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Abstract8

Smoothness-Increasing Accuracy-Conserving (SIAC) filtering is an area9

of increasing interest because it can extract the “hidden accuracy” in dis-10

continuous Galerkin (DG) solutions. It has been shown that by applying11

a SIAC filter to a DG solution, the accuracy order of the DG solution im-12

proves from order k+1 to order 2k+1 for linear hyperbolic equations over13

uniform meshes. However, applying a SIAC filter over nonuniform meshes14

is difficult, and the quality of filtered solutions is usually unsatisfactory15

applied to approximations defined on nonuniform meshes. The applicabil-16

ity to such approximations over nonuniform meshes is the biggest obstacle17

to the development of a SIAC filter. The purpose of this paper is twofold:18

to study the connection between the error of the filtered solution and the19

nonuniform mesh and to develop a filter scaling that approximates the20
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optimal error reduction. First, through analyzing the error estimates for21

SIAC filtering, we computationally establish for the first time a relation22

between the filtered solutions and the unstructuredness of nonuniform23

meshes. Further, we demonstrate that there exists an optimal accuracy of24

the filtered solution for a given nonuniform mesh and that it is possible to25

obtain this optimal accuracy by the method we propose, an optimal filter26

scaling. By applying the newly designed filter scaling over nonuniform27

meshes, the filtered solution has demonstrated improvement in accuracy28

order as well as reducing the error compared to the original DG solu-29

tion. Finally, we apply the proposed methods over a large number of30

nonuniform meshes and compare the performance with existing methods31

to demonstrate the superiority of our method.32

In memory of Saul Arbarbenel, a dear friend and mentor.33

1 Introduction34

In practical applications, there are strong motivators for the adoption of un-35

structured meshes for handling complex geometries and using adaptive mesh36

refinement techniques. Based on this practical necessity, it is widely believed37

that discontinuous Galerkin methods, which provide high-order accuracy on38

unstructured meshes, will become one of the standard numerical methods for39

future generations. Along with the rapid growth of the DG method, the super-40

convergence of the DG method has become an area of increasing interest because41

of the ease with which higher order information can be extracted from DG so-42

lutions by applying Smoothness-Increasing and Accuracy-Conserving (SIAC)43

filtering. However, SIAC filters are still limited primarily to structured meshes.44

For general nonuniform meshes, the quality of the filtered solution is usually un-45

satisfactory. The ability to effectively handle nonuniform meshes is an obstacle46

to the further development of a SIAC filter.47

This paper focuses on applying a SIAC filter for DG solutions over nonuni-48

form meshes. Specifically, this study focuses on the barrier to applying SIAC fil-49

ters over nonuniform meshes – the scaling. This problem was noted in [3], which50

extends a postprocessing technique for enhancing the accuracy of solutions [1]51

to linear hyperbolic equations. The postprocessing technique was renamed the52

Smoothness-Increasing Accuracy-Conserving filter in [5]. A series of studies of53

different aspects of SIAC filters are presented in [5, 20, 11], etc. For uniform54

meshes, it was shown that by applying a SIAC filter to a DG approximation at55

the final time, the accuracy order improves from k+1 to 2k+1 for linear hyper-56

bolic equations with periodic boundary conditions [3]. This superconvergence57

of order 2k + 1 is promising; however it is limited to uniform meshes. Only for58

a particular family of nonuniform meshes, smoothly-varying meshes, have the59
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SIAC FILTERING FOR NONUNIFORM MESHES 3

filtered solutions been proven to have a superconvergence order of 2k + 1 [20].60

As for general nonuniform meshes, the preliminary theorem in [3] provides a61

solution, but it is not very useful in practice. The filtered solutions can still62

be improved. Further, the computational results for relatively unstructured tri-63

angular meshes [12] suggest that it is possible to reduce the errors of the DG64

solutions through a suitable choice of filter scalings for approximations defined65

over unstructured meshes. However, in [12] there is no clear accuracy order66

improvement and no guarantee of error reduction. Also, the lack of theoretical67

analysis makes it difficult to evaluate the quality of the filtered solutions. There68

has been some work related this topic, such as the nonuniform filter proposed69

in [16, 15].70

The primary goal of this paper is to address these challenges and try to71

improve the quality of the DG solutions over general nonuniform meshes. Our72

main contributions are:73

Optimal accuracy. First, we study the error estimates of the SIAC filter for74

uniform and nonuniform meshes and point out the difficulties for the filter over75

nonuniform meshes. Then, we computationally establish for the first time a76

relation between the filtered solutions and the unstructuredness of nonuniform77

meshes. Further, we demonstrate that for a given nonuniform mesh, there exists78

an optimal accuracy (optimal error reduction) of the filtered solution.79

Optimal scaling. To approximate this optimal accuracy, we first analyze the80

relation between the filter scaling and the error of filtered solutions for different81

nonuniform meshes. Then, we introduce a measure of the unstructuredness of82

nonuniform meshes and propose a procedure that adjusts the scaling of a SIAC83

filter according to the unstructuredness of the given nonuniform mesh. Also, we84

demonstrate that with the newly designed optimal scaling, the filtered solution85

has a higher accuracy order, and the errors are reduced compared to the original86

DG solutions even for the worst nonuniform meshes.87

Scaling performance validation. Finally, to ensure the proposed scaling is a88

robust algorithm that can be used in practice, we validated the performance of89

the proposed scaling over a large number of nonuniform meshes and compared90

with other commonly used scalings to illustrate that the accuracy of the DG91

solution is improved by using the proposed scaling and its superiority compared92

to existing methods.93

This paper is organized as follows. In Section 2, we review the DG method94

and SIAC filters as well as the relevant properties. In Section 3, we investigate95

the effects of the filter scaling on the accuracy of the filtered solution. We then96

introduce a measure of the unstructuredness of nonuniform meshes and provide97

an algorithm to approach the optimal accuracy in Section 4. Also, in Section98

4, we provide a scaling performance validation for the proposed scaling along99

with other commonly used scalings. Numerical results for different one- and100
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two-dimensional nonuniform meshes are given in Section 5. The conclusions are101

presented in Section 6.102

2 Background103

In this section, we review the necessary properties of discontinuous Galerkin104

methods, the definition of nonuniform meshes for the purposes of this article,105

and the Smoothness-Increasing Accuracy-Conserving (SIAC) filter.106

2.1 Construction of Nonuniform Meshes107

Before introducing the discontinuous Galerkin method, we introduce the struc-108

ture of the nonuniform meshes that will be used in this paper. The main con-109

struction of the nonuniform meshes are similar to those meshes used in [11]:110

Mesh 2.1.

x 1
2

= 0, xN+ 1
2

= 1, xj+ 1
2

=
(
j + b · rj+ 1

2

)
h, j = 1, . . . , N − 1

where
{
rj+ 1

2

}N−1

j=1
are random numbers between (−1, 1), and b ∈ (0, 0.5] is a111

constant number. Here, h =
x
N+1

2
−x 1

2

N is a function of N , in this way, one112

can reduce the structure added by increasing the number of elements. The size113

of element ∆xj = xj+ 1
2
− xj− 1

2
is between ((1 − 2b)h, (1 + 2b)h). In order to114

save space, we present an example with b = 0.4 only. Other values of b such115

as 0.1, 0.2 and 0.45 have also been studied and are consistent with the results116

presented herein.117

Mesh 2.2. We distribute the element interface, xj+ 1
2
, j = 1, . . . , N − 1, ran-118

domly for the entire domain and only require119

∆xj = xj+ 1
2
− xj− 1

2
≥ b · h, j = 0, . . . , N.

In this paper (except the performance tests in Section 4), we present the case120

where b = 0.5 for this mesh. Other values of b such as 0.6, 0.8 have also been121

studied and are consistent with the results presented herein.122

Remark 2.3. Mesh 2.1 is a quasi-uniform mesh since ∆xmax

∆xmin
≤ 1+2b

1−2b . Mesh 2.2123

is more unstructured than Mesh 2.1 since in the worst case ∆xmax

∆xmin
≈ 1−b

b N124

which is unbounded as N → ∞. It is expected that the DG approximation125

and the filtered solution are of better quality for Mesh 2.1 than for Mesh 2.2.126

Illustrations of these meshes are given in Figure 2.1.127

We will analyze the applicability of the SIAC filter scaling factor utilizing128

these meshes.129
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Mesh 2.1

Mesh 2.2

Figure 2.1: Illustration of Mesh 2.1 and Mesh 2.2. Here the largest-to-smallest

element ratio is about 4.5 for Mesh 2.1 (top), and 33.1 for Mesh 2.2 (bottom).

2.2 Discontinuous Galerkin Methods130

Here, we briefly describe the discontinuous Galerkin method; more details can131

be found in [2, 4]. As an illustrative example, we consider a multi-dimensional132

linear hyperbolic equation of the form133

ut +

d∑
i=1

Aiuxi +A0u = 0, (x, t) ∈ Ω× [0, T ],

u(x, 0) = u0(x),

(2.1)

where u0 is sufficiently smooth, the coefficients Ai are constants and Ω =134

[a1, b1] × · · · × [ad, bd] ⊂ Rd. Let K represent an element in a quadrilateral135

tessellation Th of the domain Ω. Discontinuous Galerkin methods seek an ap-136

proximation uh in the space of piecewise polynomials of degree ≤ k,137

V kh =
{
ϕ : ϕ|K ∈ Pk, ∀K ∈ Th

}
,

and the DG approximation uh is determined by the scheme138

((uh)t, vh)K−
d∑
i=1

(aiuh, (vh)xi)K+

d∑
i=1

∫
∂K

aiûhvhnids+(a0uh, vh)K = 0, (2.2)

for any vh ∈ V kh , and ûh is the flux. For the results presented in this paper, we139

have utilized one particular choice – the upwind flux. Here, (f, g) denotes the140

standard inner product:141

(f, g)K =

∫
K

fg dK.

2.3 Superconvergence in the Negative Order Norm142

The DG method has many important properties. The most relevant property143

for the purposes of this paper are the accuracy order of the divided differences144

of the DG approximation. In the L2 norm it is k+ 1 which aides in proving the145

superconvergence of order 2k + 1 in the negative order norm. These properties146

are the theoretical foundations of SIAC filters (see [3, 11]) and define the choice147

of the number of B-splines in the SIAC convolution kernel. To highlight this148
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connection, the error of filtered solution can be viewed a linear combination of149

the errors from the choice of the number of B-splines used in the filter as well150

as the discretization error,151

‖u− uh‖0 ≤ C1H
2k+1︸ ︷︷ ︸

Number of B-Splines

+C2 ‖∂αH(u− uh)‖−(k+1)︸ ︷︷ ︸
Discretization Error

.

This is discussed further in Section 3.2. Because of the importance of the divided152

differences in the error estimates, in this section, we first discuss the properties153

of the divided difference of DG approximation. For uniform meshes, the main154

theorem is given below.155

Theorem 2.1 (Cockburn et al. [3]). Let u be the exact solution of equation (2.1)156

with periodic boundary conditions, and uh the DG approximation derived by157

scheme (2.2). For a uniform mesh, the approximation and its divided differences158

in the L2 norm are:159

‖∂αh (u− uh)‖0,Ω ≤ Chk+1, (2.3)

and in the negative order norm:160

‖∂αh (u− uh)‖−(k+1),Ω ≤ Ch2k+1, (2.4)

where α = (α1, . . . , αd) is an arbitrary multi-index and h is the diameter of the161

uniform elements.162

This theorem is valid assuming that the exact solution has sufficient reg-163

ularity (belongs to a Hilbert space of order 2k + 2). Unfortunately, the error164

estimates of the DG approximation and its divided differences for nonuniform165

meshes become much more challenging, and for this case the estimates (2.3) and166

(2.4) are valid only for the DG approximation itself, that is,167

Lemma 2.2 (Cockburn et al. [3]). Under the same conditions as in Theorem168

2.1. The DG approximation for a nonuniform mesh satisfies169

‖u− uh‖0,Ω ≤ Chk+1,

and in the negative order norm:170

‖u− uh‖−(k+1),Ω ≤ Ch2k+1. (2.5)

As for the divided differences, ∂αhuh, for nonuniform meshes, instead of (2.4),171

we have only the following lemma:172

Lemma 2.3. Under the same conditions as in Lemma 2.2, given a constant173

scaling H, for nonuniform meshes, the divided differences of the DG approxi-174

mation in the L2 norm satisfies175

‖∂αH(u− uh)‖0,Ω ≤ Cαh2k+1H−|α|,
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and in the negative order norm:176

‖∂αH(u− uh)‖−(k+1),Ω ≤ Cαh2k+1H−|α|,

where α = (α1, . . . , αd) is an arbitrary multi-index.177

Proof. c.f. [11, 14].178

Remark 2.4. Lemma-2.3 was first introduced as a conjecture in [3], and pre-179

sented as a lemma with proof in [11]. In this paper, h is defined during the180

construction of Mesh 2.1 and Mesh 2.2, h =
x
N+1

2
−x 1

2

N is a function of the ele-181

ment N . Here, we note that Lemma 2.3 is valid for arbitrary constant H, but182

we will discuss how to choose the optimal scaling H in the following sections.183

The relation between the L2 norm and the negative order norms are intro-184

duced in the following lemma:185

Lemma 2.4 (Bramble and Schatz [1]). Let Ω0 ⊂⊂ Ω1 and s be an arbitrary186

but fixed nonnegative integer. Then for u ∈ Hs(Ω1), there exists a constant C187

such that188

‖u‖0,Ω0 ≤ C
∑
|α|≤s

‖Dαu‖−s,Ω1 .

In Table 2.1, we provide a basic example of the divided difference operation189

over a nonuniform mesh (randomly chosen among Meshes 2.2). In this table, Pu190

is the L2 projection of u(x, 0) = sin(x) over a randomly generated nonuniform191

mesh. From Table 2.1, we can see that for α ≥ 1, the divided differences ∂αhPu192

only have accuracy order of k + 1 − α. This example clearly suggests that the193

nonuniform mesh estimate (2.5) no longer holds, and the estimates in Lemma194

2.3 can not be improved without further assumptions on the nonuniformity of195

the mesh.196

Remark 2.5. In this paper, the main results are based on the L2 norm. How-197

ever, we also included the numerical results in the L∞ norm for consistency198

with existing literature.199

2.4 SIAC Filter200

We use the classical SIAC filter that stems from the work of Bramble and201

Schatz [1], Thomée [22] and Mock and Lax [14]. An extension of this technique202

to discontinuous Galerkin methods was introduced in [3]. Motivated by [3], a203

series of publications have studied SIAC filtering for DG methods from various204

aspects, such as [5, 12, 19, 18, 21].205
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Table 2.1: L2− and L∞−errors for the L2 projection of u(x, 0) = sin(x) and its

divided differences over a randomly generated nonuniform mesh.
Pu ∂hPu ∂2

hPu
Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

P2

20 8.43E-05 – 2.76E-04 – 1.29E-03 – 4.12E-03 – 3.63E-02 – 9.20E-02 –

40 1.02E-05 3.05 3.10E-05 3.16 3.61E-04 1.84 1.54E-03 1.41 1.79E-02 1.02 4.76E-02 0.95

60 2.92E-06 3.09 1.03E-05 2.71 1.44E-04 2.27 4.78E-04 2.89 1.08E-02 1.26 3.22E-02 0.97

80 1.19E-06 3.13 3.89E-06 3.39 8.46E-05 1.84 2.89E-04 1.75 8.33E-03 0.89 2.41E-02 1.01

P3

20 1.78E-06 – 4.76E-06 – 2.99E-05 – 9.77E-05 – 7.01E-04 – 2.10E-03 –

40 1.17E-07 3.93 3.04E-07 3.97 4.39E-06 2.77 1.66E-05 2.56 1.75E-04 2.01 6.25E-04 1.75

60 2.03E-08 4.32 6.11E-08 3.96 1.10E-06 3.42 3.99E-06 3.52 6.86E-05 2.30 2.38E-04 2.38

80 6.50E-09 3.96 1.87E-08 4.11 4.57E-07 3.05 1.35E-06 3.76 3.83E-05 2.03 1.26E-04 2.22

SIAC filtering is applied only at the final time T of the DG approximation,206

and the filtered solution u?h, in the one-dimensional case is given by207

u?h(x, T ) =
(
K

(2r+1,`)
H ? uh

)
(x, T ) =

∫ ∞
−∞

K
(2r+1,`)
H (x− ξ)uh(ξ, T )dξ,

where the filter, K(2r+1,`), is a linear combination of central B-splines,208

K(2r+1,`)(x) =

r∑
γ=0

c(2r+1,`)
γ ψ(`)

(
x−

(
−r

2
+ γ
))

, (2.6)

and the scaled filter is K
(2r+1,`)
H (x) = 1

HK
(2r+1,`)

(
x
H

)
with scaling H (H = h209

for uniform meshes). Here, ψ(`)(x) is the ` order central B-spline, which can be210

constructed recursively using the relation211

ψ(1) = χ[−1/2,1/2)(x),

ψ(`)(x) =
1

`− 1

(
`

2
+ x

)
ψ(`−1)

(
x+

1

2

)
+

1

`− 1

(
`

2
− x
)
ψ(`−1)

(
x− 1

2

)
, ` ≥ 2.

(2.7)

Typically, the number of B-splines is chosen as 2r+1 = 2k+1, and the order of212

B-splines is chosen as ` = k+1. In the remainder of the paper, we use 2k+1 B-213

splines of order k+1. The coefficients, c
(2r+1,`)
γ , are calculated by enforcement of214

the property that the filter reproduces polynomials by convolution up to degree215

2r,216

K(2r+1,`) ? p = p, p = 1, x, ..., x2r. (2.8)

Later on we will need the following lemma217

Lemma 2.5. Let 2r be an even number, then the SIAC filter K(2r+1,`) given in218

(2.6), which satisfies (2.8), reproduces polynomials by convolution until degree219

of 2r + 1,220

K(2r+1,`) ? p = p, p = 1, x, . . . , x2r+1. (2.9)
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Proof. c.f. [23].221

In the multidimensional case, the multidimensional filter is the tensor prod-222

uct of the one-dimensional filter (2.6)223

K
(2r+1,`)
H (x) =

d∏
i=1

K
(2r+1,`)
H (xi), x = (x1, . . . , xd) ∈ Rd,

with the scaled filter K
(2r+1,`)
H (x) = 1

HdK
(2r+1,`)

(
x
H

)
. A computationally effi-224

cient alternative to the tensor product case is to use the Hexagonal SIAC filter225

(HSIAC) by Mirzarger et al. [13], or the Line SIAC filter introduced by Do-226

campo et al. [6] and applied to problems in visualization problems by Jallepalli227

et al. [9].228

3 SIAC Filter for Nonuniform Meshes229

In order to design a more accurate SIAC filter for nonuniform meshes, we have230

to investigate the relations between the DG approximation and SIAC filters for231

nonuniform meshes.232

3.1 Existing Results233

As mentioned in [3, 10], for uniform meshes, SIAC filtering can improve the234

accuracy order of DG solutions for linear hyperbolic equations from k + 1 to235

2k + 1 when a sufficient number of B-splines are chosen. This accuracy order,236

2k + 1, and various studies of SIAC filters, such as position-dependent filters237

[19, 24], the derivative filter [18], etc., are limited to uniform meshes. For238

nonuniform meshes, the aims of improving the accuracy order and reducing239

the errors of the DG solution remains an ongoing challenge for SIAC filtering.240

Most preliminary results consider only a particular family of meshes, smoothly241

varying meshes [5, 17, 20]. It was proven in [20] that the filtered solutions also242

have an accuracy order of 2k + 1 for smoothly varying meshes. However, for243

general nonuniform meshes, there are only a few computational results [12], and244

the only theoretical estimates were given in [3, 11].245

Theorem 3.1. Under the same conditions as in Lemma 2.2, denote Ω0 +246

2supp(K
(2k+1,k+1)
H ) ⊂⊂ Ω1 ⊂⊂ Ω. Then, for general nonuniform meshes, we247

have248

‖u−K(2k+1,k+1)
H ? uh‖0,Ω0

≤ Chµ(2k+1),

where the scaling H is chosen as249

H = hµ, µ =
2k + 1

3k + 2
. (3.1)
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Proof. c.f. [3, 11].250

For convenience, in this paper we refer to µ as the scaling order and µ0 =251

2k+1
3k+2 . Theorem 3.1 gives a useful scaling that allows us to enhance the accuracy252

of the DG solution, especially the derivatives of the DG solution [11], but may253

not be optimal.254

However, from the perspective of improving the DG approximation itself,255

satisfying the requirements of Theorem 3.1 can be cumbersome. For example,256

the accuracy order will be higher than the original DG approximation only if257

k ≥ 2:258

µ0(2k + 1) > k + 1 ⇒ k ≥ 2 (k ∈ Z).

If, alternatively, at least one order higher accuracy order is desired, then k ≥ 5:259

µ0(2k + 1) ≥ k + 2 ⇒ k ≥ 5 (k ∈ Z).

Another important issue is the computational efficiency. As discussed in [11]260

when h is small (a fine mesh), the filter scaling H = hµ0 ≥ h2/3 dramatically261

increases the support size of the filter. To post-process one position in the do-262

main, the post-processor has a support of (3k+2)H. It follows that by choosing263

µ < 1, the computational cost dramatically increases.264

More importantly, instead of increasing the accuracy order, practical appli-265

cations are more concerned with reducing the error. Although using the scaling266

H = hµ0 improves the accuracy order, many practical examples suggest that267

using a scaling order of µ0 usually increases the errors. For example, for the268

numerical experiments given in this paper (Section 5), the filtered solutions269

that use a scaling order of µ0 have a qualitatively worse error in the L2 norm270

compared to the original DG solutions.271

3.2 The Optimal Accuracy272

Although Theorem 3.1 holds for arbitrary nonuniform meshes, the filtered so-273

lutions based on the filter scaling H = hµ0 does not achieve expectations with274

respect to order improvement, error reduction and computational efficiency. The275

problem stems from the crude estimate of the scaling order µ0 that ignores the276

mesh structure. In order to improve Theorem 3.1, it is necessary to reconsider277

the filter scaling for nonuniform meshes. To complete this task, we first explore278

the relation between the filter scaling and the error of the filtered solution. We279

remind the reader that in this paper, H represents the filter scaling and h rep-280

resents the mesh size. As given in [3], we can write the error estimate of the281

filtered solution as282

‖u− u?h‖0,Ω0
≤ Θ1 + Θ2, (3.2)

where283

Θ1 = ‖u−K(2k+1,k+1)
H ? u‖0,Ω0

≤ C1H
2k+2|u|H2k+2 , (3.3)
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and284

Θ2 = C0

∑
|α|≤k+1

‖DαK
(2k+1,k+1)
H ? (u− uh)‖−(k+1),Ω1/2

≤ C0C1

∑
|α|≤k+1

‖∂αH(u− uh)‖−(k+1)Ω1
,

(3.4)

by Lemmas 2.5 and 2.4, where285

Ω0 + supp(K
(2k+1,k+1)
H ) ⊂ Ω1/2, Ω1/2 + supp(K

(2k+1,k+1)
H ) ⊂ Ω1.

According to the above estimates, the error is bounded by Θ1 and Θ2, where286

Θ1 describes the error generated by reproducing polynomials and Θ2 represents287

the error in the negative order norm.288

The estimate for Θ1 is clear. The error is given by the polynomial reproduc-289

tion property (2.9) and the exact solution u. It is obvious from (3.3) that Θ1,290

only depends on the filter scaling and is bounded by C1H
2k+2|u|H2k+2 . This291

bound increases with the scaling H.292

The Θ2 term is more challenging. Lemma 2.3 gives an estimate of ‖∂αH(u−293

uh)‖−(k+1),Ω1
for nonuniform meshes,294

‖∂αH(u− uh)‖−(k+1),Ω1
≤ Ch2k+1H−|α|. (3.5)

The above estimate holds for arbitrary nonuniform meshes, but it is not the295

optimal bound for many meshes. For example, consider the smoothly-varying296

meshes used in [5, 20, 11]. For these types of meshes, a better estimate is297

‖∂αH(u− uh)‖−(k+1),Ω1
≤ Ch2k+1

for well chosen H, see [20]. Clearly, one can guess that the accurate bounds298

of Θ2 are very different between an almost uniform mesh and a totally random299

mesh, but the current estimate (3.5) fails to relize this relation (the relation300

between Θ2 and the unstructuredness of the mesh). Also, from the existing301

results in [5, 11, 12, 20], one can see that the Θ2 term is strongly dependent302

on the unstructuredness of the mesh. However, based on [3], the estimate (3.5)303

suggests that there is a trend that Θ2 decreases with the scaling H. See Figure304

3.1 for numerical support.305

In this paper, we seek to obtain the minimized error of the filtered solution306

with respect to the scaling order µ. To do this, we need to find a proper scaling307

order µ (assuming H = hµ) such that Θ1 = Θ2. As mentioned in [3], in the308

worst case the scaling order µ = µ0 = 2k+1
3k+2 ≥ 0.6 , and in the best case µ ≈ 1.309

We examine the L2 and L∞ errors with scaling order µ in the range of [0.6, 1] for310

two nonuniform meshes: Mesh 2.1 and Mesh 2.2. Figure 3.1 shows the variations311

when µ increases from 0.6: the error is first reduced until a minimum error is312
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achieved and then the error starts to rise again. We can see that the minimized313

error in the L2 and L∞ norms correspond to the different scaling orders µ; see314

also Table 3.1. Since the theoretical estimates are based on the L2 norm, in the315

following we define the concept of the optimal accuracy based on the L2 norm.316

Definition 3.1 (Optimal Accuracy). For a given mesh, the optimal accuracy317

of the filtered solution is given by318

min
0≤H≤1

‖u−K(2k+1,k+1)
H ? uh‖0. (3.6)

The scaling H that minimizes the error is referred to as the optimal scaling and319

denoted as H?, where the optimal scaling order µ? is defined as H? = hµ
?

. Note:320

• When H = 0, the filter K
(2k+1,k+1)
H degenerates to the delta function and321

we have322

‖u−K(2k+1,k+1)
H ? uh‖0 = ‖u− δ ? uh‖0 = ‖u− uh‖0.

In this sense, the optimal accuracy is at least as good as the original DG323

accuracy.324

• Since H ∈ [0, 1] and ‖u −K(2k+1,k+1)
H ? uh‖0 is continuous respect to H,325

the minimum of (3.6) must exist.326

Remark 3.1. We can also define the optimal accuracy based on different norms,327

such as the L∞−norm, or even different filters, but it will lead to different328

optimal scaling order µ?.329

Table 3.1: The optimal scaling order µ? with respect to Mesh 2.1 and Mesh

2.2 with N = 20, 40, 80, 160, based on the linear equation (5.1) with periodic

boundary conditions.
Mesh Mesh 2.1 Mesh 2.2

uh u?
h uh u?

h

N L2 error order µ? L2 error order L2 error order µ? L2 error order

P2

20 2.62E-04 – 0.90 2.69E-05 – 8.01E-04 – 0.82 1.21E-04 –

40 3.26E-05 3.00 0.85 1.58E-06 4.08 6.30E-05 3.67 0.81 4.16E-06 4.87

80 3.23E-06 3.34 0.84 6.50E-08 4.61 3.86E-06 4.03 0.82 1.10E-07 5.24

160 4.03E-07 3.00 0.81 4.25E-09 3.94 1.43E-06 1.44 0.75 2.84E-08 1.96

P3

20 7.31E-06 – 0.97 2.25E-07 – 2.07E-05 – 0.90 1.39E-06 –

40 5.23E-07 3.80 0.91 5.69E-09 5.31 9.49E-07 4.45 0.87 1.95E-08 6.16

80 2.64E-08 4.31 0.88 9.46E-11 5.91 7.12E-08 3.74 0.85 3.31E-10 5.88

160 1.58E-09 4.07 0.86 2.65E-12 5.16 5.77E-09 3.63 0.80 2.56E-11 3.69
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Figure 3.1: The L2 and L∞ errors in log scale of the filtered solutions with

various scaling H = hµ, µ ∈ [0.6, 1.0]. The black dashed line marks the location

of µ0 = 2k+1
3k+2 . The DG approximation is for the linear equation (5.1) with

polynomials of degree k = 2, 3 for Mesh 2.1 and Mesh 2.2.

3.2.1 The Convergence Rate330

In Figure 3.1, plots of the L2 and L∞ error versus the scaling hµ are given for331

0.6 < µ ≤ 1. A dashed line is given at the value µ0 = 2k+1
3k+2 . We remind the332

reader that based on (3.3), the design of the filter leads to333

Θ1 ∼ O(H2k+2).

When µ is decreasing, H = hµ is increasing, then the Θ1 term becomes dominant334

once µ becomes small. We can also observe this from Figure 3.1, once µ <335

µ?, the errors of the filtered solutions are dominated by the Θ1 term in (3.3),336

which has a convergence rate of µ(2k + 2) (before the minimum occurs in the337

convergence plots). Tables 3.2 and 3.3 show the results of using µ such that338

µ0 < µ < µ?. However, as we mentioned earlier, the Θ2 term (Equation (3.4))339

is challenging. Figure 3.1 demonstrates once µ > µ?, the errors of the filtered340

solutions have a trend to increase with µ, which means the Θ2 has the same341

trend to increase for µ? < µ < 1 (if µ → ∞, the filtered errors degenerate342
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to the DG errors). In short, Figure 3.1 together with Tables 3.1, 3.2 and 3.3343

show that with a proper scaling (or scaling order µ), the filtered solutions have344

a higher accuracy order, and the errors are reduced compared to the original345

DG solutions. We also compare the results to the filtered solutions that use a346

scaling order µ0 to demonstrate the improvement of using scaling order µ > µ0.347

Further, we point out that for the different nonuniform meshes, the value of µ?348

will be different, see Figure 3.1. In the next section, we will mainly concentrate349

on the given nonuniform mesh only, to find the optimal accuracy (or µ?) of the350

filtered solutions over the given nonuniform mesh.351

Table 3.2: L2− and L∞−errors for the DG approximation uh together with two

filtered solutions (using a scaling of order µ = µ0 and µ = 0.75) for the linear

equation (5.1) with periodic boundary conditions for Mesh 2.1.

uh µ = µ0 µ = 0.75

Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

P1

20 7.59E-03 – 3.00E-02 – 2.91E-02 – 4.12E-02 – 4.39E-03 – 7.68E-03 –

40 1.87E-03 2.02 9.51E-03 1.66 7.47E-03 1.96 1.06E-02 1.96 6.03E-04 2.86 1.39E-03 2.47

80 4.17E-04 2.16 2.23E-03 2.10 1.88E-03 1.99 2.66E-03 1.99 6.97E-05 3.11 1.94E-04 2.84

160 1.00E-04 2.06 5.95E-04 1.90 4.74E-04 1.99 6.71E-04 1.99 9.35E-06 2.90 3.23E-05 2.59

P2

20 2.62E-04 – 1.64E-03 – 5.13E-03 – 7.25E-03 – 6.12E-05 – 9.86E-05 –

40 3.26E-05 3.00 2.36E-04 2.80 5.86E-04 3.13 8.29E-04 3.13 2.75E-06 4.48 4.40E-06 4.49

80 3.23E-06 3.34 2.11E-05 3.49 6.21E-05 3.24 8.79E-05 3.24 1.19E-07 4.53 1.85E-07 4.57

160 4.03E-07 3.00 4.01E-06 2.39 6.36E-06 3.29 8.99E-06 3.29 5.48E-09 4.44 1.33E-08 3.80

P3

20 7.31E-06 – 4.16E-05 – 1.08E-03 – 1.52E-03 – 3.82E-06 – 5.45E-06 –

40 5.23E-07 3.80 3.23E-06 3.68 5.17E-05 4.38 7.31E-05 4.38 6.26E-08 5.93 9.09E-08 5.91

80 2.64E-08 4.31 1.60E-07 4.33 2.22E-06 4.54 3.14E-06 4.54 9.94E-10 5.98 1.49E-09 5.93

160 1.58E-09 4.07 1.16E-08 3.79 9.10E-08 4.61 1.29E-07 4.61 1.57E-11 5.99 2.53E-11 5.88

4 The Unstructuredness of Nonuniform Meshes352

In Section 3, we proposed the concept of the optimal accuracy and numerically353

demonstrated that there exists an optimal scaling order µ? such that using the354

optimal scaling, H? = hµ
?

, minimizes the error of the filtered solutions in the L2
355

norm. Then, the remaining question is how to find µ? for a given nonuniform356

mesh. Table 3.1 provides µ? by testing different values of the scaling, which357

is certainly impractical. Theoretically, even for uniform meshes whose optimal358

scaling order is µ? ≈ 1, it is impossible to find the exact value of µ?. However,359

in this section, we propose an approximation µh that is sufficiently close to µ?360

and leads to filtered solutions with improved quality.361

An important observation from Figure 3.1 for determining µ? is that the362

optimal scaling order depends on the structure of the nonuniform meshes, and363

hence the optimal scaling order is different. The rule of thumb is that the more364
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Table 3.3: L2− and L∞−errors for the DG approximation uh together with two

filtered solutions (using a scaling order of µ = µ0 and µ = 0.7) for the linear

equation (5.1) with periodic boundary conditions for Mesh 2.2.

uh µ = µ0 µ = 0.7

Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

P1

20 1.00E-02 – 3.12E-02 – 3.16E-02 – 4.46E-02 – 7.81E-03 – 1.17E-02 –

40 1.99E-03 2.34 1.03E-02 1.60 7.60E-03 2.06 1.07E-02 2.05 8.42E-04 3.21 1.50E-03 2.96

80 6.38E-04 1.64 3.99E-03 1.37 1.90E-03 2.00 2.70E-03 1.99 1.10E-04 2.94 2.88E-04 2.38

160 1.43E-04 2.15 1.06E-03 1.92 4.79E-04 1.99 6.80E-04 1.99 1.97E-05 2.48 5.86E-05 2.30

P2

20 8.01E-04 – 5.52E-03 – 5.15E-03 – 7.28E-03 – 1.64E-04 – 2.63E-04 –

40 6.30E-05 3.67 5.42E-04 3.35 5.87E-04 3.13 8.30E-04 3.13 7.96E-06 4.37 1.28E-05 4.37

80 3.86E-06 4.03 2.67E-05 4.35 6.22E-05 3.24 8.79E-05 3.24 4.21E-07 4.24 6.20E-07 4.36

160 1.43E-06 1.44 2.23E-05 0.26 6.36E-06 3.29 8.99E-06 3.29 3.05E-08 3.79 1.53E-07 2.02

P3

20 2.07E-05 – 1.17E-04 – 1.08E-03 – 1.52E-03 – 1.24E-05 – 1.79E-05 –

40 9.49E-07 4.45 7.44E-06 3.97 5.17E-05 4.38 7.31E-05 4.38 2.71E-07 5.52 3.84E-07 5.54

80 7.12E-08 3.74 5.57E-07 3.74 2.22E-06 4.54 3.14E-06 4.54 5.71E-09 5.57 8.47E-09 5.50

160 5.77E-09 3.63 6.75E-08 3.04 9.10E-08 4.61 1.29E-07 4.61 1.19E-10 5.58 1.78E-10 5.57

unstructured the mesh, the smaller the value of µ?. In order to approximate365

the value of µ?, it is important to define a measure of the unstructuredness of366

nonuniform meshes.367

4.1 The Measure of Unstructuredness of Nonuniform Meshes368

Before discussing the unstructuredness, we first provide a definition of structured369

meshes.370

Definition 4.1 (Structured Mesh). A mesh with N elements is considered371

structured if there exists a function f ∈ C∞ and f ′ > 0, such that372

xj+ 1
2

= f(ξj+ 1
2
), ∀j = 0, . . . , N, (4.1)

where
{
ξj+ 1

2

}N
j=0

corresponds to a uniform mesh with N elements over the same373

domain.374

According to [20], filtered solutions for structured meshes have the same375

accuracy order (2k + 1 for linear hyperbolic equations) as for uniform meshes.376

Now we introduce a new parameter σ, the unstructuredness of the nonuni-377

form mesh, to measure the difference between the given nonuniform mesh and378

a structured mesh with the same number of elements.379

Definition 4.2 (Unstructuredness). For a nonuniform mesh
{
xj+ 1

2

}N
j=0

, its380
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unstructuredness σ is given by381

σ = inf
f∈C∞,f ′>0

 N∑
j=0

(
f(ξj+ 1

2
)− xj+ 1

2

)2

/(N + 1)

 1
2

, (4.2)

where
{
ξj+ 1

2

}N
j=0

corresponds to the uniform mesh with N elements for the382

same domain. The smaller the σ, the more structured the mesh.383

Without loss of generality, we denote the domain Ω = [0, 1]. Then, in the384

worst case, we have385  N∑
j=0

(
f(ξj+ 1

2
)− xj+ 1

2

)2

N + 1


1
2

<

 N∑
j=0

(1− 0)2

N + 1

 1
2

= 1⇒ σ < 1.

Remark 4.1. The definition of unstructuredness is designed by considering the386

discrete L2 norm formula. It is a natural choice since the focus is on the error in387

the L2 norm. Furthermore, it establishes a connection between general nonuni-388

form meshes and the well-studied structured meshes. Besides formula (4.2),389

there are different ways to identify the unstructuredness of the mesh, such as390

through the variation of mesh elements [8], utilizing different norms, or the391

methods mentioned in Appendix.392

4.2 SIAC Filtering Based on Unstructuredness393

After defining the unstructuredness, σ, we now study the relation of σ and

the filter scaling, which allows for determining µh. This depends on two very

challenging estimates: that of the negative-order norm and that of the divided

differences over a nonuniform mesh. Note that for the divided difference with a

general scaling H, uh(x+ H
2 ) and uh(x− H

2 ) are not in the same approximation

space even for uniform meshes. Since the translation invariance with respect to

both the DG mesh size h and the scaling H, for uniform meshes, one has to let

the scaling H satisfies that H = mh (m is a positive integer) to keep uh(x+ H
2 )

and uh(x− H
2 ) in the same space. Therefore, it is difficult to establish a rigorous

error estimates. In Theorem 3.1, a rough error estimate of ∂Huh is obtained by

using the bound

‖∂H(u− uh)‖0 ≤
1

H

(∥∥∥∥(u− uh)

(
x+

H

2

)∥∥∥∥
0

+

∥∥∥∥(u− uh)

(
x− H

2

)∥∥∥∥
0

)
≤ 2

H
‖u− uh‖0.

This does not take into the unique unstructuredness of a given mesh. Further,394

as demonstrated in the previous section, the result is not optimal. Here, in this395
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paper, we are seeking for a robust algorithm which is useful in a practical setting396

to obtain error reduction.397

In this section, we propose a method based on relating the nonuniform mesh

to its closest structured mesh (under Definition (4.2)). That is,

‖∂H(u− uh)‖0︸ ︷︷ ︸
nonuniform mesh

≤ ‖∂H(u− uh)‖0,f(ξ)︸ ︷︷ ︸
structured mesh

+ ‖∂H(u− uh)‖0,diff︸ ︷︷ ︸
difference

.

As mentioned earlier [20], we know that the first divided difference over the398

structured mesh
{
f(ξj+ 1

2
)
}N
j=0

has nice properties. Then, we assume that the399

error of the first divided difference of the DG solution for the nonuniform mesh400 {
xj+ 1

2

}N
j=0

is dominated by the difference between the nonuniform mesh and401

its closest structured mesh.402

Now, consider the difference term ‖∂H(u− uh)‖0,diff, we have403

‖∂H(u− uh)‖0,diff =
2

H

 N∑
j=0

‖u− uh‖20,Ωj
/(N + 1)

 1
2

,

where Ωj = [xj+ 1
2
, f(ξj+ 1

2
)] (or Ωj = [f(ξj+ 1

2
), xj+ 1

2
]). Since the approximation404

uh on the interval Ωj cannot be estimated rigorously through the traditional405

error estimates, we assume that406

‖u− uh‖20,Ωj
=

∫
Ωj

(u− uh)2dx ≤ C |Ωj | ‖u− uh‖2∞

= C
∣∣∣xj+ 1

2
− f(ξj+ 1

2
)
∣∣∣h2k+2.

(4.3)

The above assumption is based on L∞ estimate that407

‖u− uh‖∞ ≤ Chk+1,

which has not been proven theoretically, but validate numerically for rectangular408

meshes (the meshes considered in this paper). For general unstructured trian-409

gular meshes, a reduced accuracy order of O(hk+1− d
2 ) needs to be considered.410

Then, by using the Cauchy-Schwarz inequality, we have411

‖∂H(u− uh)‖0,diff =
2

H

 N∑
j=0

‖u− uh‖20,Ωj
/(N + 1)

 1
2

≤Chk+1H−1

 N∑
j=0

∣∣∣xj+ 1
2
− f(ξj+ 1

2
)
∣∣∣ /(N + 1)

 1
2

=Chk+1H−1


 N∑
j=0

(
f(ξj+ 1

2
)− xj+ 1

2

)2

/(N + 1)

 1
2


1
2

.
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By using Definition (4.2) and the assumption that ‖∂H(u− uh)‖0,diff is the412

dominant term, we obtain413

‖∂H(u− uh)‖0 ≤ C
√
σ

H
hk+1 = C

h
1
2 logh σ

H
hk+1, (4.4)

and by induction414

‖∂αH(u− uh)‖0 ≤ C
√
σ

H
hk+1 = C

(
h

1
2 logh σ

H

)α
hk+1. (4.5)

Remark 4.2. The above analysis is the motivation for using formula (4.2)415

to define the unstructuredness. Also, we point out that assumption (4.3) is416

an empirical rather than a rigorous estimate. Furthermore, the assumption417

that ‖∂H(u− uh)‖0,diff dominates ‖∂H(u− uh)‖0 is reasonable only when the418

nonuniform mesh is not so close to the respective structured mesh (σ � 0).419

Based on the value of σ, we divide the nonuniform meshes into two groups420

and discuss the corresponding strategies separately.421

• Nearly structured meshes: logh σ ≥ 2.422

This definition is based on estimate (4.5), when423

√
σ

h
≥
√
σ

H
≥ 1, ⇒ σ ≥ h2 ⇒ logh σ ≥ 2.

Then, the nonuniform mesh is almost a structured mesh, and the effect of the424

difference is negligible. In other words, we can treat these nearly structured425

meshes as structured meshes and use the conclusions in [20]. Also, we note that426

the definition is not strict; when logh σ ≈ 2 we can also treat these nonuniform427

meshes as structured meshes.428

• Unstructured meshes: logh σ < 2.429

This is a more challenging case and the aim of this paper. Under the same430

conditions as in Lemma 2.2, we assume that for a nonuniform mesh with the431

unstructuredness parameter σ as defined in equation (4.2)and based on the432

results in [22], the divided differences of DG solution satisfies433

‖∂αH(u− uh)‖−(k+1),Ω0
≤ Ch2k+1

(
h

1
2 logh σ

H

)α
, (4.6)

when H ≤ h
1
2 logh σ. Moreover, the divided differences of the approximation434

satisfy435

k+1∑
α=0

‖∂αH(u− uh)‖−(k+1) ≤ C
(
h

1
2 logh σ

H

)k+1

h2k+1,
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Scaling order Definition

µ0 µ0 = 2k+1
3k+2 , see Theorem 3.1

µmax hµmax = max ∆xj , j = 1, . . . , N.

µh µh = 2k+1
3(k+1) + 1

6 logh σ ≈ 2
3 + 1

6 logh σ, see (4.7)

µ? H = hµ
?

minimizes ‖u−K(2k+1,k+1)
H ? uh‖0.

Table 4.1: Four types of scaling order used in the performance validation.

and according using the estimates for the filter design and and approximation436

(Equations (3.2) - (3.4)), we can enforce437

H2k+2 =

(
h

1
2 logh σ

H

)k+1

h2k+1.

Using H = hµh , we then have for µh that438

µh =
2k + 1

3(k + 1)
+

1

6
logh σ ≈

2

3
+

1

6
logh σ >

1

2
logh σ, (4.7)

which is much more reasonable to compute as H = hµh ≤ h 1
2 logh σ.439

4.3 Scaling Performance Validation440

At the beginning of this section, we first summarize the definitions of all the441

scalings that are going to be tested in the section, see Table 4.1. As mentioned442

in Section 3, Theorem 3.1 is not practical since the443

• the accuracy order improvement requires k ≥ 2;444

• the errors in the DG solution are not always reduced.445

In order to construct a robust algorithm that can be used in practice, we have446

proposed using scaling (4.7), which demonstrates the relation of the scaling order447

µh and the unstructuredness, σ. Since this result is not based on a rigorous error448

estimate, in this section, we validate the performance of the proposed scaling449

H = hµh , where µh is given in Equation (4.7) by testing it for many nonuniform450

meshes. For a fair demonstration, we also compared this scaling with the scaling451

provided by Theorem 3.1 and the maximum scaling used in many works, such452

as [5, 12]. For convenience, we use the corresponding scaling orders µh, µ0 and453

µmax to refer these three strategies, respectively (see Table 4.1).454

4.3.1 Test Set-up455

First, we present the setting of the nonuniform meshes used for the performance456

test. Since nearly structured meshes are relatively easily studied, in this test,457
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we focus on unstructured meshes (or meshes with random structures). The458

information is presented as follows:459

• We adopt Mesh 2.2 with b = 0.3. The value of b is chosen not only for460

allowing sufficient generality of the mesh structure, but also in order to461

avoid the possibility of round-off error caused by tiny elements.462

• In this test, we have considered the number of elements N = 20, 40, 80,463

using 1700 different samples (5100 meshes in total).464

• The finer meshes (N = 40, 80) are generated using rules similar to the465

coarse mesh (N = 20), which preserves the nonuniform property. A trivial466

way to generating the finer mesh is by uniformly refining the coarse mesh,467

which leads to piecewise uniform meshes when N is large.468

4.3.2 Optimal Scaling Order µ vs. Errors469

We begin by examining how the optimal scaling order µ? and the filtered solu-470

tions are altered with the DG approximation over different nonuniform meshes471

(shows as different DG solutions). This relation is demonstrated in Figure 4.1.472

Notice the following:473

• Trend 1: A larger µ?, corresponds to a smaller filtering region and lower474

errors for filtered solution. The lower errors clearly displayed for k = 3475

than k = 2. It also corresponds to a more structured mesh as well.476

• Trend 2: Also demonstrated is that when the errors are lower for the477

DG solution, the optimal filtered solution has better error. This fact is478

supported by the theory.479

• Trend 3: Notice that µ0 = 2k+1
3k+2 is approximately 0.63 and 0.64 for k = 2, 3.480

However, we can see that in most cases, this value is far away from µ?.481

4.3.3 Optimal Scaling versus Existing Scalings482

After checking our test meshes for the optimal scaling, we check the perfor-483

mance of the existing scalings and compare the results with the optimal filtered484

solution. In Figure 4.2, the ratio of the L2−errors for the DG solution to the485

L2−errors for the filtered solution are plotted against the probability of achiev-486

ing that ratio for a given polynomial order and mesh. If the ratio is less than one487

then the filtered error is better than the DG error, in other words, the filtered488

solution is at least accuracy-conserving compared to the DG solution. Further,489

by considering the ratio of the DG error to the SIAC Filtered error (Figure 4.2),490

one can see that the performance (the ratio) of the SIAC filtering varies with the491
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Figure 4.1: The comparison of DG errors and their optimal filtered results for

different nonuniform meshes respect to µ?. Each plot is based on 1700 random

nonuniform samples.

approximation over different nonuniform mesh approximations. On the other492

hand, we can compare the performance of different scalings by comparing their493

histogram plots (Figure 4.2). One can tell that one scaling has a histogram494

closer to the optimal scaling (red) and also has the better performance. Here,495

we remind the reader that the different scalings are given in Table 4.1.496

• Theoretical Scaling, µ0 (yellow): For more than half of the mesh samples,497

the ratio between the DG error and filtered error remains relatively small498

and the probability of achieving this scaling is higher than for other scal-499

ings.500

• Maximum Scaling, µmax (green): This scaling produces a reasonable ratio501

for most situations.502

• proposed Scaling, µh (purple): The performance is closer to the optimal503

results compared to the other two scaling.504

Remark 4.3. We note that the value of µ? is also affected by the exact solu-505

tion u, more precisely
|u|

H2k+2

|u|
Hk+1

. Since the exact solution is usually unknown in506

practice, this is difficult to determine. However, this leads us to choose µh to be507

slight smaller than µ∗.508
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Figure 4.2: The comparison for the performance of different scalings: optimal

scaling, theoretical scaling, maximum scaling, the new scaling for k = 2. The

x-axis is the value of ‖u−uh‖0/‖u−u?h‖0, clearly, the larger the value, the better

the filtering. In addition, we mark the accuracy-conserving position x = 1 with

a black line.

4.3.4 Comparisons509

From Figure 4.2, We can clearly see that the new proposed scaling order µh has510

the best performance. Now, we use the statistical data of results to give a more511

clear view of the performance.512

First, we check the basic accuracy-conserving property in order to ensure513

that we are not degrading the DG results. From Table 4.2, we can see that µh514

performs the best with respect to accuracy conservation, µ0 the worst one, and515

µmax still has considerably large problems for coarse meshes.516

Next, we compare the proposed scaling with other two scalings side-by-side517

in 4.3 and 4.4. Here, motivated by the definition of equivalence of norms, we518

add the category “similar” to account for small differences in results: if error1519

and error2 satisfy that 1
Ctol
|error1| ≤ |error2| ≤ Ctol|error1|, then these two520

errors are counted as similar. In this note, the tolerance constant Ctol is set as521

2.522

1. Table 4.3, µ0 vs. µh: the data clearly suggests that µh is a better choice523

than µ0.524

2. Table 4.4, µmax vs. µh : in at least 98% of the cases sampled, µh produced525

better results than using µmax.526
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Degree N µ0 µmax µh µ?

20 13.5% 58.9% 100% 100%

P2 40 41.8% 96.6% 100% 100%

80 85.1% 100% 100% 100%

20 3.9% 5.8% 100% 100%

P3 40 12.2% 69.8% 100% 100%

80 45.6% 99.6% 100% 100%

Table 4.2: Percent of results which are at least accuracy-conserving (‖u−u?h‖0 ≤
‖u− uh‖0).

µ0 µh

Degree N Better Similar Better

20 0.0% 6.1% 93.9%

p = 2 40 0.0% 4.7% 95.2%

80 0.8% 3.9% 95.3%

20 0.0% 0.8% 99.2%

p = 3 40 0.0% 0.7% 99.3%

80 0.0% 1.2% 98.8%

Table 4.3: µ0 vs. µh.

Based on the number of samples and the statistical data, the new scaling is a527

reliably better scaling to use among the scalings discussed in this article.528

Through many performance tests, it is reasonable to claim that by using the529

proposed scaling µh, we can expect that there is an accuracy improvement for530

k ≥ 1 for the given nonuniform mesh (dependent on σ). In practice, strategy 4.7531

provides a way to find the proper scaling for the SIAC filter, it can be used to532

reduce the errors of given DG solutions.533

4.4 A Note on Computation534

Aside from error reduction, the computational cost of using the filter is also an535

important factor in practical applications. As mentioned in previous sections,536

the scaling H used in Theorem 3.1 is usually larger than the scaling required537

for nonuniform meshes, which means that the computational cost is higher than538

the uniform mesh case [3, 11]. Based on Figure 3.1, when µ ∈ [µ?, 1], the539

final accuracy is directly related to the scaling order µ, which means one can540

sacrifice accuracy to improve computational efficiency. For example, if the mesh541
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µmax µh

Degree N Better Similar Better

20 0.4% 16.7% 82.9%

p = 2 40 1.2% 34.9% 63.9%

80 0.4% 94.5% 5.1%

20 0.0% 2.2% 97.8%

p = 3 40 0.0% 7.5% 92.5%

80 0.4% 17.9% 81.7%

Table 4.4: µmax vs. µh.

is closer to a structured mesh, a naive choice of scaling H = max
j

∆xj (or542

H = 1.5 max
j

∆xj , H = 2 max
j

∆xj) can lead to acceptable results as obtained543

in [5, 12].544

5 Numerical Results545

In the previous section, we proposed using the scaling order µh given by Equa-546

tion (4.7). Using the scaling order µh can improve the accuracy order and reduce547

the error from the original discontinuous Galerkin approximation. Also, since548

µh is designed to approximate the optimal scaling order µ?, the filtered solutions549

are expected to have a reduction in error compared to the DG approximation.550

For numerical verification, we apply the newly designed scaling order µh for551

various differential equations over nonuniform meshes – Mesh 2.1 and Mesh 2.2552

– and compare it with using scaling order µ0 mentioned in Theorem 3.1. Also,553

we note that the initial approximation uh(x, 0) is the L2 projection of the initial554

function u(x, 0). The third order TVD Runge-Kutta scheme [7] is used for the555

time discretization.556

5.1 Linear Equation557

Consider a linear equation558

ut + ux = 0, (x, t) ∈ [0, 1]× (0, T ],

u(x, 0) = sin(2πx),
(5.1)

with periodic boundary conditions at time T = 1 for Mesh 2.1 and Mesh 2.2.559

Table 5.1 includes the L2 and L∞ norm errors of the DG solutions and two560

filtered solutions with scaling orders µ0 and µh. First we check the results of561

using scaling order µ0 in Theorem 3.1. Although the filtered solutions have a562
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better accuracy order, both the L2 and L∞ errors are worse than the original563

DG solution! Theorem 3.1 says something only about the order, but not about564

the quality of the errors. Using a scaling order µh, SIAC filtering is able to565

reduce the errors in the L2 and L∞ norm and improve the accuracy order. The566

filtered errors are reduced compared to the DG errors, especially when using a567

higher order polynomial or a sufficiently refined mesh. Figure 5.1, the pointwise568

error plots, demonstrate the other feature of SIAC filtering as its name implies:569

smoothness-increasing. Both the filtered solutions are Ck−1 functions. The570

smoothness is significantly improved compared to the weakly continuous DG571

solutions. To ensure the smoothness of the filtered solution across the entire572

domain, we consider only a constant scaling H across the entire domain. In573

Figure 5.1 both filtered solutions reduce the oscillations in the DG solution and574

using a scaling order µ0 completely removes the oscillations due to the large575

filter support size.576

Comparing the results between Mesh 2.1 and Mesh 2.2, we can see that the577

DG solutions and filtered solutions with scaling order µh are better for Mesh 2.1578

than for Mesh 2.2 because Mesh 2.1 is more structured than Mesh 2.2. However,579

using scaling order µ0 generates almost the same result, which shows that µ0580

does not take the mesh structures into account.581

5.2 Variable Coefficient Equation582

After the linear equation (5.1), which has a constant coefficient, we consider the583

variable coefficient equation584

ut + (au)x = f, (x, t) ∈ [0, 1]× (0, T ]

u(x, 0) = sin(2πx),
(5.2)

where the variable coefficient a(x, t) = 2+sin(2π(x+ t)) and the right side term585

f(x, t) are chosen to make the exact solution be u(x, t) = sin(2π(x − t)). The586

boundary conditions are periodic and the final time T = 1.587

Similar to the linear equation example, we compare the L2 and L∞ norm588

errors in Table 5.2. The pointwise error plots are given in Figure 5.2. The589

results are similar to the previous results for the constant coefficient equation.590

Here we point out only the features that are different from the linear equation.591

Using a scaling order µ0 does not reliably reduce the errors in the L2 norm592

and the L∞ norm errors are still worse than the DG solutions. However, using593

a scaling order µh reduces the errors in the L2 norm and the L∞ norm. The594

pointwise error plots in Figure 5.2 are more oscillatory compared to Figure 5.1595

due to the effects of the variable coefficient.596
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Table 5.1: L2− and L∞−errors for the DG approximation uh together with two

filtered solutions (using scaling order µ = µ0 and µ = µh) for linear equation

(5.1) for Mesh 2.1 and Mesh 2.2

uh µ = µ0 µ = µh

Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

Mesh 2.1 P1

20 7.59E-03 – 3.00E-02 – 2.91E-02 – 4.12E-02 – 4.95E-03 – 8.26E-03 –

40 1.87E-03 2.02 9.51E-03 1.66 7.47E-03 1.96 1.06E-02 1.96 7.19E-04 2.78 1.35E-03 2.61

80 4.17E-04 2.16 2.23E-03 2.10 1.88E-03 1.99 2.66E-03 1.99 9.10E-05 2.98 1.86E-04 2.87

160 1.00E-04 2.06 5.95E-04 1.90 4.74E-04 1.99 6.71E-04 1.99 1.23E-05 2.89 2.67E-05 2.80

P2

20 2.62E-04 – 1.64E-03 – 5.13E-03 – 7.25E-03 – 7.19E-05 – 1.11E-04 –

40 3.26E-05 3.00 2.36E-04 2.80 5.86E-04 3.13 8.29E-04 3.13 3.97E-06 4.18 6.03E-06 4.21

80 3.23E-06 3.34 2.11E-05 3.49 6.21E-05 3.24 8.79E-05 3.24 1.99E-07 4.32 2.90E-07 4.38

160 4.03E-07 3.00 4.01E-06 2.39 6.36E-06 3.29 8.99E-06 3.29 9.23E-09 4.43 1.40E-08 4.37

P3

20 7.31E-06 – 4.16E-05 – 1.08E-03 – 1.52E-03 – 3.17E-06 – 4.50E-06 –

40 5.23E-07 3.80 3.23E-06 3.68 5.17E-05 4.38 7.31E-05 4.38 6.03E-08 5.72 8.72E-08 5.69

80 2.64E-08 4.31 1.60E-07 4.33 2.22E-06 4.54 3.14E-06 4.54 9.97E-10 5.92 1.49E-09 5.87

160 1.58E-09 4.07 1.16E-08 3.79 9.10E-08 4.61 1.29E-07 4.61 1.42E-11 6.13 2.44E-11 5.93

Mesh 2.2 P1

20 1.00E-02 – 3.12E-02 – 3.16E-02 – 4.46E-02 – 7.90E-03 – 1.19E-02 –

40 1.99E-03 2.34 1.03E-02 1.60 7.60E-03 2.06 1.07E-02 2.05 9.35E-04 3.08 1.58E-03 2.91

80 6.38E-04 1.64 3.99E-03 1.37 1.90E-03 2.00 2.70E-03 1.99 1.41E-04 2.73 2.87E-04 2.46

160 1.43E-04 2.15 1.06E-03 1.92 4.79E-04 1.99 6.80E-04 1.99 2.38E-05 2.56 5.00E-05 2.52

P2

20 8.01E-04 – 5.52E-03 – 5.15E-03 – 7.28E-03 – 1.25E-04 – 2.98E-04 –

40 6.30E-05 3.67 5.42E-04 3.35 5.87E-04 3.13 8.30E-04 3.13 6.27E-06 4.32 1.14E-05 4.70

80 3.86E-06 4.03 2.67E-05 4.35 6.22E-05 3.24 8.79E-05 3.24 4.35E-07 3.85 6.50E-07 4.14

160 1.43E-06 1.44 2.23E-05 0.26 6.36E-06 3.29 8.99E-06 3.29 3.18E-08 3.78 1.44E-07 2.17

P3

20 2.07E-05 – 1.17E-04 – 1.08E-03 – 1.52E-03 – 3.80E-06 – 5.99E-06 –

40 9.49E-07 4.45 7.44E-06 3.97 5.17E-05 4.38 7.31E-05 4.38 1.03E-07 5.20 1.47E-07 5.35

80 7.12E-08 3.74 5.57E-07 3.74 2.22E-06 4.54 3.14E-06 4.54 2.84E-09 5.18 4.22E-09 5.12

160 5.77E-09 3.63 6.75E-08 3.04 9.10E-08 4.61 1.29E-07 4.61 5.98E-11 5.57 1.07E-10 5.30

5.3 Two-Dimensional Example597

For the two-dimensional example, we consider a two-dimensional linear equation598

ut + ux + uy = 0, (x, y) ∈ [0, 1]× [0, 1],

u(x, y, 0) = sin(2π(x+ y)),
(5.3)

with periodic boundary conditions at time T = 1 for a two dimensional quadri-599

lateral extension of Mesh 2.1 and Mesh 2.2.600

The L2 and L∞ norm errors are presented in Table 5.3 and Table 5.4, and601

the pointwise error plots (pcolor plots) are included in Figure 5.3 and Figure602

5.4. The results are very similar to the one-dimensional examples: the filtered603

solutions with scaling order µh reduce the errors in the L2 norm; using a scaling604

order µ0 increases the error in the L2 norm for the DG error. In the two-605

dimensional case, computational efficiency becomes more important compared606

to the one-dimensional case due to the increased computational cost. As men-607

tioned before, using a scaling order µ0 is far more inefficient compared to using608
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Figure 5.1: Comparison of the pointwise errors in log scale of the DG approx-

imation together with two filtered solutions (using scaling order µ = µ0 and

µ = µh) for linear equation (5.1) for Mesh 2.1 and Mesh 2.2 with polynomials

of degree k = 2.

the scaling order µh. In particular, for a P3 polynomial basis with N = 160×160609

meshes, using a scaling order µ0 is more than 8 times slower for Mesh 2.1 (5610

times slower for Mesh 2.2) than using the scaling order µh.611

Remark 5.1. In this paper, we only consider periodic boundary conditions. For612

other boundary conditions such as Dirichlet boundary conditions, a position-613

dependent filter [11, 20] has to be used near the boundaries. The results will614

be similar to the periodic boundary conditions. However, to obtain the optimal615

result, a position-dependent scaling has to be applied, we will leave it for the616

future work.617

6 Conclusion618

In this paper, we have demonstrated that for a given nonuniform mesh, the619

filtered solution is highly affected by the unstructuredness of the mesh. By620

adjusting the filter scaling one can minimize the error of the filtered solution.621

In addition, a scaling H = hµh (4.7) of the SIAC filter is proposed in order to622
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Table 5.2: L2− and L∞−errors for the DG approximation uh together with two

filtered solutions (using scaling order µ = µ0 and µ = µh) for variable coefficient

equation (5.2) for Mesh 2.1 and Mesh 2.2.

uh µ = µ0 µ = µh

Mesh L2 error order L∞ error order L2 error order L∞ error order L2 error order L∞ error order

Mesh 2.1 P1

20 6.93E-03 – 3.51E-02 – 2.50E-02 – 3.57E-02 – 1.61E-03 – 4.04E-03 –

40 1.83E-03 1.92 1.05E-02 1.74 6.83E-03 1.87 9.71E-03 1.88 2.32E-04 2.79 5.47E-04 2.89

80 4.15E-04 2.14 2.29E-03 2.20 1.82E-03 1.91 2.58E-03 1.91 3.72E-05 2.64 1.37E-04 2.00

160 1.00E-04 2.05 6.10E-04 1.91 4.66E-04 1.96 6.60E-04 1.97 6.00E-06 2.63 2.09E-05 2.71

P2

20 2.67E-04 – 1.71E-03 – 5.12E-03 – 7.25E-03 – 7.02E-05 – 1.32E-04 –

40 3.26E-05 3.03 2.25E-04 2.93 5.86E-04 3.13 8.29E-04 3.13 3.81E-06 4.20 6.82E-06 4.27

80 3.24E-06 3.33 2.11E-05 3.42 6.21E-05 3.24 8.79E-05 3.24 1.99E-07 4.26 3.23E-07 4.40

160 4.05E-07 3.00 4.01E-06 2.39 6.36E-06 3.29 8.99E-06 3.29 1.03E-08 4.27 2.78E-08 3.54

P3

20 7.43E-06 – 3.68E-05 – 1.08E-03 – 1.52E-03 – 3.18E-06 – 4.75E-06 –

40 5.25E-07 3.82 3.14E-06 3.55 5.17E-05 4.38 7.31E-05 4.38 6.07E-08 5.71 1.05E-07 5.50

80 2.65E-08 4.31 1.56E-07 4.33 2.22E-06 4.54 3.14E-06 4.54 1.01E-09 5.91 1.73E-09 5.93

160 1.58E-09 4.07 1.14E-08 3.78 9.10E-08 4.61 1.29E-07 4.61 1.53E-11 6.04 3.58E-11 5.59

Mesh 2.2 P1

20 9.59E-03 – 4.42E-02 – 2.13E-02 – 3.00E-02 – 3.93E-03 – 7.08E-03 –

40 1.95E-03 2.30 1.14E-02 1.96 6.77E-03 1.65 9.62E-03 1.64 3.86E-04 3.35 1.09E-03 2.70

80 6.38E-04 1.61 4.19E-03 1.44 1.82E-03 1.90 2.60E-03 1.89 8.86E-05 2.12 2.85E-04 1.93

160 1.43E-04 2.15 1.09E-03 1.94 4.64E-04 1.97 6.60E-04 1.98 1.65E-05 2.42 5.72E-05 2.32

P2

20 7.90E-04 – 4.96E-03 – 5.08E-03 – 7.19E-03 – 1.71E-04 – 5.14E-04 –

40 6.33E-05 3.64 5.08E-04 3.29 5.86E-04 3.12 8.29E-04 3.12 8.54E-06 4.32 2.74E-05 4.23

80 3.88E-06 4.03 2.59E-05 4.29 6.21E-05 3.24 8.79E-05 3.24 4.40E-07 4.28 8.34E-07 5.04

160 1.44E-06 1.42 2.15E-05 0.27 6.36E-06 3.29 8.99E-06 3.29 1.28E-07 1.78 5.14E-07 0.70

P3

20 2.13E-05 – 1.12E-04 – 1.08E-03 – 1.52E-03 – 4.10E-06 – 8.22E-06 –

40 9.62E-07 4.47 6.98E-06 4.01 5.17E-05 4.38 7.31E-05 4.38 1.08E-07 5.24 2.02E-07 5.35

80 7.22E-08 3.74 5.24E-07 3.74 2.22E-06 4.54 3.14E-06 4.54 2.94E-09 5.20 5.31E-09 5.25

160 5.79E-09 3.64 6.05E-08 3.11 9.10E-08 4.61 1.29E-07 4.61 1.89E-10 3.96 9.78E-10 2.44

approach the optimal accuracy of the filtered solution, where the scaling order623

µh is chosen according to the unstructuredness of the given nonuniform meshes.624

Furthermore, we have numerically shown that by using the proposed scaling625

H = hµh , the filtered solutions have an accuracy order of µh(2k + 2), which626

is higher than the accuracy order of the DG solutions. The numerical results627

are promising: compared to the original DG errors, the filtered error scaling628

order µh has a significantly reduced error from the original DG solution as629

well as increased accuracy order. Also, a scaling performance validation based630

on a large number of nonuniform meshes has demonstrated the superiority of631

our proposed scaling compared to other existing methods. Future work will632

concentrate on extending this scaling order µh to unstructured triangular meshes633

in two dimensions and tetrahedral meshes in three dimensions.634
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Figure 5.2: Comparison of the pointwise errors in log scale of the DG approx-

imation together with two filtered solutions (using scaling order µ = µ0 and

µ = µh) for variable coefficient equation (5.1) for Mesh 2.1 and Mesh 2.2 with

polynomials of degree k = 2

DG µ = µ0 µ = µh

Figure 5.3: Comparison of the pointwise errors in log scale of the DG approx-

imation together with two filtered solutions (using scaling order µ = µ0 and

µ = µh) for two-dimensional linear equation (5.3) for Mesh 2.1 (2D, P2 and

N = 160× 160).
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Table 5.3: L2− and L∞−errors for the DG approximation uh together with two
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