AFFINE QUIVER SCHUR ALGEBRAS AND p-ADIC GL,
VANESSA MIEMIETZ, CATHARINA STROPPEL

ABSTRACT. In this paper we consider the (affine) Schur algebra which
arises as the endomorphism algebra of certain permutation modules for the
Iwahori-Matsumoto Hecke algebra. This algebra describes, for a general
linear group over a p-adic field, a large part of the unipotent block over
fields of characteristic different from p. We show that this Schur algebra is,
after a suitable completion, isomorphic to the quiver Schur algebra attached
to the cyclic quiver. The isomorphism is explicit, but nontrivial. As a
consequence, the completed (affine) Schur algebra inherits a grading. As
a byproduct we obtain a detailed description of the algebra with a basis
adapted to the geometric basis of quiver Schur algebras. We illustrate the
grading in the explicit example of GL2(Qs) in characteristic 3.
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This paper deals with affine Schur algebras for p-adic groups over fields of char-
acteristic different from p. Classical Schur algebras were introduced by Sandy
Green [Gre80] as an algebraic tool to study polynomial representations of the
general linear group GL,, over arbitrary fields and named after Schur because
they arise as the endomorphism ring of the sum of certain permutation mod-
ules of the symmetric group S,,. Dipper and James [DJ89] introduced ¢-Schur
algebras over arbitrary fields to study the modular representation theory of the
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finite general linear groups GL,,(IF,) in non-describing or cross characteristic.
The Schur algebras we consider in this paper are their analogues for the repre-
sentation theory of the p-adic group GL,(E), where E is a finite extension of
Qp, over a field of characteristic different from p. As a main result, we show that
(after a suitable completion) this algebraically defined algebra has a geometric
realization as a convolution algebra with underlying vector space the equivariant
cohomology of some partial quiver flag varieties introduced in [SW11] under the
name quiver Schur algebras.

Let k be an algebraically closed field of characteristic £ # p, such that the
cardinality ¢ of the residue field of E is not congruent to 1 modulo ¢. We are
interested in the category of smooth representations of G = GL,(E) over the
field k (or equivalently the category of nondegenerate representations of the
global Hecke algebra of locally constant compactly supported functions on G).
This is known to have a block decomposition by inertial classes of supercuspidal
support [B84], [Vig98], [SS14]. In this article, we are interested in the so-called
unipotent block B which contains the trivial representation. The special case
g =1 mod / is treated in Section 11.

As in the case of GL,,(FF,), the Schur algebra will not describe the whole unipo-
tent block, but rather a proper subcategory subcategory B! which is the lowest
layer in a finite filtration B C B2 C B2 C ... C B. Namely, let I C G be an
lwahori subgroup and let Z be the annihilator of the G-representation k[I\G]
(inside the global Hecke algebra). Then B C B is the full subcategory consist-
ing of all representations annihilated by Z°. The categories B are abelian. It
is proved in [Vig03] that the first layer B! is equivalent to the category of all
modules for the affine Schur algebra S,

B'=~S — Mod, (1.1)

where S is defined as the endomorphism ring

S = End]k[I\G/I} (EBH&[PJ\G/I]> = Endy (EBVJH> .

JCI JCI

Here H = k[I\G/I] is the (affine) Iwahori-Matsumoto Hecke algebra, [IM65],
and the sum is taken over all standard parahoric subgroups P’ attached to a
subset J of the set I of (finite) simple reflections, and v ;H is the corresponding
trivial representation induced to H. In particular, S contains H as an idempotent
subalgebra from setting J = (). (We would like to stress however that, in general,
multiplication with v is not a projection, since v ; does not need to be a quasi-
idempotent. In case ¢ is a root of unity, it might happen that v% = 0. This
phenomenon is one of the technical difficulties in our paper.) Note however
that B!, alias S — Mod, is in general not equivalent to H — Mod, since B!
contains in addition the cuspidal representations, which are not included in the
subcategory H — Mod of § — Mod.
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We expect that B in fact only differs from B! by self-extensions depending on
the cuspidal support of the corresponding simple modules, and thus B! contains
quite detailed information about the unipotent block B.

Note that the classification of irreducible representations in B! (or equivalently
in the unipotent block B) is provided by [Vig98], [MS14], and a convenient
labelling set for the irreducible modules is given by certain multisegments, ex-
tending the Bernstein-Zelevinsky classification of irreducible modules for the
lwahori-Matsumoto Hecke algebras, [BZ76], [Zel80] in characteristic zero. The
block decomposition and classification in [Vig98] is via the local Langlands cor-
respondence for GL,, in characteristic £ # p, that is an extension of the local
Langlands correspondence over the complex numbers, [HTO01], [Har08], [Hen00],
[Scho13] (or [Wed08] for an overview). In particular, this gives the rank of the
Grothendieck group of B!.

In this article, we take this one step further by providing tools for a better under-
standing of extensions between simple modules and moreover of the structure
and the homological properties of the categories involved, as well as making
a connection with geometry. To do so, we compare the affine Schur algebras
to the quiver Schur algebras from [SW11] attached to the cyclic quiver with e
vertices (viewed as the oriented affine Dynkin diagram for sl.). These algebras
contain the so-called quiver Hecke algebras or KLR-algebras, originally intro-
duced in [KL09], [Rou08], see also [VV11]. Over k = C, their graded module
categories furthermore provide by [SW11] a categorification of the generic Hall
algebra (in the sense of [Schil2]) for the cyclic quiver with e vertices. Hereby e
is the multiplicative order modulo ¢ of the cardinality of the residue field of
and e =00 if £ =0.

Given a fixed dimension vector d for the cyclic quiver on e vertices, one con-
siders the space of flagged nilpotent representations with dimension vector
d, that is, representations together with a filtration such that the associated
graded is semisimple. In contrast to the KLR-algebras we allow arbitrary par-
tial flags instead of full flags only. Fixing a sequence X of dimension vec-
tors for the successive quotients we denote this space Q(A). Following the
ideas of Chriss and Ginzburg [CG10] we consider the “Steinberg type” vari-
ety Z(A, 1) = Q(N) XRepy @(ft). The quiver Schur algebra Agq is then its
GL4(C)-equivariant Borel-Moore homology

Aa = P HEN(Z(n,\).
(M)
equipped with the convolution product. By construction, this algebra comes
along with a Z-grading and with a faithful representation, see [SW11].

Crucial for us here is that via the faithful representation we see that the quiver
Schur algebra can be defined over any field, in particular over the field k. Over
the complex numbers, the principal underlying constructions using convolution
algebras, [CG10] and (other) geometric realisations of the affine Schur algebras,
see e.g. [GV93], are well-established. In case of the field k, the technicalities
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and geometric tools are not as well developed as one might hope for. This also
applies to the connection with the representation theory of affine Kac-Moody
Lie algebras, but see [VV04] for crucial steps in this direction.

Main result: Our main result (Theorem 9.7) is that the affine Schur algebra and
the quiver Schur algebra (both over k) are isomorphic after suitable completions.
More precisely, we construct a sequence of isomorphisms of algebras

~ Proposition 9.1 —~ Proposition 9.6 = Proposition 9.4 —~

Si Ci Bi Aia

where the intermediate algebras are certain twisted versions of quiver Schur
algebras. This, in particular, implies that the category B}( of representations M
in B! with fixed generalized central character x (in the sense that each element
in M is annihilated by some power of x) inherits a grading. The categories
B;(, as x varies over all central characters, in particular, contain all finite-length
representations.

The existence of such a Z-grading seems to be quite unexpected and has no
explanation in the p-adic representation theory at the moment. Although the
modules are of infinite length, the graded pieces are finite dimensional and
so the grading allows us to consider Jordan-Holder multiplicities degree-wise
where they then, in fact, become finite and well-defined. Hence we can use
formal power series to express the graded multiplicities.

The additional algebras appearing in the main theorem interpolate between
between the algebraic and geometric construction. Although they are in the
current article more a technical tool than of own interest, their appearance
shows subtle differences between the classical algebraic picture and the new
graded version behind quiver Hecke algebras (like for instance the preference to
work with the trivial versus the sign representation, the symmetric role of splits
and merges in the graded version, and the established labelling of the irreducible
objects on each side). The isomorphism allows to make the explicit translation.

We should remark that after having completed this article we found also a geo-
metric construction of our intermediate modified Schur algebra which in fact
connects the quiver Schur algebra more directly to Lusztig's original construction
of quantum groups, [Lus91]. Namely instead of considering flagged represen-
tations such that the associated graded is semisimple, we consider the slightly
weaker conditions of flagged representations (that is representations equipped
with a filtration) without assuming the associated graded to be semisimple. Our
isomorphism then identifies the two geometric constructions. More details on
the geometric modified Schur algebra will appear in [Pril9].

In small examples, our isomorphism allows us to give a complete and explicit
description of this category in terms of the path algebra of a quiver with gen-
erators and relations, an example is given in Section 10. In particular, it allows
us to compute extensions between simple modules in small examples. This pro-
vides a first step towards general results about the homological algebra of B!,
based on results on quiver Hecke algebras.
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The proof of the main result relies on a very careful comparison of faithful
representations of all involved algebras. The final result is then an explicit
(non-trivial) isomorphism.

Besides the main theorem, the paper contains some fundamental results about
the algebras involved. For instance, we construct several generating sets for the
affine Schur algebras (see in particular Corollary 4.13 and Proposition 6.19), ex-
plicit faithful representations (in Section 4.1) and geometrically adapted bases
(in Section 4.4). The paper also contains (see Section 8.3) explicit formulae
for Demazure (divided difference) operators interacting with multiplication by
polynomials, which we believe should play an important role in a possible cat-
egorification result. They generalise crucial formulae from the categorification
of quantum groups, see e.g. [KL10], [KLMS12], and well-known formulae from
the geometry of flag varieties.

In characteristic zero and for generic g, the affine ¢-Schur algebra was studied in
detail by Richard Green [Gre99] who also realised it as a quotient of the quantum
group for ﬁ[n. In this case a complete presentation of the algebra is available,
[DGO7]. In our more general situation such a presentation does not exist yet,
but our faithful representations turn the problem of finding such a presentation
into a problem of linear algebra. Moreover our explicit formulae should make
it possible to generalise the geometric results for quiver Schur algebras defined
over k = C to the positive characteristic case with ¢ a root of unity.

We have tried to make this paper as self-contained as possible, in order to
make it accessible to readers both from a representation theoretic or a number
theoretic background.

Acknowledgments We thank Giinter Harder, David Helm, Peter Scholze, Shaun
Stevens and Torsten Wedhorn for useful discussions on the background material
of this paper, Ruslan Maksimau and Andrew Mathas for sharing their insight
into Hecke algebras, and the referees for their advice. This work was partly
supported by the DFG grant SFB/TR 45 and EPSRC grant EP/K011782/1.

2. PRELIMINARIES

We fix a prime p and a natural number n > 2 and consider the general linear
group G = GL,,(E) for a finite extension E of Q,, the field of p-adic numbers.
The field E has a local ring o of integers, whose quotient by its maximal ideal p
is a finite field of characteristic p. We let ¢ denote the cardinality of this residue
field. We furthermore fix an algebraically closed field k of characteristic £ > 0,
£ # p and let e be the multiplicative order of ¢ in k. We assume ¢ % 1 mod /.

2.1. The extended affine Weyl group. We start by recalling the definition
and basic facts of the extended affine Weyl group attached to G. For more
details see e.g. [IM65] or [Gre02], [Lus83] for a description in terms of periodic
permutations.
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The extended affine Weyl group associated to G is the group W generated by
a set Iy = {so,...,sn—1} of simple reflections of order two and an element 7
of infinite order, given by the following presentation:

2
) s2=1, 785 =5—=T
W = <T,si,0§z§n—1 ‘ P il > (2.1)
S5t = SiSTasi
where 7 € {0,...,n — 1} with i =4 mod n.
Using the relqtion Ts; = s;—7 we can (in a unique way) write every element
w € W as x77 for some x contained in the subgroup generated by Iy and j € Z.
Define the length of w = x77 as ¢(w) = £(z), where {(x) = r with » minimal
such that x = s;, ---s;, forsome i; €0,...,n — 1.

We view W as a subgroup of G by choosing lifts of its elements as follows: For
i=1,...,n—1, we choose the corresponding permutation matrix interchanging
the ith and (i + 1)st rows and columns. For sy we take the matrix with entry
1 in position (j,j) for j =2,...,n— 1, the uniformizer w (a fixed generator of
p) in position (n, 1) and its inverse ©w~! in position (1,n), and all other entries
being zero. Finally 7 has w in position (n,1) and 1 in positions (j,j + 1) for
j=1,...,n—1, with again all other entries being zero.

There is another presentation of W as semi-direct product & x X, where & is
the symmetric subgroup generated by I = {s1,...,s,—1} and X is a free abelian
(multiplicative) group generated by X1,..., X, on which & acts by permuting
the generators. More specifically, a general element of X is a Laurent monomial
Xt X2 with a; € Z and s;X;8; = X;41. A representative of X; in G can
be chosen to be a matrix with 1's along the diagonal, except in position (i, 1)
where we put the uniformizer w. We record the following.

Lemma 2.1. An isomorphism of groups W =2 & x X is given by
S; > S; (i =1,...,n— 1), So > Sp—1-"-58258182... Sn_leX;I,
Tl—>5n,1--'51X1. (22)
Its inverse sends X1 to s1---8,—17 and of course s; to s; for1 <i<mn—1.
From now on we will identify the two presentations (so that for instance the
equality (*) in the next formula makes sense).

Let b be the automorphism of W fixing generators s1,..., s, and sending X;
to Xi_1 for i =1,...,n. For convenience, we record that

(*)

b _ -1 S
SO_Snfl"'Sl"'snlel Xn—Snfl"'sl"'5n71305n71"'51"'Snfl
Tb = Sn—l Sle_l — Sn_l...slfi—*lsn_l...sl_

Lemma 2.2. Let wp € W withw € & and p = X{*--- X € X.

i.) If a; > 0 for all i € {1,...,n}, then wp can be expressed in terms of
generators from 1 and T (involving only positive powers of T).
ii.) If a; < 0 for all i € {1,...,n}, then wp can be expressed in terms of

generators from I and 7! (involving only negative powers of T).
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Proof. This follows directly from the fact that X; = s;41 - $p—1781...5;. U

2.2. Parabolic subgroups and shortest double coset representatives. For
a subset J C I, we denote by W; = (s; | s; € J) the parabolic subgroup
generated by J. Note that this is a finite group, isomorphic to the direct
product of some symmetric groups.

Let now J, K C I. Then each double coset in Wx\W /W ; contains a unique
shortest (i.e. minimal length) coset representative. We denote the set of short-
est double coset representatives by Dy ;. If moreover Ji,Jy are both sub-
sets of K C I, we denote the (finite) set of shortest coset representatives in
Wi \Wg /W, by thh.

Ford € Dk j, theset dJNK is defined as the intersection of K with all elements
in W of the form ds;d~! for s; € J, i.e. dJNK = {s € K |dsd € J}.
Moreover we abbreviate dJ = dJ N 1.

For d € Dk, ; and any element w in WxdW ;, there exist unique elements
wrg € Wg,wy € Wy, and a € defleJ,(z)' respectively b € Défde such that

w = wrda =bdwy with  l(w) = l(w)l(d)l(a) =1(1)(d)(wy). (2.3)

2.3. Another set of double coset representatives. Let J C I. A monomial
Xfl - Xpn € X is called J-dominant if a; > a; for all ¢ < j such that s; and
sj are conjugate in W;. It is called J-antidominant if a; < a; for all i < j

H i
as above. We denote by X; and YJ the set of J-dominant and the set of
J-antidominant elements respectively. Note that each W j-orbit in X contains
a unique J-dominant element and a unique J-antidominant element.

Proposition 2.3. Let J, K C 1. The sets
Agg = {dp |d € D j,p € yd%}mJ} and

F
Vs = {dp |de DHK,J7p € 3€zrlzr<r1J}

both form a complete set of inequivalent coset representatives in W \W /W ;.

Proof. We only prove the first claim, since the second one is analogous. We
first show that every double coset in Wx\W /W contains an element from
Ag,7. We know it contains an element from Dg ;, so let y € Dk ; and
write y = wf for w € &, f € X. Using (2.3), we can find d € DHKJ,wK €
Wrk,a € D;i],lem such that w = wida. Then y = wid(afa=1)a. Now let
t € Wy-1xny such that p = tafa='t~! € X is J-dominant. Then dtd~! €
Wixnas € Wy and therefore y = wdtd *dpa € W gdpW ; with d(afa™!) €
Ak, as claimed.

Conversely, we need to show that dp is the unique element in W dpW ; with
d e D]}(J and p € X4 1xny, SO take an element widpws € WdpW ; and
write it as widpws = of with 0 € &, f € X. Note that necessarily ¢ =
widws and f = w;lpwg. Assume o € D%(,J and f € X 4-1gny. Then
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widwy = d, so writing w; = ab with a € Défde,b € Wysnk and thus
d = widws = ad(d~'bd)ws with (d~1bd)wy € W, we have a presentation
of d of the form (2.3), from which we deduce a = 1 and (d~'bd)wy = 1, in
particular we € Wy-1xny. Hence y = dwz_lpwg with wy € Wy-1xns. Since p
is the unique d~'K N .J-dominant element in its W -1 -orbit, it follows that
w;lpwg = p and hence y = dp. [l

3. THE HECKE ALGEBRA AND HECKE MODULES

The goal of this section is to define the lwahori-Matsumoto-Hecke algebra,
originally introduced in [IM65], and to construct a faithful representation. Most
of the statements can be found in [Lus89]. We collect some basic facts and give
detailed proofs for those for which we could not find an appropriate reference.

3.1. The Iwahori-Matsumoto Hecke algebra of G. We start with the fol-
lowing presentation of the Hecke algebra due to Bernstein:

Definition 3.1. The Iwahori-Matsumoto Hecke algebra associated with G is
the unitary k-algebra H = H,, generated by T1,...,7T,-1, and Xlil, co XED
subject to the defining relations

(H-1)  (T; — q)(Ti +1) =0, for 1 <i<m-—1,
(H-2)  TTj = T;T; ifli—j|>1, for1<ij<n-—1,
(H-3)  TiTinTi = T TTin for 1<i<n-—2,
(H4) XX '=1=X;'X; for 1 <i<n—1,
(H—5) )(Z)(J :X]Xl for 1 Sign—l,
(H-6) TX; = X;T; if|i—j|>1, for1<i,j<n-—1,
(H—?) CTZX/T@ = C_[Xi+1 for 1 < ) <n-— 2,

where ¢ is the cardinality of the residue field of F.

Note that in particular, fori =1,...,n —1,
(T: —q)T; = —(T; —q) and (T; +1)T; = q(Ti +1). (3.1)
Moreover, the T; are invertible with

T7'=¢ '+ (' =1) and T? = (¢—1)T;+q. (3-2)

We denote by P = P, = ]k[Xlil, ..., X! the subalgebra of H generated by
the Xiil, where i = 1,...,n. Note that the subalgebra in P given by symmetric
(Laurent) polynomials is central by (H-7).

The original definition of the Iwahori-Matsumoto Hecke algebra of G over the
field k is the convolution algebra k[I\ G/I] of compactly supported I-bi-invariant
functions on G with values in k, where I is the lwahori subgroup. Any such
function can be written as >, cw GwXIwl With some a,, € k where 1,1 is the
characteristic function on the double coset Twl.
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Abbreviating T\, = x1,1 gives us the following presentation, [IM65, Theorem
3.5], of k[I\G/I]: The algebra is generated by T, for i = 0,...n — 1 and T~
subject to relations (using notation as in (2.1)):

T8 =(¢- VT +a, T LT =TT T, TT,=T._T (33)
The following isomorphism justifies the twofold use of the same notation:

Lemma 3.2. We have an isomorphism of k-algebras
©: kII\G/I] — H
T, +— T, (i=1,...,n—1),
T = X' X (T TN Ty Ton) ™,
T = ¢ =DRT, T X

This isomorphism sends T to X --- X,,.

From now on we will freely identify the two presentations.
The following two sets are k-bases of H, [Lus89, Proposition 3.7]:

{X{* - Xon Ty |w € 6,a; € 2}, {TpX{* - Xom |w e S,a; € Z}. (3.4)

3.2. The ideals v ;H. For J C I with corresponding parabolic subgroup W of
W we denote by H; C H the (finite-dimensional) Hecke subalgebra generated
by {T; | s; € J} and define

vy = Z Ty, and v;= Z (_Q)_l(w)Tw- (35)
weW weW

We often abbreviate v = vy and v = V. Note that kv; and kv ; are the
1-dimensional trivial respectively sign (right) H j-modules via (3.1). They gen-
erate the following right ideals in 7 which play the role of permutation modules
in the representation theory of the symmetric group.

Lemma 3.3. The right ideals
Hl., = {heH|(Ti—q)h=0 forallisuch that s; € J},
H;]gn = {heH|(Ti+1)h =0 for all i such that s; € J}

are principal right ideals in H, generated by v j respectively V.

Proof. Clearly, v; € H/ Since H is by (3.4) a free left module over Hj,

triv-

H., ={h € Hj R, H | (T, — q)h = 0 for all i such that s; € J} = v H,

triv. —
and the first claim follows. The second is similar. O

Corollary 3.4. In case J C 1, a k-basis for v ;H respectively V ;H is given by

{Twal o X0n

(S D]}L@,ai GZ}.

Proof. This follows directly from Lemma 3.3 and (3.4). O
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Note that the ideals v;H and ¥ ;H have isomorphic endomorphism rings. To
pass between them we will later need the algebra automorphism § of H, which
is the g-analogue of b, defined on the generators by

T, — TP=q—1-T =—qI; ", (i=1,...,n—1), (36)
X; = Xi=Xx! G=1,...,n). '

Remark 3.5. If f € P is s;-invariant, then fTiﬁ = Tiﬁf fori=1,...,n—1.

3.3. A completion of . Recall, [Lus89, Proposition 3.11], that the centre
of M is given by Z(H) = k[XT!, ..., X8, Fora = (ay,...,a,) € (k*)"
define the corresponding central character xa : Z(H) — k, by restriction from
X; — a;. Two characters x5 and ya coincide if and only if a and a’ belong to
the same G-orbit. We can decompose any finite-dimensional representation M
of H as M = @, M,, where x runs over a set of representatives of G -orbits on
k™ and M, consists of all elements of M which are annihilated by a sufficiently
large power of m, = ker x.

Conventions: For the following, the most interesting cases are those where the
components of a = (a1, ...,a,) belong to the same multiplicative g-orbit; in
other words, where there is an a € k, such that for each j = 1,...n, we have
aj = ¢"a for some integer i;. We will therefore stick to these cases. Moreover,
our constructions in fact turn out to be independent of a, so without loss of

generality, we chose a = 1, i.e. a = (¢'!,...,q™) with i = (iy,...,i,) € Z",
and write x;j for the central character x,. If ¢ is an eth root of unity we usually
choose the exponents i; from the representatives 0, ...,e — 1 for Z/eZ.

Definition 3.6. From now on for the rest of this paper, we fix i € Z", viewed
as an element of Z/eZ if e # 0.

Definition 3.7. Given a central character y = xj, we define the completion ”ﬁi
of H with respect to powers of the ideal Z,,, of H generated by m = m,. We
have a decomposition
7/'[\1 = @ 7/'[\1811 (3.7)
ucli
where
Tew — {heﬁi Vm € N3 N € N such that } (3.8)

Vie{l...,n} h(X; —q*)Y € m

The e, form a complete set of pairwise orthogonal idempotents in 7/-[\1.

The following is a direct consequence of (3.4) and the description of the centre:

Lemma 3.8. The following sets
{Twal . -Xg"eu |1l € G(il, ... ,in),w €6,a; € Zzo},
{TWX{' - Xreyu € S(i,... i), w € S,a; € Z<p },

both form a topological basis of ’ﬁi.
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Since Treu — €5, ()T € @ucesi k[[X1, ..., Xn]], induction on the length of w
shows that another topological k-basis of H; is given by
{eaTW X' X0 Ju € S(iq,...,in),w € S,a; € Z>o}

and similarly for the version with negative powers of the polynomial generators.

In ”;l\i, we have for forr =1,...,n — 1 the intertwining elements
o, = T+ Z ————eut Y, e (3.9)
Up41FUr - X XT-‘rl Up41=Ur

Their properties were, for instance, studied in [BK09].

For each w € & we fix a reduced expression w = s;, - - - s;, and define ¢, =

®,, --- ®; . We indicate by [w] that this does depend on the choice of reduced

expression. It follows then directly that another topological k-basis of H; is
{euq)[w]X{” s Xg” | uc G(il, S ,in),w €6,a; € Zzo} (310)

and similarly for the version with negative powers of the polynomial generators.

Then, similarly to Corollary 3.4, we obtain several topological bases of Vﬂ/-[\i:

Lemma 3.9. Any of the following sets is a topological k-basis of vﬂ/-[\i :
{vieaTp X'+ X0 |u € S(i1,...,in),w € Dy,a; € Z>o},
{vije T X' - X |u € S(ir,...,in),w € Dy, a; € Z<o},
{vieu®p X X [u € &(in,...,in),w € Dy, a; € Lo}
{vieu®p X X |u € &(in,. .., in),w € Dy, a; € <o} -

Analogously, we obtain bases for v f;'/-[\i if we replace v by V.

3.4. A faithful representation of the Hecke algebra. We now construct a
faithful representation of H respectively H; which allows us to realise either
algebra as a subalgebra of the endomorphisms of some Laurent polynomial
respectively power series ring.

Fix the left ideal U = (Y1<j<n_1H(Ti +1)). We obtain the following two
faithful representations; the second one agrees with [Rou08, 3.1.4], see e.g.
[Roul2, 2.17 with 3.2.5] for the faithfulness.

Proposition 3.10 (Faithful representation of Hecke algebra ).

i.) The natural action of H on H/U by left multiplication is faithful.

ii.) This representation is canonically isomorphic to k[ X', ... X%, where
the generators Xz-i, 1<i<mn,andT;+1,1<i<n-—1 act just by left
multiplication respectively by

qXit1 — X;

Xip1 — X

where s;(f) is the Laurent polynomial f with X;+1 and X; interchanged.

(i +1)fv (f = si()v, (3.11)
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By twisting with the automorphism £ from (3.6) we obtain:

Proposition 3.11 (Faithful representation of Hecke algebra II).
Let U =Y 1<jcn H(T; — q). Then there is a faithful representation of H on

H/U =KX, .., X v,

Explicitly, the action is given by

(Ti — q)fv %(f — 5i(f))v. (3.12)

We denote by P(H) respectively P(H) the faithful representations from (3.11)
and (3.12) respectively. The following is immediate.

Corollary 3.12. We have an isomorphism of H-modules
P(H) — *(P(H)) given by fv— f*¥.
Completion gives us faithful representations of the completed algebra:

Corollary 3.13. i) There is a faithful representation ofﬁi on

@(H)l = 7/-Zi Xn H/U = @ k[[Xla s 7AXVTL]]€Uv
ucti
by completing the representation from Proposition 3.10 with respect to the
maximal ideal generated by the elements (X, —i,)eq, 1 <7 <mn.
ii.) There is a faithful representation of H; on

P(H); = Hi 0n H/U = @ K[X7 ..., X, eav
ucli
by completing the representation from Proposition 3.11 with respect to the
ideal generated by Y, ley = (X! +i,)eq, 1 <7 < n.

The definitions directly imply the following connection:

Corollary 3.14. There is an isomorphism ofﬁi-modu/es

P(H); = *P(H)_,

1 1

) via fv — ftv,

identifying K[[X{ ', ..., X; Hleuv with k[[X1,..., X,]le_u¥V, where the minus
signs applies to all entries, i.e. —1 = (—i1,...,—iy) and —u = (—uy, ..., —uy).

Proof. The first statement is clear. The identification follows directly from the
fact that X* = X! for all 4, Corollary 3.13 and the definition in (3.8). [

We finish this section with a few important explicit formulae for the action of
the intertwining elements from (3.9).
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Lemma 3.15. For any idempotent e, as in Definition 3.7, the following equal-
ities hold. For1 <r <mn —1, we have

Xr—qX, -
{M@ST,MV if Upy1 # Uy,

) (3.13)
otherwise,

es,u®rv =

and

(qu+1 - A)(v")esr-uv if w1 7& urr(

o 3.14)
2gXr+1 — Xp)eaV  ifUuppq = Uy

es, @ (Xps1 — X))V = {

Lemma 3.16. For any idempotent e, as in Definition 3.7, the following equal-
ities hold: For1 <r <mn —1, we have

Xr11—qXr .
e. PV = X:rll_qu €s,-uV /fur-i-l ?é Uy, (3'15)
ST (g+ 1es, .uv if Upy1 = Uy

and

X, — Xry1)es,.uV if upy1 # u
W®(X, — X _ (q r r+1)€s.-u T Urt1 T 3.16
€s,-u ( +1 T)V { (q . 1)(Xr+1 + Xr)euv Ifur+1 = u,. ( )

4. AFFINE SCHUR ALGEBRA

In this section we recall the (affine) Schur algebra and construct a faithful
representation for this algebra as well. We describe in detail the basis used by
Vignéras. These two tools allow us to give an alternative basis together with a
set of algebra generators more in the spirit of the geometric basis of the quiver
Schur algebra from [SW11]. This will then finally allow us to connect the two
algebras in the last section.

Definition 4.1. The (affine) Schur algebra S is defined as

S = Endypa (EB k[PJ\G/I]> = Endy (@ v ﬂi) :

JCI JCI

where P denotes the standard parahoric subalgebra (containing I) attached to
J, and the isomorphism is that from Lemma 3.2. The product of two elements,
f»f in S is denoted by f o f’ or just ff’.

We start our study of S by recalling a basis from [Vig03, 4.2.13] (which gener-
alizes the basis for finite Schur algebras from [Mat99, Theorem 4.7]).

Lemma 4.2. A basis of S is given by {bC[l(J | JJK C1I,d € Dk, j}, where
b ; € Homy, (v H, viH) is defined by

bcfi(,J(VJ) = Z Ty (41)
weWgdW

Remark 4.3. Note that (4.1) is indeed well-defined, since > ,cwaw, Tw €
viH by Lemma 3.3. Moreover, any element in Homy/(v;H,vkH), and in
particular b%’J, is already uniquely determined by its image of v ;.
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Example 4.4. If, for instance, I = {s1,s2} and K = {s1}, J = {s2}, then
Dk j D DHK,J = {1, s9s1} and for these two shortest double coset representa-
tives and we have by ; = 1+ Ty + To + ToTh and b2%} = ThTy + TiTLTh.
Note that we just sum over all basis elements from a fixed double coset.

Example 4.5. If J C K, we have b}(’JV] = > wewy Lw = Vi and blijvK =
S wewy Tw = VJ(Zd,eD% Ty ). Hence b}(“] is the projection sending v sh to

vih and biK is the inclusion sending vih to VJ(Zd16D§® T )h, for h € H.

We like to point out that the labelling of the basis vector b%J involves a choice
d of a shortest double coset representative, although the basis element itself only
depends on the coset containing d. In particular the basis can be relabelled when
chosing different representatives. If, for instance, for K, J C Lw € &,p € X
we define the element by”; € Homyy, (v, H, vkH) via

bily(vi)= Y T
veWrgwpW

then b}‘?jj = b}lﬂ] for d € D ;N WrgwpWy, and with the choice of double
coset representatives from Section 2.3 we directly obtain the following.

Lemma 4.6. Both sets
{b}”{?i] J7K - Haw € DHI(,va € gdflKﬁJ}a (42)

and —

{bl[?l] ’ JKCLwe DHK,Jap € xdflKﬁJ} (43)
form the same basis of S as the one in Lemma 4.2, just labelled differently.
4.1. A faithful representation of S. To construct a faithful representation of
the Schur algebra we enlarge the space P(H).

For any parabolic subgroup Wx of W with K C I, let k[de,...,Xffl]WK
denote the Wi -invariants under the usual permutation action. We set

PS)K = k[XF, ... Xy

where v(5) = v and the superscript (K) is just a formal index. We have the
following characterisation of invariants:

Lemma 4.7. Let fv e k[X:', ..., XF|v and K C 1. Then
feP&)X & (T,-qfv=0foralls; € K.

Proof. A direct computation shows that, for s; € K,

_ o~ (ATt o1 5
(Ti—qfv = Tifv—qfv= (sz(f)Tz + (¢ 1)Xz+1Xi+1 — X qf) v
(Xit1 —gXi)(si(f) = f)

== V.

Xiv1 — X
Hence (T; — q)fv =0 if and only if f = s;(f). O
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The following is the main theorem of this section.
Theorem 4.8. There is a faithful representation p of S on
P(S) = P P(S)X.
KCI
In this representation a basis element b% j of § acts via
pbi N = 3T TTafv™), (4.4)
a€D

K
0,KNdJ

The proof will follow directly from the next three lemmas. The first of these
makes sure that the right hand-side of (4.4) is at least in the correct space.

Lemma 4.9. For J,K CT,d € Dg.y and f € kK[X{',..., X PV, we have

S Ty e PS)K. (4.5)

K
a€Dy rnay

Proof. In view of Lemma 4.7, it suffices to check that for all s; € K we have
Sweps  (Ti—q)TuTafvE) = 0. The left hand side equals

0, KNndJ

Yo @-gT Ty + Y (Ti— T Tufv). (4.6)
aEDO{medJ aeDQI)(,Kde
siaEDﬁKde Sia¢Dé(’Kde

Denote by S; and Sy the two summands in (4.6) respectively.

In the first summand Sp, the summands appear in pairs a, s;a. Since we have
(T; — q)(To + Ts,0) = 0, they cancel and so S; = 0. In the second summand
Sy, we have a € D(ZI),(Kde but s;a ¢ DQI),(KﬂdJ' Then Deodhar's Lemma, see
e.g. [GP00, Lemma 2.1.2], shows that there exists s; € K N dJ such that
sia = as;, and that, in particular, I(s;a) > l(a). In this case, (T; — ¢)T, =
To(T; — q). Again using Deodhar’s Lemma, we see that 1;7,; = 14T}, for some
sp € d"'K N J, and thus

Sy € Y HT; - Tufv CHT, Y (T — ) v =0
s;eKNdJ speJ

by Lemma 4.7, since f € k[XT!,..., X;F1]W7. Hence we are done. a

Lemma 4.10. The assignment (4.4) defines a representation of S on P(S).

Proof. It suffices to check that, for basis vectors as in (4.2),

d d da 1.d
p(bLQ,K)p(bKl,J) = p(bL%KbKlJ)' (4.7)
We start with some preparation. Using the basis from Lemma 4.2, we write
bCLlQ,Kb%J = > deD; , Cdb%,J for some coefficients ¢4 € k. On the one hand,

b%%Kb%,J(VJ) = Z Cd Z TyTy | vy.

i J
deDr.; b €D | nas
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On the other hand, repeatedly using (2.3), we obtain

(4.1) + dy do
bx > Tw = bPxvela >, T
weEWKd1 Wy aED

do
bL KbK JVJ

Using (4.1), this equals

oo Ty >, Ta= >, TTyvikTy Y, Ta

weWdoW, J L J
Lad2Wk aEDd Lkn0 beD(Z),demL aEDd k0
= Z Tde2 Z Tb’ le Vj.
L
YDy 4, kL beDy KNdyJ
Thus L T, T, J TyTy, — C J Ty T,
ZbeD 0,dy KNL b= ds Zb/eD@,Kﬁle b ZdEDLvJ deHEDw,Lde brod

is contained in ZSZGJ’H(TZ q). To verify formula (4.7), we now calculate
p(E)p(bP NIV = p(bP ) Seepr  TaTy, fvE) which equals

0,KNdyJ
S nT, Y. TyTuyfv, (4.8)
beDQLl/,dgKﬁL b’eDémele

where f € k[X7L, ..., XFWs, and
> cap(bi ) ) fvt) = PRI Ty Tafv'™®. (4.9)

deDy, g IS b”eDm Ld

Taking the difference of (4.8) and (4.9) we obtain
(p(bP)p(bR )= > cap(bf ) v

dEDL’J

— SNy, Y TyTu— Y e Y. TyTy | 0L

L J J
beD@,denL blGD@ KndyJ d€DL, bHGDm LNdJ

By the above, this is, however, contained in ;. c; H(T; — q)fv®) and hence
must be zero by Lemma 4.7, as f € k[XT!, ..., XF Wy, a

Lemma 4.11. The representation p from (4.4) is faithful.

Proof. Let JJK Cland Z =3 jkcI ¢4 p(bK 7) with arbitrary ¢4 € k. Then
dEDKJ

it is enough to show that Z = 0 implies 3 4ep, ; cdeJ = 0 for each pair
J,K CL If heH and L C1, then

RP(S)Y' =0 implies h( > Tw> =0. (4.10)

weWr,
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Indeed, assume h P(S)* = 0. Since (T; — q) Ywew, Tw = 0 for any s; € L,
Lemma 4.7 yields that 3~ ,,cw, Tok[XEY, . XF v C k(XL X Wy,
In particular,

B T JEIXEL X SR XY 2
weWp,

Together with the faithfulness of the representation of # on k[ X!, ..., X]v
in Lemma 3.11, the claim in (4.10) follows.

Now suppose that Z = 0. Projecting onto the different summands of P(S)
gives that for any J, K C I we have

> capdf ))P(S)T = Yoo Y. TT.|PS)F=o.

deDgk, 5 deDk, g aeD‘g rd

Using (3.5), observation (4.10) implies that

0= Z cd Z T, Ty Z Ty = Z cdb}iﬂ]v‘].

J
dEDK,J aeD@,KﬂdJ weW j dEDK,J

Thus, > depy cdb‘fﬂj = 0 for every J, K C I, which completes the proof. [J

Theorem 4.8 is proved.

4.2. Generators and (some) relations for S. In this section, we determine a
nice generating set for the algebra S. We start with a few technical tools.

Lemma 4.12. Let K|,K> C1,d € Dk, i, and let J = K1 N d'K,. Then
b?(g,Kl = b}(g,degJ,Jb.lf,Kf (411)
Proof. We first note that for |.J| = |d.J| (which holds for .J as in the lemma),

bl vs = vaTs Y, T, = vl (4.12)

J
beDJmJ,(Z)

and that, if J C K, then

biavar= Y. Tw=vk. (4.13)
weEW K 1Wy s
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We now apply the right hand side of (4.11) to vk, and deduce

1 d 1 _ 1 d
bKQ,dedJ,JbJ,Kl(vKl) = bk, asbdss Z Tw
’IUEWKI
1 d 1
= b, bl | vi D, Ta = bra | vaTs >, T
K1 K
aEDJﬂ aGDL(D
(4.13) J
=7 v, Ty >, T. = by, gvi, O
Ky
aEDrlKQmKl,V)
as desired.

Corollary 4.13. The Schur algebra S is generated (as an algebra) by
{bk s buss| LK CLweW with |J| = |wJ[}. (4.14)

Based on this, we will give another generating set in Proposition 6.19.

4.3. The centre of S. We next show that the centre of the Schur algebra is
just given by multiplication with elements from the centre of the Hecke algebra.

Lemma 4.14. The centre Z(S) of S equals Z(H) in the sense that

Z2(S)={zlz€ZH)} C Endy(@v,H)=S.
JCI

Proof. For the inclusion D, it is clear that multiplication with z € Z(H) com-
mutes with any H-endomorphism of @ ;cyv,H and hence belongs to S. It
furthermore commutes with any element in S and hence belongs to Z(S).

For the inclusion C, let f € Z(S) and test with the generators given in (4.14).
For ngJ we see that

4.12
b0 f (Z VK) =Dy, ( > VLhL> (412 vasTahy

KCI LeCl

for some hy € H. On the other hand, since f is central,

b, o f <Z VK) = fobj;, (Z VK) (422 fvaiTy) = f(vas)Ta

KCI KCI

By comparing the two formulae, f(v) € vayH and thus f € 3" ;o Endy (v H)
is a diagonal endomorphism. Therefore, for any K C 1,

f(ve) =vphr, and moreover hg;Ty = Tyhy, (4.15)

again by comparing the above two formulae.
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Now we test with b ; for J C K and obtain

fobk ;s (Z VL) = fobi,; (vs) (413 f (Vi) 429§ hi.

LCI

Since f is central, this equals

4.15
bi.jof (ZVL) 2 > b s(vihr) =Y bk ;(vi)h = vihy.

LCI LCI LCI

As all J C I contain (), this yields, for all J, K C I, the equality hy = hx =: h.
Using (4.15) we obtain Tgh = hTy forall T, € H,and thus f =-h € Z(H). O

4.4. Another basis for S. The main goal of this section is to construct an
alternative basis of S which mimics the geometric basis of the quiver Schur
algebra defined in [SW11]. We start by investigating the sets D, g, further.

Lemma 4.15. Assume K C I and suppose v = wp with w € & and p =
X{t-- X e X witha; <0 fori=1,...n. Then T, = Y ,cs cuTup, for
some coefficients ¢, € k.

Proof. Note first that, using induction on the degree of p and commutativity
of X1,...,X,, it suffices to check this for p = X{l. So suppose v = wX;l.
Then by (2.2) v = ws;_18;_2-- 517 '8, 18,2 -5, and thus v has a reduced
expression 97 ts,_1 - --s; with some & € &. Thus T}, = T@T;lTn,l T =
CLT{}T]_TQ"‘E_]_XZ-_:L where a is a power of q. Writing aZ;1115--- T, 1 =
S ues culy, the claim follows. ]

Lemma 4.16. Letd € Dk, i,, J = K Nd~'Ky and write d = wp withw € &
andp € X. ThenwJ =dJ andp € W7,

Proof. We have d(K1Nd~'K3) = dK1NK> and thus for any i € (K1Nd ' K3),
ds;d~1 = s; for some j € dK; N K>. On the other hand,

ds;d™ ! = wps;p~lw™! = ws;w twsipsip~tw ™! = vh,
where v = ws;w™! € & and h = ws;ps;p 'w™! € X, hence v = sj,h =
1. Now ws;psip~'w™" = 1 if and only if s;ps;p~! = 1 if and only if p €

W ~ e
X" rinaTi; = XWI Moreover, v = ws;w™! = s; implies wJ = dJ. O

Let d,w,p be as in Lemma 4.16 and let d’ € Dy ; be the shortest double coset
representative for the coset of w. Since p commutes with W, the (W;;, W ;)-
double coset defined by d = wp is the same as the one defined by d’'p. Hence,
by the previous paragraph, and (4.11), any basis element can be written as

d _ jwp _ 1wl d 1 ol dp 1.1
bk, k1 = Pr, k, = PkyasPassPs K, = Py asPasPI K, (4.16)
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for J = d7'K,N K. Keeping this notation, we next obtain from Lemma 4.15,

d/
b7 (V) = VasTup = Vas (Z CuTU) p
ueS

= TprJ = (Z CuTu> bvy = <Z CuTu> vJjp

ueS ueS

(4.17)

where, in the last equality, we have used that p € xWu by Lemma 4.16. Hence

Vay (Z cuTu) = (Z cuTu> vy

uesS ues
meaning that left multiplication by (3> ,ce cuTw) is in Homy (v H, vasH).
Using these relations, we will now give a different basis of S, which will be more
convenient to work with later on.

Proposition 4.17. Let K1, Ko C 1. Then the set

J=Ki N w_lKQ
B = b, wsbus sbY ,b) = 4.18
Ko,K1 { KowJPwd,JPJJ5J, Ky w e DHKZ,Klap c -}:J ) ( )
is a basis of the space of homomorphisms Homy (v, H,Vk,H) and hence
BS = U Br, ks (4.19)

(K1,K2)

is a basis of the Schur algebra S.

Proof. We first compute the evaluation of these elements on vg,. We have

1 w V4 1 _ 1
bKQ,wawJ,JbJ”]bJ,Kl (vKl) - sz,wJ(wa]},‘]vJ Z Ta)
K
aED'Lé

= bi,ws/(Tw >, TTyvsy >, T

J K
beD@er—]p/J aEDle)
1 _ 1
bre;wa Y. Llulyvk, = by, wps(TuTyvE,),
J
bEDéU,wJﬂwp’J

where p’ is the unique element in W ;pW ;N Dj j. Now, let d be the unique
element in Wx,wp'Wg, N Dk, k, and write wp’ = dv with v € Wk, and
[(dv) = l(d) + l(v). We would like to show that

b}(g,wjng,Jb];,Jb}LKl = Cdb;l(z,Kl + > Cd’bil(z,Kl (4.20)
d'EDpcy 1y d'>d
for some ¢y € k with ¢4 # 0. Then the proposition follows from Lemma 4.2.
Claim 1: For any 2,y € W we have T, T, = ¢*®¥T,, + (¢ — 1) > asay T
for some ¢ € k and a(z,y) = 3(I(z) + l(y) — l(zy)).
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Proof. This formula is deduced in the proof of [Mat99, Proposition 1.16] for
lengths instead of Bruhat orders and only for &. However, replacing the per-
mutation realisation of & by the realisation of W as permutations on Z (see
[Gre02]) to define the sets N(z) used in [Mat99, Proposition 1.16], the proof
generalises verbatim to our situation. O

Claim 2: Let u € W with u > wp’. Letting d,, denote the unique element in
WKQUWKl N DK27K11 we have d,, > d.

Proof. By definition u = asd,a; for some unique a; € K; and we can choose
a reduced expression of u compatible with this decomposition. Now wp’ < u
means wp’ can be obtained by deleting some of the simple reflections. In
particular, d < d,. O

From Claim 1, we see that b}(Q’wagt]’Jb’} Jle’K1 (Vi,) = b}(Q wpr LTy Vicy),
which equals q“b}(Qywp,J ((Twp/vK1 + (7= 1) Y say CZTZ)VK1> for some ¢, €
k and a = a(w,p’). Now Claim 2 implies that, when rewriting this in the ba-
sis of the b%g’Kl only basis elements indexed with d’ > d occur. Moreover,
the leading term T,y contributes g2 (L) HE)=Uwp)HE) to the coefficient of
bﬁl(%m while any other T, that might contribute to the coefficient has coef-
ficient of the form ¢(q — 1)* for some integer a and nonzero scalar ¢, so the
coefficient of b‘IiQ’K1 is nonzero and (4.20) follows. We conclude that the set
given in (4.19) is indeed a basis for S. O

Remark 4.18. In the faithful representation p from Theorem 4.8, a basis ele-
ment b, ., ;b ;bh /bl i as in Proposition 4.18 sends fv(X1) to

ST | Tuge | Y. T | Y.

Ko Kq
aEDmwa bED(Z),J
where g, is defined in Lemma 4.19 below.

4.5. The subalgebra Q. We now construct an important commutative subal-
gebra Q of S. For this let J C I and recall the notation from Section 2.3.

Lemma 4.19. Forp € .'{—} and J C 1 we have b§7J(VJ) = gpVvy, for g, a scalar
multiple of the sum Y, cw , x(p) over all monomials in the W j-orbit of p.

Proof. On the one hand, bg}t}(v(}) = > uew,pw, Tu. Noting that
WipWy={vflve Wy, f= opo~Hor some o € W}

we see that b]}’JvK = D weWg p'eW,-p Lopr, Which, using Lemma 4.15 can be
expressed as >, ce Ly fv for some polynomials f,, all of whose monomial terms
are conjugate to p under W .
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On the other hand, writing p = td = dt’ for d € D j,t,t' € W, we have

bg,J(VJ) = V‘]Td(zaeD;—lJﬁJ Ta) =Via 0 TiTa ZGED; LinJg Ta
= Vj(q l(t)Tp ZaeDdelJm] Ta) =Vvjq )p ZaEDdJ 177 Ta
= VJA S VJ?'L]

and similarly

P _ —l t
bJ,J(VJ) - Za’ED‘;ﬂI Ta/TdVJ = Za GD‘] T Tth/VJ
) — . 7l t/
=q ( )ZG«IED(}]—IL}QJ Ta/TpVJ = Ea GDJ TIpVJ

:A/VJGVJHJ

Since Tyvy = v T; = qv for all s; € J, moreover A, A’ € k[Xi!,... X;F!].
Observing vy AT; = bY ;v ;T; = A'v;T; = qA'v; forall s; € J, we furthermore
deduce, using Lemma 4.7, that A, A’ € k[Xlﬂ, .. .X,jfl]WJ and hence A = A'.
We obtain b ;(v;) = vsA € vik[XTEL . XYW from the two preced-
ing paragraphs. Here, all summands in A are W-conjugate to p. Therefore
b]}’J(vJ) is a scalar multiple of g, v, as claimed. O

—>
Proposition 4.20. The k-vector space spanned by the bJJ, forJ C1,peXy,
forms a commutative subalgebra Q of S which contains the centre Z(S) of S.

Proof. This follows directly from Lemmas 4.19 and 4.14 via Remark 4.3. U

Remark 4.21. Note that by Lemma 4.19 and Lemma 4.7, the subalgebra Q
consists of precisely those elements in Homy (v ;H,v;H) (for some J C I)

which are given by left multiplication with some f € P C H which satisfies
(T; —q)fv=0forallieJ.

Remark 4.22. The elements b§J forJCI pe %J are linearly independent
by Lemma 4.19, hence form a basis of Q. As an algebra, Q is a direct sum of
algebras indexed by J C T with factors isomorphic to k[XT!, ..., X W/, The
centre Z(S) = k[Xi!, ..., XF1]®, see Lemma 4.14, embeds diagonally.

Lemma 4.23. The k-vector space S carries the structure of a finitely generated
free Q-module on basis

S __ 1 w 1
By = {sz,wawJ,JbJ,Kl

K, Ky C1T, ’LUEDK2 Ky
J=KiNw~ 1K2 ’

(We do not claim that S is a free Q-module by restriction of the regular action.)

Proof. We define the action of a basis element b’};K € Q on a basis element

bleywsbls Db, if =K,

/
b ®@ b, b, bl bl =
KK 2wd Bwd, J 2 JE Ky 0 otherwise.
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By Remark 4.22 this is a well-defined action of Q. Obviously, the module is
generated by B‘é. Freeness follows from Remark 4.22 and Proposition 4.17. [

4.6. The twisted faithful representation of the Schur algebra. The auto-
morphism # from (3.6) allows us to define the Schur algebra using Vv x# instead
of v H via the obvious isomorphism of algebras

S = Homy P ((vsH), (veH)F) = Homy P (VuH, ViH).
JKCI JECI

Similarly to Section 3.4, we also have a faithful representation p of S on

P(S) = @k, xFH Ve, (4.21)
KCI
where again the superscript on ¥(5) is just a book-keeping device, given by
b e = S TETe.
aEDé{,Kde

We also obtain the following analogue to Corollary 3.12.
Corollary 4.24. We have an isomorphism of representation

P(S) = *P(S) given by v — iy,

5. A COMPLETION OF S

Recall the character x = x; for our fixed i = (i1,...,7,) € Z™ from Defini-
tion 3.6, and the ideals m, and Z,,, in Z(H) respectively H from Section 3.3.
By Lemma 4.14, we can identify the centre of § with the centre of H. Define
S; to be the completion of § at the nested sequence of ideals

jm = @ HOH]’H(HJ,VKIm) (51)
JKCI

in S generated by the maximal ideal m, of Z(S).

5.1. Compatibility with the completion of 7{. The following gives an alter-
native definition of Sj, analogous to (4.1), using the completed Hecke algebras.
Proposition 5.1. There is an isomorphism of algebras

§i & Endﬁi <@ VJﬁi) .

JCI
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Proof. We have

Endﬁi (@Vjﬁi) &~ @ Hom,’qi <l(ianJH/Im,@anH/Ik>

JCI JKCI

~ P limHomy (im v H /T, viH/T)

JKCI
= @ limHomy (vyH/Zy, viH/T)
JKCI '
= @ @ (Homﬁi (VJH,VK/H)/HOIH?/_Z(VJ/H,VKIm))
JKCI
= lim S/ Jpn = Si.
The proposition follows. O

Recall the idempotent decomposition of H; from (3.7). We would next like

~

to focus on the corresponding decomposition for S;. Our notation follows the
setup in [SW11] and [KL09].

5.2. Idempotent decomposition. Recall our fixed i = (i1,...,i,) € Z". Let
J CTand u=(up,...,u,) € &i. It will be convenient to encode the pair by
splitting the tuple u = (uq,...u,) into blocks determined by .J, more precisely,
(w,J) = (w1 ug g gr ] fug e, (52)
where t, = n, and a line is drawn between wuy, and uy11 if and only if £ ¢ J. In
the extreme cases we have (u, ) = (uj|ug| - - |u,) and (u,I) = (u1,u2, -+, up).
For (u,J) we denote u; = (u,J), where u’ is the unique element in the
W j-orbit of u where the integers in the parts between the lines in (5.2) are
ascending, i.e.
WSS, gy < Sul, L << (53)

Here, if ¢ is an e—th roots of unity, we order our chosen representatives 1,...,¢
for Z/eZ as 1 < --- < e. For J C I, we denote by

UJ:{UJ|u€6i}

the set of such representatives of W j-orbits in &i. Givenu € Giand J C K C1I
we call uy a refinement of ug.

Example 5.2. Let n =7 and J = {1,3,5} € K = {1,2,3,5,6}. With u =
(1,2,1,1,2,1,1) we have uy = (1,2|1,1|1,2|1) and ug = (1,1,1,2]1,1,2).
Then ujy a refinement of ug. Note that indeed the additional vertical lines in
uy provide a refinement of the parts of ug.

Attached to uy = (u,J) € U; we have the idempotent

JeruJ = Z ew 67/‘[\1. (5.4)

ueW;u
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These idempotents have the following important property.

Lemma 5.3. For J C I and uy € Uy, the elements guJ,V‘] (in ﬁl) commute.

Proof. We may assume J # (), since vy = 1, in which case the claim is (/)\bvious.
Suppose first that W ; = &, for some k and consider the subalgebra H ;. Its
identity element is JéuJ and we obtain 7/-[\J,i = JeruJ’l/-[\J,i = ﬁj,i—guj. In particular
JeruJ commutes with v ;. Noze that in the extremal case J = 1, the element Jéuﬂ is
just the identity element in H ;;. Otherwise, we can find a proper decomposition
J = J1UJy C Isuch that Wy = Wy, x Wy, Then &y, = &y, Cu,, and
vy =V V. By definition, v; commutes with Jerqu if ¢ # 5 and also, by the

o+ .
extremal case treated above, with ey, . Then the claim follows. O

Lemma 5.3 directly implies the following result.
Corollary 5.4. There is an isomorphism of algebras

@ Homg (v Hs, vicHs)
JKC{s1,....,8n—1}
= @ @ HomA(—g Vs, bw v Hs)
- H\Cug JTli, ufe KT7ii).

J,Kg{sl,...,s,,L,l} UJEUJ,UIKEUK

5.3. Splits and merges in in the algebraic basis. We now define certain split
and merge maps motivated by the construction in [SW11].
Let J C K C 1, uy = (u,J) € Uy, which uniquely defines ug € Ug, of which
uy is a refinement. We use the notation from Section 5.2.

Definition 5.5. i.) We have éy,b} €, # 0, and this is called a split of

ug. If |[K\J| =1, we call J C K a simple inclusion, and JeruJb(l],KJeruK is
called a simple split.

ii.) We have —guKb}(J—guJ # 0, and this is called a merge of u;. Again, if
|K \ J| =1, itis called a simple merge of u;.

iii.) We denote by oyX € DX the unique element with oukuy = ug.

Note that any split (resp. merge) can be written as a sequence of simple splits
(respectively simple merges).

Example 5.6. In the setup of Example 5.2 we have a (non-simple) split of ug.
In this case aﬁf = $3895¢.

5.4. Dimension matrix and dimension vectors. To (u,.J) as in (5.2) we now
associate several combinatorial objects and groups of permutations.
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Definition 5.7. The dimension matrix attached to (u,.J) is the e x r-matrix
D(u;) with entries in Z>( defined as

D(u,J) = (d(n,J])), 1<i<el<j<r (5.5)
where d = dl(u,J) = |{k | tj_1 +1 <k <tjup =i} withtg=0.

Let d; = di(u,J) = Y 5_y d}(u,J) and & = d/(u,J) = 35, d}(u;). Note
that d] counts precisely the number of occurrences of i in the jth block of
(u,J), whereas d; is the total number of i, and d’ gives the size of the jth
block. For fixed 1 < i < e, set D; = D;(u,J) = (d}(u,J),...,d(u,J)), and
for fixed 1 < j <, set D/ = D/ (u,J) = (d}(u,J),...,d.(u,J)). The first
encodes the multiplicities how often a certain number appears in each part, the
second encodes for a fixed part the multiplicities of the numbers occurring in it.
We call d = d(u, J) = (di,d>, . ..,d.) the dimension vector and t = t(u, J) =
(d*,d?,...,d") the type vector attached to (u,.J). Hence the dimension vector
encodes the multiplicities how often each number occurs in total, whereas the
type encodes the sizes of the parts ignoring which numbers occur. Note that
the dimension vector only depends in i and we thus also write d = d(i).

Example 5.8. In the setup of Example 5.2 the dimension matrix for u; is given
by di =d} =d} =1 and d? =2, whereas d} = d3 =1 and d3 = d3 = 0. The
dimension vector is (5,2) and its type vector is (2,2,2,1). On the other hand,
for ug, we have for the values d} = 3 and d? = 2, and d} = d3 = 1. The
dimension vector is again (5,2), but the type vector is (4, 3).

Given (u,J) we have now several (sub)groups of permutations attached to it
(where we omit the (u,J) in the notation on the right hand side):

GDi(u,J) = Gd} X Gdf s X Gd;_" < Gd“ )

~—

GDd(u,J) = Gp, X+ x6p, <6,
GDj(qu) = Gd{X6d§~'-X6d£<6dj,
GDt(u,J) = 6[)1 X oo X 6])7' < 6.

—_~ o~ o~~~
© o ~N O
~

5.
5.
5.
5.9)
Note that choosing u; = (u,J) € U, has the nice effect that &p, () =
W, NStabgu is a standard parabolic subgroup. Note that &y, (y;) = Sp,(u,),

since both groups precisely describe all permutations of u; such that the number
as well as the parts given by J are preserved.

Example 5.9. In the setup of Example 5.2 we have Gp,(y,,) = 61 X G2 x &1 X
61X61X60X61X60 and 6Dt( 61X61X62X60X61X61X61X60.

uy) =

In the following we will often drop the dependence on (u,J) in the notation,
if we have some fixed (u,J), and we will only ever consider the case where
(u,J) = uy for some uy € Uy. In this case, the groups (5.7) and (5.9) and
then also (5.6) and (5.8) are generated by certain standard generators s; € &
labeled by a subset of I. It will be convenient to use also different labellings of
the generators which reflect directly the respective product decompositions.
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Definition 5.10. For the group (5.7) the ath generator in the ith factor is
denoted s; 4, whereas for (5.9) the ath generator of the jth factor is called s,

In this notation we can make the above isomorphism explicit:

Lemma 5.11. There is an isomorphism of groups
CUJ : 6Dd(uJ) = GDt(UJ) Sia 7 Sl(t), (5.10)

where t is such that S0t df <a <L dF andl=a+ i, dL.

Proof. Since the two groups define the same subgroup of &, it suffices to
compare their images there. But s;, corresponds to s, € &, where b = a +
(b ddy + (i) db) whereas sgt) corresponds to s, € &, where b = ¢ +
(S2E=1 d). Hence the claim follows. O

Definition 5.12. We will abbreviate the group in (5.10) by &, but keep the
two realisations in mind. Note that it is a standard parabolic subgroup of & and
we define I, by WIUJ =G6y,. For1 <i<eand1<a<d; weabbreviate

t—1 i—1
(i,a)u, = a-+ (Z d’“) + (Z d’,;) (5.11)
k=1 k=1
with ¢ such that Y44 dF <a <334 _, d¥.

Note that (,a),, is just the position where the ath number i occurs in u.

Example 5.13. Let us consider uy; = (1,1,2/1,1,1,2,2/1,1,2). Hence n =
11,7 =3 and J = {s1, s2, S4, S5, S6, S7, S9, S10} With W; =2 &3 x &5 x G3. In
the usual generators of & we have &p, = (s1, 54, S5, 59) = G2 X G3 X Sy and
6])2 = <$7> > G1 x 69 x 671 and then GDd = <81,84,$5,S7,89> = Gy X 63 X
Gy x 61 x 62 x 61. It agrees with &p, as a subgroup of & (or Wy).

Now &p, = <81,1,51,3a51,4,81,6,82,2> and 6Dt(uJ) = <5§1),$g2)35§2),5§2),553)>-

(3)
i ' ) (2 (2 (2)s

The isomorphism (,,, sends s1,1, 51,3, 51,4, 51,6, 52,2 tO sg ),sg )785 ),S:())) 1 e

spectively. The corresponding elements S(i,a)u, € S are sy, 84, S5, S9, S7.

5.5. Rings of invariants. We now consider invariant polynomials for (5.7) and
(5.9). Our different choices of generators come along with different labellings
of the variables. We attach, to our fixed i, the following polynomial rings

Ry =k[Y11,Y12,.. ., Y1,4;, Y21, -+, Yoy, - - Yo,
= k[YLl? B Yl,dl] Xk k[Yllv <o 7Y2,d2} Rk - - - Ok k[Y;B,l’ <o 7}/€7de]7
and moreover

_ —1 —1 -1 -1 —1 —1
R =K, Y Y Yo Y Y

’ Le,de

=Kk, Y g @ckYs . Yo g @ @KV L Y,
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in n variables. For each u; € U for some J C I, we fix the ring isomorphisms

Crmy: Ry 2 k[Xy,..., X, and (o, : Ro 2 k(X X1

n

sending Yi to X(lL Y with the notation from Definition 5.12. Together with
uy

Lemma 5.11 this also gives canonical identifications of invariants
6Dcl(llj) Sp, (u ) 6Dd(llj) -1 116, (u ;)
R, = k[X1,..., Xp] e, R_ = k[X; .. X, T
. . . . . Gu
Again, we will often abbreviate these invariants as R, 7 =Kk[Xy,... ,Xn]G“J,

respectively R = k(X7 X 1S

Let R+ and R_ be the completions of R, and R_ at the maximal ideals
generated by all the Y; ; respectively Y, *. We have isomorphisms

Crmy: Ry 2 K[[X1,...,X,]] and C_u,: R- = K[X7L..., XY

induced by (4 v, -

For uy = (u,J) € Uy, again with the notation from Definition 5.12, define the
k-linear inclusions

u: R+ — @ k[[X1,..., Xu]] €wu, Yiar Z (‘X(i,a)wu 6u}-u) )

weD;.{JuJ weDJ
koo P KX X eww Vi e Z Xy Cwru)-
WEDé)I,IuJ weDy 0.1,

uJ

Denote by ]:Zi,uJ the images of Ri under &, respectively fﬁ. In the following,

we will identify elements with their images, i.e. we will view elements of R ,,,

alternatively as formal power series in the variables Y;, or as formal power

series of the form ZweDél fwew-u Where each fy, is a formal power series in
E) llJ

X1,...,X,, and similarly for elements of R,7uJ.

5.6. The completion of Q. The goal of this subsection is to describe the
completion of the subalgebra Q, which will play a similar role to the completion
of the subalgebra P in H in giving rise to a completed faithful representation.
The completion @i of Q is spanned by the elements in Homﬁi (vﬂ/-[\i,vﬂ/-[\i),
for J C I, which are equal to left multiplication with an element f € P such
that (7; )feu]vJ = 0, see Remark 4.21. Equivalently, Ql is, via the de-
composition 731 = Pucsi euP and Lemma 5.3, spanned by those elements
in Homﬁi(—guJVJHi,euJVJHi) for some J C I and uy = (u,J) € Uy,
which are equal to left multiplication with some f € Quew,ue u/73 such

that (T; — q)feuJV] = 0. This last property can be rephrased, similarly to
Lemma 4.7, as follows.
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Lemma 5.14. Let K C 1 and ux = (u,K) € Uk. Furthermore, assume
that f € GB’WEDé(I k[[X7Y ..., X Y] ewu. Then f € R_ ., if and only if
1UK

(T, — @) fEu, vE) =0 for all i € K.

Proof. Assume that f € R_,, and pick i € K. We have to show that
(Ti — ) f Ywewgu ew v = 0. It then suffices to verify, for any w € Dé(Ku

(E - Q)f (6w~u + €5iw.u) V(K) = 07

if siw-u# w-uand (T; — q)few.uv(K) = 0 otherwise. Assume first s;w - u #

w - u. The, setting 3; = %
i+1

we have, using 5{11, the equalities
(Tz - Q)Yc;l <€w~u + esiwu) V(K)
—1
= (Ti_Q) (X(Ca)wu

1 K
= (= ) (Xl + X ) v

) Xigl. o) v

(32 | (K)
2 (@ - g+ B) (XL, ewn + X eayuysin) V
_ -1 ' '
- Xsi((c a)w- )esiw'uq) €wu + X( a)w. ew-uq)zesiw-u
( BZ)( (c,a) ew u Tt Xs ((€,0). )esiw.uV(K)
- (Xs_i(l(cva)w-u)esiw.u + X(Cla)wuew'u)(q)i - q + BZ) (ew'u + esiw'u) V(K)

= (‘X(c,a)S w- eszw u Tt X(c a)w. €w~u)(ﬂ - Q)V(K) 0.

Let now s;w-u = w-u. Then (w™ls;w)-u=u, hence t = wls;w € Wy,.. If

we view t € Gp,(y,) via Definition 5.12, then by assumption f is t-invariant. On
the other hand, by our definitions, f being invariant under ¢t when written in the
chal is equivalent to f being invariant under s; when written in the Xj_l. But
now Lemma 4.7 implies (T} — q) fewuv) = ewu(T; — q) fvE) = 0. Hence
the "if" part of the statement follows.

Now assume that (7; — q)fJerqu(K) = 0 for all i € K. If Gy, is trivial,
then there is nothing to show. Otherwise let s, be a standard generator in
Suy, in particular spu = u. Let b = (¢,a)y. Then spu = u implies that
(a+1l)u=b+1=(c,a)y+1.
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We can write f = Yc;lJrlg + h for some unique g,h € R’ = R* and, noting
that ¢h(g) € k[X;L,..., X J*eqv for any g € R**, we have

n

0 = €u (Tb - Q)feuV(K)
= eu(Ty— q)Yc:LlJrlgeuv(K) + eu(Ty — q)heuv )
= eu(Ty— q)Xb_Jrllgeuv(K) +0 (since h € R®)
H-7 e _
(D) eu(qX, 1Tb - quJrll)geuv(K)

This is nonzero if g # 0. Hence (7} — q)fgqu(K) = 0 implies g = 0 and thus
f has to be sp-invariant, and then even f € R_ . O

O T (respectivay 5 ¢ £ .
For J C I, denote by X7 C X (respectlvely& C X ) the subset of monomials

= —
X X2 with a; > 0 for all i, and by X5 C X (respectively X5 C ?J)
the subset of monomials X' --- X% with a; < 0 for all 2. Note that b from

Section 2.1 induces a bijection between X7 and X5 and between X7 and X7.

As a consequence we obtain a topological basis of @i.

Proposition 5.15. The completion @i of Q has topological k-basis given by

B, — IB” ¢ c s
Bo = {bjseu,|JCLu;€UypeXj} (5.12)
where 15gJJéuJ € Homﬁ,(—é_UJvJﬁi’ —é_uJVJﬁi) is the homomorphism given by
" + + +
pr,JeUJ(euJVJ) = Z w(p)ew-l.u €u;VJ.
wED(gl
’ uJ

Proof. The fact that this set spans @i follows directly from the first paragraph
of this subsection reformulated using the equivalence from Lemma 5.14. It is
linearly independent as a direct consequence of (4.19). [l

5.7. A basis of S;. The main goal of this subsection is the following basis
theorem (with the notation from Proposition 5.15).
Proposition 5.16. For fixed K1, Ky C 1, the set

R o d € Dy, rc,» 1

Bioky = b asbis bl eubly | /=K Nd7 Ky,
u;eU;,pe ¥IuJ

—~

is a topological k-basis for Homy; (v, Hi, v Ko, Hi)-
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Proof. By Proposition 4.20 we have (with the notation from (5.1))
S(QNTn)S =8(QNSmMYS)S = S(QmQ)S = SmY'S = Tn
where the third equality follows from my' C Z(H) C Q.

Now, as a Q-module, we have S & EBxeBg Q ® x by Lemma 4.23 (with the

notation defined there). Since m, is central, the actions by left multiplication,
right multiplication, or the ®-action induced by m, C Q all coincide, so

8/Jm=8/Smy = (P Qax)/(P Qmy ®x)= (P (Q/QmY) ®x

S S S
xEBQ XGBQ xGBQ

Thus we obtain that &; = NmS/JIm equals

lim P (Q/Om}) ®x = P lim(Q/QmY yex= P Gex

xEBS xEBS xGBS

In particular ‘SA'I is now free over /Q\i on basis BS,, which, together with Proposi-
tion 5.15 and the definition of ® implies the desired basis for §1 O

We have the following direct consequence.

Corollary 5.17. Let K1, Ko C 1 and moreover let u’K1 = (W, K;) € Uk, and

o~

: - =+ .
uf, = (u”, K3) € Uk,. Then a basis of Hom (eu;( v, Hi, eu/I/{QvKQ’Hi) is

’]-[.
dEDK2K1=
J = Klﬂd 1K2,
+ : X
e,,b be, b &y b pexs 5.13
uy, PKy.d1Pds, P70 Py K, € uK UJ:(u,J)GUJ with ( )
u’KlzuKl,
u/f/(gz(du)KQ

where we note that u} = ug, meansu’ € Wy, -u and similarly uf,, = (d-u)g,
means u” € Wk, - (d - u).

5.8. A faithful representation of S;. In this subsection we will construct a
faithful representation of &; similar to the construction in Theorem 4.8 .

For K C1I and ug € Uk, define

—u N ) — —-ug A~ (

P(S); =R uev® and PB(S); = RV

where again, as in Theorem 4.8, the superscript in v(E) s just a formal index.
Moreover set

D P PO ad PS=D P POS); . (514)
KClugeUg KClugeUg

These are the underlying spaces for two faithful representations:
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o —

Proposition 5.18. i) There is a faithful representation p of S; on P(S)
where the basis elements of S; as in (5.13) act via

i

~(+ 1 w Pt 1t K
P (e(w'U)KQng,wawJ,JbJ,JeuJbJ,Kl euxl fV( )
+

+
e(w-u)Kz (ZaGDé?UJ Ta) ngpeuJ (ZbGDé(j Tb) fV(Kz)

for v € @?Kl
ii.) There is a faithful representation p of S; on P(S ); where basis elements of
S; as in (5.13) act via

, where gy, is as defined in (7?7) and ug = (u, K).

~

=(t 1 w P Lol % < (K
P (e(w-u)Kzng,wawJ,JbJ,JeuJbJ,Kl Cug, fV( v

+ .
(wu)k, <Za€D§,iJ Tg) TEJQIQGUJ (ZbeDéﬁ TIE) fV(Kz)'

+
=e
for fv(K1) € P(S); Kl, where gy, is as defined in (??) and ug = (u, K).

Proof. We prove (i), the proof of (ii) being analogous. We first claim that
P(S); = S; @5 P(S). Indeed, using that

(K) +1 +171,(K)
]P’(S)K:{fv(K) SV e k(X X }

(T; — q) fvE) =0 forall i € K

we see that
i B e P ewk[[ X X
—guKSi s P<8)K = fV(K) uw'eWg ug
(T; — q) fvE) =0 for all i € K

——— ug

= P(S),

1

by Lemma 5.14; hence the claim follows. Since we defined our action p to
coincide with p (cf. (4.4) and Remark 4.18) on elements of S, the fact that p
is a faithful representation follows immediately from Theorem 4.8. O

Remark 5.19. Similarly to Corollary 3.14, we have an isomorphism of Si-

7
—

modules P(S); 2 H(B(S)_;) via féu,, vIED) s fre_y, vKD,

o —

6. THE ACTION OF (ALGEBRAIC) MERGES ON P(S);

In this section, we describe, explicitly and in detail, the action of a simple merge

on the twisted faithful representation P(S);, as we will later use this to compare
S; to the quiver Schur algebra. In Proposition 6.19, we will deduce a generating
set for the Schur algebra which refines Corollary 4.13.
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6.1. Basic formulae for algebraic merges. We start by describing some com-
binatorics of distinguished coset representatives in Dy ;, where J C I

Thus let J C T be fixed. Let u = (uj,us,...,u,) and consider (u,J) as in
(5.2). Then for a permutation w € & we have that
weDy; & wkj+l) <wk;+2)< - <wk;+d), forl<j<r,

where kj = 3 i<;d" (and d° = 0). This means the numbers inside each part
of J are kept increasing when applying the permutation w € &; i.e. in the its
permutation diagram, the two strands from the same J-part do not cross.

Lemma 6.1. Let J = I — {a} for some a € I and set b =n — a. Then Dy ;
consists precisely of the elements

(SeyScy+1 - Sn—1)(Sep_y -+ - Sn—2) - (Scg - - Sat+1)(Se1 Ser41 -+ - Sa),  (6.1)

where 1 < ¢ < ¢y < -+ < ¢ and by convention (SySy41-+-S) =1 ifr > k.

Proof. This is a standard fact, see for e.g. [Str05, Proposition A.2]. O
Definition 6.2. For J C K C 1, define the algebraic merges
= > w, and = > T (6.2)
weDéfJ weDéfJ

We also write ng]()) instead of M, respectively qng{)) instead of qmﬁ(.

Remark 6.3. Note that h%=h’"® and ;Mm% = ,h’° for any ¢ if we interpret
the smaller symmetric group as a subgroup of the Iérger one. We will use this
fact tacitly. Moreover, by definition and using (H-7) and Remark 3.5, we have
rhff f=f rhf]( and qrhf,(f = fqrhff for any W -invariant polynomial.

Example 6.4. For instance, if J =1 — {a} for some a € [ and K = I, then

m(K:th,n,a is precisely the sum over all elements of the form (6.1).

We first state a few easy properties of these algebraic merges.

Lemma 6.5 (Associativity). Assume n = 1 + (a — 1) + (b — 1) with each
summand in Z>q. Then

a+b—1 +a,b—1 - a+b—1 - a+b—14+a—1b
rha,bfl rhafl,l,bfl - rhafl,l,bfl - rhafl,b rhafl,l,bfl : (63)
The analogous formula holds for the 4 as well.

Proof. The middle term of (6.3) is precisely the sum of all permutations w
of 1,2,...,n such that the numbers stay increasing inside the parts of size
a—1,1,b— 1. But each such w can be written as a composition of the form
w = xy, where y € &, permutes the first a numbers, but keeps the first ¢ — 1
increasing, followed by a permutation = which keeps the first a numbers y(i),
1 <% < nin order and keeps the last b — 1 numbers increasing. Moreover, each
such zy gives rise to a unique w in the sum. This proves the first equality.
The second is similar starting with permuting the last b numbers instead. The
statement for ;M follows by the same arguments. O
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Lemma 6.6 (Splitting off a simple reflection). Let n = a + b with a,b € Z~y.
Then we have the following equalities

a+b _ 1,a+b—1 l,a+b—1
ey = Miap1 St Sat My 1y (6.4)
- l,a+b—1 1 a+1,b—1 1l,a+b—1 l,a+b—1
- rhl,a,bfl ma,l,bfl - rhl,afl,b ma 1,b—1 + rh1,(171717 . (65)
The analogous formulae hold for the ;i as well.

Proof. Consider the set of elements from (6.1) and divide them into those which
contain s; (in the rightmost factor) and those which do not. This division
corresponds precisely to the two summands on the right hand side of (6.4).
Note that as a special case of (6.4) we obtain

+1 — laa —
ey = hy? 0 S182+ Sat+ My’ _1 1= 8182 Sa+ thy 11 (6.6)

To verify (6.5), it suffices to show

et M = Mty Mty = e s esa (67)
However, thanks to (6.6), the left hand side equals
LHS = mi’ﬁbll (51" Sat mla 1,1,b— 1) m% Zirliz;lmg:l,zfl
e T Pty L O
= s s sat AT (AT — M)
La+b—1

= mlab 1 51" Sa-

Here the second equality follows from (6.3), the third is clear and the last one
follows from the obvious fact that the expression inside the brackets is zero.
Hence the claim follows. Note that the same arguments work for qrh as well,
since we have not used the quadratic relation (H-1). (]

Definition 6.7. For 1 < i # j < n set
/sz

Yij (6.8)

Bij=qXi—X; and v;;=X;—X; andfinally 6;;=
Lemma 6.8. The equality 017292,3 — «91,29173 + 917393,2 = q holds.

Proof. One easily checks that 523713 — B1,.372,3 = (¢ — 1) X371,2. Thus, if we
set v = 72,3713, then

— DX
Ora(0ns —Org) = D02 (523_513> _ a=D)XsBio
71,2 \72,3 71,3 y

On the other hand one checks easily that ¢v1372,3 + 813832 = (¢ — 1)B12
and thus

(6.9)

: —1)X
G 0146050 — g3+ Pisfse _ (¢—1) 3Bz (6.10)

Y Y
Subtracting (6.10) from (6.9) gives 61 2(023 — 613) — g+ 013032 = 0. O




AFFINE QUIVER SCHUR ALGEBRAS AND p-ADIC GL, 35

The action of simple merges on polynomials and rational functions in the X is
quite subtle, but produces interesting formulae.

Example 6.9. For instance we have rh%l (012) = (1 + ¢). This is because
11 (B12) = (14 s1)(610) = =0 — (14-).

More generally, we have the following equalities of rational functions in the X;:

Lemma 6.10. Let 1 <c<n—1and 0 <a<n. Then the following holds

a,c

. _ _ el
i.) For any a: ale—1 (Hk ar20ar1k) =20 d"-
ii.) Fora >1: g .y (0rat1 Hk;:a+2 Oas1) = HZiZH Orp+ Y514

The same formulae hold for the ;M as well.

Proof. Without loss of generality, we may assume a = 0 in (i) and a = 1 in (ii),
since the general case then follows by shifting labels. We prove both statements
in parallel by induction on ¢. The base case is ¢ = 2. (For the extreme case
¢ =1 we have th (01,2) respectively rhio (1) = 1 by convention.) For (i), the
base case is Example 6.9, while for (ii) we need to show (1 + s2)(012623) =
61,201,3 + g, or equivalently 61 2(023 — 013) = q — 013032. This, however, is
Lemma 6.8. So assume now both, (i) and (ii), are true for ¢ — 1.

For (i) we abbreviate II = 6, o szg 02, = 01,211' and obtain

. 6.4 o
Le—1 1 @ (mi’l Lo (1 +51))H

= T Ml (s1(012)1)
= IO+t l, 1+q— 011

= I+ (1+9q) (mﬁ_cl—Q Hl) - m%ﬁ,_cl—z 61,211
ind. h c c—2 c c—2 c—1
ind. .
=0 Mo+ 0+ d = [[0x=>a = > d"
k=92 r=0 k=2 r=1 r=0

where in the penultimate line we have used the induction hypothesis for ¢ — 1,
namely (ii) for the first summand and (i) for the second summand. In the third
line we have also used the induction hypothesis for ¢ = 2 for (ii).

For (ii), we abbreviate Z = [[§,_5 02 = 0232 and obtain
M5t (0127)
(6.4) 1,1,c—1
= ((ml 12 52) + 1) (01,22)
=  thol+ mﬂ:icl_g (52(01,202,3)2")
= b2+ mH(le_g (012013 — 012003 + )7’
= 01272+ (D12 M1 ety 0132) — (12 11 Sels 0232") + g (My15 s
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Now we use the induction hypothesis for ¢ — 1, namely (ii) for the middle and
(i) for the last summand and obtain

c+1 c+1 c—2 c+1

c—2 c—2
(012 [T O26)+(T] Ork)+ (012> ¢") = (012 [] O2) = (012> ) +qd_d"
k=3 k=2 r=1 k=3 r=1 r=0

Hence, altogether we have

c+1 c+1

mllcl (0127) H91k+q2q = H91k+2q

This completes the proof. O

6.2. Algebraic merges in the faithful representation. In this subsection we
give explicit formulae for the action of the simple merges on the faithful repre-

sentation P(S); from (5.14).

Setup for the whole subsection: Assume that K = [, so ux = (u, K) with
u= (1929 ed)and J =1\{a}. Setb=n—a. Let uy € U,. Set
a; = d}(uy) and b; = d?(uy) in the notation of Definition 5.7. In particular,
a; +b; =d; for all i = 1,...,e. Then the action of the merge from (4.1) can
be expressed in the #-twisted versions as follows:

—

Proposition 6.11. For P(S), and f € Ry v, as in Proposition 5.18 (i) we have

= 1 —(J d 5 d; )
eup(bK,J)fV( ) = euK mai b17a227b27 7a€1b9 H H 0[ kfv
k=a+1l=1

where al‘g‘f is as in Definition 5.5, explicitly

cUK  — O.(ldl 292 ede)
uy (191,292 ... eae|1b1 ... ebe)”

(6.11)

Remark 6.12. Note that by Lemma 5.14 the component at e, completely
determines the element in P(S);.
As a direct consequence from the definitions, (6.2), we obtain
Corollary 6.13. We have
N n a
eup(bl ) 7 = e (Z wol ) IT IT6uerv™
w k=a+11=1

where the sum runs over w € D@ UK (1 ) with notation from Definition 5.12.
'I.l U.J

The proof of Proposition 6.11 is rather technical and occupies the rest of the

subsection, proceeding by induction on a + b, with the base case being trivial.

We start with some preparations.
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Remark 6.14. Note that oy% in (6.11) factorizes as oy = 0102 where

(1]191—1 2d2 3d3 = ede)
0-1 (1‘1a17"'7€a€|1b1_1’2b27"'7eb€)
(191]1,292,... e®e|1b1=1 202 | ebey
2 = Oaijgan, . eac|1|1b1-12b2  ebe) . Sartl " Sa

Moreover, we have Uﬂf = 030405_1, where

(1]191—1 2d2 343 vy B3 L %)
g3 = o a1—1 9a a;+1 b bp—1 b
(1j1e1—=1 202 tar+1l | eae|1b1 . ¢be—1 . ebe)
B (101,... t0t+1 | eve|1b1 . the—1 | ebe)
94 = Oargaz, . .  cac|t|101,..tbe=1 . ebe) — Sartasttartl " Sa—15a;
(1e1... ae‘lbl ebe)
o5 = U(l“l eae|t‘1b1 b1 ebe) T = S(a+z " Sat+25at1;

By definition of the representation in Proposition 5.18 (ii) we have
cup(ble NIV = eughil? S =
Applying Lemma 6.6 to the right hand side we obtain
Lat+b—1 4a+1,b—1 Lat+b—1
— eulq e p 1 oM. 151 + ml,aafl,b(l - alb 1>fV
Note that malb 1 commutes past f by Remark 6.3, and therefore we have

rh“lb Y = 2 ¢° £9, using Lemma 6.1, (3.6) and T;¥ = —¥ by (3.1).
Altogether we obtain

La+b=1 qatlb—1 _ ilatb-1 —(J
= eu|aeMap 1 oMo 1 01— oM %1 s Zq . (6.12)

We can then rewrite the two summands, which we denote by and
respectively,as in the following two lemmas.
Lemma 6.15. The second summand in (6.12) equals
b—1 n a
= (X&) i e our (| IT TL0w ) 19
s=1 k=a+1j=2

where o % is as in (6.11).

Proof. First we analyse which idempotents e can appear to the right of the
merge for the result not to be annihilated by ey, i.e.

%a(:rbl %) Zq fV(J) ?é 0.

_l’_
Clearly, any such e must be a summand of € qjja1-1 902 cacibr, . cac). More-
_ (AT 2d2, ede)

UK
over, note that o = U(1|1a1*1 gun.eac|1b,  che)’ Then
1,a+b—1 L,di—1, do, ...de
euql’h —1b f rh1 ,a1—1,b1,a2,b2,...,a¢,be fV

by the inductive hypothe5|s, sincea+b—1<a+b. O
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Lemma 6.16. The first summand in (6.12) equals

Ldi—1, d2, ..de a1+1,b1—1,a2,b2,... ae,be K)
€u[ ml,al,bl—1,a2,b27...,ae,be O'1P mm, 1, b1 —1,a2,b2,...,ae,be 02 H 91 a+1]fV

1L,di—1, da, ...dt, K)
+ eu[ ml ,a1— 1b17a27b27 ,at+1,bg— ac,be Hel a+1}fV

_ n at+l p. _ ) at,...,at+1,a¢41,...,ae,b—1
where P = Hk:a+2 Hj:2 vak, and Z = U3P9J,k rha1,...,at,l,aH_l,...7ae,b—1 4.
The elements o are as in Remark 6.14.

1+

Proof. To have euqmtggzleul,a,bq # 0 we need uj 451 to be of the form
(t]...) for some t € {1,2,...,e}. We distinguish two cases, namely

ALatd=1 % hotlb=1 &

uglgp—1 €(1191..e0e|151-12b2 ebe) qNg 1 p—1 ©€(191,.. e |1|101-1,2b2 . ebe)

and

l,a+b—1 + a+1,b—1 +
€u qmlab 1 C(t[191.. e 101, tbe =1, ebe) qmalb 1 (1o, eve|t|1b1,.. the—1, . ebe)"
for t = 2,...,e. Then the claim follows directly from the definition of the
permutations ¢ in Remark 6.14 and the induction hypothesis. U

Lemma 6.17. The second summand in Lemma 6.16, denoted by |? , equals

e a
1,d1—1, da,.., di, dit1, de ) < (50
euZ ml,al—l,b1,aQ,bz,...7at,1,bt—1,at+1...,ae,be ‘73‘74PH Oiat1 [V (6.13)
— i=1

Proof. We first rewrite the term Z appearing in Lemma 6.16 as
a1,...,0t+1,a¢41,...,0e,b—1 _ at,...,at+1,a¢41,...,ae,b—1
o3P mal, at, 1, apy1,emae,b—1 74 = 3 Mgy a1 apy,eae,b—1 ouP

a1,b1,...,at+1,bt71,at+1,bt+1,...,ae,be
(117b1,...,at71,bt—1,at+1,bt+1, (X23) a€7b€

o304 P

where the first equality uses that P = [[;_, ., H?i% 0 is og-invariant and
Remark 6.3. For the second equality one checks that o3 from Remark 6.14
commutes with gl ark Lot 0ebl “The claim follows by substituting this
»at, L, at41,...,0e,

into the formula in Lemma 6.16 and using associativity of merges. [l

Lemma 6.18. The first summand in Lemma 6.16, denoted by , equals

1,d1—1.,d sod 1,d1—1 a2,b2,...,ac,b,
? — sd1 52, sle » a1 s 2,02,...,0¢,0e uK
L= [ del_1’a2vb2u~~-ﬂeybeml,al—l,Lbl—l az,b2,..naebe O P
1,di1—1, do2, ...de ]
+ ml,dl751—1,a27b2,---7aeybe(8182 Sa, 0 H H 0j .k H 0i ‘H‘lfv

k=a+2j5=1 i=1

We first use the special case (6.6) of Lemma 6.6 to write

a1+1,b1—1,a2,b2,...,ae,be La1, b1—1,a2,ba,...,ac,be
a1, 1, b1—1,a2,b2,...,ae,be ml,m*1,1,(?1*17a27b27~--,ac,be +s1 Say (6 14)
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This element obviously commutes with P = T[;_, . H“H ik by (H-7). The

same holds for 9. Hence equals

1,di—1, d2, ..,de a1+1,b1—1,a2,b2,...,ac,be ]
[ml,al7b1—17a2,b27---,ae,be o1 P mah 1, b1 —1L,az,b2,....ac,be 92/ W

_ Ldi—1, d2, ..de La1, b1—1,a2,b2,...,ae,be
= Cullab1-1,a2,b2,..0e.0e 7 [ m1 ,a1—1,1,b1 —1,a2,b2,...,Ge,be o9P + Psy - 'Sa]w
_ 1,di—1, da, ..,d Lai, b1—1,a2,ba,...,ac,be
- €u|: mly”«lybl*l,aQ,bQ, ae,be ml ,a1—1,1,b1 —1,a2,ba,...,a¢,be O-QP (615)
d d d - -
1,d1—1, d2, ..,de )
+ Myt bbb 015150 [[ ] 0]w (6.16)

k=a+2j=1

where we have abbreviated w = []%_ 0;.a11 /¥, and, for the last equality,
used that sp - -+ s, maps the set {1,2,...,a} to {2,3,...,a+ 1}.

l,a1, b1—1,a2,b2,...,ac,be
Next, observe that o7 and ml,a1—171,b1—1 s e a&b commute. Therefore,
1,d1—1, d2, ..,de ml ai, —1,a2,b2,...,a¢,be

Lai,bi—1,az,ba,...,ae,be 91 M1 a1—171,b1 1,a2,b2,...,a¢,be

17d1_17 d21 ---7de ug
Lai—1,1,b1—1,a2,b2,....ac,be Tuy

= M Ve s ML e, ony (617)
by the associativity for merges and the factorisation from Remark 6.14 for the
first equality and again associativity for the last equality. The claim follows by
substituting (6.17) into (6.16) and using 0151 -8, = 5152 Sa, Oy K.

Altogether, the left hand side of the asserted formula in Proposition 6.11 equals

eup(bi ) fv) = |7, ++

1,d1—1,d2, ...d K
= eu Mg Vasba aube H H9 VU, (6.18)
k=a+1j=2

where Y = (6.19) + (6.20) + (6.21) — (6.22) with the summands given by

17d1_17 a27b27 a57 e
ml,a1—1,l,b1—l,a2,b2, J@e,be uJ 501,041 H Oay1,k (6.19)
k=a+2
d b b -
17 1_17 az,02,...,ae,0e
ml,a1,b1—1,a2,b2, (e be 91517 " Sa H 01,k (6.20)
k=a+1
- d b
17 1_17 a2,02;..., 67 e
Zrh]wal_17b170«27b2,.-.,at,l,bt—l,at+1 JGe,be 030401 ,a+1 H 0a+1k (6 21)

k=a+2

—1
s 1,di—1, az2,b2,...,a¢,be
Zq m17a1—17b1,a2,b2,---7ae7be : (6'22)
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: ; e Ldi—1, az2,bs,..., Ge,be
We rewrite (6.21). First 377 o M1 10, an borar 1 bi—Tars1.ae,be 0304 €quals
hldi—1 2 : La1—1,b1,a2,b2,...,as,bt,... ae,be
1 ,a1—1,b1 rhl ,a1—1,b1,a2,b2,...,at,1,b1—1, ae,be 0-5

_ l,di—1 ux a+bi+-bp_1,bs,b—by—-—by
B ml,al—l,ln Ou, Zma+b1+ br—1,1,bt—1,b—(b1+-+bt) 05

1,d1—1

uK “ .. _ P
= Mt our D D Sa+3 T b Sk Y by T et 2Satd

1,d1—1 u
= Ma—15 Tu) Z S1S1-1 """ Sa+1

— 17d171 UK a,bl,bfbl
- mLal,Lbl (ma 1,b—1 ma,l,blfl,b7b1)7 (623)

where for the first equality we have used Remark 6.14 and rewritten the merge
as a product of two (non-interacting) merges, for the second equality the com-
mutativity of o with the respective merges, for the third equality Lemma 6.1
and the definition of o5, and finally for the last equality formula (6.6).

On the other hand, by Lemma 6.10 we have

n b—1 n
mgzl{,bﬂ Orasi | ] barire | —(D.a®) = [ 6k (6:24)

k=a+2 s=1 k=a+1

which simplifies (6.21)+(6.22) further. Altogether we obtain

_ 1,d1—1, a2,b2,...,a¢,be
Yo = My a1 b —Lanbersanbe Tuy OLat H Oar1,k (6.25)
k=a+2

n
1,di—1 b,....ae;be
+  mbdi—l a2.02,.0 $189 - "3a10'11;§( H 01 (626)

1,a1,b1—1,a2,b2,...,a¢,be

k=a+1
1,di—1, a2,b2,...,ae,be
+ ml,alfl,bl,a2,b27-~7ae7be (6'27)
1L,di—1, az2,b,... a67be
+ m17a1*17b1,az7b2, Jaebe 7 H Hlk (6'28)
k: a+1
1,d1 uK a,b1,b—b1
- m1a171b1 ma,1,b171,b7b1 01,041 H Oat1,k- (6.29)
k=a+2
: ug Hab1,b—b1 _ Hae1,b1 ug _ pbai—Llb1
Since oy’ mml’bl_l,b_bl = rhal’l’bl_l ouk = My’ a1 —11by—1 ouk, the terms

(6.25) and (6.29) cancel. Applying Lemma 6.6 to (6.26) (6.28) gives

Y _ mdl, a2,b2, CLe,be H 91 k? (630)

a1,b1,a2,b2,...,ae,be
k=a+1
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Substituting this back into (6.18), we obtain that euKﬁ(b}( 1Y) equals

di—1,ds, ...de ydi, a2,b2,...,ae;be
Cug mdl,ag,bQ,...,ae,be rhcu,bl,aQ,bz7 ae,be H H 0] ka
k=a+1j=1
The associativity property of merges gives finally the desired formula from
Proposition 6.11. This finishes the proof of Proposition 6.11.

6.3. A refined generating set of the affine Schur algebra S. In this section,
we improve on our generating set for the algebra & from Corollary 4.13.

Proposition 6.19. The algebra S is generated by
{b}(g,f(&’bz,‘] ’ K17K2 g ]:[7p € ¥IuJ}' (631)

In other words, the algebra is generated by the subalgebra QO from Proposi-
tion 4.20 and the splits and merges b}(th.

Proof. By Proposition 4.17 the proposed generating set together with ng’J,
where d € DK2 Ky J = K1 Nd 'K, generate the algebra S. Hence it suffices
to show that the de,J are redundant. First note that d € Dy s, since for any
i € J we have [(ds;d~'d) = I(ds;) > I(d;), because J C K; and d € Dy, k, -
Therefore d permutes the blocks in J without changing the order inside the
blocks. Moreover, d € Dg; y implies that ngJ(VJ) = vgyTy by (4.12). This
also implies that without loss of generality we may assume that d only swaps two
neighbouring parts of J, as an arbitrary permutation of parts can be written as
a composition of swapping neighbouring ones. Since the arguments are all local
we can even assume that J contains only two parts, i.e. J =1\a. Setb=n—a.
Note that in this case d € Dy s is then the shortest coset representative of

the longest element in &. Hence T# is the summand corresponding to the
longest element d = dZJg appearing in rh‘”b Define rh‘”b = qrh“H’ Tf. By
Example 6.4 we have (qmg:gb)#VJ =(q rha'gbVJ) = b]LJ(VJ). Hence it suffices

to show that rh“+b v can be expressed in terms of simple splits and merges
applied to v . We argue by induction on a +b=mn. The base casea=b=1,
so n = 2, is obvious. For the general case, using (6.5), we obtain

a+b La+b—1 ja+1b—1 La+b—1 # 1a+b—1
aMap = aMap—1 aMa15-1 —aMlal1p qmalb 1 =T+l - (6.32)
On the other hand if we abbreviate d; = d}*t"7" and dy = d*1}°7" and set
_ m# _ m# l,a+b—1 a+1,b—1 .
Dy =T7 and Dy = e then qtha,bfl qma’lybfl is equal to
T Latb—1 T atib—1
(¢Map1 T DM -1 +D2)
o Tatb—1 _atip-1 at1,0—1 Latb—1
- qml,a7b—1 qma 1,b—1 + quma,l,b—l + qml,a,b—1 Dy + D1 D,

o l,a+b—1 a+1,b—1 1l,a+b—1 a+1,b—1 l,a+b—1 a+1,b—1
—qml,a,bq qmalb 1t ml,a,bfl qma,l,bfl 7qm1,a,b71 qma,l,bfl + D1D>
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where for the last line we used the equalities Dy = m}gfﬁ;l hy’ th 7 and
the analogous one for Ds.

By Lemma 6.1 we have d; = (Sp—18p- - Sn—1)(53S4 - - Sq+1)(S253 - -+ 84) and
dy = 8182+ Sq—1, in particular d = dydy with I(d) = I(d1) + I(d2). But this
implies Tf = D1 D3 and thus we obtain from (6.32) and (6.3) the following

a+b o 1l,a+b—1 a+1,b— 1 1l,a+b—1 a+1,b—1 1,a+b—1 a+1,b—1
m rhlab 1 qmalb qml,a,bfl qma,l,bfl _qml,a,bfl qma,l,bfl

1,a+b—1 1l,a+b—1
_qml,a—l,b qma 1,—1 + qml,a—l,b .

Applying # to the whole equation and using the inductive hypothesis, the right
hand side of the equation is in the subalgebra generated by our proposed gen-
erating set, hence so is the left hand side as desired. ([

7. QUIVER HECKE ALGEBRAS AND THE ISOMORPHISM THEOREM

In this section, we finally connect the constructions developed so far with the
so-called quiver Hecke algebras originally introduced by Khovanov-Lauda [KL09]
using diagrammatics and by Rouquier [Rou08] using algebraic and categorical
constructions, and later connected to flagged quiver representations in [VV11].
The quiver Schur algebra treated in the next section is a generalisation of the
quiver Hecke algebra introduced in [SW11] using flagged quiver representations
where, generalising [VV11], partial flags are used instead of full flags only.

7.1. The quiver Hecke algebra. We identify the fixed representatives 1,... ¢
of Z/eZ with the vertices in the affine Dynkin diagram I" = T, attached to the
affine Kac-Moody Lie algebra sl with the vertices numbered clockwise from
1 to e, and encode the fixed ordering on the representatives by a clockwise
orientation of the diagram. Recall our i € Z™ from Definition 3.6.

Definition 7.1. We denote by R; the quiver Hecke algebra associated to i.
This is the unital k-algebra generated by elements

{e(w) |u e S U{, ..., Pn1}U{z1,... 20}
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subject to relations
e(u)e(u’) = by we(u); Z e(u) =1;
ucbi
zre(u) = e(u)zy; Yre(u) = e(sy - wWhr;  TpTs = Ty
Yrths = Y5y if [r—s|>1;
YrXs = T ifs£nr,r+1;
w'rxr—l—le(u) = (x’rwr + 5ur,ur+1)€(u>; xr-l-lque(u) = (w'l‘x'l‘ + 5UT7UT+1>e(u);

0 if uy = Upq1,
e(u) if upy1 # up £ 1, up,
Y2e(u) = { (2p41 — . )e(n) if upy1 =ur +1,e # 2,
(zy — 2p41)e(u) if upp1 =u, —1,e #£2;
(Tr41 — zp)(2r — Tpg1)e(u)  if Upp1 = —up,e =2
(Vr10rr1 + De(u)  if uro = up = w1 — 1,6 # 2,
by s1ine(u) = § Pri¥rdrn = De(@) i = v+ Les 2,
(1) if Upg2 = up = —Upy1,6 =2,
Yr1¢rYrire(u) otherwise.

where (1) = (Yr1190rri1 — Tp — T2 + 22041 )e(u).

The commutative subalgebra of R; generated by {e(u) | u € Gi}U{z1,...,z,}
is denoted by P;.

The following can be found in [KL09] or [Rou08] and can be easily verified.

Lemma 7.2. The algebra R; has a faithful representation on
F; = @ e(wkzy,...xy) -1
ucsi
where the action of Pj is the regular action and

0 if up = Upg1,
Yre(u) -1 = (xp — zpp1)e(sp-u) - 1 ifuppr =up + 1, (7.1)
e(sg-u)-1 if U1 # Up,up + 1.

Again, we complete our algebra, this time at the sequence of ideals J,, =
R;I"R; where I is the ideal in k[x1, ... x,] generated by all z;,i =1...n. We
denote the completed algebra by f{i, its polynomial subalgebra generated by
{e(u)lu € &i} U {z1,...,2,} by P; and complete our faithful representation
to obtain /]-:\‘i = ﬁi RR; F;.

7.2. The isomorphism ﬁi = ﬁi. Next, we provide an explicit isomorphism
between the completed algebras 7/-[\1 and IA{i. A similar result can be found in
[Web13]. Note that our approach differs from that used in [Web13], in that we
do not use exponentials, but rather an affine shift following the ideas of [BK09],
where a corresponding isomorphism for cyclotomic quotients was established.
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First observe that there is an isomorphism
v: P — Py (Xi — q¢")ew — —q"zie(u) (7.2)

which induces an isomorphism
@(7—[) F;: HXa’euv — H Y1 —x;))%e(u)
between the restrictions of the respective falthful representations to the subal-

gebras 73l respectively ﬁi. Direct computation then verifies the following.

Theorem 7.3. The isomorphism ~ from (7.2) can be extended to an isomor-
phism of algebras 7 : ’H — Rl, via v(es, u®r) = Atpre(u) where

1—q—xr 4+ qxri1 if Upy1 = Uy,
u —q H —
4; = (1—gq—zr41+qzr) ifursr = ur +1,

u 1
¢t (l—z,)—g (1—wpp1)
T )T () Ul 7t L

8. QUIVER SCHUR ALGEBRAS

In this section we establish our main isomorphism theorem by connecting the (al-
gebraically defined) affine Schur algebra with the (geometrically defined) quiver
Schur algebra from [SW11]. We do this via an auxiliary modified quiver Schur
algebra:

8.1. The modified quiver Schur algebra. Recall i from Definition 3.6. For
Jel, and uy = (ug, - U Uty +1, s Uty] -+ Ut 41, ,u,) € Uy with
dimension vector d = d(i) = d(u, J) = (d1,da, ..., d.) we define

S
AUJ :k[yl,la"‘7y1,d1ay2,1a"'7y2,d2a"'7y€,de] u and A = @ AUJ-
JCI
uy;eUy

Definition 8.1. Let 1 < i < e. For 1 <k < 7 let c(k); = Y5, &/, using
Definition 5.7 and ¢(0); = 0. Then the total reversed Euler class of u; is

e r—1 c(s); dit1

H H H H (Yij = Yit1.k)- (8.1)

1=1s=1 j=c(s—1);+1 k=c(s)i+1+1
with Ey, := 1. The total symmetriser is defined as as

e r—1 c(s)s d;

= IIII II I wii—wir) (8.2)

1=18=1 j=c(s—1);+1 k=c(s);+1
with Sy, := 1. More generally, assume J C K and let ux € Ug be a merge of
uj. Then their relative reversed Euler class and the relative symmetriser are

Eu . Su
EUK — J respectivel gux — 2L 8.3
uh . p y u Sur (8.3)
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In particular, the special case K = I gives the total reversed Euler class re-
spectively the total symmetriser. Note that the relative Euler class and relative
symmetriser are again polynomials.

Example 8.2. Note that Eyo) = y11 — Y21, and Eqg;;) = 1 if € > 2 whereas
Eepy = y2,1 —¥11 if e =2 and Eqp = 1. Moreover, S1)2) = S = 1,
whereas Eqpny =vi,1 — yi2-

Example 8.3. Let for instance uy = (1,2|1,1|1,2[1), ug = (1,2/1,1,1,2|1).
Then for e > 3 we have EuJ = (yl,l — yz’g)(ng — ygvg)(yl’g — y2’2) =: F and
Eux = (Y1,1 — ¥2,2) and therefore ERX = (y12 — y2,2)(¥1,3 — Y2,2), whereas for

e=2wehaveEy, = E(y21—¥1,2)(¥2,1—v1,3)(Y2,1—Y1,4) (y2,1—¥1,5) (Y2,2—Y1,5)
but again EjX = (y12 — ¥2.2)(¥1,3 — ¥2,2). On the other hand, for any e > 2,

we have SU¥ = (y12 — y1,4)(y1,3 — Y1.4)-

Definition 8.4. We define the modified quiver Schur algebra Cj as the subal-
gebra of Endy(A) generated by the following endomorphisms:

e the idempotents e(uy) for uy € U for any J, projecting onto Ay,

e the polynomial e(uy)pe(uy) for uy € Uy for any J, and p € Ay,
defined as multiplication by p on the summand A,;.

o the splits Y7 for J C K, u; = (u,J) € Uy, which are just the embedding
of the summand Ay, into the summand Ay, .

o the merges A% for J C K uy = (u,J) € Uy, defined on f € Auf,, by

; H{A(ng; ) € Ay ifuy =1y,

. (8.4)
0 otherwise.

L I
where A = AJX sends an element f to the total invariant mluf (s‘fK) .
uy

Using a reformulation in terms of Demazure operators, see Proposition 8.13, it

Iu . : .
follows that rhluf (SJK) is indeed again a polynomial.
uy

Example 8.5. Consider for instance u; = (1]1) and uxg = (11). Then for
f € Auye = kly11,912] we have ASK(f) = A(-—L—) = 2fy, where f =

Y1,1—Y1,2
fi+ (y1,1 — y1.2) f2 with (uniquely determined) fi, fo € Ay, .
Example 8.6. Let us describe the merge endomorphism explicitly in the simplest
case where uy = (191,292 ... e%|1b1 202 . ¢eb) has only two parts, hence
ug = (194,292 . e%) with d; = a; + b;. Then our formulae give

dit1

ﬁ H H (?Jz‘,j - Z/i+1,k)

=1 ]:1 k:ai+1+1

e a; d;
ITIT II ig—wir)

i=1j=1k=a;+1

f

ugx _ di, da, ..de
A(EUJ ) - mal,bl,ag,bg,.“,ae,be
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We denote by C; the completion of C; at the ideal generated by all e(u)pe(uy)
forall J CI,uy € Uy and all p € Ay, with zero constant term.

Then Gi has a faithful representation on

~

A= D A
JCI
uy;eUy

where /A\uj is the completion of A, at all polynomials with zero constant term.

8.2. The quiver Schur algebra. Here we recall the definition of the quiver
Schur algebra Aj;, introduced by the second author and Webster in [SW11]. For
Jel, and uy = (w1, - U Uy +1, s Uty| - |Ue, 41, ,us,) € Uy with
dimension vector d = d(i) = d(u, J) = (d,d>, . .., d.) we define

o s o o
A'UJ:k[Z:l,l)'"7zl7d1722,1”"722,d27"‘ze7d5] wr, A= @ AuJ. (85)
JCI
uyeUy

Definition 8.7. Let 1 < i <e. For1 < k < r let ¢(k); = Z?:l dg using
Definition 5.7, and ¢(0); = 0. The total Euler class for u; is defined as

e r—1 c(8)i+1 d;

E., = [I1I [T Givry—zin):

i=15=1 j=c(s—1);+1+1 k=c(s);+1
(notice that this is G -invariant), and its symmetriser is defined as

e r—1 c(s); d;

S, = I I (25 = )

i=15=1 j=c(s—1);+1 k=c(s);+1

S

(Note that éuJ is the same as Sy, only written in variables z; ; instead of y; ;.)

More generally, assume J C K and let ux € Uk be a merge of u;. Then their
relative Euler class respectively the relative symmetriser are defined as

. E . S
ug _ Wy ; ug _ T4y
Ef = = respectively Sub —.
EuK SuK

The following was introduced in [SW11].

Definition 8.8. The quiver Schur algebra A; is the subalgebra of End]k(/oX)
generated by the following endomorphisms:

e the idempotents e(uy) for uy € U for any J, projecting onto /oxu'],
e the polynomial e(uy)pe(uy) for any J and p € IOXUJ,
defined as multiplication by p on Ay ;-
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ALY .
o the splits Y. for J C K and u; = (u,J) € U, defined as

P E“Kf € Au] iful, = ug,
0 otherwise.
for f € /OXu/K .- In other words, a split is just the embedding of the summand
/O\uK into the summand lo\ul], followed by multiplication with EE§< .
e the merges Azf for J C K anduy = (u,J) € Uy, defined as
P {A(f) € Au, ifu) =uy,

. (8.6)
0 otherwise.

for f € lo\u/ , where A = AEK sends an element f to the total invariant
g’ J

Ay = o (o )- 7)

Note that again the translation into Demazure operators from Proposition 8.13
ensures that A(f) is in fact a polynomial.

Again we have S|mple splits and merges: In case |IK\J|=1anduy = (u,J) €
Uy, we call Y a simple split and A a simple merge. If K = 1 and

- ab
J = K \ {a}, we also denote these by Yab respectively A:+b, where a; = d}
and b; = d? with the notation from Definition 5.7.

Remark 8.9. In [SW11], the quiver Schur algebra was only defined over C, since
the involved geometry would require more advanced tools. However, the faithful
representation defined in [SW11] makes sense over any field, so we define the
quiver Schur algebra over an arbitrary field as in Definition 8.8. In characteristic
zero it agrees with the one defined in [SW11] by Remark 8.11 below.

Example 8.10. Note that in the case of a simple merge iuK of the form u; =

uy
(191,292 %11 2b2 . ebe) and K =T, hence ug = (14,2% ... ede),
_ . . atb . o
formula (8.6) simplifies to Azf (f) = A;b (f) = A(f), which yields
o ug
e f
AUJ (f) - ma17b17a27b27~--aaeybe e a; a,b+d

ITIL 1T (i = =)

i=1j=1k=a;+1

with the relative Euler class E"K 16 T2 H;l tf;l(zlﬂ k — Zij). This,

indeed, corresponds to the formulae given in [SW11].

Remark 8.11. Assume K =1, J = K\ {a} and uy = (u,J) € Uj. Let (a,b)
be the dimension vector of u, where a; = d} and b; = d? with the notation
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from Definition 5.7. Write S, for Wi, and S, p for Wi, Sending f to

. w( H (21,5 — #ik) H (i) — Zi,k:))

Z (_1)l(w)w(f)H 1 1<j<k<a; as<j<k<a;+b;
b1
WESatb i=1 aitbi! H (2,5 — 2ik)
1<j<k<aitb;

. . . ¢ at+b . . .
is the action of a simple merge A:b on the faithful representation (8.5) defined

in [SW11]. Note that, in contrast to formula (8.6), this expression does not
make sense in positive characteristic in general. In characteristic zero however,
this expression coincides with (8.6), since we have

Z w(f) H 1 w <H1<j<k<ai(2’i,j — Zik) Hai<j<k§ai+bi(zi7j — Zz},k))

wESatp i=1 a;tbi! [licj<k<aitn (2,5 — zik)
.
1 1
S IRIE | ot )
il 1 i i+0;
WESatb i=1 'bi H?lzl HZ az+1(zl7] Zi,k)
> w0 e (o )
= w
a;+b;
Zi i — Zi
weDé“‘II‘jJ i=1 1Hk a1+1( 1,] z,k)
SR I 0)) e )
N a;+b;
weDI“K ha, 1 (Zig — Zik)
1
— ma1+l;)1,az+l;2, ,ae+b fH .
" b;
a1, bi,az, ba HZF’; +1(ZL7] Zi,k)

8.3. Demazure or Bernstein-Gelfand-Gelfand difference operators. In this
subsection we connect our merging formulae to the classical difference operators.
For 1 < i < n —1, the ith Demazure operator or divided difference operator
from [Dem74] or [BGG73] is the endomorphism

[ =si(f)
Xi— Xiv1

For f,g € k[X1,..., Xy], we have A;(fg) = Ai(f)g+si(f)Ai(g), in particular
Ai(fg) = fAi(g) if fis si-invariant, and A? = 0. Moreover, for a reduced ex-
pression w = s;, S;, - - - S;,., the operator A, = A A% -+ A, isindependent
of the chosen reduced expression. For future reference, we record the following.

Ailk[Xl,...,Xn]—)k[Xl,...,Xn], f*—> (88)

sil

Lemma 8.12. Let wy = wo(n) € & be the longest element, then
Ao (XPIXE72.0. X2 ,X, ) = 1.

In particular if wy is the longest element of some parabolic subgroup Wi in
S, then there exists some polynomial h such that A, (h) = 1.
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There exists in fact a closed formula for A,,,, namely

1 o 1
Awo = : Z(_l)l( )w - Z w:7 (89)

weS wes

where A = [[1<j<j<n(Xi—Xj). The first equality can, for example, be found in
[Ful97, Lemma 12], the second equality is an elementary calculation observing
that a simple transposition changes the sign of A by —1.

The merges from (8.7) can then be rephrased in terms of Demazure operators
as follows (explaining the notations A and A)

Proposition 8.13. Assume we are in the setup from (8.7) and abbreviate J' =
I, and K' = I, using Definition 5.12. Then we have the equality

f
i (sﬁ’j) = Ag. (8.10)

on Ay,, where dff € fo/ is of maximal length (i.e. the representative of the
longest element in Wy C Wi ).

Proof. Let f € Ay, and let w; be the longest element in W C Wi+ and wg
the longest element in Wy. Then

A (F) = D (F 1) = Ay (F - Ay (1)) = Dy (A, (F1)) = Ao (/1)

with i as in Lemma 8.12. Here, for the penultimate equality, we have used that
f is Wj-invariant and for the last equality that dw; = wg. With the explicit
formula from (8.9), we obtain that A, (fh) equals

1

> 0w = 4|3 ()@ ( > <—1>“w>w<h>>

wEWK/ dED(I;;/ wEWJ/

with A the Vandermonde determinant [T¢_; [Ti<j<k<d, (2i,j — Zik), equal to

e r—1 c(s)i d; e r—1
ITII 11 (zig—zig) - [T 1] 11 (i — Zik)-
1=15=1 j=c(s—1);+1 k=c(s);+1 1=15=1¢(s—1);+1<j<k<c(s);

Hence, using (8.9), we obtain A, (fh) = Mm% (SULK) Ay, (k). Now the propo-
uy
sition follows with the definition of h. O

8.4. The shifted quiver Schur algebra B;. We now define the shifted quiver
Schur algebra Bj in almost the same way, except that the Euler class moves
from the split to the merge. More precisely, define B; as the subalgebra of

Endg(A) generated by the idempotents and polynomial as in A;, and slits and
merges now defined as
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I
u;
ug

e the splits: Y for JC K and uy = (u,J) € Uy, givenon f € j\u;{, by

foe fehy, iful =ug,
0 otherwise.
In other words, a split is just the embedding of joXuK into /D\uJ.
e the merges: Xzf for any J C K and uy = (u,J) € Uy, given by

P AERE f) € Ay, if 'y = uy,
0 otherwise.

Note that this algebra is again defined for any field.

9. THE MAIN RESULT: THE ISOMORPHISM THEOREM

The goal of this section is to prove the main Isomorphism Theorem 9.7 between
the completed affine Schur algebra and the quiver Schur algebra using the
auxiliary algebras in between.

9.1. The isomorphism S; = Gi. We now compare the faithful representation
of the modified quiver Schur alggbra C; with the faithful representation of the
completed affine Schur algebra S;.

The following isomorphism of vector spaces

T:k[yl,h'"7y1,d17'~'7y6,de] — R+:k[YLl?"'7}/1,0317"'7Yv€,de}
Yej + 1—q Y,

induces an isomorphism of vector spaces

UK

Tug - Auge = P(S); = Ry u, v, 550 o 2w
and thus a total isomorphism
T = @ Tag 1 A= P(S); (9.1)

KCI
ugeUg

From now on we will identify these two vector spaces via our chosen isomor-
phism. With this identification we can compare our endomorphism algebras:

Proposition 9.1. The isomorphism T can be extended to an algebra isomor-
phism 1 : C; — &; which
e identifies the subalgebra of C; generated by all e(uy)pe(uy) for all

J CLuyeUjandp e Ay, with the algebra Q; from Section 5.6,
e identifies splits in the sense that, for any J C K C and uy = (u,J) €

. + +
Uy, it maps Yyl to eu,bl yéuy,
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J)=|K|—-1 and
u; = (u,J) € Uy, the generator Aﬁf maps to JeruKb}( JJéqu—l for
an invertible power series P.

e jdentifies merges in the sense that, in case J C K,

From our identification of local and global indices in (5.10), it is immediate that
T extends the isomorphism (7.2) given in Section 7.2.

Proof. It follows from Proposition 5.18 and Lemma 4.19 that the action of the
algebra @i coincides with the action of the subalgebra of Gi generated by all
e(uy)pe(uy) under the identification 7—!. Hence the first claim holds. It is
also clear from Example 4.5 that for J C K and u; = (u,J) € Uy, the action
of Jeru‘,ijjeLuK on P(S); translates directly to the action of Y37 under 77!,
Hence the second assertion holds as well. We now claim that for J C K,
|J| = |K|—1and ug = (v, K) € Uk a simple merge of uy = (u,J) € Uy,
the action of euKbKJeuJ on P(S); translates into the action of A, P for an
invertible power series P. Again, to ease terminology, we check this in the case
of K =Tand uy = (191,29, ... e%[1% 202 ... ¢b) Since the calculations
are local this is sufficient. Recall from Proposition 6.11 that for f € R+,uJ

n a
~ 1 _ di, ... da,...d u) —(K
ewp(bie NIV = ew gyt oy ous T TT 05w v
k=a+1j=1

Translating this into the variables Y; ;, notice that oy,X becomes superfluous as
it is precisely the element mapping (7, j)u, from Definition 5.12 to (z’,j)u/K and
is hence the identity on the variable Y; ;. We obtain

e a; d
= —(J d 5 e d N 7 qY’ k
w0k M) = e ittt T T Ty Ysk
.7

i=1s=1j=1k=as+1 )

Y;
Under 71, multiplication by TT¢_; [1¢_, Haz 1Hk Laatl qyjiy translates to

multiplication by

H ﬁ la_[ H il y”) ¢°(1 — ys,k)
i=1s=1j=1k=as+1 q >_ (1_ys,k)
7 di dz‘
= ﬁ f—[ H 1—q+qyij — Yik ﬁl _Q(yi,j - yz‘+1,k) R
=121 \ kmay 1 Yij — Yik b1 L T4 Yig T @ik

z+1

1Yij5 — Yi+1,k
e P
i=1j=1 Hk a;+1 Yijg — Yik
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where we abbreviated
ds ;

R — ﬁ (A —yiy) — (1= ysi)

21 e T =wig) = (1 —ysp)

i it
e a; d; dit1 —q
P = J[IICII Q—a+auij—wir) ]] R).
i=1j=1 k=a;+1 hmarpi41 1 74T Vig T @Yk

Note that P is an invertible power series in Ay,.. Hence the third assertion
holds. By definition of the modified quiver Schur algebra we have mapped all
generators to the corresponding elements in S by identifying their action on
the faithful representations. Thus, 7 is injective, and hence an isomorphism, as
the image of T contains a generating set for S by Proposition 6.19. ([l

9.2. The isomorphism B; = A; of (shifted) quiver Schur algebras. We
next show that the shifted quiver Schur algebra is isomorphic to the ordinary
quiver Schur algebra. We start with some preparation. First, we again identify
the vector spaces underlying the faithful representations. For u; € U, we set
Wo\uj = EuJ/OXuJ and YA = b Jsc U\uJ. Fix the vector space isomorphism

uyeU;
fu, * A, — YAy, feEugfandi= P ku, iAo YA
JCI
uy;eUy

Lemma 9.2. Endowing YA with a representation of B; via k, the induced action
is given by the same formulae as the action of A; on A for idempotents and
polynomials and, for splits and merges as follows.

e The split ?3; forJ C K,u;=(u,J) €Uy, actson f € i/O\u/K, by

F Eﬂff € iAuJ ifuf, = ug,
0 otherwise.

e The merge Xzf for J C K,u;=(u,J) € Uy act Onfej\u’J, by

o (AU et i =,
0 otherwise.

Proof. The actions of idempotents and polynomials are immediate. In order to
compare the actions of splits and merges, consider the diagrams

) Eu ) ) Eu )
AuK = lAUK AuK = \LAUK
I i ety |
Ay, J Ay, Ay, T Ay,
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Then, for splits, the claim of the lemma is equivalent to the commutativity of
the first diagram, which is equivalent to the fact that the induced action of

SuJ S .. . T . . o ) o
Y, on A is indeed given by multiplication with Ey, /Ey, = Ey.
For merges, we need to verify commutativity of the second diagram, which again

—u .
stems from the fact that the action of Auf on ‘A is given by
o % ene g o 2o
= Eug A(EGRE, ) = EugcA(Ey, f)
: . . Iy . . o
Since Ey,; commutes with rhjuf by Gy ,-invariance of Ey,., we are done. [

Lemma 9.3. The representation of B; on YA is faithful. Moreover, the action
of A; restricted to ‘A is equal to the action of B;.

Proof Directly from the proof of the Lemma 9.2, we see that the action of A;
on A when restricted to A is equal to the action of B;. Since the representation
of A; on A was faithful, the representation of B; on iA is faithful as well. The
second statement follows from the commutative diagrams above. ]

The canonical embedding ¢: A < A/OX, f +— f induces an algebra isomorphism:

Proposition 9.4. The algebras A; and B; are isomorphic.

Proof. Since the action of A; restricted to *A is equal to the action of B; by
Lemma 9.3, we see that *A is a faithful subrepresentation of A for A;. The
algebra A; is therefore completely defined by its action on YA, and we obtain
the desired isomorphism A; = B; from Lemma 9.2. U

9.3. The isomorphism C; = B;. In order to prove that 31 and A; are isomor-
phic, it now remains to show that C; and B; are isomorphic.

In order to do this, we define a bijection

UUJ — UUJ, UJ|—>11NJ.

Jcl JCI
where for uy = (ug, -, [Uy 41, s Uty| - |Ut,_ 41,7+, Uz, ), We Set
u; = (utrfl+1?". 7utr|utr72+17“' 7ut7‘71| |U1,"- 7ut1)'

We further define the inner automorphism of &,, which is given by conjugation
with the longest element wy of D% 7 and notice that this interchanges G, and
6u~J. It induces an isomorphism 6 of vector spaces

k[yl,h e Y1,diyY2,15 - - -5 Y2.dos - - - 7y6,de] Ye,j
ei I
k[zl,la e 7zl7d1a 2215+ Z?,dza O 7Ze,de} ch (]) ZC,dc-f-l—j

which restricts to an isomorphism 6 of vector spaces 6: A, , — /OXu~J
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Example 9.5. Considering uy = (1,1,1,1,2,2,3|1,2,3|1,1,2,3,3), we have
= (1,1,2,3,3,]1,2,3|1,1,1,1,2,2,3) and W, = &7 x &3 x S4. Further,
Gu, = (64 x G2 x {1}) x ({1} x {1} x {1}) x (62 x {1} x &2).

Under conjugation by wy this is sent to
(G2 x {1} x G2) x ({1} x {1} x {1}) X (64 x &2 x {1}) = &.

Proposition 9.6. There is an isomorphism of algebras C; — B; given by

- ug

) oo eli7), peluy) s b)Y oY\ K

Proof. We check that the isomorphism 6 : A — A intertwines the actions of C;
and B; with respect to the isomorphism given in the proposition. It is obvious
that this is true for the idempotents and the polynomials, as well as the splits.

. . . . Iy
From the action of merges and the fact that conjugation with wg sends K
uy
I~
to "X, we see that, in order to prove the proposition, it suffices to show that
uy
0(Eu,) = Eg; and 0(Su,) = S. Notice that the term y;; — y;11, appears in
Ey, (and thus the term 21 4, 41—k — %i,d;+1—; appears in 6(Ey,)) if and only
if the jth appearance of 7 in uy is in an earlier segment than the kth appearance
of i+ 1. As applying ~ reverses segments, this is equivalent to the (d; +1—j)th
appearance of i in uy being in a later segment than the (d;y1 + 1 — k)th
appearance of 4; or to the term z;, 1,4, 41—k — %i,d;+1—; appearing in Eg. The

claim that 0(Sy,) = §u~J is checked analogously. O

9.4. The main theorem. We are now prepared to prove our main result:

Theorem 9.7 (Isomorphism Theorem). There is an isomorphism of algebras

S =~ A,
Via this isomorphism S; inherits a grading from Aj;, i.e. the category of repre-
sentations of S with fixed central character corresponding to i inherits a grading.

Proof. Composing the isomorphism from Proposition 9.1 with the completions
of the respective isomorphisms in Propositions 9.6 and 9.4 provides the required
isomorphism. In formulae, the isomorphism is the composition

~ Proposition 9.1

S

Proposition 9.6 = Proposition 9.4 -~

6i Bi Ai- ]

10. THE EXAMPLE GL2(Q5) IN CHARACTERISTIC 3

We finish with an explicit example. Consider the unipotent block 5 (the block
containing the trivial representation) of the category of smooth representations
for GL2(Qs) over an algebraically closed field k of characteristic 3, so e = 2.
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10.1. The (completed) quiver Schur algebra. Let B! as in (1.1) and B}
the full subcategory of B! consisting of representations with generalized central
character xa where a = (q,q?). Equivalently, B is the full subcategory of
S — Mod of all representations with generalized central character xa.

Recall that the path algebra of a quiver is the k-algebra with basis all possible
paths obtained by concatenating the arrows, including the paths of length zero
corresponding to the vertices of the graph. The multiplication of two paths is
the path obtained by concatenation if this makes sense and zero otherwise.

Theorem 10.1. Letn = 2 = e. Then the quiver Schur algebra A; fori = (1,2)
is (as graded algebra) isomorphic to the path algebra B of the following quiver

zae(l2) AL wae2) YR miie)

(1]2) (1,2) (2[1) (10.1)

[

vane(1l2)  YHD)  wane(12) ALY @2ae2D)

with grading given by putting the horizontal arrows in degree 1 and the loops
in degree 2 modulo the following (homogeneous) relations:

12) (1

Y A = (221 —z11)e((1]2)),
) (12)

(2|1)( 2)

Y A = (1 —=z20)e((2(1)),

(12) (2]1)

(12) (112) (12) (2/1)

A Y - A Y (z1,1 — 22,1)e((1,2)),
(112) ( 2/1) (

uy

Ti1 Y = Y ri1 fori € {1,2},uy € {(12),(2(1)},
(12) (12)
(12)

vr A= A e forie {12)uy € ((12), @)
uy uy

Remark 10.2. Since the algebra is non-negatively graded and 3-dimensional in
degree 0, the three idempotents e(1]2), e(2|1), and e(1,2) must be primitive.

Proof. By Remark 10.2, the given three idempotent are primitive and by defini-
tion pairwise orthogonal, hence the quiver has three vertices. The idempotents
together with the elements corresponding to the arrows generate the quiver
Schur algebra by Definition 8.8. The relations are easily verified on the faith-
ful representation from Definition 8.8. That these are all the relations is again
checked by a direct calculation, or follows from the basis theorem in [SW11]. O
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Remark 10.3. Note that the elements e(1(2), e(2|1), x;1€(1|2), z;,1€(1]2) with

. . @ L(201)  (1,2) a | L(12)  (1,2)
i = 1,2 together with X(1I2> = Y(172) A(1\2) and X<2|1> = Y(L?) A(2I1) generate

a graded subalgebra of B = A; isomorphic to the quiver Hecke or KLR algebra
attached in [KL09] and [Rou08] to the cyclic quiver and the sequence i = (1,2).

From our main theorem we get the following consequence.

Corollary 10.4. Let G = GLy(Q5) and assume ¢ = 3, hence e = 2. Then the
category BL of representations in B! with generalised central character xa is
equivalent to the category of B-modules, where B is the completion of B at
the maximal ideal (z11,221) of k[z11,221] C B.

Proof. By Theorem 9.7 and Theorem 10.1, Bis isomorphic to the completed
affine Schur algebra from Proposition 5.1. Hence it is isomorphic to the com-
pletion of the endomorphism ring of a projective progenerator of B! by (1.1),
the module category over which gives precisely the category of objects in B!
with the given generalised central character. O

Remark 10.5. Since every irreducible representation in B is smooth and there-
fore admissible (see e.g. [BI11, Theorem 4.42] or [BZ76, Theorem 3.25]), it
has a central character by Schur's Lemma. The category of objects in B! with
some generalised central character thus includes all finite length objects in B,

Note that Endp(Be) = k[x1, z2], generated by ex; e and ez e for any e €
{e(1]2),e(2]1),e(12)}. Moreover, Homp(Be, Be') = k[z1, x2] as vector spaces
for any pair (e, €’) of these idempotents. It is a free left End g(Be)-module and a
free right Endg(Be’)-module of rank 1 with basis the minimal degree morphism
in Hompg(Be, Be'). Hence B can be viewed as a k[z1, x2]-algebra. As such it
is quadratic, i.e. generated in degree one (by the morphisms corresponding to
the arrows given by simple merges and splits) with relations in degree two.

10.2. Indecomposable projectives. The indecomposable projective B-modules
P((1)2))and P((1,2)) are shown in the pictures below, where the numbers stand
for simple objects and the lines for a basis vector in Ext!.

The part indicated by the non-dashed lines should be extended to infinity at
the bottom and then the whole resulting part is copied infinitely many times
(indicated by the dashed lines), once for each power of (z11 + 221). The
structure of P((2|1)) is similar to that of P((1|2)), with (1]2) and (2|1) swapped.
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P((112)) P((1,2))
<1\2>
(1, 2)
a, 2>
2\1) (1I2)
a2) <2\1> (1\2>
/
/ (1 2) (1 2)
/
/(1,2) (1 2) /
/
ry / (2\1) (1\2) (2I1) (1\2)
’y
/ (2\1) (1]2) 2\1 (1\2) /
\ / / (1 2) (1 2)
/ a, a, 2) /
/
K <z\1) ar) <zu> <1u>
g / ey ary <zm <1|2> S / ‘
, /
/ / :
/, // / ‘ // // (/1 2)
/ /
y y (/1 2) / i)
/ r, / ry
/ /o, / [
/ r, /
/ /o, /
/ /
/ /
/
/

10.3. The corresponding irreducible representations. The labelling of the
primitive idempotents in (10.1) corresponds to a labelling of the three simple
modules in B. Explicitly, we have

e (1]2) (corresponding to the trivial representation),

e (2]1) (corresponding to the composition of the valuation on Q5 and the
determinant), and

e (1,2) (corresponding to the cuspidal representation).

To verify this, that the first two idempotents are contained in the quiver Hecke
algebra (see Remark 10.3), hence correspond to the two non-cuspidal simple
representations. For these two the identification is a matter of conventions.

10.4. The Extquiver of B.

Corollary 10.6. In the situation from above, the Ext-quiver of B is

ze(12) Agé; ze(1,2) Ygg; ze(2|1)

L~ 1 O
(112) (1,2) (2[1) (10.2)
'\_/ ~_

12 12)
Y,) i)
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and the relations are that z = ze(1|2) + ze(2|1) + ze(1,2) is central and

(12) (1]2) (12) (2]1)
A Y = -A Y
(1]2) (12) (2]1) (

Proof. This follows directly from the theorem by setting z = 11 + x21. O

In this example one can in fact verify our general expectation that B only differs
from B! by self-extensions of the simple cuspidal representation, and thus B!
contains more or less all information about the unipotent block B.

11. THE SPECIAL CASE g = 1.

We finally consider the special case where ¢ = 1, hence e = 1. Then H = k[W]
is the group algebra of the extended affine Weyl group, (2.1). We identify the
representative 1 € Z/1Z with the single vertex of the Jordan quiver T'; which
has one vertex and one loop. The underlying graph is the Dynkin diagram of
the Borcherds algebra attached to the Borcherds-Cartan matrix (0).

Fix a dimension vector d = n € Z~q. Then Repq = Rep,, denotes the set of
complex representations (V,x) of I'y. For a composition A of n let F) be the
variety of flags Fy in C" of type A, i.e. dim F;/F;_1 = \;.

Let Q(A) C Rep,, x F\ be the space of strictly stable flags, that means pairs
((V,x), Fe) such that z(F); C F;_1. For compositions A, p of n we consider
the Steinberg type variety Z(\, p1) = Q(X) XRep, Q(1). The quiver Schur alge-
bra A4 = A, attached to I'y is then the direct sum of the GL,,(C)-equivariant
Borel-Moore homologies A,, = @Px ) HEM(Z(A,M)), equipped with the con-
volution product. By construction, this algebra A, comes along with a Z-
grading and with a faithful representation, see [SW11, (2.7), Proposition 2.9],
[KK13, Proposition 2.7]. The subspace

R, = HG'(2((1,1,...1),(1,1,...1))),

is a subalgebra which we call the quiver Hecke algebra of rank n attached to
I'1. An explicit description of this algebra was given in [KK13, Definition 1.2].

Lemma 11.1. The following holds for R,,.

(1) It is free over HEM (pt) = Clx1,..., 2] of rank n.

(2) There is an isomorphism Ry, [x7", ... Y /(zixy b — 1, a7 ey — 1) =
C[W] of graded algebras with X; of degree two and s; of degree zero.

(3) There is an isomorphism between the completion R, at the ideal gen-
erated by the positive degree polynomials and the completion of C[W]
at the ideal generated by the central character associated to the n-tuple

(1,...,1).
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(4) R, has a faithful representation on Clx1,...,x,] such that x; acts by
multiplication and 1); acts by the Demazure operator (8.8) followed by
multiplication with x;11 — x;.

Proof. By [KK13, Definition 1.2 and Theorem 2.8], the assignments 1
e(1,1,...,1), s; = (¢y + De(1,1,...,1), Xj = xj, for 1 < i < n—1 and
1 < j < n defines an isomorphism between the quiver Hecke algebra R, and the
subalgebra C[S,,] ® C[X1, X2, ... X,;] of C[W] with the choice P;(u,v) =u—v
and Q1,1(u,v) = 0 in the notation of [KK13]. Then the first two statements
follow. The third statement follows immediately from the second. The last
statement is a special case of [KK13, Proposition 1.5]. [l

The faithful representation above extends to a faithful representation of R,, on
C[[z1, - - ., xn]], which matches the completion of the faithful (natural) represen-
tation of C[W] on C[[z1?,...,zF']]. Since both of the faithful representations
can be defined over Z, the isomorphism of Lemma 11.1 is still valid over k.

Computations analogous to those in [SW11] show that the action of A,, on its
faithful representation can again be defined over Z and hence over k, where
a presentation by generators and relations is given precisely as in the case of
e > 1 (except that Euler classes are now taken with respect to the Jordan
quiver). Defining A,, as before and letting S’qzl be the completion at the
ideal generated by the central character associated to the n-tuple (1,...,1), we
obtain the following theorem.

Theorem 11.2. There are algebra isomorphisms

Anlert o (e = e ey — 1) 2 Sy and A, 2 S,
Proof. Defining the modified quiver Schur algebra C,, as before, the isomor-
phism between Cy, [z, ... 2/ (zix; ! — 1,27 ', — 1) and S,—1 simply iden-
tifies the corresponding faithful representations. Indeed, for J C K the split
gets identified with the element biK which acts as the identity on the faithful
representation, and the merge is identified with b}gj which acts as the sum of
elements in Dé(J. In order to obtain the isomorphism between the completions,

we use an affine shift sending x; to x; — 1. The isomorphism between the

modified quiver Schur algebra and A,, is proved exactly as in Section 9. [
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