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HIGHLIGHTS:  

 Layer-by-layer assembly has been proven as an effective thin film deposition method 

 Good coverage, continuity and controlled thickness of the sensitive film accomplished 

 The fabricated sensor exhibits very good sensitivity and a wide detection range 

 Hysteresis as well as response and recovery times are excellent 

 

 

ABSTRACT:  

In this study, a rapid optical fiber sensor for humidity with high sensitivity and wide detection 

range has been constructed, based on lossy mode resonance (LMR). A thin film made of 

alternating polyethylenimine (PEI) and graphene oxide (GO) layers was selected as sensitive 

coating. It was deposited on a SnO2-sputtered fiber core in a dip-assisted layer-by-layer 

assembly. The structure and surface chemistry of the raw materials were investigated by 

means of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Key 

properties such as sensitivity, linearity, hysteresis, stability and response and recovery times 

were characterized. The sensor exhibited excellent sensitivity, especially at high relative 

humidity (RH) levels, and short reaction and retrieval periods. This research provides a viable 

and practical way to fabricate high performance humidity optical fiber sensors with GO-based 

nanostructured coatings. 
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1. INTRODUCTION 

Humidity measurement and control are essential in many industrial and agricultural 

processes as well as human activities, such as air quality monitoring, air conditioning, 

manufacturing processes, control and storage of food or computer components [1-4]. High 

sensitivity, wide humidity detection range, rapid response and short recovery times are the 

key features that humidity sensors must achieve in order to fulfil our needs. A key factor that 

determines the humidity sensor’s behavior is the selected sensing material.  Polymers have 

previously been employed as humidity sensitive materials [5-8] due to their cost-

effectiveness, relatively simple production, compactness and excellent performance. 

However, polymers still exhibit limitations, such as hysteresis of the response, limited sensing 

range, drifting, and poor durability against water or dew, which damage sensors’ functionality 

[6, 9, 10]. For example Polyethylenimine (PEI) is a polymer that has been widely used as a 

humidity sensitive coating [6, 10]. However, these PEI-based sensors cannot measure relative 

humidity (RH) when it exceeds 80 % [10]. 

Numerous methods have been attempted to improve polymeric performance of polymer-

coated sensors, such as cross-linking of polymers chains, quaternization, and 

copolymerization with hydrophobic monomers [6, 11, 12]. Recent studies have demonstrated 

that the humidity-sensing properties of pure polymers could be improved by introducing an 

additional material, i.e. by making composites [13-15]. In this regard, graphene oxide has 

attracted much attention as a potential candidate to improve polymeric sensor response 

characteristics [9, 14, 16]. 

Graphene oxide (GO) is a non-stoichiometric material with a graphene-like structure. It 

consists of aromatic carbon randomly interspersed with oxygen containing functional groups 

(epoxy, carboxyl and hydroxyl functionalities). Significant qualities like hydrophilicity and high 

dispersion in various solvents, due to the presence of oxygenated functional groups, makes 

GO a suitable material for sensing applications [17, 18]. Therefore, the development of 

composites including GO offers a new way forward for fabrication of high performance 

humidity-sensitive coatings. 

Several types of humidity sensors have been developed over the years [19]. Optical fiber 

sensors have attracted increasing attention due to their benefits over traditional sensors, 

such as small size, biocompatibility, remote sensing capability and safety in flammable 

environments [20, 21]. Across the range of optical fiber sensors available, those based on 

electromagnetic resonances are very popular as they are reliable, robust and very sensitive 

[22, 23]. When an optical fiber is coated with a thin-film, different cases of electromagnetic 

resonances can be generated depending on the properties of the materials involved in the 

system (the waveguide, the coating and the external medium). These resonances produce a 
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stable absorption band in the transmitted spectrum that shifts in wavelength if there is a 

variation in the refractive index of the coating or the surrounding medium. Then, if the 

refractive index of the coating is sensitive to a desired target, the variation of this target will 

lead to a shift in the absorption peak. This shift can be measured and is the basis of the 

sensing mechanism [22, 23].  

Sensors based on lossy mode resonance (LMR) constitute a particularly promising research 

field since they are independent of the polarization of light and enlarge the range of 

materials available for sensor surface coating, from noble metals to metal oxides, polymers 

and many others [23]. 

Consequently, to fabricate an optical fiber sensor based on LMR it is therefore essential to 

deposit a good quality and uniform thin-film with controlled thickness onto the fiber core. 

Several fabrication techniques have been deployed in the preparation of thin films for 

different applications. However, layer-by-layer (LbL) assembly has been considered by the 

scientific community as a very promising and cost-effective method that shows significant 

advantages in comparison with  other thin-film deposition techniques, such as low cost, 

simplicity in operation and coating uniformity [24-26]. Furthermore, LbL assembly has been 

selected in this study because it allows the monitoring of the shift of the LMR bands while 

depositing the sensitive coating. 

LbL assembly involves the sequential deposition of two different substances, which are 

interconnected either by chemical reactions (covalent bonding) or electromagnetic attraction 

[27]. PEI does possess high amine density and accessible primary amine sites on the end of 

the chains [28], which in turn have great affinity to the oxygen functional groups on the basal 

plane and edges of GO [28]. Therefore, PEI and GO are ideal candidates for the fabrication of 

composite materials by means of LbL. 

Consequently, the aim of this study was to fabricate a rapidly-responding humidity sensor 

with high sensitivity and wide detection range. To reach this goal, an LMR optical fiber sensor 

based on a sputtered SnO2 coating was fabricated and characterized. It was then modified by 

depositing multilayer coatings including PEI and GO onto the SnO2 layer by means of dip-

assisted layer-by-layer deposition. The device was characterized in terms of sensitivity, 

linearity, hysteresis and response times. To the extent of the authors’ knowledge, this study 

presents the first optical fiber humidity sensor based on the LMR phenomena that includes 

GO in the sensitive coating. 

2. MATERIALS AND METHODS  

The experimental aspects of this research, such as the fabrication of the sensing devices, the 

characterization setup and procedure are explained in this section. 

2.1. Materials and sensor fabrication 

The LMR-based optical fiber sensing scheme consisted of a multimode optical fiber with a 

layer of SnO2 directly sputtered onto the core, which performs as LMR-supporting coating 

[29] and a graphene-based thin film deposited on top, acting as sensitive coating. Therefore, 

in order to fabricate the sensor, the cladding of a 200 µm-core multimode optical fiber 

(FT200EMT, purchased from Thorlabs, Inc.) was thermally removed. Subsequently, the core 
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was sonicated and cleaned in detergent and acetone and rinsed with ultrapure water. 

Following the cleaning process, the SnO2 film was sputtered (K675XD sputter coater from 

Quantum Technologies) for 150 seconds, during which the substrate was subjected to a 

continuous rotation to ensure the uniformity of the film. This SnO2 layer will generate the 

LMR absorption bands.  

A 2 cm fragment of the coated fiber was perpendicularly cleaved (NorthLab ProCleave LD II 

cleaver) and spliced (Fitel S178A fusion splicer) to 200 μm optical fiber core pigtails; and 

connected to the characterization setup (Figure 1) to follow the generation and the shift of 

the LMR absorption peak during the construction of the sensitive coating. 

The sensitive layer was deposited by dip-assisted layer-by-layer coating, as it is an effective 

method for fabricating good quality thin films [30, 31]. In a layer-by-layer assembly the film 

layer is adhered to the substrate and interconnected interchangeably with another substance 

either by chemical reactions (covalent bonding) or electromagnetic attraction [27]. 

Poly(ethyleneimine) (PEI) solution in deionized water (DI) from Sigma Aldrich (CAS Number 

9002-98-6) and GO powder from Graphenea S.A. were selected for the layer-by-layer 

assembly. Five bilayers were deposited onto the SnO2-coated optical fiber fragment. PEI 

solution (2 mg ml-1) and GO suspension (0.5 mg ml-1 in water) were stirred overnight and the 

GO was also sonicated for 30 minutes before deposition. The sputtered fiber was submerged 

into a 1M KOH solution for 30 minutes and then rinsed thoroughly with DI water. Then, the 

substrate was immersed into the PEI solution for 5 minutes. Following this step, the substrate 

was washed with DI water to remove surplus material and dried in air. The substrate was 

then immersed in the GO dispersion for 5 minutes, before being rinsed with DI water and 

dried. The final coating was obtained by repeating these steps 5 times.  

It is known that the charge density of the materials involved affects the adsorption efficiency 

onto the self-assembled thin film, while the ionization degree is greatly affected by the pH of 

the solutions [27, 32]. pH of the GO suspension was adjusted to 5.2 and 8.3 for PEI using HCl 

or NaOH diluted in water. These values were suggested in the literature as the optimum 

values to perform a successful layer-by-layer deposition and ensure good adsorption 

efficiency between both materials [32]. The refractive index of the PEI/GO coating is highly 

sensitive to RH variations. Consequently, a RH alteration leads to a shift in wavelength of the 

LMR band generated by the SnO2 layer. This shift can be measured and this is the basis of the 

sensing mechanism. 

2.2. Coating characterization 

X-ray photoelectron spectroscopy (Thermo Scientific K-Alpha X-ray Photoelectron 

Spectrometer (XPS) System) was used to characterize the surface chemistry of GO. FT-IR 

absorption spectra of PEI and GO were recorded on a Nicolet stepscan FTIR spectrometer 

with diamond ATR. 

An FEI NanoSEM 450 FEG scanning electron microscope (SEM) was used to acquire an image 

of the cross section of the fiber coated with the sputtered film of SnO2. 

Film uniformity and texture were also characterized by means of the scanning electron 

microscope. Its thickness was estimated by means of a DektakXT Stylus Profiler (Bruker). Ten 
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measurements were taken per sample in two different specimens. The final thickness was 

calculated as the average of all these values. 

2.3. Sensor characterization 

Figure 1 shows the transmission setup used to characterize the sensor. A halogen white light 

source (HL2000, Oceanoptics Inc.) was connected to one of the optical fiber pigtails to couple 

light into the sensing device. The coupled light passed through the sensor, reached a 

spectrometer (Oceanoptics USB2000) connected to the other pigtail, and the spectra of the 

transmitted light through the sensor were collected. In this way, it was possible to monitor 

the generation and the shift of the LMR absorption peak during the construction of the 

PEI/GO coating onto the fiber core.  

To characterize the static and dynamic responses of the device as a humidity sensor, it was 

introduced in a Binder KMF 115 environmental chamber, varying the relative humidity (RH) 

from 20 %-90 %, and collecting the transmitted spectra. A MatLab routine was created to 

consistently obtain the wavelengths at which the LMR bands are centered. It returns the 

coefficients for a polynomial of degree 2 that is the best fit for each LMR peak. The 

wavelength at which the maximum of the curve is located is then numerically calculated. 

Humidity was regulated using a capacitive humidity sensor and steam humidification. All the 

measurements were performed at constant temperature (20 °C). 

In addition, the sensor was dynamically characterized as a breathing sensor.  

3. RESULTS 

In this section, the characterization of the materials and sensitive coating, the monitoring of 

the coating deposition and the behavior of the device as relative humidity sensor as well as 

breathing sensor are presented. 

3.1. Characterization of the LMR supporting coating and the sensitive coating 

GO spectrum exhibits several peaks related to the oxygen functional groups, which confer its 

hydrophilicity (Figure 2). The band at around 3400 cm-1 and the sharp peak at 1630 cm-1, 

correspond to the stretching and bending vibration of OH groups, respectively [33-35]. The 

absorption peak at 1720 cm-1 arises from C=O stretching vibration of carboxyl groups, while 

bands located at 1395 cm-1, 1340 cm-1 and 1060 cm-1 are assigned to vibration of O-H, C-OH 

and C-O groups [33-35]. The band at 1270 cm-1 corresponds to the stretching vibration of C-O 

in the epoxy groups [33-35]. 

The PEI spectrum presents the characteristic peak at 1650 cm-1, which arises from bending of 

the amine (-N-H) group present in this polymer [36]. The N-H stretching bands at around 

3300 cm-1 are also prominent [36]. 

To study in detail the surface chemistry of the selected GO, wide-scan spectra in the binding 

energy range of approximately 0–1000 eV was obtained by means of XPS in order to identify 

the elements present on its surface and to perform a quantitative analysis. Carbon and 

oxygen have been mainly detected in the wide scan spectra, with a C/O ratio of 2.1 (Table 1). 

Careful curve fitting was performed on the C(1s) spectrum to quantitatively differentiate the 

five carbon stages: sp2-hybridised carbon atoms (284.4 eV), sp3-hybridised carbon atoms 
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(285.5-285.7 eV), the C–O of alcohol/epoxy groups (286.3-286.8), the C=O of carbonyl groups 

(287.6-287.7 eV), and C(O)OH of carboxylic acid (288.5-289.0 eV) [37]. The –* shake-up 

signal (290.7-291.3 eV) is also present, which is typical for sp2-hybridized carbon [37] (Table 

1).  

C(1s) XPS spectra of GO indicates a considerable degree of oxidation, exhibiting different 

oxygen functional groups in GO surface (e.g. carbonyl, epoxy, hydroxyl groups) [38]. GO 

contains carboxyl and hydroxyl groups on the edges of its basal plane, lending it its 

hydrophilic character [35].  

With both materials (GO and PEI), a coating consisting of five bilayers of PEI/GO has been 

deposited onto a SnO2-coated structure to obtain a device sensitive to external relative 

humidity changes.  The high COOH content of the GO confers a negative charge, which 

provides strong interaction with the positive charge of the amine groups in the PEI, thus 

generating a strongly-bonded and stable layer by layer structure. 

The SnO2 layer sputtered onto the fiber core (LMR supporting coating) seems to be very 

homogeneous and uniform (Figure 3), showing an average thickness of 220 nm. The 

thickness was measured in five different areas of the optical fiber. 

Essential to developing efficient sensitive coatings is the ability to fabricate uniform films and 

control their thickness. Among the broad range of available deposition techniques, dip-

assisted layer-by-layer is an effective method of fabricating good quality thin films. Low cost, 

simplicity in operation and coating uniformity are key advantages of this method.  

To properly study the homogeneity, uniformity and thickness of the sensitive coating placed 

onto the SnO2-coated optical fiber core, it was also deposited onto a planar silicon-based 

substrate. Figure 4 shows a very good coverage and continuity of the sensitive film, 

confirming the accomplishment of the dip-assisted layer-by-layer assembly as suitable 

deposition technique.  

The thickness of the fabricated film was analyzed by means of a DektaKXT profiling system. As 

previously mentioned, thickness was estimated as the average of 10 measurements taken in 

two different samples. The results are very consistent and repeatable, showing a thickness of 

23.3 nm and a standard deviation of 2.6 nm. 

3.2. Construction of the sensors 

The first step was to monitor the generation and shift of the LMR peak. As soon as the SnO2-

coated fiber (0 bilayers) is connected to the transmission setup shown in Figure 1, part of the 

optical power is transmitted through the coating and lost, generating an LMR [23]. 

Accordingly, an absorption peak is produced, and it can be perceived in the transmitted 

spectrum, being in this case centered at 420 nm when the device is in air (Figure 5). 

The resonance wavelength of these devices shifts to higher wavelengths when the external 

medium refractive index is increased [23, 39], which occurs when bilayers of PEI/GO are 

deposited onto it. The LMR peak in air then moves from 439 nm when one PEI/GO bilayer is 

deposited onto the SnO2-sputtered fiber to 536 nm after the deposition of 5 bilayers, as 

shown in Figure 5.  
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The deposition process was stopped after 5 bilayers, as previous results show this thickness is 

a good compromise between sensitivity and sensor response [31]. In addition, it is known 

that the LMR absorption peak will shift to the right when the external relative humidity 

increases [40], therefore the device can be characterized as a humidity sensor within the 

wavelength range of the available spectrometer. 

3.3. Static response to relative humidity 

The static response of the fabricated sensor as a humidity sensing device was characterized 

by introducing it into a Binder KMF 115 environmental chamber at 20 °C. The relative 

humidity varied from 20 %-90 % with increasing 10 % RH steps and ensuring that enough 

time is given for measurements to stabilize.  

The device shows a shift of the resonance peak to higher wavelengths with increasing relative 

humidity (Figure 6). This is due to the interaction of water with the GO and PEI elements of 

the coating, which causes a variation of the coating refractive index [40]. 

The hysteresis of the fabricated sensor was also investigated, studying its response with 

increasing and decreasing RH, accomplishing an average hysteresis value of 1.1 %. 

Consequently, there is a very good agreement between both evolutions, as shown in Figure 

6, which demonstrates that this sensor has excellent reversibility under RH variations. 

The average sensitivity across the complete range of study (20 %RH – 90 %RH) achieves 0.612 

nm/%RH (estimated in the increasing RH graph) and 0.600 nm/%RH in the decreasing RH 

curve). 

However, as shown in Figure 6, the sensitivity of the sensor is not constant over the whole 

interval of RH. Sensitivity varies depending on the RH, which has been previously reported in 

prior studies carried out using different sensitive coatings [40]. 

The response of our sensor can be adequately described by two linear intervals. The first 

stage covers RH ranging from 20 % to 70 % and the second interval from 70 % to 90 %. In the 

first range, the sensitivity is linearly fitted to be 0.317 nm/%RH (estimated in the increasing 

RH curve) and 0.311 nm/%RH (in the decreasing RH graph), with correlations of 0.9968 and 

0.9934 respectively. Sensitivity significantly rises at higher RH, presenting superior values of 

1.352 nm/%RH (increasing RH) and 1.324 nm/%RH (diminishing RH) and linear correlations of 

0.9993 and 0.9995. These values of sensitivity and linearity improve on some of the very 

recently reported humidity optical fiber sensors [41, 42]. 

Particularly in our case, the substantial gain of sensitivity relies on the nature and extent of H-

bonding within the sensitive thin film [43]. At lower hydration levels, water molecules are 

mainly adsorbed on the surface protonated groups of PEI and on the surface hydrophilic 

groups of GO [9]. Nonetheless, an increase in humidity promotes the diffusion of water 

molecules into the bulk of the thin film, being arbitrarily adsorbed in the hydrophilic 

functionalities of PEI and GO [9]. Furthermore, due to the super permeability of the GO to 

water molecules [44, 45], at high RH values water molecules can be continuously adsorbed, 

as the multilayer physical adsorption of water within the thin film occurs [46]. Hence, water 

molecules become mobile and gradually more equal to those in the bulk liquid [46]; 

consequently, the H-bond network is dominated by links between water units present within 

the layers of the sensitive coating [43, 46]. 
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The average resolution of the fabricated sensor over the entire range of RH is 2.5 %RH. 

Nevertheless, the resolution significantly enhances at high RH, where the sensor is much 

more sensitive. In the RH interval from 70 % - 90 % it is possible to detect changes of 1.1 

%RH. 

3.4. Dynamic Response 

To study the dynamic response of the sensor, it was introduced into the environmental 

chamber where the RH was set to continuously increase and switch from 20 % to 90 % at 20 

°C at a rate of 0.8 %HR per minute. The RH has been simultaneously monitored by the 

capacitive humidity sensor fitted in the environmental chamber, as shown in Figure 7.  

The fabricated sensor exhibits reproducible adsorption and desorption evolutions, 

demonstrating good repeatability and stability of the reference line (Figure 7). Additionally, 

the response of the optical fiber sensor is very sharp at high RH, which means this device is 

more sensitive at greater wetness values. This evolution confirms the previously discussed 

findings on the static response.  

The dynamic performance of this device has been also tested as a breathing sensor. The 

response of the instrument was monitored and recorded while a person blew over the 

fabricated device. Figure 8 shows the wavelength shift for five human breathing cycles 

corresponding to the real time breathing response. The sensor tracks the rapid humidity rises 

and falls with alacrity and it recovers fully and returns to its initial baseline. 

The developed sensor shows fast as well as stable response and recovery. The response and 

recovery times have been estimated as the required time to go from 10 % to 90 % of the 

maximum wavelength shift value and vice versa. Figure 9 displays a zoom-in of one of the 

breathing cycles to show in detail how reaction and retrieval times have been calculated.  

This sensor is very rapid with a response time of 160 ms and recovery of 262 ms, which 

demonstrates the suitability of the sensing material for monitoring rapid humidity changes. In 

addition, it is much faster than other very recently reported optical fiber humidity sensors, 

such as 2.73 s reaction and 7.27 s recovery in [41], 1 s rinsing time and 5 s retrieval in [47] 

and 1.5 s and 4 s in [48]. To the best of the authors’ knowledge, this optical fiber humidity 

sensor has one of the promptest recovery durations ever reported. Ultrafast optical sensors 

based on optical fibers could show a slightly faster response of about 50 ms [49] but a 

noticeably slower recovery (>700 ms to recover) [49]. 

4. CONCLUSIONS 

In summary, a very rapid, stable and sensitive humidity LMR optical fiber sensor has been 

fabricated. Dip-assisted layer-by-layer assembly has been proven as a successful deposition 

technique to fabricate good quality films with controlled thickness, which is essential for this 

type of sensor. The hysteresis of this sensor is excellent. It shows a much greater sensitivity at 

high RH due to the diffusion of water molecules into the bulk of the thin film, where water 

molecules are adsorbed and form continuous multilayers.  

The dynamic response of the developed device has been characterized in an environmental 

chamber and as a breathing sensor. It exhibits very fast reaction time and, especially, 

extremely rapid recovery periods, improving on those of some ultrafast optical fiber sensors 
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found in the literature. To the extent of the authors’ knowledge, this is the first LMR optical 

fiber humidity sensor incorporating GO as part of the sensing coating. 
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Figure 1.  Optical fiber experimental setup and sensor 

schematic structure with longitudinal and cross-sections. 
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Figure 2.  FT-IR spectra of GO and PEI. 
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Figure 3. SEM image of the SnO
2
-coated optical fiber core. 
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Figure 4. Images of the superficial structure of a 5-bilayer 

PEI/GO coating deposited onto glass slide. 
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Figure 5.  Shift of the LMR absorption peak generated by the 

SnO
2
 coated fiber during the deposition of five bilayers of 

PEI/GO. 
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Figure 6. Shift of the LMR absorption peak generated by the 

sensor when it is introduced in an environmental chamber 

and the RH is varied from 20 %-90 % (blue line) and from 90 

% to 20 % (orange line). 
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Figure 7. Dynamic response in an environmental chamber.  

 

  

ACCEPTED M
ANUSCRIP

T



 

Figure 8. Dynamic response of the developed sensor 

corresponding to five human breathing cycles. 
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Figure 9. Zoom-in of one of the breathing cycles.  
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Table 1. Surface composition of the selected GO and 

functional groups by curve fitting of C(1s) spectrum. 

  C 

(at%) 
O 

(at%) 
C/O Csp

2
 

(%) 
Csp

3
 

(%)
  

C-OH/C-O-C 

(%) 
C=O 

(%) 
COOH 

(%) 
π*-π* 

(%) 

GO 68.2 31.8 2.1 16.2 28.4 36.9 10.8 7.0 0.7 
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