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Abstract 

The False Consensus Effect (FCE) – the tendency to (erroneously) project our attitudes 

and opinions onto others – is an enduring bias in social reasoning with important societal 

implications. In this fMRI investigation, we examine the neural correlates of within-

subject variation in consensus bias on a variety of social and political issues. Bias 

demonstrated a strong association with activity in brain regions implicated in self-related 

cognition, mentalizing, and valuation. Importantly, however, recruitment of these regions 

predicted consensus bias only in the presence of social disconfirmation, in the form of 

feedback discrepant with participants’ own attitudes. These results suggest that the 

psychological and neural mechanisms underlying the tendency to project attitudes onto 

others are crucially moderated by motivational factors, including the desire to affirm the 

normativity of one’s own position. This research complements social psychological 

theorizing about the factors contributing to the FCE, and further emphasizes the role of 

motivated cognition in social reasoning. 

 

INRODUCTION 

 The false consensus effect (FCE) – the tendency to (erroneously) presume that others 

share our attitudes, opinions, and beliefs – is one of the most pervasive and recalcitrant biases in 

human social reasoning (Ross, Green, & House, 1977; Marks & Miller, 1987). We persist in 

projecting our own minds on to others, even when we are made aware of the possibility of such 

consensus estimation bias and even when we acknowledge bias in others’ judgments (Krueger & 

Clement, 1994; Pronin, Lin, & Ross, 2002; Pronin, Gilovich, & Ross, 2004). Our own opinions 



simply seem to ‘count’ for more, though our goal in evaluating group consensus is to objectively 

consider the thoughts and feelings of individuals who may be very different from us. Numerous 

psychological theories have been advanced to explain this phenomenon, but no single hypothesis 

seems likely to account for all cases of bias. Rather, some combination of motivated social 

reasoning, selective exposure to similar others, and the chronic accessibility of the self may 

activate consensus bias in concrete situations and sustain it against attempts at control (Sherman, 

Presson, Chassin, et al., 1983; Clement & Krueger, 2002). However, it is unclear how these 

putative mechanisms contribute differentially to consensus bias, and under what kinds of 

circumstances. 

In particular, the role of motivated cognition in driving consensus bias has been a point of 

contention. Several studies have found consensus bias to be stronger when individuals have a 

strong need to justify their actions (Sherman, Presson, Chassin, et al., 1983; Wolfson, 2000), 

have a vested interest in social consensus (Crano, 1983), or when the self is placed under threat 

(Sherman, Presson, & Chassin, 1984; Morrison & Matthes, 2011). And suggestively, the less 

common an attitude actually is in the population, the more likely its proponents are to over-

estimate its prevalence (Krueger & Clement, 1997; Mullen & Hu, 1988; Mullen & Smith, 1990). 

However, while these results are consistent with the notion that individuals (especially those in 

the minority) are motivated to assert and defend the normativity of their positions, it does not 

rule out alternative (non-motivational) explanations. Overall, the role of motivated processes in 

consensus bias remains unclear, and alternative mechanistic explanations for bias have proven 

difficult to disambiguate experimentally.   

 Given this impasse, the tools of functional neuroimaging may provide a useful means for 

testing hypotheses regarding the factors that contribute to consensus bias and for examining their 



interactions in real-time. If motivated cognition plays a role in consensus bias, we would expect 

its influence to be emphasized under conditions of social threat, when motivation to defend the 

self is high (Hughes & Beer, 2010; Morrison & Matthes 2011). For instance, finding out that 

another person’s attitude is discrepant with one’s own (i.e. disconfirmation) right before making 

a consensus judgment might enlist motivated processes to a greater degree. These processes may 

then sustain bias in the face of discrepant social feedback, effectively discounting the attitudes of 

those who disagree with us as uninformative or irrelevant to assessing group consensus. In so 

doing, we may be able to maintain the conviction that our attitudes and beliefs are in the 

majority, and buffer ourselves affectively from the consequences of minority status.  

Interpretation of neuroimaging data associated with consensus bias is aided considerably 

by the burgeoning literature on the neural correlates of motivated cognition (Beer & Hughes, 

2010; for review, see Hughes & Zaki, 2015). Motivated cognition depends upon regions 

involved in computations of subjective value (i.e. social and non-social rewards and costs), self-

related processes, and mentalizing (i.e. thinking about others mental states). Each of these sub-

components has been the subject of extensive research (c.f. Bartra, McGuire, & Kable, 2013 

regarding subjective value, Murray, Schaer, & Debané, 2012; Northoff et al., 2006 for self-

related cognition, and Van Overwalle, 2009; Molenberghs et al., 2016 for reviews of work on 

mentalizing). While these processes all involve regions collectively associated with social 

cognition (Lieberman, 2010) and the default mode (Raichle, 2015), they are also empirically 

dissociable, as observed in the aforementioned reviews and in automated meta-analysis (for 

example, through www.neurosynth.org).  

While mentalizing regions have featured less prominently in contemporary neuroimaging 

work on motivated cognition than regions associated with valuation and self-related cognition, 



we believe they are especially pertinent to the representation (and misrepresentation) of others’ 

attitudes. Indeed, mentalizing regions seem in particular to be implicated in thinking about the 

relationship between our own attitudes and those of others, for example, when we form 

intentions to share persuasive messages (Falk et al., 2013). 

The hypothesis that motivated processes influence consensus estimation yields clear 

predictions regarding the involvement of self, valuation, and mentalizing regions in consensus 

bias. To the extent that social contexts challenge or threaten the self, neural mechanisms 

involved in motivated cognition (especially those implicated in and computations of subjective 

value, self-related cognition, and mentalizing) should show altered associations with the 

magnitude of exhibited consensus bias. In particular, motivational accounts of the false 

consensus effect emphasize the importance of maintaining the belief that our own attitudes and 

behaviors are reasonable and normative (Sherman, Presson, & Chassin, 1984). Thus, we might 

predict that the engagement of psychological and neural mechanisms supporting bias should be 

modulated by the presence of motivations to defend the ‘majority status’ of our own beliefs 

against possible challenges. When we have reason to believe that others may disagree with us, 

we may engage additional psychological processes when considering their mental states and 

comparing them to our own. Indeed, discrepant feedback places us in something of a conundrum 

or cross-roads as social thinkers: on the one hand, social disagreement provides evidence that our 

attitudes and beliefs may not be as common or pervasive as we previously thought – on the other 

hand, it could spur us to defensively reassert our majority status, ‘doubling-down’ on projective 

bias.  In other words, discrepant feedback motivates us to determine whether it is us or the other 

individual who is out of step with the consensus view.  



Moreover, in Welborn, Gunter, Vezich, & Lieberman (2017), between-subjects variation 

in observed consensus bias was associated with the recruitment of reward regions such as the 

nucleus accumbens (NAcc) and the ventromedial prefrontal cortex. That is, individuals who 

exhibited greater activation in these regions, on average, tended to show greater bias in their 

consensus estimates. Conversely, a region implicated in emotion regulation (the right 

ventrolateral prefrontal cortex, or RVLPFC) was inversely related to observed consensus bias 

across subjects. These results point to the possibility that motivated processes may contribute to 

bias, but are limited to comparisons across individuals. We do not yet know, crucially, whether 

variation in bias across attitude items is associated with differential recruitment of neural reward 

circuitry, within-subjects.  

 With these considerations in mind, we sought to characterize the neural correlates of 

consensus bias (or the FCE) in an undergraduate sample while they estimated the attitudes of an 

ordinary university student on a variety of different social issues. Because of our interest in the 

contextual factors shaping consensus estimation (in particular, the availability of social feedback 

regarding others’ positions) we presented participants with three information conditions. In the 

first condition (No Information), participants merely provided their consensus estimates without 

any outside influence. In two comparison conditions, participants provided consensus estimates 

after learning that one of their peers either had a similar attitude (Confirmation) or a discrepant 

attitude (Disconfirmation). In evaluating the neural correlates of consensus bias, we focused on 

the technique of parametric modulations, because we sought to identify regions in which activity 

co-varied with the amount of bias exhibited on a trial-by-trial (or issue-by-issue) basis. On the 

basis of social psychological research on the FCE and the social neuroscience literature on 

motivated reasoning, we were especially interested in evaluating: 1) whether activation of self-



related (principally medial prefrontal cortex (MPFC, BA10) and precuneus), mentalizing 

(dorsomedial prefrontal cortex (DMPFC, BA8/9) and bilateral temporo-parietal junction (TPJ)), 

and value (ventromedial prefrontal cortex (VMPFC, medial BA11) and ventral striatum/nucleus 

accumbens) regions would be linearly associated with the magnitude of consensus bias observed 

for each attitude, and 2) whether the context of judgment (No Information / Confirmation / 

Disconfirmation) would moderate the neural responses in these regions.  

If motivated processes play an important role in consensus bias, they should be associated 

with differential neural correlates across the experimental conditions manipulating the 

availability and nature relevant social information. Conversely, identical neural correlates of bias 

in the presence and absence of disconfirmation would not provide distinctive evidence for an 

account that prioritizes motivated cognition. In particular, if motivated processes increase 

consensus bias, we predict that the above-mentioned regions (implicated in mentalizing, 

valuation, and self-related cognition) should show strong, positive associations with bias in the 

Disconfirmation condition, and weaker associations with bias in the other conditions. Similar 

neural correlates across conditions, or differential neural correlates in regions not associated with 

motivated cognition in prior literature, would fail to support the importance of motivation in 

shaping consensus bias. Instead, such results might provide evidence in favor of alternative 

processes sustaining bias. For example, strong positive associations between bias and fronto-

parietal activation might suggest the involvement of selective attention processes (Corbetta & 

Shulman, 2002), while engagement of anterior temporal lobe structures might suggest biased 

retrieval of social information relevant to attitudes (Wang et al., 2017). 

 Data and results from this sample of participants have been presented elsewhere 

(Welborn, Gunter, Vezich, & Lieberman, 2017), focusing on between-subjects differences in the 



activation of areas underlying consensus bias. Here, rather than considering individual 

differences, we focus instead on common processes that are associated with within-subjects 

variation in consensus bias across issues (or attitude items). Some of the regions queried in the 

present study overlap with those interrogated in Welborn, Gunter, Vezich, & Lieberman (2017), 

insofar as the valuation regions include the NAcc and portions of the VMPFC (see ROI 

definition in Methods below), but the analysis performed is independent. In the Results section 

below, prior to discussing parametric modulation analysis, we address several aspects of the 

behavioral data that are relevant to parametric modulation analyses: 1) differences in reaction 

times across conditions. 2) correlations between reaction times and bias, and 3) the magnitude of 

variation in bias scores across conditions. 

METHODS 

 The methods employed in the conduct of this research have previously been described in 

Welborn, Gunter, Vezich, & Lieberman (2017). They are reproduced here for convenience, with 

minor changes to explain the models used in assessing parametric modulation of neural activity 

by consensus bias. 

Participants  

Twenty-nine participants (17 female) were recruited by email and Internet solicitations 

from the psychology research subject pool at UCLA. All participants had been enrolled as 

undergraduate students at UCLA for at least two quarters, and none had taken an introductory 

course in social psychology (in order to preclude familiarity with the false consensus effect). 

Participants were judged ineligible if they did not differ from our estimate of the mean UCLA 

undergraduate attitude on a sufficient number of items. All participants were compensated $40 

for their contribution to this research or received course credit. Participants provided written 



informed consent approved by the UCLA Institutional Review Board. One participant’s data are 

not included in these analyses due to partial acquisition failure (final n=28).  

Attitude Item Selection 

 Attitude items were selected from a larger set of 155 social, political and personal issues 

(e.g. abortion rights, gay marriage, daily flossing, making out on a first date) that had previously 

been tested with an online sample of 178 UCLA undergraduates. Participants in this online 

sample indicated their attitudes towards each issue using a numeric scale ranging from 0 to 100 

in integer increments (with anchors 0 – Complete Opposition, 25 – Moderate Opposition, 50 – 

Neutrality, 75 – Moderate Support, and 100 – Complete Support). These responses provided a 

reasonable estimate of the mean UCLA undergraduate attitude on each of the 155 issues, and 

these values were used to determine error of estimation for the scanner task described below.  

 Prior to scanning, prospective participants in the present study indicated their own 

attitudes on each of the 155 issues, and were eligible to participate only if their responses 

differed from our estimate of the UCLA undergraduate population mean by at least 15 points on 

at least 90 items. If participants did not differ in their attitudes from the group mean for the items 

used, it would not possible to disambiguate projection from accurate consensus estimation on a 

trial-by-trial level. As this was a major objective of the study, we felt it was necessary to impose 

such an inclusion criterion in order to provide a sufficient number of viable trials for the scanner 

task. The idiosyncrasies of participants’ attitudes on the stimulus issues resulted in the selection 

of a unique set of attitude items for each individual, on each of which they differed from the 

UCLA undergraduate mean by at least 15 points. These items were randomly and equivalently 

divided amongst the Confirmation, Disconfirmation, and No Information conditions. Across 



participants, this procedure resulted in an average of 99 trials total, or 33 per Consensus 

Estimation condition. 

Consensus Estimation Task: 

 While undergoing functional magnetic resonance imaging (fMRI), participants estimated 

the attitude of the ordinary UCLA student on each of the ideographically-selected attitude items 

(see above). During the ‘No Information’ condition, participants were simply asked to provide 

their best possible estimate of the attitude that an ordinary UCLA student would have on the 

given issue. In order to do this, they used an on-screen scale identical to that used during item 

selection (as described above) except that the values represented the attitude that the ordinary 

UCLA student would have, rather than the participant’s own attitude.  

In the ‘Confirmation’ and ‘Disconfirmation’ conditions, participants were provided with 

on-screen information ostensibly reflecting the attitudes of other UCLA undergraduates. 

Participants were told that, on each trial, the attitude of a different UCLA student from our larger 

Internet sample would be presented, and that they could use (or disregard) this information in 

making their consensus estimates. While this sample actually existed, and was used to determine 

the true norms for each attitude item as described above, participants actually received false 

information designed to either Confirm or Disconfirm the presupposition that their own attitudes 

would be representative of the UCLA undergraduate population as a whole. In the Confirmation 

condition participants were provided with an attitude that differed from their own by at most 5 

points (in either direction). As all attitude items were pre-selected so that participants attitudes 

were at least 15 points different from the mean, this ensured that the sample attitudes presented 

in the Confirmation were closer to the participant’s own attitude than to the mean UCLA 

undergraduate attitude. In the Disconfirmation condition participants were provided with a 



sample attitude that differed from the actual mean UCLA undergraduate attitude by at most 5 

points (in either direction), so that this sample attitude was invariably closer to the actual mean 

than to the participant’s own attitude. In both Confirmation and Disconfirmation conditions, 

deviations from the participant’s own attitude and the mean UCLA undergraduate attitude were 

selected from a uniform random distribution so as to ensure that the presented attitude fell within 

the desired range.  

On each trial (see Figure 1), the sample information (ostensibly reflecting the attitude of a 

single UCLA undergraduate) was presented numerically above the appropriate portion of the 

scale, with a line denoting the precise location corresponding to the other student’s attitude. After 

the scale (and if applicable, sample information) had appeared on-screen, participants had 10 

seconds within which to make their response. Trials were not explicitly separated into feedback 

and response phases, and sample information remained on-screen until participants had 

confirmed their response. Trial presentation was self-paced, with a jitter duration commencing 

immediately after participants’ responses were registered. Inter-trial jitter was selected from an 

exponential random distribution with a range of 4-9s and a mean value of 5 seconds.  

Non-social color-judgment trials were also included as a basic perceptual-motor control 

condition. On these trials, participants were asked to judge the color of an on-screen square that 

varied continuously from completely red to completely blue. Participants were instructed to treat 

the mid-point value of ‘50’ as indicating that the square appeared to them completely purple, and 

neither more blue nor more red in hue. If the square appeared more red than blue, participants 

were to select values greater than 50, with 100 indicated that they perceived the square to be 

completely red. If the square appeared more blue than red, participants were to select values less 

than 50 with 0 indicated that the square completely blue. Participants were instructed explicitly 



to provide their own judgment regarding the color of the square, and to ignore how others might 

perceive it. Thirty control trials were included in the task for each participant, intermixed with 

consensus estimation trials. Trial order was pseudo-randomized such that no condition repeated 

more than twice sequentially and conditions were represented equally over two functional runs.  

fMRI data acquisition 

All imaging data was acquired using a 3.0-Tesla Siemens Trio scanner at the Ahmanson-

Lovelace Brain Mapping Center at UCLA. Across 2 functional runs, approximately 650 T2*-

weighted echo-planar images were acquired during completion of experimental tasks described 

above (slice thickness=3mm, gap=1mm, 36 slices, TR=2000ms, TE=25ms, flip angle=90°, 

matrix=64x64, field of view=200mm). An oblique slice angle was used in order to minimize 

signal drop-out in ventral medial portions of the brain. In addition, a T2-weighted, matched-

bandwith anatomical scan was acquired for each participant (TR=5000ms, TE=34ms, flip 

angle=90°, matrix=128x128; otherwise identical to EPIs). Lastly, we acquired a T1-weighted 

magnetically-prepared rapid acquisition gradient echo anatomical image (slice thickness=1mm, 

176 slices, TR=2530ms, TE=3.31ms, flip angle=7°, matrix=256x256, field of view=256mm). 

fMRI Data Preprocessing and Analysis 

Preprocessing: 

Functional data were analyzed using SPM8 (Wellcome Department of Cognitive 

Neurology, London, UK). Within each functional run, image volumes were corrected for slice 

acquisition timing, realigned to correct for head motion, segmented by tissue type, and 

normalized into standard MNI stereotactic space (resampled at 3x3x3mm). Finally, images were 

smoothed with an 8mm Gaussian kernel, FWHM.  

fMRI analytic paradigm:   



General linear models were defined for each participant, in which trials were modeled 

with separate functions corresponding to 1) the initial presentation of the trial and 2) a fixed 

epoch corresponding to the final 2.5 seconds preceding (and including) the participants’ final 

response. The initial portion of the trial differs significantly between conditions, with the 

Confirmation and Disconfirmation conditions, but not the No Information condition, including 

on-screen information regarding the attitudes of another UCLA undergraduate. As parameter 

estimates from this portion of the trial are not directly comparable across conditions, the initial 

portion of each trial was therefore modeled as a parameter of no interest in the GLM. Parametric 

modulation analyses were conducted on parameter estimates corresponding to the final period of 

each trial (i.e. the last 2.5 seconds before participant response), which we believe better 

corresponds to the period of participants’ decision-making and response selection. Both stimulus 

presentation and response selection were convolved with the canonical (double-gamma) 

hemodynamic response function.  

The first (condition-agnostic) model collapsed across information conditions, in order to 

assess associations between hemodynamic activity and bias across all consensus estimation 

trials. In this model, two regressors of interest were modeled corresponding to the response 

period of consensus estimation trials (including Confirmation, Disconfirmation, and No 

Information) and of Control trials. One additional parameter of interest was included to model 

parametric modulation of response-period hemodynamic activity (irrespective of information 

condition) by the observed magnitude of consensus bias on each trial. In a second (condition-

specific) model, four regressors of interest were modeled to the response period of the 

Confirmation, Disconfirmation, No Information, and Control conditions. In addition, three 

additional parameters of interest were included to model parametric modulation within each 



condition of response-period hemodynamic activity by the observed magnitude of consensus bias 

across trials. Both models controlled for 18 motion parameters (3 translations and rotations, as 

well as their squares and first-order derivatives), and a junk regressor for acquisitions on which 

either translation exceeded 2mm or rotation exceeded 2 degrees in any direction. The time series 

was high-pass filtered using a cutoff period of 128s and serial autocorrelations were modeled as 

an autoregressive AR(1) process. 

 Consensus bias was computed on a trial-by-trial basis as the error of estimation of a 

participant’s consensus estimate regarding the attitude item (relative to the true mean of our 

larger, 197 person sample) in the direction of the participant’s own attitude on the attitude item 

(acquired several days before the scan). That is, consensus bias was operationalized as follows: 

𝑏𝑖𝑎𝑠 = {𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑡𝑟𝑢𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛, 𝑖𝑓 𝑜𝑤𝑛 𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒 > 𝑡𝑟𝑢𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛
𝑡𝑟𝑢𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 − 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒, 𝑖𝑓 𝑜𝑤𝑛 𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒 < 𝑡𝑟𝑢𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 

 
Consensus bias thus equals the (positive) magnitude of overestimation for items about 

which participant expresses above-average support, and the (positive) magnitude of 

underestimation for items about which the participant expresses below-average support. Bias 

values were also capped by the participant’s own attitude; that is participants could not have a 

bias score greater than the difference between their own attitude and the sample mean. Capping 

bias values at the extremity (absolute value(own attitude – true sample mean)) of participants 

own attitudes ensures that participants cannot have strong bias scores when their estimates are 

more extreme than their own attitudes.1 The consensus bias metric used is thus positive when 

participants overestimate support for their own attitudinal positions in the UCLA undergraduate 

population, negative when they underestimate support for their own attitudinal positions in the 

                                                
1 E.g. if own attitude = 60, sample mean = 50, and consensus estimate = 80, participants’ bias is 
capped at 10; it would be unreasonable to attribute all 30 scale points of error to bias towards 
one’s own attitude when a portion of that error move the estimate away from one’s own position. 



undergraduate population, and 0 if their estimate is accurate. Because this bias metric is sensitive 

to participants’ actual over-estimation of support for their own attitudes, we believe it is an 

effective operationalization of consensus bias for the purposes of imaging research. It is 

conceptually similar to the ‘truly false consensus effect’ developed by Krueger and Clement 

(Krueger & Clement, 1994). Using these bias scores, parametric modulation analyses were 

conducted to identify regions in which hemodynamic activity co-varied with participants’ bias on 

a trial-by-trial basis.  

 Individual-level statistics were aggregated for group-level comparisons and evaluated 

with a mixed-effects model. For whole-brain analyses, correction for multiple comparisons was 

implemented based upon Gaussian Random Field theory, to yield cluster FWE of p<0.05 based 

upon an initial (voxel-wise) cluster-formation threshold of p<0.005. 

Region of Interest (ROI) Analysis: 

 Region-of-interest (ROI) analyses were conducted to directly assess the recruitment of 

self, mentalizing, and value regions in consensus bias (see Figure 2A). ROIs for these 

comparisons were derived from www.neurosynth.org reverse-inference using the terms ‘self’, 

‘mentalizing’, and ‘value’, thresholded at a t-value of 5 and resliced into 3x3x3 MNI space. ROIs 

were further limited to clusters of greater than 20 contiguous voxels and constrained to be 

exclusive (i.e., non-overlapping). The ‘self’ ROI was constrained to medial prefrontal cortex and 

precuneus, while the mentalizing ROI included clusters in both DMPFC as well as bilateral 

temporo-parietal junction. The valuation ROI comprises clusters in both VMPFC as well as 

ventral striatum/nucleus accumbens. Analysis of these ROIs is meant to directly test the 

hypothesis that regions relative to motivated cognitive processes will show differential neural 

correlates across information conditions (e.g., specifically in the presence of social 



disconfirmation). Parameter estimates from the models described above were extracted from all 

ROIs using MarsBaR (Brett, Anton, Valabregue, & Poline, 2002) for statistical comparisons. 

Statistical tests reported are two-tailed.  

RESULTS 

The behavioral results from this experiment have previously been reported and are 

summarized briefly here for convenience. Interested readers are encouraged to consult Welborn, 

Gunter, Vezich, & Lieberman (2017) for further details. 

Consistent with the extensive behavioral literature on the false consensus effect, 

consensus bias scores were significantly greater than zero both overall and for each information 

condition individually (Mall=12.17, t(27)=15.265, p<0.001; MCon=19.07, t(27)=18.604, p<0.001; 

MNoI=10.32, t(27)=9.950, p<0.001; MDis=8.27, t(27)=10.445, p<0.001). Repeated-measures 

analysis of variance revealed a substantial effect of information condition (Confirmation, 

Disconfirmation, or No Information) on participants’ exhibited bias (F(2,54)=80.58, p<0.001). 

Participants showed greater bias in the Confirmation condition than the No Information 

condition (MCon=19.07versus MNoI=10.32, t(27)=9.095, p<0.001). Participants also showed 

significantly less bias in the Disconfirmation condition than in either the No Information 

condition (MDis=8.27 versus MNoI=10.31, t(27)=-2.279, p=0.031) or the Confirmation condition 

(MDis=8.27 versus MCon=19.07, t(27)=-11.509, p<0.001). These results suggest that participants 

are strongly susceptible to bias, over-estimating support for their own attitudinal positions by 

between 12 points out of a 100-point scale, on average. Participants are also sensitive to 

presentation of social information regarding the attitudes of their peers, and adjust their 

consensus estimates in light of this feedback. However, we emphasize that mean bias was 

significantly greater than zero for all conditions. 



 The presentation of sample information also affected participants’ reaction times 

(F(2,54)=5.137, p=0.007). Predictably, both the Confirmation and Disconfirmation conditions 

resulted in longer reaction times than the No Information condition (MCon=4.54 versus 

MNoI=4.32, t(27)=3.077, p=0.005; MDis=4.52 versus MNoI=4.32, t(27)=2.367, p=0.025). However, 

the Confirmation and Disconfirmation conditions did not differ in reaction time (MCon=4.54 

versus MDis=4.52, t(27)=0.274, p=0.786). Overall, correlation between mean consensus bias and 

mean reaction time was not significant, averaging across all conditions (r=-0.344, p=0.073). 

Mean bias in the Confirmation condition was inversely correlated with mean reaction time to 

Confirmation trials (r=-0.399, p=0.035), but this relationship did not hold for the 

Disconfirmation or No Information conditions. Moreover, mean intra-subject variation in bias 

was not correlated with mean intra-subject reaction times for any condition (Confirmation: 

r(26)=-0.14, p=0.48; No Information: r(26)=-0.01, p=0.96; Disconfirmation: r(26)=-0.13, 

p=0.50). These results suggest that differences in reaction time are unlikely to account for 

differences in consensus bias, either between-subjects or within-subjects. Moreover, comparable 

reaction times across conditions suggest that parametric modulation results will not have 

drastically different meaning or power across conditions. 

Given the intent to assess parametric modulations with observed consensus bias, it is also 

important to rule out possible confounds connected to within-subject variance in consensus bias 

scores. Importantly, if there is a restriction of range of consensus bias scores in some conditions 

(e.g. if participants show high bias consistently for all trials in the Confirmation condition), it 

might be difficult to evaluate parametric modulations. The variation of consensus bias scores was 

highest in the No Information condition (mean intra-subject SD=18.00), intermediate in the No 

Information condition (mean intra-subject SD=16.93), and lowest in the Disconfirmation 



condition (mean intra-subject SD=14.29). Variation was significantly higher in the No 

Information condition relative to the Disconfirmation condition (t(27)=4.95, p<0.001) and in the 

Confirmation condition relative to the Disconfirmation condition (t(27)=3.98, p<0.001), but did 

not significantly different between the No Information and the Confirmation conditions 

(t(27)=1.59, p=0.12). This suggests that participants were moderating their consensus estimates 

in the Disconfirmation condition, as expected, resulting in fewer extremely biased responses. 

Because of the lower predictor variance associated with consensus bias scores in the 

Disconfirmation condition, we may have reduced power to detect parametric modulations for 

this condition.  

Overall, these results suggest that participants integrated the sample information into their 

consensus estimates as expected, showing greater bias in the presence of social confirmation and 

reduced bias in the presence of disconfirmation. Weak correlations between bias and reaction 

times suggest that this factor does not represent a serious confound for parametric modulation 

analyses that follow. Roughly comparable variance in bias scores across conditions indicate that 

parametric modulation analyses are appropriate, with the caveat that we may have reduced power 

to detect effects in the Disconfirmation condition. 

Parametric modulation in ROIs 

 Parametric modulation analyses were conducted to determine whether hemodynamic 

activity in the regions-of-interest (ROIs) co-varied with actually observed bias on a trial-by-trial 

(issue-by-issue) basis. Mean estimates for the parametric modulation of the bias are shown in 

Figure 2B for each ROI and condition of interest.  

Hemodynamic activity demonstrated positive, linear parametric modulation by observed 

consensus bias in the Disconfirmation condition for the self (t(27)=3.958 p=0.0005), mentalizing 



(t(27)=2.765, p=0.0101), and value (t(27)=3.732, p=0.0009) ROIs. In marked contrast, these 

same regions did not exhibit parametric modulation of activity by bias in the Confirmation and 

No Information conditions (Confirmation: tself(27)=0.-0.0268, p=0.980; tmentalizing(27)=-1.585, 

p=0.124; tvalue(27)=0.369, p=0.715; No Information: tself(27)=-0.375, p=0.711; tmentalizing(27)=-

0.760, p=0.454; tvalue(27)=-0.116, p=0.908). Moreover, the magnitude of parametric modulation 

by bias was greater in the Disconfirmation condition than the Confirmation and No Information 

conditions for all three ROIs: self (t (Disconfirmation > Confirmation t(27)=2.614, p=0.0145; 

Disconfirmation > No Information t(27)=3.427, p=0.00197), mentalizing (Disconfirmation > 

Confirmation t(27)=2.787, p=0.0096; Disconfirmation > No Information t(27)=2.756, 

p=0.0104), and value (Disconfirmation > Confirmation t(27)=2.0687, p=0.0482; Disconfirmation 

> No Information t(27)=2.860, p=0.0081).  

 These results indicate that the recruitment of regions involved in self-related cognition, 

mentalizing, and computations of value was strongly influenced by the social/informational 

context in which judgments of consensus were made. In the Disconfirmation condition, but not 

the other conditions tested, consensus bias was associated with the level of activity in each of 

these regions. Thus, when faced with social disconfirmation in the form of discrepant feedback 

regarding another person’s attitude, the recruitment of regions implicated in motivated cognition 

predicted persistence in biased consensus estimates.  

Parametric modulation in whole-brain analyses 

 The ROIs analyzed above were selected in order to directly test whether or not regions 

implicated in motivated processes would show differential associations with bias under social 

disconfirmation. Whole-brain analysis were conducted both to clarify the spatial localization of 

regions associated with biased consensus estimation, as well as to identify areas outside the a 



priori ROIs that might show similar effects. Across all trials (i.e. ignoring condition), greater 

trial-wise consensus bias was associated with increased activity in the medial prefrontal cortex 

and ventromedial prefrontal cortex (MPFC, BA10; VMPFC, BA11; see Table 1 and Figure 3A). 

However, when conditions were analyzed separately (see below), it became evident that this 

effect is driven by and ultimately specific to the Disconfirmation condition.  

In the Disconfirmation condition, large clusters within self-related, mentalizing, and 

valuation regions (including MPFC, VMPFC, precuneus, left temporo-parietal junction (LTPJ), 

and left temporal pole) demonstrated positive associations between activity and consensus bias, 

with additional clusters identified in the right amygdala, right caudate nucleus, and the thalamus 

(see Table 1 and Figure 3B). Thus, when participants’ belief in the normativity of their attitudes 

was directly challenged by feedback from a fellow undergraduate, broad recruitment in these 

regions was associated with the persistence of bias. In marked contrast, in the Confirmation and 

No Information conditions, no significant clusters were found to exhibit parametric modulation 

with observed consensus bias, either positively or negatively. Moreover, when analyzing all non-

Disconfirmation trials (i.e. Confirmation and No Information trials taken together) parametric 

modulation by consensus bias was only observed in a limited cluster within the superior parietal 

lobule. 

In order to explicitly test whether the parametric engagement of self-related and 

mentalizing regions in consensus bias was specific to a state in which the predominance of one’s 

own attitudes had been challenged (i.e. the Disconfirmation condition), the estimates of 

parametric bias modulation were compared between Disconfirmation and non-Disconfirmation 

trials. When compared to all other consensus estimation trials together (Confirmation and No 



Information trials), the Disconfirmation condition exhibited greater parametric modulation in 

MPFC, LTJP, and the precuneus (see Table 1, Figure 3C).  

These comparisons emphasize again the crucial importance of the social/informational 

context for consensus estimation. Even though participants showed less bias on average when 

presented with a social challenge in the Disconfirmation condition, it is also only in this 

condition that they exhibited coupling between activity in self, mentalizing, and valuation 

regions and actually observed bias.  

DISCUSSION 

 In the present experiment, we sought to determine the neural correlates of trial-by-trial 

variation in observed consensus bias, as well as to assess whether or not these neural correlates 

would be sensitive to social context (specifically, whether or not there would be unique effects of 

social disconfirmation). The results show that activations in brain regions associated with self-

related processes (MPFC BA10, precuneus), mentalizing (MPFC BA8/9, bilateral TPJ), and 

valuation (VMPFC BA11,VS) were strongly, positively associated with observed consensus 

bias, but only when participants were challenged by discrepant social feedback. In contrast, the 

same regions did not show significant associations with bias when social feedback was 

consistent with participants’ own attitudes (in the Confirmation condition) or when information 

about others’ attitudes was not present (in the No Information condition).  

These results demonstrate that the social and motivational context of consensus 

estimation strongly affects the neural correlates of bias. The specificity of the association of 

activity in the analyzed regions with observed bias (i.e. that it is limited to the Disconfirmation 

condition only) is also suggestive. Presumably, it is in the Disconfirmation condition that 

participants have the strongest incentive to reassert the majority status of their attitudinal 



positions, and the neural correlates of bias observed in this condition are consistent with 

motivated processing as a mechanism for sustaining consensus bias in the face of challenge. 

In contrast, it is more difficult to explain the observed pattern of results if motivated 

processes are not involved. Of course, social projection might occur almost automatically if 

participants use their own attitude as a default or if selective exposure has led to biased sampling 

of attitudes from the broader population. However, if construed as impartial social thinkers (i.e. 

uninfluenced by motivations to defend their attitudes), participants should integrate discrepant 

attitudinal information into their consensus judgments. Mentalizing and self-related processes 

might play an invaluable role in this process, reconciling past knowledge with present feedback 

and yielding revised consensus estimates, and thereby reducing bias. If this were the case, we 

would expect activity in regions implicated in self-related cognition and mentalizing to be 

inversely associated with consensus bias following disconfirmation. Instead, we observe exactly 

the opposite. To the extent that an individual recruits these regions during consensus estimation, 

in response to disconfirmation, he or she is likely to show enhanced bias. Rather than impartially 

updating consensus estimates, it seems plausible that mentalizing and self-related processes are 

biased by the motivation to reassert the majority status of one’s own attitudinal position.  

What might be the mechanism by which mentalizing is biased? While the present results 

cannot adjudicate this issue, prior work on mentalizing suggests some possible avenues through 

which mentalizing mechanisms could be linked with motivations in ways that yield biased 

consensus estimates. For instance, mentalizing might be connected to biased retrieval and 

selection of attitude-relevant social knowledge. In work by Satpute, Badre, & Ochsner (2014), 

participants recruited mentalizing regions to a greater extent when the task demanded selection 

of goal-relevant social knowledge and the suppression of irrelevant information. In the present 



context, mentalizing activity might therefore index a biased selection of social knowledge 

relevant to the goal of making self-serving consensus estimates (e.g. knowledge about the 

attitudes of affirming peers). Another intriguing possibility concerns the potential role of 

mentalizing (as well as self and valuation) regions in encoding social prediction error, both 

regarding others’ outcomes (i.e. vicarious reward) and their expected actions. Joiner and 

colleagues (Joiner et al., 2017) review the extant literature on common and divergent neural 

correlates of prediction and error for self and for other, suggesting that encoding of social 

prediction error is not limited to the striatum and VMPFC, but includes a diversity of other areas 

as well, notably mentalizing regions. In the present study, the Disconfirmation condition violates 

the expectancy of participants, at least insofar as they expect others’ attitudes to be similar to 

their own. It is therefore plausible that the recruitment of these regions is elicited by expectancy 

violation. However, it is our opinion that a motivational account of the subsequent processes 

subserved by these mentalizing regions best explains why activation in these regions is 

associated with enhancement, rather than attenuation, of consensus bias.  

The results of this investigation are also generally consistent with an account of 

consensus bias that emphasizes the role of cognitive overlap between representation of the self 

and others. The positive association between trial-by-trial variation in MPFC activity and 

observed consensus bias might also therefore be interpreted in line with the literature in social 

neuroscience on the shared mechanisms involved in mentalizing and self-related cognition. The 

self may serve as an implicit anchor for mentalizing processes, from which we distance ourselves 

only effortfully. However, overlap between representations or self and other, by itself, does not 

explain the specificity of the effects to the Disconfirmation condition, in which participants 

presumably have the most reason to represent self and other distinctly. In one relevant study 



(Tamir & Mitchell, 2010) elevated activity in DMPFC was associated with the dissimilarity 

between one’s attitudes and those of another person, and VMPFC differentiated between items 

on which the self and the other person agreed and disagreed. The present research also reports 

elevated activity in DMPFC and VMPFC in response to social disconfirmation, but this 

increased hemodynamic response is parametrically associated with persistence in biased 

consensus estimates. Therefore, neither self-other overlap nor effortful distancing of the self 

from another seem (by themselves) to be a straight-forward explanation of the involvement of 

medial prefrontal regions in consensus bias. Instead, greater recruitment of DMPFC and VMPFC 

may be necessary precisely because, in the Disconfirmation condition, the attitude of a peer is 

presented to the participant as discrepant or distanced from one’s own attitude. Participants may 

therefore need to do more motivated, effortful mentalizing work in order to bring representations 

of others’ attitudes in line with their own. Hemodynamic association with consensus bias may 

therefore reflect this added effort involved in harmonizing own and others’ opinions.  

The results of the present study cohere most strongly with recent work on motivated 

cognition in the processing of social attitudes. For example, Hughes & Beer (2013) found that 

activity in the medial orbitofrontal cortex (MOFC), when under social-evaluative threat, was 

positively associated with participants’ tendency to judge themselves to be “better-than-average” 

on a variety of personality traits. Thus, when challenged by the threat of social evaluation, 

participants’ recruitment of brain regions involved in computations of subjective value resulted 

in (possibly biased) self-enhancement. Moreover, in a study by Kaplan, Gimbel, & Harris (2016) 

MPFC activity was associated with belief persistence in the face of challenge. In this study, 

participants who recruited MPFC most strongly when their attitudes were challenged showed the 

least change (or the most belief persistence), suggesting that the involvement of motivational 



processes related to the self may have buffered their attitudes against social influence or 

conformity pressures. Importantly, however, their analysis does not examine consensus estimates 

regarding others’ beliefs, nor does it examine within-subjects variation in MPFC activity. 

Whether or not one ought to change one’s own attitudes in light of discrepant or contradictory 

feedback from others is a question fraught with moral and political significance; at least, it is not 

obvious that one ought always to align one’s attitudes with the group consensus. But clearly we 

should at least be willing to consider discrepant feedback in forming our estimates of consensus. 

In this light, it is intriguing that neural mechanisms mediated by similar regions seem to insulate 

both our attitudes from social influence and our consensus estimates from up-date or revision.   

Intriguingly, however, the results of the present work also resemble those of studies in 

which group consensus affirmed participants’ antecedent attitudes, or in which participants 

actively brought their beliefs in line with group consensus. For example, Nook & Zaki (2015) 

found elevated reward-related activity in the nucleus accumbens when group consensus agreed 

with participants’ preferences regarding food items, and VMPFC activity correlated positively 

with subsequent shifts in participants’ ratings towards conformity with the group.  Izuma and 

Adolphs (2013) observed that activity in the DMPFC mediated attitudinal shifts towards the 

opinions of positively-evaluated (liked) groups and away from negatively-evaluated (disliked) 

groups. These findings suggest that common processes may ultimately underlie consensus bias 

and social influence processes, despite the apparent divergence between paradigms and the 

opposed effects on attitude change. These processes may assist in the pursuit of consensus with 

the broader groups of which we are members – whether that consensus is veridical or not. When 

abundant and reliable information is available regarding group attitudes, we may be motivated to 

align ourselves with the priorities and values to which the group adheres. However, when 



information about group consensus is more limited or ambivalent, the same desire to achieve 

congruence with the group may result in motivated misperceptions of group attitudes.   

For example, in Nook & Zaki (2015), participants were lead to believe that social 

feedback represented an aggregate of the preferences of 200 fellow Stanford undergraduates. 

Resisting social influence in such a situation would therefore imply persisting in preferences that 

are strongly counter-normative, at odds with a large and (presumably) reliable sample of the 

attitudes of their peers. In the present study, UCLA participants believed that the social 

information merely reflected the attitude of one peer, making it much easier to discount this 

feedback if participants were motivated to maintain a contrary position. Interestingly, the 

quantity of social feedback available regarding others’ attitudes and behavior was an important 

variable manipulated in Krueger and Clement (1994): participants in one experiment were 

presented with progressively larger samples of their peers who unanimously disagreed with their 

position. At all feedback sample sizes, participants’ own position continued to significantly 

influence consensus estimates, but when the sample size of discrepant peers reached 20 

participants no longer presumed that they were in the majority. Taken together, these results 

suggest an interesting hypothesis for future research: when participants believe that social 

information or social feedback accurately reflects the majority position of their peers, motivated 

processes operate to bring participants’ positions in line with the group – whereas when 

participants believe that social information or social feedback may not reflect the majority 

position of their peers, similar motivational processes operate to bring consensus estimates in 

line with one’s own position (and resist influence).  

On our view, participants persist in exhibiting biased consensus estimates in the face of 

challenging feedback because the motivation to defend the social normativity of one’s attitudes 



biases mentalizing. Such an account nicely explains why, even though participants were less 

biased, on average, when forced to integrate in their consensus estimates attitudes opposed to 

their own, nevertheless, this same condition resulted in the strongest neural associations with 

bias. Importantly, strong consensus bias was also observed when participants’ attitudes were 

confirmed and in the absence of social information. Other, presumably non-motivational, 

mechanisms must contribute to consensus bias in these conditions and future research will be 

needed to clarify their neural mechanisms. The present results should not be construed as 

excluding non-motivational causes of bias, but rather as evidence for motivated processing as an 

explanation for the persistence of bias in the face of disconfirmation. 

We should note that the present paradigm does not rest principally on reverse inference, 

in which claims regarding psychological states are inferred from observations of brain activity. 

Instead, the conclusions drawn in this manuscript reflect a hypothesis testing approach. If 

motivated cognition influences consensus estimation, neural correlates of bias should differ in 

circumstances in which participants are motivated to defend the normativity of their attitudes 

(such as in instances of social disconfirmation). Results of both ROI and whole-brain analysis 

are consistent with this hypothesis, and inconsistent with the notion that identical mechanisms 

underlie consensus bias in both motivated and non-motivated contexts. Given the observed 

effects in regions implicated in self-related processes, mentalizing, and subjective valuation, we 

speculate that some confluence of relevant mechanisms biases the evaluation of others’ attitudes 

and the integration of discrepant information with prior beliefs. However, we remain agnostic 

about the precise contribution of these regions as well as the exact means by which they combine 

to preserve bias in the face of disconfirmation. These topics must be addressed by future work, 

and the present data cannot adjudicate between competing mechanisms precisely.  



Three crucial limitations of the present research might guide further efforts to examine 

the neural mechanisms supporting the false consensus effect. First, we did not scan participants 

while thinking about their own attitudes, so a direct comparison of neural responses when 

thinking about own and others’ attitudes is not possible. Second, while connectivity analyses are 

complicated by the event-related nature of the present paradigm, they could illuminate more 

clearly the interactions between motivational and mentalizing processes that, we contend, shape 

consensus bias. Third, we must be careful concerning issues of causality when assessing 

neuroimaging evidence. It is possible, for example, that biased responses elicit subsequent 

activity in the observed regions, but that this activity does not cause bias directly. Future work 

might profitably clarify each of these issues and thereby offer a more complete picture of the 

consensus estimation process (and its tendencies towards bias) than is possible at present.  

CONCLUSION 

The present study examined the neural correlates of the false consensus effect in the presence 

and absence of social disconfirmation in the form of discrepant social attitudes from peers. The 

results revealed unique associations between trial-by-trial (issue-by-issue) consensus bias and 

hemodynamic activity in the Disconfirmation condition. In this condition, but not others, brain 

regions associated with self-related cognition (MPFC, precuneus), mentalizing (DMPFC, TPJ), 

and subjective valuation (VMPFC, VS) exhibited parametric modulation by the level of observed 

consensus bias, such that participants recruited these areas more strongly when they over-

estimated support for their own attitudes (and under-estimated support for the opposing 

attitudinal position). The specific recruitment of these regions during social disconfirmation is 

consistent with an important role for motivated processing in sustaining consensus bias against 



disconfirmatory feedback from others. These results shed light on the psychological and neural 

processes underpinning motivational sources of consensus bias in human social reasoning.  
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Table 1: 
Regions exhibiting parametric modulation by observed Consensus Bias 
Test Effect/Anatomical Region    t x y z k 
All Trials, Bias PM (+):      
Medial prefrontal cortex 6.06 -3 56 16 392 



Ventromedial prefrontal cortex 4.74 9 62 -8  
 4.27 -9 59 -17  
      
All Trials, Bias PM (-):      
None      
      
Confirmation, Bias PM (+/-):      
None      
      
Disconfirmation, Bias PM (+):      
Left precuneus 7.90 -9 -52 4 588 
 6.14 -18 -70 16  
 4.67 -9 -55 28  
Medial prefrontal cortex 5.22 -6 59 -8 967 
 5.07 -6 62 22  
 4.90 9 50 7  
Left temoro-parietal junction 4.90 -42 -64 25 138 
Thalamus 4.80 0 -10 7 294 
Right amygdala 4.49 18 -7 -14  
Right caudate  4.37 18 23 4  
Left temporal pole 4.57 -66 -10 -17 178 
 4.44 -54 11 -17  
Left inferior frontal gyrus 4.33 -36 32 -11  
      
Disconfirmation, Bias PM (-):      
None 
      
No Information, Bias PM (+/-): 
None 
      
Non-Disconfirmation (Confirmation and No 
Information, Bias PM (+):      
Left superior parietal lobule 5.94 -33 -49 70 82 
 4.30 -21 -58 52  
      
Non-Disconfirmation (Confirmation and No 
Information, Bias PM (-):      
None      
      
Disconfirmation Bias PM > Other Trials  
(Confirmation and No Information) Bias PM:      
Left precuneus/PCC 5.57 -21 -70 13 776 
 4.85 -6 -31 10  
 4.83 -9 -52 4  
 3.04 -3 -64 22  
Left temporo-parietal junction 4.83 -45 -67 28 216 
 3.72 -36 -76 49  
 3.41 -63 -55 28  
Left caudate 4.59 21 -7 22 195 
 4.26 3 -10 13  
 4.09 -3 5 -2  



Medial prefrontal cortex 4.48 -3 62 31 227 
 3.83 39 62 10  
 3.68 3 65 10  
      

The above table displays whole-brain parametric modulation analyses, indicating regions in 
which hemodynamic activity covaried trial-by-trial with observed consensus bias. Results are 
reported both across all trials (ignoring information condition) as well as separately for trials 
within the Confirmation, Disconfirmation, and No Information conditions. Only grey-matter 
voxels were analyzed. Tabulated results are corrected for multiple comparisons, cluster FWE 
p<0.05, with a cluster-formation threshold of p<0.005. Peaks reported are separated by at least 
20mm. 
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Figure 1: Depiction of trial structure and information presented on-screen. (A) The first panel shows an example 
screen for a No Information trial, in which a social or political attitude is presented to the participant for consensus 
estimation in the absence of any information ostensibly from the sample of UCLA undergraduates. In the second 
panel, a hypothetical response is depicted, in which a participant who opposes gay marriage selects a response that 
underestimates support for marriage equality in the undergraduate population. (B) Example trials from the 
Confirmation and Disconfirmation conditions. In the Confirmation condition, participants were presented with 
sample information suggesting that another undergraduate had an attitude similar to their own (no more than 5 
points from their own attitude). In the Disconfirmation condition, participants were presented with sample 
information suggesting that another undergraduate had an attitude dissimilar to their own (at least 15 points 
different) and similar to the actual sample mean (within 5 points in either direction). These conditions were 
constrained by the experimental design to be exclusive, i.e., such that disconfirmatory information was always 
further from one’s own attitude than confirmatory information, and always closer to the actual mean than the 
confirmatory information (see Methods). 
 
 
 
 
 
 
 
 
 



 
Figure 2: Regions of interest and associated parameter estimates from ROI analysis of parametric 
modulation of hemodynamic activity by observed consensus bias, across conditions. (A) Regions 
of interest (ROIs) for mentalizing (purple), self-related cognition (yellow), and subjective 
valuation (cyan), shown in mid-sagittal section. See Methods for detailed description of ROIs. 
(B) Parameter estimates for each of the ROIs plotted separately for each condition of interest. 
For all ROIs, the association between observed bias and hemodynamic activity is strongest in the 
Disconfirmation condition. Error bars indicate the standard error of the mean. 
 

 

 



 

Figure 3: Parametric modulation of hemodynamic activity by observed consensus bias. Clusters 
are FWE corrected (p<0.05) with a cluster-formation threshold of p<0.005. See also Table 1. (A) 
Across all trials (ignoring condition), hemodynamic activity in medial prefrontal cortex (MPFC) 
and ventromedial prefrontal cortex (VMPFC) demonstrated parametric modulation by consensus 
bias, such that greater activity in these regions was associated with greater observed bias. B) For 
trials in the Disconfirmation condition (during which participants received social feedback 
discrepant with their own attitudes), positive associations with bias were observed both in 
regions implicated in mentalizing (DMPFC, left temporoparietal junction (LTPJ)), self-related 
cognition (MPFC, precuneus/posterior cingulate cortex(PCC)), and affective/motivational 
processes (amygdala (not shown), VMPFC). Stronger associations between consensus bias and 
activity were observed during the Disconfirmation trials than all other consensus estimation trials 
(i.e., Confirmation and No Information trials), as shown in (C). 
 
 
 
 


