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Abstract 

Stomata are entry sites for bacterial pathogens and can affect the outcome of infection to 

the disadvantage of the pathogen. This is referred to as stomatal immunity. Guard cells can 

mediate certain responses in a cell-autonomous manner, but this question remains to be 

addressed for pathogen-induced stomatal closure. 

This study reports transient and stable transgenic approaches to study guard cell responses. 

I employed virus-induced gene silencing and guard cell-specific promoters to investigate 

guard cell autonomy and non-autonomous signalling events during pathogen-induced 

stomatal closure. Plants that express FLAGELLIN SENSING 2 (FLS2) only in the guard cells 

retained stomatal closure to flg22 and wild-type-like susceptibility levels to bacterial 

infection. Interestingly, guard cell-specific knock-down of FLS2 did not impair stomatal 

closure or resistance to bacteria, suggesting that non-autonomous signalling events can 

mediate stomatal closure during pathogen invasion. 

Screening mutants of abscisic acid (ABA) signalling components revealed that pathogen-

induced stomatal closure is independent from the prototypic drought stomatal closure 

pathway. I showed that OPEN STOMATA 1 is not involved in pathogen-induced stomatal 

closure and that it was inactive after flg22 treatment. Instead, the mutant of a related kinase 

SUCROSE NON-FERMENTING RECEPTOR KINASE 2.3 (SnRK2.3) was impaired in its flg22 

stomatal closure response suggesting that SnRK2.3 plays an important role in this response. 

SnRK2.3 interacted with BOTRYRIS-INDUCED KINASE 1 in split-YFP and co-

immunoprecipitation assays. Interestingly, the PBS1-like 1 (PBL1) mutant was impaired in 

flg22-induced stomatal closure and PBL1 activated SLOW ANION CHANNEL-ASSOCIATED 1 

HOMOLOGUE 3 (SLAH3) in oocyte measurements. This suggests PBL1 as major player in 

MAMP-induced stomatal closure.  

My data reveal that aspects of stomatal immunity involve both guard cell-specific signalling 

events and non-symplastic cell-to-cell signalling. This work implicates independence of ABA- 

and pathogen-induced stomatal closure pathways and PBL1 as major regulator through 

direct activation of the anion channel SLAH3.  
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1. Introduction 

1.1. The Plant’s Immune System 

1.1.1. Pattern-triggered Immunity (PTI) 

1.1.1.1. Perception of microbes at the plasma membrane by Pattern Recognition Receptors 

(PRRs) 

The plant’s immune system relies on each individual cell’s capacity to mount a full immune 

response. This is achieved with every cell possessing a multitier surveillance system that 

recognises conserved molecular patterns that are indicative of a pathogen. These patterns 

are characteristic microbial molecules or host-derived molecules that arise during a 

pathogen attack. They are commonly referred to as microbe-associated molecular patterns 

(MAMPs) and host-derived damage-associated molecular patterns (DAMPs) (Gust et al., 

2017). Upon perception of these danger signals plant cells activate defence signalling 

including a number of measurable responses, for instance elevated cytosolic calcium 

concentrations, extracellular alkalization, production of reactive oxygen species (ROS), 

activation of mitogen-activated protein kinases (MAPKs), callose deposition and stomatal 

closure (Boller & Felix, 2009).  

Perception of these patterns occurs at the plasma membrane by pattern-recognition 

receptors (PRRs) which are either receptor-like kinases (RLKs) or receptor-like proteins 

(RLPs). Plants have a largely expanded number of RLKs (Fritz-Laylin et al., 2005) and RLPs 

compared to animals with over 600 members in Arabidopsis thaliana. PRRs typically consist 

of a unique extracellular ectodomain, a transmembrane domain and a cytoplasmic domain 

that, in the case of an RLK, possesses kinase activity. The cytoplasmic domains of RLPs are 

short and lack kinase activity so it is believed that RLPs rely on interacting kinases to relay 

signals to the cell’s interior. The unique ectodomains participate in ligand binding and their 

specificity is believed to be defined by their different domain structures (Figure 1.1A). Such 

ectodomains are Leucin-rich repeats (LRRs), lysine motifs (LysM), lectin-type domains or EGF-

like domains. LRR-RLKs and LRR-RLPs are the largest subfamily and usually bind proteins or 

peptides, for instance flg22 the recognised epitope from bacterial flagella, elf18 the 

recognised epitope from bacterial EF-Tu or endogenous AtPep peptides that arise during 

pathogen infection (Shiu & Bleecker, 2001; Bohm et al., 2014; Macho, A. P. & Zipfel, C., 2014; 

Macho, Alberto P. & Zipfel, Cyril, 2014). LysM, lectin-type and EFR-like domains confer 

perception of carbohydrate-based ligands, for example fungal chitin or bacterial 
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peptidoglycan, extracellular ATP, bacterial lipopolysaccharides (LPS) or oligogalacturonides 

that originate from plant cell-walls (Bohm et al., 2014; Macho, Alberto P. & Zipfel, Cyril, 

2014).  

 

 

 

 

 

 

 

 

 

Some LRR-RLKs seem to function as co-receptors through hetero-dimerization with certain 

LRR-RLK-type receptors and are known as somatic embryogenesis receptor kinases (SERKs) 

(Ma et al., 2016). RLPs seem to rely on the LRR-RLK SUPPRESSOR OF BIR1-1 (SOBIR 1) as co-

receptor to initiate downstream signalling (Liebrand et al., 2014).  Upon ligand perception 

receptor-like cytoplasmic kinases (RLCKs) get activated by PRRs and this subsequently 

A 

B Figure 1.1: Pattern-triggered immunity is 
mediated by plasma membrane-localised 
receptors.  
A. Domain structures of important Pattern 
Recognition Receptors (PRR) with their co-
receptors and corresponding ligands. 
Leucine-rich-repeat (LRR) -type PRRs shown 
here are FLS2, EFR, PEPR1 with their co-
receptor BAK1. In comparison displayed 
LysM-type PRR is LYK5 with its co-receptor 
CERK1.  
B. Flg22-induced signalling pathway through 
FLS2. In Arabidopsis thaliana flg22 is 
perceived by the PRR pair FLS2 and BAK1. 
Binding of the ligand induces and stabilises 
dimerization of the co-receptors and leads to 
transphosphorylation events in their 
cytoplasmic kinase domains and onto 
cytoplasmic signalling partners known as  

RLCKs such as BIK1. BIK1 phosphorylates and activates RBOHD, the main enzyme producing ROS in 
the apoplast. Subsequent signalling events include the activation of MAP-Kinase cascades and the 
activation of defense genes.  
Figures adapted from Couto et al., 2014.  
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activates several parallel signalling pathways (Lin et al., 2013). Downstream signalling 

pathways include mitogen-activated protein kinase (MAPK) cascades that mediate immune 

responses through direct phosphorylation of their substrates (Meng et al., 2013). In the 

following section I will discuss examples of immune-associated RLKs and their signalling 

pathways in Arabidopsis thaliana.  

1.1.1.2. Perception of the bacterial MAMP flg22 by FLAGELLING SENSING 2 (FLS2)  

FLS2 is one of the best characterized LRR-RLKs in plants. The ectodomain of FLS2 consists of 

28 LRRs that bind the ligand, a transmembrane domain and an intracellular kinase domain 

(Chinchilla et al., 2006). FLS2 recognizes bacterial flagellin (Gómez-Gómez & Boller, 2000) 

and is the main receptor mediating resistance to Pseudomonas syringae pv. tomato DC3000 

(hereafter Pst DC3000), the virulent strain that can successfully colonise Arabidopsis thaliana 

(Zipfel et al., 2004). The 22 amino acids of flagellin that participate in binding with the 

receptor (flg22) are commonly used to induce FLS2 signalling under laboratory conditions. 

Ligand binding induces FLS2 association with the regulatory LRR-RLK BRI1-ASSOCIATED 

RECEPTOR KINASE 1 (BAK1) (Chinchilla et al., 2007). BAK1 is a member of the SERK family 

and with only five LRRs (Couto & Zipfel, 2016). The crystallization of the ectodomains of both 

receptors in complex with the ligand revealed how the interactions are formed and 

stabilised. In this complex, flg22 adopts a linear confirmation binding to LRR3-16 of FLS2 and 

to an “inner-curved loop” between Thr52 and Val54 in the N-terminus of BAK1. Since this 

interaction of flg22 bridges the association of FLS2 with BAK1 it is considered to act as a 

‘molecular glue’ to stabilise the receptor complex (Sun et al., 2013). Both FLS2 and BAK1 have 

an intracellular kinase domain but since FLS2 is a non-RD kinase and BAK1 is an RD-kinase 

their kinase activities are considerably different (Schwessinger et al., 2011). Non-RD kinases 

carry an uncharged amino acid residue in the catalytic loop of the kinase domain, while RD 

kinases carry a conserved arginine residue (Dardick et al., 2012). Since the FLS2 kinase activity 

is considerably weaker than that BAK1 (Schwessinger et al., 2011) it has been suggested that 

the low kinase-activity of FLS2 is the reason for the association with BAK1 (Dardick et al., 

2012). Association of BAK1 and FLS2 is necessary for phosphorylation and activation of both 

proteins and strictly required to initiate downstream signalling (Lu, D. et al., 2010; Sun et al., 

2013).  

Upon perception of flg22 the receptor complex relays the extracellular danger signal to 

intracellular signalling partners. Receptor-like cytoplasmic kinases (RLCKs) were identified as 

direct substrates of PRR receptor complexes and critical for many downstream responses 
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(Liang & Zhou, 2018). Important RLCKs involved in flg22-induced immune signalling are 

BOTRYTIS-INDUCED KINASE 1 (BIK1) and AVRPPHB SUSCEPTIBLE 1-LIKE 1 (PBL1) which are 

part of the pre-formed FLS2-BAK1 receptor complex prior to flg22 perception (Lu, D. et al., 

2010; Zhang, Jie et al., 2010). The bik1 pbl1 double mutant is strongly impaired in a vast 

number of immune outputs including calcium influx, ROS burst, actin filament bundling, 

callose deposition, stomatal closure and seedling growth inhibition (Lu, Dongping et al., 

2010; Zhang, Jie et al., 2010; Ranf et al., 2014). Flg22 perception activates the receptor 

complex and BAK1 phosphorylates BIK1 (Zhang, J. et al., 2010). BIK1 in turn phosphorylates 

both FLS2 and BAK1 and dissociates from the complex (Zhang, Jie et al., 2010). After 

dissociation, BIK1 phosphorylates the RESPIRATORY BURST OXIDASE HOMOLOGUE D 

(RbohD), which is the NADPH oxidase predominantly producing apoplastic ROS in response 

to MAMPs (Nühse et al., 2007; Kadota et al., 2014). Additionally, RBOH enzymes are 

regulated by MAMP-induced elevation in cytosolic calcium as their N-terminal EF-hand 

motifs can bind calcium and CALCIUM DEPENDENT PROTEIN KINASEs (CDPKs) have been 

shown to phosphorylate RBOHD (Kobayashi et al., 2007; Ogasawara et al., 2008).  

Another example of an RLCK acting as a positive regulator of immune signalling is BR-

SIGNALING KINASE 1 (BSK1). It associates with FLS2 in N. benthamiana and a mutation in the 

gene impairs the flg22-induced ROS burst as well as resistance to several pathogens (Shi et 

al., 2013). Many more RLCKs have recently been identified to be key signalling proteins acting 

in response to a vast array of different responses (Liang & Zhou, 2018) stressing their 

importance. 

The activation of immune responses comes at the expense of growth and is therefore tightly 

regulated. Several regulatory mechanisms have already been uncovered that ensure a tight 

control on immune signalling activation and a swift switch-off when the attack has subsided. 

In the following section I will discuss a few examples of negative regulation of immune 

signalling. The prevention of interaction between inactivated receptor complex subunits is 

one such example. In the absence of a PTI trigger the LRR-RLK BAK1-INTERACTING 

RECEPTOR-LIKE KINASE 2 (BIR2), and other members of the same pseudokinase subfamily, 

interact with BAK1 to prevent association with FLS2 (Halter et al., 2014). Consistently, in bir2 

mutants FLS2 and BAK1 show enhanced interaction (Halter et al., 2014). After ligand 

perception BAK1 phosphorylates BIR2 and this leads to its dissociation which allows receptor 

complex formation (Halter et al., 2014). It is therefore believed that BIR2 competes with 

other BAK1 interactors and prevents complex formation in the absence of a trigger.  
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As the phosphorylation status of PRR complexes is crucial for signalling initiation, protein 

phosphatases are emerging as negative regulators of PTI responses. KINASE-ASSOCIATED 

PROTEIN PHOSPHATASE (KAPP) is such a phosphatase with a kinase interaction (KI) domain 

and an N-terminal membrane anchor and directly interacts with FLS2 in Yeast-2-Hybrid 

assays (Gomez-Gomez et al., 2001). Overexpression of KAPP renders plants insensitive to 

flg22 and it is suggested that KAPP dephosphorylates and thereby regulates FLS2 (Gómez-

Gómez et al., 2001). Another negative regulator is PROTEIN PHOSPHATASE 2A (PP2A) which 

interacts with BAK1 and negatively controls its phosphorylation status. Inhibition of PP2A 

results in enhanced disease resistance and activates PTI responses, such as ROS production 

and defence gene expression (Segonzac et al., 2014). Furthermore, PP2C38 interacts with 

FLS2 and BIK1 and negatively regulates BIK1 phosphorylation and BIK1-mediated RBOHD 

activation (Couto et al., 2016). These examples demonstrate the importance of phosphatases 

in the negative regulation of immune signalling.  

Receptor complexes can furthermore be regulated through degradation and subsequent 

replenishment of newly synthesised receptors at the plasma membrane. Consistently, FLS2 

is endocytosed after flg22 perception and degraded in the vacuole (Robatzek et al., 2006). 

Endocytosis of FLS2 is clathrin-dependent and requires VPS37, a component of the ESCRT-I 

endosomal sorting machinery (Spallek et al., 2013; Mbengue et al., 2016). Recently, the E3 

ligases PUB12 and PUB13 were found to polyubiquitinate FLS2 which is associated with 

protein degradation. Accordingly, FLS2 degradation is abolished in pub12/13 mutants and 

ROS production upon flg22 treatment and resistance against Pst DC3000 was enhanced (Lu 

et al., 2011). These examples illustrate the complexity of initiation and regulation of immune 

signalling in plants. Future studies will help us gain further insights as to how plants control 

immune responses. 

Signalling of the LRR-RLKs EFR and PEPR1 and 2 are largely overlapping with FLS2 signalling 

and will not be discussed here in detail. 

1.1.1.3. Perception of chitin through LYK5 and CERK1 

While perception of flg22, elf18 and AtPep1 largely require the same signalling partners, 

chitin perception is independent of some of these regulators, including BAK1. Chitin 

perception is mediated by the LysM domain-containing receptor complex of CHITIN ELICITOR 

RECEPTOR KINASE 1 (CERK1) and LYSINE MOTIF RECEPTOR KINASE 5 (LYK5) (Liu et al., 2012; 

Cao et al., 2014). LYK5 is the major chitin receptor binding chitin oligomers but also CERK1 
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can directly bind to chitin, but with much lower affinity than LYK5 (Petutschnig et al., 2010; 

Cao et al., 2014). This suggests a similar co-receptor dynamic where both partners are 

involved in ligand binding as in the FLS2/BAK1 receptor complex (Figure 1.1A). Because of 

the observation that CERK1 can associate with several LysM-RLKs, including LYK4, which is 

also involved in chitin perception, it was proposed that CERK1 acts as a regulatory receptor 

kinase analogous to BAK1 function (Petutschnig et al., 2010; Wan et al., 2012; Couto & Zipfel, 

2016). This is moreover supported by the observation that LYK5 is a pseudokinase and CERK1 

kinase activity is required for chitin immune signalling (Cao et al., 2014). One could 

hypothesise that analogous to FLS2/BAK1 LYK5 associates with CERK1 because of its kinase 

activity. Chitin binding induces homodimerization of CERK1 and association with LYK5 (Cao 

et al., 2014). CERK1 subsequently phosphorylates the RLCK PBL27 following its dissociation 

from the complex and the activation downstream signalling partners (Shinya et al., 2014). 

PBL27 has been shown to phosphorylate MAPK kinase kinase 5 which leads to activation of 

MAPK kinase 4 and 5 and subsequently MAPK3 and 6 (Yamada et al., 2016).    

1.1.1.4. Calcium signalling in PTI 

Recognition of MAMPs triggers a rapid increase in the concentration of cytosolic free calcium 

([Ca2+]cyt), a second messenger, which is required for the activation of defence responses. 

This was confirmed through the use of pharmacological inhibitors in early studies (Lecourieux 

et al., 2006). As changes in [Ca2+]cyt are involved in a wide range of plant responses, different 

stimuli are thought to induce the generation of unique spatio-temporal patterns of these 

calcium rises, so-called Ca2+ signatures. Even different MAMPs induce calcium signatures that 

differ in shape and intensity. BIK1 and PBL1 are required for flg22-, elf18- and AtPep1-

induced calcium signatures (Ranf et al., 2011). Identification of the calcium channels 

mediating these MAMP-induced calcium signatures remain to be identified. Genomic studies 

have suggested that plants do not have typical animal Ca2+ channels such as VOLTAGE-

DEPENDENT CA2+ CHANNELs (VDCCs), TRANSIENT RECEPTOR POTENTIAL (TRP) channels, 

PURIGENIC P2X RECEPTOR CHANNELS (P2XR) and cysteine loop channels. Instead, plants 

have expanded families of CYCLIC NUCLEOTIDE-GATED ION CHANNELS (CNGCs), 

MECHANOSENSITIVE ION CHANNEL MSCS-LIKE (MSL) and REDUCED HYPEROLSMOLARITY-

INDUCED [CA2+] INCREASE CHANNELS (OSCA) (DeFalco et al., 2010; Edel & Kudla, 2015; Zhu 

et al., 2015). GLUTAMATE RECEPTOR-LIKE CHANNELS (GLRs) have been implicated in the 

MAMP-induced Ca2+ signatures as a selective calcium inhibitor impaired the calcium burst in 

response to flg22, elf18 and chitin (Kwaaitaal et al., 2011). Interestingly, the loss of GLR3.3 
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lead to a hyper-susceptibility phenotype towards infection with Pst DC3000 (Li et al., 2013). 

CNGC2 was shown to be a channel acting in LPS- and AtPep1-induced calcium influx (Ali et 

al., 2007; Qi et al., 2010). However, calcium signals in guard cells could not be abolished by 

the use of inhibitors of GLRs and CNGCs, suggesting that at least in this cell type these 

channels might not be involved in MAMP-induced calcium signatures (Thor & Peiter, 2014). 

Moreover, the study found that flg22 induces calcium oscillations in guard cells and not just 

a stark increase in [Ca2+]cyt, and these oscillations are similar to calcium oscillations in the 

nucleus during symbiosis (Capoen et al., 2011; Thor & Peiter, 2014; Charpentier et al., 2016). 

Indeed, AUTOINHIBITED CA2+-ATPase ISOFORM 8 (ACA8) and ACA10 associate with FLS2 and 

the double mutant has impaired calcium burst as well as ROS accumulation and is 

hypersusceptible to bacterial infection, implicating a role for these ATPases in the MAMP-

induced calcium burst (Frey, N et al., 2012).  

1.1.1.5. MAP Kinase cascades involved in defence 

MITOGEN-ACTIVATED PROTEIN KINASES (MAPKs or MPKs) are universal modules of signal 

transduction in eukaryotes and follow a hierarchical cascade from MAP Kinase Kinase Kinases 

(MEKKs) that phosphorylate MAP Kinase Kinases (MKKs), which in turn phosphorylate MPKs. 

In this manner the signal gets forwarded and amplified at the same time, as one MEKK can 

activate several MKKS and so on. Plants have expanded families of MAPKs and Arabidopsis 

thaliana has 20 different MPKs that are divided into six subfamilies as well as 10 MKKs and 

60 MEKKs (Zhang & Klessig, 2001). The activation motif of plant MPKs is either a Thr-Glu-Tyr 

or Thr-Asp-Tyr and is unique to plants (Ichimura et al., 2002; Hamel et al., 2006). In 

Arabidopsis thaliana two distinct MAPK cascades are involved in the MAMP-induced 

activation of four MAPKs. While the upstream MEKK remains to be found it is established 

that MAPKKs 4 and 5 activate MPK3 and MPK6 (Asai, T. et al., 2002). The other cascade 

consists of MEKK1, MKK1 and MKK2 that activate MPK4 and MPK11 (Meszaros et al., 2006; 

Suarez-Rodriguez et al., 2007; Gao et al., 2008; Bethke et al., 2012). Downstream responses 

of MAP Kinase cascades are the activation of transcription factors that effectively reprogram 

transcription in favour of immune genes as well as activation of phospholipases or other 

substrates (Zhang & Klessig, 2001; Meng & Zhang, 2013). Inhibition of MAPK cascades 

reduces the expression of certain defence-associated genes (Asai, Tsuneaki et al., 2002). 

Almost 1000 genes have found to be upregulated within 30 minutes of flg22 perception 

(Zipfel et al., 2006, Zipfel et al., 2004). A large number of those upregulated genes are RLKs, 

for instance the FLG22-INDUCED RECEPTOR-LIKE KINASE 1 (FRK1) (Boudsocq et al., 2010). 
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This suggests a positive feedback loop of MAMP perception (Boller and Felix 2009). Other 

upregulated genes include NDR1/HIN-LIKE 10 (NHL10), PEROXIDASE 62 (PER62), WALL-

ASSOCIATED KINASE 2 (WAK2) and FAD-LINKED OXIDOREDUCTASE (FOX) (Boudsocq et al., 

2010). Besides, there are also defence genes that can get activated independently of MPK 

signalling. For instance PHOSPHATE-INDUCIBLE 1 (PHI1) seems to require CALCIUM-

DEPENDENT PROTEIN KINASES (CPKs) rather than MPKs (Boudsocq et al., 2010).  

How receptor complexes activate MAP Kinase cascades still remains elusive. Increasing 

evidence points towards an involvement of RLCKs in the activation of MAP Kinase cascades. 

The chitin-induced MAP Kinase activation strictly requires PBL27 and MKK5 was found to be 

a substrate of PBL27 (Shinya et al., 2014; Yamada et al., 2016). In addition to this it has been 

demonstrated that inhibition of BIK1 and related PBLs by a bacterial effector strongly inhibits 

flg22-induced MPK3, 4 and 6 activation (Feng, Feng et al., 2012). However, the pbl1 bik1 

double mutant shows reduced AtPep1-induced MAP Kinase activity but has a wild-type-like 

response to flg22 (Feng, Feng et al., 2012). Instead the pcrk1 pcrk2 double mutant has slightly 

reduced MAP Kinase activity after flg22 trigger (Kong et al., 2016). These results implicate a 

role for RLCKs in the activation of MAP Kinases after MAMP trigger but also indicate that 

there might be differential contribution of these RLCKs. In addition to the missing link 

between receptor complexes and MAP Kinase cascades only a small number of MPK 

substrates have been identified (e.g. (Pecher et al., 2014). Although we know how integral 

MAP Kinase cascades are for immune response we still lack a thorough understanding of 

these important signalling modules. 

1.1.1. Effector-triggered Immunity 

1.1.1.1. Pathogens secrete proteins to modulate host processes 

Pathogens modulate host immune responses through the secretion of specialised proteins 

called effectors into the host cytoplasm to promote virulence. Bacteria possess a highly 

specialised secretion system that forms a syringe-like structure that can directly inject 

effectors into the cell’s interior. The type III secretion system (T3SS) is essential for virulence 

as deletion mutants fail to successfully colonise (Buttner & He, 2009). Many devastating plant 

diseases are caused by gram-negative bacteria which employ this effector delivery 

mechanism including Pseudomonas syringae, Ralstonia solanacearum and Xanthomonas 

spp. The virulence function of the T3SS is carried out by the secreted effectors as it has been 

shown that expression of certain important effectors restores virulence to otherwise non-
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pathogenic bacterial strains (Xin et al., 2016). While suppression of host immune responses 

seems like an obvious task of effectors recently it emerged that another important function 

is the creation of an aqueous environment in the otherwise air-filled apoplast (Xin et al., 

2016). This function is fulfilled by the effectors HopM1 and AvrE and leads to the so-called 

water soaking of host leaves. Bacterial effectors are also known to interfere with PTI 

responses by targeting key components of the pathways. Several effectors target the 

phosphorylation status of receptor complexes. The Pseudomonas syringae effector AvrPto 

inhibits both FLS2 and EFR activation by acting as a general kinase inhibitor (Shan et al., 2008; 

Xiang et al., 2008). The protease effector HopB1 has recently been shown to cleave flg22-

induced BAK1 to dampen PTI responses (Li et al., 2016). FLS2, EFR and CERK1 are moreover 

degraded through the E3 ligase activity of AvrPtoB (Abramovitch et al., 2006; Gohre et al., 

2008; Gimenez-Ibanez et al., 2009). Interestingly, AvrPtoB has also been shown to negatively 

regulate BAK1 kinase activity (Cheng et al., 2011).  Another effector called HopAO1 exhibits 

tyrosine phosphatase activity and dephosphorylates key tyrosine residues on EFR and 

inhibits elf18-mediated immune responses (Macho et al., 2014). RLCKs are also targets of 

effector interference. The P. syringae effector AvrPphB possesses uridylyl transferase activity 

and blocks the kinase activity of BIK1 and related RLCKs and thereby downstream responses 

mediated by BIK1 (Feng, F. et al., 2012). BIK1 is also targeted by the X. campestris effector 

AvrAC and this observation led to the discovery of the decoy PBS1-LIKE 2 (PBL2) which is 

guarded by a cytoplasmic immune receptor (Feng & Zhou, 2012). Furthermore, the cysteine 

protease AvrPphB cleaves and degrades BIK1 and related RLCKs (Shao et al., 2003). Other 

important signalling components targeted by effectors are MAP Kinase cascades. The two 

effectors HopAI1 and HopF2 target MAPK4 and MKK5, respectively. While HopAI1 inactivates 

MAPK4 through removal of phosphorylation sites, HopF2 ADP-ribosylates MKK5 to inactivate 

it (Zhang, J et al., 2007; Wang et al., 2010).  

1.1.1.2. Intracellular Immune Receptors: NLRs 

Plants have evolved cytoplasmic immune receptors to detect secreted effectors and their 

virulence functions. The cytoplasmic immune receptors follow a characteristic domain 

structure and are called NUCLEOTIDE-BINDING LEUCINE RICH REPEAT RECEPTORS (NLRs). 

Most cytoplasmic immune receptors consist of a variable N-terminus, a nucleotide-binding 

NB-ARC domain and an LRR domain and are thus referred to as NLR proteins (Figure 1.2). 

NLR proteins can recognise the presence of effector proteins that have been translocated 

into the host cytoplasm to modulate cellular processes and to promote infection. NLRs are 
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part of a subfamily within the STAND (signal transduction ATPase with numerous domains) 

superfamily (Lukasik & Takken, 2009). The variable N-terminal domains help divide NLRs in 

three subclasses: TOLL-INTERLEUKIN 1 RECEPTOR (TIR domain) containing NLRs are called 

TNLs, those containing a coiled-coil (CC) domain are called CNLs and ones with a RPW8 

domain are RNLs (Shao et al., 2016). The N-terminal region is thought to determine 

downstream signalling partner requirements. While TNLs largely require ENHANCED DISEASE 

RESISTANCE 1 (EDS1) most CNLs depend on NON-RACE SPECIFIC DISEASE RESISTANCE 1 

(NDR1) to activate immune signalling.  

 

1.1.1.3. Functional cooperation of NLRs to mediate effector recognition 

Research in recent years has demonstrated that some NLRs operate in functional pairs 

whereby one NLR acts as ‘sensor’ and the other NLR as ‘executor’ or ‘helper’. In this model 

the NLR dual function of recognition and signal transduction is divided into two proteins: the 

sensor NLR detects the pathogen and the executor NLR activates defence signalling (Cesari 

Figure 1.2: Domain structures of different types of plant NLRs. Most cytoplasmic immune 
receptors share a similar domain structures with a variable N-terminal domain, a central NB-ARC 
domain and an LRR domain. Special NLRs feature an addition domain originating from another 
host protein referred to as integrated domain (ID) or lack certain domains. CC: coiled-coil, TIR: 
Toll-interleukin 1 receptor, NB: nucleotide binding, ARC: Apar1, R-gene product and CED4, LRR: 
Leucine-rich repeat, RPW8: resistance to powdery mildew 8.  
Modified from (Cesari, 2018). 
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et al., 2014; Wu et al., 2017). One such example is the NLR pair RESISTANT TO RALSTONIA 

SOLANACEARUM 1/RESISTANCE TO P. SYRINGAE 4 (RRS1/RPS4) from Arabidopsis thaliana 

that confers resistance to bacterial and fungal pathogens (Narusaka et al., 2009). Other 

examples include Pikp-1/Pikp-2, RPP2A/RPP2B and RGA4/RGA5 (Sinapidou et al., 2004; 

Cesari et al., 2013; Maqbool et al., 2015). Many of those NLR pairs are not only functionally 

but also genetically linked by mapping to the same locus and are usually in a head-to-head 

orientation, sharing transcriptional regions (Bialas et al., 2018). Those linked NLR partners 

frequently exhibit differential domain structures stressing their specialisation in sensor and 

executor modules. It has been suggested that these partners have evolved together to 

achieve specific partnering of NLRs. This is supported by the observation that paralogous 

pairs only function with their genetically linked partner and cannot initiate signalling with a 

member of the paralogous pair (Saucet et al., 2015). Recent evidence suggests that there is 

a large executor NLR network that regulates NLR signalling to a variety of different pathogens 

(Wu et al., 2017). These executor NLRs transduce pathogen recognition via multiple sensors 

and members of the NLR REQUIRED FOR CELL DEATH (NRC) family have been identified to 

act in such a network structure (Wu et al., 2017). Interestingly, this study revealed that some 

NLRs that were believed to function on their own actually require helpers (Wu et al., 2017). 

However, there are some NLRs that have been shown to function on their own, such as 

MLA10 from barley (Bai et al., 2012). Nonetheless, it is possible that MLA10 relies on 

members of a helper NLR network that have yet to be identified.  

1.1.1.4. Molecular basis of NLR activation 

Intra- and intermolecular interactions control the signalling state of NLRs in immune 

signalling. NLRs are believed to cycle between an active and inactive state determined by the 

binding of either ADP or ATP. They are therefore regarded as molecular switches through 

their ability to change between these two signalling states (Takken et al., 2006). When ADP 

is bound the NLR is in the autoinhibited or ‘off’ state and the N-terminal and LRR domains 

cooperate to prevent ADP/ATP exchange in the NB-ARC domain. Representative structural 

models have suggested that the positively charged LRR N-terminus associates with a 

negatively charged region of the NB-ARC to stabilise the inactive state (Takken & Goverse, 

2012). Domains that have been implicated in maintaining the off state through domain swap 

and point mutation analyses are the NB, ARC2 domains and the LRR N-terminus (Rairdan & 

Moffett, 2006; Lukasik & Takken, 2009). Recognition of a pathogen induces conformational 

changes enabling the transition to the ATP- bound or ‘on’ state and effectively exposes the 
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N-terminal domain to signalling partners. The main determinant of the state is therefore the 

NB-ARC domain as the conformation drastically changes depending on the bound nucleotide. 

Intriguingly, it has been found that the exchange from ADP to ATP is not always strictly 

required for NLR activation. An NLRs lacking the P-loop motif for ADP/ATP binding retained 

the ability to provide resistance to the pathogen it detects (Inoue et al., 2013). In the case of 

the NLR pair RPS4 and RRS1 only the proposed signalling partner requires the intact P-loop 

while it is dispensable in the sensor NLR (Sohn et al., 2014). In order to cycle back to the 

inactive state, NLRs require ATPase activity of the NB-ARC domain as loss of ATPase activity 

leads to auto-activity (Tameling et al., 2006).  

A recent study suggested that NLRs may constitutively cycle between the off and on state 

and that in unelicited cells there is a balance between both states. The ‘equilibrium-based 

switch’ model was proposed in which a recognised effector stabilises the on state thereby 

shifting the equilibrium towards the activated state (Bernoux et al., 2016). 

1.1.1.5. Activation of NLRs through Effectors 

How are effectors recognised by NLRs? In the following section I will discuss evidence 

supporting the different models of NLR activation through pathogen virulence factors. 

Direct binding of the effector to the intracellular immune receptor is the simplest scenario 

that is also supported by Flor’s gene-for-gene hypothesis (Flor, 1971). This receptor-ligand 

model homologous to PTI is supported by many studies which have demonstrated direct 

interaction between effectors and NLRs. As the LRR is highly variable and the interaction site 

for several MAMPs and DAMPs it is a likely candidate as effector interaction site. This is 

indeed the case for RECOGNITION OF PERONOSPORA PARASITICA 1 (RPP1) and Pi-ta which 

have been shown to interact with their respective effectors through their LRR region. Since 

the N-terminal portion of the LRR is also implicated in maintaining the auto-inhibited state 

of NLRs, that it can also interact with the effector suggests that the LRR region plays a dual 

role. Allelic versions of NLRs with different effector recognition ranges have enabled domain 

swap studies that revealed distinct interacting surfaces. RPP1 alleles NdA and Ws-B differ in 

their effector recognition range, with NdA having a narrow and Ws-B a broad effector 

recognition range of ARABIDOPSIS THALIANA RECOGNISED 1 (ATR1) alleles. Mutant forms of 

ATR1 helped identify residues that are recognised by and mediate interaction with NdA but 

not Ws-B. This demonstrates that different alleles of the same NLR have evolved distinct 

recognition mechanisms and not just differing sensitivities of the same mechanism 
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(Steinbrenner et al., 2015). While for the association with the effector the LRR domain is 

sufficient, it requires further domains for defence activation (Steinbrenner et al., 2015). 

Similar studies of the flax L5 and L6 variants revealed interaction hotspots in the LRR domain. 

They identified the first four and last seven repeats as mediators of interaction with the flax 

rust effector and therefore resistance specificity (Ravensdale et al., 2012). Another 

interesting example is the cereal resistance gene Pm3 that directly binds and recognises Avr-

Pm3. It has an unusually large LRR domain with island domains. These island regions have 

been shown to function in ligand recognition and mutations in the island domains of BR-

INSENSITIVE 1 (BRI1) rendered it insensitive to its ligand brassinolide (Hothorn et al., 2011). 

While interaction hotspots on Pm3 have been predicted to be between repeats 11 and 26 it 

is currently unknown whether island domains play a role in effector binding (Sela et al., 

2014).  

However, other NLR domains have also been observed to interact with the AVR ligand. The 

tobacco resistance gene N confers resistance to Tobacco Mosaic Virus and binds the viral p50 

helicase domain via its TIR domain (Burch-Smith et al., 2007). Furthermore, the potato RB 

gene confers resistance to certain P. infestans strains through recognition of effectors of the 

IPI-O family through the CC domain (Chen et al., 2012). Other effectors that have been found 

to directly interact with NLRs are Avr-Pita, AvrL567 and AvrM  (Jia et al., 2000; Dodds et al., 

2006; Catanzariti et al., 2010).  

Intriguingly, there are also truncated NLRs that mediate recognition without LRRs. They 

either consist of a TIR and NB-ARC domain in the case of T2 and only a TIR domain in the case 

of TX proteins. They seem to require self-association through two distinct surfaces to initiate 

defence signalling (Williams et al., 2014; Nishimura et al., 2017; Zhang et al., 2017). 

RESISTANCE TO THE BACTERIAL TYPE III EFFECTOR HOPBA1 (RBA1) is a TIR-only that is 

sufficient to trigger cell death upon recognition of HopBA1 in Arabidopsis thaliana 

(Nishimura et al., 2017).  

Another strategy to monitor effector interference is the recognition of effector-mediated 

modification of host targets by NLRs. Many NLR proteins have not been observed to directly 

interact with their cognate effectors. This indirect recognition is summarised in the ‘guard 

hypothesis’ in which an NLR ‘guards’ the effector target and activates defence if the 

‘guardee’ has been modified by an effector (Dangl & Jones, 2001). Detailed support for this 

strategy comes from the well-studied monitoring of RMP1-INTERACTING PROTEIN 4 (RIN4) 

by RESISTANCE TO PSEUDOMONAS SYRINGAEY PV. MACULICOLA 1 (RPM1) and RESISTANCE 
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TO PSEUDOMONAS SYRINGAE 2 (RPS2). RIN4 is targeted by multiple bacterial effectors which 

implies that RIN4 plays a central role in plant defences. While it has been implied in several 

immune responses from PTI signalling to stomatal closure, its exact role is still elusive (Liu et 

al., 2009; Liu et al., 2011). RPM1 recognises AvrB- or AvrRpm1-induced phosphorylation of 

RIN4 while RPS2 recognises AvrRpt2-mediated protease activity and they subsequently 

activate immune signalling (Mackey et al., 2002; Mackey et al., 2003). NLR SUPPRESSOR OF 

MKK1 MKK2 (SUMM2) guards MPK4 and the removal of phosphorylated groups by the 

bacterial effector HopAI1 (Zhang et al., 2012).  

The guard model was taken to another level by the discovery of guarded decoys that have 

lost their original signalling function and serve solely as effector baits (van der Hoorn & 

Kamoun, 2008). These proteins may present the next step of host protein specialisation to 

effector perception. Such decoys include PBL2 which acts as decoy for BIK1 to prevent 

interference of AcrAC in BIK1-mediated responses. PBL2 is guarded by HOPZ-ACTIVATED 

RESISTANCE 1 (ZAR1) and the pseudokinase RESISTANCE RELATED KINASE 1 (RKS1) that 

specifically recruits the uridinylated PBL2 (Wang et al., 2015). Interestingly, ZAR1 is also 

involved in the guarding of another decoy protein: HOPZ-ETI-DEFICIENT 1 (ZED1) is a 

pseudokinase that detects the acetylation of HopZ1a and associates and subsequently 

activates ZAR1 (Lewis et al., 2013). These mentioned guardees can be seen as true decoys as 

they are functional mimics with no intrinsic protein function. However, there are also decoys 

that require intrinsic activities for NLR activation. The protein kinase Pto, for instance, 

activates the tomato NLR Prf upon perception of the effectors AvrPto and AvrPtoB and its 

kinase activity is required for activation of ETI responses (Mucyn et al., 2006; Ntoukakis et 

al., 2014; Saur et al., 2015). Since Pto does not seem to play a crucial role in activation of PTI 

signalling it is nonetheless thought to be a decoy of the actual effector targets FLS2 and BAK1 

(Nomura et al., 2006; Shan et al., 2008). The plasma membrane CNL RESISTANCE TO P. 

SYRINGAE 5 (RPS5) is held in the off state through direct interaction with PBS1. Cleavage of 

PBS1 by the effector AvrPphB activates RPS5 and is thought to protect the real target BIK1 

from degradation that, unlike PBS1, plays a central role in MAMP-triggered immune 

responses (Ade et al., 2007).  

1.1.1.6. Integrated domains within NLRs 

Up to 10% of plant NLRs contain an atypical domain within the classical NLR domain 

structure. Since it is hypothesised that these domains serve as sensor domains and have 

evolved from a duplication and successive integration of host effector targets into the 



30 
 

canonical NLR structure, they are now commonly referred to as integrated domains (Figure 

1.2 third panel). These integrated domains could serve as effector binding sites, to detect 

effector activity or to outcompete binding of the effector with the actual host target. In the 

case of the NLR pair RRS1/RPS4 the sensor module RRS1 has an integrated WRKY domain at 

its C-terminus. It has been discovered that the bacterial effectors PopP2 and AvrRps4 interact 

with RRS1 via the integrated WRKY domain which is also the effector’s presumed host target 

(Le Roux et al., 2015; Sarris et al., 2015). It is particularly notable that an integrated heavy-

metal associated (HMA) domain seems to mediate perception of three evolutionary 

unrelated effectors of Mangaporthe oryzae in rice. The sensor NLRs Pik-1 and RGA5 

recognise AVR-Pik, AVR-Pia and AVR-CO39 through direct binding of the HMA domain with 

the effectors (Cesari et al., 2013; Maqbool et al., 2015; Ortiz et al., 2017). This suggests that 

certain host proteins are predominant effector targets and therefore also more commonly 

integrated into NLRs.  

Studies have found that some domains are more commonly integrated than others. Among 

the most common domains are protein kinases, WRKYs and BED domains (Kroj et al., 2016; 

Sarris et al., 2016). These are host proteins that are commonly associated with plant immune 

responses and present likely effector targets and have been found in NLRs with known 

resistance function (Yoshimura et al., 1998; Brueggeman et al., 2008; Narusaka et al., 2009). 

Novel domains integrated in NLRs could offer new insight in effector targets and immunity 

regulators.  

1.2. Stomata 

Stomata are microscopic pores in the plant epidermis formed by a pair of guard cells that 

control the size of the aperture through osmotically driven water transport. They enable 

water transpiration and CO2 uptake across the plant epidermis by opening and closing to 

environmental stimuli. Guard cells are able to respond and change their size and shape to a 

large number of stimuli and they are the only cells that can translate environmental stimuli 

into an active, reversible, biomechanical movement. Stimuli that induce aperture opening 

are for instance low CO2 concentration, red and blue light and high humidity (Lange et al., 

1971; Shimazaki et al., 2007). Conversely, stimuli that result in stomatal closure include, but 

are not limited to, elevated CO2 concentration, drought, elevated ozone and darkness 

(Sheriff, 1979; Blackman & Davies, 1985; Jane et al., 1997). In the following I will describe 

stomatal development, stomatal movements and known stomatal signalling pathways in the 

model plant Arabidopsis thaliana. 
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1.2.1. Stomatal development 

Guard cells originate from protodermal cells that undergo a cellular transition to become 

meristemoid mother cells (MMCs). This requires the activity of the basic Helix-loop-Helix 

(bHLH) protein SPEECHLESS (SPCH) that is both expressed in the protoderm and stomatal 

lineage cells (MacAlister et al., 2007; Pillitteri & Torii, 2012). The MMCs undergo asymmetric 

cell division which marks the initiation of the stomatal lineage. This asymmetric cell division 

gives rise to a smaller cell, a meristemoid and a larger cell, a stomatal-lineage ground cell 

(SLGC). SLGCs can have two fates: they can become a pavement cell by terminally 

differentiating or they can divide to a satellite meristemoid. The satellite meristemoid usually 

faces away from the original stoma. The meristemoids will repeatedly divide asymmetrically 

into sister cells in a manner that resembles stem cell-like activity, generally up to three times. 

These divisions serve in part to renew the meristemoid state and to increase the number of 

SLGCs in that particular lineage. These cells are the main source of both pavement cells and 

stomata (Geisler et al., 2000). Eventually, meristemoids terminate cell division, undergo a 

transition and become a guard mother cell (GMC) and this requires the bHLH protein MUTE 

(Pillitteri & Torii, 2012). The GMC divides symmetrically and the two resulting cells transition 

into guard cells. This terminates the differentiation and guard cells do not divide any further 

(reviewed by (Pillitteri & Torii, 2012). The last transitioning step is mediated by the bHLH 

protein FAMA that plays a dual role by inhibiting GMC cell division and promoting the 

transition to guard cells (Ohashi-Ito & Bergmann, 2006). All three bHLH proteins mentioned 

above require the partially redundant bHLH proteins SCREAM and SCREAM2 for their 

function. Through direct interaction with SPCH, MUTE and FAMA they are thought to 

promote stomatal transitions (Kanaoka et al., 2008). During the differentiation and transition 

processes guard cells deposit cell wall material upon plasmodesmata (Wille & Lucas, 1984; 

Palevitz & Hepler, 1985). This requires GLUCAN SYNTHASE 8 (GSL8) which is important for 

callose deposition at cell plates and plasmodesmata. Loss of GSL8 results in small stomatal 

clusters. It is understood that the plasmodesmal truncation during differentiation is 

important to restrict movement of regulatory proteins and determinants (Chen et al., 2009; 

Thiele et al., 2009; Guseman et al., 2010). This symplastic isolation has prompted studies 

investigating whether guard cell autonomy plays a role beyond stomatal development. 

Indeed, it was found that guard cells act autonomous in blue-light induced stomatal opening 

and ABA-induced stomatal closure (Cañamero et al., 2006; Bauer et al., 2013). Therefore, cell 

autonomy seems to be an important characteristic of these highly specialised cells. 



32 
 

 

Figure 1.3: Illustration of cell-state transitions during stomatal development in Arabidopsis thaliana.  
Some protodermal cells undergo cell-transition and become meristemoid mother cells (MMCs, light 
blue) while other cells differentiate into pavement cells. MMCs enter the stomatal lineage through an 
asymmetrical cell division into a meristemoid (dark blue) and stomatal-lineage ground cell (SLGC). 
SLGCs either differentiate into a pavement cell or form a satellite meristemoid facing away from the 
existing stomatal precursor. Meristemoids eventually transition to become guard mother cells (GMCs, 
red). After one final symmetric cell division two equal guard cells are produced. 
Taken from Pillitteri and Torii 2012. 
 

Gas exchange is also affected by the number and distribution of stomata across the leaf 

surface. This is regulated together with cell growth and division whilst also environmental 

conditions influence it. Across species stomata are formed following a one-cell spacing rule 

(Peterson et al., 2010). To ensure that stomata are at least one cell apart from one another, 

cell-to-cell signalling components mediate the oriented divisions of SLGCs. Additionally, 

misplaced meristemoids can still be corrected later in the cell lineage, suggesting a short-

distance signal enforcing stomatal distribution. It is hypothesised that the one-cell spacing 

rule is important to ensure that water and ions are rapidly available from neighbouring cells 

during stomatal opening and closure. This spacing distribution is proposed to be mediated 

by late-stomatal precursors emitting EPIDERMAL PATTERNING FACTORs (EPFs) that are 

recognised by ERECTA-family RLKs and form a large receptor complex with RLP co-receptor 

TOO MANY MOUTHS (TMM) and SERKs (Hara et al., 2007; Lee et al., 2012; Meng et al., 2015). 

The RLKs ERECTA, ERL1 and ERL2 are proposed to act partially redundant and synergistically 

to inhibit epidermal cells from differentiating into guard cells (Shpak et al., 2005). Further 

downstream signalling components involved in maintaining the one-cell spacing rule include 

YODA, MKK4/5, MPK1 and MPK3/6 (Geisler et al., 2000; Bergmann et al., 2004; Tamnanloo 

et al., 2018).  
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1.2.2. Stomatal movement 

1.2.2.1. Regulation of stomatal opening 

Stomatal opening is initiated through phosphorylation of plasma membrane localised H+-

ATPases in the guard cell plasma membrane. This leads to proton efflux and 

hyperpolarisation of the guard cell membrane (Assmann et al., 1985; Shimazaki et al., 1986; 

Haruta et al., 2015; Falhof et al., 2016). There are 11 plasma membrane H+-ATPases in 

Arabidopsis thaliana (AHA1 through AHA11) and they are a family of P-type ATPases with 10 

transmembrane and 3 cytosolic regions. The large cytosolic domain has been shown to have 

auto-inhibitory function (Jahn et al., 1997; Morth et al., 2011). Upon phosphorylation the C-

terminus interacts with 14-3-3 proteins and relocates thereby activating the pumping 

function (Baunsgaard et al., 1998). An important regulatory phospho-site is the penultimate 

Thr947 in the C-terminus and is a common regulatory residue for a range of stimuli including 

light, salt, sucrose, auxin, gibberellin and ABA (Niittylä et al., 2007; Chen et al., 2010; 

Okumura et al., 2012; Takahashi et al., 2012; Hayashi et al., 2014; Inoue et al., 2016; 

Okumura et al., 2016). The protein kinase phosphorylating this key residue still remains to 

be identified. The importance of H+-ATPases in stomatal opening is stressed by dominant 

mutations of AHA1 that display constitutive open stomata (Merlot et al., 2007) and loss-of 

function alleles that show reduced stomatal opening or a closed phenotype (Osakabe et al., 

2016; Yamauchi et al., 2016). Furthermore, light-induced stomatal opening is enhanced 

through guard cell-specific overexpression of AHA2 (Wang et al., 2014). Light-induced 

stomatal opening is generally discriminated into blue- and red light-induced opening 

responses. Blue light-induced opening relies on the autophosphorylation of the blue light 

receptors PHOTOTROPIN (PHOT) 1 and 2 that then directly phosphorylate BLUE LIGHT 

SIGNALLING 1 (BLUS1) (Kinoshita et al., 2001; Christie, 2007; Inoue et al., 2008). Further 

downstream signalling partners include type 1 protein phosphatase (PP1), its subunit PP1 

REGULATORY SUBUNIT1-LIKE PROTEIN 1 (PRSL1) and BLUE-LIGHT-DEPENDENT H+-ATPase 

PHOSPHORYLATION (BHP) (Takemiya et al., 2006; Takemiya et al., 2013a; Takemiya et al., 

2013b; Takemiya & Shimazaki, 2016; Hayashi et al., 2017). While the receptors and stimulus 

for blue light-induced stomatal opening is determined, this remains under debate for red 

light-induced stomatal opening. It has been suggested that red light-induced stomatal 

opening could be a response to reduced intracellular CO2 concentrations due to 

photosynthetic activity of the mesophyll cells and therefore an indirect rather than light-

specific response. Recent evidence, however, suggests that the red light-induced stomatal 
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opening response is not merely a CO2 response as carbonic anhydrase double mutants of 

βCA1 and βCA4 exhibit red light-opening response while being hyposensitive to CO2 

(Matrosova et al., 2015).  

 

Figure 1.4: Mechanisms of stomatal movement in Arabidopsis thaliana.  
Stomatal opening is initiated through the phosphorylation of plasma membrane localised H+-ATPases 
which leads to hyperpolarisation of the guard cell membrane. Upon phosphorylation the C-terminus 
of the H+-ATPases interacts with 14-3-3 proteins which activated the pumping function. The 
hyperpolarisation induces potassium uptake through inward rectifying potassium channels. This 
decreases the water potential and results in water uptake in the guard cell and its vacuole resulting in 
the opening of the aperture. During stomatal closure ROS is produced via NADPH oxidases at the 
plasma membrane. Plasma membrane localised anion channels SLAC1 and SLAH3 are activated and 
transport osmolytes out of the guard cells. The guard cell membrane depolarises and voltage-
dependent anion channels are thereby activated. The loss of potassium and subsequent water loss 
leads to the loss of turgor and closure of the stomatal aperture.  
Adapted from (Cotelle & Leonhardt, 2015) 
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Proton efflux through H+-ATPases results in hyperpolarization of the guard cell membrane 

and this induces K+ uptake through inward rectifying K+ channels KAT1 and 2, AKT1, 2 and 3 

(Lebaudy et al., 2008; Marten et al., 2010). Inward rectifying K+ channels belong to a family 

of shaker-like genes that form homo- and heteromeric channels in the guard cell membrane 

(Dreyer et al., 1997). These channels are K+ selective but do not determine the direction of 

transport, this happens via the K+ gradient and the electrical potential of the membrane 

(Hille, 2001). The differentiation between inward and outward rectifying channels depends 

on their range of voltage-dependent activation (Lebaudy et al., 2007). In the opening 

response their activation leads to the accumulation of K+ and the counterions Cl-, nitrate and 

malate. The anions are further transported into the vacuole through tonoplast localised 

transporters and channels (Jossier et al., 2010; De Angeli et al., 2013; Andres et al., 2014). 

This decreases the water potential in the guard cells and the vacuole and this results in water 

uptake and thereby guard cell inflation which opens the stomatal aperture between the 

guard cells.  

1.2.2.2. Stomatal closure 

Closure-inducing stimuli activate Ca2+- influx channels, outward rectifying potassium 

channels and Slow (S)- as well as Rapid (R)-type anion channels (Schroeder, 1989; Schroeder 

& Hagiwara, 1989; Hedrich et al., 1990). While the calcium channels for this response remain 

to be identified, more is known about potassium and anion channels. Both R- and S-type 

anion channels are activated by membrane polarisation but their reaction time differs from 

milliseconds for R-type, to seconds for S-type channels (Linder & Raschke, 1992; Kolb et al., 

1995). Two S-type anion channels are expressed in guard cells: SLAC1 and its homolog SLAH3 

(Negi et al., 2008; Vahisalu et al., 2008; Geiger et al., 2011). SLAC1 is the major channel 

mediating stomatal closure in response to ozone, CO2 and humidity, while both channels are 

required for full closure in response to ABA and MAMPs (Deger et al., 2015). R-type anion 

channel QUAC1 is member 12 of the aluminium-activated malate transporter family (ALMT) 

(Dreyer et al., 2012), but was renamed QUAC1 from ALMT12, as it is not activated by 

aluminium (Meyer et al., 2010; Sasaki et al., 2010). Plants lacking QUAC1 are not impaired 

but rather show a slower closure response to certain stimuli (Meyer et al., 2010; Sasaki et 

al., 2010). It is suggested that S-type anion channels transport nitrate and chloride while R-

type channels conduct organic anions such as malate. Through the transport of anions across 

the guard cell membrane anion channels play an essential role in repolarising the guard cell 

plasma membrane which activates voltage-dependent K+ efflux channels such as GORK (Ache 
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et al., 2000; Kollist et al., 2011). The loss of anions and potassium leads to water loss and a 

decrease in guard cell volume and this leads to the closure of the aperture between the guard 

cells (Hosy et al., 2003). This transition from the open to the closed state requires a 2- to 3- 

fold decrease in volume and 30-40% decrease in surface area (Blatt, 2000; Meckel et al., 

2007). This guard cell volume decrease is primarily caused by a reduction in vacuolar volume 

and this is achieved by converting the large central vacuole into a highly convoluted structure 

(Bak et al., 2013). Membrane trafficking seems to play an important role in this process as 

both exocytotic and endocytic events are crucial for guard cell movements (Homann & Thiel, 

1999; Leyman et al., 1999; Shope et al., 2003). This process seems to require clathrin heavy 

chain subunits as a chc1 mutant allele has a stomatal defect (Larson et al., 2017). How exactly 

these membrane trafficking events are regulated still remains to be discovered. To initiate 

stomatal closure in sunlight conditions it is necessary to inhibit stomatal opening through 

the inhibition of H+ efflux. This happens for instance via SLAC1 and SLAH3 who can directly 

bind to KAT1 and inhibit its activity (Zhang et al., 2016).  

In the following section I will be discussing different signalling pathways that induce stomatal 

closure and their core signalling components. 

1.2.3. Stomatal closure signalling pathways 

1.2.3.1. ABA-induced stomatal closure 

The most studied signal inducing stomatal closure is the hormone Abscisic acid (ABA) that is 

produced upon drought stress conditions. Although it is the strongest signal inducing 

stomatal closure and it has been discovered in the 1960s its core signalling pathway has only 

recently been characterized. Two groups independently identified the ABA receptors that we 

will refer to as PYRABACTIN-RESISTANCE 1 (PYR1)/ PYR1-LIKE (PYLs), although they are 

occasionally also referred to as REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) (Ma 

et al., 2009; Park et al., 2009; Santiago et al., 2009). There are 14 ABA receptors in 

Arabidopsis thaliana that belong to the START domain superfamily who share a conserved 

hydrophobic ligand-binding pocket (Iyer et al., 2001; Radauer et al., 2008). The 14 ABA 

receptors were found to share high redundancy (Park et al., 2009). Several studies shed light 

upon the function of ABA receptors, in particular a series of crystallographic studies of PYR1, 

PYL1 and PYL2 (Nishimura et al., 2009). PYR1 and PYL2 form homodimers who change 

conformation upon ABA binding. Binding of ABA to the internal cavity induces the 

conformational change of a lid structure (Figure 1.5). This exposes a hydrophobic surface  
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Figure 1.5: Depiction of the main components of the prototypic Abscisic acid (ABA) -induced 
stomatal closure pathway. 
Upon water limiting conditions plants produce ABA which is perceived by ABA receptors PYRBACTIN-
RESISTANCE 1 (PYR1) /PYR1-LIKEs (PYLs). Binding of ABA induces conformational changes that enable 
the ABA receptor to interact with and inhibit TYPE 2C PROTEIN PHOSPHATASES (PP2Cs) that inhibit 
positive regulators of stomatal closure. One of these important regulators is OPEN STOMATA 1 (OST1). 
Once inhibition through PP2Cs is removed, OST1 autophosphorylates and transphosphorylates SLAC1. 
This induces the efflux of anions which leads to the reduction of turgor and the closure of the pore 
between the guard cells. 
 

that interacts with and thereby inhibits TYPE 2C PROTEIN PHOSPHATASES (PP2C) of the 

group A (Melcher et al., 2009; Miyazono et al., 2009; Yin et al., 2009). This was in accordance 

with previous findings that ABA receptors interact with HAB1 and ABI1 in a ligand-dependent 

manner (Ma et al., 2009; Park et al., 2009).  PP2C phosphatase mutants such as abi1-1 and 

abi2-1 have long been known to be negative regulators of ABA signalling (Koornneef et al., 

1984; Leung et al., 1994; Meyer et al., 1994; Roelfsema & Prins, 1995). The dominant 

negative abi1-1 mutant has an amino acid exchange from Gly180 to Asp which results in it 

being constitutively active (Leung et al., 1994). PP2C phosphatases are active in the absence 

of ABA and dephosphorylate and inhibit the activity of positive regulators of stomatal 

closure. One of these regulators are Clade 2 SUCROSE NON-FERMENTING 1-RELATED 

KINASES (SnRKs) that are important for ABA-mediated responses and in particular stomatal 

closure. ABA-INSENSITIVE 1 (ABI1) has an EF-hand domain and a calcium-binding site (Allen 

et al., 1999) that dephosphorylates Ser175 in the activation loop of OPEN STOMATA1 (OST1) 

and thereby negatively regulates its activity (Vlad et al., 2009). OST1 or SnRK2.6 is one of ten 

SnRK2s in Arabidopsis thaliana (Hrabak et al., 2003) and has two close homologs: SnRK2.2 

and SnRK2.3. All three homologs are major targets of PP2C phosphatases regulated by 

PYR1/PYLs and mediate many ABA responses throughout different tissues (Fujii et al., 2007; 

Fujita et al., 2009). Loss of all three SnRKs renders Arabidopsis thaliana seeds effectively 
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insensitive to ABA-induced seedling dormancy. OST1 is expressed in guard cells and the 

vasculature while SnRK2.2 and SnRK2.3 are expressed in all plant tissues (Mustilli et al., 2002; 

Fujii et al., 2007). Loss of OST1 renders guard cells highly insensitive in ABA-induced stomatal 

closure in response to drought (Mustilli et al., 2002) and osmotic stress-induced closure, 

independently of ABA-signalling (Yoshida et al., 2002; Yoshida et al., 2006) indicating it as the 

prominent kinase in these pathways. Upon ABA perception the negative regulation through 

PP2C phosphatases is removed and OST1 gets strongly activated. OST1 can auto- and 

transphosphorylate and its activity is dependent on its phosphorylation status. Even though 

OST1 is strongly activated upon ABA treatment (Belin et al., 2006) the expression level seems 

to be unaffected by ABA (Mustilli et al., 2002). Although the expression of SnRK2.2 and 

SnRK2.3 is not restricted to guard cells they have been associated with guard cell-specific 

responses independent from OST1 (Virlouvet et al., 2014). OST1 directly phosphorylates 

anion channels SLAC1 and QUAC1 in response to ABA but also other stimuli such as CO2, 

darkness and ozone (Geiger et al., 2009; Lee et al., 2009; Vahisalu et al., 2010; Imes et al., 

2013). It moreover phosphorylates RBOHs in the plasma membrane to induce ROS 

production (Sirichandra et al., 2009).  

Perception of ABA induces an increase in cytosolic Ca2+ (Mcainsh et al., 1990; Gilroy et al., 

1991) but this is not essential to induce closure. It has been found that ABA signalling involves 

both a Ca2+-dependent and independent pathway  (Levchenko et al., 2005; Marten et al., 

2007) while transduction via PP2C phosphatases and OST1 does not require calcium 

elevations (Geiger et al., 2009; Geiger et al., 2010). Elevated calcium concentrations in the 

cytoplasm have been shown to induce S-type anion channel activity and SLAC1 has been 

shown to be activated by CALCIUM-DEPENDENT KINASES (CPK) in oocyte measurements 

(Geiger et al., 2010; Scherzer et al., 2012). ABA inhibits stomatal opening through the 

inhibition of H+-ATPases via ABA receptor components, H2O2, NO, phosphatidic acid (PA) and 

cytosolic calcium (Zhang, X et al., 2007; Takemiya & Shimazaki, 2010; Hayashi & Kinoshita, 

2011). Furthermore, OST1, SLAC1 and SLAH3 directly interact with KAT1 to inhibit its activity 

(Sato et al., 2009; Zhang et al., 2016). ABA has also been shown to inactivate AKS 

transcription factors to reduce the expression of inward rectifying K+ channels and to induce 

KAT1 endocytosis which together decrease the amount of inward rectifying K+ channels in 

the plasma membrane (Sutter et al., 2007; Takahashi et al., 2013; Takahashi et al., 2016).  



39 
 

1.2.3.2. CO2-induced stomatal closure 

Guard cells respond to changes in the ambient CO2 concentration to optimise efficient CO2 

flux for optimal photosynthesis conditions. An elevated CO2 concentration induces stomatal 

closure whereas a reduced concentration induces opening. How CO2 changes are perceived, 

however, is still unknown. While CO2 as a lipophilic, nonpolar molecule should diffuse across 

membrane it has been suggested that CO2 is transported into the cytoplasm via aquaporin 

PIP2;1 (Wang et al., 2016). PIP2;1 interacts with carbonic anhydrase (CA) βCA4 that with 

other CAs converts CO2 into bicarbonate (Hu et al., 2010; Xue et al., 2011). CO2 is converted 

to carbonic acid, bicarbonate and protons leaving several possibilities for sensing 

mechanisms and how they are sensed is not understood. RHC1, a MATE family transporter, 

has been proposed as bicarbonate sensor that interacts with βCA4, βCA1 and HT1 to induce 

activation of OST1 upon elevated CO2 conditions (Tian et al., 2015). Another publication 

showed that elevated CO2 concentrations activate MPKs 4 and 12 which inhibit HT1 (Horak 

et al., 2016). In steady state conditions HT1 interacts with, phosphorylates and inhibits SLAC1 

and GHR1, whether it also interacts with OST1 is under debate (Tian et al., 2015; Horak et 

al., 2016). The core signalling pathway of elevated CO2-induced stomatal closure was 

suggested by (Tian et al., 2015). However, it was also discovered that ABA biosynthesis, ABA 

receptors and OST1 are required for this response, suggesting that there may be significant 

overlap between ABA and CO2-induced stomatal closure pathways (Chater et al., 2015).  

1.2.3.3. MAMP-induced stomatal closure 

In addition to being essential instruments regulating transpiration and gas exchange, 

stomata can also be exploited by pathogens to gain entry into plant tissues. As natural 

openings some opportunistic pathogens such as bacteria and rust fungi utilise the stomata 

to invade plants. Plants try to counteract this by closing their stomata upon recognition of 

an invading pathogen and this process is referred to as stomatal immunity. This pathogen-

induced closure has been shown to be able to alter the outcome of infection to the 

disadvantage of the pathogen (Melotto et al., 2006). Additional studies performed in 

grapevines support the importance of this response. Pre-closed stomata and decreased 

stomatal numbers were shown to impact plant susceptibility to downy mildew (Allegre et al., 

2009; Alonso-Villaverde et al., 2011). 

Recognition of an invading pathogen relies on the perception of conserved molecular 

patterns by Pattern-Recognition Receptors (PRRs) at the plasma membrane of guard cells. 
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Each PRR recognises a specific conserved microbial pattern that we refer to as Microbe-

associated molecular patterns (MAMPs). Upon perception of the ligand receptors induce 

intracellular signalling to induce stomatal closure. Important MAMPs that induce stomatal 

closure include flg22, elf18 and chitin but also Danger-associated patterns (DAMPs) such as 

AtPep1 induce closure (Zheng et al., 2018). While it is known that powdery mildew conidia 

and chitosan induce stomatal closure (Maffi et al., 1998; Koers et al., 2011), the downstream 

signalling components are poorly understood. Work in our group has shown that only the 

slah3 mutant is impaired in chitin-induced stomatal closure, while the slac1 mutant shows 

no impairment. The work moreover suggests that the CERK1-LYK5 receptor complex 

phosphorylates and activates PBL27 (Shinya et al., 2014) which in turn phosphorylates SLAH3 

to induce stomatal closure upon chitin perception (Liu et al., submitted). Flg22 and elf18 are 

bacterial MAMPs that are recognised by the PRRs FLAGELLIN SENSING 2 (FLS2) and EF-Tu 

RECEPTOR (EFR), respectively. Both receptors associate with their co-receptor BRI1-

ASSOCIATED RECEPTOR KINASE1 (BAK1) upon ligand perception. The signal is transduced 

onto Receptor-like cytoplasmic kinases (RLCKs) such as BOTRYTIS-INDUCED KINASE1 (BIK1) 

through direct phosphorylation (Lu, D. et al., 2010). Just like for other stimuli downstream 

events of ligand perception include ROS accumulation, increase in cytosolic Ca2+, NO 

production and activation of anion channels. For MAMP-induced stomatal closure both 

NADPH oxidases RBOHF and RBOHD are required, as only a double mutant is fully impaired 

in flg22-induced stomatal closure (Kadota et al., 2014) as well as their activator BIK1 since 

bik1 single and bik1 plb1 double mutants are unresponsive to flg22 treatment (Li et al., 2014). 

It is also known that both SLAC1 and SLAH3 are essential for a full closure response as single 

mutants are only partially impaired. Patch-clamp experiments in guard cells further suggest 

that SLAC1 is the major anion channel mediating this response (Deger et al., 2015). It has 

been suggested that also OST1 plays a major role in MAMP-induced stomatal closure as it 

was shown that the ost1-2 mutant that shows impaired stomatal closure in response to ABA 

also does not respond to flg22 treatment (Melotto et al., 2006). Furthermore, it has been 

shown that this mutant is more susceptible in surface inoculations with the bacterial 

pathogen Pst DC3000 cor- (Melotto et al., 2006). The same publication also showed that loss 

of the ABA biosynthesis gene ABA3 impairs MAMP-induced stomatal closure. It was 

therefore suggested that there is significant overlap between major stomatal closure 

pathways.  

However, it has also been suggested that OST1 is not a main player in this response and that 

ABA biosynthesis is not required (Montillet et al., 2013). This publication showed that while 
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OST1 is strongly activated after ABA treatment no kinase activity could be detected after 

flg22 treatment. Moreover, stomata of the ost1-2 mutant show a wild-type-like stomatal 

closure response at higher flg22 concentrations (Montillet et al., 2013). Instead they 

suggested an oxylipin signalling pathway, as mutants that are deficient show reduced 

stomatal closure to flg22 treatment (Montillet et al., 2013).  

Perception of AtPep1 relies on the receptor PEPR1 which shares signalling components with 

MAMP signalling such as BAK1 and BIK1 (Liu et al., 2013). It has been suggested that AtPep-

perception serves as an amplifier of innate immunity and is a MAMP-triggered pathway 

(Bartels & Boller, 2015). A recent publication presented intriguing results, demonstrating 

that AtPep1 induces stomatal closure to the same extent as ABA, which is known as the 

strongest inducer of stomatal closure (Zheng et al., 2018). They furthermore demonstrated 

that this response is independent of BIK1 and OST1 but requires both anion channels SLAC1 

and SLAH3 (Zheng et al., 2018).  

1.2.3.4. Pathogen interference with stomatal closure 

Stomatal closure is an important defence mechanism for plants to fend off pathogens trying 

to invade the leaf interior. Several pathogens rely on natural openings such as stomata to 

successfully invade plant tissues. They have therefore evolved several mechanisms to 

prevent or reverse stomatal closure that are important virulence factors. Coronatine (COR) 

is a bacterial toxin produced by several strains of P. syringae and can reopen stomata that 

have closed during the infection process or through ABA (Melotto et al., 2006; Zheng et al., 

2012). COR interacts with CORONATINE-INSENSITIVE 1 (COI1) and acts through NAC 

transcription factors to activate jasmonic acid (JA) signalling which in turn inhibits salicylic 

acid accumulation and related immune responses (Zheng et al., 2012). The exact mechanism 

of stomatal reopening through COR remains to be elucidated. The fungal toxin fusicoccin is 

produced by the fungal necrotroph Fusicoccin amygdale. It has been shown to irreversibly 

activate plasma membrane proton pumps by stabilising the interaction with 14:3:3 proteins 

(Oecking et al., 1997; Baunsgaard et al., 1998; de Boer & de Vries-van Leeuwen, 2012).  

In addition to toxins pathogens have also evolved effectors that are able to interfere with 

stomatal immunity. The effector HopX1 of the wildfire pathogen P. syringae pv. tabaci seems 

to have an analogous function to coronatine (Gimenez-Ibanez et al., 2014). HopX1 acts as a 

cysteine protease and degrades multiple JAZ transcriptional repressors and thereby activates 

the expression of JA-regulated genes (Gimenez-Ibanez et al., 2014). Another effector, 
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HopZ1a, also targets JAZ protein, implicating JA signalling as general virulence target (Jiang 

et al., 2013). The bacterial effector HopM1 has also been shown to interfere with stomatal 

closure (Lozano-Duran et al., 2014). HopM1 degrades the 14-3-3 protein GROWTH-

REGULATING FACTOR 8 (GRF8)/HOPM1 INTERACTING PROTEIN10 (MIN10) via the 

proteasomal degradation pathways along with several other host targets (Lozano-Duran et 

al., 2014). Other effectors that suppress stomatal closure during infection include AvrB and 

HopF2 (Hurley et al., 2014; Zhou et al., 2015). Interestingly, AvrB has been found to target 

RIN4 and rin4 mutants do not re-open their stomata during infection with Pst DC3000 (Liu et 

al., 2009). As mentioned above (Section 1.1.2) RIN4 is a target of many bacterial effectors 

which suggests it plays a central role in immune responses. While the exact role of RIN4 in 

plant immunity still is elusive its role in stomatal reopening is better understood. RIN4 

interacts with H+-ATPases AHA1 and 2 and regulates stomatal aperture to inhibit entry of 

bacterial pathogens (Liu et al., 2009). In the presence of AvrB RIN4 is phosphorylated by 

RPM1-INDUCED PROTEIN KINASE (RIPK) which leads to the activation of RMP1 (Lee et al., 

2015). 

Although it was discovered over a decade ago that stomatal closure can influence the success 

of bacterial invasion (Melotto et al., 2006) our understanding of the signalling pathway in 

guard cells remains limited. While it has been established that FLS2 is the major receptor 

mediating this response to Pst DC3000 (Zipfel et al., 2004) and that the anion channels SLAC1 

and SLAH3 are required (Deger et al., 2015), we do not understand how the signal is 

transduced from the receptor to the anion channels. This study was aimed at elucidating 

novel signalling components in the MAMP-induced stomatal closure pathway. 
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1.3. Aims and Objectives 

Although the importance of optimal stomatal regulation during bacterial infection has 

become more apparent, we still lack thorough understanding of the signalling processes 

taking place in guard cells. This study aims at gaining a better understanding of the molecular 

mechanisms and components that are involved in MAMP-triggered stomatal closure. 

It is well understood how MAMP perception activates immune signalling and what the most 

central regulators are. The initiation of stomatal closure is also well understood and previous 

studies on multiple stomatal closure pathways have offered insight into core executors. 

However, as of yet no direct link has been made between MAMP perception through plasma 

membrane localised receptors and executors of stomatal closure.  

Typically, assays studying immune responses use whole leaves or even whole Arabidopsis 

thaliana rosettes with no distinction between cell types. This may have hindered the 

discovery of guard cell-specific regulators in MAMP-triggered stomatal closure. To this end 

this study aimed at providing both transient and stable transgenic tools to study guard cell 

responses. This study provides Virus-induced gene silencing-based transient assays in 

Nicotiana benthamiana and screened promoters to mediate guard cell-specific expression in 

Arabidopsis thaliana. These tools will empower future research into guard cell-specific 

responses in N. benthamiana and A. thaliana.  

Guard cells have been shown to respond in an autonomous manner to multiple closure-

inducing stimuli. It is currently unknown whether stomatal closure is another cell-

autonomous guard cell response. Loss of FLS2 renders plants more susceptible to bacterial 

spray infections. It has been speculated that this may not be due to the loss of stomatal 

closure but to the loss of mesophyll PTI responses. I therefore expressed FLS2 in a guard cell-

specific manner and investigated whether these plants retain the ability to close in response 

to flg22 and if so, whether this is sufficient to restore a wild-type-like susceptibility level to 

infection with bacteria. These experiments showed that guard cells can change the outcome 

of infection when no other cell types can mount flg22-induced responses.  

ABA- and CO2-induced stomatal closure pathways have been shown to depend on the same 

central regulators. It has been proposed that ABA biosynthesis is also required for MAMP-

induced stomatal closure. In addition to this, OST1 has been put forward as general 

convergence point of guard cell closure pathways. This was called into question when 

Montillet and colleagues published that an ost1-2 point mutant can close upon higher flg22 
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concentrations and that OST1 is not active after flg22 treatment (Montillet et al., 2013). In 

this study I aimed to elucidate which signalling components are required for MAMP-induced 

stomatal closure and whether these components overlap with central regulators of other 

stomatal closure pathways.  

With the experiments conducted in this study I advanced our understanding of stomatal 

regulation during pathogen infection. 
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2. Material and Methods 

2.1. Media and Buffers: 

2.1.1. GM medium for Arabidopsis thaliana seedlings 

Recipe for 1l scale. Medium was sterilised by autoclaving. 

4.30g MS salts 
0.56g MES 
0.1g Myo-inositol 
1 ml GM vitamins x1000 
pH 5.7 
0.8% Agar 

GM vitamins x1000 

 0.1g Thiamine 
 0.05g Pyridoxine 
 0.05g Nicotinic Acid 
 100 ml H2O 

2.1.2. L medium for bacterial growth 

Recipe for 1l scale. Medium was sterilised by autoclaving. 

 10g Tryptone 
 5g Yeast extract 
 5g KCl 
 1g D-Glucose 

For plates 1% agar was added prior to autoclaving and plates were poured after medium 

cooled. 

2.1.3. King’s B medium for P. syringae growth 

Recipe for 1l scale. Medium was sterilised by autoclaving. 

20g Proteose peptone 
 10 ml Glycerol 
 1.5g K2HPO4 
 pH 7 
 1.5% Agar 
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2.1.4. Protein Buffers 

2.1.4.1. Plant Protein Extraction Buffer 

150 mM TRIS-HCl pH 7.5 
10 mM EDTA 
150 mM NaCl 
10% Glycerol 
5 mM DTT 
1% IGEPAL CA-630 (Sigma-Aldrich) 
1 % Plant Protease Inhibitor Cocktail (Sigma-Aldrich) 
1 mM PMSF 

2.1.4.2. Loading/Sample buffer 

50 mM TRIS-HCl pH 6.8 
5% Glycerol 
1% SDS 
0.017% Bromophenol blue 

2.1.4.3. Kinase buffer 

 25 mM Tris-HCl pH 7.5 
 3 mM MgCl2 
 3 mM MnCl2 
 1 mM DTT 
 10 µM ATP 

2.1.5. Stomata opening buffer 

50 mM KCl 
10 µM CaCl2 
10 mM MES pH 6.15 
0.01% Tween 
in H2O 

2.1.6. Agrobacterium tumefaciens infiltration buffer 

10 mM MES 
10 mM MgCl2 
100 µM Acetosyringone 

2.1.7. Solutions for protoplast isolation 

2.1.7.1. Enzyme solution 

 1-1.5 % Cellulase R10 (Yakult Honsha, Tokyo Japan) 
 0.2-0.4 % Macerozyme R10 (Yakult Honsha, Tokyo Japan) 
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 0.4 M Mannitol 
 20 mM KCl 

20 mM MES pH 5.7 
 Solution with enzymes was heat-activated at 55°C and cooled before adding: 

10mM CaCl2 
0.1 % BSA 
Enzyme solution was passed through a 0.45 nm filter 

2.1.7.2. PEG Solution 

 4g PEG 4000 (Fluka #81240) 
 0.2M Mannitol 
 0.1M CaCl2  

3 ml H2O 

2.1.7.3. W5 Solution 

 150 mM NaCl 
 125 mM CaCl2 

 5 mM KCl 
 2 mM MES pH5.7 

2.1.7.4. MMg Solution 

 0.4 M Mannitol 
 15 mM MgCl2 
 4 mM MES pH 5.7 
  

2.2. Antibiotics 
   Table 2.2.1: Antibiotics and the concentrations used in this study 

Antibiotic Stock concentration Working concentration 

Carbenicillin 100 mg/ml in H2O 100 µg/ml 

Chloramphenicol 25 mg/ml in ethanol 25 µg/ml 

Gentamycin 50 mg/ml in H2O 50 µg/ml 

Kanamycin 50 mg/ml in H2O 50 µg/ml 

Rifampicin 100 mg/ml in DMSO 50 µg/ml 

Spectinomycin 100 mg/ml in H2O 100 µg/ml 

   

2.3. Antibodies and beads used in this study 
Table 2.3.1: Antibodies and beads used in this study 

Antibody source manufacturer dilution used 

α-FLS2 polyclonal (rabbit) Eurogentec 1:10.000 

α-BAK1 polyclonal (rabbit) Eurogentec 1:5.000 
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α-HA-HRP monoclonal (rat) Sigma-Aldrich (Roche) 1:2.000 

α-FLAG-HRP monoclonal (mouse) Sigma-Aldrich 1:2.000 

α-GORK polyclonal (rabbit) Agrisera 1:1.000 

α-rabbit-HRP polyclonal (goat) Sigma-Aldrich 1:10.000 

α-mouse-HRP polyclonal (goat) Sigma-Aldrich 1:10.000 

α-rat-HRP polyclonal (goat) Sigma-Aldrich 1:10.000 

α-FLAG Affinity Gel monoclonal (mouse) Sigma-Aldrich  

2.4. Plant Materials 
Table 2.4.1: Arabidopsis thaliana plants used in this study 

Mutant name type received from  

ost1-3 SALK_008068 NASC 

ost1-4 GK_516_B05 NASC 

nced3-2 nced5-2 GK_129_B08/GK_328_D05 Julie Gray 

aba2-3 EMS NASC 

aba1 SALK_059469 NASC 

aba3 SAiL_576_D01 NASC 

snrk2.2 snrk2.3 ost1-3 GK_807_G04/SALK_107315/SALK_0080

68 

Maik Boehmer 

snrk2.2-1 GK_807_G04 NASC 

snrk2.2-2 SALK_096546 NASC 

snrk2.3 SALK_107315 NASC 

snrk2.3 SALK_107317 NASC 

snrk2.3 SALK_096548 NASC 

abi1-1 EMS Rob Roelfsema 

pyr1 pyl1 pyl4 EMS/SALK_054650/SAiL_517_C08 Sean Cutler 

pyr1 pyl1 pyl2 pyl4 EMS/SALK_054650/GT2864/SAiL_517_C

08 

Sean Cutler 

pyr1 pyl1 pyl2 pyl4 pyl5 EMS/SALK_054650/GT2864/SAiL_517_C

08/SM_3_3495 

Pedro Rodriguez Egea 

pyr1 pyl1 pyl2 pyl4 pyl5 

pyl8 

EMS/SALK_054650/GT2864/SAiL_517_C

08/SM_3_3495/SAiL_1269_A02 

Pedro Rodriguez Egea 

crk10-1 SALK_023945C CRK consortium 

crk17 SALK_114137 CRK consortium 

crk18 SALK_090966C CRK consortium 
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crk28 SALK_085178 CRK consortium 

fls2 SALK_093905 Freddy Boutrot 

fls2c SAiL_691_C04 NASC 

 

Table 2.4.2: Nicotiana benthamiana plants used in this study 

mutant name  received from 

16c-GFP  David Baulcombe 

pFLS2::FLS2-GFP  Malick Mbengue 

2.5. Bacterial strains and pathogens 

Table: 2.5.1: Bacterial strains and pathogens used in this study 

Strain organism use 

DH5α E. coli cloning 
rosetta E. coli recombinant protein expression 
GV3101:pMP90 A. tumefaciens transient expression in N. benthamiana 
DC3000 P. syringae infection assays in A. thaliana 
DC3000 cor- P. syringae infection assays in A. thaliana 

 

2.6. Methods 

2.6.1. Plant growth conditions 

2.6.1.1. Arabidopsis thaliana and N. benthamiana seed sterilisation with chlorine gas 

Arabidopsis thaliana seeds were surface sterilised in a desiccator. Chlorine gas was produced 

by mixing 100 ml bleach with 2.7 ml of HCl in a beaker. Seeds were incubated in the chlorine 

gas for at least 6 hours and dried in a sterile hood overnight.  

2.6.1.2. Growing Arabidopsis thaliana and N. benthamiana seeds on plates 

Surface sterilised seeds were evenly distributed on GM plates under sterile conditions. If 

seeds were transgenic and possessed a BASTA selection cassette PPT was added at a 

concentration of 2 mg/ml for N. benthamiana and 10 mg/ml for Arabidopsis thaliana seeds. 

Plates were sealed with tape and seeds were stratified at 4°C overnight. Plates were 

transferred into a Sanyo Growth Chamber and grown for two weeks at 20°C with 10 hours 

of light at 86 µmol m-2 s-1. After two weeks plants were transferred to soil and grown as 

described below. 
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2.6.1.3. Growing Arabidopsis thaliana and N. benthamiana on soil 

Arabidopsis thaliana plants were grown on soil at 20°C under short day light conditions with 

10 hours of light at 160 µmol m-2 s-1. For propagation plants were transferred to long day 

light conditions with 16 hours of light at 160 µmol m-2 s-1. Humidity was at 65% for both short  

and long day conditions. Nicotiana benthamiana plants were grown under constant long day 

conditions with 16 hours of light at 24°C and with 45-65% humidity at 145 µmol m-2 s-1. 

2.6.2. Generation of transgenic plants 

Transgenic plants were generated by the Tissue Culture team at the Sainsbury Laboratory. 

Plants were transformed following the floral dip method. Flowering plants were dipped into 

Agrobacterium tumefaciens solutions and vacuum infiltrated. 

2.6.3. Polymerase Chain Reaction (PCR) for cloning: 

For cloning purposes, the high-fidelity proof-reading polymerase Phusion (New England 

Biolabs) was used.  

reaction setup  µl    
5x Phusion Buffer 10 
10 M dNTPs  1 
10 M Primer fwd 2.5 
10 M Primer rev 2.5 
100 % DMSO  5 
50 mM MgCl2  0.5 
Template DNA  5 
Phusion   0.5 
H20 up to   50 

 

Reactions were incubated in a BIORAD PCR thermocycler following standard protocol 

instructions. Annealing time, elongation and cycle number were adjusted to each primer 

pair, template properties and fragment size. PCR products were separated on 1% Agarose 

gels (in TAE buffer: 40 mM Tris-HCl, 20 mM NAOAc, 1 mM EDTA, pH 7.9) and bands were 

imaged with a BIORAD GelDoc™ XR+ Documentation System. If DNA fragments were needed 

for ligation reactions desired bands were excised from agarose gels under UV light to 

visualise the bands. The DNA was extracted from agarose gels using the Macherey-Nagel 

NucleoSpin Gel and PCR Clean-Up kit following the manufacturer’s instructions. 

2.6.4. Polymerase Chain Reaction (PCR) for genotyping 

For genotyping the Promega GoTaq Polymerase was used. 
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 reaction setup             µl 
 10x GoTaq Buffer         2  
 10 M Primer fwd 0.25 
 10 M Primer rev 0.25 
 10 M dNTPs  0.25 
 25 mM MgCl2  1.25 
 H2O   3.95 
 GoTaq Polymerase 0.05 
 genomic DNA  2       

Reactions were incubated in a BIORAD PCR thermocycler following standard protocol 

instructions. Annealing temperature of 48°C and 40-45 cycles were used. Elongation time 

was adjusted to fragment size allowing one minute per 1000 base pairs. PCR products were 

separated on 1% Agarose gels (in TAE buffer: 40 mM Tris-HCl, 20 mM NAOAc, 1 mM EDTA, 

pH 7.9) and bands were imaged with a BIORAD GelDoc™ XR+ Documentation System. 

2.6.5. Colony Polymerase Chain Reaction (PCR) 

Promega GoTaq Polymerase was used for colony PCRs. Reaction setup used was identical to 

PCR setup for genotyping except 5.95 µl of H2O was used. Bacterial colonies were picked up 

with a pipette tip and mixed into the PCR reaction by pipetting up and down. The pipette tip 

was used to spread the residual bacteria onto a new plate containing suitable antibiotics. 

PCR products were separated on 1% Agarose gels (in TAE buffer: 40 mM Tris-HCl, 20 mM 

NAOAc, 1 mM EDTA, pH 7.9) and bands were imaged with a BIORAD GelDoc™ XR+ 

Documentation System. 

2.6.6. Restriction Enzyme digest 

PCR products or plasmids were digested with restriction enzymes from New England Biolabs 

(NEB). Around 1 µg of DNA was digested in a 20 µl setup containing 2 µl CutSmart Buffer, 0.2 

µl BSA and 0.25 µl restriction enzyme. Reactions were incubated at 37°C for at least 2 hours 

or overnight if required. 

2.6.7. Golden Gate cloning 

Golden Gate cloning was used as general cloning strategy as described previously (Engler et 

al., 2008; Werner et al., 2011; Emami et al., 2013; Engler et al., 2014). In this technique Type 

IIS restriction enzymes are utilized to develop a molecular toolbox of genes of interest, 

promoters, tags and terminators that can be assembled together as desired. Primers were 

designed to domesticate genes of interest and eliminate internal enzyme recognition sites. 

PCR products were separated on 1% Agarose gels and bands of the correct size were cut and 
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the bands were extracted using Macherey-Nagel Gel and PCR purifying kit following the 

manufacturer’s instructions. DNA concentration was determined using a Nanodrop. 100 ng 

of acceptor plasmid and insert were combined in a PCR tube in relation plasmid:insert of 1:3 

alongside with 1.5 l of BSA, 1.5 l of T4 Ligase Buffer (NEB), 1 l BsaI or BpiI,  0.5 l T4 ligase 

and water up to a 15 l reaction. The reactions were incubated in a BIORAD PCR 

thermocycler (37°C for 20 seconds followed by 27 cycles of 37°C for 3 minutes, 16°C for 4 

minutes followed by one cycle of 50°C for 5 minutes, 80°C for 5 minutes). Ligation products 

were transformed into DH5α cells using the heat-shock method and spread on plates with L 

medium containing appropriate antibiotics. If plasmids contained a LacZ cassette IPTG and 

xGAL were added to the plates to distinguish self-ligated plasmids from successful ligations. 

Plates were incubated at 37°C overnight and insertions confirmed either via colony PCR or 

restriction digest, or both. For restriction digests plasmids were isolated using the Macherey-

Nagel NucleoSpin Plasmid Kit following the manufacturer’s instructions. Sequences were 

confirmed using Sanger sequencing performed by GATC Biotech AG by combining 500 ng of 

plasmid DNA with 4 µl of sequencing primer (from 10 M dilution). ABI files were analysed 

using the Vektor NTI software. 

Promoters, coding genes, tags and terminators domesticated to exclude restriction sites are 

cloned into level 0 acceptors. To generate level 1 plasmids several level 0 plasmids were 

combined in a digestion-ligation reaction and assembled into an expression cassette with 

Promoter, Gene of interest, fluorescent tag, if required, and terminator. Several level 1 

expression cassettes were assembled together to create level 2 vectors. Level 2 vectors with 

plant selection cassettes were used for generation of transgenic plants. 

2.6.8. Restriction Enzyme Cloning 

Primers for restriction enzyme cloning were designed by Thomas DeFalco and Janina 

Tamborski (Table 2.6.3.). Inserts were amplified by PCR using the proofreading ThermoFisher 

Phusion Polymerase. Vectors were isolated from bacterial E. coli cells using the Macherey-

Nagel NucleoSpin Plasmid Kit as recommended by the manufacturer. Vectors and PCR 

products (26µl) were digested in the CutSmart Buffer (New England Biolabs, 3 µl) with 

appropriate restriction enzymes (0.5 µl each) for at least 2h at 37°C. Vectors were 

additionally dephosphorylated by adding 1 µl of Roche Shrimp Alkaline Phosphatase and 

incubating at 37°C for 10 minutes. Phosphatase was inactivated by incubating at 65°C for 15 

minutes. All digests were loaded onto 1% agarose gels in TAE buffer and separated via 

electrophoresis. Bands of the correct size were excised with the help of UV visualisation. PCR 
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products and vectors were extracted using the Macherey-Nagel Gel and PCR purification kit 

following the manufacturer’s instructions. DNA concentration was determined using a 

NanoDrop™ 8000 Spectrophotometer (Thermo Fisher Scientific) and ligation reactions set up 

as follows: 1 µl of 10x T4 ligase Buffer (New England Biolabs), 1 µl vector, 0.5 µl T4 Ligase 

(New England Biolabs), insert in a relation of 3:1 to the vector and water to 10 µl. Reactions 

were incubated overnight at room temperature and on the next day the T4 ligase was 

inactivated by incubating at 65°C for 10 minutes before transforming reactions into DH5α by 

heat-shock. 

2.6.9. Bacterial transformation 

2.6.9.1. Heat-shock 

Plasmids or ligation reactions were added to 100 µl of DH5α chemically competent E. coli 

cells. Bacteria and DNA were incubated on ice for 30 minutes before subjecting the cells to 

heat-shock treatment at 42°C for 90 seconds. Bacteria were left to recover on ice for 2 

minutes and 900 µl of L medium was added and the cells left to recover at 37°C for at least 

an hour. After recovery 50-200 µl were plated on L plates containing appropriate antibiotics 

and incubated over-night at 37°C. 

2.6.9.2. Electroporation 

Electroporation cuvettes were cooled on ice prior to transformation. Bacteria were thawed 

on ice before adding 10ng - 1 µg of plasmid DNA. Bacteria with plasmids were transferred to 

pre-cooled electroporation cuvettes. Electroporation was performed with a Biorad 

MicroPulser™ Electroporation system at the “Agr” setting for Agrobacterium tumefaciens 

provided by the manufacturer. Bacterial cells were subsequently transferred to a 1.5 ml 

centrifuge tube with 1 ml of L medium. Cells were incubated at 28°C for 2h. After recovery 

50-200 µl were plated on L plates containing appropriate antibiotics and incubated for two 

days at 28°C. 

2.6.10. Isolation of genomic DNA 

2.6.11. Edwards method 

One fully expanded leaf of one 4-5-week-old Arabidopsis plant was harvested into a 1.5 ml 

centrifuge tube containing two metal beads and 400 µl of Edwards Buffer (200 mM Tris-HCl 

pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS). Tissue was ground in a Qiagen Tissue Lyser 

for 2 Min at full speed. The tubes were spun in an Eppendorf tabletop centrifuge for 5 min 
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at 13,000 g for 5 min and 300 µl of the supernatant were transferred to a new 1.5 ml 

centrifuge tube. 300 µl of Isopropanol were added, the tubes were inverted and incubated 

for a short period at room temperature. The samples were centrifuged for 5 minutes at 

16,000 g and the supernatant was taken off with a vacuum pump. The pellet was washed 

with 300 µl of 70% ethanol and dried before it was resuspended in 100 µl of Millipore water.  

2.6.12. Boiling method 

A small piece of one Arabidopsis thaliana plant was cut and placed in a 96-well PCR plate 

containing 60 µl of Extraction Solution (100 mM Tris-HCl pH 8, 250 mM KCl, 10 mM EDTA, 

adjusted to pH 9.3). Samples were incubated at 95°C for 15 min and cooled to 16 °C for 10 

min. The extraction solution was transferred into a fresh 96-wll PCR plate taking care not to 

transfer any leaf material. DNA was diluted by adding 200 µl Dilution Solution (1 % BSA 

adjusted to pH 7.6 with 1 M KOH) and stored at 4°C until used for PCR. 

2.6.13. Site-directed point mutagenesis 

Primers were designed to be 30-40 base pairs long and to harbour the desired point mutation 

in their middle. Melting temperature was adjusted to be higher than 78°C. Plasmids that 

were to be mutated were used as template for the 50 µl PCR reaction that was setup as 

follows: 2.5 µl of each forward and reverse primer, 10 µl Phusion Buffer for GC-rich 

templates, 4 µl of 10 mM dNTPs, 1.5 µl DMSO and 1 µl Phusion Polymerase. A control 

reaction was setup that did not include primers but only the template plasmid. The samples 

were incubated in a BIORAD PCR thermocycler with the following cycle conditions: 20 cycles 

of 98°C for 10 seconds, 58-65°C for 30 seconds, 72°C for 60 seconds per 1 kilobase. 

Polymerase was heat-inactivated at 72°C for 15 minutes. The template plasmid was digested 

by adding 1 µl of DpnI (New England Biolabs) enzyme and incubating at 37°C for at least 2 

hours. 10 µl of the reaction were transformed into the DH5α E.coli strain using the heat-

shock method and spread on plates containing appropriate antibiotics. Plates were 

incubated overnight at 37°C. Mutations were verified by Sanger sequencing.  

2.6.14. RNA isolation using TRI reagent 

3 leaf discs of 4-5-week-old Arabidopsis thaliana plants were harvested into a 1.5 ml 

centrifuge tube and snap frozen in liquid nitrogen. Tissue was ground on ice into a fine green 

powder. 900 µl of TRI reagent were added and the solution was vortexed vigorously. 

Subsequently 200 µl chloroform were added and again vortexed vigorously. The tubes were 

centrifuged for 20 min at max speed at 4°C in an Eppendorf table top centrifuge. 550 µl of 
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the upper phase were transferred to a fresh 1.5 ml centrifuge tube and the same volume of 

isopropanol was added, the tubes were inverted and incubated at room temperature for 10 

min. The tubes were centrifuged at max speed at 4°C. The supernatant was discarded and 

the pellet washed with 500 µl of 70% ethanol. The supernatant was discarded and the pellet 

dried before dissolving the RNA in 26 µl Millipore water. To digest any residual genomic DNA 

the extraction was treated with DNAse (Applied Biosystems TURBO DNA-free kit) following 

the manufacturer’s instructions. 0.1 volume of 10x TURBO DNAse Buffer and 1 µl TURBO 

DNAse were added to the extracted RNA and gently mixed. The mixture was incubated at 

37°C for 20-30 minutes. After incubation 0.1 volume of DNase inactivation reagent was 

added and incubated at 24 °C for 5 minutes. The tubes were centrifuged at 10,000 g for 1.5 

minutes and the supernatant transferred to a fresh 1.5 ml centrifuge tube. RNA 

concentration was determined with a Nanodrop instrument (Thermo Fisher Scientific).  

2.6.15. cDNA synthesis 

cDNA was transcribed using the Invitrogen SuperScript II reverse transcriptase following the 

manufacturer’s instructions. 1 ng to 5 µg of RNA were mixed with 1 µl Oligo dTs, 1µl of 10 

mM dNTPs and incubated at 65°C for 5 minutes. Samples were chilled on ice and 4 µl of 5x 

First Strand buffer, 2 µl DTT and 1 µl RNAseOUT were added and incubated at 42°C for 5 

minutes. Enzymes were inactivated at 70 µl for 15 minutes and the reactions filled up to 60 

µl and stored at -20°C until use.  

2.6.16. Protein extraction from plant samples 

Arabidopsis thaliana leaf material form 4-5-week-old plants was harvested into a 1.5 ml 

centrifuge tube and snap frozen in liquid nitrogen. The leaf material was ground on ice until 

it was a fine powder. Protein extraction buffer was added to frozen ground leaf material (2:1 

w/v) or protoplasts and incubated at 4°C for at least 30 minutes. Samples were centrifuged 

at 16,000 g for 20-30 minutes at 4°C and the supernatant was transferred to a new centrifuge 

tube. Loading buffer was added and the sampled boiled at 95°C for 10 minutes. Boiled 

samples were centrifuged at 16,000 g for 1 minute to spin down any precipitated SDS. 

Samples were loaded onto acrylamide gels and run in SDS buffer at 120 V for 1-2 hours. 

2.6.17. Co-Immunoprecipitation of Arabidopsis thaliana proteins 

Arabidopsis thaliana protoplasts were transfected with suitable expression vectors to 

express proteins of interest as described below (2.5.20). Protoplasts were snap frozen in 

liquid nitrogen and proteins were extracted as described above (2.5.14). For 500 µl of 
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protoplasts 1 ml of extraction buffer (2.1.4.1) was added. After extraction 100 µl of sample 

was transferred to a new centrifuge tube, snap frozen and stored at -80°C as input sample. 

All work was performed under 4°C. Anti-FLAG Affinity Gel was prepared by centrifuging at 

100-500x g at 4°C. The supernatant was discarded and exchanged with 1 ml of extraction 

buffer. The wash step was repeated and the beads incubated for 30 minutes in the extraction 

buffer. After incubation 30 µl of bead slurry was added to plant extracts and incubated for 

2-3 hours while shaking. Subsequently the mixtures were centrifuged at 200 g for 1 minute 

and the supernatant was discarded. The beads were washed three times with extraction 

buffer before sample buffer was added, the samples were boiled for 10 minutes at 95°C and 

stored at -80°C until further processed. 

2.6.18. SDS-Page and Semi-dry Western blotting 

Bisacrylamide gels were prepared as previously described (Laemmli 1970). Acrylamide 

percentage was varied according to protein size. Boiled protein samples with sample buffer 

were loaded onto stacking gels as well as PageRuler™ Plus Protein Ladder (Thermo Fisher 

Scientific). Polyacrylamide Gel Electrophoresis (PAGE) was run with SDS-running buffer (25 

mM Tris-HCl, 250 mM glycine, 0.1% SDS, pH8) in a BIORAD Mini-PROTEAN® Tetra Vertical 

Electrophoresis Cell at 90 V until proteins passed the stacking gel and subsequently at 120 V 

until the desired protein separation was achieved. Acrylamide gels were incubated for 30 

minutes in transfer buffer (20% methanol) while a PVDF membrane was activated in 

methanol for 1 minute. Proteins were transferred from the gel onto the activated PVDF 

membrane using the semi-dry method in the BIORAD Trans-Blot® SD Transfer Cell at 25 V for 

1.15 hours. Whatman Papers were soaked well in transfer buffer and placed onto the Trans-

Blot® SD Transfer Cell as follows (bottom to top): thick Whatman Paper, two thin Whatman 

Papers, PVDF membrane, acrylamide gel, two thin Whatman Papers, thick Whatman Paper. 

Special care was taken to avoid air bubbles trapped between gel and membrane to ensure 

an even transfer across the whole membrane.  

2.6.19. Expression and purification of recombinant proteins 

Expression vectors were transformed into Rosetta cells using the heat-shock method. 

Colonies were picked into liquid L medium containing suitable antibiotics and 

chloramphenicol and grown overnight at 37°C. On the next day a larger culture of 500 ml of 

L medium with antibiotics and chloramphenicol was inoculated with 5 ml from the overnight 

culture and grown for 2-3 hours at 37°C. Protein expression was induced by adding 0.1 mM 
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IPTG to the bacterial culture and incubating the cells at 18°C overnight. Subsequently 

bacterial cells were centrifuged for 15 minutes at 4,000 g speed. The bacterial pellet was 

resuspended in extraction buffer (50 mM Tris pH 7.5, 500 mM NaCl, 5% glycerol, 0.5-1 mM 

DTT and Mini Protease Inhibitor; for HA-tagged proteins add 3 mM imidazole) and frozen in 

liquid nitrogen until further processed.  

To purify proteins frozen bacterial pellets were thawed in warm water and lysed via 

sonication. Cell fragments were centrifuged for 20 minutes at 20,000 g at 4°C. The 

supernatant was transferred to a 50 ml centrifuge tube and GSH- or Ni-agarose resin was 

added to enrich for tagged recombinant proteins. The mixtures were left to incubate for 30-

60 minutes at 4°C ensuring constant shaking. Samples were centrifuged at 500 g for 1 minute 

and the supernatant was taken off with a vacuum pump. The resin pellet was washed four 

to five times with 20 ml of wash buffer (50 mM Tris-HCl pH7.5, 500 mM NaCl, 5% glycerol; 

for HA-tagged proteins add 30 mM imidazole). After the final wash was removed the proteins 

were eluted from the resin with elution buffer (50 mM Tris-HCl pH7.5, 500 mM NaCl, 5% 

glycerol; add 10 mM reduced GSH for GST-tagged proteins and 300 mM imidazole for HA-

tagged proteins) and incubated on ice for 3 minutes. The resin was spun down at 500 g for 1 

minute and the protein solutions were transferred to a new 15 ml centrifuge and stored at   

-80°C until processed further. To assess whether proteins were produced 10 µl of protein 

sample with 5 µl of sample buffer were boiled at 95°C for 10 minutes and separated on a 

13% bisacrylamide gel. The gel was stained in Coomassie Brilliant Blue Solution (0.5% 

Coomassie brilliant blue R-250, 50% methanol and 7.5% glacial acetic acid) for 1 hour and 

de-stained for several hours (de-stain solution: 40% methanol, 20% acetic acid).  

2.6.20. Transphosphorylation assay 

Proteins were produced in E.coli rosetta cells and expressed and purified as described above. 

Recombinant proteins were incubated together in kinase buffer (2.1.4.3 on p. 42) with 1 µg 

of kinase and substrate each for 30 minutes at 30°C. Sample buffer was added, the samples 

boiled at 95°C for 10 minutes and stored at -80°C until processed further.  

2.6.21. Spray infection assay 

Arabidopsis thaliana plants were grown for 4-5 weeks under short day conditions (see 

2.6.1.3). The evening before spraying, the plants are watered and covered with a propagator 

lid to maintain high humidity for ideal infection conditions. Two days before spraying 

bacteria were grown on KB medium containing appropriate antibiotics at 28°C over-night. 
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The next day, a small number of bacteria was resuspended in 100 l of 10 mM MgCl2 and 

spread on a new KB plate with antibiotics and grown over-night at 28°C. Bacterial cells were 

resuspended in 15 ml of 10 mM MgCl2 and set to the appropriate OD600. Just before spraying, 

40 l of Silwet was added to 100 ml of bacterial solution. Bacteria were sprayed evenly on 

the upper and lower side of the plant leaves. Plants remained covered for 1 day when 

sprayed with Pst DC3000 and three days when sprayed with Pst DC3118. Three days after 

spraying three leaf discs per plant were harvested into a 1.5 ml centrifuge tube containing 

200 l of 10 mM MgCl2 and 2 metallic beads. Plant tissue was homogenised using a Tissue 

Lyser by shaking at 30 1/s for 4 minutes. Ground tissue was diluted 1:10 to 1:100000 and 10 

l was plated on KB plates and grown at 28°C for two days. After two days bacterial dilutions 

were counted and analysed.  

2.6.22. Isolation and transfection of mesophyll protoplasts 

Arabidopsis thaliana plants were grown for 4-5 weeks at short-day conditions. Fully 

expanded leaves were excised and placed next to each other on masking tape with the lower 

side facing upwards. The lower epidermis of the leaves was removed with scotch tape and 

the leaves without epidermis were placed facing down into a petri dish containing 15 ml of 

enzyme solution (see section 2.1.7.1 on p. 42) and shaken at 500 rpm for 1-2 hours. After 

two hours the tape was removed and 15 ml of W5 solution (see section 2.1.7.3 on p. 43) was 

poured over the leaves to release more protoplasts. Protoplasts were filtered through a 50 

m filter and collected in a 14 ml round bottom tube on ice. Protoplasts were spun down at 

500g for 1 min at 4°C. The supernatant was discarded and the pellet resuspended in 10 ml 

W5 solution. Protoplasts were incubated on ice for 30 minutes. Protoplasts were centrifuged 

again and resuspended in MMg solution (see section 2.1.7.4 on p. 43) to the desired dilution. 

Plasmid DNA was added to the protoplasts and incubated for 1 min. PEG solution was added 

to the protoplasts in relation 1:1 and incubated for 7 minutes. Transfection was stopped by 

adding at least two volumes of W5 solution. Protoplasts were spun down and resuspended 

in W5 solution. Protoplasts were incubated at room temperature over-night, frozen in liquid 

nitrogen and stored at -80°C until protein extraction. 

2.6.23. Isolation of guard cell-enriched samples 

Arabidopsis thaliana plants were grown for 4-5 weeks on soil under short-day conditions as 

described above. Leaves were cut off and the mid-rib was excised with a razor blade until 1-

1.5 g of leaf material per genotype was collected. The cut leaves were transferred to a 
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Warring blender with 250 ml Milli-Q water and a handful of crushed ice. The mixtures were 

blended for 1 minute on the High setting. The sample was filtered through a mesh filter of 

100 nm size and the epidermal peels were collected in the middle of the filter. The peels 

were transferred back to the blender together with 250 ml Milli-Q water and a handful of 

crushed ice. The sample was blended for 1 minute on the high setting and filtered again. 

Blending and filtering were repeated another time before the epidermal peels were collected 

from the filter and transferred to a 1.5 ml centrifuge tube, snap frozen in liquid nitrogen and 

stored at -80°C until processed further.  

2.6.24. Split-YFP assay 

Expression vectors were transformed into Agrobacterium tumefaciens GV3103:pMP90 cells 

via electroporation as described above. Bacterial cells were grown overnight in liquid L 

culture with suitable antibiotics at 28°C shaking at 1 g. In the morning cells were collected 

via centrifugation at 3,400 g for 15 minutes and resuspended in infiltration buffer (see 

section 2.1.6). Complementary constructs were combined in solution to a final OD600=0.1 and 

infiltrated together. Two fully expanded leaves of five-week-old N. benthamiana plants were 

infiltrated and the infiltrated areas marked with a waterproof marker pen. Two days after 

infiltration leaf discs from the infiltrated areas were harvested and imaged with a Leica SP5 

Confocal Laser-scanning Microscope.  

2.6.25. Confocal imaging 

For cell biological assays we used the Leica SP5 Confocal Laser-scanning Microscope. All 

images were taken with the 63x water immersion objective. GFP fluorescence was excited 

with an Argon Laser set to 488 nm and was detected with the Hy-D detector set to the 

wavelength of 500-550 nm. YFP was excited at 514 nm and detected from 520-570 nm.  

2.6.26. Virus-induced gene silencing (VIGS) 

Three days before infiltration bacteria were streaked on LB plates containing appropriate 

antibiotics and incubated at 28°C for two days. Subsequently, liquid LB cultures with 

antibiotics were inoculated from the plates and shaken at 1 g and 28°C over-night. In the 

morning bacterial cultures were transferred to a centrifuge tube and spun at 1,900 g for 15 

minutes. The supernatant was discarded and the bacterial pellet resuspended in 

Agrobacterium tumefaciens infiltration buffer. The construct containing the RNA1 Tobacco 

Rattle Virus (TRV) was mixed with the RNA2 constructs targeting the gene of interest to a 

final OD600 of 0.4 and 0.2, respectively. N. benthamiana plants were infiltrated at either 2 or 
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5 weeks of age, depending on the silencing distribution that was desired. 2-week-old plants 

were used for even silencing throughout all cell types, whereas 5-week-old plants were used 

when trying to exclude guard cells from silencing. Plants were infiltrated with either Tobacco 

Rattle Virus (TRV) alone or TRV::GFP as control. TRV::NbRBOHB and TRV::SERK3a/b were 

used to silence components required for MAMP-triggered stomatal closure. When two-

week-old plants were used experiments were performed 2 weeks after infiltration, in 5-

week-old plants 6 days post infiltration. When five-week-old plants were silenced the area 

that was infiltrated was marked with a marker and the same area was used for further 

experiments. 

2.6.27. ROS measurements 

N. benthamiana or Arabidopsis thaliana plants were grown in soil for five weeks (see section 

2.6.1. for details). Leaf discs were harvested the evening before into 96-well plates 

containing 200 l of H2O with a 4 mm leaf punch and left to rest at room temperature over-

night. Before the measurement the water was carefully removed from the wells and replaced 

with 100 l of 200 nM Luminol and Peroxidase either without MAMP addition, 10 nM flg22 

or 5 nM elf18. Luminescence was measured with an ICCD photon-counting camera for 45 

minutes. Total photon counts were calculated from the luminescence measurements. 

2.6.28. Stomatal aperture measurements 

All plants used for stomatal closure experiments were grown in soil for five weeks. In the 

morning of the experiment leaf discs were harvested with a 4 mm leaf punch into stomata 

opening buffer (SOB, see section 2.1.5.) and incubated in a plant growth cabinet with white 

light for 2 hours. After two hours some leaf discs were transferred to SOB containing 10 M 

flg22, elf18 or ABA while the remaining leaf discs remained in the stomata opening buffer 

without MAMPs. Mock treatment was imaged 3 hours after harvesting and flg22 treated 

plants were imaged 2 hours post treatment with a Leica DM5500 light microscope. Stomatal 

aperture was measured using ImageJ. At least 60 stomata per treatment were measured and 

averaged. 

2.6.29. Generation of amiRNA constructs 

The amiRNAs were designed following the instructions on the WMD webpage 

(http://wmd2.weigelworld.org). The sequences for the amiRNAs were provided by the 

webpage and generated through overlapping PCR from the template plasmid pRS300 which 

http://wmd2.weigelworld.org/
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contains the endogenous Arabidopsis thaliana miR319a precursor in a pBlueScript SK 

backbone. The webpage provides 4 oligonucleotides (I, II, III and IV) to replace the 20mer 

sequence of miR319a and requires to additional generic oligos that hybridize to the pRS300 

plasmid outside of the miR319a sequence. I added BpiI restriction sites to the generic oligos 

(oligo A and B) to make them compatible for Golden Gate cloning.  

The PCR reactions were carried out with the high-fidelity proof-reading polymerase Phusion 

(New England Biolabs) following this setup: 

Reaction Forward oligo Reverse oligo template length of PCR product 

(a) A IV pRS300 272 bp 
(b) III II pRS300 171 bp 
(c) I B pRS300 298 bp 
(d) A B (a) + (b) + (c) 701 bp 

 

reaction setup (a), (b), (c) µl                                  PCR conditions 
5x Phusion Buffer  4          95°C 2 min 
10 µM dNTPs   0.4          95°C 30 sec 
10 µM Primer fwd  1                                   52°C 30 sec 
10 µM Primer rev  1                                   72°C 40 sec 
100% DMSO   0.2   24 to 40 cycles 
50 mM MgCl2   0.2          72°C 7 min    
Template DNA   1 
Phusion    0.2 
H20 up to    15 

 

reaction setup (d)               µl                                  PCR conditions 
5x Phusion Buffer  4          95°C 2 min 
10 µM dNTPs   0.4          95°C 30 sec 
10 µM Primer fwd  1                                   55°C 30 sec 
10 µM Primer rev  1                                   72°C 90 sec 
100% DMSO   0.2   24 to 40 cycles 
50 mM MgCl2   0.2          72°C 7 min    
purified gel fragments (a, b, c) 1.5 
Phusion    0.2 
H20 up to    15 

 

Sequences were verified using Sanger sequencing (GATC Biotech AG). Expression cassettes 

were generated using the Golden Gate Cloning strategy as described above. 
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2.6.30 Quantification of GFP in confocal micrographs 

Confocal maximum projection images were converted to show luminance in ImageJ. Regions 

of interest were drawn within ImageJ including either only pavement cells or only guard cells.  

Raw Intensity Density of area of interest was measured using ImageJ. Values were 

normalised to surface area measured. Ten representative images were measured for every 

combination of genotype and time point. 

2.7. Primers used in this study: 
Table 2.7.1: Primer names and sequences used for Golden Gate Cloning 

For Golden Gate cloning 

pMYB60_fwd AGAAGACaaGGAGCACAAGGACACAAGGACATATGGT 

pMYB60_rev AGAAGACaaCATTCTTTCTCTCTCTCTCTTCCTCTAGATCTC 

pCYP86A2_fwd1  AGAAGACaaGGAGAAGGTAACACATGTATATATATGTCACATA 

pCYP86A2_rev1 AGAAGACaaGCTCTCTCTCTCTTTTACATTTGTTTTTCCTTT 

pCYP86A2_fwd2 AGAAGACaaGAGCAGAAAGGTCTAACTAAACCTAAAGAGTCA 

pCYP86A2_rev2 AGAAGACaaCATTATCAATGAATATGAAATGATACTAAAATG 

OST1_fwd1  aGAAGACaaAATGGATCGACCAGCAGTGAGTGGT 

OST1_rev1 aGAAGACaaCCTCGCTGAAGCGGCCTGCATT 

OST1_fwd2 aGAAGACaaGAGGACGAGGTTGTTCTCTCTTTTTTT 

OST1_rev2 aGAAGACaaATCTTCCTCCATATCGTCATCTATGTCC 

OST1_fwdf3 AGAAGACaaACACCAAATTTGCTCTGCTTTGCTTTA 

OST1_rev3 AGAAGACaaGTGTTCCATAAAAATCAATCAATTTTGTA 

OST1_fwd4 aGAAGACaaAGATTTAGAGAGCGACCTTGATGATCTT 

OST1_rev4 aGAAGACaaCGAAggCATTGCGTACACAATCTCTCCG 

pCPK13_fwd1 aGAAGACaaGGAGTGGATGGGTTCACGAGGAATCACTAGT 

pCPK13_rev1 aGAAGACaaGCTCCTTGGTTTCTTTTTCTTTTTGAAAAATG 

pCPK13_fwd2 aGAAGACaaGAGCCCAAATTATGATTGAGTTTTACAAAATA 

pCPK13_rev2 aGAAGACaaATCTCTTTTGAGTTTTTGATATTTATTTAAT 

pCPK13_fwd3 aGAAGACaaAGATCTCTCTTCTCTCTCTCTCTCTCTCTCTCGCTACTCTCATC 

pCPK13_rev3 aGAAGACaaCATTCACTGTGTGTAGCTCTGATGAGGGGT 

pKCS1_fwd1 aGAAGACaaGGAGACATTTTCAATATCGAATTCGTAGTTG 

pKCS1_rev2 aGAAGACaaGTGTTCGTTAAGACGTTTGTTATATAAGGG 

pKCS1_fwd2 aGAAGACaaACACAGCAAATTTATAAATGACAATGACTAC 

pKCS1_rev2 aGAAGACaaCATTCAGTATAGTTTTGGGTCGAAATATTTC 

ABI1_fwd1 aGAAGACaaAATGGAGGAAGTATCTCCGGCGATCGC 
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ABI1_rev1 aGAAGACaaGCCTTCTTCCACAAATCGAAGTGAAACCA 

ABI1_fwd2 aGAAGACaaAGGCCAGAGATGGAAGATGCTGTTTCGAC 

ABI1_rev2 aGAAGACaaCGAAggGTTCAAGGGTTTGCTCTTGAGTTT 

SnRK2.2_fwd1 aGAAGACaaAATGGATCCGGCGACTAATTCA 

SnRK2.2_rev1 aGAAGACaaTGACTGAAGAAAAGAAACGCAT 

SnRK2.2_fwd2 aGAAGACaaGTCATCTGTTCTTCATTCCCAACCA 

SnRK2.2_rev2 aGAAGACaaATCTCATGGCCTTACCTTGCCATCA 

SnRK2.2_fwd3 aGAAGACaaAGATCAATTCCTCTGTCTAGAGTT 

SnRK2.2_rev3 aGAAGACaaCGAAggGAGAGCATAAACTATCTCTC 

SnRK2.3_fwd1 aGAAGACaaATGACTTTGAATATCCAAAATCACAAATTTTTAATCGAG 

GAGCAGGA 

SnRK2.3_rev1 aGAAGACaaTCATCTGTTCTTCATTCACAACCAAAGTCAACTGTTGG 

 
Table 2.7.2 Primer names and sequences used for genotyping of Arabidopsis thaliana 

For Genotyping Mutant  

SALK_059469_LP GATGTTGGTGGTGGAAAAATG aba1 

SALK_059469_RP ACGTTCAAGAGCATCGTCATC 

aba2-3_fwd2 ACCATTGTAGTTTTGTGGCCC aba2-3 

aba2-3_rev2 AGGAGTGGTTAGTGCAAGTGA 

SAIL_576_D01_LP CTTTCTTGTTTTCGGCTGATG aba3 

SAIL_576_D01_RP TTGGGCCTGATTTATGTGAAG 

SALK_093905_fwd AACATCAACGCCTCTGATCTAA fls2 

SALK_093905_rev AATAGAGTCCCCGAGTTCCATA 

SAIL_691_C04_LP ACATGTCCGGTACTATCGCAG fls2c 

SAIL_691_C04_RP TCCATCAAGACAGCTAATGAGC 

GK_129_B08_fwd GGATTTCAGACAGGACACTCTTG nced3-2 

GK_129_B08_rev CTTCCTAAAACGGCTGATCCTA 

GK_328_D05_fwd ACTAAACCAAGACGCCGTAAACT nced5-2 

GK_328_D05_rev ATCTCCGACGCATCTTTA 

SALK_008068_LP CATATCTTTAGACGAGGGGCC ost1-3 

SALK_008068_RP GTGAGTGGTCCAATGGATTTG 

GK_516_B05_fwd ATTTCTAAAAACTACAGGCCCCAT ost1-4 

GK_516_B05_rev AAGAAAAACCTCGCCTAC 

GK_807_G04_fwd AGATCCTCGATATTAGATGGCGAC snrk2.2 

GK_807_G04_rev GTGGAGAACTTTATGAGCGGATTT 
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SALK_096546_LP GGTTTTGAGTGTTCTGCTTTTG snrk2.2 

SALK_096546_RP ACATCTGCAATCTGGTAACCG 

SALK_107315_LP TGCTTTTGAGTGCTTTTAATGTG snrk2.3 

SALK_107315_RP ACATCTGCAATCTGGTAACCG 

SALK_107317_LP TGCTTTTGAGTGCTTTTAATGTG snrk2.3 

SALK_107317_RP ACATCTGCAATCTGGTAACCG 

SALK_096548_LP ACCACAGGTCACTAAGGCATC snrk2.3 

SALK_096548_RP ACAGCATTCAGGTGATATCCG 

pyr1-1_geno_fwd CCTTCGGAGTTAACACCAGAAG pyr1-1 

pyr1-1_geno_rev CACGTGAAAAAAATCTTATCCCCATG 

SALK_054640_LP TGCCAATTTTCAGACATTAAGC pyl1-1 

SALK_054640_RP AACCATGCCTTCCGATTTAAC 

GT_2864_fwd ACCACCAGTTCGAACCAGAC pyl2-1 

GT_2864_rev TTCCTCTGTGTTTCCCTCGG 

SAIL_517_C08_LP TTCCAATCGTTCCAAATATCG pyl4-1 

SAIL_517_C08_RP TAAGACTCGACAACGACGGTC 

SM_3_3495_LP AAACACAAAGCCTTCACATCC pyl5 

SM_3_3495_RP AAGTTTTGTGAATCCCCCAAC 

SAIL_1269_A02_LP AGAGAGTGGAACCCCATGATC pyl8 

SAIL_1269_A02_RP TTCTTCTTCTTCCTTCATGCG  

rbohd_fwd ATGAAAATGAGACGAGGCAATTC Torres et al., 2002 

rbohd_rev GGATACTGATCATAGGCGTGGCTCCA Torres et al., 2002 

rbohf_fwd CTTCCGATATCCTTCAACCAACTC Torres et al., 2002 

rbohf_rev GAGATTGCCTTTATACTATAAGTG Torres et al., 2002 

dSpm11 GGTGCAGCAAAACCCACACTTTTACTTC Tissier et al., 1999 

dSpm1 CTTATTTCAGTAAGAGTGTGGGGTTTTGG Tissier et al., 1999 

 
Table 2.7.3: Primer names and sequences used for restriction cloning 

For restriction cloning for vector 

SnRK2.3_SalI-f TAGTCGACTCATGGATCGAGCTCCGGTG pGEX4T1 

SnRK2.3_NotI-r TAGCGGCCGCTTAGAGAGCGTAAACTATC  

SnRK2.3_NdeI-f TACATATGGATCGAGCTCCGGTGAC pET28a 

SnRK2.3_BaMHI-r TAGGATCCTTAGAGAGCGTAAACTATC  

SnRK2.6_SalI-f TAGTCGACTCATGGATCGACCAGCAGTG pGEX4T1 

SnRK2.6_NotI-r TAGCGGCCGCTTACATTGCGTACACAATCTC  
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SnRK2.6_NdeI-f TACATATGGATCGACCAGCAGTGAG pET28a 

SnRK2.6_BaMHI-r TAGGATCCTTACATTGCGTACACAATCTC  

SLAH3_NdeI-f TACATATGGAGGAGAAACCAAAC pET28a 

SLAH3_251_BaMHI-r TAGGATCCTTACTTTTTATCATTTGGTAG  

SLAH3_563_SalI-f TAGTCGACTCCACGCCTTTGTCCTCCGAG pGEX4T1 

SLAH3_NotI-r TAGCGGCCGCTTATGATGAATCACTCTCTTG  

SLAC1_NdeI-f TACATATGGAGAGGAAACAGTCAAATG pET28a 

SLAC1_181_BaMHI-r TAGGATCCTTATTGCTCCTCTTTTGGAAG  

SLAC1_496_SalI-f TAGTCGACTCCACGCCTTTGTCTGGC pGEX4T1 

SLAC1_NotI-r TAGCGGCCGCTTAGTGATGCGACTCTTCC  

ABF2_SalI-f TAGTCGACtcATGGATGGTAGTATGAATTTG pGEX4T1 

ABF2_NotI-r TAGCGGCCGCTTACCAAGGTCCCGACTCTGTC  

 
Table 2.7.4 Primer names and sequences used for Sanger sequencing 

For Sequencing 

BASTA_seq_rev1 GTACGGAAGTTGACCGTGCT 

BASTA_seq_fwd1 GAAATTTGTAAGTTTGTAATGAGCC 

CYP86A2_seq_fwd1 GCAGTTGCAGCGTACACAAG 

CYP86A2_seq_rev1 GTTAGACCTTTCTGGTCTCTCTCTC 

CYP86A2_seq_fwd2 GGGTACACTCTCTCAACAATCCA 

CYP86A2_seq_rev2 GTTTAAGGAATATGAAATGGTGTTTC 

FLS2_seq_fwd1 GTAACCATTTAACTGGTTCGAT 

FLS2_seq_rev1 CTGTAAGTTCAAGAGATTTCCAAAATCTCTCG 

FLS2_seq_fwd2 GTGTGGCAGATAACAACTTAACAGGAACTC 

FLS2_seq_rev2 CAAATCTTTCAGATTCCCGATTTCTCGAGG 

FLS2_seq_fwd3 GGTGTCCTTGGATCTCTCTAGTAACAATCT 

FLS2_seq_rev3 GGCGTTGATGTTTTTGAACACCCC 

FLS2_seq_fwd4 CTGGATATGGTTTTCCCATCGTTCATTG 

FLS2_seq_rev4 GTGCTTCCATCTTCGCGGAAA 

FLS2_seq_fwd5 GCTTTGTTTGTTCTGTACAAGCTCTAGAC 

FLS2_seq_rev5 CGCTTTGCCTCTAAGTTTCATCAGATG 

Term_seq_fwd1 GAGAAGCCTATGATCGCATGATA 

Term_seq_rev1 ATAAAAATACGATAGTAACGGGTG 

pMYB60_seq_fwd1 CAGATCGCTGCAAGAATTC 

pMYB60_seq_rev1 AGGGAACGTAAGAAGAGACAAAT 
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pMYB60_seq_fwd2 GTAACATAGCTTGTGACTCTTCTTC 

pMYB60_seq_rev2 TTGCTTAATTTGGAACATTCG 

OST1_seq_fwd CCTTAGGATTGCTTCAGGTTATATT 

OST1_seq_rev CTTTCTTCACCAAAATTCTTGAAG 

p35S_seq_fwd GATTCCATTGCCCAGCTAT 

p35S_seq_rev CGTCAGTGGAGATGTCACATC 

PIP1;4_seq_fwd TGTTCATGCTCTGTTTGACC 

PIP1;4_seq_rev AACCGGGGAAATTCGATC 

OST1_seq_fwd2 CCAGCAACTCATTTCAGGAGT 

OST1_seq_rev2 TTTGTGTTGTCTCACCTGTGAG 

PEN1_seq_fwd GATTGAGGGAGCTTATCTCGT 

PEN1_seq_rev TCCAGAGATCAATTCCAGCTCT 

RBOHD_seq_fwd1 TCCGCCGCGTGTTCT 

RBOHD_seq_rev1 GCAGAGAGTAAGAGGCCGTT 

RBOHD_seq_fwd2 GGTGGACAAAGATGAAGATGGGC 

RBOHD_seq_rev2 CCATTTTGTCGTGTTCACATGAAGTTAATATATTGATG 

RBOHD_seq_fwd3 ATCTCGACAATGGGTGGTT 

RBOHD_seq_rev3 AATAGCAACATTTCCAAGTTTTC 

RBOHD_seq_fwd4 ATCTCGACAATGGGTGGTTAGTGG 

RBOHD_seq_rev4 GCTTGTAATAGCAACATTTCCAAGTTTTCGATC 

RBOHD_seq_fwd5 ACGGTCCATACGGTGCT 

RBOHD_seq_rev5 CCTCGTACACACTCGTGCAA 

mCherry_seq_fwd GGCCCCGTAATGCAGAA 

mCherry_seq_rev TGGCCGCCGTCCTT 

GFP_seq_fwd AGGAGCGCACCATCTTCTT 

GFP_seq_rev GATGTTGCCGTCCTCCTT 

pGC1_fwd1 GTGTCACAATGTCTGAACTAAGAGA 

pGC1_rev1 CTACAATTCTACATCGTCAATTCC 

3xFLAG_fwd_seq GGACCATGACGGAGACTA 

3xFLAG_rev_seq CACTTATCGTCATCGTCCT 

SnRK2.2_seq_fwd1 GAGCAGTGTTCTTGCAACTTACTTGAAC 

SnRK2.2_seq_rev1 CAATGTATTTTCCAGCTTCAGATCCCGAT 

SnRK2.2_seq_fwd2 CCACTGATTTTAAAACGCAGAGAATCCTTAG 

SnRK2.2_seq_rev2 GTAAAACTTACTGTTGCCGGATCAGC 
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SnRK2.3_seq_fwd1 CCGGTTTCCTTATGGTTTGATCTCTTC 

SnRK2.3_seq_rev1 CAGTCCATAGGCTCCATGAAACAGATT 

SnRK2.3_seq_fwd2 CACCTGAATGCTGTCATCTTATTTCAAGAATCT 

SnRK2.3_seq_rev2 CTGGTATGCTTATTCTCTGTAACAAACAACATC 

pUBQ10_seq_fwd1 GCTGCAGGTCAACGGAT 

pUBQ10_seq_rev1 CACTCGTGTTCAGTCCAATGA 

pUBQ10_seq_fwd2 CGTGACCTAGTCGTCCTC 

pUBQ10_seq_rev2 CGCACAAACTAGAAACTAACACC 

YFPc_seq_fwd AGGCTACGTCCAGGAGCGCA 

YFPc_seq_rev GCCGTTTACGTCGCCGTCCA 

YFPn_seq_fwd GCGAGGGCGATGCCACCTAC 

YFPn_seq_rev GTGCGCTCCTGGACGTAGCC 

BIK1_seq_rev1 CAAACCGGTTCCAGGTTTAGTCG 

BIK1_seq_fwd2 GATGTGTACAGTTTCGGAGTT 

BIK1_seq_rev2 ATCCAACGCTCGCTTACCAGATA 

BAK1_seq_rev1 CTAATAATCTATGATAATGC 

BAK1_seq_fwd1 GGTGTATGTGGGATGTTA 

BAK1_seq_rev2 GACGCCTAACCACCAATAC 

BAK1_seq_fwd2 CGACAGGTGAAAGGGTTGTT 

BAK1_seq_rev3 GCTAGACCACATCTACTTAC 

 
Table 2.7.5: Primer names and sequences used to generate artificial micro RNAs (amiRNAs) 

For generation of amiRNAs in R vector  

OligoA_amiRNA aGAAGACaaAATGCTGCAAGGCGATTAAGTTG 

OligoB_amiRNA aGAAGACaaAAGCGCGGATAACAATTTCACACAG 

amiRNA_FLS2_1_I gaTAACCGAGACTACATGTCCGTtctctcttttgtattcc 

amiRNA_FLS2_1_II gaACGGACATGTAGTCTCGGTTAtcaaagagaatcaatga 

amiRNA_FLS2_1_III gaACAGACATGTAGTGTCGGTTTtcacaggtcgtgatatg 

amiRNA_FLS2_1_IV gaAAACCGACACTACATGTCTGTtctacatatatattcct 

amiRNA_FLS2_2_I gaTCAATTACAGTGTCGTAACGGtctctcttttgtattcc 

amiRNA_FLS2_2_II gaCCGTTACGACACTGTAATTGAtcaaagagaatcaatga 

amiRNA_FLS2_2_III gaCCATTACGACACTCTAATTGTtcacaggtcgtgatatg 

amiRNA_FLS2_2_IV gaACAATTAGAGTGTCGTAATGGtctacatatatattcct 

amiRNA_FLS2_3_I gaTAAATGAATTCGCTTTGCCTGtctctcttttgtattcc 

amiRNA_FLS2_3_II gaCAGGCAAAGCGAATTCATTTAtcaaagagaatcaatga 
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amiRNA_FLS2_3_III gaCAAGCAAAGCGAAATCATTTTtcacaggtcgtgatatg 

amiRNA_FLS2_3_IV gaAAAATGATTTCGCTTTGCTTGtctacatatatattcct 

amiRNA_RBOHD_1_I gaTTCTACAATCGAATACGGCGTtctctcttttgtattcc 

amiRNA_RBOHD_1_II gaACGCCGTATTCGATTGTAGAAtcaaagagaatcaatga 

amiRNA_RBOHD_1_III gaACACCGTATTCGAATGTAGATtcacaggtcgtgatatg 

amiRNA_RBOHD_1_IV gaATCTACATTCGAATACGGTGTtctacatatatattcct 

amiRNA_RBOHD_2_I gaTATGCGAATACCAAAAGGCGAtctctcttttgtattcc 

amiRNA_RBOHD_2_II gaTCGCCTTTTGGTATTCGCATAtcaaagagaatcaatga 

amiRNA_RBOHD_2_III gaTCACCTTTTGGTAATCGCATTtcacaggtcgtgatatg 

amiRNA_RBOHD_2_IV gaAATGCGATTACCAAAAGGTGAtctacatatatattcct 

amiRNA_RBOHD/F_1_I gaTGAAGTCCGCTTTTACGGCCAtctctcttttgtattcc 

amiRNA_RBOHD/F_1_II gaTGGCCGTAAAAGCGGACTTCAtcaaagagaatcaatga 

amiRNA_RBOHD/F_1_III gaTGACCGTAAAAGCCGACTTCTtcacaggtcgtgatatg 

amiRNA_RBOHD/F_1_IV gaAGAAGTCGGCTTTTACGGTCAtctacatatatattcct 

amiRNA_RBOHD/F_2_I gaTGAAGTCCGCTTTTACCGCCGtctctcttttgtattcc 

amiRNA_RBOHD/F_2_II gaCGGCGGTAAAAGCGGACTTCAtcaaagagaatcaatga 

amiRNA_RBOHD/F_2_III gaCGACGGTAAAAGCCGACTTCTtcacaggtcgtgatatg 

amiRNA_RBOHD/F_2_IV gaAGAAGTCGGCTTTTACCGTCGtctacatatatattcct 

amiRNA_RBOHF_1_I gaTTCTACAATCGAATACGGCGTtctctcttttgtattcc 

amiRNA_RBOHF_1_II gaACGCCGTATTCGATTGTAGAAtcaaagagaatcaatga 

amiRNA_RBOHF_1_III gaACACCGTATTCGAATGTAGATtcacaggtcgtgatatg 

amiRNA_RBOHF_1_IV gaATCTACATTCGAATACGGTGTtctacatatatattcct 

amiRNA_RBOHF_2_I gaTTATCGGAAGTATATACACGCtctctcttttgtattcc 

amiRNA_RBOHF_2_II gaGCGTGTATATACTTCCGATAAtcaaagagaatcaatga 

amiRNA_RBOHF_2_III gaGCATGTATATACTACCGATATtcacaggtcgtgatatg 

amiRNA_RBOHF_2_IV gaATATCGGTAGTATATACATGCtctacatatatattcct 

 

2.8. Constructs generated in this study: 

Table 2.8.1: Golden Gate level 0 vectors generated in this study 

Golden Gate level 0 vectors 

Promoters 

ID Gene name Gene ID Backbone Resistance 

CJT01 pCYP86A2  At4g00360 pICH41295 Spec (100) 
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CJT04 pMYB60 At1g08810 pICH41295 Spec (100) 

CJT17 pCPK13 At3g51850 pICH41295 Spec (100) 

CJT19 pKCS1 At1g01120 pICH41295 Spec (100) 

CJT15 pMYB60 (for N-tag) At1g08810 pICSL01008 Spec (100) 

Protein Coding Genes 

ID gene name Gene ID Backbone Resistance  

CJT09 OST1 (genomic) At4g33950  pICSL01005 Spec (100)  

CJT162 ABI1 (genomic) At4g26080 pICSL01005 Spec (100)  

CJT164 amiRNA-FLS2(1) At5g46330 pICH41308 Spec (100)  

CJT165 amiRNA-FLS2(2) At5g46330 pICH41308 Spec (100)  

CJT166 amiRNA-FLS2(3) At5g46330 pICH41308 Spec (100)  

CJT167 amiRNA-RBOHD(1) At5g47910 pICH41308 Spec (100)  

CJT168 amiRNA-RBOHD(2) At5g47910 pICH41308 Spec (100)  

CJT169 amiRNA-RBOHD/F(1) At5g47910/At1g64060 pICH41308 Spec (100)  

CJT170 amiRNA-RBOHD/F(2) At5g47910/At1g64060 pICH41308 Spec (100)  

CJT120 RBOHD (genomic) At5g47910 pICH41308 Spec (100)  

CJT261 SnRK2.2 (genomic) At3g50500 pICSL01005 Spec (100)  

CJT163 SnRK2.3 (CDS) At5g66880 pICSL01005 Spec (100)  

 
Table 2.8.2: Other Golden Gate vectors used in this study: 

ID gene name Gene ID Resistance generated by 

Promoters     

pICH51277 short p35S + Ω  Spec (100) Synbio TSL 

pICSL12015 pAtUBQ10  Spec (100) Synbio TSL 

pICSL13005 pAtUBQ10 for (N-

tag) 

 Spec (100) Synbio TSL 

Protein Coding Genes 

pICSL50008 GFP as C-tag  Spec (100) Synbio TSL 

pICSL30006 GFP as N-tag  Spec (100) Synbio TSL 

pICSL50004 mCherry as C-tag  Spec (100) Synbio TSL 

pICSL50007 3xFLAG as C-tag  Spec (100) Synbio TSL 

pICSL50003 YFPc as C-tag  Spec (100) Synbio TSL 

pICSL50002 YFPn as C-tag  Spec (100) Synbio TSL 

pICH41531 GFP ORF  Spec (100) Synbio TSL 

CZLp1778 BAK1 At4g33430 Spec (100) Freddy Boutrot 
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CZLp1566 BIK1 At2g39660 Spec (100) Christoph Buecherl 

Terminators     

pICH41432 tAtuOcs  Spec (100) Synbio TSL 

Backbone vectors 

ID Description  Resistance generated by 

pICSL01008 Level 0 for Pro+5'UTR with Ntags Spec(100) Synbio TSL 

pICH41295 Level 0 acceptor promoter+5'UTR Spec(100) Synbio TSL 

pICH41308 Level 0 for CDS  Spec(100) Synbio TSL 

pICSL01005 Level 0 acceptor CDS no Stop Spec(100) Synbio TSL 

pICH47742 Level 1 pos2  Carb (50) Synbio TSL 

pAGM31171 Level 2 RB corr low copy in Agro LacZ 

sel 

Kan (50) Synbio TSL 

Expression cassettes 

ID Description Resistance generated by 

pICSL11013 Level 1 pos1 Bar plant resistance Carb (50) Synbio TSL 

pICSL11015 Level 1 pos1 pFAST-Red selection 

cassette 

 

Carb (50) Synbio TSL 

 

Table 2.8.3: Golden Gate level 1 vectors generated in this study 

Golden Gate level 1 vectors 

ID construct Backbone Resistance use 

CJT284 p35S::FLS2-YFPn pICH47742 Carb (50) split-YFP 

CJT285 p35S::BIK1-YFPc pICH47742 Carb (50) split-YFP 

CJT286 p35S::BAK1-YFPc pICH47742 Carb (50) split-YFP 

CJT287 p35S::SnRK2.2-YFPc pICH47742 Carb (50) split-YFP 

CJT288 p35S::SnRK2.2-YFPn pICH47742 Carb (50) split-YFP 

CJT289 pUBQ10::SnRK2.2-3xFLAG pICH47742 Carb (50) Co-IP 

CJT290 p35S::SnRK2.3-YFPn pICH47742 Carb (50) split-YFP 

CJT291 p35S::SnRK2.3-YFPc pICH47742 Carb (50) split-YFP 

CJT292 pUBQ10::SnRK2.3-3xFLAG pICH47742 Carb (50) Co-IP 

CJT293 p35S::OST1-YFPc pICH47742 Carb (50) split-YFP 

CJT294 p35S::OST1-YFPn pICH47742 Carb (50) split-YFP 

CJT295 p35S::ABI1-YFPc pICH47742 Carb (50) split-YFP 
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CJT322 p35S::BRI1-YFPn pICH47742 Carb (50) split-YFP 

CJT323 p35S::BRI1-YFPc pICH47742 Carb (50) split-YFP 

CJT148 pUBQ10::OST1-3xFLAG pICH47742 Carb (50) Co-IP 

 
Table 2.8.4: Golden Gate level 2 vectors generated in this study 

Golden Gate level 2 vectors 

ID construct Backbone Resistance plant Selection 

CJT281 pUBQ10::GFP-RBOHD pAGM31171 Kan (50) pFAST-Red 

CJT282 pUBQ10::mCherry-RBOHD pAGM31171 Kan (50) pFAST-Red 

CJT283 pUBQ10::3xFLAG-RBOHD pAGM31171 Kan (50) pFAST-Red 

CJT187 pMYB60::GFP-RBOHD pAGM31171 Kan (50) pFAST-Red 

CJT188 pMYB60::3xFLAG-RBOHD pAGM31171 Kan (50) pFAST-Red 

CJT280 pMYB60::mCherry-RBOHD pAGM31171 Kan (50) pFAST-Red 

CJT203 pMYB60::MIFLS2 I pAGM31171 Kan (50) pFAST-Red 

CJT190 pMYB60::MIFLS2 II pAGM31171 Kan (50) pFAST-Red 

CJT226 pMYB60::MIRBOHD I pAGM31171 Kan (50) pFAST-Red 

CJT227 pMYB60::MIRBOHD II pAGM31171 Kan (50) pFAST-Red 

CJT228 pMYB60::MIRBOHD/F I pAGM31171 Kan (50) pFAST-Red 

CJT229 pMYB60::MIRBOHD/F II pAGM31171 Kan (50) pFAST-Red 

CJT204 pUBQ10::MIFLS2 I pAGM31171 Kan (50) pFAST-Red 

CJT191 pUBQ10::MIFLS2 II pAGM31171 Kan (50) pFAST-Red 

CJT233 pUBQ10::MIFLS2 III pAGM31171 Kan (50) pFAST-Red 

CJT234 pUBQ10::MIRBOHD I pAGM31171 Kan (50) pFAST-Red 

CJT235 pUBQ10::MIRBOHD II pAGM31171 Kan (50) pFAST-Red 

CJT236 pUBQ10::MIRBOHD/F I pAGM31171 Kan (50) pFAST-Red 

CJT237 pUBQ10::MIRBOHD/F II pAGM31171 Kan (50) pFAST-Red 

CJT034 pMYB60::FLS2-GFP pAGM4723 Kan (50) BASTA 
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3. Virus-induced gene silencing and guard cell-specific 

promoters as useful tools to study guard cell responses 

3.1. Introduction 

Stomata are vital cellular structures that enable plants to adapt to a constantly changing 

environment. They are formed of highly specialised cells in the plant epidermis that can 

translate a chemical stimulus into a biomechanical, reversible response. Stomata originate 

from pavement cells that undergo a series of cell divisions and cell-state transitions and these 

changes are accompanied by dramatic changes in morphology. Part of these morphological 

changes are depositions of cell wall material upon plasmodesmata that connect a 

differentiating guard cell to surrounding tissues. Once fully differentiated, guard cells are 

symplastically isolated as their plasmodesmata are effectively truncated (Wille & Lucas, 

1984; Palevitz & Hepler, 1985). This is also essential to prevent translocation of essential cell-

fate determinants, such as bHLH transcription factors SPEECHLESS, MUTE and FAMA to 

surrounding cells (reviewed by (Pillitteri & Torii, 2012). In addition to these determinants, 

guard cells possess a number of highly specialised proteins that are either exclusively, or 

predominantly, expressed there because of their specific function. One example is the kinase 

OPEN STOMATA 1 which localises to guard cells and the vasculature (Mustilli et al., 2002) 

and plays a predominant role in mediating stomatal closure to a number of different stimuli 

(Mustilli et al., 2002; Melotto et al., 2006; Chater et al., 2015). Other examples are channels, 

such as anion channel SLAC1 and potassium channel GORK1, which are predominantly 

expressed in guard cells. Not only specialised cell types have proteins whose localisation 

correlates with their function. This is also true of specialised organs or tissues. It is known 

from root cell imaging that certain proteins are only expressed in a subset of root cells. Their 

promoters are therefore also suitable to drive tissue-specific gene expression. For instance 

the promoter pLBD16 drives expression in the pericycle and pSCR drives expression in 

endodermal initial cells, the quiescent centre and the endodermal cell lineage and have been 

used in studies for their cell type-specificity (DiLaurenzio et al., 1996; Goh et al., 2012; 

Wyrsch et al., 2015).  

Constitutive promoters are the most commonly used promoters in the generation of 

transgenic plants for either laboratory or field purposes. But with an increasing 

understanding of the differences between plant cell types and their role in specific 

physiological responses comes the necessity for more precise tools to enable us to 



73 
 

differentiate input from differing cell types to an overall phenotype. Moreover, one might 

wish to express target proteins in only a subset of cells if one wishes to alter only specific 

responses that are cell type- or tissue-specific. To improve water use efficiency or drought 

tolerance, for instance, it makes sense to target only the guard cells as demonstrated in a 

study using a chimeric promoter (Na & Metzger, 2014). For applications such as this it is 

useful to have information on promoter expression patterns readily available, for instance in 

a database (Smirnova et al., 2012). Furthermore, direct comparisons of promoters with 

similar expression patterns can help to make informed decisions about the most suitable 

promoter for a proposed application.  

A number of promoters have been published to be guard cell-specific and were put forward 

as research tools to study guard cell-specific responses (Galbiati et al., 2008; Yang et al., 

2008; Rusconi et al., 2013). In addition to these published promoters I identified two further 

proteins whose localisation patterns provided an incentive to investigate whether their 

promoters could be suitable to drive guard cell-specific expression (Gray et al., 2000; Ronzier 

et al., 2014). Most of these studies used Promoter-GUS fusions to understand expression 

distribution. Only one of these studies compared their identified promoters with other guard 

cell-specific promoters (Yang et al., 2008).  

Guard cells are unique cells that differ from other cells in their shape, their capacity to change 

their shape in response to chemical stimuli and also their protein composition. To truly 

understand guard cell responses during immunity I aimed at establishing tools to study 

immune outputs only from guard cells without interference from surrounding cells. To this 

end I established a transient system in N. benthamiana to specifically reduce protein 

abundance in pavement cells. In addition to this I screened guard cell-specific promoters to 

identify the most specific and reliable promoter for guard cell-specific expression of proteins. 

Here, I demonstrate transient and stable transgenic approaches to study guard cell 

responses. Making use of stable transgenic N. benthamiana plants expressing fluorescent 

proteins, I was able to visualise gradual silencing in pavement cells while guard cell protein 

accumulation was unaffected. I show that age and developmental stages of leaves are crucial 

for the outcome and distribution of virus-induced gene silencing (VIGS). Furthermore, I 

report a comprehensive side by side comparison of guard cell-specific promoter activities to 

investigate their specificity. I identify pMYB60 as the most specific and suitable promoter to 

express proteins in a guard cell-specific manner.   
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3.2. Results 

3.2.1. Virus-induced gene silencing (VIGS) does not affect guard cells in fully expanded 

leaves in N. benthamiana 

Viruses rely on plasmodesmata for local cell-to-cell movement (reviewed by (Benitez-Alfonso 

et al., 2010). I therefore reasoned that one could exploit virus-induced gene silencing (VIGS) 

to silence all cell types except guard cells when applying it at the right developmental stage 

of the leaf. I therefore infiltrated silencing constructs into N. benthamiana leaves at differing 

developmental stages. To follow silencing progression, I decided to utilise stable transgenic 

N. benthamiana plants expressing fluorescent proteins that I could visualise with a confocal 

laser-scanning microscope. To this end, I infiltrated pFLS2::FLS2-GFP and GFP16c plants (Ruiz 

et al., 1998) with the silencing construct targeting GFP (TRV::GFP). I infiltrated leaves of 

different developmental stages and evaluated the GFP signal in the infiltrated leaf and distal 

leaves. To achieve silencing throughout all cell types VIGS constructs are usually infiltrated 

in 2-week-old leaves. I started with these conditions and increased the age of infiltrated 

plants and which leaves to infiltrate until I reached the desired silencing distribution. Leaves 

were imaged with a confocal laser-scanning Microscope (Leica SP5). Figure 3.1 and Figure 

3.2 show the silencing progression from day three to day six after infiltration in the transgenic 

plants. Figure 3.1 shows confocal maximum projections from the transgenic plant 

pFLS2::FLS2-GFP. All pictures were taken at the same time of day with the same microscope 

settings. Uninfiltrated leaves exhibit a strong FLS2-GFP signal at the plasma membrane 

(Figure 3.1 0 days). At three days after infiltration the GFP signal is undiminished in all cell 

types. At four days, however, the GFP signal seems to be slightly reduced. This trend 

progresses to day five and peaks at day six when the GFP signal in the pavement cells is visibly 

reduced, whereas the guard cell FLS2-GFP signal is not visibly altered. At day six also distal 

leaves were evaluated to determine whether the virus had also already reached systemic 

leaves. However, these leaves showed a strong and GFP signal at the plasma membrane 

indistinguishable from uninfiltrated leaves. This suggests that at six days after infiltration the 

silencing can only spread locally in the infiltrated leaf to silence pavement cells. This is 

supported by the observations made by imaging the infiltrated GFP16c plants. This plant 

expresses a GFP-tagged protein localising to the endoplasmatic reticulum (ER) and 

consistently, I observed a reticulate structure typical of proteins localising to the ER 

(Figure3.2). The overall GFP signal appears a lot stronger than in the FLS2-GFP plant 

indicating a higher level of expression of the protein. This is most likely due to the different  
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Figure 3.1: Confocal maximum projection micrographs of pFLS2::FLS2-GFP infiltrated with TRV::GFP 
GFP signal continuously decreases in pavement cells in plants infiltrated with VIGS constructs targeting 
GFP while GFP in guard cells remains unaltered. Five-week-old N. benthamiana plants were infiltrated 
with TRV::GFP in fully expanded leaves. Leaf discs were taken at 0, 3, 4, 5 and 6 dpi. At 6 dpi GFP signal 
in infiltrated leaves were compared to systemic, uninfiltrated leaves. Pictures show maximum 
projection images taken with a Leica SP5 confocal microscope and bars indicate 50 µm. Each picture 
corresponds to an independent leaf, with each time point showing images from three separate leaves. 
Green signal corresponds to GFP and magenta to autofluorescence. 

 

strengths of the promoters as the p35S promoter is known to drive strong overexpression. 

Consistent with the observations made in Figure 3.1 I could observe a gradual reduction of 

GFP signal in pavement cells and the lowest signal was reached at six days after infiltration. 

However, at six days I still observed a weak GFP signal in pavement cells, predominantly at 

the cell periphery, while the intracellular net-like structure was profoundly reduced. 

Systemic leaves were unaffected, suggesting that the virus silencing had not yet moved to 

systemic tissues. This suggests that VIGS is not able to completely silence highly expressed 

genes or that the turnaround time for the GFP-tagged protein in the GFP16c plant is a lot 

higher than for FLS2. These observations were confirmed in two additional repeats.  

To verify that GFP intensity decreases more in the pavement cells than the guard cells I 

converted the confocal micrographs into greyscale images (using function luminance in 

ImageJ) to quantify the brightness intensity in ImageJ. I selected ten representative images 

for each time point for quantification. In order to measure only pavement or guard cell GFP 

intensity I drew areas of interest in the selected images that included either only pavement 

or guard cells (see Figure 3.3C and D for example images). I subsequently normalised the 

intensity output against the size of the measured area to receive intensity per pixel. I 

averaged the data for the ten images for each time point and plotted the data in Figure 3.3A 

and B. Figure 3.3A shows the data from the intensity measurement of the genotype GFP16c. 

Black bars correspond to the intensity per pixel in pavement cells and white bars to the 

intensity in guard cells. In the GFP16c plant the intensity per pixel in pavement cells was 

significantly decreased at 3 dpi and continued to decrease through 4 and reached a 7-fold 

decrease at 6 dpi. Overall intensity per pixel was almost four times as high in guard cells as 

compared to pavement cells. This suggests that this protein may be accumulating to higher 

amounts in the guard cells. This intensity per pixel in guard cells was significantly decreased 

at 3 dpi and reached a 2-fold decrease at 6 dpi. The intensity per pixel was significantly lower 

in systemic leaves at 6 dpi in both pavement and guard cells. This could indicate that younger  
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Figure 3.2: Confocal maximum projection micrographs of GFP16c infiltrated with TRV::GFP 
GFP signal continuously decreases in pavement cells in plants infiltrated with VIGS constructs targeting 
GFP while GFP in guard cells remains unaltered. Five-week-old N. benthamiana plants were infiltrated 
with TRV::GFP in fully expanded leaves. Leaf discs were taken at 0, 3, 4, 5 and 6 dpi. At 6 dpi GFP signal 
in infiltrated leaves were compared to systemic, uninfiltrated leaves. Pictures show maximum 
projection images and bars indicate 50 µm. Each picture corresponds to an independent leaf, with 
each time point showing images from three separate leaves. 

 

leaves generally have a lower abundance of the 16c fusion protein or that virus-induced 

silencing affected accumulation of this protein in systemic leaves. Overall, I conclude that in 

the GFP16c plant silencing in the pavement cells was a lot stronger than in the guard cells, 

but still detectable in guard cells. Intensity measurement of images obtained from 

pFLS2::FLS2-GFP plants are shown in Figure 3.3.B. Intensity per pixel in pavement cells at 0 

dpi is comparable to the intensity measured in GFP16c plants at 0 dpi. GFP intensity 

significantly decreased in the pavement cells starting at 3 dpi and reaching a 12-fold decrease 

at 6 dpi. The intensity per pixel in the systemic leaf at 6 dpi was indistinguishable to the 

intensity found at 0 dpi, suggesting that in this genotype there does not seem to be a 

difference in fusion protein accumulation between leaves. Intensity per pixel in guard cells 

was not significantly different in any of the time point or in the systemic leaf. This suggests 

that in this phenotype virus-induced silencing does not affect guard cell protein 

accumulation but significantly decreases protein accumulation in the pavement cells. The 

intensity measured in systemic leaves was indistinguishable to 0 dpi in both pavement and 

guard cells. Taken together this data shows that silencing evolves differently across 

phenotypes and depends on the protein observed. In fully expanded leaves virus-induced 

gene silencing affects guard cells to a lesser extent than pavement cells and in the case of 

FLS2-GFP not at all. Since the components I wished to silence are more comparable to FLS2 

than the 16c protein in localisation and function I decided that this approach was suitable 

for my chosen application. I used this silencing protocol for further experiments to address 

guard cell autonomy in Chapter 2. 
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Figure 3.3: Quantification of GFP intensity in silenced N. benthamiana plants. A. GFP intensity in 
epidermal cells and stomata of 16cGFP plants decrease during silencing in infiltrated and systemic 
leaves. B. GFP intensity in epidermal cells of pFLS2::FLS2-GFP plants decreases while stomatal GFP 
intensity remains unaffected. C. Example images showing selected pavement cell area for intensity 
measurement. D. Example images showing selected guard cells for intensity measurement.  
Confocal maximum projection images were converted to show luminance in ImageJ. Raw Intensity 
Density of area of interest was measured using ImageJ. Values were normalised to surface area 
measured. Ten representative images were measured for every combination of genotype and time 
point. Images are from one representative experiment. Experiment was repeated twice with similar 
results. Error bars indicate SD from mean. Asterisks indicate significant differences from 0 dpi 
(student’s t-test,  * p < 0.05, ** p < 0.01, *** p << 0.01). Bars indicate 50 µm.  

C D 

A 

B 

0

200000

400000

600000

800000

1000000

0 dpi 3 dpi 4 dpi 6 dpi 6 dpi systemic

In
te

n
si

ty
 p

er
 p

ix
el

GFP16c pavement cells

guard cells

*
*

* 

*
*

* *
*

* 

*
*

* 

*
 

*
 

*
*

* *
*

* 

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

0 dpi 3 dpi 4 dpi 6 dpi 6 dpi systemic

In
te

n
si

ty
 p

er
 p

ix
el

pFLS2::FLS2-GFP pavement cells

guard cells

*
* 

*
* *

* 



80 
 

3.2.2. Guard cell-specific promoter screen in Arabidopsis thaliana 

In addition to a transient setup I also aimed at establishing a stable transgenic setup in 

Arabidopsis thaliana to investigate guard cell autonomy. To this end I identified five 

candidate promoters from the literature to drive guard cell-specific expression of our 

proteins of interest. To evaluate their suitability and specificity I created stable transgenic 

Arabidopsis thaliana plants expressing free GFP under the control of these promoters. 

Transgenic plants were selected and screened for their GFP distribution with a confocal laser-

scanning microscope. Consequently, I screened twenty individual T1 plants. Representative 

maximum projection images were chosen and are presented in Figure 3.4. Both the 

pCYP86A2 and pMYB60 promoters show a strong GFP signal in guard cells and a weak signal 

in surrounding pavement cells. The other three promoters, pCPK13, pKCS1 and pGC1, do not 

show any GFP signal in the T1 generation. 

Table 3.1: Information on promoters cloned for guard cell-specificity screen. All promoters were 
cloned from genomic DNA isolated from Arabidopsis thaliana. All promoters were domesticated into 
a level 0 acceptor plasmid for use in the Golden Gate system.  

Promoter publication cloned from region cloned 

pGC1 Yang et al., 2008 gDNA Arabidopsis thaliana -1716 to 0 

pKCS1 Gray et al., 2000 gDNA Arabidopsis thaliana -2180 to 0 

pCPK13 Ronzier et al., 2014 gDNA Arabidopsis thaliana -2291 to 0 

pMYB60 Rusconi et al., 2013 gDNA Arabidopsis thaliana -1307 to 0 

pCYP86A2 Galbiati et al., 2008 gDNA Arabidopsis thaliana -1256 to 0 

 

Further characterisation of expression patterns driven by candidate promoters was done 

after propagation in the T2 generation. Dr. Michaela Kopischke and Dr. Ben Petre had already 

characterised the pGC1 promoter and found it to drive stronger, but not exclusive expression 

in guard cells (unpublished) and therefore I did not include these plants with this promoter 

for further analyses. The GFP localisation pattern from at least two independent transgenic 

events were analysed. Figure 3.5 shows confocal maximum projection micrographs of the 

four analysed promoters at 16 and 26 days post germination (dpg). The promoter pKCS1 

showed a stronger accumulation of GFP in guard cells than in pavement cells but did not 

appear to be very specific since there I could still detect a GFP signal at the pavement cell 

periphery. The expression pattern driven by pKCS1 does not depend on the developmental 

stage, as it is the same for both 16 and 26 dpg. I therefore conclude that this promoter is not 

suitable for our purposes. Both pMYB60 and pCYP86A2 appeared to have a high specificity  
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Figure 3.4: Confocal micrographs of 4-week-old transgenic Arabidopsis thaliana plants expressing free 
GFP under the control of different promoters in the T1 generation.  
A. Expression pattern of the pCYP86A2 promoter is restricted to guard cells. B. Expression pattern of 
pMYB60 promoter is stronger in, but not restricted to, guard cells. C., D. and E. The promoters pGC1, 
pKCS1 and pCPK13 show no GFP expression in the T1 generation. 20 individual T1 plants were 
screened. Images show selected, representative maximum projection images and bars indicate 10 µm. 
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for guard cells as little to no GFP signal was observed in pavement cells but a strong signal 

was present in guard cells. This was true for both 16 and 26 dpg. Another factor I took into 

account was the correlation between BASTA-positive plants and detectable GFP expression. 

In the case of pCYP86A2 only a quarter (25%) of the BASTA-positive transgenic lines showed 

detectable GFP signal by confocal imaging, suggesting a low GFP expression rate in three 

quarters (75%) of the transgenic plants. In comparison, the pMYB60 BASTA-positives showed 

a much higher expression rate, with 85% of positively selected plants exhibiting an 

observable GFP signal with the confocal microscope. The promoter pCPK13 showed a strong 

and specific GFP signal in guard cells at 16 dpg. However, at 26 dpg I could not observe a 

strong guard cell GFP signal, but instead a high accumulation of GFP in the epidermal cells. 

When taking into account both the expression strength and distribution I conclude that the 

most suitable promoter for guard cell-specific expression is the pMYB60 promoter. 

 
 

Figure 3.5: Confocal micrographs of 4-week-old transgenic Arabidopsis thaliana plants expressing free 
GFP under the control of different promoters in the T2 generation.  
The strongest, most guard cell-specific signal is achieved with the pMYB60 promoter. Expression 
pattern of the pKCS1, pCYP86A2, pMYB60 promoters do not differ between 16 and 26 days post 
germination (dpg). Expression pattern of pCPK13 is no longer restricted to guard cells at 26 dpg. 
Images show selected, representative maximum projection images and bars indicate 10 µm. 
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3.3. Discussion 

While the generation of stable transgenic plants takes several weeks or months to complete, 

transient assays require little preparation time and can be performed as soon as vectors are 

completed. For this reason, I endeavoured to set up a transient expression system to study 

guard cell autonomy in N. benthamiana. The transient silencing application I describe here 

can be used to transiently test guard cell-specific responses in a fast, high-throughput 

manner. Figures 3.1 and 3.2 show that when applied at the right developmental stage 

silencing affects cell types differentially. The quantification of GFP intensity in the confocal 

maximum projection images confirmed this (Figure 3.3). GFP intensity in the pavement cells 

was strongly reduced in both tested genotypes. Interestingly, whether guard cell GFP 

intensity was affected by silencing differed between the phenotypes. While the GFP intensity 

in the guard cells of 16cGFP plants significantly decreased after infiltration it was unaffected 

in the pFLS2::FLS2-GFP plants. This could be due to the differences between fusion proteins. 

The 16c fusion protein is localised to the ER and seems to be expressed to higher amounts in 

the guard cells as the intensity was almost four times as high as compared to the pavement 

cells. It is possible that the stress of infiltration with Agrobacterium expressing the silencing 

constructs affects accumulation of this protein throughout the whole plant as also 

uninfiltrated, systemic leaves showed a reduction in GFP intensity. It is also conceivable that 

this is due to the high amount of variation I observed between plants and leaves of this 

genotype. In contrast, the GFP intensity in guard cells was unaffected in the pFLS2::FLS2-GFP 

plants and only the pavement cell intensity significantly decreased. Also, systemic leaves 

were unaffected at 6 dpi in this phenotype suggesting that the decrease in GFP intensity in 

systemic tissues observed in 16cGFP plants is not a common trend and probably not due to 

the virus-induced silencing construct. As FLS2 is plasma membrane localised and involved in 

defence activation it is more similar to the components I want to silence in pavement cells 

than the ER localised 16c protein. I therefore conclude that this silencing approach is suitable 

to silence defence components in pavement cells while leaving guard cells unaffected. 

Previous studies have identified and promoted promoters as guard cell-specific and useful 

research tools. In this study I directly compared cell type-specific promoters side by side. 

Comparisons in T1 plants proved impossible as many plants did not show any GFP 

accumulation at all (Figure 3.4), as all T1 are hemizygous for the transgene. However, after 

propagation I was able to compare all promoters in the T2 generation. Through confocal 

microscopy on several T2 plants per promoter I was able to determine that some of the 

previously published promoter are not suitable to drive guard cell-specific expression (Figure 
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3.5). The differences between my observations and the published results can be explained 

through the difference in techniques used to assess guard cell-specificity. Four out of five of 

those studies exclusively used Promoter::GUS fusions to evaluate promoter specificity (Gray 

et al., 2000; Galbiati et al., 2008; Rusconi et al., 2013; Ronzier et al., 2014). One study also 

included Promoter::YC3.60 constructs to image calcium signalling in guard cells and 

evaluated the expression pattern by confocal microscopy (Yang et al., 2008). The same study 

compared the expression strength of the pGC1 promoter with pMYB60 and pKAT1 based on 

guard cell-specific micro-array data. They concluded that pGC1 is the strongest promoter and 

have shown successful silencing of GFP in guard cells when driving an antisense GFP 

construct with this promoter. However, we could not reproduce their results that this 

promoter was very specific expression in guard cells. Localisation experiments with 

transgenic plants by confocal microscopy performed by Ben Petre and Michaela Kopischke 

indicated this promoter to be leaky. Differences observed could be due to the different 

microscopes used or excitation wavelengths. (Yang et al., 2008) used a GFP excitation 

wavelength of 440 nm, while our lab commonly uses 488 nm. We concluded that this 

promoter was unsuitable for our desired application which requires a guard cell-specific 

promoter. We chose microscopy as the optimal method to determine specificity, because it 

allows for high-throughput screening, as well as having high sensitivity. Differences in 

expression patterns between our study and studies using Promoter::GUS fusions can be 

explained by differences in sensitivity between assays.  

There are already several useful resources for researchers to determine expression patterns 

of proteins between tissues, upon certain stimuli and during development. Such an example 

is the eFP browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) that offers such 

information for both Arabidopsis thaliana and Oryza sativa. Another example is the 

Genevestigator (https://genevestigator.com/gv/) that offers curated expression data for 

several organisms, including ten plant species. While these are useful tools, they can only be 

considered starting points and the responsibility to verify these results still lie with the 

researchers conducting experiments based on data obtained from these websites. Especially 

if one wants to draw conclusions regarding responses of only one cell type or tissue. In this 

study, I provide this useful information on specificity for guard cell expression. This study will 

therefore be a useful resource for future scientists to identify a suitable promoter for guard 

cell-specific expression.  

 

http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
https://genevestigator.com/gv/
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4. Stomatal immunity involves guard cell-specific and non-

autonomous signalling events 

4.1. Introduction 

Plants have evolved complex and highly regulated molecular signalling pathways to respond 

to the plethora of stresses to which they are exposed. Despite the considerable progress that 

led to a conceptual understanding of these regulatory pathways and unravelled key 

molecular components underlying plant responses, our understanding remains limited. With 

global warming, an increasing population and an increasing number of invading pathogens, 

it has become even more important to understand and deploy those mechanisms. According 

to estimates yield losses due to abiotic stresses such as drought, salinity and extreme 

temperatures can reach more than 50% for major crop plants (Boyer, 1982; Harrison et al., 

2014). In addition to abiotic stresses plants also suffer from biotic stresses. Especially plant 

diseases pose a great challenge for agriculture. Some diseases are considered a great threat 

to our food security and the most severe diseases have been compiled in the list of “The Big 

7”(AAAS, 1998). Wheat stem rust, for instance, can cause yield losses greater than 40% to 

the global harvest. 

An important tool for the plant to respond to these abiotic and biotic stimuli are the stomata. 

Formed by a pair of guard cells that control the size of the aperture by means of osmotically 

driven water transport, stomata enable active control over water loss and gas exchange, but 

also respond to pathogens trying to gain access into plant tissues through natural openings. 

Bacteria are one group of such opportunistic pathogens that rely on access into the leaf 

interior to establish a successful infection. The ability to close the stomata upon recognition 

of a pathogen and to change the outcome of infection to the disadvantage of the pathogen 

is referred to as stomatal immunity (Melotto et al., 2006). This is mediated by Pattern 

Recognition Receptors (PRRs) that perceive Microbe-Associated Molecular Patterns 

(MAMPs) at the plasma membrane and are primary sensors of the plant’s immune system. 

FLS2 is the major PRR mediating immunity against Pst DC3000 (Zipfel et al., 2004). Upon 

MAMP perception FLS2 associates with its co-receptor BAK1 (Chinchilla et al., 2007)  and the 

associated kinase BIK1 initiates ROS production via RBOHD (Kadota et al., 2014), as one of 

the earliest measurable responses. Subsequently MAP-Kinase cascades lead to the activation 

of further immune responses (Boller & Felix, 2009). While plant immune responses have 
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been widely studied, only few studies have taken differences between cell types into 

account.  

Once fully differentiated, guard cells are symplastically isolated as cell wall material is 

deposited upon plasmodesmatal connections during the differentiation process (Wille & 

Lucas, 1984; Palevitz & Hepler, 1985). This isolation and their unique ability of reversibly 

changing their shape has led to the hypothesis that guard cells act autonomously when 

initiating opening or closure. Consequently, studies have been conducted that showed that 

guard cells mediate blue light-induced opening and ABA-induced closure in an autonomous 

manner (Cañamero et al., 2006; Bauer et al., 2013). Whether this remains true for other 

stimuli has yet to be shown. Furthermore, it has never been studied whether other cell types 

have the capacity to signal to guard cells and alter the size of aperture when guard cells 

cannot respond. 

To understand whether stomatal closure is an autonomous guard cell response or whether 

pavement cells are able to induce closure, I developed genetic resources that either lead to 

a guard cell-specific complementation or guard cell-specific gene knock-down. To this end I 

employed the guard cell-specific promoter pMYB60 (Rusconi et al., 2013 and Chapter 3) to 

complement knock-out mutants only in guard cells. In parallel, I designed artificial micro 

RNAs that can be expressed under this promoter for a cell type-specific knock-down of genes.  

In this study I show that MAMP-induced stomatal closure is mediated by both autonomous 

and non-autonomous signalling events. Guard cell-excluding silencing of RBOHB and SERK3 

in Nicotiana benthamiana leaves stomata responsive to MAMP treatment, although to a 

lesser extent than the wild-type. Transgenic Arabidopsis thaliana plants that express FLS2 in 

a guard cell-specific manner close their stomata in response to MAMP treatment in a wild-

type-like manner. This guard cell-specific recognition is furthermore sufficient for resistance 

against bacterial pathogens. Through Agrobacterium-mediated transformation, I 

complemented EFR and RBOHD only in pavement cells and show that pavement cells can 

induce stomatal closure in response to elf18 in Nicotiana benthamiana. Expression of 

amiRNAs targeting FLS2 under the control of a constitutive promoter rendered guard cells 

unresponsive to flg22 treatment. The same amiRNAs were expressed under the control of 

the guard cell-specific promoter pMYB60 and transgenic plants remained wild-type-like 

stomatal closure responses to flg22 treatment and susceptibility to Pst DC3000. Together, I 

show that both cell-type specific and non-autonomous signalling events occur to mediate 

MAMP-induced stomatal closure.  
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4.2. Results 

4.2.1. Guard cell-excluding VIGS of NbSERK3a/b and NbRBOHB demonstrates guard cell 

autonomy 

In chapter three I demonstrated that virus-induced gene silencing can silence genes in 

pavement cells while leaving guard cells unaffected when applied at the right developmental 

stage of the leaf. To investigate guard cell autonomy in MAMP-triggered stomatal closure, I 

silenced components in pavement cells that are known to be important for this response. 

Previous studies have demonstrated that ROS production via RESPIRATORY BURST OXIDASE 

HOMOLOGUE D (RBOHD) is crucial for MAMP-induced stomatal closure (Kadota et al., 2014) 

and that BRI1-ASSOCIATED RECEPTOR KINASE (BAK1) is necessary for defence initiation via 

FLS2 (Chinchilla et al., 2007). I therefore silenced ROS production by targeting the N. 

benthamiana homolog of AtRBOHD, the primary NADPH oxidase after MAMP perception 

(TRV::NbRBOHB) and BAK1, the co-receptor of FLS2 (TRV::NbSERK3a/b) (Heese et al., 2007; 

Segonzac et al., 2011). I infiltrated the GFP-targeting silencing construct into wild-type N. 

benthamiana as a control as this plant does not express GFP. This allowed me to determine 

whether the infiltration of a silencing construct has an effect on either of the performed 

assays. Six days after the silencing constructs were infiltrated, I conducted ROS and stomatal 

closure assays to characterise the autonomy of guard cells.  

Uninfiltrated Nicotiana benthamiana wild-type leaves and leaves infiltrated with the control 

construct TRV::GFP show a strong ROS burst in response to flg22 trigger (Figure 4.1A). Both 

leaves silenced for NbRBOHB or NbSERK3a/b show strongly reduced ROS production 

compared to controls in response to flg22, demonstrating that silencing was indeed 

successful. Leaf discs from the same leaves were also subjected to a stomatal closure assay. 

Leaf discs were harvested in the morning of the experiment and incubated in stomata 

opening buffer under constant light to induce opening of all stomata. Two hours later the 

MAMP treatment was applied for two hours before the apertures were imaged and 

measured using ImageJ. Uninfiltrated wild-type N. benthamiana leaves show a significantly 

reduced stomatal aperture after flg22 treatment, as does the TRV::GFP control construct 

(Figure 4.1B). Leaves that had silenced pavement cells for ROS production or MAMP 

perception showed less closure to flg22 trigger (p < 0.05). As in this transient setup guard 

cells were not silenced and remained the only cells with full capacity for producing ROS and 

initiating defence signalling, these results provide evidence that guard cells can initiate 

stomatal closure in an autonomous manner. However, the stomatal closure response is not  
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Figure 4.1: Guard cells act autonomously in MAMP-induced stomatal closure in transient assay. 5-
week-old N. benthamiana plants were infiltrated with TRV::GFP as control or TRV::NbRBOHB or 
TRV::NbSERK3a/b.  
A. Flg22-induced ROS production is strongly reduced in silenced N. benthamiana leaves. Graph 
shows flg22-induced ROS burst on 48 leaves from 6 plants per treatment. Data show mean from 
one independent experiment (n=3 independent experiments). Error bars indicate SD from mean.  
B. Guard cell closure in silenced N. benthamiana plants is reduced but not abolished. Graph shows 
flg22-induced stomatal closure on 3 leaves from 3 plants per treatment in per cent. mock: stomata 
opening buffer. At least 60 stomata per combination of genotype and treatment were measured in 
Image J. Graph shows data from one representative experiment. Experiment was performed three 
times with similar results. Error bars indicate SD from mean of each genotype and treatment 
combination. Letters indicate significance levels (two-way ANOVA followed by Tukey’s test, p < 
0.05).  

 

as pronounced as in control leaves. This could be a limitation of the transient expression 

approach and further experiments were conducted to verify these results in stable 

transgenic plants. 
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4.2.2. Guard cell-specific complementation of RBOHD 

4.2.2.1. Generation of guard cell-specific RBOHD complementation lines in Arabidopsis 

thaliana  

The NADPH oxidases RBOHD and RBOHF generate ROS in the apoplast. ROS production is 

important for flg22-induced stomatal closure as the rbohd rbohf double mutant is insensitive 

to flg22 in stomatal closure assays (Kadota et al., 2014). Since ROS is produced in the apoplast 

it could originate from many cell-types it is not known which cell type is the primary source 

of ROS that leads to induction of stomatal closure. To see whether the generation of ROS by 

two single guard cells is sufficient, I generated Arabidopsis thaliana expressing RBOHD under 

the control of the guard cell-specific promoter pMYB60 (as described in chapter one) in the 

rbohd null-mutant. The Golden Gate compatible AtRBOHD was synthesised by ENSA and I 

cloned it into a level1 expression cassette with the guard cell-specific promoter pMYB60. To 

visualise RBOHD localisation it was N-terminally tagged with GFP or mCherry. Transgenic 

lines were generated by the TSL Tissue Culture Team using the floral dip method and positive 

transformants identified by the red seed coat from the pFAST-Red plant selection cassette 

(Shimada et al., 2010). This selection method makes use seed-specific promoter that drives 

expression of an oil body membrane protein fused to RFP. The marker is only expressed in 

dry seeds during dormancy making it easy to screen seeds to only grow transformed plants 

(Shimada et al., 2010). Positive transformants were propagated and characterised in the T2 

generation. 

4.2.2.2. rbohd/pMYB60::GFP-RBOHD and rbohd/pMYB60::mCherry-RBOHD plants appear to 

have accumulation of the cleaved tag in the tonoplast 

pFAST-Red-positive transgenic plants were grown on soil under short day conditions (section 

2.6.1.3) and their expression pattern of tagged RBOHD was evaluated using a confocal Laser-

Scanning Microscope (Leica SP5). Plants expressing mCherry-tagged RBOHD showed a strong 

signal of mCherry in the guard cells that wraps around the chloroplasts, indicative of 

tonoplast localisation (confocal micrographs are shown in Figure 4.2B). While GFP-RBOHD 

plants show a weaker signal, upon closer inspection the GFP signal can also be observed in 

the tonoplast (confocal micrographs in Figure 4.2A). This suggests that fusion tags are 

cleaved from RBOHD or that the whole fusion protein is degraded in the vacuole. 
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Figure 4.2: pMYB60::GFP-RBOHD and pMYB60::mCherry-RBOHD plants show tag accumulation in 
the tonoplast and surrounding cells. 
A. Confocal micrographs of rbohd/pMYB60::GFP-RBOHD plants show leaky expression and GFP 
accumulation in the tonoplast. Leaf discs from five-week-old Arabidopsis thaliana transgenic plants 
grown in soil under short day conditions were harvested and observed with a confocal laser-
scanning microscope (Leica SP5).  Squares indicate magnified region. Connected images are single 
slices magnified 28.5 times from the shown maximum projection. Bars indicate 10 µm. Micrographs 
are shown from one experiment. Similar results were observed across 20 independent T2 plants.  
B. Confocal micrographs of rbohd/pMYB60::mCherry-RBOHD plants show leaky expression and 
mCherry accumulation in the tonoplast of guard and surrounding cells. Leaf discs from five-week-
old Arabidopsis thaliana transgenic plants grown in soil under short day conditions were harvested 
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4.2.2.3. Guard cell-specific GFP-RBOHD plants and over-expressers show free GFP signal in 

Western Blot 

Next, I performed protein extractions and Western Blot analysis probing with the anti-GFP 

antibody. Transgenic T2 lines, wild-type and rbohd mutants were grown in soil for five weeks 

under short day conditions. One full leaf was snap frozen in liquid nitrogen, ground to a fine 

powder and proteins were extracted before they were fractionated by SDS-PAGE and blotted 

onto PVDF membrane using the semi-dry method. No GFP signal could be detected in 

transgenic lines expressing pMYB60::GFP-RBOHD plants while the over-expresser line 

pUBQ10::GFP-RBOHD showed a positive fusion-protein band (data not shown). I therefore 

performed guard cell-enrichments before extracting proteins. For this, 1g of leaf material 

was repeatedly blended with crushed ice and ultrapure water until mainly epidermal peels 

remained intact. The destroyed mesophyll cells and their contents were filtered and the 

epidermal peels collected and snap frozen in centrifuge tubes following protein extraction. 

Crude extracts were performed alongside the guard cell enrichments and loaded together 

on gels and blots to directly compare the samples. Wild-type Col-0 plants do not show a GFP-

RBOHD or free GFP band as they were not transformed and do not express any GFP-fusion 

protein (Figure 4.3). The over-expresser rbohd/pUBQ10::GFP-RBOHD line has a strong band 

at 130 kDa corresponding to the size of the GFP-RBOHD fusion protein under short and long 

exposure times in both crude and guard cell-enriched extractions. This is consistent with the 

pUBQ10 promoter being a strong promoter in all cell types. However, the over-expressing 

line and two guard cell-specific lines show free GFP at 25 kDa under short exposure as do all 

lines under long exposure. Lines 1-8, 1-9, 1-15 and 1-16 show very low GFP-RBOHD 

accumulation, as the band can only be detected after very long exposure of the membrane. 

No bands corresponding to GFP-RBOHD can be detected in line 1-6 crude or guard cell-

enriched samples. Protein concentrations between crude and guard cell-enriched 

extractions were adjusted using Bradford protein quantification. Since guard cells have lower 

photosynthetic rates than mesophyll cells, the band corresponding to rubisco is reduced in 

guard cell-enriched samples, compared to crude extracts in the Coomassie Brilliant Blue 

staining (Figure 4.3). However, there seems to be a guard cell-specific band of an unknown 

protein between 35 and 25 kDa that is stronger in guard cell-enriched samples indicating that  

and imaged with a confocal laser-scanning microscope (Leica SP5). Squares indicate magnified 
region. Connected images are single slices magnified 28.5 times from the shown maximum 
projection. Bars indicate 10 µm. Micrographs are shown from one experiment. Similar results were 
observed across 20 independent T2 plants. 
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guard cell-enrichment was indeed successful. Together, these results suggest that GFP-

RBOHD accumulation is very low and a high amount of GFP-tag is cleaved in transgenic lines 

generated in this study.  

4.2.2.4. ROS production between transgenic lines varies strongly 

To further characterise the transgenic plants, I performed luminol-based ROS assays on leaf 

discs of five-week-old soil-grown plants in the T2 generation. Figure 4.4 shows the apoplastic 

ROS accumulation of selected lines. Wild-type shows a strong transient production of ROS  

 

Figure 4.3: pMYB60::GFP-RBOHD plants show very low fusion protein expression and a high amount 
of free, cleaved GFP. Whole leaves from 5-week-old soil-grown Arabidopsis thaliana were used for 
crude extractions and 1g of leaf material from five T2 plants were used for guard cell enrichment. 
For guard cell enrichments leaves without central veins were blended for 60 seconds in a kitchen 
blender with 250 ml ultrapure water and crushed ice. Epidermal peels were collected through 
filtering and blending was repeated twice. Epidermal peels were snap frozen in liquid nitrogen and 
proteins were extracted as described in section 2.6.16. C: crude extract; GC: Guard cell enrichment; 
CBB: Coomassie Brilliant Blue. 
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Figure 4.4: ROS signatures of rbohd/pMYB60::RBOHD lines in response to flg22 in the T2 generation 
with different tags. 
A. rbohd/pMYB60::GFP-RBOHD plants have ROS signatures that vary in intensity. B. The ROS signature 
of several transgenic plants expressing rbohd/pMYB60::GFP-RBOHD varies strongly. C. Transgenic 
lines expressing mCherry-RBOHD guard cell-specifically have very different ROS signatures.  
In a luminol-based assay, leaf discs of 5-week-old transgenic A. thaliana plants were imaged for 45 
minutes by an ICCD photon-counting camera. Leaf discs were harvested on the evening before the 
assay and left to rest over night. Graph shows data from one experiment. 

A 

B 

C 

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

0

2 0 0

4 0 0

6 0 0

8 0 0

t im e  in  m in u t e s

R
e

la
ti

v
e

 L
ig

h
t 

U
n

it
s rb o h d /p M Y B 6 0 ::m C h e rry -R B O H D  1 -1

rb o h d /p M Y B 6 0 ::m C h e rry -R B O H D  1 -2

rb o h d /p M Y B 6 0 ::m C h e rry -R B O H D  1 -3

rb o h d /p M Y B 6 0 ::m C h e rry -R B O H D  1 -4

rb o h d /p M Y B 6 0 ::m C h e rry -R B O H D  1 -5

rb o h d /p M Y B 6 0 ::m C h e rry -R B O H D  1 -6

C o l- 0

rb o h d /p M Y B 6 0 ::m C h e rry -R B O H D  1 -7

rb o h d /p M Y B 6 0 ::m C h e rry -R B O H D  1 -8

0 5 10 15 20 25 30 35 40 45 50 
time in minutes 

R
e

la
ti

ve
 L

ig
h

t 
U

n
it

s 

0 

200 

400 

600 

800 

Col-0 
rbohd/pMYB60::mCherry-RBOHD 1-1 
rbohd/pMYB60::mCherry-RBOHD 1-2 
rbohd/pMYB60::mCherry-RBOHD 1-3 
rbohd/pMYB60::mCherry-RBOHD 1-4 
rbohd/pMYB60::mCherry-RBOHD 1-5 
rbohd/pMYB60::mCherry-RBOHD 1-6 
rbohd/pMYB60::mCherry-RBOHD 1-7 
rbohd/pMYB60::mCherry-RBOHD 1-8 

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

0

2 0 0

4 0 0

6 0 0

8 0 0

t im e  in  m in u t e s

R
e

la
ti

v
e

 L
ig

h
t 

U
n

it
s

rb o h d /p M Y B 6 0 ::G F P -R B O H D  1 -6

rb o h d /p M Y B 6 0 ::G F P -R B O H D  1 -7

rb o h d /p M Y B 6 0 ::G F P -R B O H D  1 -8

rb o h d /p M Y B 6 0 ::G F P -R B O H D  1 -9

rb o h d / p M Y B 6 0 ::G F P -R B O H D  1 -1 0

rb o h d / p M Y B 6 0 ::G F P -R B O H D  1 -1 1

C o l- 0

rb o h d / p M Y B 6 0 ::G F P -R B O H D  1 -1 2

rb o h d / p M Y B 6 0 ::G F P -R B O H D  1 -1 3

rb o h d / p M Y B 6 0 ::G F P -R B O H D  1 -1 4

rb o h d / p M Y B 6 0 ::G F P -R B O H D  1 -1 5

rb o h d / p M Y B 6 0 ::G F P -R B O H D  1 -1 6

0 5 10 15 20 25 30 35 40 45 50 
time in minutes 

R
e

la
ti

ve
 L

ig
h

t 
U

n
it

s 

0 

200 

400 

600 

800 
Col-0 
rbohd/pMYB60::GFP-RBOHD 1-6 
rbohd/pMYB60::GFP-RBOHD 1-7 
rbohd/pMYB60::GFP-RBOHD 1-8 
rbohd/pMYB60::GFP-RBOHD 1-9 
rbohd/pMYB60::GFP-RBOHD 1-10 
rbohd/pMYB60::GFP-RBOHD 1-11 
rbohd/pMYB60::GFP-RBOHD 1-12 
rbohd/pMYB60::GFP-RBOHD 1-13 
rbohd/pMYB60::GFP-RBOHD 1-14 
rbohd/pMYB60::GFP-RBOHD 1-15 
rbohd/pMYB60::GFP-RBOHD 1-16 



94 
 

upon flg22 treatment while rbohd mutant plants do not show any ROS production (Figure 

4.4A). ROS production in wild-type and transgenic plants increases until it peaks at 10 

minutes after MAMP treatment and declines thereafter until it reaches basal levels between 

35 and 40 minutes post treatment. The over-expressing plant expressing GFP-RBOHD under 

the constitutive pUBQ10 promoter shows a very strong ROS accumulation that exceeds the 

wild-type response. Guard cell-specific transgenic lines 2-1 and 2-2 that showed a GFP signal 

detectable with the confocal Laser Scanning Microscope show wild-type-like and stronger 

than wild-type ROS accumulation, respectively. Line 1-8 has a slightly reduced ROS 

accumulation compared to wild-type, while lines 1-6, 1-9, 1-14 and 1-15 have a strongly 

reduced ROS response. Although lines 1-14 and 1-15 seem to have the strongest GFP-RBOHD 

band this does not reflect in their capacity to accumulate apoplastic ROS. 

As a consequence of the high variance in ROS phenotypes, I evaluated the response of 40 

different T2 plants originating from two independent transgenic events. I could not observe 

any correlation between transgenic events, the fusion-protein accumulation and the ROS 

response. To illustrate the broad range of responses by both GFP-RBOHD and mCherry-

RBOHD complemented plants these are shown in Figures 4.4A, B and C. The ROS responses 

range from rbohd-like, to wild-type-like to over-expresser-like. Taken together with the 

observation that the majority of the GFP- and mCherry-tag is cleaved off in the transgenic 

plants, I decided not to characterise these plants any further. 
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4.2.3. Guard cell-specific complementation of FLS2 in Arabidopsis thaliana 

4.2.3.1. Guard cell-specific complementation of FLS2 with the promoter pMYB60 

To assess whether the perception of a ligand by only guard cells is sufficient to mount the 

full closure response, I complemented fls2 receptor knock-out mutants with constructs 

driving expression exclusively in guard cells. Making use of the pMYB60, I created plants that 

express FLS2 only in guard cells and can therefore only perceive flg22 in these cells. To 

visualise the expression pattern of the promoter, FLS2 was tagged with GFP and the 

transgenic plants were examined with a confocal laser-scanning microscope. Confocal 

micrographs in Figure 4.5A show that FLS2-GFP signals can only be observed in guard cells in 

two independent transgenic lines in the T2 generation. The GFP signal can be detected at the 

plasma membrane and I could not observe any GFP signal in cytoplasm or tonoplast that 

would suggest cleavage of the tag as was the case for the GFP- and mCherry-RBOHD 

transgenics. Plants whose expression pattern was confirmed using confocal microscopy were 

used for further assays. 

4.2.3.2. pMYB60::FLS2-GFP lines express FLS2-GFP to different levels 

Since the guard cell-specific RBOHD lines generated in this study proved unsuitable due to 

the cleavage and possible degradation of the tag and the protein, I decided to examine 

protein expression for the guard cell-specific FLS2 transgenics. To this end I extracted 

proteins from five-week-old soil-grown Arabidopsis thaliana plants and performed a 

Western Blot making use of the -FLS2 antibody. As a control, I included Col-0 wild-type, two 

fls2 null-mutants and a transgenic plant generated in our lab that has both the FLS2 wild-

type protein and a FLS2-3xMyc-GFP fusion protein (Col-0/pFLS2::FLS2-3xMyc-GFP). Wild-

type Col-0 shows a single band at around 170 kDa that corresponds to the wild-type FLS2 

protein (Figure 4.6A). Both fls2 null-mutants do not show a band at either short or long 

exposure of the film. The transgenic plant Col-0/pFLS2::FLS2-3xMyc-GFP shows two bands, 

the lower one corresponding to the FLS2 wild-type protein and the higher band 

corresponding to the FLS2-3xMyc-GFP fusion protein. All the guard cell-specific transgenic 

plants show a single band with a molecular weight between that of the wild-type FLS2 and 

the FLS2-3xMyc-GFP proteins, as it is lacking the 3xMyc tag and is therefore slightly smaller. 

The pMYB60::FLS2-GFP transgenics also show a lower signal of the protein than wild-type or 

transgenic plants. The transgenic plant expresses the fusion protein under its native 

promoter  
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Figure 4.5: Promoter pMYB60 drives guard cell-specific expression and allows cell type-specific 
mutant complementation. 
A. Confocal micrographs of 2 independent 5-week-old transgenic A. thaliana plants expressing 
pMYB60::FLS2-GFP. Transgenic Arabidopsis thaliana expressing fls2/pMYB60::FLS2-GFP plants 
show GFP localisation at the plasma membrane of guard cells. fls2 (SALK_093905) knock-out 
mutants were stably transformed to express FLS2-GFP only in guard cells making use of the guard 
cell-specific promoter pMYB60. Pictures show confocal micrographs of two independent transgenic 
lines in the T2 generation. Bars indicate 10 µm. Experiment was performed three times with similar 
results (n=3 independent experiments). 
B. Transgenic plants expressing pMYB60::FLS2-GFP show only little ROS burst to flg22. elf18-
induced ROS burst is like wild-type. In a luminol-based assay leaf discs of 5-week-old transgenic A. 
thaliana plants were imaged for 45 minutes by an ICCD photon-counting camera. Graph shows data 
from one representative experiment. Experiment was performed three times with similar results 
(n=3 independent experiments). Graph shows data from T3 plants. 
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that is expressed in all cell types. In plants that express FLS2 only in guard cells, the protein 

is much more diluted in the protein extractions as compared to the plants that express FLS2 

in all cell types. As I could only observe a single band that runs higher than the wild-type FLS2 

protein it appears that the GFP-tag is not cleaved, but that the whole fusion-protein 

accumulates in guard cells (Figure 4.6A). While all transgenic lines express FLS2-GFP, the 

protein accumulation between transgenics varies. The strongest expresser seems to be line 

2-2, while 1-1 is the weakest expresser. Together with the results from the ROS assays, I 

conclude that the transgenic plants generated that express FLS2 only in guard cells are 

suitable for further experiments. 

4.2.3.3. flg22-triggered ROS production is strongly reduced in fls2 and guard cell-specific 

expressers of FLS2 

ROS production is an important early immune response and required for induction of 

stomatal closure. I therefore performed luminol-based ROS assays with our transgenic plants 

to evaluate their capacity to produce ROS in response to MAMPs. Wild-type Col-0 shows a 

strong ROS accumulation after flg22 and elf18 treatment, but to a lesser extent for the case 

of elf18. Mutants that lack FLS2 do not produce ROS in response to flg22 but show a wild-

type-like response to elf18 treatment (Figure 4.5B). Transgenic plants expressing FLS2 in 

guard cells show low ROS production to flg22 trigger compared to wild-type plants. ROS 

production in response to elf18 is unaltered from the wild-type response. Figure 4.5B shows 

the ROS accumulation of the guard cell-specific expressers of FLS2 in detail, compared to the 

fls2 knock-out mutants. While the response of the guard cell-specific FLS2 expressers is very 

low, a distinguishable peak can be observed at 10 minutes for lines 1-2 and 2-1. Since the 

complementation occurred only in guard cells, ROS production across the whole well from 

the whole leaf disc is not sufficient to be detected by this assay. This is in line with our 

observation that ABA-induced ROS production that occurs only in guard cells is almost 

undetectable in this assay in our hands. This demonstrates that the expression of FLS2 by the 

pMYB60 promoter is specific enough to ensure that only guard cells produce ROS. 
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Figure 4.6: Guard cell-specific expression of FLS2 is sufficient to induce stomatal closure to flg22. 
A. Transgenic fls2/pMYB60::FLS2-GFP plants express fusion protein to different levels. Whole leaf 
protein extracts of five-week-old soil-grown Arabidopsis thaliana plants were blotted with the FLS2 
antibody. CBB: Coomassie Brilliant Blue. Experiment was performed three times with similar results 
(n=3 independent experiments). Experiment was performed on plants in the T3 generation. 
B. MAMP-induced stomatal closure is enhanced in plants expressing FLS2 in guard cell-specific 
manner. Leaf discs from 5-week-old Arabidopsis thaliana plants were harvested in the morning and 
incubated for 2 hours in Stomata Opening Buffer in the light. After two hours MAMP or ABA 
treatment was applied to leaf discs. Two hours after treatment leaf discs were imaged and stomatal 
aperture was measured using ImageJ. Genotypes were hidden until after measurements to avoid 
unconcious bias. At least 150 stomata were measured per combination of genotype and treatment. 
Graph shows data from one representative experiment performed on plants in the T3 generation. 
Experiment was performed three times with similar results (n=3 independent experiments). Error 
bars indicate SD from mean. Letters indicate significance levels (two-way ANOVA followed by 
Tukey’s test, p < 0.05). 
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4.2.3.4. MAMP recognition restricted to guard cells is sufficient to induce stomatal closure in 

response to flg22 

The perception of MAMPs by cell-surface receptors leads to stomatal closure. To test 

whether this response can be autonomously induced by guard cells, I subjected plants that 

express FLS2 only in guard cells to MAMP treatment and evaluated their stomatal response. 

Wild-type Col-0 shows a significant reduction of stomatal aperture in response to flg22 and 

ABA treatment (Figure 4.6B). Plants lacking the fls2 receptor do not close their stomata in 

response to flg22 but have a wild-type-like ABA closure response (Figure 4.6B). I therefore 

conclude that guard cell-specific perception of flg22 is sufficient for a full stomatal closure 

response to the MAMP. 

4.2.3.5. pMYB60::FLS2-GFP plants are not more susceptible to infection by Pst DC3000 

To test whether expression of FLS2 in guard cells is sufficient for immunity to bacteria, I 

surface inoculated the transgenic plants with two strains of the bacterium Pseudomonas 

syringae pv. tomato (Pst) that is able to establish successful infection on Arabidopsis 

thaliana. I tested their response to the highly virulent Pst DC3000 strain and a strain of Pst 

DC3000 cor- that lacks coronatine, which renders this strain less virulent (Mittal & Davis, 

1995). Plants in the T3 generation were grown for five weeks on soil under short day 

conditions. Plants were watered and covered to induce opening of stomata a day prior to 

inoculation and bacteria were sprayed evenly on the abaxial and adaxial sides of leaves. Leaf 

tissue was harvested three days after inoculation. Leaf tissue was ground, diluted and spread 

on King’s B plates containing appropriate antibiotics. Two days later colony forming units 

(cfu) were counted which correspond to the ability of the bacteria to gain access and 

proliferate in the leaf tissue. In spray inoculations both fls2 knock-out strains are more 

susceptible to both strains of bacteria (Figure 4.7A and B). Plants expressing FLS2 in guard 

cells specifically are not hypersusceptible but show wild-type-like infection rates by Pst 

DC3000. This experiment was performed four times in total with similar results. Some guard 

cell-specific expressers of FLS2 were more susceptible than the wild-type to infection with 

Pst DC3000 cor- (one-way ANOVA, p < 0.05). The plants that were more susceptible than the 

wild-type are also the ones that showed the lowest accumulation of FLS2 (Figure 4.6A). This 

suggests that susceptibility to Pst DC3000 cor- depends on the expression level of FLS2 in guard 

cells. When sufficient FLS2 is expressed in guard cells the induced FLS2 signalling response is 

enough to lead to wild-type-like susceptibility levels. I therefore conclude that guard cells 

can act autonomously to induce MAMP-mediated stomatal closure. 
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Figure 4.7: MAMP recognition that is restricted to guard cells is sufficient for resistance to bacteria. 
A. pMYB60::FLS2-GFP plants are as susceptible as wild-type to the virulent strain Pst DC3000. Both 
fls2 knock-out mutants are significantly more susceptible than wild-type. Five-week-old plants were 
spray inoculated with Pst DC3000 at an OD600=0.2. Samples were ground 3 days after inoculation 
and colony forming units per square cm2 determined. Graph shows data from four independent 
experiments. Six plants per genotype were sprayed and three leaf discs per plant harvested in each 
independent experiment. Error bars indicate SD from mean and asterisks indicate significant 
differences from wild-type (one-way ANOVA, *p < 0.05). Infection assays were performed on plants 
in the T3 generation. 
B. Five-week-old plants were spray inoculated with Pst DC3000 cor- at an OD600=0.2. Samples were 
ground 2 days after inoculation and colony forming units per square cm2 determined. Graph shows 
data from three independent experiments. Six plants per genotype were sprayed and three leaf 
discs per plant harvested in each independent experiment. Error bars indicate SD from mean and 
asterisks indicate significant differences from wild-type (student’s t-test, *p < 0.05, **p < 0.01). 
Infection assays were performed on plants in the T3 generation. 

 

4.2.4. Silencing of NbRBOHB and pavement cell complementation with AtEFR and 

AtRBOHD leads to restoration of the elf18-induced stomatal closure 

I demonstrated by using transient and stable transgenic approaches that guard cells possess 

the ability to execute stomatal closure in response to MAMPs without input from 

surrounding pavement cells. However, this does not address the question of whether 

pavement cells have the ability to signal to guard cells and induce closure when guard cells 

cannot respond.   

To address this question, I conducted a transient experiment in N. benthamiana in which 

only guard cells can not respond to a MAMP stimulus. To this end, I first silenced whole leaves 

by using the same silencing constructs as before but applying them at an earlier 
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developmental stage of the tissue. At this stage, guard cells are not yet differentiated and 

therefore still connected to the symplast, allowing the virus to silence all cells evenly. Leaves 

were then complemented by Agrobacterium-mediated transformation, which is unable to 

transform guard cells (unpublished). I silenced ROS production by infiltrating the leaves with 

the construct TRV::NbRBOHB. Two weeks later leaves were infiltrated with complementation 

constructs from Arabidopsis thaliana that are unaffected by the applied silencing construct. 

To introduce MAMP perception to elf18, I introduced EF-TU RECEPTOR (AtEFR) as it is not 

naturally present in N. benthamiana and to re-introduce ROS production I complemented 

with AtRBOHD. 

As control plants, I used transgenic N. benthamiana plants expressing p35S::EFR, since 

wildtype N. benthamiana plants have no EFR receptor and are blind to elf18. Figure 4.8A 

shows elf18-induced ROS production in uninfiltrated and leaves infiltrated with silencing and 

complementation constructs. Upon elf18 treatment leaves from p35S::EFR shows strong ROS 

accumulation, whereas leaves silenced for NbRBOHB and complemented with either 

AtRBOHD or AtEFR have strongly reduced ROS production compared to wild-type. Leaves 

silenced for NbRBOHD and complemented with both AtEFR and AtRBOHD show stronger ROS 

accumulation than the plants complemented with only one component. This demonstrates 

that silencing of NbRBOHB was successful and that complementation of both AtEFR and 

AtRBOHD is necessary to see a ROS response to elf18. While this ROS response is significantly 

lower than the plant over-expressing EFR through the p35S promoter, it resembles the ROS 

response induced by flg22 in N. benthamiana (Figure 4.1A). I therefore conclude that 

complementation with RBOHD and EFR was successful in restoring the response leading to 

ROS accumulation to MAMPs. Leaf discs from the same plants were also subjected to 

stomatal closure assays, as described above. Control plants significantly closed their stomata 

to elf18 treatment (Figure 4.8B). Only the plants that were complemented with both EFR and 

RBOHD showed a stomatal response to elf18 and significantly reduced their aperture. Plants 

that had only one component complemented were either lacking the MAMP receptor, or the 

ROS-producing enzyme. This shows that N. benthamiana is, indeed, insensitive to elf18 and 

that ROS production is essential for the elf18-mediated stomatal closure response. As in this 

experiment guard cells were silenced and only pavement cells were complemented, I hereby 

demonstrate that non-autonomous signalling events occur during MAMP-triggered stomatal 

closure in N. benthamiana.  
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Figure 4.8: Stomatal closure does not require guard cell ROS production or signalling via EFR.  
A. Pavement cell complementation with AtEFR and AtRBOHD wild-type-like ROS response to elf18. 
Graph shows elf18-induced ROS burst on 24 leaves from 3 plants per treatment. Error bars indicate 
SD. Graph shows mean from one representative experiment. Experiment was performed twice with 
similar results (n=2 independent experiments). Letters indicate significance levels (one-way 
ANOVA, p << 0.01). Bars indicate SD from mean.  
B. Pavement cell complementation of EFR and RBOHD is sufficient to induce stomatal closure in 
response to elf18. Graph shows elf18-induced stomatal closure on 3 leaves from 3 plants per 
treatment. Graph shows mean from one representative experiment. Experiment was performed 
twice with similar results (n=2 independent experiments). At least 60 stomata were measured per 
combination of genotype and treatment. Bars indicate SD from mean. Letters indicate significance 
levels (two-way ANOVA followed by Tukey’s test, p< 0.05). 
2-week-old N. benthamiana plants were infiltrated with TRV::NbRBOHB. Two to three weeks later 
they were infiltrated with either AtEFR or AtRBOHD alone or together. Transgenic plants expressing 
p35S::AtEFR were used as control.  
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4.2.5. Guard cell-specific knock-down with artificial micro-RNAs in Arabidopsis thaliana 

4.2.5.1. Generation of artificial micro RNAs (amiRNAs) against FLS2 and RBOHD 

The transient assay indicated that pavement cells have the capacity to signal to guard cells. 

To test this in a stable transgenic plant I decided to express artificial micro-RNAs (amiRNAs) 

expressed under the control of the guard cell-specific promoter. I designed the amiRNAs with 

the Web MicroRNA Designer (wmd3.weigelworld.org) choosing FLS2, RBOHD and RBOHF as 

targets of silencing. I chose three different sequences to silence FLS2, two to silence RBOHD 

and two to silence both RBOHD and RBOHF. I generated the amiRNAs following the 

instructions provided on the website and verified the sequences via sequencing. To evaluate 

the amiRNAs for their silencing capacity I expressed them under the constitutive pUBQ10 

promoter and screened the T2 plants for their ROS response to flg22 (this work was carried 

out in association with my internship student Sabine Engel). Figure 4.9A shows the ROS 

responses of all tested transgenic plants. Across all amiRNAs I obtained 144 pFAST-Red 

positive T1 plants. Each amiRNA construct was dipped twice independently and we included 

both transgenic events in the screen. Of each T1 parent I screened three T2 plants for their 

ROS accumulation. The ROS data from each transgenic event was combined to normalise for 

differential expression strengths across T1 individuals. This way I sought to get a true sense 

of silencing efficiency independent of the location of the transgene insertion. Col-0 wild-type 

showed strong accumulation of ROS following flg22 treatment. All three amiRNAs against 

FLS2 reduced a flg22-induced ROS accumulation strongly, while amiRNA-FLS2 (3) showed the 

least reduction and (1) and (2) were about the same. This demonstrates that overexpression 

of these amiRNAs leads to silencing of FLS2 and therefore a reduction in flg22 signalling 

outputs, such as ROS production. Unfortunately, neither of the tested amiRNAs targeting 

RBOHD, or both RBOHD and RBOHF, showed a strong reduction in ROS production in 

overexpressing transgenic plants. This suggests that silencing of RBOHD by the amiRNAs was 

not very efficient and I decided not to pursue these transgenic lines any further.  

To validate the silencing efficiency of amiRNAs against FLS2, I repeated the experiments with 

those transgenic lines that showed a strongly reduced ROS signature in the first screen of 

both amiRNA-FLS2 (1) and (2). Wild-type Col-0 plants showed ROS production after flg22 and 

elf18 treatment while the fls2c null-mutant only produced ROS in response to elf18. The 

plants overexpressing amiRNAs against FLS2 all showed a wild-type-like ROS burst in 

response to elf18 treatment, demonstrating the specificity of the silencing amiRNAs. Indeed, 

in response to flg22 treatment all amiRNA-FLS2 over-expressing lines showed a reduced ROS  
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Figure 4.9: Characterisation of ROS response of transgenic plants expressing amiRNAs 
A. Plants expressing artificial micro-RNAs under the control of the constitutive pUBQ10 promoter 
show reduced ROS accumulation after flg22 treatment. Graph shows means pooled from two 
experiments from plants in the T2 generation in Col-0 background. Error bars indicate SD from 
mean. Experiment was performed once on at least 20 plants per genotype.   
B. Overexpression of amiRNAs targeting FLS2 leads to a strong reduction in ROS production after 
flg22 treatment, but not elf18 treatment. Graph shows mean from one independent experiment. 
Experiment was performed three times with similar results. Error bars indicate SD from mean.  
In a luminol-based assay leaf discs of 5-week-old transgenic A. thaliana plants were imaged for 45 
minutes by an ICCD photon-counting camera. Leaves were harvested the evening before the 
experiment and left to rest in water over-night. 
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signature. While the transgenic plants overexpressing amiRNA-FLS2 (1) still showed a 

residual ROS response, transgenics overexpressing amiRNA-FLS2 (2) showed an almost 

undetectable ROS signature and strongly resemble the fls2c null-mutant (Figure 4.9B). I 

therefore conclude that amiRNA-FLS2 (2) has the highest silencing efficiency and leads to a 

strong reduction of FLS2-mediated signalling outputs. 

4.2.5.2. Guard cell-specific knock-down of FLS2 with the use of amiRNAs under the control 

of pMYB60 

I generated plants expressing the amiRNAs under the control of the guard cell-specific 

promoter pMYB60 to assess their stomatal response to MAMP treatment. These plants 

would have flg22-insensitive stomata which could not mount FLS2-mediated responses. 

Since I showed in Figure 4.9A that expression in whole plants strongly reduced the FLS2-

mediated signalling outputs, expression in guard cells was predicted to reduce FLS2 

accumulation only in the guard cells. To test whether this is indeed the case I performed 

crude and guard cell-enriched protein extractions from five-week-old soil-grown Arabidopsis 

thaliana plants of the T2 generation and probed them with the FLS2 antibody. Figure 4.10 

shows crude and guard cell-enriched extractions side by side for each genotype. Wild-type 

Col-0 plants have almost equal amounts of FLS2 receptor in whole leaf extracts and guard 

cell-enrichments. The fls2 null-mutant has no FLS2 and the over-expresser of amiRNA-FLS2 

(2) shows very low amounts of the FLS2 protein in either extractions (Figure 4.10, top panel). 

The transgenic plants shown in Figure 4.10 were chosen for reduced FLS2 accumulation in 

guard cells but normal accumulation in crude extracts, demonstrating that expression of 

amiRNAs under the control of the pMYB60 promoter indeed only silences FLS2 expression in 

guard cells. Protein amounts were normalised before blotting using the Bradford protein 

quantification assay. As in Figure 4.3 guard cell enrichments showed a weaker band 

corresponding to Rubisco in Coomassie Brilliant Blue Staining (Figure 4.10 lower panel) since 

guard cells have lower amounts of this protein. Just as can be seen in Figure 4.3 there is 

accumulation of an unknown protein between 25 and 35 kDa, presumably corresponding to 

a guard cell-specific protein. In summary, this result demonstrates that guard cell-specific 

silencing of FLS2, by expression of amiRNAs under a guard cell-specific promoter, was 

successful and these plants were therefore selected for further assays. 
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Figure 4.10: Artificial micro-RNAs reduce FLS2 protein accumulation in guard cells.  
Col-0/pMYB60::amiRNA-FLS2 plants show reduced FLS2 accumulation in guard cells compared to 
whole leaf extracts. Whole leaves from five-week-old soil-grown Arabidopsis thaliana were used 
for crude extractions and 1g of leaf material from five T2 plants were used for guard cell 
enrichment. For guard cell enrichments leaves without central veins were blended for 60 seconds 
in a kitchen blender with 250 ml ultrapure water and crushed ice. Epidermal peels were collected 
through filtering and blending was repeated twice. Epidermal peels were snap frozen in liquid 
nitrogen and proteins were extracted as described in section 2.6.16.  C: crude extract; GC: Guard 
cell enrichment; CBB: Coomassie Brilliant Blue. 

 

4.2.5.3. Guard cell-specific knock-down of FLS2 does not alter susceptibility to Pst DC3000 

I subjected the transgenic amiRNA lines with reduced FLS2 accumulation in guard cells 

(Figure 4.10) to spray infection with a virulent bacterial strain Pst DC3000. Experimental 

conditions were the same as described in section 4.2.3.5. The knock-out mutant fls2c was 

more susceptible to infection with Pst DC3000 than wild-type Col-0 (Figure 4.11, one-way 

ANOVA, p < 0.05). The overexpressing line pUBQ10::amiRNA-FLS2 (2) also seems more 

susceptible in some, but not all replicates (three out of four). More experiments should be 

conducted to address whether the overexpressing line is more susceptible than wild-type 

under our experimental conditions. The transgenic lines expressing the amiRNAs targeting 

FLS2 in guard cells are as susceptible to Pst DC3000 infection as wild-type. Since FLS2 

accumulation was strongly reduced in guard cells in these plants they were not able to 

initiate immune responses through FLS2. Nonetheless, their susceptibility phenotype does 

kDa 
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not differ from wild-type plants. This suggests that other cell types are able to signal to guard 

cells and induce stomatal closure during infection. 

 

Figure 4.11: Guard cell-specific knock-down of FLS2 does not impair resistance to Pst DC3000.  
pMYB60::amiRNA-FLS2 plants are as susceptible as wild-type to the virulent strain Pst DC3000. The 
fls2 knock-out mutant is significantly more susceptible than wild-type. Five-week-old plants were 
spray inoculated with Pst DC3000 at an OD600=0.2. Samples were ground 3 days after inoculation 
and colony forming units per square cm2 determined. Graph shows data from four independent 
experiments. Six plants per genotype were sprayed and three leaf discs per plant harvested in each 
independent experiment. Error bars indicate SD and letters indicate significance levels (one-way 
ANOVA, *p < 0.05). 

 

4.3. Discussion 

Through a transient silencing approach and the use of a guard cell specific promoter I have 

demonstrated that MAMP-induced stomatal closure can be executed by guard cells in a cell-

autonomous manner. The stomatal response in the transient assay in Figure 4.1 is not a full 

closure response to the same extent as the uninfiltrated wild-type and the control-silencing 

plants show. As I did not quantify the silencing through qPCR and only used flg22-induced 

ROS accumulation as read-out. While the absence of ROS accumulation as seen in Figure 4.1A 

suggests that silencing was very efficient, it would be necessary to perform additional 

experiments to draw conclusions on the extent of the silencing in guard cells. I can therefore 

not exclude that some guard cells may not have been silenced, which could explain the 
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reduced closure response in Figure 4.1B. As this was a limitation of the transient approach I 

generated stable transgenic plants in Arabidopsis thaliana to draw more definitive 

conclusions. To assess whether guard cell ROS production is sufficient for the induction of 

stomatal closure in response to PAMPs I tried generating plants that express RBOHD only in 

guard cells. Unfortunately, it appeared that tagging of the protein was unsuccessful and was 

cleaved off (Figure 4.2 and 4.3). The GFP and mCherry signals in the confocal micrographs 

seemed to localise to the tonoplast and in the Western Blot I found free GFP in all transgenic 

plants and after both protein extraction methods. Furthermore, the protein abundance of 

GFP-RBOHD I was able to detect in the Western Blot was extremely low. A possible 

explanation is that the tagged protein might be degraded in the vacuole. This seems to be 

independent of the tag as I observed the tonoplast localisation with both GFP and mCherry 

tags. Although this protein has been tagged successfully before (Hao et al., 2014), I used a 

different cloning method, that enables seamless tagging. It is possible that RBOHD requires 

a longer linker region. Complementation of the flg22 receptor FLS2 with a guard cell-specific 

promoter, however, proved sufficient to restore flg22-induced ROS burst (Figure 4.5B), flg22-

induced stomatal closure (Figure 4.6B) and resistance to infection with bacterial pathogens 

(Figure 4.7). Although ROS production in guard cell-specific expressers of FLS2 was non-

significant (Figure 4.5B), the ABA-induced ROS burst that only occurs in stomata is also not 

detectable in this assay in our hands (data not shown). However, that these plants showed a 

positive guard cell closure response to flg22 (Figure 4.6B) and ROS accumulation is required 

for stomatal closure suggests that guard cells are indeed producing ROS. The results of these 

two experiments taken together suggest that our promoter is not leaky, as we would have 

otherwise seen a much stronger ROS response. These results together show that the ability 

to respond autonomously is shared by the ABA and flg22 signalling pathways and even blue 

light-induced stomatal opening (Cañamero et al., 2006; Bauer et al., 2013). Although the 

perception of these stimuli differs dramatically from each other they all can be mediated by 

guard cells in an autonomous manner. This suggests that autonomy is a common feature of 

guard cells irrespective of the stimulus. I have furthermore shown that this is sufficient for 

resistance to a virulent bacterial strain Pst DC3000. This demonstrates that guard cell closure 

in response to MAMPs is an important component of the plant immune response. This is the 

first comprehensive study investigating bacterial immunity at the level of guard cells and 

adds significantly to our knowledge of stomatal immunity. Engineering of water use 

efficiency has already made use of a chimeric guard cell-specific stress-inducible promoter 

(Na & Metzger, 2014)  or manipulating stomatal density (Caine et al., 2018). The knowledge 
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that resistance to certain bacterial pathogens can be mediated by guard cells autonomously, 

may lead to novel engineering approaches of disease control.  

In addition to demonstrating cell-autonomy I have shown by a transient expression in N. 

benthamiana that pavement cells have the capacity to initiate stomatal closure when guard 

cells cannot respond. The transgenic Arabidopsis thaliana plants expressing amiRNAs to 

reduce FLS2 accumulation in guard cells also support this observation. The Western Blot 

shown in Figure 4.10 shows that these transgenic plants indeed show a lower accumulation 

of FLS2 in guard cells than wild-type plants. Nevertheless, these plants showed unaltered 

susceptibility levels to bacterial infection, suggesting that pavement cells can influence 

stomatal aperture during infection. Since the experiments were performed in T2 not all 

plants in this infection assay would be homozygous, which explains why my transgenic plant 

overexpressing the amiRNA targeting FLS2 under the control of the constitutive promoter is 

not significantly more susceptible. This experiment should be repeated in the T3 generation. 

As the stomatal response in the transient assay in N. benthamiana was dependent on ROS 

production through NbRBOHB in N. benthamiana, I hypothesise that apoplastic ROS 

production can be sensed and serve as a local signal to guard cells. The ROS from 

neighbouring cells could be transported into the guard cells by aquaporins as suggested 

previously (Rodrigues et al., 2017). Alternatively, cysteine-rich kinases (CRKs) that have been 

shown to be important for stomatal closure, in response to flg22, could act as ROS sensors 

(Bourdais et al., 2015). Some CRKs are expressed to a higher extent in guard cells than 

pavement cells and show a normal ROS response, but do not close their stomata in response 

to flg22.  

Taken together, my data show that there are both autonomous and non-autonomous 

signalling events involved in MAMP-induced stomatal closure. This is the first study to 

demonstrate that epidermal cells have the capacity to influence stomatal aperture, adding 

an important new layer to our understanding of the regulation of stomatal closure.  
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5. MAMP-induced stomatal closure is mediated by SnRK2.3 

and is independent of ABA biosynthesis 

5.1. Introduction 

As sessile organisms, plants have a particularly demanding job in adapting to a changing 

environment. Due to their nature plants are sophisticated organisms that have acquired a 

vast array of mechanisms to actively adapt and thrive. For efficient photosynthesis under 

such challenging conditions, plants are required to control water loss and gas exchange 

tightly. This happens via leaf pores called stomata at the leaf surface that are actively 

regulated by the plant following different stimuli. But they are also major entry sites for 

certain pathogens such as bacteria and rust fungi who exploit natural openings to gain access 

into plant tissues. Bacteria invade through hydathodes, wounds and stomata. Plants try to 

counteract such invasion by closing their stomata upon recognition of a pathogen and this 

can alter the outcome of infection to the disadvantage of a pathogen (Melotto et al., 2006). 

Perception of an invading pathogen at the cell-surface level is mediated by Pattern-

Recognition Receptors (PRRs). Important PRRs recognising bacterial epitopes are FLAGELLIN-

SENSING 2 (FLS2) and EF-Tu RECEPTOR (EFR), with FLS2 being the major receptor for 

resistance against Pseudomonas syringae pv. tomato DC3000 (Zipfel et al., 2004). Upon 

ligand perception, PRRs associate with their co-receptor BRI1-assiociated kinase 1 (BAK1) 

and together phosphorylate the receptor-like cytoplasmic kinase Botrytis-induced kinase 1 

(BIK1) and its close homolog PBS1-like 1 (PBL1). BIK1 and PBL1 are two highly homologous 

receptor-like cytoplasmic kinases (RLCKs). They associate with the inactive FLS2 receptor and 

other PRRs and become phosphorylated upon flg22 perception (Lu, Dongping et al., 2010; 

Zhang, Jie et al., 2010). They phosphorylate the respiratory burst oxidase homolog H 

(RBOHD), which induces apoplastic ROS production and this is required to induce stomatal 

closure. In addition to BIK1, PBL1 and RBOHD flg22-induced stomatal closure also requires 

ROS production through RBOHF, as only the double rbohd rbohf mutant is completely 

impaired in stomatal closure. The anion channels SLOW ANION CHANNEL-ASSOCIATED 1 

(SLAC1) and SLAC1 HOMOLOGUE 3 (SLAH3) are required for MAMP-induced stomatal closure 

and it has been proposed that OST1 phosphorylates and thereby activates them following 

MAMP perception (Deger et al., 2015). However, this and a link between perception of the 

ligand and the plasma membrane, has yet to be demonstrated.  
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The ABA or drought-induced stomatal closure pathway is very well understood (Figure 1.5) 

and offers a potential for engineering plants for areas where water is scarce or infrequent. 

Upon water limiting conditions plants produce the hormone ABA that is perceived by 

receptors of the PYR-family (Nishimura et al., 2009; Park et al., 2009). ABA binds to the 

receptor resulting in conformational changes that enables the receptors to bind and inhibit 

the activity of PP2C phosphatases that negatively regulate kinases such as OST1. One of these 

negative regulators is the PP2C phosphatase ABI1 that was identified together with ABI2, 

HAB1 and PP2A. Identification of the abi1-1 mutant which has an amino acid exchange from 

Gly180 to Asp which results in it being constitutively active (Leung et al., 1994), has been a 

major step in understanding OST1 regulation. ABI1 was further characterised as a PP2C with 

an EF-hand domain and a calcium-binding site (Allen et al., 1999) that dephosphorylates 

Ser175 in the activation loop of OST1 and thereby regulates its activity (Vlad et al., 2009). 

Without the negative regulation, OST1 autophosphorylates and phosphorylates its 

downstream targets which include SLAC1, RBOHF and ABA-responsive transcription factors 

(Furihata et al., 2006; Geiger et al., 2009; Sirichandra et al., 2009). Even though OST1 is 

strongly activated upon ABA treatment (Belin et al., 2006) the expression level seems to be 

unaffected by ABA (Mustilli et al., 2002). 

OST1 is a member of the family of sucrose non-fermenting 1-related kinases (SnRKs) which 

are serine/threonine kinases. There are 38 SnRKs in Arabidopsis thaliana and they can be 

divided into clades taking into account their sequence and domain similarities: SnRK1 to 3 

(Hrabak et al., 2003). SnRK1 kinases are the most similar to the yeast kinases whereas SnRK2 

and 3 seem to be plant specific (Halford & Hardie, 1998). Clade 2 SnRKs are important for the 

transduction of abiotic stress signals through ABA mediated signalling pathways and in 

particular stomatal closure. OST1 or SnRK2.6 is one of ten SnRK2s in Arabidopsis thaliana 

(Hrabak et al., 2003). OST1 is expressed in guard cells and the vasculature and is therefore 

an example of a protein whose expression pattern correlates with its specific function 

(Mustilli et al., 2002). OST1 has been shown to be involved in abiotic stress-induced stomatal 

closure, such as ABA-induced stomatal closure in response to drought (Mustilli et al., 2002) 

and osmotic stress-induced closure, independently of ABA-signalling (Yoshida et al., 2002; 

Yoshida et al., 2006). The mutant allele ost1-2 was characterised in a screen for mutants with 

a reduced leaf temperature due to impaired ability to close stomata in response to drought 

stress. The ost1-2 mutation is a point mutation in the ATP-binding pocket that renders the 

protein inactive and the guard cells insensitive to ABA (Belin et al., 2006). OST1 is one of 

three closely related cytoplasmic kinases. Its homologs are SnRK2.2 and SnRK2.3 and they 
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are also strongly activated after ABA treatment (Boudsocq et al., 2004) and required for ABA 

responses in seeds and roots (Fujii et al., 2007). They are expressed in all plant tissues and 

not just restricted to the guard cells (Fujii et al., 2007) but are required for the transcriptional 

memory in guard cells during repetitive dehydration stress requires SnRK2.2 and 2.3 

independently of OST1 (Virlouvet & Fromm, 2015).  

Recently it emerged that some central regulators are shared between ABA, CO2- and ozone-

induced stomatal closure (Merilo et al., 2013; Chater et al., 2015). It was shown that ABA 

biosynthesis, ABA receptors and OST1 are necessary for stomatal closure in response to 

elevated CO2 concentrations, ozone and reduction of air humidity. OST1 was shown to also 

play a role in flg22-induced stomatal closure (Melotto et al., 2006) and OST1 was 

subsequently proposed as general convergence point of stomatal closure pathways. 

Moreover, the aba2 ABA biosynthesis mutant was shown to be impaired in flg22-induced 

stomatal closure (Melotto et al., 2006). However, this has also been disputed by Montillet 

and colleagues (Montillet et al., 2013) who found that while the overall aperture size differs 

between aba2 and wild-type its stomata still close to flg22 treatment.  

The involvement of OST1 in flg22-induced stomatal closure has been under debate as 

contradictory results have been reported. While Melotto and colleagues found that the ost1-

2 mutant does not close stomata in response to flg22 treatment and is more susceptible to 

Pst DC3000cor- spray infection than wild-type, Montillet and colleagues found that it shows a 

concentration-dependent phenotype and responds like wild-type to higher flg22 

concentrations. They furthermore show that OST1 kinase activity is strongly activated after 

ABA treatment, and it remains inactive after flg22 treatment, raising questions about the 

involvement of OST1 in the flg22-induced stomatal closure pathway (Melotto et al., 2006; 

Montillet et al., 2013).  

Here I show that OST1 is not necessary for MAMP-induced stomatal closure. I demonstrate 

that ost1 knock-out mutants are responsive to flg22 and no activation of the kinase is 

detectable after MAMP treatment. The snrk2.2 snrk2.3 ost1-3 triple mutant as well as the 

snrk2.3 single mutant are insensitive to flg22 treatment in stomatal aperture assays. 

Furthermore, I show that this response is independent from ABA biosynthesis because all 

our tested mutants respond to flg22 treatment as the wild-type. The PP2C phosphatases that 

mediate ABA-induced stomatal closure do not seem to play a role in MAMP-induced 

stomatal closure as the dominant abi1-1 mutant has a wild-type-like stomatal closure 

response to flg22 treatment. I show that BIK1 interacts with SnRK2.3 in both split-YFP and 
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co-immunoprecipitation assays. However, I could not detect transphosphorylation of BIK1 or 

PBL1 to SnRK2.3, or vice versa. In oocyte measurements our collaborators demonstrated that 

PBL1 strongly activates SLAH3 but not SLAC1. I therefore hypothesise that there are two 

pathways acting additively to induce stomatal closure in response to MAMPs: SLAH3 

activation through RLCKs and a SnRK-dependent pathway.  

5.2. Results 

5.2.1. MAMP-induced stomatal closure acts independent of the ABA stomatal closure 

pathway 

5.2.1.1. ABA biosynthesis is not required for stomatal closure in response to flg22 

The ABA biosynthesis pathway has been very well characterised and other stimuli, such as 

CO2 and ozone make use of the same core signalling components. As there has been debate 

over the extent of overlap between the ABA and flg22 stomatal closure pathway, I decided 

to test mutants for central components of the ABA stomatal closure pathway. As ABA 

biosynthesis is required for both guard cell responses to drought and elevated CO2-

concentrations I tested ABA biosynthesis mutants for their stomatal response to flg22. 

Arabidopsis thaliana plants were grown for five weeks in soil under short-day conditions. I 

harvested leaf discs into Stomata Opening Buffer to induce opening of all stomata. Two hours 

later I applied either MAMP, ABA or H2O2 and measured stomata two hours after treatment 

was applied. Stomatal apertures were measured using ImageJ. I tested the aba1 and aba3 

biosynthesis mutants that have been shown to have 17% and 10% of wild-type ABA levels, 

respectively (Koornneef et al., 1982; Leon-Kloosterziel et al., 1996). Col-0 ecotype was used 

as wild-type control throughout all experiments. As shown in Figure 5.1A Col-0 closes its 

stomata in response to flg22 and even stronger in response to ABA treatment (two-way 

ANOVA following Tukey’s test, p < 0.05). Both aba1 (Figure 5.1B) and aba3 (Figure 5.1A) 

respond to flg22 and ABA with a significant closure response. It has been reported that the 

aba2-1 mutant retained the ability to respond to flg22 (Montillet et al., 2013) so I decided to 

test the aba2-3 mutant for its response to ABA and flg22. In accordance with the published 

results I found that also the aba2-3 mutant responds to flg22 and ABA in a wild-type like 

manner. Since all three mutants have a residual amount of ABA left, I decided to test the 

nced3-2 nced5-2 mutant. This double mutant lacks two guard cell-expressed isoforms of 9-

cis-epox-ycarotenoid dioxygenase that catalyses the first committed step in ABA biosynthesis  
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Figure 5.1: MAMP-induced stomatal closure can be induced independently from ABA signalling. 
A. The aba3 single mutant responds to flg22 and ABA like wild-type. Graph shows data from one 
experiment (n=1 independent experiment). B. The aba1 single mutants closes its stomata to flg22 
and ABA like wild-type. Graph shows data from one representative experiment. Experiment was 
performed twice with similar results (n=2). C. The nced3-2 nced5-2 double mutant responds to flg22, 
ABA and H2O2 in a wild-type-like manner. Graph shows data from one representative experiment. 
Experiment was performed four times with similar results (n=4). D. The aba2-3 single mutants closes 
its stomata to flg22 and ABA like wild-type. Graph shows data from one representative experiment. 
Experiment was performed four times with similar results (n=4). E. The dominant abi1-1 allele closes 
its stomata to flg22 and H2O2 but not ABA treatment. Graph shows data from one experiment (n=1 
independent experiment).  
Leaf discs from 5-week-old Arabidopsis thaliana plants were harvested in the morning and incubated 
for 2 hours in Stomata Opening Buffer in the light. After two hours MAMP or ABA treatment was 
applied to leaf discs. Two hours after treatment leaf discs were imaged and stomatal aperture was 
measured using ImageJ. Genotypes were hidden to avoid unconcious bias. At least 150 stomata were 
measured for each combination of genotype and treatment. Error bars indicate SD from mean. 
Letters indicate significance levels (two-way ANOVA followed by Tukey’s test, p < 0.05). 
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(Frey, A et al., 2012; Bauer et al., 2013). In accordance with the other ABA biosynthesis 

mutants the nced3-2 nced5-2 closes its stomata in response to flg22, ABA and H2O2. Taken 

together these data suggest that ABA biosynthesis is not required for MAMP-induced 

stomatal closure. 

5.2.1.2. ABA receptor mutants do not have a clear flg22 stomatal closure phenotype 

I showed that ABA biosynthesis is not required for flg22-induced stomatal closure, but I was 

also interested to see whether other components of the ABA core pathway could be 

involved. I therefore tested ABA receptor triple and quadruple mutants pyr1 pyl1 pyl2 and 

pyr1 pyl1 pyl2 pyl4 that previously have been shown to be unresponsive to elevated CO2 

concentrations (Chater et al., 2015). However, these mutants did not show a consistent 

response to flg22 treatment (Figure 5.2A and B), as in three replicates they responded to 

flg22 treatment and in three replicates they failed to close their stomata in response to flg22. 

The triple mutant responds to ABA treatment in a wild-type-like manner while the pyr1 pyl1 

pyl2 pyl4 mutant has a reduced stomatal closure response to ABA treatment in accordance 

with published results. I therefore decided to acquire higher-order mutants and requested 

the quintuple and sextuple mutants pyl1 pyl2 pyl5 pyl4 and pyr1 pyl1 pyl2 pyl5 pyl8. In these 

experiments, I included both a wild-type and a FLS2 receptor null-mutant control that does 

not respond to flg22 treatment. The wild-type closes stomata in response to flg22 and ABA 

treatment while the fls2c mutant does not close its stomata following flg22 treatment but is 

only responsive to ABA. Unfortunately, I was also unable to obtain a robust response from 

these higher order ABA receptor mutants. While the quintuple mutant closed its stomata to 

flg22 treatment in three replicates (Figure 5.2C and 2D) the sextuple mutant did not respond 

in two replicates out of four performed. Since the negative control fls2c closed its stomata 

in response to flg22 (p < 0.05) in three out of four replicates with the sextuple mutant, more 

replicates need to be performed to come to a definitive conclusion about the involvement 

of ABA receptors in flg22-induced stomatal closure. 
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Figure 5.2: ABA receptor mutants do not give consistent stomatal closure phenotypes. 
A. ABA receptor triple and quadruple mutants close their stomata in response to flg22 treatment. 
Graph shows data from one representative experiment (n=3 independent experiments). B. ABA 
receptor triple and quadruple mutants do not close their stomata to flg22 treatment. Graphs shows 
data from one representative experiment (n=3 independent experiments). C. & D. ABA receptor 
quintuple mutant is responsive to flg22 in stomatal closure assay whereas the sextuple mutant is 
not. Graphs show data from one representative experiment (n=2 independent experiments).  
Leaf discs from 5-week-old Arabidopsis thaliana plants were harvested in the morning and 
incubated for 2 hours in Stomata Opening Buffer in the light. After two hours MAMP or ABA 
treatment was applied to leaf discs. Two hours after treatment leaf discs were imaged and stomatal 
aperture was measured using ImageJ. Genotypes were hidden to avoid unconcious bias. At least 
150 stomata were measured for each combination of genotype and treatment. Error bars indicate 
SD from mean. Letters indicate significance levels (two-way ANOVA followed by Tukey’s test, p < 
0.05). 
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5.2.1.3. The dominant abi1-1 mutant closes its stomata to flg22 treatment 

PP2C phosphatases play an important regulatory role in ABA-induced stomatal closure. It has 

been proposed that they are not involved in MAMP-induced stomatal closure as the 

dominant mutant abi1-1 can still close its stomata in response to flg22 (Deger et al., 2015). I 

wanted to confirm this result under my own conditions. The abi1-1 mutant has a point 

mutation makes the protein unable to interact with ABA receptors and therefore 

constitutively active (Leung et al., 1994). Under my experimental conditions, Col-0 wild-type 

show significant stomatal closure to flg22, ABA and H2O2 treatment and the abi1-1 did not 

respond to ABA treatment but closed in a wild-type-like manner to flg22 and H2O2 treatment 

(Figure 5.1E). I therefore conclude that MAMP-induced stomatal closure does not require 

the PP2C phosphatases of the ABA stomatal pathway. 

5.2.1.4. ost1-3 and ost1-4 knock-out mutants respond to flg22 

PP2C phosphatases negatively regulate OST1 in the absence of an ABA trigger. OST1 is a 

central component of stomatal closure pathways and has been proposed to also be involved 

in MAMP-induced stomatal closure. Studies implicating OST1 in MAMP-induced stomatal 

closure have mostly used the ost1-2 point-mutant. To unmask any phenotypes the inactive 

OST1-2 protein might conceal, I decided to test knock-out mutants for their stomatal 

response to MAMP treatment. I therefore subjected ost1-3 and ost1-4 knock-out mutants to 

stomatal closure assays. Figure 5.3A shows that Col-0 wild-type closes its stomata in 

response to both flg22 and ABA treatment and that the ost1-3 and ost1-4 mutant alleles 

largely respond to our tested flg22 concentration but not to ABA treatments (p < 0.05). This 

suggests that the kinase-inactive OST1-2 protein has a dominant-negative effect on the 

MAMP-triggered stomatal closure in accordance with the concentration-dependency shown 

by Montillet and colleagues (Montillet et al., 2013).  

  



118 
 

  

  

 

Figure 5.3: MAMP-induced stomatal closure is mediated by SnRK2.3. 
A. Single ost1 knock-out mutants can respond to flg22 but are impaired in ABA-induced stomatal 
closure. Graph shows data from one representative experiment (n=3 independent experiments). 
B. Stomata of triple mutant snrk2.2 snrk2.3 snrk2.6 do not close after 2 hours of flg22 treatment. 
Graph shows data from one representative experiment (n=1 independent experiment). C. OST1 
kinase assay performed by Dr. Marie Boudsocq. OST1 kinase is strongly activated after ABA 
treatment but inactive after flg22 treatment. OST1 from whole leaf samples was 
immunoprecipitated with the anti-OST1 antibody. To ensure flg22 treatment was successful 
MAP-Kinase activation was used as control. D. snrk2.3 is required for flg22-induced stomatal 
closure. Graph shows data from one representative experiment (n=2 independent experiments). 
A., B. and D. Leaf discs from 5-week-old Arabidopsis thaliana plants were harvested in the 
morning and incubated for 2 hours in Stomata Opening Buffer in the light. After two hours 
MAMP or ABA treatment was applied to leaf discs. Two hours after treatment leaf discs were 
imaged and stomatal aperture was measured using ImageJ. At least 150 stomata were measured 
for each combination of genotype and treatment. Error bars indicate SD from mean. Letters 
indicate significance levels (two-way ANOVA followed by Tukey’s test, p < 0.05). 
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5.2.1.5. OST1 kinase is not active after flg22 treatment 

Together with the ost1-2 mutant showing a concentration-dependent response, it was 

shown that OST1 kinase is not active after flg22 treatment (Montillet et al., 2013). However, 

it is strongly activated after ABA treatment (Belin et al., 2006), casting further doubt on its 

involvement. To shed light on this controversy our collaborator Dr. Marie Boudsocq (Institute 

of Plant Sciences Paris-Saclay) performed kinase assays on purified untagged OST1 proteins 

with the anti-OST1 antibody from Arabidopsis thaliana leaf tissues treated with a high 

concentration of flg22. Figure 5.3C confirms the published result, namely that OST1 can be 

found to be strongly activated after ABA treatment but inactive after flg22 treatment 

(Montillet et al., 2013). MAP-Kinases were simultaneously isolated and can be seen to have 

been activated by the flg22 treatment, demonstrating that MAMP treatment was effective. 

This suggests OST1 might not be actively involved in the MAMP-induced stomatal closure 

pathway.  

5.2.1.6. snrk2.2 snrk2.3 ost1-3 is unresponsive to flg22 treatment but can respond to H2O2 

treatment  

OST1 is one of three closely related cytoplasmic SnRKs. As I have shown that OST1 is not 

required for stomatal closure in response to flg22 I wanted to assess whether other related 

SnRKs might act in the flg22 stomatal closure pathway. I tested the snrk2.2 snrk2.3 ost1-3 

triple mutant response to flg22, ABA and H2O2. Col-0 wild-type closes its stomata in response 

to flg22, ABA and H2O2 (p < 0.05). The triple mutant snrk2.2 snrk2.3 ost1-3 is insensitive to 

ABA and flg22 treatment but can respond in a wild-type-like manner to H2O2 treatment 

(Figure 5.3B). This shows that the triple mutant is not generally impaired in stomatal closure 

but is specifically impaired in its response to ABA and flg22 treatment. I therefore conclude 

that SnRKs are required for MAMP-induced stomatal closure. 

5.2.1.7. SnRK2.3 is required for MAMP-induced stomatal closure 

As I concluded that SnRKs are required for flg22-induced stomatal closure because the 

snrk2.2 snrk2.3 ost1-3 triple mutant guard cells were irresponsive to MAMP treatment. I 

therefore aimed to investigate which of the three SnRKs could be involved in this response. 

I furthermore ruled out the involvement of OST1, so I tested single mutants of the closely 

related homologs SnRK2.2 and SnRK2.3. Figure 5.3D shows that both snrk2.2 mutants 

respond to flg22 in a wild-type-like manner, but snrk2.3 does not respond. Taken together 
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with the results that ost1-3 and ost1-4 close their stomata to flg22, but not ABA, I conclude 

that SnRK2.3 and not OST is required for MAMP-induced stomatal closure. 

5.2.2. SnRK2.3 interacts with BIK1 

5.2.2.1. OST1 and SnRK2.3 interact with FLS2, BIK1 and ABI1 in split-YFP assay 

SnRK2.3 is required for MAMP-induced stomatal closure, but it is not yet known how the 

signal is transduced from the cell surface to SnRK2.3 and potential downstream targets. It is 

known that OST1 interacts with and is phosphorylated by BAK1 (Shang et al., 2016). I 

therefore wanted to check whether SnRK2.3 also associates with BAK1. I generated split-YFP 

constructs to test for possible interactions of SnRKs with each other and known components 

of the larger receptor complex. All constructs were generated in the same vector backbone 

with the same p35S promoter and corresponding N- or C-terminal parts of YFP. All constructs 

were infiltrated into fully expanded leaves of four to five-week-old N. benthamiana plants 

mixed together at the final OD600 = 0.1. FLS2 interacts with BIK1 but not BAK1 prior to flg22 

treatment in accordance with published results. YFP was reconstituted in all tested 

combinations with OST1, confirming its known interactions with BAK1 and ABI1 and 

implicating FLS2 and BIK1 as novel possible interactors. It has been shown that the closely 

related SnRK kinases form heterocomplexes with each other (Waadt et al., 2015). I therefore 

tested whether OST1 and SnRK2.3 can interact with each other in split-YFP assays and I could 

detect YFP re-constitution, confirming the published interactions (Figure 5.4 and 5.5 (Waadt 

et al., 2015). SnRK2.3 furthermore interacts with FLS2, BAK1, BIK1, ABI1 and SnRK2.2 in the 

split-YFP assay in N. benthamiana (Figure 5.5). These results have to be considered cautiously 

because the split-YFP has affinity to re-constitute in a non-reversible manner, since the re-

constituted YFP cannot dissociate again. Many of the tested proteins have been shown to 

interact with one another which makes it likely that they are in close proximity to each other 

through interaction with another protein and this could lead to false positive results. From 

the results acquired from the split-YFP assay, I speculate that one or several members of the 

receptor complex directly interact with and phosphorylate SnRK2.3 to induce stomatal 

closure upon flg22 perception.  
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Figure 5.4: OST1 interacts with BAK1, BIK1 and ABI1 in split-YFP assay in Nicotiana benthamiana. Four-
week-old N. benthamiana plants were infiltrated with Agrobacterium mixtures of split-YFP constructs 
(OD600=0.1). All constructs drove expression with the p35S promoter and were in the pICH47742 
Golden Gate vector. Leaves were imaged by confocal microscopy two days after infiltration. Pictures 
are shown from one representative experiment. Bars indicate 10 µm. Experiment was performed 
twice with similar results. 
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Figure 5.5: SnRK2.3 interacts with FLS2, BIK1, BAK1, ABI1, SnRK2.2 and OST1 in split-YFP assay in 
Nicotiana benthamiana. Four-week-old N. benthamiana plants were infiltrated with Agrobacterium 
mixtures of split-YFP constructs (OD600=0.1). All constructs drove expression with the p35S promoter 
and were in the pICH47742 Golden Gate vector. Leaves were imaged by confocal microscopy two days 
after infiltration. Pictures are shown from one representative experiment. Bars indicate 10 µm. 
Experiment performed twice with similar results. 
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5.2.2.2. SnRK2.3 interacts with BIK1 in co-IP assay in Arabidopsis thaliana protoplasts  

To confirm the interactions found through split-YFP assays in N. benthamiana, I transfected 

Arabidopsis thaliana protoplasts with 3xFLAG-SnRKs, treated them with 10 µM flg22 for 15 

minutes, and then performed a co-immunoprecipitation assay. I could show that BIK1 

interacts with SnRK2.3 but not with OST1/SnRK2.6 (Figure 5.6). Notably, the interaction 

seems to decrease upon flg22 treatment suggesting that the complex is pre-formed and 

might dissociate after flg22 perception. Unfortunately, the endogenous levels of FLS2 and 

BAK1 were too low to be detected on the Western Blots and we can therefore not draw a 

conclusion regarding these interactions. In this experiment SnRK2.2 does not seem to have 

been expressed successfully in mesophyll protoplasts. The co-IP assay needs to be repeated 

with overexpression of FLS2 and BAK1 as well as ensuring that the SnRK2.2-3xFLAG construct 

is successfully expressed in protoplasts. This suggests that one of the kinases in the complex 

might phosphorylate SnRK2.3 to induce stomatal closure.  
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Figure 5.6: SnRK2.3 interacts with BIK1 in co-IP from Arabidopsis thaliana protoplasts. Mesophyll 
protoplasts were transfected with p35S::BIK1-HA and either p35S::SnRK2.2-3xFLAG, p35S::SnRK2.3-
3xFLAG or p35S::SnRK2.6-3xFLAG. Proteins were extracted and IP performed with FLAG-affinity beads 
to enrich for 3xFLAG-SnRKs. Extracts and IP samples were separated on SDS-PAGE and a Western Blot 
was performed. Antibodies were applied as indicated. Experiment was performed once. 
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5.2.3. PBL1 could mediate anion channel activation in response to flg22 treatment in 

guard cells 

5.2.3.1. pbl1 mutant stomata do not respond to flg22 treatment 

PBL1 is a close homolog of BIK1 and is redundant in all flg22 responses tested to date (Lu, 

Dongping et al., 2010; Zhang, Jie et al., 2010). While it has been published that bik1 and bik1 

pbl1 mutant stomata do not close in response to flg22 treatment (Zhang, J. et al., 2010), it is 

unknown whether the loss of its close homolog PBL1 shows the same stomatal phenotype. 

As BIK1 is able to interact with SnRK2.3 it is possible that BIK1 and its homolog positively act 

in the MAMP-induced stomatal closure pathway. To investigate this possibility, I tested the 

pbl1 single mutant for its stomatal response to flg22 to establish whether PBL1 plays a role 

in flg22-mediated stomatal closure. Figure 5.7A shows that Col-0 wild-type closes its stomata 

in response to flg22 and ABA (p < 0.05), while the fls2c mutant is impaired in flg22-induced 

stomatal closure but has a wild-type-like response to ABA. pbl1 does not show stomatal 

closure to flg22 treatment but has a wild-type-like response to ABA. I also tested the pbl27 

mutant because our lab has shown that PBL27 activates SLAH3 to mediate chitin-induced 

stomatal closure (Liu et al., revision submitted). This seems to be a chitin-specific response, 

because pbl27 shows a wild-type-like stomatal closure response to flg22 and ABA. This would 

suggest that PBL1 could also play an active role in flg22-mediated stomatal closure. As I only 

have one replicate of this experiment, this needs to be repeated to come to a definitive 

conclusion. 
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Figure 5.7: PBL1 is a potential member of the flg22-induced stomatal closure pathway 
A. Stomata of the pbl1 single mutant are unresponsive to flg22 treatment. Leaf discs from 5-week-
old Arabidopsis thaliana plants were harvested in the morning and incubated for 2 hours in Stomata 
Opening Buffer in the light. After two hours MAMP or ABA treatment was applied to leaf discs. Two 
hours after treatment leaf discs were imaged and stomatal aperture was measured using ImageJ. 
Genotypes were hidden until after measurements to avoid unconcious bias. Graph shows data from 
one independent experiment. Experiment was performed three times with similar results. At least 
150 stomata were measured for each combination of genotype and treatment. Error bars indicate 
SD from mean. Letters indicate significance levels (two-way ANOVA followed by Tukey’s test, p < 
0.05).  
B. PBL1 activates SLAH3 but not SLAC1 in oocyte measurements. Xenopus oocyte measurements 
were performed by Dr. Tobias Maierhofer at the University of Würzburg. Instantaneous currents 
(Iinst) at -100 mV recorded from oocytes expressing SLAH3 (top) or SLAC1 (bottom) alone or co-
expressing with the indicated kinases in the presence of 100 mM nitrate (n > 3, mean ± SD).  
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5.2.3.2. PBL1 activates SLAH3 anion channel in oocyte measurements 

Oocytes present a useful tool to examine whether two proteins interact and is especially 

useful to test anion channel activation by another protein. It was previously published that 

SLAC1 and SLAH3 are necessary for flg22-induced stomatal closure (Deger et al., 2015) and 

therefore our collaborators Dr. Tobias Maierhofer (Rainer Hedrich, University of Würzburg) 

tested whether RLCKs involved in the flg22 signalling pathway can directly activate these 

anion channels. They were able to show that BIK1 is unable to induce anion channel currents 

by either SLAH3 or SLAC1 (data not shown). Figure 5.7B shows that both PBL1 and PBL27 

strongly activate SLAH3 in Xenopus oocytes. This suggests that PBL1 and PBL27 may play 

homologous roles in flg22- and chitin-induced stomatal closure. SLAC1 is not activated by 

either RLCK but as both channels are important in the flg22-mediated stomatal closure 

response this suggests that there may be two separate pathways working alongside one 

another to induce stomatal closure in response to MAMPs.  

5.2.3.3. BIK1 or PBL1 do not phosphorylate SnRK2.3, OST1, SLAH3 or SLAC1 in a recombinant 

kinase assay 

Because I observed direct interaction between BIK1 and SnRK2.3 in split-YFP and co-

immunoprecipitation assays, I decided to test whether SnRKs can be phosphorylated by BIK1. 

I also included anion channels and PBL1 in this assay, because our collaborators 

demonstrated that PBL1 can activate SLAH3 in oocyte measurements. I cloned the proteins 

and channel subunits with an N-terminal GST tag into a vector suitable for expression of 

recombinant protein in E.coli Rosetta cells (Novagen). I expressed and purified the proteins 

from E.coli and conducted a transphosphorylation assay. Additional replicates and blots were 

performed by Dr. Thomas DeFalco (University of Zurich). Proteins were incubated together 

at 30C for 2.5 hours. GST was included as an artificial substrate to distinguish between 

phosphorylation on the tag and the protein. Protein blots were probed with a 1:1 mixtures 

of general anti-phosphothreonine and anti-phosphoserine antibodies. CANDIDATE BIK1 

SUBSTRATE PROTEIN 59 (CBSP59) is strongly phosphorylated by BIK1 (unpublished, personal 

communication) and was included as positive control. In order to be able to distinguish 

between auto- and transphosphorylation activity, all SnRK kinases were provided as inactive 

mutant forms which is indicated by the asterisks (Cai et al., 2014). Neither SnRK2.3* nor 

SnRK2.6 were observed to be transphosphorylated by BIK1 or PBL1 (Figure 5.8). We could 

also not detect any transphosphorylation on anion channel subunits by BIK1 and PBL1 (Figure 

5.8). All active kinases showed positive phosphoserine and phosphothreonine signals in the 
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blots and all substrates could be detected in the Coomassie Brilliant Blue staining of the 

membranes (Figure 5.8, lower panel). However, we could also not detect any 

phosphorylation on the positive control CBSP59. This protein was found to be strongly 

phosphorylated by BIK1 in 32P kinase assays, which suggests that this assay is more sensitive. 

As all kinases were active and all substrates expressed this suggests that this assay is not 

sensitive enough to detect transphosphorylation by BIK1 or PBL1. Additional assays will have 

to be performed to clarify whether PBL1 can phosphorylate SLAH3 and whether BIK1 

phosphorylates SnRK2.3. 
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5.3. Discussion 

Recent evidence has suggested that stomatal closure pathways largely overlap and depend 

on mostly the same central regulators (Melotto et al., 2006; Chater et al., 2015). The same 

central regulators are required to induce stomatal closure to several different stimuli, such 

as ABA or elevated CO2 concentration (Deger et al., 2015). By testing the stomatal closure 

responses of four different ABA biosynthesis mutants (Figure 5.1A, B, C and D), ABA receptor 

mutants (Figure5.2) and a PP2C phosphatase mutant (Figure 5.1E) I present strong evidence 

that ABA and MAMP-induced stomatal closure signalling pathways are distinct from each 

other. It is still unknown whether ABA receptors are required for the flg22 stomatal closure 

response since I was unable to get conclusive results from the mutants I tested. Although 

these plants were genotyped before the assay as we received them from a collaborator, their 

response to flg22 was not consistent. This could be due to varying conditions in the growth 

chambers or changing water conditions. While many abiotic stimuli inducing stomatal 

closure all involve ABA biosynthesis, ABA receptors and OST1 this study suggests that this is 

not the case for flg22-induced stomatal closure (Mustilli et al., 2002; Merilo et al., 2013; 

Chater et al., 2015). The overlap between biotic and abiotic stress-activated signalling 

pathways in guard cells therefore seems much smaller than previously assumed. Only the 

anion channels SLAC1 and SLAH3 have also been shown to be involved in flg22-induced 

stomatal closure suggesting that convergence of the pathways occurs downstream at the 

level of the executors (Deger et al., 2015).  

OST1 is a central executor of stomatal closure in response to several different stimuli. 

Previous evidence provided a direct link from OST1 to known downstream requirements for 

stomatal closure, including RBOHF, SLAC1 and GORK1. The involvement of OST1 in flg22-

induced stomatal closure, however, has been under discussion. Melotto et al., 2006 

demonstrated that ost1-2 does not close its stomata in response to flg22, while Mustilli et 

al., 2012 showed a concentration-dependent phenotype. Previous studies have almost 

exclusively used  the ost1-2 mutant, that has a point mutation in the ATP-binding pocket of 

the kinase (Mustilli et al., 2002) rendering it unable to bind ATP and therefore constitutively 

inactive (Belin et al., 2006). Here, I provide evidence that not OST1 but SnRK2.3 mediate 

stomatal closure in response to flg22. The ost1-3 and ost1-4 mutants consistently closed their 

stomata in response to flg22 (Figure 5.3A) while snrk2.3 was unresponsive (Figure 5.3D). I 

hypothesise that the constitutively inactive OST1-2 protein could have a dominant-negative 

effect on SnRK2.3 and thereby flg22-induced stomatal closure. This is consistent with the 

concentration dependent phenotype of ost1-2 demonstrated previously whereby ost1-2 
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responds to flg22 in a wild-type-like manner when treated with higher concentrations of 

flg22 (Montillet et al., 2013) and the observation that SnRK2.3 and OST1 directly interact 

with each other as shown by (Waadt et al., 2015) and in this study (Figure 5.5). Taken 

together these data demonstrate that flg22-induced stomatal closure is independent of 

OST1 and I propose a novel player – SnRK2.3 - in this pathway. However, how SnRK2.3 plays 

a role in this pathway still remains elusive. There is no current link between receptor complex 

members and SnRK2.3 and it is not able to activate SLAC1 in oocyte measurements (Geiger 

et al., 2009). It has been suggested that SnRK2s require activation by an upstream kinase 

(Boudsocq et al., 2007) and GSK3-like kinases have been shown to phosphorylate SnRK2.2 

and SnRK2.3 to modulate ABA signalling (Cai et al., 2014). I tried to connect SnRK2.3 to the 

receptor complex through split-YFP assays and pull downs as well as kinase assays. All tested 

combinations of receptor complex members (FLS2, BAK1, BIK1) with SnRK2.3 showed a 

positive YFP reconstitution in the split-YFP assay (Figure 5.5) but only the interaction 

between SnRK2.3 and BIK1 could be confirmed in the co-immunoprecipitation assay (Figure 

5.6). Since the split-YFP has the inherent affinity to reconstitute to the complete fusion 

protein and cannot disassemble once reconstituted the results suggests that SnRK2.3 is most 

likely in close proximity to the receptor complex members. The results from the split-YFP 

assay should therefore be interpreted very cautiously. Although we detected interaction 

between SnRK2.3 and BIK1 in co-immunoprecipitation assays (Figure 5.6), we could not 

detect phosphorylation of SnRK2.3 by BIK1 in cold kinase assays (Figure 5.8). However, as we 

could also not detect transphosphorylation on our positive control CBSP59 that was shown 

to be phosphorylated by BIK1 in 32P phosphorylation assays (unpublished), the cold kinase 

assay might not be sensitive enough to detect transphosphorylation by BIK1. Whether 

SnRK2.3 is activated by flg22 treatment and what its downstream signalling partners are, 

remain important questions that need to be addressed in order to understand how SnRKs 

are involved in MAMP-induced stomatal closure.  

RLCKs have recently emerged as important signalling modules of RLK complexes. PBL1 and 

BIK1 are members of the RLCK-VII family and are redundant in many FLS2-mediated defence 

functions, for instance phosphorylation and activation of RBOHD to induce ROS production 

upon MAMP perception (Kadota et al., 2014). While it has been shown that bik1 and bik1 

pbl1 mutants have flg22-insensitive stomata, I now show that the pbl1 mutant also has flg22-

insensitive stomata (Figure 5.7A). This suggests that both BIK1 and PBL1 could play an 

important role in mediating flg22-induced stomatal closure. As BIK1 does not activate either 

SLAH3 or SLAC1, it is possible that BIK1 has an indirect role in MAMP-induced stomatal 
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closure by mediating ROS production through RBOHD, which is required for this response. In 

contrast, PBL1 activates SLAH3 in oocyte measurements (Figure 5.7B) suggesting an active 

role of PBL1 in this response. Moreover, this demonstrates a direct link between receptor 

complex components and anion channel activation in flg22 signalling. However, because 

induction of stomatal closure in response to MAMPs requires both SLAC1 and SLAH3 (Deger 

et al., 2015) it is still unknown how SLAC1 is activated after flg22 treatment. I hypothesise 

that SnRK2.3 may be acting in an alternative pathway that acts hand in hand with direct 

interaction and activation of SLAH3 by PBL1. It will be important to demonstrate whether 

PBL1 can phosphorylate SLAH3 and to identify the required phosphosites.  

Interestingly, a recent study demonstrated that AtPep1-induced stomatal closure acts 

independently of OST1 and requires BIK1 and both SLAC1 and SLAH3 (Zheng et al., 2018). It 

is conceivable that biotic stimuli use a stomatal closure pathway that is distinct from that 

activated by abiotic stimuli. Current evidence would therefore suggest that, during MAMP-

induced stomatal closure, anion channels are activated by PRR complex-associated RLCKs 

independently from the prototypic ABA signalling pathway.  

I propose the following model for flg22-induced stomatal closure (Figure 5.9). Upon flg22-

perception FLS2 associates with its co-receptor BAK1 and the cytoplasmic kinases PBL1 and 

BIK1 are phosphorylated and activated. BIK1 and PBL1 subsequently phosphorylate and 

activate RBOHD which leads to the accumulation of ROS in the apoplast. I propose that 

activated PBL1 phosphorylates and activates SLAH3 to induce stomatal closure. The 

involvement OST1 and SnRK2.3 and how SLAC1 is activated remains to be demonstrated.  
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Figure 5.9: Proposed model for PAMP-induced stomatal closure pathway. Upon flg22-perception FLS2 
associates with its co-receptor BAK1 and the cytoplasmic kinases PBL1 and BIK1 are phosphorylated 
and activated. BIK1 and PBL1 subsequently phosphorylate and activate RBOHD which leads to the 
accumulation of ROS in the apoplast. We propose that activated PBL1 phosphorylates and activates 
SLAH3 to induce stomatal closure. Whether OST1 and SnRK2.3 are involved in this pathway remains 
to be shown. How SLAC1 is activated during fl22-induced stomatal closure remains unknown.  
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6. Discussion 

6.1. PBL1 and SnRK2.3 are novel players in MAMP-induced stomatal 

closure 

Although a number of molecular components were described in MAMP-induced stomatal 

regulation, there has been some opposing findings and the molecular link between receptor 

complex activation and regulators of stomatal apertures have remained largely unknown. In 

this study I propose two novel regulators of MAMP-induced stomatal closure that have not 

previously been associated with guard cell-specific responses.  

This study supports the hypothesis that PBL1 is a major regulator of MAMP-induced stomatal 

closure. Together with its close homolog BIK1, PBL1 is an important regulatory component 

of MAMP responses and known to be part of the larger PRR receptor complex at the plasma 

membrane (Lu, Dongping et al., 2010; Zhang, Jie et al., 2010). Both BIK1 and PBL1 act largely 

redundant in all immune outputs tested to date, including the activation of ROS production 

by RBOHD, calcium burst, seedling growth inhibition, callose deposition and MAP Kinase 

activation (Zhang, J. et al., 2010; Li et al., 2014; Ranf et al., 2014). Here I demonstrate the 

first distinct function of PBL1. The single pbl1 mutant is impaired in flg22-induced stomatal 

closure and PBL1 activates SLAH3 in oocytes (Figure 5.7). BIK1 has not been found to activate 

SLAC1 or SLAH3 (Liu et al., 2018, revision submitted), indicating that this signalling role is not 

shared between the two otherwise redundant RLCKs. RLCKs have emerged as a major class 

of signalling proteins that mediate RLK-associated outputs  and this study has provided more 

evidence supporting their important signalling function (Liang & Zhou, 2018).  

Since ROS and calcium are such crucial messengers to initiate stomatal closure and require 

BIK1 and PBL1, it has been hypothesised that BIK1 and PBL1 mediate stomatal closure by 

mediating ROS production and calcium burst (Li et al., 2014; Ranf et al., 2014). Interestingly, 

AtPep1-induced stomatal closure has been reported to be independent of ROS production 

by RBOHD and RBOHF and furthermore independent of BIK1 (Zheng et al., 2018). This would 

suggest that not all stomatal closure pathways depend on ROS production. 

In this study I provide evidence that not OST1/SnRK2.6 is mediating stomatal closure in 

response to MAMPs (Figure 5.3A&C). Instead, I show that the snrk2.3 single mutant is 

impaired in stomatal closure (Figure 5.3D). Furthermore, I demonstrate that ABA signalling 

is not required for this response (Figure 5.1 and 5.2). This suggests that although stomatal 
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closure in response to ABA, CO2 and ozone make use of the same central regulators, this is 

not the case for flg22-induced stomatal closure. I therefore propose that stomatal closure 

pathways converge on the level of anion channels and that there are at least two distinct 

stomatal closure signalling pathways. Although SnRK2.3 is expressed throughout all plant 

tissues it has been shown to play a role in stomatal responses in drought stress memory 

(Virlouvet & Fromm, 2015). It is interesting that also SnRK2.3 seems to have a previously 

unknown guard cell-specific function, namely in the execution of MAMP-induced stomatal 

closure. Future research will have to address whether SnRK2.3 is activated by flg22 treatment 

and how it acts in the flg22-induced stomatal closure pathway.  

While this study has provided novel components involved in MAMP-induced stomatal 

closure, many questions remain unanswered. It is still not clear how these two different 

players integrate into a common stomatal closure response. While PBL1 can strongly activate 

SLAH3 in oocyte measurements, neither PBL1 nor SnRK2.3 can activate SLAC1 and both anion 

channels are required for MAMP-induced stomatal closure (Deger et al., 2015). It has been 

shown that anion channels require phosphorylation at their N-termini for activation (Geiger 

et al., 2009; Geiger et al., 2010; Geiger et al., 2011; Brandt et al., 2012; Maierhofer et al., 

2014). Intriguingly, SLAH3 can also be activated in the absence of an activating kinase and 

ligand if it associates with the modulatory subunit SLAH1 (Cubero-Font et al., 2016). One 

might therefore hypothesise, that in response to flg22 SLAC1 might not get activated through 

phosphorylation but by a yet unknown mechanism. Future studies addressing the gating 

mechanisms of these anion channels could address this question and offer insight into 

SLAC1-dependency in flg22-induced stomatal closure. 

I propose that during flg22-induced stomatal closure FLS2 and BAK1 activate PBL1 which in 

turn activates SLAH3 (Figure 5.9). This leads to the induction of stomatal closure and stomatal 

immunity. This is homologous to the chitin-induced stomatal closure model suggested by Liu 

et al., revision submitted. After chitin perception by LYK5 and CERK1 the RLCK PBL27 gets 

activated and phosphorylates SLAH3 at Ser127 and Ser189. It will be interesting to see 

whether PBL1 phosphorylates SLAH3 at the same phosphosites or whether there is 

distinction between biotic stimuli.  

6.2. Several cell types mediate stomatal immunity 

Guard cells have been shown to act as autonomous units in ABA-induced stomatal closure 

and blue-light induced stomatal opening (Cañamero et al., 2006; Bauer et al., 2013). This 
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study demonstrates that this is also true for MAMP-induced stomatal closure. Expression of 

a PRR restricted to guard cells is sufficient for wild-type-like stomatal closure responses and 

resistance to bacteria (Figure 4.6B and 4.7A&B). This supports the previous assumption that 

guard cells are fully autonomous and require no signalling input from surrounding cells to 

initiate closure.  

However, it has also long been hypothesised that mesophyll cells are able to influence the 

stomatal aperture to ensure optimal conditions for photosynthesis (Lawson et al., 2014). This 

hypothesis stems from the observed correlation between mesophyll photosynthesis and 

stomatal conductance (Wong et al., 1979). Here I report that non-autonomous signalling 

events occur to initiate stomatal closure homologous to the proposed “mesophyll signal” 

(Mott et al., 2008; Mott, 2009). Transient assays performed in N. benthamiana imply that 

this response is dependent on ROS production by NADPH oxidase NbRBOHB (Figure 3.1). ROS 

is produced in the apoplast which makes it the most likely candidate for such a systemic 

signal as compared with other proposed systemic signals, such as a Ca2+ wave which requires 

symplastic connections (Choi et al., 2014). Apoplastic ROS has been reported to be 

recognised and propagated by cells to generate a systemic ROS wave (Miller et al., 2009) and 

this could be a potential non-autonomous signal generated by pavement cells to induce 

stomatal closure. Interestingly, a LRR-RLK kinase HYDROGEN PEROXIDE-RESISTANT 1 (GHR1) 

is required for flg22-induced stomatal closure and has been shown to interact with and 

phosphorylate SLAC1 (Hua et al., 2012). Furthermore, CYSTEINE-RICH KINASES (CRKs) which 

present potential ROS sensors due to their cysteine-rich nature (Wang et al., 2012). Evidence 

suggests that CRKs play a regulatory role in stomatal closure as several crk mutants are 

impaired in stomatal closure to different stimuli (Bourdais et al., 2015). Aquaporins have also 

been proposed to transport H2O2 into the cytoplasm of guard cells and this is required for 

stomatal closure (Rodrigues et al., 2017). Current evidence therefore supports the 

hypothesis of ROS acting as a non-autonomous signal for the induction of stomatal closure 

in response to MAMPs. 

The existence of both autonomous and non-autonomous triggers that induce stomatal 

closure upon recognition of an invading pathogen seems like an elegant way to increase 

robustness of stomatal immunity. This would enable the first cell that comes into contact 

with a pathogen to alert nearby guard cells to an imminent invasion and to induce stomatal 

closure before the pathogen comes in contact with the actual guard cells. Guard cells would 

therefore be able to close the aperture in a preventive manner rather than just as a reactive 
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response to bacterial invasion. It would be interesting to investigate whether these non-

autonomous signals are a local response only affecting adjacent stomata or whether this is a 

leaf-wide systemic response.  

6.3. Cell type-specific responses of Pattern-triggered immunity (PTI) 

BIK1 and PBL1 have been described as redundant RLCKs with largely overlapping function 

(Zhang, J. et al., 2010; Li et al., 2014; Ranf et al., 2014). SnRK2.3 and SnRK2.2 are major 

mediators of ABA responses in diverse plant tissues (Fujii et al., 2007; Fujita et al., 2009). This 

work describes a novel function for both PBL1 and SnRK2.3 that is restricted to a specific cell 

type: the guard cells. This brings forward the general concept that immune responses may 

not be identical across all cell types and tissues. Since plants do not have specialised immune 

cells like animals it has been assumed that each cell has the ability to mount a full immune 

response. While this is mostly true it does not necessarily mean that the immune response 

is identical in each cell. Different cell types and tissues are specialised to fulfil a specific 

function and as such may come into touch with different pathogens or require different 

immune outputs. Indeed, stomatal closure is such a unique response that requires guard cell-

specific regulators that it does not come as a complete surprise that unique regulators are 

required to execute this response. It is intriguing that this guard cell-specific response does 

not seem to be regulated by proteins with a specific localisation but by regulators expressed 

in all tissues and cell types. This implies that to fully understand plant immunity we have 

discriminate immune responses of different tissues and cell types.  

Previous studies support this as is has been shown that immune responses of the leaf differ 

from root responses – a clear example of tissue-specific immunity. While wild-type 

Arabidopsis thaliana roots can induce a ROS burst and MAP Kinase activation following flg22 

perception they are unable to do so in response to elf18 (Wyrsch et al., 2015). The study also 

describes FLS2 expression under the control of tissue-specific promoters and found that 

MAMP perception and sensitivity depends on the tissue in which the receptor was expressed 

(Wyrsch et al., 2015). This also demonstrated that not only the tissue but also the cell type 

strongly influences PTI responses. Additionally, one study suggested that roots are more 

sensitive to DAMPs than MAMPs, suggesting that different tissues are specialised towards 

detecting different danger signals (Poncini et al., 2017). 

Future research trying to understand PTI is going to have to take both tissue and cell type 

identities into consideration. Moreover, cell type-specific analyses are necessary to tease 
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these differences in PTI signalling apart. It will be exciting to see more studies investigating 

what these differences are, how they are regulated and what their significance for whole 

plant health is. 

6.4. Cell type- and tissue-specific responses of Effector-triggered 

immunity (ETI) 

Could ETI exhibit cell type- and tissue-specific responses similar to PTI? It has been shown 

that NLR genes are differentially expressed across different tissues in chickpea, suggesting 

that this may indeed be the case (Sharma et al., 2017). This appears to be also true for NLRs 

in Arabidopsis thaliana (Tan et al., 2007). However, I could not find any studies specifically 

addressing the question of cell type-specific expression of NLRs within different tissues. It 

would be interesting to analyse whether NLRs are differentially expressed within a tissue and 

whether certain cell types show higher expression than others.  

While it has been shown that effectors interfere with stomatal closure and that effectors can 

translocate into the guard cells, they do so at a much lower rate than into pavement cells 

(Henry et al., 2017). This could be due to the reinforced cell wall of guard cells that are 

necessary to enable them to withstand the drastic volume and shape changes they undergo 

during stomatal movement. One could hypothesise that targeting of the stomata by certain 

pathogens may therefore be a means of avoiding detection by the plant before infection is 

successfully established.  

If effector translocation into guard cells happens at such a low rate, how can effectors 

successfully interfere with stomatal closure? This study has provided evidence for both cell 

autonomy and non-autonomous signalling events associated with MAMP-induced stomatal 

closure. One may hypothesise that there are not only non-autonomous signalling events 

inducing stomatal closure but also interfering with stomatal closure. It has been shown that 

guard cell-specific and guard cell-excluding expression of RIN4 enabled RPM1-mediated 

hypersensitive responses across the whole leaf (Henry et al., 2017). This indicates that there 

are also non-autonomous signalling events associated with ETI. It is therefore conceivable 

that effector interference with stomatal closure is not only mediated by guard cells but also 

other cell types.  
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6.5. Outlook 

Many questions remain and future research into cell type-specific responses will greatly 

enhance our understanding of plant immunity. There are already many tools established and 

promoters identified that enable such studies. There are many protocols to isolate guard 

cell-enriched samples or guard cell purification that enable cell type-specific transcriptomic 

analyses (Obulareddy et al., 2013; Jalakas et al., 2017). Cell type-specific promoters in 

combination with cell sorting make it possible to isolate virtually any cell type. Comparative 

transcriptomics between different cell types are needed to elucidate differential NLR 

expression and potentially differential immune responses. We have all the tools available at 

hand to investigate cell type-specific immune responses. It will be exciting to see what future 

research in this area will bring to the table. 
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