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Abstract

Background: Traditional Map based Cloning approaches, used for the identification of desirable alleles, are
extremely labour intensive and years can elapse between the mutagenesis and the detection of the polymorphism.
High throughput sequencing based Mapping-by-sequencing approach requires an ordered genome assembly and
cannot be used with fragmented, un-scaffolded draft genomes, limiting its application to model species and
precluding many important organisms.

Results: We addressed this gap in resource and presented a computational method and software implementations
called CHERIPIC (Computing Homozygosity Enriched Regions In genomes to Prioritise Identification of Candidate
variants). We have successfully validated implementation of CHERIPIC using three different types of bulk segregant
sequence data from Arabidopsis, maize and barley, respectively.

Conclusions: CHERIPIC allows users to rapidly analyse bulk segregant sequence data and we have made it available
as a pre-packaged binary with all dependencies for Linux and MacOS and as Galaxy tool.
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Background
Forward genetic screens are an essential and widely used
tool for the identification of alleles underlying desirable
traits [1]. The successful identification and cloning of
genes from these screens depends on availability of poly-
morphic molecular markers between two accessions and
a physical map of markers [2]. A mapping population is
created by crossing a mutated plant from one polymor-
phic accession with another. Map based Cloning (MBC)
involves screening of either individuals or pooled individ-
uals from segregating populations using defined markers
to identify regions of the genome with limited or no
recombination due to linkage disequilibrium and refine
the mutant position [3–6]. Traditional MBC is labour
intensive and years can elapse between the mutagenesis
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and the detection of the polymorphism responsible [2].
Mapping-by-sequencing (MBS) is a high throughput
sequencing based mutation mapping approach that has
shortened this process considerably by allowing the cal-
culation of allele frequency from bulks and the identifi-
cation of causal mutations at single-nucleotide resolution
[7]. However, application of MBS requires a chromoso-
mal ordered genome assembly and cannot be used with
fragmented, unscaffolded draft genomes, thus limiting its
application to model species and precluding many impor-
tant organisms. Most crops and their wild relatives have
complex and difficult to order genomes, hence genetic and
genomic resources remain in draft stages. Carrying out
mapping studies without the necessary genetic resources
is cumbersome, thus limiting the number of mapping
studies in non-model organisms and rendering a store
of potential disease resistances and other agronomically
important traits unavailable.
We present a computational method and soft-

ware implementations to address this problem, called
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CHERIPIC (Computing Homozygosity Enriched Regions
In genomes to Prioritise Identification of Candidate
variants). CHERIPIC makes use of short contig fragments
(such as those from the first pass assembly of Illumina
data or a PacBio sequence run) from bulk segregant
sequencing (BSS) experiments to call variants and to
reduce the list of candidates to a few closely linked vari-
ants in the region harbouring the trait of interest and in
some cases includes the candidate mutation as well. We
successfully applied CHERIPIC to fragmented assemblies
made from publicly available BSS high-throughput data
for Arabidopsis, maize and barley. CHERIPIC improves
on previous methods by being input type agnostic,
working well on genome-seq and RNA-seq data, having
extremely low computational requirements and being
available for direct use through a web interface.

Implementation
The process of mutation and crossing results in reduc-
tion of the density of experimentally induced homozygous
polymorphisms relative to heterozygous polymorphisms
as distance from the causative mutation increases [7, 8].
We assessed the properties of fragmented genome

assemblies of Arabidopsis with respect to statistics of
allele frequency. The length distribution of scaffolds was
modelled and followed a log-normal distribution (Addi-
tional file 1: Figure S1, R2=0.796). Therefore we gener-
ated 1000 simulated Arabidopsis assemblies containing
fragments of length fitting a log-normal distribution for
both backcross and outcross bulk segregant sequence
data. Variants were called on Arabidopsis genome for
both mapping experiments. These variants (as VCF files)
were used in the simulations to generate both fragmented
assemblies and associated variant calls from both map-
ping populations (see methods for further details). We
defined a straightforward homozygosity enrichment score
(HMES) strictly the ratio of homozygous to heterozygous
variants. HMES = (α + ρ)/(β + ρ), where α = num-
ber of homozygous variants on the selected fragment, β

= number of heterozygous variants on the selected frag-
ment and ρ = a ratio adjustment factor, included to avoid
division of or by zero and ρ = 0.5 is used in our case.
For each fragment, HMES serves as an estimator of the
nearness of the fragment to the causative mutation. The
density of fragment HMES is plotted against a continu-
ous genome in Fig. 1 for each of the thousand simulations.

a
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Fig. 1 Region of the genome harbouring the candidate mutation is defined by the assembled fragments with enriched homozygosity. (a,b) Density
plots of fragments HMES from 1000 iterations for an (a) outcross data and (b) backcross data are plotted along the entire Arabidopsis genome.
Contigs from chromosome 1 to 5 are arranged sequentially. Causative mutation location is highlighted using a red vertical dashed line. (c,d,e)
Boxplots showing the distribution of (c) HMES (d) HMES rank presented as a percentage of all fragments with HMES >1 and (e) length of the
fragment with candidate mutation from 1000 iterations
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The outcross (Fig. 1a) and backcross (Fig. 1b) data both
show strong enrichment of HMES around the causative
mutation, though backcross data show strong peaks else-
where, a consequence of lower density of SNPs resulting
from mutagenesis. In our outcross simulations, the frag-
ment carrying the causative mutation has a mean HMES
of 12.24 (median 10.45) and on average is in the top
18.8% (median 13.5%) of HMES scores (Fig. 1c, d). In
our simulation length of the fragment ranged from 0.5kb
to 493kb with median of 27.5kb. Together these statis-
tics indicate that the HMES is a reliable way to identify
the most likely fragments around or bearing the causative
mutation.
We developed a rapid HMES sorting algorithm to

arrange unordered fragments into a sequence represent-
ing distance from the causative mutation, though not nec-
essarily their original order in the genome (Algorithm 1).
In broad terms the algorithm orders the fragments with
the largest HMES at the centre, the second largest to its
left, the third largest to its right, the fourth largest to the
extreme left and so on resulting in a rough ordering of
the genomic fragments such that nearness to the centre of
the ordering increases the likelihood of a fragment carrying
the causative mutation (Additional file 1: Figure S2).

Algorithm 1 HMES density sort
1: function HMES DENSITY SORT(L) � Where L =

array of arrays, L[ i]=[ labeli, HMESi] for fragment i
2: S = sort(L) by descending HMES, left to right
3: B = shift(S) remove leftmost array from S
4: A = C =[ ] empty arrays
5: while length(S) > 0 do
6: a = shift(S) remove leftmost array from S
7: c = shift(S) remove new leftmost array from S
8: A = unshift(A, a) add a to leftmost position of

A
9: C = pop(C, c) add c to rightmost position of C

return [A,B,C] list of fragments with highest
HMES at the centre, lowest at far left and right and in
ascending order of HMES up to centre value.

Output from CHERIPIC is a tab-delimited text file with
the following information about the variants selected -
“HMES, allele frequency, length of contig, id of con-
tig, variant position in contig, reference base, coverage,
read bases, base qualities, left sequence to variant, variant
allele, right sequence to variant”. Left and right sequences
are provided to easily design markers and sequence length
can be user adjustedto retrieve enoughsequence information.

Results
We applied our algorithm to three plant genome data sets
from previously published experiments in which sequence

data are publicly available. Datasets being whole genome
shotgun data of pooled bulks of the sup2 Arabidop-
sis mutant (a mutation in AT4G11260 at chromosome
4:6852405) [9], pooled bulk RNA-seq data from the maize
gl3mutant (GRMZM2G162434 gene at Chr4:185827677-
185831259) [10] and exome capture data from the barley
mnd mutant (MLOC_64838 gene at Chr5:468277462-
468279844) [11]. All data are from bulked segregant anal-
ysis involving outcrosses. In all these experiments, the
allele under question is known to be recessive, hence we
focussed on tracking the linkage disequilibrium around
the mutant allele. For a recessive candidate in mutant
bulks we expect an allele frequency close to 100%, while
the allele frequency in background bulk would be around
33.3% (since two third fraction of the background are
heterozygotes and half of that represent mutant allele),
these percentages allow tuning of the identification of
polymorphisms as homo/heterozygous according to cal-
culated allele frequency. In all these data, we could show
that HMES ordering can be used to narrow down the
region of the genome to a fine interval to identify the
causative mutation.
For the sup2 Arabidopsis experimental data [9] we

have generated an assembly from background bulks of
hasty mutant data used in earlier simulations and used
as a reference sequence for CHERIPIC and bulk vari-
ant calls. In addition, variant calls were made using both
background parent and polymorphic parent (Col-T and
Ws). CHERIPIC has identified 346 variants from frag-
ments with HMES > 1 (Additional file 1: Figure S3a). The
mutation causing the sup2 phenotype is on chromosome
4 and 97.68% (338 out of 346) of variants selected were
on that chromosome (Additional file 1: Figure S3a). The
variants from fragments most closely associated around
causative mutation have a very high HMES (Fig. 1); there-
fore, we selected variants falling in top 5% of the score,
resulting in 16 candidates (Fig. 2a and Additional file 1:
Figure S3b). The closest variant is at a distance of 260 Kbp
(260581bp) from the causative mutation reducing the area
of the genome hosting the mutation to a very fine region.
The candidate mutation causing the phenotype is not
identified in our study, indicating the region of interest can
still be found even in the absence of the causative muta-
tion a strong advantage in noisy or false-positive/negative
error prone SNP call sets. In this experiment, the bulks
were sequenced at 8X coverage possibly resulting in non-
detection of some of the variants, including the candi-
date mutation. The variants on selected fragments from
CHERIPIC can be used as markers for further screening
of bulks for segregation.
Bulk segregant data for the maize gl3 [10] was gener-

ated using RNA-seq of pooled RNAs of the bulks. We first
assembled transcripts from the RNA-seq data of non-gl3
phenotype bulks and used this as the alignment reference
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Fig. 2 Implementation of CHERIPIC with bulk segregant sequencing
data from plant species with varying genome sizes has identified
variants very close to causative mutation. Density plots showing the
position of selected variants (a) on Chromosome 4 of Arabidopsis for
sup2; (b) on Chromosome 4 of maize for gl3 and (c) on Chromosome
5 formndmutant as vertical red dotted lines. Top five percentile HMES
variants were depicted for Arabidopsis and barley, while for maize all
selected variants were depicted. In each panel, variant densities are
presented as either all variants or variants with HMES grater than
median or HMES grater than 3rd quartile. Variants with HMES from top
1% are very closely linked to causative mutation. Bulk segregant
sequence data is from whole genome sequencing (Arabidopsis),
RNA-seq (maize) and exome sequencing (barley) experiments

sequence in CHERIPIC analysis. CHERIPIC identified
twelve variants with HMES greater than one from all ten
chromosomes (Additional file 1: Figure S4), ten of which
on chromosome four (Fig. 2b), and collocated with the
causative mutation. The distance between the closest and
the causative mutation was 1Mbp (1006746 bp). A limita-
tion of bulked RNA-seq approach is that polymorphisms
may cause expression changes and transcripts from the
gene carrying the causative mutation could be unde-
tectable because of poor sequence coverage and could not
be considered by CHERIPIC. Transcripts from gl3 were at
very low amounts and therefore missed.
Sequence data from barley mnd bulks was generated

using exome capture [11]. Application of CHERIPIC to
barley data has resulted in identification of 1997 variants
with HMES > 1 from all 7 Chromosomes (Additional
file 1: Figure S5a). The causative mutation for mnd is
located on chromosome 5 and 63.99% of selected vari-
ants (1278 out of 1997) were present on that chromosome
(Additional file 1: Figure S5a). Selecting variants with top
5% of HMES resulted in 90 variants from all 7 Chromo-
somes (Additional file 1: Figure S5b), while 78 (86.67%)
were on Chromosome 5 (Fig. 2c). Distance between mnd
causative mutation and closest CHERIPIC variant was
11.7Mbp (11722011 bp). The barleymndmutant was gen-
erated using X-ray mutagenesis which is known to create
large deletions and could have added to the increased
distance between the causative mutation and the closest
variant identified in this case.

Conclusions
To permit the easy application of our method and to
allow users to rapidly analyse bulk segregant sequence
data we have produced a range of implementations of the
CHERIPIC algorithm. As input CHERIPIC takes a file of
reference fragments and the variant files for both bulks.
Variant calls from background bulks are not required,
but if available help reduce the background and increase
high quality variants for downstream analysis. Variants
files can be provided as either pileup, BAM or VCF files.
CHERIPIC is implemented in Ruby and is available as a
pre-packaged binary with all dependencies for Linux and
MacOS at https://github.com/TeamMacLean/cheripic. A
Galaxy install script is provided to allow integration into
to Galaxy servers. An interactive web interface is provided
at http://cheripic.tsl.ac.uk.

Methods
Datasets
(1) Mapping population of a Arabidopsis leaf curl mutant
(hasty) was generated through backcrossing it to the par-
ent mir159a, a T-DNA insertion mutant [12]. From the
mapping population, a bulk of 110 individuals showing
mutant phenotype and a parent mir159a individual were

https://github.com/TeamMacLean/cheripic
http://cheripic.tsl.ac.uk
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sequenced to 50x coverage, using Illumina Hiseq2000
through paired end sequencing (2x100bp). (2) Two sup-
pressor mutants (sup#1 and sup#2) of hemizygous uni-1D
transgene in Arabidopsis Ws background was out-crossed
to Col-T, to generate mapping population [9]. Sequencing
was done on (i) a pool of 80 individuals showing suppres-
sion phenotype, (ii) wild type Col-T and (iii) wild typeWs,
using Illumina Genome Analyzer IIx as 75bp single end
reads. We have used sequencing data from sup#2, Col-T
and Ws in our analysis and these samples had 8.3 to 9.1x
sequence coverage. (3) A maize mapping population was
generated by out-crossing glossy phenotype showing gl3-
ref allele in non-B73 genetic background to B73, an inbred
reference line [10]. Sequencing was carried out on pools
of RNA from 32 mutant phenotype individuals and 31
non-mutant phenotype individuals, on Illumina Genome
Analyzer II as 75 bp single end reads. (4) An X-ray muta-
genisedmndmutant in barley cv. Saale was out-crossed to
cv. Barke to generate a mapping population [11]. Exome
capture was performed on two pools of DNA from 18
mutant and 30 wild type plants, respectively. Sequencing
was carried out on Illumina Hiseq2000 as paired reads (2X
100 bp).

Simulations
For mapping by sequencing to be successful, we need
ordered reference sequence to place variants from bulk
segregant sequence data on chromosomes to identify the
region of genome with linkage disequilibrium.We wanted
to test the impact of fragmented nature of de-novo genome
assemblies in identifying the genomic region with linkage
disequilibrium. To avoid variability resulting from param-
eters of genome assembly, variant calling and sequencing
depth we have used variant data from BSS experiments
that had been previously published to identify causative
mutation using Arabidopsis ordered reference genome.
Arabidopsis BSS data for hasty [12] (a backcross) and
sup2 [9] (an outcross) were used for variant calling
against Arabidopsis Col-0 TAIR10 genome. Sequencing
reads from pooled samples of mutant bulks and parents
were quality filtered and trimmed using Trimmomatic
v0.33 [13] (with options: ILLUMINACLIP:Trimmomatic
provided Illumina adapter file:2:30:10 HEADCROP:10
LEADING:10 TRAILING:10 SLIDINGWINDOW:4:15
MINLEN:31) aligned using BWA [14] mem (v0.7.12)
with default settings and bamfiles were generated using
samtools [15] (v1.0). Mpileup file generated using sam-
tools (-q 20 -Q 15 -d 20xmean_depth) and variant
calls were generated using varScan [16] (v2.3.9, options:
mpileup2cns –variants 1 –output-vcf 1 –strand-filter 1).
Homozygous variant calls from background bulk data
were subtracted from mutant bulk data. Remaining
mutant bulk data variants from backcross and outcross
datasets were used in respective simulations. We have

used paired end reads of miR159a parent [12] to assem-
ble Arabidopsis genome. Reads were quality filtered and
trimmed using Trimmomatic v0.33. Genome assembly
was done using SOAPdenovo [17] v2.40 with Multi-
Kmer method (SOAPdenovo-127mer all -K 25 -d 1 -
R -M 1 -m 95 -E -F). Assembled scaffolds of ≥300bp
were selected resulting in assembly size of 117.6 Mb
(n=18,267), with a N50 length of 20.3 Kb. Resulting
assembly scaffold lengths were modelled against nor-
mal, log-normal and exponential distribution; and found
to follow a log-normal distribution (Additional file 1:
Figure S1). Arabidopsis genome was randomly frag-
mented using log-normal distribution (mean: 7.88 and
alpha: 1.56) to generate a 1000 fragmented genome
assemblies each for outcross and backcross experi-
ment. Position and chromosomal order of individ-
ual fragments in each generated assembly is known.
Background subtracted variant data from the mutant
bulk were assigned to respective fragments to generate
1000 assemblies with variant data from bulk segregant
sequencing.

CHERIPIC analysis
Arabidopsis: De-novo assembly made for bulk segregant
simulation analysis was used as a reference to call variants
using single end whole genome reads of outcrossed bulked
individuals showing sup2 [9] phenotype, and two parents
Col-T and Ws. Variant analysis was carried out as men-
tioned in the “Simulations” section. Assembly and variant
files are provided as inputs to CHERIPIC. CHERIPIC
takes multiple inputs for background variants, as out-
crosses involve two polymorphic parents and as was the
case for sup2 experiment. Removing background variants
from both parents would help in removing candidates not
linked to the phenotype but arising from regions with
suppressed recombination.
Maize: Single end RNA-seq reads from combined bulks

of both gl3 mutant and non-mutant phenotype [10]
were quality filtered and trimmed using Trimmomatic
v0.33 (options: ILLUMINACLIP:ilmn_adapters.fa:2:30:10
HEADCROP:13 LEADING:10 TRAILING:10 SLIDING-
WINDOW:4:15 MINLEN:25). Assembly was carried
out using Trinity [18] v2.0.6 (options: –seqType fq –
max_memory 50G –CPU 64 –full_cleanup) by using
sequences from both bulks. Assembly using default
parameters resulted in 33,563 transcript sequences, which
were clustered using CD-HIT [19] with identity threshold
of -c 0.975, resulting in 29,288 transcripts.
Barley: Wildtype pool of paired end exome sequence

data from mnd bulk segregant sequences [11] were qual-
ity filtered and trimmed using Trimmomatic v0.33 and
were assembled using SOAPdenovo v2.40 with Multi-
Kmer method (SOAPdenovo-127mer all -K 25 -d 1 -R -M
1 -m 95 -E -F). Assembled scaffolds of ≥300bp has
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resulted in sequence of 166.5 Mb (n=253137) and a N50
length of 0.72 Kb.

Availability and requirements
Project name: CHERIPIC
Project home page: https://github.com/TeamMacLean/
cheripic
Operating system(s): Linux and Mac OS
Programming language: Ruby
Other requirements: CHERIPIC has light computational
requirements. It will run on Linux or Mac OS operating
system with 2GHz CPU andminimally 8GB RAM. Higher
RAMmay be required if input files are large.
License:MIT
Any restrictions to use by non-academics: None

Additional file

Additional file 1: Supplemental Figures. Figure S1. Frequency
distribution of assembly fragment lengths follow a log-normal distribution.
Figure S2. Outline of CHERIPIC method. Figure S3. Variants selected by
CHERIPIC for Arabidopsis sup2 data were presented on all five
chromosomes. Figure S4. All variants selected by CHERIPIC for maize gl3
data were presented on all ten chromosomes. Figure S5. Variants selected
by CHERIPIC for barleymnd data were presented on all seven
chromosomes. (PDF 854 kb)

Abbreviations
BSS - Bulk segregant sequencing; CHERIPIC - Computing homozygosity
enriched regions in genomes to prioritise identification of candidate variants;
HMES - Homozygosity enrichment score; MBC - Map based cloning; MBS -
Mapping by sequencing
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