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Abstract 

Schelling proposed that payoff-irrelevant cues can affect the outcome of tacit bargaining 

games by creating focal points.  Tests of this hypothesis have found that conflicts of interest 

between players inhibit focal-point reasoning.  We investigate experimentally whether this 

effect is reduced if players have imperfect information about each other’s payoffs.  When 

players know only their own payoffs, they fail to ignore this information even though it 

cannot assist coordination; the effects of payoff-irrelevant cues on coordination success are 

small.  When no exact information about payoffs is provided, payoff-irrelevant cues are more 

helpful, but not as much as when conflict is absent.  

Keywords: focal points, tacit bargaining, coordination, conflict of interest, payoff 

information, payoff-irrelevant cue. 

JEL classification: C72, C78, C91. 
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In his famous book The Strategy of Conflict, Schelling (1960) develops a theory of focal-

point reasoning in games with multiple Nash equilibria.  This form of reasoning is 

fundamentally different from the best-response reasoning that is standard in game-theoretic 

analysis.  The essential idea is that players concert their mutual expectations on one 

equilibrium – the focal point – by appealing to their shared knowledge about salient 

properties of the game.  In some cases, the focal point is salient because it payoff-dominates 

other equilibria, but salience often derives from payoff-irrelevant features of the way 

strategies are labelled.   

 It is now empirically well established that real players successfully coordinate on 

payoff-dominant equilibria in coordination games in which there are no conflicts of interest 

(e.g. Bacharach, 2006; Bardsley et al., 2010) and that label-salient focal points are very 

effective in Pure Coordination games, in which all equilibria have the same payoffs for all 

players (e.g. Schelling, 1960; Mehta et al., 1994a, 1994b; Bacharach and Bernasconi, 1997; 

Crawford et al., 2008; Bardsley et al., 2010; Parravano and Poulsen, 2015).  Significantly, 

however, these cases of successful coordination occur in games in which the players have a 

shared ranking of the equilibria.  Schelling argues that rational players would use the same 

kind of reasoning in what he calls situations of tacit bargaining, that is, games in which two 

players have a common interest in coordinating their strategies, but their interests conflict 

over how coordination should be achieved, and communication is not possible.  He uses the 

term ‘tacit bargaining’ to signify that games of this kind can be useful reduced-form models 

of real-world bargaining situations, including situations in which communication is possible.1  

 The simplest examples of tacit bargaining games have the 22 Battle of the Sexes 

structure.  Like Pure Coordination games, these games are symmetrical with respect to 

players and strategies, and so classical game theory cannot distinguish between the pure-

strategy equilibria (e.g. Harsanyi and Selten, 1988); the difference is that the players have 

conflicting rankings of those equilibria.2  Just as in Pure Coordination games, the players may 

                                                           
1 Schelling (1960: 267–272) argues that if ‘explicit’ bargaining takes place over a finite period of time and if the 

procedure by which players communicate is ‘perfectly move-symmetrical’, there must be a final period in which 

a tacit bargaining subgame is played.  If the solution to this subgame is common knowledge, no player will 

accept a lower payoff in earlier rounds of the game. 

2 The distinction between Pure Coordination and Battle of the Sexes games is often described as that between 

games with symmetric and asymmetric payoffs (e.g. Crawford et al., 2008).  Because both types of game are 

invariant with respect to renaming players and strategies, we prefer to distinguish between the absence and 

presence of conflict of interest. 
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have common knowledge of salient labelling properties that would allow them to concert 

their expectations on a focal point.  Schelling conjectures that, when individual interests are 

secondary to the primary need for coordination – that is, when the reward from coordinating 

is sufficiently large relative to the loss in payoff from not coordinating on one’s preferred 

equilibrium – rational players can ‘discipline’ themselves to accept a lesser share if a useful 

cue points that way (p. 286).  

It has been found that, consistently with Schelling’s conjecture, certain kinds of 

labelling asymmetries are used as cues for achieving coordination in tacit bargaining games.  

Such asymmetries include the gender of the players (Holm, 2000) and which player is 

described as the first mover in a Battle of the Sexes game that is strategically equivalent to a 

simultaneous move game (Cooper et al., 1993; Güth et al., 1998).  However, when 

coordination games are framed as matching games – that is, framed so that coordination 

requires both players to choose the same strategy – there is substantially less coordination on 

salient equilibria if there is conflict of interest than if there is not (Crawford et al., 2008; 

Faillo et al., 2017).  In the most extreme cases, such as the 22 games in Crawford et al.’s 

experiment, coordination payoff differences of as little as two per cent induce rates of 

coordination lower than would have resulted from random behaviour.  In interpreting these 

findings, Crawford et al. propose a version of level-k theory (Stahl and Wilson, 1995; Nagel, 

1995) in which payoff-irrelevant cues serve only as tie-breakers, with the implication that 

such cues are used only in the very special case of Pure Coordination games.3 

 This implication is clearly too extreme, even for matching games.  In 33 matching 

games with conflicts of interest, Faillo et al. find evidence indicative of level-k reasoning but 

incompatible with focal-point reasoning, and evidence indicative of the opposite.  The 

relevant games can be described by the three pairs of payoffs on the main diagonal of the 

payoff matrix, all other payoffs being zero and no label being salient.  For example, in the 

‘G6’ game {(10, 9), (9, 10), (9, 8)} the third strategy is unique by virtue of its payoffs, but 

only 5.6 per cent chose that strategy, consistently with level-k reasoning but contrary to focal-

point reasoning.  In the ‘G7’ game {(10, 9), (9, 10), (9, 9)}, 69 per cent chose the third 

                                                           
3 Although Crawford et al.’s level-k model can account both for coordination success in Pure Coordination 

games and coordination failure in Battle of the Sexes, direct investigation of reasoning in those games by van 

Elten and Penczynski (2018) reveals marked differences between the two cases, with level-k reasoning more 

common in Battle of the Sexes games and Schelling-style ‘team reasoning’ in Pure Coordination games.    
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strategy, consistently with focal-point reasoning, when the level-k model implies that no 

player (except at ‘level 0’) should make that choice. 

Isoni et al. (2013) investigate coordination games that are framed to incorporate 

aspects of real-world bargaining – particularly, that players make claims on specific valuable 

objects (with the implication that coordination requires players to choose different objects), 

that salient labelling cues take the form of relations between players and objects, and that 

some of the available surplus can be left unclaimed.  In these games, there is significantly 

more coordination if such cues are present than if they are not.  Nevertheless, for given cues, 

the presence of conflict of interest reduces coordination.  This evidence suggests that, 

contrary to Schelling’s hypothesis, given players are less likely to use focal-point reasoning, 

or use it less effectively, when they have conflicting rankings of coordination equilibria.  

Since such conflict is likely to occur in most real-world situations of coordination and 

bargaining, it is important to establish under what conditions focal-point reasoning is likely to 

be adopted.   

The research reported in the present paper was prompted by the thought that most 

experiments fail to capture a key aspect of real-world situations of coordination and 

bargaining.  Contrary to what happens in the lab, real-world players may not know exactly 

how much it is worth to them and their co-players to coordinate on a certain label or to reach 

a certain agreement.  They may have better knowledge of their own utilities than their co-

players’, or sometimes even be unsure about their own utilities.  By making payoff 

differences unambiguous and by establishing common knowledge about them, experimental 

games may overemphasise a kind of information that may be impossible for real-world 

agents to acquire with a comparable degree of precision.  If the presence of conflict inhibits 

focal-point reasoning, the emphasis that lab experiments put on it may lead to wrong 

conclusions about its relevance for real-world settings.  In order to conduct a more realistic 

test of how conflicts of interest affect focal-point reasoning, it is important to consider 

situations in which payoffs are less than perfectly known.  This is the main objective of our 

paper. 

To address our research question, we need to be able to manipulate payoff 

information in a setup in which there are focal points that reliably affect behaviour, and in 

which the inhibiting effect of conflicts of interests on focal-point reasoning has been 

observed and can be easily replicated.  To this end, we adapt the bargaining table design used 

by Isoni et al. (2013).  Our adaptation allows us to represent three simple types of 22 game 
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with and without payoff-irrelevant labelling cues, all with two pure-strategy Nash equilibria: 

Pure Coordination games, Hi-Lo games (i.e., coordination games in which one pure-strategy 

equilibrium strictly Pareto dominates the other), and Battle of the Sexes games.  Conflict of 

interest is present in the latter game, but not in the former two.  Crucially, in the modified 

setup it is possible to vary the information that players have about the payoffs of the game, 

and hence whether conflicts of interest are common knowledge.  

We study games that belong to one of three information conditions: a Full 

Information condition, in which both players know all payoffs; an Own Information 

condition, in which each player exactly knows her payoffs, but not the other player’s; and a 

No Information condition, in which neither player knows the exact values of the payoffs.  In 

all cases, the information condition is common knowledge.  In the Full Information condition, 

it is common knowledge which of the three types of game is being played.  In the other two 

conditions, neither player knows whether they are playing a Battle of the Sexes or a Hi-Lo 

game, hence whether there is conflict or not.4 

Our initial conjecture was that focal-point reasoning would be more likely to be used, 

and hence labelling cues would be more effective, when conflicts of interest were less 

obvious.  To formalise this conjecture, we develop a model in which each player is capable of 

using both focal-point and level-k reasoning (but not both at the same time); which of the two 

modes is more likely to be used in any given game is influenced by the presence or absence 

of conflicts of interest.  The model organises the evidence, existing prior to our experiment 

and on which our conjecture was based, about the effect of labelling cues in the Full 

Information versions of Pure Coordination, Hi-Lo and Battle of the Sexes games.  It makes 

new predictions for the Own and No Information games.  In the Own Information condition, 

it predicts better coordination success than in Battle of the Sexes but worse than in Pure 

Coordination games.  In the No Information condition, it predicts the same level of 

coordination success as in Pure Coordination games.   

                                                           
4 Our focus on one-shot tacit coordination problems sets our contribution apart from the early work by Roth and 

Malouf (1979), Roth et al. (1981), and Roth and Murnighan (1982), who explored the effect of varying players’ 

degree of payoff information in two-player explicit bargaining games with offers and counteroffers which 

resulted in lotteries for the two players, and found a broad tendency for agreements to be biased towards 

outcomes that equated the two players’ expected experimental earnings.  Our games also differ significantly 

from the matching games studied by Agranov and Schotter (2012), in which players learn to coordinate on the 

label-salient equilibrium in games with ‘coarse’ payoff information when these are played repeatedly with 

stranger matching and round-by-round feedback on the actual payoff configuration and realised outcomes.  In 

line with Schelling’s hypothesis, we study systematic coordination that occurs prior to any learning. 
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Surprisingly, our data provide no support for the hypothesis that de-emphasising 

conflicts of interest facilitates focal-point reasoning in one-shot tacit bargaining games.  In 

the Own Information condition, players seem to find it hard to disregard unhelpful private 

information, and achieve levels of coordination that are, if anything, lower than in Battle of 

the Sexes games.  Even in the No Information condition, coordination success falls short of 

the levels achieved in Pure Coordination games played under Full Information.  Our results 

provide further evidence that the tension between focal-point and individual best-response 

reasoning such as level-k thinking is not easily resolved in the presence of conflicts of 

interest. 

The remainder of this paper is organised as follows.  Section 1 describes our 

adaptation of the bargaining table design.  Our model is developed in Section 2.  In Section 3, 

that model is used to derive hypotheses for our experiment.  Section 4 gives details of how 

the experiment was implemented.  We present our results in Sections 5, 6 and 7.  Section 8 

discusses the implications of these results and concludes. 

  

1. Experimental design 

The left-hand side of Figure 1 shows one of the ‘scenarios’ faced by participants in our 

experiment.  The scenario on the right-hand side is the same game as viewed by the matched 

player. 

 [Insert Figure 1 here] 

Taken together, the two scenarios constitute a tacit bargaining game represented by a 99 

grid.  The two squares represent the two players’ respective bases.  Each player knows which 

base is theirs because it is shown in red at the bottom of the table they see and is labelled 

‘You’.  For each player, it is straightforward to work out how the game looks from the 

‘Other’ player’s perspective.   

There are two discs on the table, each split into two halves.  There is a value in each 

half.  The value on the half facing each base represents the value of the disc (in UK pounds) 

to the player assigned to that base.  For the game in the example, each of the two discs is 

closer to one of the two bases.  For each player, the close disc is worth £10 to them and £11 

to the other player, while the far disc is worth £11 to them and £10 to the other player.  
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The game was described to participants as an ‘opportunity to agree on a division of 

the discs’.  Each player separately recorded which disc(s) she ‘proposed to take’ or ‘claimed’.  

If no disc was claimed by both players, the players were said to have ‘agreed’; each player 

earned the total value to her of the discs she had claimed.  If any disc was claimed by both 

players, there was ‘no agreement’, and neither player earned anything from the game.5  

For the game in Figure 1, each player’s strategies can be described as either: claim 

none of the discs, claim the close disc only, claim the far disc only, or claim both discs.  

Claiming none of the discs is a weakly dominated strategy.  If this strategy is eliminated, 

claiming both discs is weakly dominated.  After iterated elimination of weakly dominated 

strategies, we are left with a 22 game with the payoffs shown below:6  

  Other 

  Close Far 

You 
Close 10, 10 0, 0 

Far 0, 0 11, 11 

The distinction between ‘Close’ and ‘Far’ represents a distinction between the two equilibria 

that is common knowledge between the players and that has the potential to be used as a 

means of coordination.  The matrix describes a Hi-Lo game with two Pareto-ranked Nash 

equilibria in pure strategies ([Close, Close] and [Far, Far]) and a mixed-strategy Nash 

equilibrium (each player plays Close with probability 11/21).  Given that players are 

described as ‘You’ and ‘Other’, the only information that would allow a player to distinguish 

between the two pure strategies is the difference between getting 10 or 11 and the relative 

salience of Close and Far. 

If our design is to identify the positive and negative effects of labelling cues on 

coordination, we need a control condition in which such cues are either absent or ineffective.  

It might seem that the obvious way to implement control would be to remove the two player’s 

bases and show exactly the same display to both players.  While this may work in a game like 

                                                           
5 Although all our games have just two discs, we allowed players to also claim none or both discs.  Isoni et al. 

(2013) looked at the effect of forcing players to claim exactly one disc and found that, other things being equal, 

that somewhat reduced the salience of closeness cues.  Because we need salient cues to address our research 

question, we used the version of the games in which none or both discs could be claimed.  This has also the 

advantage of preserving the bargaining feel of the game. 

6 As a necessary step for experimental implementation, we use the term ‘payoff’ to refer to material payoffs 

(expressed in money units), but treat these as if, for each player considered separately, they were close proxies 

for utilities in the sense of classical game theory.  As in that theory, we make no assumptions about the 

interpersonal comparability of utility. 
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the one in the example, it would be unsatisfactory for Battle of the Sexes and Pure 

Coordination games, which (apart from labelling) are perfectly symmetrical with respect to 

players and strategies.  In such an alternative control version of these games, the only strategy 

descriptions available to the players would share the property that coordination would require 

them to choose different strategies. But without communication, players who identify 

themselves only as ‘me’ and ‘other’ would have no means of achieving such coordination.  

Thus, this control would fundamentally change the nature of the game.7 

For our purposes, the most useful control condition is one in which labelling cues 

remain, but are minimally salient.  Following the precedent of previous bargaining table 

experiments (Isoni et al., 2013, 2014), we match games with closeness cues with ‘spatially 

neutral’ games.  An example of how such a game would look for two matched players is 

shown in Figure 2.  

[Insert Figure 2 here] 

 This is essentially the same as the previous game, except for the positions of the two 

discs, which are now equidistant from the two bases.  From the point of view of each player, 

the strategies can be described as either: claim none of the discs, claim the disc more to the 

left as seen from your base, claim the disc more to the right as seen from your base, or claim 

both discs.  After iterated elimination of weakly dominated strategies, this game can be 

presented in normal form as: 

  Other 

  Left Right 

You 
Left 10, 10 0, 0 

Right 0, 0 11, 11 

This payoff matrix is identical to that for the game in Figure 1, except for the labels.  Like 

that game, this has two pure-strategy equilibria ([Left, Left] and [Right, Right]) and a mixed-

strategy Nash equilibrium (each player plays Left with probability 11/21).   

In both games considered so far, there are labelling cues that in principle could be 

used as a means of coordination but, intuitively, it seems clear that the rule of choosing the 

disc that is more to the left (or to the right) is likely to be much less conducive to 

                                                           
7 Compare the concept of attainability in Crawford and Haller (1990) and Blume (2000). 
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coordination than the rule of choosing the disc closer to one’s base.  And in fact, there is 

strong evidence that this is the case (e.g., Mehta et al., 1994b; Isoni, et al., 2013, 2014).  Our 

experimental design is premised on the assumption that, when both discs are equidistant from 

the two bases, players who try to use spatial location as a coordination device will distribute 

their choices between the discs with approximately equal probability.  Given this assumption, 

such games can be used as controls.  Our design allows us to check the validity of this 

assumption.  

In order to assess the ability of payoff-irrelevant cues to influence coordination 

success, we will contrast Closeness games in which (as in Figure 1) there is one disc closer to 

each base, and Spatially Neutral games in which (as in Figure 2) both discs are equidistant 

from the two bases.  Our experiment was designed to study the effects of closeness cues in a 

variety of situations, including different degrees of conflict between coordination equilibria 

and information about the value of each disc to each player.  

 In the remainder of this paper, we will use the word scenario to indicate a game as 

seen by an individual player, and the word game to indicate the result of two matching 

scenarios like those in Figures 1 and 2.  In each scenario, the positions of the two discs were 

always common knowledge, and there was a disc value pair {X, Y} with 0 < X ≤ Y, which 

was also common knowledge.  For each player, there was always one disc worth X and one 

disc worth Y.  The particular configuration of which disc was worth X and which was worth Y 

for each player will be called the assignment of disc values.  When X = Y, there is just one 

possible assignment of values to discs, which is necessarily common knowledge.  This 

produces a Pure Coordination game.  When X < Y, there are four possible assignments of disc 

values.  Two of these produce Hi-Lo games, in which the players’ interests are fully aligned; 

the other two produce Battle of the Sexes games, in which the players have conflicting 

rankings of the two equilibria.  In different information conditions, players had different 

degrees of information about this assignment.  When players were not fully informed about 

the actual assignment, each of the four possible assignments had the same prior probability. 

The scenarios used in the experiment can be grouped into four classes, defined in 

terms of disc values and information conditions. 

In Pure Coordination (PC) scenarios, it is common knowledge that X = Y, and hence 

that the players are facing a Pure Coordination game.  These scenarios allow us to verify that, 
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in the absence of conflict of interest, closeness cues are more salient than other cues.  An 

example of a Pure Coordination scenario is shown in Figure 3a.8 

  In the other three classes of scenarios, it is common knowledge that X < Y.  In Full 

Information (FI) scenarios, the assignment of disc values is common knowledge.  Thus, it is 

common knowledge that the players are facing a Hi-Lo game or a Battle of the Sexes game.  

If the game is Hi-Lo, it is common knowledge if closeness is congruent or incongruent with 

payoffs – i.e., whether or not the payoff dominant equilibrium has a salient label.  If the game 

is Battle of the Sexes and if there is one disc on each player’s side of the table, the ‘You’ 

player can either be favoured by closeness (scenario C5) or unfavoured (scenario C4).  An 

example of an FI scenario is shown in Figure 3b; this is part of a Hi-Lo game.   

In Own Information (OI) scenarios, each player knows the value of each disc to her 

but not their values to the other player; this is common knowledge.  In our displays, the 

‘Other’ player’s disc values are replaced by question marks.  From these displays and from 

the information at their disposal, each player can figure out that her scenario may be part of 

either a Hi-Lo game or a Battle of the Sexes game.  In scenario C6, closeness is bad for the 

‘You’ player (the close disc is worth X), in scenario C7 it is good (the close disc is worth Y).  

An example of an OI scenario is shown in Figure 3c. 

From the viewpoint of classical game theory, these scenarios represent games of 

incomplete information.  After iterated elimination of weakly dominated strategies, each of 

these games has three pure-strategy Bayesian Nash equilibria: one in which both players 

always choose the close (respectively, left) disc, one in which both players always choose the 

far (right) disc, and one in which each player always chooses the disc that is worth Y to her.  

The first two of these equilibria result in perfect coordination, while the last results in 

successful coordination only fifty percent of the time.  There are also two mixed-strategy 

equilibria, in one of which the close (respectively, left) disc, and in the other the far 

(respectively, right) disc is claimed with probability 1 when it is worth Y and with probability 

(Y – X)/(X + Y) when it is worth X.9 

                                                           
8 The numbers that appear next to the left and bottom edge of the bargaining tables in Figure 3 are coordinates 

that uniquely identify the positions of the two discs.  These were not shown to participants, but will be used in 

Section 4 to describe the exact ‘layouts’ of discs.  In the experiment, the disc values were preceded by the ‘£’ 

symbol. 

9 These equilibria are derived in the Appendix (intended for online publication). 
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In No Information (NI) scenarios, the assignment is completely unknown to both 

players; this is common knowledge.  In our displays, all disc values are replaced by question 

marks.  From these displays and from the information at their disposal, each player can figure 

out that her scenario may be part of either one of two Hi-Lo games or be one of the two 

scenarios making up a Battle of the Sexes game.  An example of an NI scenario is shown in 

Figure 3d. 

The scenarios used in the experiment can also be classified according to the spatial 

locations of the discs.  In Closeness scenarios, such as those shown in Figures 3a and 3c, one 

disc is closer to the ‘You’ base and the other is closer to the ‘Other’ base.  In Spatially 

Neutral scenarios, such as those shown in Figures 3b and 3d, both discs are equidistant from 

the two bases; necessarily, one disc is more to the left, as viewed by the ‘You’ base.   

To maintain symmetry in our design, every Closeness scenario has a corresponding 

Spatially Neutral scenario, and vice versa.  In each pair of corresponding scenarios, the two 

scenarios belong to the same class (PC, FI, OI or NI) and have the same disc value pair.  

Recall that in a Closeness scenario of class FI or OI, the ‘You’ player knows whether the disc 

that is closer to her base is more or less valuable to her than the disc that is further away.  In a 

corresponding Spatially Neutral scenario, the ‘You’ player knows whether the disc that is 

more to her left is more or less valuable to her than the disc that is more to her right.  We 

adopt the convention that a Closeness scenario in which the more valuable disc is closer to 

the ‘You’ base corresponds with a Spatially Neutral scenario in which the more valuable disc 

is more to the left.  Given our premise that neither left nor right is salient, this convention is 

inconsequential to our analysis.10 

Table 1 presents an overview of the types of scenarios that participants faced in our 

experiment.  In describing scenarios, we use the following notation.  Discs are shown by two 

entries in parentheses, in which the first entry is the value of the disc to the participant 

(‘You’), and the second is the value to the player they are facing (‘Other’).  For example, (X, 

Y) denotes a disc worth X to ‘You’ and Y to ‘Other’; (Y, ?) is a disc worth Y to ‘You’ and 

either X or Y to  ‘Other’; (?, ?) is a disc worth either X or Y both to ‘You’ and  ‘Other’.  The 

two vertical bars | | are used to identify the middle row of the table as seen by the participant.  

In Closeness games, the close disc is shown to the left of | | and the far disc to the right.  In 

Spatially Neutral games, both discs are between the two bars, the first disc indicating the 

                                                           
10 This premise is confirmed (see Section 5). 



12 
 

leftmost disc as seen by the participant, the second indicating the rightmost disc.  For 

example, the scenario on the left-hand side of Figure 1 is C2 = (X, Y)| |(Y, X), with X = 10 and 

Y = 11.  The scenario on the right-hand side of Figure 2 is N2 = |(X, Y) (Y, X)|, also with X = 

10 and Y = 11.    

[Insert Table 1 here] 

 Table 1 presents the eight Spatially Neutral scenarios used in the experiment (N1 to 

N8) and the corresponding Closeness scenarios (C1 to C8).  Each row describes a pair of 

corresponding scenarios.  The first column shows whether these scenarios are of class PC, FI, 

OI or NI (and the corresponding game for the FI scenarios).  The ‘Match’ columns identify 

the scenario faced by ‘Other’ when the relevant scenario is faced by ‘You’.  This matching is 

a matter of logical necessity, because in any given scenario a player can work out what 

scenario (or, in the case of the Own Information condition, what scenarios) ‘Other’ is (might 

be) facing.  In most cases, the matched player faces the same scenario, but there are some 

exceptions.  For example, scenario C5 is part of a Battle of the Sexes game in which the best 

equilibrium for ‘You’ is the one in which each player claims the disc closer to her base.  The 

matched player necessarily faces scenario C4, in which the best equilibrium for ‘You’ is the 

one in which each player claims the disc further from her base. The last column describes 

how the closeness cue relates to payoffs. 

 

2. A simple model of multiple modes of reasoning    

In order to derive hypotheses for the games in our experiment, we develop a model which 

organizes the main findings of previous experiments on Pure Coordination, Battle of the 

Sexes and Hi-Lo games.  We begin by modelling players’ choices of pure strategies in (full 

information) 22 diagonal coordination games in which player labels are symmetric (e.g. 

‘You’ and ‘Other’, as in Figure 1 and Figure 2).  In a 22 diagonal coordination game, each 

player i = 1, 2 has strategies j = 1, 2, where each strategy j has a distinct payoff-irrelevant 

label lj known to both players.  If both players choose the same strategy j, the payoffs to 

players 1 and 2 are π1j and π2j, with π1j, 2j > 0; otherwise (i.e., off the main diagonal of the 

payoff matrix), both players’ payoffs are zero.  Payoffs are common knowledge.  Any such 

game has two pure-strategy Nash equilibria, in each of which the players’ strategies have the 

same label, and a mixed-strategy equilibrium in which both players’ expected payoffs are 

lower than in either pure-strategy equilibrium.  
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We model each player as being capable of using two alternative modes of reasoning: 

focal-point reasoning, as theorised by Schelling (1960) and developed by Bacharach (2006), 

and level-k reasoning, as modelled by Crawford et al. (2008).  In each game, the modes of 

reasoning used by the players are determined by two independent realisations (one for each 

player) of a random mechanism, using probabilities that are the same for both players but 

might vary according to the specification of the game.  This modelling strategy is justified by 

our objective to match the evidence, summarised earlier, that even in the same experiment 

behaviour in some games is more in line with one form or reasoning, while behaviour in 

other games is more compatible with the other (e.g. Faillo et al., 2017).  A model that treated 

each mode of reasoning as an unconditional property of a distinct player ‘type’ would not be 

able to explain this evidence. 

We assume that each mode of reasoning is self-contained – that is, a player who uses 

it acts as if believing that the other player uses it too.  This assumption appears the most 

psychologically plausible, given the bounded rationality of ordinary human players: 

reasoning about the game in multiple ways is much more cognitively demanding than using a 

single mode of reasoning.11  In addition, the evidence that salient labelling cues can be 

ineffective in Battle of the Sexes games would be difficult to explain if players who used one 

mode of reasoning were allowed to believe that their co-players might be using the other.  

The difficulty here is that, under reasonable assumptions, players who mix modes of 

reasoning in this way can be predicted to choose the saliently-labelled strategy in a Battle of 

the Sexes game. 

The most natural way to represent the idea that level-k reasoners believe that their co-

players might be using focal-point reasoning is to assume that a significant proportion of 

level-0 players (i.e., those who are using focal-point reasoning) choose the strategy with the 

more salient label.  But in Battle of the Sexes games with small payoff differences, all higher-

level players would then choose the saliently labelled strategy and so coordinate successfully.  

The mirror-image idea, that focal-point reasoners believe that their co-players might be using 

level-k reasoning, can be modelled using the concept of circumspect team reasoning 

(Bacharach, 1999).  Roughly, the idea is that sophisticated players look for a strategy 

                                                           
11 Costa-Gomes and Weizsäcker (2008) found that subjects play games as if attributing less rationality to their 

opponents than to themselves, but when stating their beliefs about their opponents’ strategy choices, ‘they put 

themselves in the shoes of their opponent’ (p. 757), and reason about their opponents’ decisions as if they were 

theirs. 
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combination that is optimal for the players taken together, treating the behaviour of naïve 

players (in this case, level-k reasoners) as a constraint.  But (as we will show) the overall 

effect of level-k reasoning in Battle of the Sexes games is to produce discoordination.  Taking 

this behaviour as given, circumspect team reasoners would choose the saliently labelled 

strategy so as to coordinate with one another. 

Players who use focal-point reasoning try to discriminate between pure-strategy Nash 

equilibria by using only information that is common knowledge.  When describing focal-

point reasoning, Schelling (1960, pp. 83, 96, 106, 163, 298) often uses the metaphor of a 

‘meeting of minds’ between the players.  The suggestion is that, in choosing their strategies, 

the players imagine themselves reasoning together about how to coordinate their behaviour.12  

A natural implication of this idea is that, in their reasoning, players use only information that 

is common knowledge between them.  Items of such knowledge that can be used in this way 

will be called cues.  Players will concentrate on cues that are salient – i.e., that can easily be 

recognised by both players – and discriminating – i.e., that can identify one of the Nash 

equilibria as the solution of the game.  Given that player labels are symmetric, there are only 

two plausible types of cue that can pick out a specific pure-strategy equilibrium.  There is a 

cue of label salience if one equilibrium stands out relative to the other by having a more 

salient label attached to the corresponding strategy.  There is a cue of joint-payoff salience if 

one equilibrium stands out by having a pair of payoffs that is better for the players 

collectively, according to some salient criterion of ‘betterness’ that treats the players 

symmetrically.  For our purposes, we can restrict the criterion to payoff dominance. 

Our model of level-k reasoning is taken from Crawford et al. (2008).  Each player 

reasons at one the levels 0, 1, 2, ….  Each player’s reasoning level is an independent draw 

from an exogenously given distribution, in which level 0 has zero probability.  A player at 

any level L  1 believes that her co-player is at level L–1, and uses iterated best-response 

reasoning to form a belief about what that co-player will choose.  This reasoning is anchored 

on beliefs about the behaviour of level-0 players.13  A level-0 player is believed to have a 

                                                           
12 This aspect of Schelling’s theory of focal points is examined by Sugden and Zamarrón (2006).  The concept 

of players reasoning together has been developed theoretically in the theories of team reasoning (e.g. Sugden, 

1993; Bacharach, 2006) and virtual bargaining (Misyak and Chater, 2014). 

13 An alternative best-response model based on limited levels of reasoning is Camerer et al.’s (2004) cognitive 

hierarchy model, in which players at higher levels best respond to some distribution of lower levels.  Keeping 

the assumptions about the level-0 player unchanged, using a cognitive hierarchy specification would not alter 

the qualitative predictions summarised in our hypotheses: see footnote 17. 
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probability distribution over strategies which shows a payoff bias (i.e., it assigns higher 

probability to strategies whose equilibria have higher own payoff).  Payoff bias is 

independent of the size of the payoff difference.  Labels are irrelevant for level-0 behaviour 

except when all equilibria have the same own payoff, in which case strategies with more 

salient labels are chosen with higher probability. 

 Following Bacharach’s (2006) theory of team reasoning, we assume that the 

probability that a player uses focal-point reasoning depends on the likelihood that they 

identify with the group made of themselves and their co-player.  In Bacharach’s theory, group 

identification is facilitated by a variety of factors, including being members of the same pre-

existing social group or ad-hoc category (Tajfel, 1970), being exposed to the pronouns ‘we’, 

‘our’ or similar (Perdue et al., 1990), having common interest or common fate (Rabbie and 

Horwitz, 1969), sharing experiences (Prentice and Miller, 1992), making face-to-face contact 

(Dawes et al., 1988), or being interdependent (Sherif et al., 1961).  For our purposes, we 

assume that the probability that players use focal-point reasoning depends only on the 

players’ common knowledge about the presence or absence (and if present, the degree) of 

conflict of interest.  There is conflict of interest if the players have opposing preferences 

between the two pure-strategy Nash equilibria. 

 We now apply this model to the games in our experiment, after iterated elimination of 

dominated strategies.  Initially, we consider Pure Coordination games and Full Information 

games (i.e., Hi-Lo and Battle of the Sexes).  These are 22 diagonal coordination games with 

lj = Close, Far in the Closeness version or lj = Left, Right in the Spatially Neutral version, and 

πij  {X, Y} (with 0 < X ≤ Y).  We assume that the [Close, Close] equilibrium is label-salient 

in all Closeness games, that neither equilibrium is label-salient in Spatially Neutral games, 

and that the [Y, Y] equilibrium has joint-payoff salience in Hi-Lo games.  Notice that, by 

virtue of the symmetry properties of Pure Coordination and Battle of the Sexes, neither 

equilibrium in those games can have joint-payoff salience. 

 There is conflict of interest in Battle of the Sexes but not in Pure Coordination or Hi-

Lo.  In Battle of the Sexes, the degree of conflict of interest depends on the values of X and Y.  

The probability that a player uses focal-point reasoning is given by a function φ(X, Y), with 0 

< φ(X, Y) < 1.14  We assume that there is some probability φ0 such that φ(X, Y) = φ0 if there is 

                                                           
14 Given our objective to produce a model that matches the evidence available before our experiment, and given 

that, as noted earlier, neither focal-point reasoning nor level-k reasoning can in isolation explain all the findings, 

we need that both types of reasoning occur with positive probability. 
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no conflict of interest and φ(X, Y) < φ0 otherwise.  We also assume that φ is weakly 

increasing in X and weakly decreasing in Y (i.e., focal-point reasoning is weakly less likely, 

the greater the degree of conflict of interest).  By not assuming φ to be continuous, we allow 

the possibility that even small conflicts of interest may significantly inhibit focal-point 

reasoning, as existing evidence suggests (Crawford et al., 2008; Isoni et al., 2013; Faillo et 

al., 2017). 

 In the Closeness versions of Pure Coordination and Battle of the Sexes, a player who 

uses focal-point reasoning is assumed to choose Close with probability 1.  In the Closeness 

versions of Hi-Lo games, there are cues of both label salience and joint-payoff salience.  We 

assume that, conditional on having adopted focal-point reasoning in such a Hi-Lo game, each 

player has an independent probability (X, Y) of being guided by joint-payoff salience (and 

therefore choosing the strategy leading to the payoff-dominant equilibrium); otherwise, she is 

guided by label salience (and therefore chooses the label-salient strategy).  We assume that 0 

< (X, Y) < 1 for all X, Y, and that (X, Y) is weakly increasing in Y and weakly decreasing in 

X.  (Intuitively, the greater the value of Y relative to X, the more salient is the cue that points 

to the payoff-dominant equilibrium.)  In the Spatially Neutral versions of Hi-Lo games, a 

player who uses focal-point reasoning has only the joint-payoff salience cue available, and 

therefore chooses the strategy leading to the payoff-dominant equilibrium with probability 1.  

In the remaining Spatially Neutral games, which do not have joint-payoff salient cues, a 

player who uses focal-point reasoning chooses each strategy with probability 0.5. 

 Now consider the behaviour of a player who uses level-k reasoning.  Because level-0 

players tend to use label salience as a tie-breaker, and because this level occurs with zero 

probability, level-k reasoning implies that Close is chosen with probability 1 in the Closeness 

version of Pure Coordination, irrespective of the distribution of reasoning levels.  In the 

Spatially Neutral version of Pure Coordination, level-k reasoning does not discriminate 

between the two strategies, and so each is chosen with probability 0.5.  Because label salience 

is used only as a tie-breaker, the distinction between the Closeness and Spatially Neutral 

versions of Hi-Lo and Battle of the Sexes is irrelevant for level-k reasoning.  In Hi-Lo, level-k 

reasoning implies that the Y strategy (i.e., the strategy leading to the Nash equilibrium in 

which the player’s payoff is Y) is chosen with probability 1.  In Battle of the Sexes, the 

implications of level-k reasoning depend on the distribution of reasoning levels.  For our 

purposes, however, it is sufficient to treat this distribution as exogenous, and to define (X, Y) 
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as the probability with which, given this distribution, a randomly-selected level-k reasoner 

chooses her Y strategy.15 

 We now extend our model to Own Information and No Information games.  First, we 

consider Own Information games.  Recall that, after iterated elimination of weakly dominant 

strategies, these games have three pure-strategy Bayesian Nash equilibria – two equilibria in 

which each player’s expected payoff is (X + Y)/2 and one in which it is Y/2.  Thus, no 

equilibrium stands out as having uniquely best joint payoffs.  We therefore treat these games 

as having no cues of joint-payoff salience.  The Closeness version of the game has a cue of 

label salience; the Spatially Neutral version does not.  We therefore assume that, for focal-

point reasoners, Close is chosen with probability 1 in the Closeness version of the game and 

Left is chosen with probability 0.5 in the Spatially Neutral version.16  Level-k reasoning has 

very different implications.  For a level-0 player, payoff bias will favour the choice of the 

disc that gives her Y.  But, since a level-1 player does not know which disc this is, his best 

response is to choose the disc that gives him Y; and similarly for higher levels of reasoning.  

Thus, in both versions of the game, level-k reasoners choose the Y strategy with probability 1. 

 Finally, we consider the No Information games.  After iterated elimination of 

dominated strategies, these games are equivalent to Pure Coordination games in which the 

expected payoff from coordination is (X + Y)/2 to both players in both pure-strategy 

equilibria.  Thus, as in Pure Coordination games, all players choose Close with probability 1 

in the Closeness version of the game and Left with probability 0.5 in the Spatially Neutral 

version. 

 Table 2 summarises the key properties of our model, and its predictions for the six 

types of games used in our experiment.  Each horizontal panel refers to the Closeness and 

Spatially Neutral versions of a given game type.  For each version, we first report the 

probability distribution over possible types of players resulting from the random draw which 

determines their mode of reasoning (recall that, ex ante, each player has a positive probability 

                                                           
15 It is possible for (X, Y) to be less than 0.5.  If the degree of conflict of interest is sufficiently small, level-1 

players respond to the payoff bias of level-0 players by choosing the X strategy; level-2 players respond by 

choosing the Y strategy, and so on.  Thus, whether (X, Y) is greater or less than 0.5 depends on the distribution 

of reasoning levels. 

16 In the Own Information games, the three pure-strategy equilibria give each player a payoff of (X + Y)/2, (X + 

Y)/2 and Y/2 respectively.  Sophisticated players might reason that choosing on the basis of equilibrium payoffs 

alone would make the expected payoff from choosing at random between the two identical equilibria (X + Y)/4, 

and therefore the equilibrium with a payoff of Y/2 would be superior.  Our model assumes a more naïve 

approach to unique joint-payoff salience, in line with empirical evidence (e.g. Faillo et al., 2017). 
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of adopting either mode of reasoning): focal-point reasoners who use the cue of label salience 

(type F), focal-point reasoners who use the cue of joint-payoff salience (type FP, only for Hi-

Lo games), and level-k reasoners (type K).  For each type, we show the probability that a 

player claims the close disc (in Closeness games) or the left disc (in Spatially Neutral games); 

where applicable, we report the probability that a player claims the disc worth Y to her.  So, 

for example, in Pure Coordination and No Information games the probabilities that a player 

uses focal-point reasoning or level-k reasoning are φ0 and (1 – φ0) respectively.  Both types 

chose the label-salient strategy with probability 1, so Pr(Close) equals 1 for both types.  In 

Hi-Lo games (with either congruent or incongruent cues), the probability that a focal-point 

reasoner chooses on the basis of label salience is φ0[1 – (X, Y)], the probability that a focal-

point reasoner uses joint-payoff salience is φ0[(X, Y)], and the probability of level-k 

reasoning is (1 – φ0).  In these games, all players choose the Y strategy with probability 1, 

except for the F types, who choose the X strategy with probability 1 in the Closeness version 

of Hi-Lo with incongruent cues.  In Battle of the Sexes games, the distribution of types 

depends on the conflict of interest induced by the values of X and Y, according to the function 

φ(X, Y). 

 We can use these choice probabilities to look at coordination success – i.e., the 

probability that two players, chosen at random, coordinate with each other.  We do this by 

considering the specific behaviour of each type in each game.  In Pure Coordination and No 

Information games, all players choose according to label salience, so the probability of 

coordination is necessarily 1.  In all other games, irrespective of the number of different 

player types, there are just two different types of behaviours.  In all cases, except Battle of the 

Sexes, players can either choose the label-salient strategy (‘Label’ in Table 2) or the strategy 

with a better own payoff (‘Payoff’).  (Notice that, although there are three types of players in 

Hi-Lo games, FP players behave like level-k players and choose the Y strategy.)  In Battle of 

the Sexes, a player can either choose the label-salient strategy or play as a level-k reasoner (in 

which case their actual choice depends on their level).  Two randomly-chosen players can 

either use the same behavioural rule or different ones.  Two independent draws of two players 

who use one of two rules (i.e., Label and Payoff) may result in one of three possible 

combinations (i.e., Label vs. Label, Payoff vs. Payoff, Label vs. Payoff).  The probability of 

each combination for each game is shown in each panel of Table 2, together with the 

corresponding probability of coordination Pr(Coord).  Note that if one player chooses at 

random, the probability of successful coordination is necessarily 0.5, irrespective of the 
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behaviour of her co-player.  In a Battle of the Sexes game between two randomly-selected 

level-k reasoners, the probability that they coordinate (i.e., that one gets a payoff of Y and the 

other gets X) is given by *(X, Y) = 2(X, Y)[1 – (X, Y)].  Notice that *(X, Y)  0.5: unless 

the X and Y strategies are chosen with exactly equal probability, level-k reasoning induces 

discoordination.17 

 

3.  Hypotheses   

We now use the information in Table 2 to derive our formal hypotheses about coordination 

success in our games.  In interpreting our hypotheses, one should bear in mind that, in the 

interests of simplicity, our model assumes away the mistakes players could make when 

implementing their strategies (or, equivalently, the existence of players who choose at 

random).  Thus, the specific values of coordination success generated by the model should 

not be treated as firm predictions about the behaviour of real players.  However, the 

qualitative nature of our predictions should not be affected by moderate degrees of noise in 

behaviour, which are inevitably present in experimental data.  For this reason, our hypotheses 

will focus on the direction of the difference between coordination success in different types 

of game. 

We begin with comparisons within the panels of Table 2, and look at the effects of 

salient labels keeping the type of game constant.  The Pure Coordination games (faced in 

scenarios C1 and N1) can be used to test the underlying assumption of our design that 

closeness is a much stronger cue than any cue contained in Spatially Neutral games.  In the 

Spatially Neutral version we expect coordination success to approximate that implied by 

random behaviour, and to be much higher in the Closeness version.  Since this directional 

effect is essentially a prerequisite for the rest of our analysis, we will call it Hypothesis 0: 

Hypothesis 0 (PC games) – With full information and X = Y, coordination success is 

higher in Closeness games than in Spatially Neutral games.  

                                                           
17 For all games except Battle of the Sexes, all the predicted probabilities shown in Table 2 would be unchanged 

if (as suggested in footnote 13) we used a cognitive hierarchy model in place of a level-k one, provided that 

level 0 is assumed to have zero probability.  In all these games, the predicted behaviour of level-k reasoners is 

the same at each level 1, 2, …, and so the best response to any one of these levels is the same as the best 

response to any probability mix of them.  To arrive at cognitive-hierarchy predictions for Battle of the Sexes, all 

we need to do is to re-interpret (X, Y) as the probability that a randomly-selected cognitive-hierarchy reasoner 

chooses her Y strategy.  The conclusion that *(X, Y)  0.5 is unaffected.  
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Our predictions concerning the effect of closeness in Full Information games are 

summarised in Hypothesis 1.  In Hi-Lo games with incongruent cues, our model makes the 

yet unexplored prediction that labelling cues reduce coordination success.  In Hi-Lo games 

with congruent cues, all our types choose the strategy leading to the payoff-dominant 

equilibrium irrespective of the presence of labelling cues.  In Battle of the Sexes games, the 

mix of modes of reasoning is sufficient to make coordination more likely in the Closeness 

version than in the Spatially Neutral version.  This replication of Isoni et al. (2013) is central 

to our investigation, as it motivates our interest in the Own and No Information games.   

Hypothesis 1 (FI games) – With full information and X < Y: 

a) (Hi-Lo games with incongruent cues): when players have the same preferences 

between equilibria and closeness is incongruent with payoffs, coordination 

success is lower in Closeness games than in Spatially Neutral games. 

b) (Hi-Lo games with congruent cues): when players have the same preferences 

between equilibria and closeness is congruent with payoffs, coordination success 

is equal in Closeness games and Spatially Neutral games. 

c) (Battle of the Sexes games): when players have conflicting preferences over 

equilibria, coordination success is higher in Closeness games than in Spatially 

Neutral games. 

 In Own Information games, according to our model, the presence of focal-point 

reasoners is sufficient to improve coordination success in the Closeness version relative to the 

Spatially Neutral benchmark.  Hence: 

Hypothesis 2 (OI games) – With Own Information and X < Y, coordination success 

is higher in Closeness games than in Spatially Neutral games. 

Our model treats No Information games exactly as if they were Pure Coordination 

games.  The fact that each player’s payoff from coordination in the No Information case is a 

binary lottery giving X and Y with equal probability has no influence on our analysis.  Thus:      

 Hypothesis 3 (NI games) – With No Information and X < Y, coordination success is 

higher in Closeness games than in Spatially Neutral games. 

 We now turn to comparisons between Closeness games.  In these comparisons, we 

focus on how coordination success varies between types of games with label salience but not 
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joint-payoff salience.  The first important comparison is between Pure Coordination and 

Battle of the Sexes.  Because of the way in which level-k reasoning deals with conflict of 

interest, our model predicts that coordination success will be lower in Battle of the Sexes than 

in Pure Coordination, in line with previous findings (e.g., Crawford et al., 2008; Isoni et al., 

2013).  This effect has two main causes: level-k reasoners have a tendency to discoordinate 

with each other (recall, *(X, Y) ≤ 0.5), and the likelihood that players use focal-point 

reasoning φ(X, Y) is weakly decreasing in the extent of the conflict of interest induced by the 

values of X and Y. 

Hypothesis 4 (Conflict of Interest):  With Closeness cues, coordination success is 

lower in Battle of the Sexes games than in Pure Coordination games. 

 The next interesting comparisons are between information conditions. Our model 

makes predictions about how Own and No Information games compare with Pure 

Coordination and Battle of the Sexes: in terms of coordination success, the Own Information 

game should be intermediate between the two, while the No Information game should be 

equivalent to Pure Coordination.  These are our final two hypotheses. 

Hypothesis 5 (Battle of the Sexes vs. OI games vs. PC games) – In Own 

Information games with closeness cues:  

a) coordination success is higher than in Battle of the Sexes games; 

b) coordination success is lower than in Pure Coordination games. 

Hypothesis 6 (NI games vs. PC games) – In No Information games with closeness 

cues, coordination success is the same as in Pure Coordination games. 

A final aspect of our model that is relevant to our design is the effect of changing the 

payoff pair {X, Y}.  This matters in Hi-Lo games via the function (X, Y), and in Battle of the 

Sexes games via φ(X, Y) and (X, Y).  These effects are best seen in relation to participants’ 

tendencies to claim the close or the more valuable disc.  In Hi-Lo games, increasing the 

difference between X and Y makes it more likely that focal-point reasoners use joint-payoff 

salience, and so claim the disc worth Y to them.  This only matters when label salience is 

incongruent with joint-payoff salience, reducing the probability that the close disc is claimed.  

In Battle of the Sexes, increasing the difference between X and Y has the effect of reducing 

the likelihood that players adopt focal-point reasoning, and hence claim the close disc.  

However, the effect on the behaviour of level-k reasoners can go in either direction, 
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depending on the distribution of levels.  So, the overall effect of changing the payoff pair in 

Battle of the Sexes games is not univocal. 

 

4.  Implementation 

We recruited 118 participants from the general student population of the University of East 

Anglia (UK) using the ORSEE online recruitment system (Greiner, 2015).  Participants who 

had already taken part in similar experiments were not allowed to sign up.  The experiment 

was programmed in zTree (Fischbacher, 2007).  Sessions took between 60 and 90 minutes to 

complete.  The average payment was £11.26, including a £5 participation fee. 

All participants faced the same thirty scenarios, in a sequence which was randomly 

determined for each individual.  They were told that, for the duration of the experiment, they 

had been matched with an anonymous ‘other person’ in the room whose identity would never 

be disclosed.  They knew that one of the thirty scenarios would be selected at the end of the 

experiment, and each player would be paid according to her decision and that of the matched 

person in the resulting game, plus the participation fee.  While the instructions were read 

aloud, participants were guided through a number of practices about how to make and cancel 

their claims (see below), were shown a variety of examples illustrating what each player 

knew in each of the information conditions, and were asked to answer a comprehension 

questionnaire to ensure their full understanding of the experimental procedures. The 

experiment started after all participants had responded correctly to every question and any 

outstanding queries had been answered by an experimenter.18 

In each of the thirty scenarios, participants went through a sequence of steps.  They 

were first shown the location of the discs on the bargaining table (with their base shown at 

the bottom, as in Figures 1 to 3), with both halves of the discs being empty, and told the 

values of X and Y (Step 1).  If X and Y were different, they were next shown the four possible 

configurations of disc values (Step 2).  One of these configurations would then be selected by 

the computer to be played, and presented in a separate screen with all halves of the two discs 

covered by question marks (Step 3).19  The information condition was then revealed (Step 4).  

                                                           
18 The full text of the instructions can be found in the Appendix. 

19 For the Full Information scenarios, the selection ensured that each participant faced all the scenarios implied 

by each disc value pair.  For the Own Information and No Information scenarios, the computer randomly 

assigned the values of X and Y to each disc for each player. 
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In the Full Information condition, all question marks were replaced by the corresponding disc 

values.  In the Own Information condition, each player’s own values were disclosed.  In the 

No Information condition, all question marks stayed on the discs.  Claims could then be made 

(Step 5).20  If X and Y were equal, participants moved directly from Step 1 to Step 4, and the 

corresponding Pure Coordination scenario was shown straight away.  Until the claims for the 

current scenario were submitted, participants could move back and forth between Step 1 and 

Step 5 as they wished. After the decisions were submitted, the whole process was repeated 

for the next scenario in the series.  There was no feedback between scenarios. 

In each scenario, participants could claim discs by clicking on them.  A claim on a 

disc was represented by a red line connecting it to the ‘You’ base, and by changing the disc 

colour from white to red.  Any claim could be cancelled by clicking again on the disc, which 

would turn the disc white again and disconnect it from the ‘You’ base.  Because there was no 

feedback during the experiment, each player could see only her own claims. 

After all participants completed the thirty scenarios, each pair of matched 

participants’ ‘real’ scenario, picked at random by the computer, was displayed on the screen 

together with both players’ claims and actual disc values. These claims determined the 

participants’ earnings.  

The thirty scenarios used in the experiment were constructed using three pairs of disc 

values: {10, 10}, {10, 11} and {6, 15}.  There were two Pure Coordination scenarios (C1 and 

N1) for the {10, 10} pair, and fourteen Full Information, Own Information or No Information 

scenarios (C2 to C8, and N2 to N8) for each of the {10, 11} and {6, 15} pairs.   

Because all scenarios have just two discs, we introduced variety in the set of games 

faced by each participant by using different layouts of each scenario.  These are detailed in 

Table 3, which reports the coordinates of each of the discs in each Closeness and Spatially 

Neutral scenario, as well as the layout seen by the ‘Other’ player (in the ‘Match’ column).  

Examples of these layouts are shown in Figure 3 above; the full set of game configurations is 

reported in the Appendix.  

[Insert Table 3 here] 

In Closeness scenarios, the close disc was always in row –2 of the bargaining table 

(negative row numbers indicate rows on the ‘You’ side of the table), and the far disc was 

                                                           
20 Sample screenshots of these steps can be found in the Appendix. 
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always in row 2.  We varied whether the two discs were located in the same column to the 

left of the ‘You’ base (the LL layout), or in the same column to the right of that base (the RR 

layout), or one to the left and one to the right (the LR and RL layouts).  Notice that each LL 

scenario can be matched with a corresponding RR scenario, and vice versa.  LR scenarios are 

matches for each other, as are RL scenarios.  In Spatially Neutral scenarios, both discs are 

necessarily in row 0 (the middle row of the table).  We varied whether the two discs were 

located to the left of the ‘You’ base (the LL layout), to the right (the RR layout) or one to the 

left and one to the right (the LR layout).  The LL layout is matched with the RR layout, and 

vice versa.  The LR layout is a match for itself. 

 We counterbalanced the assignment of layouts to players so that each layout was 

faced by approximately the same number of participants.  Each player experienced all 

possible layouts.  Our expectation was that these variations in the positions of the discs would 

not have systematic effects on the relative strength of our spatial cues.  This expectation was 

confirmed (see Section 5). 

 5.  Results: summary statistics and coordination success metrics 

The claims that players made in each scenario are summarised in Table 4.  Since we found no 

systematic differences between responses to the different layouts of given scenarios, we pool 

across layouts when presenting our results.21  For each of the three disc value pairs, {10, 10}, 

{10, 11} and {6, 15}, the table contains a row for each pair of corresponding Closeness and 

Spatially Neutral scenarios.  The class of each pair of scenarios (and the corresponding game 

for Full Information scenarios) is reported in the ‘Class’ column, with the information 

condition also reflected by the question marks in the scenario notation.  For the Closeness 

scenarios, we report the frequencies of cases in which a participant claimed none of the discs, 

both discs, only the close disc or only the far disc, as well as the corresponding percentages 

(in parentheses).  For the Spatially Neutral scenarios, we report the equivalent information for 

none of the discs, both discs, only the leftmost disc and only the rightmost disc.22 

                                                           
21 We used Fisher’s exact test to check whether different layouts of the scenarios resulted in different 

propensities to claim the close disc (in Closeness scenarios) or the leftmost disc (in Spatially Neutral scenarios). 

We found significant effects (p < 0.05) in just two of thirty comparisons (see the Appendix for details).  

22 Because disc values were assigned at random in Own Information and No Information scenarios, roughly one 

quarter of the players faced two Own Information scenarios for each of the {10, 11} and {6, 15} payoff pairs in 

which the close (respectively, left) disc had the same value to them in both cases.  These scenarios had, 

however, different layouts, so that the relative position of the two discs was different in the two instances.  In 

Table 4, the frequencies (and percentages) for these cases contain two observations for these participants.  Our 

statistical analysis takes this aspect of the data into account. 
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[Insert Table 4 here] 

 It is immediately obvious from Table 4 that claims of none or both discs were very 

infrequent.  Overall, 1.4 per cent of responses claimed no disc and 3.1 per cent claimed 

both.23  Table 5 reports summary statistics, derivable from Table 4, about the distribution of 

one-disc claims in Closeness games.  In all Closeness games, each player saw one close disc 

and one far disc.  For each of these games, Table 5 shows the proportion of one-disc 

claimants who claimed the close disc.  Note that, if all participants ignored the spatial 

locations of the discs, this proportion would be 0.5 in all cases, except in Hi-Lo games, in 

which there is also a payoff cue which could skew claims in favour of the more valuable disc.  

In all FI games and in the OI game, each player saw one disc that she knew was worth Y to 

her and one disc that she knew was worth X, with X < Y.  For each of these games, Table 5 

also shows the proportion of one-disc claims in which the Y disc was claimed.  Note that, if 

all participants ignored information about disc values, this proportion would be 0.5, except in 

Hi-Lo games, in which there is also a spatial cue which could skew claims in favour of the 

close disc. 

[Insert Table 5 here] 

 The claims data in Table 4 allow us to check our convention of treating ‘leftmost’ 

(rather than ‘rightmost’) as the Spatially Neutral correlate of closeness (see Section 1).  This 

convention would be problematic if rightmost was more or less salient than leftmost.  We can 

test the relative salience of these two cues by looking at the distributions of one-disc claims in 

Spatially Neutral games.  For example, consider the scenario N1.  This represents a Pure 

Coordination game in which, for each player, one disc is leftmost and the other is rightmost.  

The null hypothesis that the two cues are equally salient implies that the two discs are 

claimed with equal probability.  An analogous null hypothesis can be formed for scenario N8.  

A slightly different test can be applied to the pairs of scenarios {N2, N3}, {N4, N5} and {N6, 

N7}.  For example, consider {N2, N3}.  N2 represents a Hi-Lo game in which, for each 

player, the disc that is worth Y to her is leftmost.  N3 differs only in that, for each player, the 

Y-valued disc is rightmost.  The null hypothesis that the two cues are equally salient implies 

that the Y-valued disc is chosen with the same probability in both positions.  The fifteen 

Spatially Neutral scenarios generate nine null hypotheses.  None of these hypotheses can be 

                                                           
23 Out of the 118 participants, 86 per cent never made such claims, 88 per cent made at most one, and 92 per 

cent at most two.  Thus, a minority of participants were responsible for the majority of the few dominated claims 

observed in the experiment. 
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rejected at the 10 per cent significance level (using binomial or chi-squared tests).  We 

conclude that it is safe to treat leftmost and rightmost as equally salient. 

In order to assess the effect of spatial cues on the outcomes of our tacit bargaining 

games and in testing our hypotheses, we will use two metrics, each of which applies to games 

rather than scenarios: mean expected coordination success (MECS) and mean expected 

payoff (MEP).  We now explain how these measures are defined and computed. 

 First note that, although each participant in our experiment was matched with just one 

of the other participants who took part in the same session, this matching was relevant only 

for determining final earnings.  Because no feedback was given until the end of the 

experiment, there was no interaction between matched participants.  Therefore, each player’s 

actual coordination success and resulting payoff in any particular game, as determined by her 

decisions and those of her matched co-player, are not very useful for evaluating whether 

closeness cues had systematic effects on the outcome of the game.  In order to assess these 

effects, we need measures that take into account the fact that each player was, in effect, 

playing against a population of potential co-players. 

 In computing MECS and MEP, we use a legitimate matching procedure analogous to 

the one used by Isoni et al. (2013).  According to this procedure, for each of the scenarios that 

some player faced, she is matched, in turn, with all the other experimental players who faced 

scenarios compatible with their being in the position of the ‘Other’ person in that scenario.  In 

our design, legitimate matches are entirely defined by the compatibility of scenarios (see 

‘Match’ columns in Table 1) and the compatibility of layouts (see ‘Match’ column in Table 

3).  Note that legitimate matching requires that the disc value pair and the information 

condition are the same for each player and all her matches.  So, for example, a player facing 

scenario C4 = (X, X)| |(Y, Y) in the LL layout is matched, in turn, with all players (except 

herself) facing scenario C5 = (Y, Y)| |(X, X) in the RR layout.  A player facing scenario N6 = 

|(X, ?) (Y, ?)| in the LR layout is matched, in turn, with all players (except herself) facing 

either scenario N6 = |(X, ?) (Y, ?)| in the LR layout or scenario N7 = |(Y, ?) (X, ?)| in the LR 

layout. 

 For any given game and for each participant, we can calculate the proportion of 

legitimate matches in which that participant would have successfully coordinated with the 

matched player.  Successful coordination occurs when the two matched players’ claims do 
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not overlap.24  MECS for that game is defined as the mean of this proportion, averaging over 

all participants.  It has the useful feature that its maximum value, achieved in case of perfect 

coordination, is one, just like the probability of coordination in our model.   

Similarly, we can calculate the average payoff each player would have got when 

playing the game, in turn, with each of her legitimate matches; MEP is the mean of these 

averages.  The key difference between MEP and MECS is that MEP reflects the values of the 

discs that players claimed to achieve coordination, while this is not the case for MECS.    

Table 6 reports MECS and MEP for each of the six types of game, separately for 

Closeness and Spatially Neutral versions of the games and for each relevant disc value pair.   

[Insert Table 6 here] 

In order to test Hypotheses 0 to 3, for each corresponding pair of matched Closeness 

and Spatially Neutral games, we use a bootstrap method to test whether MECS (respectively, 

MEP) differs between the two games.25  This method works as follows.  For each Spatially 

Neutral scenario, we repeatedly take random samples with replacement (with the sample size 

equal to the number of participants in the experiment, stratified over layout) from the actual 

observations for that game, and compute MECS (respectively, MEP) for each sample based 

on legitimate matching.  We then compare the actual MECS (respectively MEP) computed 

using the legitimate matching procedure in the corresponding Closeness game with the 

bootstrapped distribution for the Spatially Neutral game.  We conclude that MECS 

(respectively, MEP) is significantly different (in the predicted direction) between Closeness 

and Spatially Neutral games if the actual value of our statistic for the Closeness game falls 

above the 99th, 95th or 90th (or, in the case of Hypothesis 1a, below the 1st, 5th or 10th) 

percentile of the bootstrapped distribution for the Spatially Neutral game.26  We use an 

                                                           
24 Successful coordination may occur in a number of ways.  Players who claim no disc always successfully 

coordinate (but earn no money).  Players who claim one disc successfully coordinate with all players who claim 

no disc and with those who claim only the disc they did not claim.  Players who claim two discs successfully 

coordinate only with those who claim no disc.  As noted above, the vast majority of claims were on exactly one 

disc. 

25 We use a bootstrap method because the computation of coordination indexes such as our MECS require us to 

repeatedly match participants with each other, which makes the expected coordination success for each 

participant not independent from those of other participants.  A similar method is used in Bardsley et al. (2010). 

See the Appendix for details. 

26 A casual look at Table 6 may reveal that even small differences in MECS may turn out to be strongly 

significant.  This is because small differences in MECS may hide big differences in behaviour.  For example, 

when the close disc is claimed by fifty percent of the players (and the far disc by the other fifty percent), MECS 

is 0.5 (i.e., 0.52 + 0.52).  When the close-far split is sixty-forty, MECS increases to just 0.52 (i.e., 0.62 + 0.42).  

When it is eighty-twenty, MECS is 0.68 (i.e., 0.82 + 0.22). 
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analogous approach for comparisons between information conditions (Hypotheses 4 to 6), by 

deriving the bootstrapped distribution of MECS and MEP for the Pure Coordination and 

Battle of the Sexes games.27 

 

6.  Results: tests of main hypotheses 

In this section, we focus on the formal tests of the hypotheses formulated in Section 3.  For 

ease of exposition, and since MECS and MEP are very closely related, our discussion will 

concentrate on MECS, which maps onto our model more directly.  For each hypothesis, 

patterns analogous to those discussed in relation to MECS apply to MEP. 

6.1   Hypothesis 0: Pure Coordination games 

To test Hypothesis 0, we compare MECS in the Closeness and Spatially Neutral versions of 

the Pure Coordination game.  This game provides a benchmark for assessing the salience of 

the closeness cues built into our design.  In the Closeness version, MECS is 0.80, which is 

much higher than the 0.48 recorded in the Spatially Neutral version.  The difference is highly 

significant (p < 0.01; see Table 6), providing strong support to Hypothesis 0 and replicating 

Isoni et al.’s (2013) findings.   

 Behind this effect there are stark differences in the claims made by participants.  In 

the Closeness version of this game, the close disc was claimed by 86 per cent of players (and 

by 91 per cent of those who made one-disc claims), while in the Spatially Neutral version 

claims were spread virtually equally between the leftmost and rightmost disc, confirming the 

expectation, built into our model, that neither leftness nor rightness would be label-salient 

(see Tables 4 and 5). 

6.2   Hypothesis 1: Full Information games 

In order to test Hypothesis 1, we compare the Closeness and Spatially Neutral versions of the 

Full Information Hi-Lo and Battle of the Sexes games. 

According to Hypothesis 1a, in the Hi-Lo game with incongruent cues, coordination 

success should be lower in the Closeness version than in the Spatially Neutral version.  This 

expectation is confirmed in the {10, 11} payoff pair, for which MECS is 0.66 in the Spatially 

Neutral version and 0.56 in the Closeness version (p < 0.01).  But for the {5, 16} pair we do 

                                                           
27 The relevant percentiles of the bootstrapped distributions are reported in the Appendix. 
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not find a significant difference, although the observed difference is in the predicted 

direction: MECS is 0.77 in the Spatially Neutral version and 0.73 in the Closeness version.  

So, Hypothesis 1a is only partly supported.  A possible interpretation is that, in Hi-Lo games 

with large payoff differences between equilibria, joint-payoff salience is a much stronger cue 

than label salience.  

According to Hypothesis 1b, there should be no difference in coordination success 

between the Spatially Neutral and Closeness versions of the Hi-Lo game with congruent cues.  

This is what we find in the {5, 16} pair, where MECS is 0.78 with closeness cues and 0.80 

without.  But in the {10, 11} pair we find that adding those cues significantly increases 

MECS from 0.69 to 0.79.  Hypothesis 1b, like Hypothesis 1a, is only partly supported.  

Recall that Hypothesis 1b was derived under the simplifying assumption that players make no 

mistakes in implementing their strategies.  That assumption leads to a prediction of perfect 

coordination, irrespective of the presence or absence of labelling cues.  But if perfect 

coordination is not achieved, it is not surprising that congruent labelling cues can aid 

coordination, particularly when payoff differences between the Hi-Lo equilibria are small.     

In all the Hi-Lo games, the majority of subjects (ranging from 69 to 88 percent of all 

claimants, and 72 to 90 per cent of one-disc claimants in the Closeness versions; see Tables 4 

and 5) followed the payoff cue.  In the Closeness versions, the percentage of one-disc claims 

on the more valuable disc is smaller in the {10, 11} than in the {5, 16} payoff pair, 

consistently with our model. 

Hypothesis 1c is concerned with the effect of closeness cues in Battle of the Sexes 

games, in which there is conflict of interest between the two players.  As predicted, those 

cues have systematic effects on coordination success.  MECS increases from 0.47 in the 

Spatially Neutral game to 0.58 in the Closeness game in the {10, 11} pair, and from 0.47 to 

0.52 in the {5, 16} pair.  Both effects are statistically significant (p < 0.01), lending strong 

support to Hypothesis 1c. 

The disc claims in Battle of the Sexes games also reveal some interesting patterns.  73 

per cent of one-disc claims were on the close disc in the {10, 11} game, 65 per cent in the {5, 

16} game (see Table 5).  The relatively low coordination success in the {10, 11} Battle of the 

Sexes game does not reflect a bias in favour of the Y-valued disc in players’ claims.  In the 

{10, 11} game, only 42 per cent of one-disc claims were on that disc; the X-valued disc was 

frequently chosen in both locations (see Tables 4 and 5).  On the other hand, the majority of 
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one-disc claims (54 per cent) were on the more valuable disc when it was worth £16.  This 

effect – a tendency for players in Battle of the Sexes games to choose the strategy that leads 

to their less-preferred equilibrium when payoff differences are small – has also been found by 

Crawford et al. (2008), who show that it can be induced by level-k reasoning.28   Thus, 

behaviour in our Battle of the Sexes game is consistent with the assumption of our model that 

some players use focal-point reasoning and others use level-k reasoning. 

6.3   Hypothesis 2: Own Information games 

Hypothesis 2 is concerned with the Closeness and Spatially Neutral versions of Own 

Information games.  For both pairs of disc values, coordination success is higher in the 

Closeness game than in the corresponding Spatially Neutral game.  In the {10, 11} payoff 

pair, MECS is 0.52 with closeness cues and 0.48 without (p < 0.01).  In the {5, 16} pair, it is 

0.51 with closeness cues and 0.47 without (p < 0.05).   These findings support Hypothesis 2. 

 Although all these MECS values are close to the random-choice benchmark of 0.5, 

the small differences we report correspond with quantitatively (as well as statistically) 

significant biases in individual behaviour (see footnote 26).  In the Closeness version of the 

{10, 11} game, 67 per cent of one-disc claimants claimed the close disc, and 66 per cent 

claimed the Y-valued disc.  In the {5, 16} game, the corresponding proportions were 62 per 

cent and 82 per cent (see Table 5).  Notice that, consistently with our model, there are biases 

in favour of both the close disc (an implication of focal-point reasoning but not of level-k 

reasoning) and the Y-valued disc (an implication of level-k reasoning but not of focal-point 

reasoning).   

6.4  Hypothesis 3: No Information games 

Hypothesis 3 predicts that coordination success will be higher in the Closeness versions of 

No Information games than in the Spatially Neutral versions.  For both pairs of disc values, 

MECS clearly shows this pattern, increasing from 0.50 to 0.64 in the {10, 11} pair (p < 0.01), 

and from 0.46 to 0.62 in the {5, 16} pair (p < 0.01).  Hypothesis 3 is strongly supported. 

 The Closeness versions of the No Information game are interesting in that, although 

players are made aware of potential conflicts of interest, they have no payoff information – 

not even private information – that can discriminate between the two strategies between 

which they have to choose.  The only distinguishing properties are payoff-irrelevant cues.  

                                                           
28 This effect weakens during the course of our experiment (see Appendix). 
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Clearly, those cues were used.  Nevertheless, closeness cues were less powerful than when 

the Pure Coordination game was played with Full Information.  As noted earlier, in the 

Closeness version of that game, the proportion of one-disc claimants who claimed the close 

disc was 0.91.  The corresponding figure for the {10, 11} No Information game is 0.79; for 

the {5, 16} game 0.80.   

6.5   Hypothesis 4: the effect of conflict of interest 

In both Pure Coordination and Battle of the Sexes games, labels provide the only useful way 

to break the symmetry between the two pure-strategy Nash equilibria.  One of the 

observations that motivated our experiment is the finding that salient labels are used much 

less effectively in Battle of the Sexes games than in Pure Coordination games.  This finding 

is clearly replicated in our data.  MECS is 0.80 in the closeness version of the Pure 

Coordination game, but just 0.58 in the {10, 11} and 0.52 in the {5, 16} Battle of the Sexes 

game.  Comparing the observed values of MECS in Battle of the Sexes games with the 

corresponding bootstrapped distribution for the Pure Coordination games, we find that all the 

differences are strongly statistically significant (p < 0.01).29  This provides strong support for 

Hypothesis 4: conflicting preferences between coordination equilibria are detrimental to 

coordination success.  

6.6   Hypotheses 5 and 6: comparing information conditions   

The motivating idea behind our study is that the absence of common knowledge of payoffs –  

and therefore of whether or not there is conflict of interest – as in our Own Information and 

No Information games, would allow players to use focal-point reasoning more effectively 

than in Battle of the Sexes games.  This is encapsulated in Hypotheses 5 and 6. 

 According to Hypothesis 5, coordination success in Own Information games should 

be intermediate between that of Pure Coordination and Battle of the Sexes.  In the {10, 11} 

Own Information game, MECS is just 0.52.  In line with Hypothesis 5a, this value is clearly 

lower than the corresponding values in Pure Coordination games (0.80, p < 0.01).  The same 

holds for the {5, 16} game, in which MECS is 0.51 (p < 0.01).  However, contrary to 

Hypothesis 5b, MECS is not higher in Own Information than in Battle of the Sexes games.  

In fact, in both payoff pairs, MECS is actually lower than in Battle of the Sexes (and 

                                                           
29 Because the payoff pairs differ between Pure Coordination and the other games, our comparisons between 

game classes are only done for MECS. 
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significantly so in the {10, 11} pair, p < 0.05).  With respect to Own Information games, our 

model is failing to capture important aspects of behaviour.   

 The No Information games allow us to see if removing the last bit of exact payoff 

information restores the power of labelling cues to the level observed in Pure Coordination 

games, as predicted by Hypothesis 6.  This is not the case.  Although coordination success is 

relatively high in No Information games (MECS is 0.64 and 0.62 in the {10, 11} and {5, 16} 

payoff pairs), it falls short of the levels observed in the Pure Coordination game with the 

same cues.  In both cases, the difference is statistically significant (p < 0.01).  The effect 

reflects the greater proportion of one-disc claimants who claim the far disc in the No 

Information game (0.21 in the {10, 11} and 0.20 in the {5, 16} pair) than in the Pure 

Coordination game (0.09; see Table 5).  Hypothesis 6 is not supported.  We will consider 

possible explanations for the lack of support for Hypotheses 5 and 6 in the Conclusion. 

 

7.  Results: additional data analysis 

7.1   Learning 

Each participant in our experiment faced thirty scenarios, each of which represented a game 

between her and her matched participant.  The order of these games was randomised 

independently for each participant, and there was no feedback between games.  Under these 

conditions, each of our scenarios is strategically equivalent to a one-shot game between two 

players who make simultaneous moves.  However, it is possible that, even without feedback, 

participants evolved particular strategies as a result of repeatedly facing games of a similar 

kind (e.g. Weber, 2003; Rick and Weber, 2010).  For our purposes, this may be an issue if 

participants make different kinds of claims at different points of the experiment.  We have 

explored this possibility and found no significant tendency for close discs to be claimed more 

or less often in Closeness scenarios as the experiment progressed, or for left (right) discs to 

be claimed more or less often in Spatially Neutral scenarios.30 

 

7.2   Heterogeneity in behaviour 

                                                           
30 We have also looked at learning in individual scenarios, and found no systematic effects, except for the 

tendency, mentioned earlier, to claim the far, less valuable disc in the (Y, Y)| |(X, X) scenario less often later in 

the experiment.  The details of these tests are reported in the Appendix. 
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In Section 2, we presented our model as if all individuals were identical with respect to their 

inclination to adopt either kind of reasoning (as captured by the φ(X, Y) function), to use the 

payoff cue in Hi-Lo games when using focal-point reasoning (the (X, Y) function), or to 

claim the more valuable disc when using level-k reasoning (the (X, Y) function).  This was 

done for expositional simplicity.  In reality, individuals are likely to be heterogeneous in all 

these respects.  In this section, we look at the extent of individual-level heterogeneity in 

relation to the issues that our experiment was designed to address. 

 As we pointed out in Section 2, the evidence that existed prior to our experiment 

cannot be explained by attributing focal-point and level-k reasoning to two distinct player 

types: it is necessary to assume that players are capable of using both modes of reasoning, 

and that which mode is used at any time depends on the characteristics of the game being 

played.  But one might expect that, if these characteristics are held constant, there will be 

some differences in individuals’ propensities to use one mode rather than the other.  We 

explore the magnitude of this effect by looking at individual-level behaviour across Closeness 

scenarios which involve the same X and Y payoffs, with X < Y.  In each of the seven such 

scenarios for each payoff pair, there is a choice between a close and a far disc.  We 

investigate whether, over the seven scenarios taken together, there is heterogeneity in 

participants’ propensities to claim the close disc (an indicator of focal-point reasoning).   In 

six of these scenarios for each payoff pair, there is a choice between a higher-valued and a 

lower-valued disc.  We investigate whether, over these six scenarios taken together, there is 

heterogeneity in participants’ propensities to claim the more valuable disc (an indicator of 

level-k reasoning).     

 We adapt the approach used by Faillo et al. (2017) and look at the extent to which 

observed behaviour departs from a benchmark that assumes that everybody has the same 

propensity to claim the close or the more valuable disc, keeping the payoff pair constant.  

Focusing on the 103 participants who claimed strictly one disc in every Closeness scenario, 

we can work out what the distribution of number of close claims (respectively, claims of the 

more valuable disc, when there was one) made by each individual in all relevant Closeness 

scenarios would look like if everyone were identical.  For each relevant scenario, we use the 

observed proportion of close (more valuable) disc claims as the probability that any one 

individual claims the close (more valuable) disc in that scenario.  We simulate the whole 

experiment (i.e., 103 decisions for each relevant scenario) 200 times, and derive the mean and 

95% confidence intervals of such benchmark distributions.  We do this separately for each of 
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the two payoff pairs, and compare the cumulative benchmark distribution with the actual 

cumulative distribution of number of close (more valuable) claims made by the participants 

in the experiment.  These comparisons are reported in Figure 4. 

[Insert Figure 4 here] 

Figure 4a reports the distributions of close claims.  Given that there was often a trade-

off between claiming the close and the more valuable disc, and that the more valuable disc 

was more attractive in the {5, 16} disc value pair than in the {10, 11} pair, it is not surprising 

that close claims were less common in the former pair than in the latter.  For both payoff 

pairs, the actual and benchmark cumulative distributions of close claims are very similar, but 

there are some signs of heterogeneity, especially for the {5, 16} pair.  We conduct a formal 

statistical test by looking at whether the variance of the actual distribution differs 

significantly from the variance of the benchmark distribution.  For the {10, 11} pair, the 

actual variance is 1.68, which exceeds the 95th percentile (1.60) of the variance of the 

benchmark distribution.  In the {5, 16} pair, the actual variance of 1.73 exceeds the 99th 

percentile (1.72) of the variance of the benchmark distribution.  Overall, not surprisingly, 

there is more variability in participants’ propensity to claim the close disc than there would 

be if everybody were identical, but the effect is quantitatively small. 

 A similar picture emerges from Figure 4b, which looks at high value claims.  

Unsurprisingly, the more valuable disc was claimed more often in the {5, 16} pair than in the 

{10, 11} pair.  For both pairs, the variance of the actual distribution exceeds the 99th 

percentile of the corresponding benchmark distribution.  As in the case of close claims, there 

is more variability than could be expected with identical individuals, but the differences is not 

dramatic.31  Signs of moderate heterogeneity are visible across information conditions.  The 

likelihood of claiming the close disc in one of the four Own Information scenarios or one of 

the two No Information scenarios increases in the number of close claims made in the Full 

Information scenarios.  Also, having made more high value claims in the Full Information 

condition is associated with a higher probability of claiming the high value disc in the Own 

Information condition.32  Similarly, claiming the close (respectively, high value) disc in a 

                                                           
31 Extreme ‘types’ were rare.  Only 4 participants claimed the close disc in all fifteen Closeness scenarios; just 3 

claimed the more valuable disc in all the twelve Closeness scenarios in which it was possible to do so. 

32 See the random effects probit regressions reported in the Appendix. 
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given {5, 16} scenario is associated with claiming the close (high value) disc in the 

corresponding {10, 11} scenario.33 

 An overall reading of this evidence is that there are individual-level differences in 

participants’ propensities to use each mode of reasoning – an aspect of behaviour that our 

model abstracts from.  But the evidence does not suggest that individuals can usefully be 

divided into discrete types, defined by modes of reasoning: most participants use focal-point 

reasoning in some games and best-response reasoning in others. 

  

8.  Conclusion 

Schelling (1960) suggested that rational players are capable of adjusting their mode of 

reasoning to the problem they are facing, and that game theory should take that into account 

to make more accurate and relevant predictions.  Schelling’s intuition about the use of focal-

point reasoning to resolve coordination problems has now been proven correct for situations 

in which players’ interests are perfectly aligned.  It has also become clear that players are less 

likely to use focal-point reasoning when there is common knowledge that coordination 

requires the resolution of conflicts of interest.  But questions remain as to how the transition 

between focal-point and best-response reasoning occurs.  We have addressed this question by 

focusing on the, arguably highly realistic, situations in which players do not have precise 

information about the payoffs of a game.   

 Our initial conjecture was that, in the absence of full information about the payoffs of 

a game, players would give relatively more attention to payoff-irrelevant features of the game 

and so be more likely to use focal-point reasoning.  In the model that we developed to 

represent this conjecture, we assumed that focal-point reasoning would be inhibited by 

conflicts of interest only if those conflicts were common knowledge.  Our findings do not 

support that conjecture. 

 In both our new conditions, the lack of perfect payoff information seems to make 

focal-point reasoning less likely than when all payoffs are known.  The effect is perhaps more 

dramatic in the Closeness versions of the Own Information games, where coordination 

success was less than in the corresponding Battle of the Sexes game, and where the majority 

of participants claimed the disc that was more valuable to them.  If both players follow this 

                                                           
33 See Tables A.4 and A.5 in the Appendix. 
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strategy, an equilibrium is reached, but that equilibrium (in which coordination is achieved 

with a probability of only 0.5) is payoff-dominated by the [Close, Close] equilibrium 

attainable by focal-point reasoning.  Choosing the more valuable disc in this game seems to 

be most naturally explained as the result of best-response reasoning, such as that described by 

level-k theory.  In the Closeness versions of the No Information games, there seems to be no 

reason for players to claim the far disc.  It is noteworthy that such claims (although always 

infrequent) were more common in the No Information game than in the Pure Coordination 

game.  This finding suggests that players’ reasoning may have been more subject to error in 

the No Information game. 

  In suggesting explanations for why our initial conjecture was not supported, we move 

into the domain of post hoc speculation.  In that spirit, we offer two possible and 

complementary explanations.  The first uses the idea, discussed in Section 2, that focal-point 

reasoning is associated with group identification, and that conflicts of interest inhibit group 

identification.  It may be that the mere awareness of potential conflicts of interest is sufficient 

to reduce players’ sense of being a collective ‘we’.  For example, in the No Information 

condition, players know that one of them might be advantaged relative to the other, even 

though they do not know who this would be.  The second explanation starts from the fact that 

more information has to be assimilated and processed by players of Own Information and No 

Information games than by players of Pure Coordination games.  For example, a No 

Information game is strategically equivalent to a Pure Coordination game, but recognising 

that equivalence is not a trivial task.  If players treat best-response reasoning as their default 

mode of thinking about games, more complicated games will be less likely to induce focal-

point reasoning.  For example, a player who feels uncertain about the situation she is facing 

in an Own Information game might fall back on the thought (represented by level-1 reasoning 

in level-k theory) that if her opponent were equally likely to choose either strategy, the best 

she could do would be to claim the higher-valued disc.    

 Common to both these explanations is the idea (fundamental to the analysis of team 

reasoning in Bacharach, 2006) that transitions between best-response and focal-point 

reasoning are not fully determined by factors that are represented in theories of rational 

choice: psychological factors play a crucial role.  Understanding these factors remains an 

important challenge for behavioural game theory. 
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Figure 1 – A Closeness game viewed by two matched players 

 

   

  

Figure 2 – A Spatially Neutral game viewed by two matched players 
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(a) The PC Closeness scenario C1 = (10, 10)| 

|(10, 10) in the LL layout 

(b) The FI Spatially Neutral scenario N3 = 

|(11, 10) (10, 11)| in the RR layout 

 

 

  

(c) The OI Spatially Neutral scenario N6 = 

|(5, ?) (16, ?)| in the LR layout 

(d) The NI Closeness scenario C8 = (?, ?)| 

|(?, ?) in the RL layout 

 

Figure 3 – Examples of experimental scenarios 
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Figure 4 – Cumulative distributions of close and high value disc claims by individual  
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Table 1 – Types of scenario used in the experiment 

Class 

(Game) 

Spatially Neutral scenarios   Closeness scenarios 

Configuration Match   Configuration Match Closeness cue 
       

PC N1 = |(X, X) (X, X)| N1  C1 = (X, X)| |(X, X) C1 Sole cue 
       

FI (HL-I) N2 = |(X, Y) (Y, X)| N2  C2 = (X, Y)| |(Y, X) C2 Incongruent with payoffs 

FI (HL-C) N3 = |(Y, X) (X, Y)| N3  C3 = (Y, X)| |(X, Y) C3 Congruent with payoffs 

FI (BS) N4 = |(X, X) (Y, Y)| N5  C4 = (X, X)| |(Y, Y) C5 Favours 'Other' 

FI (BS) N5 = |(Y, Y) (X, X)| N4  C5 = (Y, Y)| |(X, X) C4 Favours 'You' 
       

OI N6 = |(X, ?) (Y, ?)| N6, N7  C6 = (X, ?)| |(Y, ?) C6, C7 Bad for 'You' 

OI N7 = |(Y, ?) (X, ?)| N6, N7  C7 = (Y, ?)| |(X, ?) C6, C7 Good for 'You' 
       

NI N8 = |(?, ?) (?, ?)| N8   C8 = (?, ?)| |(?, ?) C8 Sole cue 

Notes:  PC = Pure Coordination; FI = Full Information; OI = Own Information; NI = No Information; HL-I = Hi-Lo with 

Incongruent cues; HL-C = Hi-Lo with Conguent cues; BS = Battle of the Sexes. 
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Table 2 – Model Predictions 

Game 
  Closeness game   Spatially Neutral game 

  Pr(Case) Pr(Close) Pr(Y) Pr(Coord)   Pr(Case) Pr(Left) Pr(Y) Pr(Coord) 

           

Pure 

Coordination 
F φ0 1 n/a –  φ0 0.5 n/a – 

K (1 – φ0) 1 n/a –  (1 – φ0) 0.5 n/a – 

          

Label vs. Label 1 – – 1   1 – – 0.5 

           

Hi-Lo 

Incongruent 
F α = φ0[1 – σ(X, Y)] 1 0 –  0 n/a n/a – 

FP β = φ0[σ(X, Y)] 0 1 –  φ0 0 1 – 

K γ = (1 – φ0) 0 1 –  (1 – φ0) 0 1 – 

          

Label vs. Label α2 – – 1  φ0
2 – – 1 

Payoff vs. Payoff (β + γ)2 – – 1  (1 – φ0)2 – – 1 

Label vs. Payoff 2α(β + γ) – – 0   2φ0(1 – φ0) – – 1 

           

Hi-Lo 

Congruent 
F α = φ0[1 – σ(X, Y)] 1 1 –  0 n/a n/a – 

FP β = φ0[σ(X, Y)] 1 1 –  φ0 1 1 – 

K γ = (1 – φ0) 1 1 –  (1 – φ0) 1 1 – 

          

Label vs. Label α2 – – 1  φ0
2 – – 1 

Payoff vs. Payoff (β + γ)2 – – 1  (1 – φ0)2 – – 1 

Label vs. Payoff 2α(β + γ) – – 1   2φ0(1 – φ0) – – 1 

Notes: F = focal-point reasoner using label salience; FP = focal-point reasoner using joint-payoff salience; K = level-k reasoner. φ0 = probability of focal-

point reasoning absent conflict of interest; φ(X, Y) = probability of focal-point reasoning when there is conflict of interest and payoff pair is {X, Y}; σ(X, Y) = 

probability that a focal-point reasoner uses joint-payoff salience in Hi-Lo games; ρ(X, Y) = probability that a level-k reasoner claims the disc worth Y in 

Battle of the Sexes; ρ*(X, Y) = 2ρ(X, Y)[1 – ρ(X, Y)]; n/a = not applicable. 
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Table 2 (continued) 

Game 
  Closeness game   Spatially Neutral game 

  Pr(Case) Pr(Close) Pr(Y) Pr(Coord)   Pr(Case) Pr(Left) Pr(Y) Pr(Coord) 

Battle of the 

Sexes 
F φ(X, Y) 1 0.5 –  φ(X, Y) 0.5 0.5 – 

K [1 – φ(X, Y)] 0.5 ρ(X, Y) –  [1 – φ(X, Y)] 0.5 ρ(X, Y) – 

          

Label vs. Label [φ(.)]2 – – 1  [φ(.)]2 – – 0.5 

Level-k vs. Level-k [1 – φ(.)]2 – – ρ*(X, Y)  [1 – φ(.)]2 – – ρ*(X, Y) 

Label vs. Level-k 2[φ(.)][1 – φ(.)] – – 0.5   2[φ(.)][1 – φ(.)] – – 0.5 

           

Own 

Information 
F φ0 1 0.5 –  φ0 0.5 0.5 – 

K (1 – φ0) 0.5 1 –  (1 – φ0) 0.5 1 – 

          

Label vs. Label φ0
2 – – 1  φ0

2 – – 0.5 

Payoff vs. Payoff (1 – φ0)2 – – 0.5  (1 – φ0)2 – – 0.5 

Label vs. Payoff 2φ0(1 – φ0) – – 0.5   2φ0(1 – φ0) – – 0.5 

           

No 

Information 
F φ0 1 n/a –  φ0 0.5 n/a – 

K (1 – φ0) 1 n/a –  (1 – φ0) 0.5 n/a – 

          

Label vs. Label 1 – – 1   1 – – 0.5 

Notes: F = focal-point reasoner using label salience; FP = focal-point reasoner using joint-payoff salience; K = level-k reasoner. φ0 = probability of focal-

point reasoning absent conflict of interest; φ(X, Y) = probability of focal-point reasoning when there is conflict of interest and payoff pair is {X, Y}; σ(X, Y) = 

probability that a focal-point reasoner uses joint-payoff salience in Hi-Lo games; ρ(X, Y) = probability that a level-k reasoner claims the disc worth Y in 

Battle of the Sexes; ρ*(X, Y) = 2ρ(X, Y)[1 – ρ(X, Y)] ; n/a = not applicable. 
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Table 3 – Disc coordinates in Closeness and Spatially Neutral layouts 

 

Closeness (C) layouts 
Close disc    Far disc    

Match 
Column Row   Column Row   

LL -2 -2  -2 2  RR 

RR 2 -2  2 2  LL 

LR -2 -2  2 2  LR 

RL 2 -2   -2 2   RL 

        

Spatially Neutral (N) 

layouts 

Leftmost disc   Rightmost disc   

Match 
Column Row   Column Row   

LL -3 0  -1 0  RR 

RR 1 0  3 0  LL 

LR -2 0   2 0   LR 
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Table 4 – Summary of claims by scenario 

Disc 

value 

pair 

Class 

(Game) 

Closeness scenarios   Spatially Neutral scenarios 

Configuration None (%) Both (%) Close (%) Far (%)   Configuration None (%) Both (%) Left (%) Right (%) 

             

{10, 10} PC (10, 10)| |(10, 10) 4 (3) 3 (3) 101 (86) 10 (8)   |(10, 10) (10, 10)| 1 (1) 3 (3) 56 (47) 58 (49) 
             

{10, 11} FI (HL-I) (10, 11)| |(11, 10) 1 (1) 3 (3) 32 (27) 82 (69)  |(10, 11) (11, 10)| 2 (2) 2 (2) 23 (19) 91 (77) 
 FI (HL-C) (11, 10)| |(10, 11) 1 (1) 3 (3) 103 (87) 11 (9)  |(11, 10) (10, 11)| 1 (1) 3 (3) 95 (81) 19 (16) 
 FI (BS) (10, 10)| |(11, 11) 2 (2) 4 (3) 91 (77) 21 (18)  |(10, 10) (11, 11)| 3 (3) 4 (3) 65 (55) 46 (39) 
 FI (BS) (11, 11)| |(10, 10) 2 (2) 2 (2) 73 (62) 41 (35)  |(11, 11) (10, 10)| 2 (2) 5 (4) 48 (41) 63 (53) 
             

 OI (10, ?)| |(11, ?) 0 (0) 4 (3) 57 (48) 55 (47)  |(10, ?) (11, ?)| 1 (1) 6 (5) 28 (24) 82 (69) 
 OI (11, ?)| |(10, ?) 1 (1) 3 (3) 95 (81) 21 (18)  |(11, ?) (10, ?)| 2 (2) 2 (2) 89 (75) 26 (22) 
             

  NI (?, ?)| |(?, ?) 3 (3) 4 (3) 88 (75) 23 (19)   |(?, ?) (?, ?)| 3 (3) 4 (3) 47 (40) 64 (54) 
             

{5, 16} FI (HL-I) (5, 16)| |(16, 5) 2 (2) 2 (2) 17 (14) 97 (82)  |(5, 16) (16, 5)| 2 (2) 2 (2) 13 (11) 101 (86) 
 FI (HL-C) (16, 5)| |(5, 16) 0 (0) 2 (2) 104 (88) 12 (10)  |(16, 5) (5, 16)| 1 (1) 3 (3) 104 (88) 10 (8) 
 FI (BS) (5, 5)| |(16, 16) 2 (2) 4 (3) 68 (58) 44 (37)  |(5, 5) (16, 16)| 2 (2) 4 (3) 52 (44) 60 (51) 
 FI (BS) (16, 16)| |(5, 5) 1 (1) 4 (3) 78 (66) 35 (30)  |(16, 16) (5, 5)| 1 (1) 5 (4) 57 (48) 55 (47) 
             

 OI (5, ?)| |(16, ?) 2 (2) 5 (4) 31 (26) 78 (66)  |(5, ?) (16, ?)| 0 (0) 5 (4) 14 (12) 99 (84) 
 OI (16, ?)| |(5, ?) 1 (1) 1 (1) 109 (92) 9 (8)  |(16, ?) (5, ?)| 3 (3) 6 (5) 90 (76) 19 (16) 
             

  NI (?, ?)| |(?, ?) 3 (3) 6 (5) 87 (74) 22 (19)   |(?, ?) (?, ?)| 1 (1) 5 (4) 47 (40) 65 (55) 

Notes:  PC = Pure Coordination; FI = Full Information; OI = Own Information; NI = No Information; HL-I = Hi-Lo with Incongruent cues; HL-C = Hi-Lo with Conguent cues; 

BS = Battle of the Sexes. 
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Table 5 – Summary of one-disc claims in Closeness games 

  {10, 10} 

  Close disc 

PC game 101/111 

(Scenario C1) (0.91) 

            
 {10, 11}  {5, 16} 

  Close disc Y disc   Close disc Y disc 

FI games      

Hi-Lo with incongruent cues 32/114 82/114  17/114 97/114 

(Scenario C2)  (0.28) (0.72)  (0.15) (0.85) 
      

Hi-Lo with congruent cues 103/114 103/114  104/116 104/116 

(Scenario C3)  (0.90) (0.90)  (0.90) (0.90) 
      

Battle of the Sexes 164/226 94/226  146/225 122/225 

(Scenarios C4 and C5) (0.73) (0.42)  (0.65) (0.54) 

            

OI game 152/228 150/228  140/227 187/227 

(Scenarios C6 and C7) (0.67) (0.66)  (0.62) (0.82) 

            

NI game 88/111 
n/a 

 87/109 
n/a 

(Scenario C8) (0.79)  (0.80) 

            

Notes:  The first entry in each cell is the number of cases in which only the close disc 

(respectively: the disc worth Y) was claimed; the second entry is the number of cases in 

which exactly one disc was claimed.  The first number as a proportion of the second is 

shown in parentheses.  The total number of relevant cases is 236 for the Battle of the 

Sexes and OI games and 118 for the other games.  PC = Pure Coordination; FI = Full 

Information; OI = Own Information; NI = No Information; n/a = not applicable.  
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Table 6 – Expected coordination success and expected payoffs in all games 

      {10, 10} 

      Closeness   Spatially Neutral 

PC game MECS  0.8***  0.48 

(Scenarios C1 and N1) MEP  7.71***  4.69 

                

   {10, 11}  {5, 16} 

      Closeness 
Spatially 

Neutral 
  Closeness 

Spatially 

Neutral 

FI games        

Hi-Lo with incongruent cues MECS  0.56*** 0.66  0.73ns 0.77 

(Scenarios C2 and N2) MEP  6.04*** 7.09  11.12ns 11.98 

        

Hi-Lo with congruent cues MECS  0.79** 0.69  0.78ns 0.80 

(Scenarios C3 and N3) MEP  8.56** 7.45  12.45ns 12.59 

        

Battle of the Sexes MECS  0.58*** 0.47  0.52*** 0.47 

(Scenarios C4–C5 and N4–N5) MEP  5.89*** 4.74  5.32*** 4.85 

                

OI game MECS  0.52*** 0.48  0.51** 0.47 

(Scenarios C6–C7 and N6–N7) MEP  5.51*** 5.02  6.96* 6.56 

                

NI game MECS  0.64*** 0.50  0.62*** 0.46 

(Scenarios C8 and N8) MEP  6.49*** 4.96  7.08*** 4.32 

        

Notes:  Asterisks show one-tail significance of MECS (respectively, MEP) in Closeness game relative to 

bootstrapped distribution of MECS (MEP) in corresponding Spatially Neutral game, as implied by our hypotheses: * 

= 10%, ** = 5%, *** = 1%; ns = not significant (or observed effect contrary to alternative hypothesis). There are not 

statistical tests for the ‘All’ panel. PC = Pure Coordination; FI = Full Information; OI = Own Information; NI = No 

Information. 

 


