ : 030	NR
Duggal and colleagues ³⁰ (2013)	Low FiO ₂ =415 High FiO ₂ =416	NR	NR	NR	NR	NR	NR	NR	NR
Fariba and colleagues ⁴⁵ (2016)	NR	NR	NR	NR	NR	NR	NR	NR	NR
Gardella and colleagues ³¹ (2008)	Low FiO ₂ =74 High FiO ₂ =69	NR	NR	NR	NR	NR	Low FiO ₂ : 3 (range 2–6) High FiO ₂ : 3 (range 2–5)	NR	NR
Greif and Sessler ³² (2000)	Low FiO ₂ =250 High FiO ₂ =250	Low FiO ₂ : 78/250 High FiO ₂ : 90/250	NR	NR	NR	Low FiO ₂ : 12/250 High FiO ₂ : 5/250	Low FiO ₂ : 11.9 High FiO ₂ : 12.2	Low FiO ₂ : 6/250 High FiO ₂ : 1/250	NR
Mayzler and colleagues ³³ (2005)	Low FiO ₂ =19 High FiO ₂ =19	NR	NR	NR	NR	NR	NR	NR	NR
Meyhoff and colleagues ³⁴ (2009)	Low FiO ₂ =685 High FiO ₂ =701	Low FiO ₂ : 50/685 High FiO ₂ : 54/701	Low FiO ₂ : 44/685 High FiO ₂ : 41/701	Respiratory SAE Low FiO ₂ : 25/685 High FiO ₂ : 27/701 Respiratory failure (Low FiO ₂ : 31/685 High FiO ₂ : 38/701)	NR	Low FiO ₂ : 44/685 High FiO ₂ : 30/701	NR	Low FiO ₂ : 20/685 High FiO ₂ : 30/701	Any SAE Low FiO ₂ : 154/685 High FiO ₂ : 165/701 Circulatory SAE Low FiO ₂ : 20/685; High FiO ₂ : 24/701
Myles and colleagues ³⁵ (2007)	Low FiO ₂ =1015 [°] High FiO ₂ =997 [°]	Low FiO ₂ : 127 High FiO ₂ : 75	Low FiO ₂ : 30 High FiO ₂ : 15	Any pulmonary complication Low FiO ₂ : 132 High FiO ₂ : 78 Pneumothorax (Low FiO ₂ : 3 High FiO ₂ : 1)	Low FiO ₂ : 13 High FiO ₂ : 7 Adjusted OR myocardial infarction 0.58 (95% CI 0.22–1.50)	Low FiO ₂ : 140 High FiO ₂ : 122	Low FiO ₂ : 7.0 High FiO ₂ : 7.1	Low FiO ₂ : 9 High FiO ₂ : 3 Adjusted OR 0.33 (95% CI 0.09–1.22)	Thromboembolism Low FiO ₂ : 10; High FiO ₂ : 16 Adjusted OR 1.60 (95% CI 0.72–3.55) Stroke Low FiO ₂ : 1; High FiO ₂ : 1
Pryor and colleagues ³⁶ (2004)	35%= 80 High FiO ₂ =85	NR	NR	NR	NR	35: 7/80 High FiO ₂ : 9/85	35%: 6.4 High FiO ₂ : 8.3	35%: 1/80 High FiO ₂ : 0/85	NR
Scifres and colleagues ³⁹ (2011)	Low FiO ₂ =297 High FiO ₂ =288	NR	NR	NR	NR	NR	NR	NR	NR
Stall and colleagues ⁴⁰ (2013)	Low FiO ₂ =116 High FiO ₂ =119	NR	NR	NR	NR	NR	Low FiO ₂ : 2.8 High FiO ₂ : 3.5	NR	NR
Thibon and colleagues ⁴¹ (2012)	Low FiO ₂ =208 High FiO ₂ =226	NR	NR	NR	NR	NR	NR	NR	Hypotension Low FiO ₂ : 0/208 High FiO ₂ : 3/226
Williams ⁴² (2013)	Low FiO ₂ =83 High FiO ₂ =77	NR	NR	NR	NR	NR	NR	NR	NR

Continued

Table 4 Continued									
Study (and year)	Number of patients	Atelectasis	Pneumonia	Other respiratory adverse events	Cardiovascular adverse events	ICU admission	Length of stay [days (sd)]	Mortality (n)	Other (e.g. cancer, stroke, embolism, SAE)
Akça and colleagues ¹⁹ (1999) [subgroup Greif and Sessler ³² (2004)]	Low FiO ₂ =14 High FiO ₂ =16	CT-determined atelectasis Low FiO ₂ : 9/14 High FiO ₂ : 15/16	NR	Cough/respiratory difficulty Low FiO ₂ : 3/14 High FiO ₂ : 5/16	NR	NR	NR	NR	NR
Fonnes and colleagues ²¹ (2016)	Low FiO ₂ =699 High FiO ₂ =678	NR	NR	NR	Adjusted hazard ratio: Acute coronary syndrome 1.96 (95% CI 0.86–4.48) Myocardial Infarction 2.58 (95% CI 0.97–6.88)	NR	NR	ACS/death Low FiO ₂ : 190/699 High FiO ₂ : 219/678	Pulmonary embolism adjusted hazard ratio: 0.48 (95% CI 0.19–1.19)
Horn ²² (2002) [data from Akça and colleagues ¹⁹ (1999) & Greif and Sessler ³² (2004)]	Low FiO ₂ =14 High FiO ₂ =16	Low FiO ₂ : 5 High FiO ₂ : 7	NR	NR	NR	NR	NR	NR	NR
Kurz and colleagues ²³ (2015)	Low FiO ₂ =270 High FiO ₂ =285	NR	NR	NR	NR	NR	Low FiO ₂ : 7.7 (4.6) High FiO ₂ : 8.8 (5.4)	Low FiO ₂ : 1/270 High FiO ₂ : 0/285	Major complications Low FiO ₂ : 34/270 High FiO ₂ : 42/285
Meyhoff and colleagues ²⁴ (2012)	Low FiO ₂ =701 High FiO ₂ =685	NR	NR	NR	NR	NR	NR	Adjusted hazard ratio 1.31 (95% CI 1.03–1.55)	NR
Meyhoff and colleagues ²⁵ (2014)	Low FiO ₂ =699 High FiO ₂ =678	NR	NR	NR	NR	NR	NR	Adjusted hazard ratio 1.29 (95% CI 1.05–1.58)	New cancer diagnosis Low FiO ₂ : 30/699 High FiO ₂ : 25/678
Podolyak ²⁶ (2016) [Kurz and colleagues ²³ and Greif and Sessler ³² (2004) together]	Low FiO ₂ =459 [*] High FiO ₂ =468 [*]	NR	NR	NR	NR	NR	NR	Hazard ratio 0.93 (95% CI 0.72-1.20)	NR
Staehr and colleagues ²⁸ (2011)	Low FiO ₂ =111 High FiO ₂ =102	Low FiO ₂ : 7 High FiO ₂ : 9	Low FiO ₂ : 5 High FiO ₂ : 6	Respiratory failure Low FiO ₂ : 5/111 High FiO ₂ : 8/102		Low FiO ₂ : 9/111 High FiO ₂ : 11/102	Low FiO ₂ : 5 days High FiO ₂ : 6 days	Low FiO ₂ : 3/111 High FiO ₂ : 1/102	SAE Low FiO ₂ : 22/111 High FiO ₂ : 22/102
Staehr and colleagues ²⁷ (2012)	Low FiO ₂ =15 High FiO ₂ =20	Low FiO ₂ : 2/15 High FiO ₂ : 5/20	NR	NR	NR	NR	NR	NR	NR
Wasnik and colleagues ⁴⁷ (2015)	Low FiO ₂ =32 High FiO ₂ =32	NR	NR	NR	NR	NR	Low FiO ₂ : 9.84 (3.68) High FiO ₂ : 7.37 (3.57)	NR	NR

* Refers to participant numbers that actually received the intervention and were finally available for inclusion in the primary analysis and not the numbers originally randomly assigned to the intervention

Fig 2. Pooled risk ratio for adverse events. CI, confidence interval; M-H, Mantel-Haenszel.

Outcomes: short-term death

Seven trials reported on death in the short-term on follow-up as specified for the original trial period with 34/2480 events in the high FiO₂ arm and 39/2489 events in the low FiO₂ arm (Fig. 3).^{20,23,32,34–36,44} High FiO₂ was associated with a reduced risk of death, but CIs were wide and included unity [pooled RR 0.49 (95% CI 0.17–1.37)]. There was some evidence of heterogeneity (I^2 =50%). The observational study by Staehr-Rye and colleagues⁴³ reported an adjusted OR of 2.09 (95% CI 0.81–5.43) for mortality within 7 days in the high FiO₂ group.

Outcomes: inclusion of long-term death data in combination with short-term

As there were studies with adjusted data for post hoc long-term follow-up, we constructed a forest plot to show the adjusted data separately from the analysis based on raw data (Fig. 3). When the long-term data (with additional follow-up after original study period) was pooled with the two studies that reported only short-term follow-up, high FiO_2 was not significantly associated with a long-term risk of death [pooled RR 0.96 (95% CI 0.65–1.42)], with evidence of heterogeneity $(I^2=55\%)$.^{20,24,26,35,36} In contrast, the observational study by Staehr-Rye and colleagues⁴³ reported an adjusted OR of 1.97 (95% CI 1.30–2.99) for mortality within 30 days in the high FiO₂ group. The alternating intervention study by Kurz and colleagues⁴⁶ also reported an adjusted RR of 1.97 (95% CI 0.71–5.47) for 30 day mortality associated with high FiO₂.

Outcomes: length of stay

Ten studies reported on length of stay in hospital (Table 4). However, the format of the data was inconsistent and we were unable to identify any clear trends in the results to indicate clinically important differences in length of stay between the high FiO_2 and control groups.

Other outcomes

We identified a number of *post* hoc and subgroup analyses that focused on single centres or single outcomes that were not suitable for inclusion in the meta-analysis. Meyhoff and colleagues²⁵ described a possible association (after a median of 3.9 yr follow-up) between high FiO₂ and poorer cancer-free survival, but the study was unable to ascertain the cause of the excess mortality. These findings led to another *post* hoc analysis conducted by Podolyak and colleagues,²⁶ which concluded that unlike the PROXI trial, the two trials by Greif and Sessler³² and Kurz and colleagues²³ did not show any association between high FiO2 and mortality, either overall or in those with cancer. Another article reported on the lack of association between obesity and pulmonary complications in participants of the PROXI trial.²⁸

Subgroup and sensitivity analyses

Four trials (one already retracted) are awaiting further assessment and clarification.^{37,38,48,49} Of note, a sensitivity analysis based on these data did not lead to any change in direction of effect or statistical significance for AE. There were too few studies included in any particular meta-analysis to perform a meaningful analysis according to subgroups or anaesthetic techniques. For instance, all trials in the initial meta-analysis were conducted in participants who were intubated and, therefore, we could not separately evaluate AE in those with regional anaesthesia. We were also unable to construct multiple subgroups based on different types of surgery, as the included studies consisted mainly of laparotomies or a mix of major procedures.

Discussion

Our analysis of 17 RCTs did not find any robust or consistent evidence that perioperative administration of 80% FiO_2 is associated with a significant risk of harm compared with 30–35% oxygenation. The available evidence demonstrates that high FiO_2 had no significant deleterious effect on hard outcomes, such as ICU admissions and mortality. No definite signal of harm was identified for all other trial-related AE, particularly pulmonary and cardiovascular outcomes, although these findings were only backed by a low quality of evidence (GRADE, Supplementary Table S3). This stems from the small number of events and lack of statistical power, which means that the analysis of RCTs cannot completely exclude an increased risk of AE.

Although the non-randomised studies had much larger sample sizes, there were potential biases from the handling of confounders, missing data, and absence of blinding in outcome ascertainment. This was a particular concern in the study by Staehr-Rye and colleagues,⁴³ with an instability in results that arose after adjustment for confounding. For instance a significant beneficial association of high FiO₂ in reducing stroke risk was rendered non-significant after adjustment. Unexpectedly, the possibly beneficial associations of high FiO₂ in reducing ICU admission and wound dehiscence in this study had complete changes in direction of effect after adjustment (resulting in statistically significant harm for ICU admission with high FiO₂).

It is also not clear why certain patients were given higher concentrations of oxygen than others in the non-randomised studies. Those who received the highest concentrations in the study by Staehr-Rye and colleagues⁴³ were more likely to be in a higher ASA class, to have undergone general surgery, and had shorter anaesthetic durations. Protopathic bias is one possibility whereby higher concentrations of oxygen were initiated in managing patients with early or emerging (but not yet fully diagnosed) cardiorespiratory signs and symptoms. Similarly, confounding by indication occurs if patients with a past history of pneumonia or congestive heart failure/pulmonary oedema are treated with higher concentrations of oxygen. The adjusted models in the non-randomised studies do not address these two potential sources of bias.

We deliberately chose a focused set of inclusion and exclusion criteria for this systematic review to maintain direct relevance and applicability to published guidelines (i.e. the patient group, intervention, and comparator should be the same as evaluated for the development of the WHO recommendation). Otherwise, it would have been impossible to tell whether the recorded AE were as a result of the underlying disease, the surgical procedure itself, or the intervention and its comparator. In pharmaceutical evaluations, patients typically receive a single drug at the prescribed time and it is relatively easy to investigate a causal relationship for an AE after administration. This is far more difficult for the intervention targeted by our review in postoperative patients where the surgery and anaesthetic could all have contributed to these events. The outcomes selected had been identified as plausible concerns raised in the previously published literature on the safety of high FiO₂.^{8–10} Of note, the concerns raised about harms resulting from high FiO₂ are from animal studies, case reports, or studies in other patient groups. For instance, Hedenstierna and colleagues⁸ refer to animal studies where 70% oxygen resulted in the production of reactive oxygen species in isolated rat lungs and lung injury was detected within 24 h in live mice breathing 100% oxygen. High FiO₂ can increase peripheral vasoconstriction,50 and reduce cardiac output⁵¹ and perfusion to the coronary, cerebral, renal, and peripheral circulations.^{52–54} High FiO₂ during anaesthesia is also thought to be potentially associated with pulmonary complications, such as atelectasis in humans,⁵⁵ but there is no published evidence apart from in live mice breathing 100% O₂.⁵⁶ The applicability and relevance of such data to perioperative hyperoxia in humans is unclear and our meta-analysis did not demonstrate any consistent confirmatory evidence behind purported AE on the cardiovascular or pulmonary systems.

Limitations

This review has some limitations. First, it was based predominantly on AE data from RCTs testing interventions based on the administration of increased oxygen and only two retrospective observational studies (judged to be at seriouscritical risk of bias)43,46 were available for inclusion. There are obvious limitations to such data, particularly where AE are not the primary focus of the study and may not be reliably defined, monitored, or reported. Although the studies reported on AE, this was not the primary aim of the data collection and considerable outcome data were missing; thus, pooled estimates were typically based only on a small fraction of the entire dataset. Indeed, only two studies adequately specified or defined pulmonary and cardiovascular AE.^{34,35} Second, it is not possible to be sure that the absence of reported AE truly means that these events did not occur and there may be underlying reporting bias. Therefore, we cannot trust that 'null' findings amount to the same as actual absence of harm.⁵⁷ A further point to bear in mind is whether perceived 'null' events (safety) observed in participants taking part in RCTs can be extrapolated reliably to real-life clinical practice. For instance the findings from the trials cannot be applied to participants with chronic lung disease or serious comorbidities, as these patients are typically excluded from trials. Third, we found that there was significant statistical heterogeneity within most of the analyses. Fourth, a substantial portion of the included studies were based on subgroup or *post hoc* studies that may carry a greater risk of bias. These include the possibility of selective analysis and reporting of *post hoc* findings, the use of subgroups, and difficulties in reliably measuring long-term outcomes that had not been pre-specified in the original trial. There is also the issue of bias arising from competing risks, variations in co-interventions after completion of the trial, and differential attrition.

Further research

Further research should focus on AE as the main predefined outcome, with rigorous monitoring and transparent reporting. Such studies could be registry-based (instead of randomised trials) with long-term follow-up across several international centres in order to capture a broader range of patients and clinical situations. There should also be steps to address protopathic bias and confounding by indication, and biases potentially arising from lack of blinding.

Conclusions

Our meta-analysis of several important outcomes did not demonstrate any definite signal of harm with 80% FiO_2 inspired oxygen. There is no substantive evidence of safety concerns that would go against implementation of the WHO and Centers for Disease Control and Prevention recommendations on the use of high FiO_2 to reduce SSI in intubated patients undergoing surgical procedures.

Authors' contributions

Devised the search strategies and conducted the searches: KM, YKL

Designed the analysis plan: YKL

Determined the eligibility of search results: KM, YKL, AS, AP Extracted and assessed the validity of the adverse effects data: KM, YKL, AS, AP, MT

Performed the analyses: MT, YKL

Participated in the interpretation of the data: all authors.

Drafted the manuscript: KM, YKL, MT

Significantly contributed to final content of the manuscript: BA, SdJ

Guarantor: YKL

Planned the study, were involved in study design, and critically revised the manuscript: all authors.

Acknowledgements

The authors thank S. Norris (WHO guidelines review committee) for her critical advice and guidance in the review update and evaluation of the criticism towards the WHO recommendation. We also thank R. Sudan for editing assistance.

Declarations of interest

The authors declare that they have no conflicts of interest.

Funding

Supported by WHO.

Disclaimer

The authors alone are responsible for the views expressed in this article and they do not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bja.2018.11.026.

References

- Allegranzi B, Zayed B, Bischoff P, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. *Lancet Infect Dis* 2016; 16: e288-303
- World Health Organization. Global guidelines for the prevention of surgical site infection 2016. Available from: http:// www.who.int/infection-prevention/publications/ssiguidelines/en/. [Accessed 22 February 2018]
- World Health Organization. Global guidelines for the prevention of surgical site infection: web appendix 13 2016. Available from: http://www.who.int/gpsc/appendix13. pdf?ua=1. [Accessed 22 February 2018]
- **4.** Martin DS, Grocott III MP. Oxygen therapy in anaesthesia: the yin and yang of O2. Br J Anaesth 2013; **111**: 867–71
- Meyhoff CS, Staehr AK, Rasmussen LS. Rational use of oxygen in medical disease and anesthesia. Curr Opin Anaesthesiol 2012; 25: 363–70
- Meyhoff CS, Jorgensen LN, Wetterslev J, Rasmussen LS. Intraoperative high inspired oxygen fraction: are there real benefits? Anesthesiology 2014; 120: 1052–3
- Chu DK, Kim LH, Young PJ, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet 2018; 391: 1693–705
- 8. Hedenstierna G, Perchiazzi G, Meyhoff CS, Larsson A. Who Can make sense of the WHO guidelines to prevent surgical site infection? *Anesthesiology* 2017; **126**: 771–3
- Meyhoff CS, Fonnes S, Wetterslev J, Jorgensen LN, Rasmussen LS. WHO Guidelines to prevent surgical site infections. Lancet Infect Dis 2017; 17: 261–2
- Volk T, Peters J, Sessler DI. The WHO recommendation for 80% perioperative oxygen is poorly justified. *Anaesthesist* 2017; 66: 227–9
- Solomkin J, Egger M, de Jonge S, et al. World Health Organization responds to concerns about surgical site infection prevention recommendations. Anesthesiology 2018; 128: 221–2
- 12. de Jonge S, Egger M, Latif A, et al. Evaluation of the effectiveness of 80% fraction of inspired oxygen compared to 30–35% fraction of inspired oxygen in patients undergoing surgery: an updated systematic review and meta-analysis 2018
- **13.** Higgins JPT, Altman DG, Sterne JA. Chapter 8: assessing risk of bias in included studies. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions. Chichester (UK): John Wiley & Sons; 2008

- 14. Sterne JA, Hernan MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016; 355: i4919
- **15.** Santaguida P, Keshavarz H, MacQueen G, Levine M, Beyene J, Raina P. Development of the McHarm: a tool evaluating validity of the collection and reporting of harms. Abstracts of the 19th Cochrane colloquium 2011 19–22 oct. Madrid, Spain: John Wiley & Sons; 2011
- 16. Ioannidis JP, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ 2007; 176: 1091–6
- **17.** Higgins JPT, Deeks JJ, Altman DG. Chapter 16. Special topics in statistics. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions. Chichester (UK): John Wiley & Sons; 2008
- 18. Higgins JPT, Deeks JJ, Altman DG. Chapter 9: analysing data and undertaking meta-analyses. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions. Chichester (UK): John Wiley & Sons; 2008
- 19. Akça O, Podolsky A, Eisenhuber E, et al. Comparable postoperative pulmonary atelectasis in patients given 30% or 80% oxygen during and 2 hours after colon resection. Anesthesiology 1999; 91: 991–8
- **20.** Belda FJ, Aguilera L, Garcia de la Asuncion J, et al. Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA 2005; **294**: 2035–42
- 21. Fonnes S, Gogenur I, Sondergaard ES, et al. Perioperative hyperoxia—long-term impact on cardiovascular complications after abdominal surgery, a post hoc analysis of the PROXI trial. *Int J Cardiol* 2016; **215**: 238–43
- 22. Horn EP. [Reduction by half of wound infection rate after colon surgery through increase of inspirational oxygen concentration from 30% to 80%]. Anasthesiol Intensiumed Notfallmed Schmerzther 2002; 37: 56–7
- 23. Kurz A, Fleischmann E, Sessler DI, et al. Effects of supplemental oxygen and dexamethasone on surgical site infection: a factorial randomized trial[‡]. Br J Anaesth 2015; 115: 434–43
- 24. Meyhoff CS, Jorgensen LN, Wetterslev J, Christensen KB, Rasmussen LS, PROXI Trial Group. Increased long-term mortality after a high perioperative inspiratory oxygen fraction during abdominal surgery: follow-up of a randomized clinical trial. *Anesth Analg* 2012; **115**: 849–54
- 25. Meyhoff CS, Jorgensen LN, Wetterslev J, Siersma VD, Rasmussen LS, PROXI Trial Group. Risk of new or recurrent cancer after a high perioperative inspiratory oxygen fraction during abdominal surgery. Br J Anaesth 2014; 113: i74–81
- 26. Podolyak A, Sessler DI, Reiterer C, et al. Perioperative supplemental oxygen does not worsen long-term mortality of colorectal surgery patients. Anesth Analg 2016; 122: 1907–11
- 27. Staehr AK, Meyhoff CS, Henneberg SW, Christensen PL, Rasmussen LS. Influence of perioperative oxygen fraction on pulmonary function after abdominal surgery: a randomized controlled trial. BMC Res Notes 2012; 5: 383
- 28. Staehr AK, Meyhoff CS, Rasmussen LS, PROXI Trial Group. Inspiratory oxygen fraction and postoperative complications in obese patients: a subgroup analysis of the PROXI trial. Anesthesiology 2011; 114: 1313–9
- 29. Bickel A, Gurevits M, Vamos R, Ivry S, Eitan A. Perioperative hyperoxygenation and wound site infection following

surgery for acute appendicitis: a randomized, prospective, controlled trial. Arch Surg 2011; **146**: 464–70

- 30. Duggal N, Poddatoori V, Noroozkhani S, Siddik-Ahmad RI, Caughey AB. Perioperative oxygen supplementation and surgical site infection after cesarean delivery: a randomized trial. Obstet Gynecol 2013; 122: 79–84
- **31.** Gardella C, Goltra LB, Laschansky E, et al. High-concentration supplemental perioperative oxygen to reduce the incidence of postcesarean surgical site infection: a randomized controlled trial. Obstet Gynecol 2008; **112**: 545–52
- 32. Greif R, Sessler DI. Supplemental oxygen and risk of surgical site infection. JAMA 2004; 291: 1957. author reply 8–9
- **33.** Mayzler O, Weksler N, Domchik S, Klein M, Mizrahi S, Gurman GM. Does supplemental perioperative oxygen administration reduce the incidence of wound infection in elective colorectal surgery? *Minerva Anestesiol* 2005; **71**: 21–5
- 34. Meyhoff CS, Wetterslev J, Jorgensen LN, et al. Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA 2009; 302: 1543–50
- 35. Myles PS, Leslie K, Chan MT, et al. Avoidance of nitrous oxide for patients undergoing major surgery: a randomized controlled trial. Anesthesiology 2007; 107: 221–31
- 36. Pryor KO, Fahey 3rd TJ, Lien CA, Goldstein PA. Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA 2004; 291: 79–87
- **37.** Schietroma M, Cecilia EM, Carlei F, et al. Prevention of anastomotic leakage after total gastrectomy with perioperative supplemental oxygen administration: a prospective randomized, double-blind, controlled, single-center trial. *Ann Surg Oncol* 2013; **20**: 1584–90
- 38. Schietroma M, Cecilia EM, Sista F, Carlei F, Pessia B, Amicucci G. High-concentration supplemental perioperative oxygen and surgical site infection following elective colorectal surgery for rectal cancer: a prospective, randomized, double-blind, controlled, single-site trial. Am J Surg 2014; 208: 719–26
- Scifres CM, Leighton BL, Fogertey PJ, Macones GA, Stamilio DM. Supplemental oxygen for the prevention of postcesarean infectious morbidity: a randomized controlled trial. Am J Obstet Gynecol 2011; 205: 267. e1–9
- 40. Stall A, Paryavi E, Gupta R, Zadnik M, Hui E, O'Toole RV. Perioperative supplemental oxygen to reduce surgical site infection after open fixation of high-risk fractures: a randomized controlled pilot trial. *J Trauma Acute Care Surg* 2013; 75: 657–63
- 41. Thibon P, Borgey F, Boutreux S, Hanouz JL, Le Coutour X, Parienti JJ. Effect of perioperative oxygen supplementation on 30-day surgical site infection rate in abdominal, gynecologic, and breast surgery: the ISO2 randomized controlled trial. Anesthesiology 2012; 117: 504–11
- 42. Williams NL, Glover MM, Crisp C, Acton AL, McKenna DS. Randomized controlled trial of the effect of 30% versus 80% fraction of inspired oxygen on cesarean delivery surgical site infection. Am J Perinatol 2013; 30: 781–6
- **43**. Staehr-Rye AK, Meyhoff CS, Scheffenbichler FT, et al. High intraoperative inspiratory oxygen fraction and risk of major respiratory complications. Br J Anaesth 2017; **119**: 140–9

- 44. Chen Y, Liu X, Cheng CH, et al. Leukocyte DNA damage and wound infection after nitrous oxide administration: a randomized controlled trial. Anesthesiology 2013; 118: 1322–31
- 45. Fariba F, Loghman G, Daem R, Dina S, Jamal S. Effect of supplemental oxygen on the incidence and severity of wound Infection after Cesarean surgery. J Chem Pharm Sci 2016; 9: 3320–5
- **46**. Kurz A, Kopyeva T, Suliman I, et al. Supplemental oxygen and surgical-site infections: an alternating intervention controlled trial. Br J Anaesth 2018; **120**: 117–26
- 47. Wasnik N, Agrawal V, Yede J, Gupta A, Soitkar S. Role of supplemental oxygen in reducing surgical site infection in acute appendicitis: our experience of sixty four cases. Int J Biomed Adv Res 2015; 6: 124–7
- 48. Schietroma M, Cecilia EM, De Santis G, Carlei F, Pessia B, Amicucci G. Supplemental peri-operative oxygen and incision site infection after surgery for perforated peptic ulcer: a randomized, double-blind monocentric trial. Surg Infect (Larchmt) 2016; 17: 106–13
- 49. Schietroma M, Pessia B, Colozzi S, Carlei F, Shehaj I, Amicucci G. Effect of high perioperative oxygen fraction on surgical site infection following surgery for acute sigmoid diverticulitis. A prospective, randomized, double blind, controlled, monocentric trial. *Chirurgia (Bucur)* 2016; 111: 242–50

- 50. Gao Z, Spilk S, Momen A, Muller MD, Leuenberger UA, Sinoway LI. Vitamin C prevents hyperoxia-mediated coronary vasoconstriction and impairment of myocardial function in healthy subjects. Eur J Appl Physiol 2012; 112: 483–92
- 51. Thomson AJ, Drummond GB, Waring WS, Webb DJ, Maxwell SR. Effects of short-term isocapnic hyperoxia and hypoxia on cardiovascular function. J Appl Physiol (1985) 2006; 101: 809–16
- 52. Bulte DP, Chiarelli PA, Wise RG, Jezzard P. Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab 2007; 27: 69–75
- 53. McNulty PH, Robertson BJ, Tulli MA, et al. Effect of hyperoxia and vitamin C on coronary blood flow in patients with ischemic heart disease. J Appl Physiol (1985) 2007; 102: 2040–5
- Milone SD, Newton GE, Parker JD. Hemodynamic and biochemical effects of 100% oxygen breathing in humans. Can J Physiol Pharmacol 1999; 77: 124–30
- Hedenstierna G, Rothen HU. Respiratory function during anesthesia: effects on gas exchange. Compr Physiol 2012; 2: 69–96
- Smith LJ. Hyperoxic lung injury: biochemical, cellular, and morphologic characterization in the mouse. J Lab Clin Med 1985; 106: 269–78
- 57. Loke YK, Mattishent K. If nothing happens, is everything all right? Distinguishing genuine reassurance from a false sense of security. CMAJ 2015; 187: 15–6

Handling editor: H.C. Hemmings Jr