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Abstract 

The enzymatic cleavage of phosphate monoesters of myo-inositol 

hexakisphosphate (InsP6) or phytate is the property of a group of enzymes collectively 

known as phytases. These enzymes adopt a variety of protein folds and utilise a number 

of different reaction mechanisms and may be classified accordingly. Among these, the 

purple acid phytases (PAPhy), a subclass of the purple acid phosphatases (PAP), are the 

least well characterised. The aim of this thesis is a biochemical and structural 

characterisation of cereal PAPhy with the additional purpose of the identification of 

structural features that distinguish PAPhy from PAP. 

In this project, the partial enzymatic deglycosylation of a recombinant PAPhy 

from wheat yielded high quality crystals that allowed the solution of the high-resolution 

X-ray crystallographic structure of the first PAPhy, with inorganic phosphate bound in 

different poses and in complex with the inhibitor myo-inositol hexakissulfate. Molecular 

dynamics simulations of the enzyme-substrate complex allowed the identification of key 

protein-substrate interactions, leading to the proposal of six phytate specificity pockets 

for the wheat PAPhy isoform b2 (TaPAPhy_b2). A characterisation of TaPAPhy_b2 

allowed the estimation of its kinetic parameters, revealed optimum phytase activity at 

pH 5.5 and 37°C, with denaturation and subsequent inactivation over 50°C, and the 

determination of the D-4/6-phosphate as preferred initiation site of InsP6 hydrolysis. A 

conservation of the pathway of phytate hydrolysis identified in TaPAPhy_b2 was 

observed in other cereal PAPhy, while the soybean PAPhy displayed higher positional 

promiscuity. Structure-function relationships of TaPAPhy_b2 were elucidated by 

site-directed mutagenesis and mutant characterisation alongside the wild type enzyme. 

Two amino acid residues critical for phytase activity were identified, His229 and Lys410, 

while a third, Lys348, was shown to influence substrate affinity more subtly.  

The work described in this thesis provides novel insights into the structure and 

phytase activity of the purple acid phytases. 
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 Introduction 

 The phosphorus problem 

Phosphorus is one of the essential elements required for the growth of all living 

organisms. It is a key component of biomolecules such as ATP and both DNA and RNA, 

therefore responsible for cell energy transfer and storage of genetic material, 

respectively. It is also present in cell membranes as phospholipids, as well as critical in 

bone and teeth formation and maintenance in vertebrate animals (Ruttenberg, 2014). 

Autotrophs are the base of the food chain. Crops are mainly grown for direct 

human consumption and to produce feed for livestock. As autotroph organisms, plants 

need to obtain phosphorus and other nutrients from the soil to use in their metabolism. 

Plant phosphorus uptake depends on phosphorus being present in the soil in a form that 

the plants can use. Phosphorus in soil is present mainly in four forms: inorganic P, 

organic P, adsorbed P and primary mineral P. Of these forms, only inorganic P is available 

to plants. There are three general processes that transform soil phosphorus from one 

form to the other, described in Figure 1. The processes that increase plant available 

phosphorus are weathering, mineralization and desorption, whereas precipitation, 

immobilization and adsorption make phosphorus unavailable to plants (Hyland et al., 

2005).  

Fertilizers containing phosphorus are applied to crops to ensure plants have a 

source of this mineral available. However, fertilizers are often applied in excess, leading 

to a waste of phosphorus and other nutrients that end up getting carried over to aquatic 

ecosystems (Runoff in Figure 1), affecting the quality of the water. Phosphorus is also 

lost in unrecycled crop, animal and human waste, increasing the problem of 

eutrophication of natural waters (Childers et al., 2011). Eutrophication occurs when the 

oxygen is depleted in water bodies as a result of an algal bloom triggered by the increase 

of nutrients in the water. When the algae die, bacteria use all the oxygen in the water 

to decompose them (Hyland et al., 2005). 
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Figure 1. Phosphorus cycle 

Weathering is the process by which P-rich minerals present in the soil are eroded and very slowly become 
available to plants. Precipitation consists of the non-reversible reaction of inorganic phosphorus with 
other elements dissolved in the soil (such as iron or calcium) forming phosphate minerals and making 
phosphorus unavailable to plants. Mineralization is the transformation of organic P to orthophosphates 
(H2PO4

- or HPO4
2-, available forms of phosphorus) by microbial organisms in the soil. Immobilization is the 

process by which microorganisms turn orthophosphates into organic P, making them unavailable to plants 
again until the death of those microorganisms. Adsorption occurs when available phosphorus chemically 
binds soil particles and desorption is the slow release of this bound phosphorus back to solution in the 
soil. Runoff is the water flow over the soil that carries over the phosphorus (adsorbed to the soil or 
dissolved in the manure and fertilizers applied) to water bodies. Leaching is a vertical water flow that also 
makes phosphorus unavailable to plants (Hyland et al., 2005). 

Phosphorus is therefore indispensable to produce food, but it is a limited 

resource. Phosphorus is obtained from mining rocks with high content in phosphate 

minerals (rock-phosphate) and exploiting aquatic sediments. The demand of 

phosphorus has increased so much that these sources are effectively non-renewable: 

the phosphate cycle is too slow (time scales of thousand to millions of years) compared 

with its accelerated extraction. Sustainable strategies to close the human P cycle are 

needed to avoid phosphorus depletion, seeming the most effective those that seek the 

reduction of phosphorus loses and the recycling of agricultural, farming and human 

waste (Childers et al., 2011).  

 Inositol phosphates 

Inositols are cyclohexanes with an alcohol group in each carbon. There are nine 

possible stereoisomers (Figure 2), all of them known to occur in nature apart from 
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cis-inositol. Inositol phosphates are esters of inositol with various phosphorylation 

states. They are organic phosphorus compounds present extensively in the natural 

environment, with myo-inositol phosphate being the most common isomer. The myo 

isomer is characterised for having the substituent group attached to carbon two in axial 

position, while all the others are equatorial (Turner et al., 2002; Thomas, Mills and 

Potter, 2016).  

 

Figure 2. Stereoisomers of unsubstituted inositols 

Chair representation of the nine possible inositol stereoisomers. All the stereoisomers except cis-inositol 
can be found in nature (Turner et al., 2002). 

Inositol phosphates are named with the prefixes mono, bis, tris, tetrakis, 

pentakis and hexakis depending on how many alcohol groups of the inositol ring are 

substituted with phosphate. They are synthesised by plants and they accumulate in the 

soil, from where they can potentially run off to aquatic ecosystems and contribute to 

eutrophication (Turner et al., 2002).  

1.2.1. myo-Inositol hexakisphosphate 

The most common inositol phosphate by far is myo-inositol hexakisphosphate 

(InsP6), also known as phytic acid (in its free acid form) and phytate (for the salts of 

phytic acid). The chemical structure of myo-inositol hexakisphosphate is shown in Figure 

3. Phytate is the principal form of phosphorus and inositol storage in plant seeds, 

constituting the 60–90% of the total phosphorus content in plants (Rao et al., 2009). 

InsP6 is a strong chelator of cations. It binds metal ions, such as Ca2+, Mg2+, Zn2+, Mn2+, 
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Cu2+ or Fe2+, and forms complexes with positively charged proteins. During seed 

germination, free phosphates and the chelated metal ions are released from phytate 

through enzymatic hydrolysis by phytase enzymes (Rao et al., 2009; Yao et al., 2012). As 

well as storage functions, phytate is believed to play a role in the cellular response to 

abscisic acid in plants and myo-inositol is a cell wall precursor (Irvine and Schell, 2001). 

InsP6 is also ubiquitous in animal cells (Irvine and Schell, 2001). Various functions have 

been reported for InsP6 through the activation or inhibition of intracellular proteins: it 

seems to act as a co-factor in DNA repair (Hanakahi et al., 2000; Hanakahi, 2011), it is 

involved in mRNA export from the nucleus to the cytosol (York et al., 1999), and has a 

role in secretion or vesicular recycling (Irvine and Schell, 2001). Aside its physiological 

roles, phytate is known to be an antinutrient due to its strong binding affinity to 

important minerals (Schlemmer et al., 2009). Medical properties as antioxidant (Graf, 

Empson and Eaton, 1987) and anticancer (Shamsuddin, 1995; Bizzarri et al., 2016) 

agents have also been reported for InsP6. 

 

Figure 3. Chemical structure of myo-inositol hexakisphosphate 

The structure of myo-inositol hexakisphosphate is shown in the pentaequatorial (1a5e) conformation. A 
conformational change to a pentaaxial (5a1e) state has been observed for myo-inositol hexakisphosphate 
under certain circumstances. However, it is unclear at which pH values each of the two possible 
conformations appear (Turner et al., 2002; Veiga et al., 2014). Image created with ChemDraw Prime 
version 15.0 (PerkinElmer Informatics). 

1.2.2. Other inositol phosphates 

Inositol-1,4,5-trisphosphate was the first inositol phosphate identified as second 

messenger in eukaryotic cells. It controls Ca2+ signalling through the ion channel of the 

Ins(1,4,5)P3 receptor, regulating several essential cellular processes (Streb et al., 1983). 
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Ins(1,2,6)P3 is a non-naturally occurring inositol triphosphate resulting from the partial 

degradation of InsP6 by phytases. It is produced commercially for its analgesic and anti-

inflammatory properties (Bell and McDermott, 1998). 

A number of inositol tetrakisphosphates have also been reported to participate 

in cell signalling. Ins(1,3,4,5)P4 is a product of the metabolism of Ins(1,4,5)P3 and they 

participate together in the modulation of cellular calcium ion levels (Irvine et al., 1984; 

Batty, Nahorski and Irvine, 1985). Ins(3,4,5,6)P4 seems to be an inhibitor of calcium-

activated chloride channels in epithelial cells (Kachintorn et al., 1993). Ins(1,4,5,6)P4 is a 

coregulator of histone deacetylases, thus it is involved in chromatin organization and 

gene expression (Watson et al., 2012; Millard et al., 2013). 

The second most abundant inositol phosphate in mammalian cells after InsP6 is 

Ins(1,3,4,5,6)P5. This inositol pentakisphosphate is believed to be involved in the 

modulation of haemoglobin interactions in some erythrocytes (Coates, 1975) and it has 

also been attributed anticancer properties (Piccolo et al., 2004). 

Inositol pentakis and hexakisphosphates can be phosphorylated further to form 

inositol pyrophosphates or diphosphoinositol polyphosphates (PP-InsP). InsP7 and InsP8 

have been related to vesicular trafficking, apoptosis, DNA repair, telomere length, stress 

responses, neurological function, and immune responses (Thomas, Mills and Potter, 

2016). 

All the inositol phosphates described above are myo isomers. Inositol 

stereoisomers other than myo are far less studied and their suggested roles are very 

diverse, with no wide conclusions. Different isomers seem to have different effects in 

different systems (Thomas, Mills and Potter, 2016). 

 Phytases 

Phosphatases are enzymes that catalyse the hydrolysis of a phosphoric acid 

monoester into a free phosphate ion and an alcohol. Phosphatases have varying 

substrate specificity. While some only act on a particular substrate, others can cleave 

phosphate groups from a wide range of organic phosphates. Phytases or myo-inositol 

hexakisphosphate phosphohydrolases are phosphatases that can initiate the sequential 
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dephosphorylation of phytate or myo-inositol hexakisphosphate, releasing inorganic 

phosphates and lower myo-inositol phosphates (Mullaney and Ullah, 2003). The 

reaction intermediates of phytate hydrolysis vary with different phytases and they serve 

as substrates for further hydrolysis (Konietzny and Greiner, 2002; Li et al., 2010). 

Phytases can also liberate phosphate groups from various other phosphorylated 

compounds, with only a few phytases described as highly specific for phytate. In addition 

to phytate, phytases are usually able to hydrolyse substrates such as adenosine mono-, 

di- and triphosphate (AMP, ADP and ATP, respectively), guanosine mono- and 

triphosphate (GMP and GTP, respectively), nicotinamide adenine dinucleotide 

phosphate (NADP), para-nitrophenyl phosphate (pNPP), phenyl phosphate, naphthyl 

phosphates, fructose 1,6-diphosphate, fructose and glucose 6-phosphate, glucose 

1-phosphate, galactose 1-phosphate, glycerophosphates, pyridoxalphosphate, 

o-phospho-L-serine, and pyrophosphate (Konietzny and Greiner, 2002).  

Phytases have been isolated from diverse sources, as well as expressed in a wide 

range of hosts and purified through a variety of biochemical methods. The biophysical 

and biochemical properties of phytases are dependent on the source from which they 

are extracted and/or the expression system in which they are produced (Rao et al., 

2009). The molecular weight of phytase enzymes is highly variable, ranging from 

approximately 35 to 700 kDa (Li et al., 2010). Eukaryotic phytases have a higher 

molecular weight than bacterial ones due to glycosylation (Rao et al., 2009). Phytases 

are usually active in the pH range of 4.5-6.0 and at temperatures of 45-60°C, with 

microbial enzymes often being more stable to pH and temperature changes than plant 

phytases (Konietzny and Greiner, 2002; Li et al., 2010). 

The activity of most phytases is affected by the presence of metal ions. However, 

it is not clear if the inhibitory effect of specific metal ions in some phytases is caused by 

binding of the metal to the enzyme or the decrease in substrate solubility when certain 

metal ion-phytate complexes are formed. Fluoride has been found to be a strong 

competitive inhibitor of phytases (Konietzny and Greiner, 2002). The phytate hydrolysis 

product orthophosphate has also been reported as a competitive inhibitor of phytase 

enzymes. Other suggested inhibitors of these phytases include molybdate, tungstate 
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and vanadate, which form complexes that resemble the geometry of the transition state 

in the catalytic mechanism of these enzymes (Zhang et al., 1997). 

1.3.1. Phytase sources and physiological roles 

Phytases were first discovered in fungi and they have been reported in a large 

variety of microorganisms, plants and animals (Dvořáková, 1998; Konietzny and Greiner, 

2002; Vohra and Satyanarayana, 2003). The wide spread of these enzymes in all 

kingdoms of life is not surprising due to phytate having such an important presence in 

nature, as described in section 1.2.1. (Mullaney and Ullah, 2007). 

Microbial phytases have been isolated from fungi, yeast, bacteria and protozoa 

(Lei et al., 2007). Most microorganisms produce only intracellular phytases. Production 

of extracellular phytases has been observed in filamentous fungi, yeast and some 

bacteria. (Konietzny and Greiner, 2002). Most microbial phytases are synthesised in the 

stationary growth phase under nutrient limited conditions. This way, phytases provide 

microorganisms with the ability to use phytate as a source of carbon and phosphate 

(Konietzny and Greiner, 2004). 

Plant phytases occur mostly in grains, seeds and pollen of higher plants. They are 

responsible for phytate degradation during seed germination to liberate phosphate, 

minerals and myo-inositol for plant growth and development. Low phytase activity has 

also been observed in roots. The presence of phytase in plant root has been associated 

with increasing the phosphate availability in the soil for plant uptake, although soil 

microorganisms producing extracellular phytases are more significant in this role. 

Cereals exhibit a higher phytase activity than legumes and oilseeds (Konietzny and 

Greiner, 2002). Other functions of phytases in plants are believed to be the production 

of antioxidants and secondary messengers (Shears, 1998). 

Animal phytases were first detected in calf blood and liver. Following this, they 

have been observed in blood of several vertebrates, and secreted by the mucosa of the 

small intestine of some mammals. The investigation of animal phytases is more limited 

than in plants or microorganisms. They are believed to maintain the supply of InsP6 and 

lower InsP derivatives critical in cell signalling pathways. Animal phytases do not seem 
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to have a significant role in phytate digestion. Phytate digestion in animals is mainly 

attributed to the microbial flora of the intestine and dietary phytases (Konietzny and 

Greiner, 2002; Vohra and Satyanarayana, 2003). 

1.3.2. Classification of phytases based on initiation site of hydrolysis 

Phytase enzymes can be classified according to different criteria. The 

IUPAC-IUBMB (International Union of Pure and Applied Chemistry and the International 

Union of Biochemistry and Molecular Biology) divides phytases in three groups based 

on the initial dephosphorylation site of the InsP6 inositol ring (Figure 4): (1) 3-phytases 

(EC 3.1.3.8), which initiate hydrolysis at the D-3-phosphate (anticlockwise 

nomenclature) or the L-1-phosphate (clockwise nomenclature); (2) 6-phytases 

(EC 3.1.3.26, 4-phytases under current naming convention), which start with phosphate 

in position D-4 or L-6; and (3) 5-phytases (EC 3.1.3.72), which first hydrolyse the 

phosphate group in carbon five (Brinch-Pedersen, Sørensen and Holm, 2002; Bohn, 

Meyer and Rasmussen, 2008). 

 

Figure 4. Classes of phytases based on initiation site of phytate hydrolysis 

The product of 3-phytases is L-1-OH InsP5 or D-3-OH InsP5; the product of 6-phytases is D-4-OH InsP5 or 
L-6-OH InsP5; and 5-phytases produce 5-OH InsP5. Image created with ChemDraw Prime version 15.0 
(PerkinElmer Informatics). 
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Subsequent attacks to the InsP5 are not random, they occur adjacent to the free 

hydroxyl group resulting from the first dephosphorylation of phytate. Therefore, the site 

at which phytases initiate the hydrolysis of phytate determines the sequence of further 

hydrolysis (Brinch-Pedersen, Sørensen and Holm, 2002). In general, microorganisms 

were considered to produce 3-phytases and rarely 5-phytases, whereas 6-phytases were 

found in plants. However, this classification seems to be inaccurate as several exceptions 

have been reported. For example, bacteria such as E. coli have been found to produce 

6-phytases (Greiner, Konietzny and Jany, 1993) and a phytase from lily pollen is a 

5-phytase (Barrientos, Scott and Murthy, 1994). 

1.3.3. Classification of phytases based on structure and catalytic 

mechanism 

Not all phytase enzymes are structurally similar or employ the same catalytic 

mechanism to hydrolyse phosphate. A second phytase classification criterion is based 

on the different catalytic mechanisms (and, therefore, three-dimensional structures) 

that have evolved in nature to accomplish the phosphate hydrolysis of phytate. Four 

classes of phosphatase enzymes have been reported to have representatives with 

phytase activity so far, dividing phytases into four groups: (1) histidine acid phytases, 

(2) β-propeller phytases, (3) protein tyrosine phytases or cysteine phytases and 

(4) purple acid phytases. The existence of different catalytic mechanisms to develop the 

same activity has the potential to make phytase enzymes versatile for industrial 

applications (Mullaney and Ullah, 2003, 2007, Lei et al., 2007, 2013).  

1.3.3.1. Histidine acid phytases 

The histidine acid phytases (HAPhy) were the first discovered and the most 

broadly investigated group of phytases (Lei et al., 2013). They belong to the histidine 

phosphatase superfamily, a large group of proteins with very diverse functions, although 

most of them are phosphatases. All proteins belonging to the histidine phosphatase 

superfamily are characterised for having the catalytic core conserved with four invariant 

residues: two histidines and two arginines (Arg7, His8, Arg55 and His108 in the E. coli 

SixA enzyme, as shown in Figure 5). These four conserved residues, together with 
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additional non-conserved neutral or positive residues (PP in Figure 5), form the 

‘phosphate pocket’ of the enzyme. The catalytic mechanism initiates with the transfer 

of a phosphate group from the substrate to the enzyme. This occurs through the 

phosphorylation of one of the conserved histidine residues, mediated by electrostatic 

interactions and hydrogen bonding of the phosphate with the other residues in the 

phosphate pocket. The histidine acts as a nucleophile that attacks the phosphate group 

of the substrate. A proton donor residue (PD in Figure 5) donates a proton to the 

substrate’s leaving group while the phosphate group gets transferred to the catalytic 

histidine. Aspartate and glutamate residues have been reported as proton donors. The 

phosphate is finally removed from the histidine through hydrolysis. The negatively 

charged proton donor attacks a water molecule followed by the attack of this water 

molecule to the phosphate group, generating free phosphate and a regenerated enzyme 

(Vincent, Crowder and Averill, 1992; Rigden, 2008).  

 

Figure 5. Catalytic mechanism of the histidine phosphatase superfamily 

The two-step catalytic mechanism of the enzymes belonging to the histidine phosphatase superfamily, 
with the catalytic core residues numbered as in the E. coli SixA phosphatase representative. His8 is the 
catalytic histidine and forms the ‘phosphate pocket’ together with Arg7, Arg55, His108 and other variable 
residues (PP). PD represents the proton donor residue (Rigden, 2008).  

Proteins of the histidine phosphatase superfamily can be divided in two branches 

with low sequence similarity. The first branch groups mostly intracellular bacterial 

proteins with a wide variety of functions, which only present an RH[G/N] active site 

motif conserved. The second branch contains predominantly extracellular eukaryotic 

proteins with two conserved motifs: an N-terminal RH[G/N]xRx[P/A/S] catalytic motif 

and a C-terminal HD/HAE proton donor motif, which are positioned together in the 3D 

structure to form the active site of these enzymes. Well known members of this branch 
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are histidine acid phosphatases with no known phytase activity (HAP) and histidine acid 

phytases (HAPhy) (van Etten et al., 1991; Rigden, 2008; Lei et al., 2013).  

 

Figure 6. Crystal structure of the HAPhy representative AppA E. coli phytase in complex with phytate 

Polypeptide chain coloured following the rainbow spectrum from blue (N-terminus) to red (C-terminus). 
Side chains of residues involved in the binding of phytate are displayed as sticks and coloured by 
heteroatom: Arg16, Arg20, Asp88, Arg92, His303 (catalytic histidine) and Asp304 (PD). Disulfide bridges 
are displayed as sticks and coloured by heteroatom. Phytate is shown as sticks and coloured by element. 
Structure extracted from the Protein Data Bank (PDB; Berman et al., 2000), accession 1DKQ (Lim et al., 
2000). Image created with the UCSF Chimera package (Pettersen et al., 2004). 

HAPhy is the term used to designate the histidine acid phosphatases that can 

accommodate the negatively charged phytate as substrate. They carry out their activity 

at acidic pH, which makes their active site positively charged and facilitates the binding 

of phytate. Several crystal structures of HAPhy are available, all comprising an 

α-helix-only domain and an α/β domain with two helices on each side of the seven-

stranded sheet. They are also characterised by the presence of several disulfide bridges 

that maintain their 3D structure. The amino acid residues encircling the active site are 

known as substrate specificity site (SSS) due to their role in determining substrate 

affinity and pH profile of these enzymes. HAPhy can be divided in two classes correlated 

with the composition of the SSS: broad substrate specificity and low specific activity 
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against phytate or narrow substrate specificity and high specific activity against phytate 

(Mullaney and Ullah, 2003; Lei et al., 2007).  

Several prokaryotic and eukaryotic HAPhy have been reported. The Escherichia 

coli AppA phytase is the best characterised prokaryotic HAPhy and its crystal structure 

is shown in Figure 6. The fungal phytase PhyA from Aspergillus niger and A. fumigatus is 

a well-studied representative eukaryotic HAPhy with crystal structures also available 

(Kostrewa et al., 1997; Liu et al., 2004). 

More recently, another group of enzymes presenting phytase activity has also 

been reported as members of the histidine phosphatase branch two. They are multiple 

inositol polyphosphate phosphatases (MINPP) first described in animals (Caffrey et al., 

1999; Chi et al., 1999), and later in plants (Mehta et al., 2006; Dionisio, Holm and Brinch-

Pedersen, 2007) and bacteria (Stentz et al., 2014). 

1.3.3.2. β-Propeller phytases 

β-Propeller phytases (BPPhy) were first discovered in Bacillus species, presenting 

high sequence identity with each other, but no obvious homology to previously reported 

phytases or any known phosphatase class of enzymes (Kerovuo et al., 1998; Kim et al., 

1998; Lei et al., 2007). Further genome sequence analysis revealed that BPPhy-like 

sequences are widely distributed in the genomes of a number of microbes. To date, 

β-propeller phytases have been characterised from different groups of microorganisms, 

including archaea, bacteria, fungi and cyanobacteria (Kumar et al., 2017). All BPPhy are 

active at neutral to alkaline pH (ranging from pH 6 to 8 in most cases), characteristic that 

has earned them to be also known as alkaline phytases. As most aquatic and terrestrial 

environments have a neutral pH, the optimum pH range of BPPhy suggests they may be 

the major phytate hydrolysing enzyme in nature with a key role in phytate-phosphorus 

cycling (Kumar et al., 2017). Some plant phytases have also been reported as alkaline 

phytases and they share some characteristics with BPPhy, but their molecular structures 

have not yet been determined (Mullaney and Ullah, 2007). 

Most BPPhy have molecular masses in the range of 35 to 68 kDa and optimum 

temperature between 30 and 70°C, presenting higher thermostability than other 
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phytases (Kumar et al., 2017). The 3D structure of the phytases from this family has been 

determined (Ha et al., 2000; Zeng et al., 2011). They have the shape of a propeller with 

six blades, corresponding to five four-stranded and one five-stranded antiparallel 

β-sheets (Figure 7). All BPPhy contain Ca2+ ions in their structure, which are required for 

the activity of the enzymes and their thermostability. Although most of the residues 

involved in calcium binding are conserved, variable numbers of Ca2+ ions have been 

reported in different BPPhy distributed in two classes of Ca2+ binding sites. At least three 

Ca2+ ions are present in the active site of these phytases and involved in catalysis and at 

least two contribute to their thermostability and maintain their 3D structure. The active 

site of BPPhy lays on top of the β-propeller and contains two phosphate binding sites: a 

‘cleavage site’, in which the hydrolysis of a phosphate from the substrate occurs, and an 

adjacent ‘affinity site’, which increases the binding affinity for substrates that feature 

neighbouring phosphate groups. These particular active site characteristics allow BPPhy 

to be highly specific for the substrate phytate, showing no activity on other phosphate 

esters. The calcium ions in the active site facilitate the binding of the substrate by 

creating a favourable electrostatic environment (Kumar et al., 2017).  

The proposed catalytic mechanisms for BPPhy consists on the nucleophile attack 

of a water molecule, coordinated by two of the Ca2+ ions, to a phosphate of the substrate 

in the cleavage site, while a second phosphate group binds in the affinity site 

(Hamelryck, 2003). An aspartate residue in the conserved C-terminal motif DG has been 

suggested to act as a proton donor to the oxygen atom of the scissile phosphomonoester 

bond. Only substrates that fill both phosphate binding sites simultaneously can be 

hydrolysed by BPPhy, which explains their substrate preference for phytate and results 

in these enzymes only being able to remove three phosphates from it. Most of the BPPhy 

characterised to date have a common phytate degradation pathway via Ins(1,2,4,5,6)P5 

and Ins(2,4,5,6)P4 to produce Ins(2,4,6,)P3 as final product (Kumar et al., 2017). 
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Figure 7. Crystal structure of representative BPPhy from Bacillus subtilis in complex with myo-inositol 
hexakissulfate 

The representative Bacillus subtilis alkaline phytase structure in complex with the phytate analogue 
myo-inositol hexakissulfate contains five Ca2+ ions involved in catalysis (Ca4-Ca8), while the rest are 
involved in thermostability (Ca1-Ca3 and Ca9) or crystal packing (Ca10 and Ca11, not displayed in the 
figure). All the sulfates of the substrate analogue except the first one have direct or indirect interactions 
with amino acid residues in the enzyme active site. The 4- and 5-sulfates occupy the ‘cleavage site’ and 
the ‘affinity site’, respectively. Polypeptide chain coloured following the rainbow spectrum from blue 
(N-terminus) to red (C-terminus). Side chains of residues involved in the binding of substrate analogue 
and Ca2+ ions are displayed as sticks and coloured by heteroatom. myo-Inositol hexakissulfate is shown as 
sticks and coloured by element. The nucleophilic water molecule is displayed as a red sphere. Structure 
extracted from the PDB (Berman et al., 2000), accession 3AMR (Zeng et al., 2011). Image created with the 
UCSF Chimera package (Pettersen et al., 2004). 

1.3.3.3. Protein tyrosine phytases or cysteine phytases 

Another class of phytases was discovered upon investigation of microbial 

phytase activity in the rumen of animals with complex digestive tracts (ruminants). A 

phytase from the anaerobic bacteria Selenomonas ruminantium was isolated, 

characterised, and its crystal structure solved. It consisted of a monomer approximately 

46 kDa in size with an optimal acidic pH in the range of 4.0-5.5 and optimal temperature 

of 50-55°C (Yanke, Selinger and Cheng, 1999; Chu et al., 2004). Similar phytases have 

been identified since then in other anaerobic gut bacteria, plant and mammalian 

pathogens and a predatory bacterium (Gruninger et al., 2014). The 3D structure and 

proposed catalytic mechanism of these enzymes suggest they are members of the 

cysteine phosphatase (CP) superfamily, which gave them the name of cysteine phytases 

(CPhy). They are further classified as protein tyrosine phosphatases (PTP), a member of 
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the CP superfamily, making them also known as protein tyrosine phytases (PTPhy). PTPs 

contain the signature sequence Cx5R[S/T] in their active site, a conserved motif also 

known as P-loop that serves as substrate binding pocket. The depth of the P-loop in PTPs 

seems to determine substrate specificity. PTPhy present a wider and deeper pocket than 

the non-phytase PTPs which, together with the presence of a favourable electropositive 

environment, allows them to accommodate phytate as substrate (Lei et al., 2007; 

Gruninger et al., 2012). The invariant cysteine residue is the nucleophile that attacks a 

phosphate group from the substrate to form a phosphocysteine intermediate. Main 

chain amines and a conserved arginine coordinate the scissile phosphate in the active 

site and stabilise the negative charge of phytate, while a conserved aspartate acts as a 

general acid and donates a proton to the leaving group (Puhl et al., 2007; Weber et al., 

2014). 

 

Figure 8. Crystal structure of PTPhy representative from Selenomonas ruminantium in complex with 
phytate 

The structure of the Selenomonas ruminantium PTPhy displayed corresponds to an inactive mutant with 
the catalytic cysteine mutated to a serine residue. The overall fold consists of a ‘sandwich’ domain mostly 
surrounded by α-helices. Polypeptide chain coloured following the rainbow spectrum from blue 
(N-terminus) to red (C-terminus). Side chains of residues involved in the binding of phytate are displayed 
as sticks and coloured by heteroatom. Phytate is shown as sticks and coloured by element. Structure 
extracted from the PDB (Berman et al., 2000), accession 3MMJ (Gruninger et al., 2012). Image created 
with the UCSF Chimera package (Pettersen et al., 2004). 

The first crystal structure reported for the representative S. ruminantium PTPhy 

in complex with the substrate analogue myo-inositol hexakissulfate suggested proteins 

of this class might be 5-phytases (Chu et al., 2004). However, a more recent structure of 



28 
 

an inactive mutant of the S. ruminantium PTPhy in complex with phytate (Figure 8) 

proposed a preference for hydrolysis of the 3-phosphate, which also agreed with the 

kinetic studies carried out with this enzyme (Gruninger et al., 2012). The structures 

solved by Gruninger et al. also indicated that inositol phosphates may have multiple, 

overlapping binding sites within the binding pocket of the PTPhy. Structural and binding 

studies of PTPhy are in accordance with a two-step binding mechanism: a rapid initial 

binding step in which the substrate binds the electropositive binding pocket in one of 

several possible conformations, followed by a slower step in which the susbtrate 

reorients to adopt a catalytically competent conformation (Puhl et al., 2007; Gruninger 

et al., 2012). PTPhy have been reported to sequentially hydrolyse phytate to the end 

product inositol 2-monophosphate (Chu et al., 2004). 

1.3.3.4. Purple acid phytases 

The class of purple acid phytases (PAPhy) was first reported upon the discovery 

of a phytase in the cotyledons of germinating soybean (Glycine max) seedlings that 

contained the purple acid phosphatase (PAP) sequence pattern (Hegeman and Grabau, 

2001). The PAP class of proteins belong to the calcineurin-like metallophosphoesterase 

(MPE) superfamily (Matange, Podobnik and Visweswariah, 2015). PAPhy contain two 

metal ions involved in catalysis and creation of a favourable electrostatic potential for 

the binding of phytate (Lei et al., 2013). Since PAPhy are the subject of this thesis, the 

literature concerning this class of phytases will be reviewed in detail. 

1.3.3.4.1. The metallophosphoesterase superfamily 

The calcineurin-like metallophosphoesterase (MPE) superfamily is a large 

superfamily of enzymes that contain two closely spaced metal ions forming a binuclear 

metal centre. They depend on these metals to hydrolyse phosphomono-, phosphodi- or 

phosphotri-esters. Members of the MPE superfamily include nucleases, phosphoprotein 

phosphatases, cyclic nucleotide phosphodiesterases, pyrophosphatases, nucleotidases 

and purple acid phosphatases. Although the members of this superfamily are 

functionally diverse and have low overall sequence similarity, both the core MPE fold 

and the architecture of the active site are conserved (Matange, Podobnik and 

Visweswariah, 2015).  
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The three-dimensional fold of the MPE domain is called calcineurin-like fold in 

honour of one of the best characterised members of the family (i.e. calcineurin 

phosphatase). In general, it consists of two parallel β-sheets forming a β-sandwich 

decorated by α-helices, arranged in a βαβαβ architecture, although the number of 

secondary structure elements can vary among different MPEs. The active site of MPEs is 

located at the top of the β-sandwich and consists of two metal ions (MI and MII) usually 

octahedrally coordinated by seven conserved amino acids. These metal-coordinating 

residues are contained in five sequence motifs that constitute the sequence pattern 

characteristic of the MPE superfamily. Small variations of this sequence pattern can be 

observed in different members of the MPE superfamily (Matange, Podobnik and 

Visweswariah, 2015). The two metal ions in the active site are separated by distances 

ranging 3.1-3.5 Å and are linked by bridging groups, which are generally hydroxides 

derived from the solvent, side chains of amino acid residues, or a combination of both 

(Mitić et al., 2006; Schenk et al., 2012; Matange, Podobnik and Visweswariah, 2015). 

Different MPEs can use a very diverse range of metals and they can have heteronuclear 

or homonuclear metal centres. The two metal binding sites also have differences in 

affinity for cations. Different metals can occupy the binding sites of most MPEs, but not 

all of them support catalytic activity in an equal manner. It is believed that, in vivo, cells 

regulate the local concentrations of metals so that they can control the metal occupancy 

of these enzymes (Matange, Podobnik and Visweswariah, 2015). 

Sequence signatures related to substrate binding and recognition have not been 

clearly identified for the different MPEs, and several members of this enzyme 

superfamily can utilize multiple substrates. MPEs have variable tertiary structures 

ranging from monomers to hexamers, although the individual subunits of the oligomeric 

MPEs are self-sufficient in forming the active site and coordinating the two catalytic 

metals (Matange, Podobnik and Visweswariah, 2015). 

1.3.3.4.2. Purple acid phosphatases 

Purple acid phosphatases (PAPs) are members of the MPE superfamily with 

optimum activity at acidic pH. Unlike other phosphatases, PAPs are resistant towards 

inhibition by L-tartrate, characteristic that makes them also known as tartrate-resistant 
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acid phosphatases (TRAPs) (Schenk et al., 2013). They are known to require an 

heterovalent metal centre (MI3+-MII2+) for their catalytic activity. Furthermore, in PAPs 

MI is always a ferric ion (Fe3+), with a metal centre of the type Fe3+-M2+ where the 

identity of M has been reported to be either Fe2+, Zn2+ or Mn2+ depending on the protein. 

In most PAPs, the MI metal binding site has a higher affinity for cations than MII (Schenk 

et al., 2013; Matange, Podobnik and Visweswariah, 2015). A schematic representation 

of the sequence pattern with the five conserved motifs characteristic of PAPs is shown 

in Figure 9. While most of the other members of the MPE superfamily contain a histidine 

residue in motif I of the MPE domain, all PAPs have a glycine in this position. They also 

have a conserved tyrosine residue in motif II that coordinates the Fe3+, interaction from 

which results a charge transfer transition responsible for the characteristic purple colour 

that names these enzymes. A conserved valine residue in motif III has also been reported 

(Matange, Podobnik and Visweswariah, 2015).  

 

Figure 9. Schematic representation of the PAP sequence pattern 

The PAP sequence pattern consists of five conserved motifs containing seven invariant metal ligands that 
coordinate the two metals in the active site. ‘x’ represents any amino acid. Residues coordinating the Fe3+ 

(MI) are coloured in brown. Residues coordinating the MII are represented in bold. The aspartate residue 
that coordinates both metal ions is coloured in grey. Residues marked with ‘*’ are variations of the MPE 
active site characteristic of PAPs. 

The general architecture of the PAPs active site can be observed in Figure 10, 

with residue numbers corresponding to the red kidney bean (Phaseolus vulgaris) and pig 

(Sus scrofa) PAP representatives, two of the most studied enzymes of this group 

(Klabunde et al., 1996; Guddat et al., 1999). The ferric ion is coordinated by the side 

chains of a histidine (PAP motif V), a tyrosine (PAP motif II) and an aspartate residue 

(PAP motif I), while the divalent metal is coordinated by two histidine residues (PAP 

motif IV and V, respectively) and an asparagine residue (PAP motif III). In addition, a 

solvent derived hydroxide and one aspartate residue (known as the bridging aspartate, 

PAP motif II) coordinate both metal ions (Mitić et al., 2006; Schenk et al., 2012; Matange, 

Podobnik and Visweswariah, 2015). 
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Figure 10. Active site of PAPs 

In PAPs, MI is always an Fe3+ ion (brown) coordinated by a tyrosine, a histidine and two aspartate residues. 
MII (black) can be Fe2+, Zn2+ or Mn2+ and it is coordinated by two histidines, an asparagine and an aspartate 
residue. A bridging solvent molecule (µ-OH, in red) coordinates the two metal ions. The numbering of the 
metal ligand residues is according to the red kidney bean PAP and the pig PAP (in brackets). Image created 
with the UCSF Chimera package (Pettersen et al., 2004). 

There are characterised PAP representatives in various plants, mammals, and 

some fungi. PAPs have also been identified in a limited number of bacteria, but none 

have been characterised yet (Ullah and Cummins, 1988; Klabunde and Krebs, 1997; 

Schenk et al., 1999, 2000). PAPs are often grouped into two distinct categories according 

to their molecular weight. The first category contains PAPs 55-60 kDa in size sometimes 

known as high molecular weight (HMW) PAPs. They are mostly large plant and 

invertebrate enzymes with an N-terminal regulatory domain in addition to the MPE 

domain. HMW PAPs are usually homodimers linked by a disulfide bridge formed by a 

conserved cysteine and contain a heteronuclear metal centre with Zn2+ or Mn2+ in the 

MII site (Olczak, Morawiecka and Watorek, 2003; Schenk et al., 2013; Matange, 

Podobnik and Visweswariah, 2015). Representatives of this category with published 

crystal structures are the red kidney bean (Phaseolus vulgaris) PAP, with an Fe3+-Zn2+ 

metal centre (Klabunde et al., 1996; Schenk et al., 2008), and the sweet potato (Ipomoea 

batatas) PAP, with an Fe3+-Mn2+ metal centre (Schenk et al., 2005). The overall crystal 

structure of the two subunits of the red kidney bean PAP is shown in Figure 11A. The 

second category is formed by smaller mammalian and mammalian-like PAPs (from plant 

and invertebrate genomes) which contain only the MPE domain. They are monomers 

approximately 35 kDa in size usually referred to as low molecular weight (LMW) PAPs. 

They all present a Fe3+-Fe2+ homonuclear metal centre (Olczak, Morawiecka and 
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Watorek, 2003; Schenk et al., 2013; Matange, Podobnik and Visweswariah, 2015). 

Representatives of this category with published crystal structures are pig (Sus scrofa) 

(Guddat et al., 1999; Selleck et al., 2017), rat (Rattus norvegicus) (Lindqvist et al., 1999; 

Uppenberg et al., 1999) and human (Homo sapiens) (Sträter et al., 2005) PAPs. The 

crystal structure of the pig PAP can be observed in Figure 11B. 

 

Figure 11. Crystal structures of two PAP representatives in complex with phosphate 

(A) The red kidney bean (Phaseolus vulgaris) PAP is a homodimer with the two subunits linked by a 
disulfide bridge which is conserved in most HMW plant PAPs. It contains a dinuclear Fe3+-Zn2+ active site. 
(B) The pig (Sus scrofa) PAP is a representative of the small mammalian PAPs. It is a monomer with an 
Fe3+-Fe2+ metal centre. Polypeptide chains coloured following the rainbow spectrum from blue 
(N-terminus) to red (C-terminus). Side chains of residues involved in coordination of the metal ions are 
displayed as sticks and coloured by heteroatom. The µ-OH in the pig PAP is shown in red as ball and stick. 
Phosphate is shown as sticks and coloured by element. Structures extracted from the PDB (Berman et al., 
2000). Red kidney bean PAP accession 4KBP (Klabunde et al., 1996). Pig PAP accession 1UTE (Guddat et 
al., 1999). Images created with the UCSF Chimera package (Pettersen et al., 2004). 

However, the classification of PAPs in these two categories is not exhaustive. 

Mono- and heterodimeric plant PAPs have been reported (Bozzo, Raghothama and 
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Plaxton, 2002, 2004), as well as the homohexameric yellow lupin (Lupinus luteus) PAP 

(Antonyuk et al., 2014). 

The physiological substrates of most PAPs are not known (Matange, Podobnik 

and Visweswariah, 2015). Mammalian PAPs can be reversibly oxidized to the inactive 

diferric form due to the low redox potential of the divalent iron. This oxidation of the 

heterovalent diiron centre is accompanied by a change in colour from pink to purple 

(Mitić et al., 2006). Although they act predominantly as hydrolases, the reversible 

oxidation/reduction of the active site of mammalian PAPs provides them with the ability 

to carry out peroxidations. Mammalian PAPs are therefore equipped with a mechanism 

that allows them to regulate their activity in vivo. The suggested roles for mammalian 

PAPs include iron transport, the generation of reactive oxygen species (ROS) as an 

immune response, energy metabolism, and bone resorption (Schenk et al., 2013). Due 

to the metal ion composition of plant PAPs, their activity cannot be regulated by 

reversible oxidation/reduction. The main biological function of PAPs in plants seems to 

be organophosphate degradation, but assigning them specific functions has proved 

difficult due to the presence of multiple isoforms (Mitić et al., 2006; Schenk et al., 2013). 

The active site metals are key in the catalytic mechanism of PAPs, and MPEs in 

general (Matange, Podobnik and Visweswariah, 2015). The currently accepted catalytic 

mechanism employed by PAPs is represented in Figure 12 and consist of eight steps, six 

of which are supported by crystal structures of representative PAPs (Schenk et al., 2008, 

2012). In the initial step, the substrate binds the active site in a precatalytic complex not 

directly coordinated to the metal ions. This state is stabilised by hydrogen bonds 

involving the µ-hydroxide and residues in the second coordination sphere (Figure 12a). 

This initial step is followed by a rearrangement of the substrate to coordinate first with 

the divalent metal ion in MII (Figure 12b) and second with the ferric ion in MI. The 

coordination of the metals with the substrate forms a µ-1,3 catalytic complex that 

facilitates the nucleophilic attack (Figure 12c). The identity of the attacking nucleophile 

that initiates hydrolysis of the phosphorylated substrate has been subject of an 

extensive debate, and it may be dependent on the type of substrate and metal ion 

composition of the active site. A solvent derived hydroxide coordinated to one or both 

metal ions in the active site has been proposed as the most likely candidate, although a 
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second coordination sphere hydroxide has also been reported in some cases. The 

leaving group is then protonated by an active site amino acid residue, allowing its release 

from the protein but leaving behind the phosphate. The nucleophilic attack by the 

hydroxide and the esterolysis of the substrate leaves the phosphate bound to the active 

site in a tripodal geometry (Figure 12d). The release of the bound phosphate that allows 

the regeneration of the enzyme is the least understood step of the catalytic cycle. It is 

believed to consist on the addition of at least two water molecules. A plausible sequence 

involves a rotation of the bound phosphate to rearrange from tripodal to µ-1,3 

coordination with the metal ions (Figure 12e). A water molecule is believed to replace 

the phosphate in MII, leaving it only coordinated to MI. A hydrogen bond likely forms 

between the water molecule and the phosphate (Figure 12f), leaving it deprotonated 

and facilitating its coordination with MI, which would regenerate the µ-hydroxide and 

weaken the MI-phosphate bond. A second water molecule also binds MII (Figure 12g), 

which together with the release of the phosphate group enables the regeneration of the 

resting state of the enzyme (Figure 12h) (Schenk et al., 2008, 2012, 2013; Matange, 

Podobnik and Visweswariah, 2015).  

PAPs differ from other MPEs in the residue responsible for the protonation of 

the leaving group. Glutamate has been observed in sweet potato PAP and aspartate in 

human PAP, instead of the usual histidine in MPEs. This is consistent with the PAPs acidic 

pH optimum, while other MPEs work best at slightly alkaline pH (Matange, Podobnik 

and Visweswariah, 2015)  

 

 

Figure 12. Representation of the eight-step catalytic mechanism proposed for PAPs (on following page) 

(a) Pre-catalytic complex in the red kidney bean PAP-sulfate complex (2QFR). (b) Monodentate 
coordination of the substrate to MII in rat PAP-sulfate complex (1QHW), the water bound to MI is believed 
to be an artefact of crystallisation. (c) Substrate complex with bidentate coordination, before the 
nucleophilic attack by the µ-OH, in pig PAP-phosphate complex (1UTE). (d) Tripodal complex of the 
product, after the release of the leaving group, in sweet potato PAP-phosphate complex (1XZW). 
(e) Product-bound state with bidentate coordination in red kidney bean PAP-phosphate complex (4KBP). 
(f) Monodentate coordination of the product to MI. (g) Regeneration of the µ-OH bridge, before the 
release of the phosphate group. (h) Resting state in red kidney bean PAP (1KBP), the µ-OH bridge and the 
water molecule bound to MII have been modelled (Schenk et al., 2008).
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1.3.3.4.3. Purple acid phosphatases with phytase activity or PAPhy 

As happens in HAPs and PTPs, not all PAPs can effectively utilise phytate as 

substrate. Purple acid phosphatases that can hydrolyse phytate are known as PAPhy. 

Although they are active against phytate, PAPhy in general exhibit broad affinity for 

various phosphorylated compounds. PAPhy have only been found in plants and no 

structural information has been published so far (Brinch-Pedersen et al., 2014). 

However, a number of PAPhy have been purified and biochemically characterised.  

The first phytase containing a PAP sequence pattern was discovered in 

cotyledons of germinating soybean seedlings (Hegeman and Grabau, 2001). However, 

phytases from rice (Hayakawa, Toma and Igaue, 1989), rye (Greiner, Konietzny and Jany, 

1997), wheat (Nakano et al., 1999) and barley (Greiner, Jany and Larsson Alminger, 

2000) discovered and characterised earlier are also believed to belong to this class of 

phytases (Dionisio et al., 2011; Brinch-Pedersen et al., 2014). Among these, the two 

monomeric acid phosphatases with phytase activity and violet colour purified from rice 

bran (F1 and F2) may represent different glycosylation states of the same enzyme 

(Brinch-Pedersen et al., 2014). Among the 29 PAP-like proteins identified in Arabidopsis 

thaliana (Li et al., 2002), only AtPAP15 has been confirmed to have phytase activity 

(Zhang et al., 2008; Kuang et al., 2009; Wang et al., 2009). Purified recombinant AtPAP23 

was reported to have a weak activity towards phytate (Zhu et al., 2005). PAPhy from 

Medicago truncatula (Xiao, Harrison and Wang, 2005; Xiao et al., 2006), tobacco (Lung 

et al., 2008), maize (Dionisio et al., 2011), white lupin (Maruyama et al., 2012) and 

orange (Shu, Wang and Xia, 2015) have also been characterised. In addition, phytase 

genes from einkorn, goatgrass and rye have been isolated from genomic libraries or by 

PCR (Madsen et al., 2013). Potential phytases have also been identified in mungbean 

(Wongkaew, Srinives and Nakasathien, 2013), red kidney bean (Lazali et al., 2013, 2014) 

and the microalgal Chlamydomonas reinhardtii (Rivera-Solís et al., 2014). Table 1 

summarises the PAPhy that have been reported in the literature and some of their 

characteristics.
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Table 1. Reported PAPhy in the literature 

Data not provided is labelled ‘np’. 

Organism Protein Source 
Length (Aa) 
/MW (kDa) 

pH/T (°C) 
optimum 

Oligomeric 
state 

Phytase activity Reference 

Rice (Oryza sativa) F1 Rice bran np/66 4.4/40 Monomer Km = 170 µM (Hayakawa, Toma and Igaue, 1989) 

Rice (Oryza sativa) F2 Rice bran np/68 4.6/40 Monomer Km = 90 µM (Hayakawa, Toma and Igaue, 1989) 

Rye (Secale cereale) np Germinating seeds np/67 6.0/45 Monomer Km = 300 µM, Kcat = 358 s-1 (Greiner, Konietzny and Jany, 1997) 

Wheat (Triticum aestivum) PHYI Mature grains np/66 np np np (Nakano et al., 1999) 

Wheat (Triticum aestivum) PHYII Mature grains np/68 np np np (Nakano et al., 1999) 

Barley (Hordeum vulgare) P1 Germinating seeds np/66 5.0/45 Monomer Km = 72 µM, kcat = 136 s-1 
(Greiner, Jany and Larsson 
Alminger, 2000) 

Barley (Hordeum vulgare) P2 Mature seeds np/66 6.0/55 Monomer Km = 190 µM, kcat = 43 s-1 
(Greiner, Jany and Larsson 
Alminger, 2000) 

Soybean (Glycine max) GmPhy Germinating seeds 547/62.3 4.5-5/58 np Km = 61 µM 
(Hegeman and Grabau, 2001; Singh 
et al., 2013) 

Barrel medic  
(Medicago truncatula) 

MtPHY1 
Roots and leaves, 
recombinant 

543/np np np Effective phytate hydrolysis 
(Xiao, Harrison and Wang, 2005; 
Xiao et al., 2006) 

Arabidopsis thaliana AtPAP23 Recombinant np/77.7 np np Weak activity (Zhu et al., 2005) 

Tobacco  
(Nicotiana tabacum) 

NtPAP Roots 551/56 np Monomer Km = 14.7 µM, kcat = 908 s-1 (Lung et al., 2008) 

Arabidopsis thaliana AtPAP15 Recombinant 532/60 4.5/23-37 Monomer 
Specific activity = 10 U mg-1, Km = 278 µM, 
Vmax = 13.44 U mg-1 

(Zhang et al., 2008; Kuang et al., 
2009; Wang et al., 2009) 

Wheat (Triticum aestivum) TaPAPhy_a1 
Mature grain, 
recombinant 

550/58 5.5/55 Monomer 
Km = 35 µM, Vmax = 223 µmol min-1 mg-1, 
kcat = 279 s-1, kcat/Km = 796 x104 s-1 M-1 

(Dionisio et al., 2011) 

Wheat (Triticum aestivum) TaPAPhy_a2 
Mature grain, 
recombinant 

549/58.6 np Monomer np (Dionisio et al., 2011) 

Wheat (Triticum aestivum) TaPAPhy_b1 
Germinating seeds, 
recombinant 

538/57.4 5.0/50 Monomer 
Km = 45 µM, Vmax = 216 µmol min-1 mg-1, 
kcat = 270 s-1, kcat/Km = 600 x104 s-1 M-1 

(Dionisio et al., 2011) 

Wheat (Triticum aestivum) TaPAPhy_b2 
Germinating seeds, 
recombinant 

537/57.4 np Monomer np (Dionisio et al., 2011, 2012) 

Barley (Hordeum vulgare) HvPAPhy_a 
Mature grain, 
recombinant 

544/57.8 np Monomer 
Km = 36 µM, Vmax = 208 µmol min-1 mg-1, 
kcat = 260 s-1, kcat/Km = 722 x104 s-1 M-1 

(Dionisio et al., 2011) 

Barley (Hordeum vulgare) HvPAPhy_b1 
Germinating seeds, 
recombinant 

536/57.2 np Monomer np (Dionisio et al., 2011, 2012) 

Barley (Hordeum vulgare) HvPAPhy_b2 
Germinating seeds, 
recombinant 

537/57.2 np Monomer 
Km = 46 µM, Vmax = 202 µmol min-1 mg-1, 
kcat = 253 s-1, kcat/Km = 550 x104 s-1 M-1 

(Dionisio et al., 2011) 
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Organism Protein Source 
Length (Aa) 
/MW (kDa) 

pH/T (°C) 
optimum 

Oligomeric 
state 

Phytase activity Reference 

Maize (Zea mays) ZmPAPhy_b 
Germinating seeds, 
recombinant 

544/57.4 np Monomer 
Km = 48 µM, Vmax = 198 µmol min-1 mg-1, 
kcat = 248 s-1, kcat/Km = 517 x104 s-1 M-1 

(Dionisio et al., 2011) 

Rice (Oryza sativa) OsPAPhy_b 
Germinating seeds, 
recombinant 

539/57.5 np Monomer 
Km = 54 µM, Vmax = 185 µmol min-1 mg-1, 
kcat = 231 s-1, kcat/Km = 428 x104 s-1 M-1 

(Dionisio et al., 2011) 

Mungbean (Vigna radiata) VrPAP1 Germinating seeds 547/62 np np 
Contains five PAP motifs and partial 
homology with four PAPhy motifs 

(Wongkaew, Srinives and 
Nakasathien, 2013) 

White lupin (Lupinus albus) LASAP3 
Germinating seeds, 
recombinant 

543/np 5.5/np np Km = 83.1 µM (Maruyama et al., 2012) 

Wheat (Triticum aestivum) TaPAPhy_a3 Mature grain 539/np np np Gene isolated (Madsen et al., 2013) 

Wheat (Triticum aestivum) TaPAPhy_b3 Germinating seeds 536/np np np Gene isolated (Madsen et al., 2013) 

Einkorn  
(Triticum monococcum) 

TmPAPhy_a1 Mature grain np np np Gene isolated (Madsen et al., 2013) 

Einkorn  
(Triticum monococcum) 

TmPAPhy_b1 Germinating seeds np np np Gene isolated (Madsen et al., 2013) 

Goatgrass  
(Aegilops tauschii) 

AtaPAPhy_a1 Mature grain np np np Gene isolated (Madsen et al., 2013) 

Goatgrass  
(Aegilops tauschii) 

AtaPAPhy_b1 Germinating seeds np np np Gene isolated (Madsen et al., 2013) 

Rye (Secale cereale) ScPAPhy_a1 Mature grain np np np Gene isolated (Madsen et al., 2013) 

Rye (Secale cereale) ScPAPhy_a2 Mature grain np np np Gene isolated (Madsen et al., 2013) 

Rye (Secale cereale) ScPAPhy_b1 Germinating seeds np np np Gene isolated (Madsen et al., 2013) 

Red kidney bean 
(Phaseolus vulgaris) 

np Root nodules np np np 
Expression levels of transcript correlate 
with phytase activity 

(Lazali et al., 2013, 2014) 

Soybean (Glycine max) GmPAP4 Roots and recombinant 442/50.3 np np 
0.15 µM Pi h-1 U-1 
(control = 0.06 µM Pi h-1 U-1) 

(Kong et al., 2014) 

Chlamydomonas 
reinhardtii 

CrPAP1 np np np np 
Gene expression induced by addition of 
phytate 

(Rivera-Solís et al., 2014) 

Chlamydomonas 
reinhardtii 

CrPAP5 np np np np 
Gene expression induced by addition of 
phytate 

(Rivera-Solís et al., 2014) 

Trifoliate orange  
(Poncirus trifoliata) 

PtPAP3 
Germinating seeds, 
recombinant 

np/66 5.5/37 Monomer 
Km = 46.2 µM, Vmax = 214 µmol min-1 mg-1, 
kcat = 243 s-1, kcat/Km = 5.49 s-1 µmol-1 

(Shu, Wang and Xia, 2015) 
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When studying plant purple acid phytases, it is worth highlighting the research 

carried out by Professor Henrik Brinch-Pedersen’s group (Flakkebjerg Research Centre, 

Aarhus University, Denmark), which is focussed on improving the quality of the cereal 

plant and seed. As phytate is the major phosphorus reserve in plant seeds, phytate 

degradation for phosphorus mobilization during seed germination becomes particularly 

important. Differences in the strategies to accomplish this purpose can be observed 

across different plant species. Among cereals, the members of the Triticeae tribe wheat 

(Triticum aestivum), barley (Hordeum vulgare), rye (Secale cereale), einkorn (Triticum 

monococcum) and goatgrass (Aegilops tauschii) have been reported to possess 

significant levels of phytase activity in mature grains (mature grain phytase activity or 

MGPA). These cereals synthesise and accumulate phytases during grain development 

(preformed phytase) as well as during germination. On the contrary, non-Triticeae 

cereals such as maize (Zea mays), rice (Oryza sativa), oat (Avena sativa) and purple false 

brome (Brachypodium distachyon) showed little or no MGPA, depending fully on 

de novo phytase synthesis during germination. MINPP phytases and PAPhy constitute 

the cereal phytase complement and recent studies have underlined the importance of 

PAPhy at least in the Triticeae. Based on the presence or absence of phytase activity in 

the mature grain, PAPhy can be divided in two groups with very similar sequence but 

distinguished by the C-terminal. PAPhy_a isoforms are predominantly expressed during 

grain development and present in the mature grains, whereas PAPhy_b isoforms are 

predominantly expressed during germination (Dionisio et al., 2011; Madsen et al., 2013; 

Brinch-Pedersen et al., 2014). 

A series of cereal PAP cDNAs were cloned from wheat, barley, maize and rice, 

and the derived recombinant proteins showed to be efficient phytases when expressed 

in Pichia pastoris. Two isogenes with two variants each were cloned from wheat 

(TaPAPhy_a1, TaPAPhy_a2, TaPAPhy_b1 and TaPAPhy_b2); three cDNAs where cloned 

from barley (HvPAPhy_a, HvPAPhy_b1 and HvPAPhy_b2); and one PAP gene was cloned 

from each maize (ZmPAPhy_b) and rice (OsPAPhy_b). All open reading frames (ORF) 

encoded monomeric proteins 538-551 amino acids long, with predicted N-terminal 

signal peptides and molecular masses of 57.2-59 kDa. With phytate as substrate, the Km 

values of the recombinant PAPhy ranged from 35-54 µM. The pH and temperature 
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optima were 5.0-5.5 and 50-55°C, respectively, for the wheat isozymes (Dionisio et al., 

2011). Traditionally, mammalian PAPs have been reported to have iron in two different 

oxidation states in their active sites, whereas plant PAPs seem to contain Zn2+ or Mn2+ 

in the MII site (Olczak, Morawiecka and Watorek, 2003; Schenk et al., 2013; Matange, 

Podobnik and Visweswariah, 2015). However, Dionisio et al. (2011) have reported a 

preference for Fe2+ as divalent metal in several of the cereal PAPhy they have studied, 

in particular the ones belonging to the isoform b group, while the isoform a group have 

a preference for Mn2+. Through a sequence analysis including a collection of plant PAPhy 

reported in the literature and PAPs without known phytase activity, Dionisio et al. (2011) 

have also revealed four conserved regions in PAPhy sequences and suggested them as 

PAPhy-specific consensus motifs: 

(1) RG[H/V/Q/N]A[V/I]D[L/I]P[D/E]TDP[R/L]VQR[R/N/T];  

(2) S[V/I]V[R/Q][Y/F]G;  

(3) AMSxx[H/Y][A/Y/H]F[R/K]TMP; and  

(4) DCYSC[S/A]FxxxTPIH 

Some of these motifs are insertions not present in non-phytase PAPs, making the 

phytases larger than most plant HMW PAPs (Dionisio et al., 2011). A schematic 

representation of the distribution of the PAPhy and PAP motifs can be seen in Figure 13. 

 

Figure 13. Schematic representation of the distribution of PAPhy motifs and PAP motifs in the amino 
acid sequence 

Sequence motifs conserved in PAPs are represented in purple boxes and numbered I to V. PAP I, GDxG; 
PAP II, GDx2Y; PAP III, GNHE/D; PAP IV, Vx2H; and PAP V, GHxH. Additional motifs conserved in sequences 
of PAPs that display phytase activity are represented in red boxes and numbered 1 to 4. PAPhy 1, 
RG[H/V/Q/N]A[V/I]D[L/I]P[D/E]TDP[R/L]VQR[R/N/T]; PAPhy 2, S[V/I]V[R/Q][Y/F]G; PAPhy 3, 
AMSxx[H/Y][A/Y/H]F[R/K]TMP; and PAPhy 4, DCYSC[S/A]FxxxTPIH. 

In summary, PAPhy enzymes exhibit broad affinity for various phosphorylated 

compounds. These proteins have only been identified in plants so far and there are no 

crystal structures available. All the characterised plant PAPhy to date seem to be HMW, 

bigger than most of the non-phytase HMW PAPs, and monomeric instead of 
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homodimeric. They are usually discovered by assaying phytase activity of plant extracts 

followed by the classification of the enzyme into the PAP family due to its characteristics, 

or by overall sequence homology with other plant PAPhy. 

1.3.4. Phytases in the animal feed industry 

The main application of phytases is a as animal feed supplement to improve 

phosphorus bioavailability. 

1.3.4.1. Nutritional, economic and environmental perspectives 

Phytate is the principal form of phosphorus storage in the cereals grains and 

legume seeds used in commercial animal feeds (Yao et al., 2012). From the end of the 

twentieth century, the use of plant-based feeds has been established for being cheaper 

and safer than animal-based protein sources (Lei et al., 2013; Brinch-Pedersen et al., 

2014). Whereas ruminant animals, like cows or sheep, possess intrinsic phytases in their 

complex digestive tract mainly produced by their gut microbiota, non-ruminants or 

monogastric animals such as pigs, poultry and fish (as well as humans, cats and dogs), 

have very limited phytase activity in their digestive system. In addition, many plant feed 

components have no phytase activity in the mature seed or phytases get inactivated 

during the feed production (Vohra and Satyanarayana, 2003; Brinch-Pedersen et al., 

2014). For these reasons, phytate-phosphorus in plant feeds is not readily available for 

monogastric animals, making inorganic phosphorus supplementation of the feed 

required to satisfy their dietary phosphorus needs and with the consequent elevation of 

the costs of raising these animals. The supplementation of animal feed with inorganic 

phosphorus does not compensate for the loss of other nutrients phytate is capable of 

chelating and, therefore, their assimilation by the animals is still reduced. Moreover, 

phosphorus is a limited resource which price has raised in the new millennium. As well 

as its antinutrient effects in non-ruminants, phytate passes undigested through the 

digestive tract of these animals resulting in high concentrations of phosphorus in their 

excreta, which have the potential to trigger adverse environmental consequences like 

the eutrophication of aquatic ecosystems if runoff occurs (Lei et al., 2013; Brinch-

Pedersen et al., 2014). 
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The above described scenario has provoked the exponential growth of phytase 

research in the last few decades. The addition of exogenous phytases to animal feed 

constitutes a cost-effective measure to reduce the concentration of phosphorus in 

animal excreta as well as to improve nutrient bioavailability in monogastric species (Lei 

et al., 2013).  

1.3.4.2. Commercial phytases 

Organisms do not naturally produce phytase activity sufficiently high to be 

commercially viable. The first commercial phytase to be added to animal feedstock 

launched in 1991 under the name of Natuphos® (BASF animal nutrition). It was produced 

from the overexpression of Aspergillus niger PhyA thanks to the development of the 

recombinant DNA technology in the 1980s (van Hartingsveldt et al., 1993). Other fungal 

phytases have been commercialised since, such as Allzyme® SSF (Alltech), Finase® P/L 

(AB Vista) or Ronozyme® P (Novozyme and DSM). Fifteen years later Escherichia coli 

AppA and AppA2 phytases were proved to be more effective than the previous fungal 

phytases (Rodriguez et al., 1999; Rodriguez, Han and Lei, 1999). Further research on 

bacterial phytases led to the development of a new generation of commercial phytases 

superior to the first generation of fungal phytases (Lei et al., 2013). AppA2 is 

commercialised under the name of OptiPhos® (Enzyvia, JBS United), while an engineered 

version of AppA has been named Quatum® Blue (AB Vista).  

All phytases commercialised to date belong to the HAPhy class. The global 

phytase market has been estimated to represent more than 60% of the total feed 

enzyme market and to be worth $350 million per year (Lei et al., 2013). 

The principal characteristics that commercial phytases are desired to fulfil are: 

(1) catalytic efficiency or specific activity towards phytate; (2) an appropriate pH-activity 

profile as well as protease and acid resistance, so that the enzymes have the ability to 

effectively hydrolyse phytate-phosphorus in the upper digestive tract of the animal; 

(3) thermostability to allow them to resist the high temperatures reached during the 

feed pelleting (80-90°C), a step of the feed processing; and (4) cheap production costs. 

Commercial phytases need to be effective in the stomach (pH 2-5) and inactivated in the 

lower gut (pH 6.5-7.5). In this way, phytases are not destroyed during stomach digestion 
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and can hydrolyse phytate there, so that phosphorus can be absorbed in the small 

intestine of the animal. The phytases then become inactive before excretion, avoiding 

contribution to the increase of inorganic phosphorus in the environment (Lei and Stahl, 

2001; Lei et al., 2013; Brinch-Pedersen et al., 2014).  

Although all phytases commercialised as feed additives so far are HAPhy, BPPhy 

may be a good alternative due to having better thermostability, proteolytic resistance 

and absolute substrate specificity. The unique properties of these class of phytases 

makes them perfect feed additives for the aquaculture industry, although they present 

lower activity compared to HAPhy and optimum activity at alkaline pH (Kumar et al., 

2017). 

1.3.4.3. Alternative strategies to the use of phytases as feed additives 

Despite supplementing animal feed with phytases seeming to be the most 

convenient and feasible solution, other alternative strategies have been proposed to 

solve the problems associated with feed phytate-phosphorus in animal production (Lei 

et al., 2013). The development of transgenic plants with increased phytase production 

(Lucca, Hurrell and Potrykus, 2002; Chan, Lung and Lim, 2006; Holme et al., 2017) or 

transgenic animals overexpressing phytase (Golovan et al., 2001) are limited by the 

public concern regarding the safety of genetically modified organisms. Low phytate 

biosynthesis mutants have also been reported, but it is accompanied by deleterious 

effects for the plants (Raboy, 2009). The possibility of chemically degrading feed phytate 

before feeding was also contemplated, but it turned out to affect feed quality (Pandey 

et al., 2001). Another strategy consists of inoculating phytase-producing 

microorganisms into the digestive system of monogastric animals, but this may 

destabilise their natural microbiota and contaminate the environment through their 

faeces (Pagano, Roneker and Lei, 2007). 

1.3.4.4. Future prospects for phytases in the animal feed industry 

The need for further decreasing the amount of phosphate present in the 

environment in areas of intensive farming and agriculture have resulted in the issue of 

special laws to incorporate phytase into animal diets in many countries. This together 
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with the accelerated depletion of phosphorus reserves in the next 50 years is likely to 

make the phytase market to expand to greater values than the current $350 million per 

year.  

The identification of novel wild type phytases or engineering desired 

characteristics of the already known ones through random mutagenesis, rational design 

or a combination of both, are the two paths that can be followed in the search for 

phytases suitable for applications in the animal feed industry. Because an ideal phytase 

for all applications might be too ambitious, a next generation of phytases tailored for 

specific species of animals and diets has been suggested, as well combining the use of 

different phytases or other enzymes (Lei et al., 2013).  

1.3.5. Other applications of phytases 

The antinutrient effect of phytate due to its ability to chelate important minerals 

makes phytases also relevant in the human food industry. However, the use of phytases 

in human nutrition is not as widespread as in animals due to the consumer reluctantly 

to include recombinant proteins in their diet, the potential availability of low-phytate 

crops and the beneficial roles of phytate as an antioxidant (Lei et al., 2013). 

Novel applications of phytases in human health and medicine have also been 

suggested, such as potential candidates in osteoporosis treatment (Pagano et al., 2007) 

or in the large scale production of inositol phosphates associated with health benefits 

(Quan, Fan and Ohta, 2003). Phytases may also have applications in the biofuel and 

brewing industries (Fujita et al., 2001; Hubenova and Mitov, 2010). In addition, 

thermostable phytases in conjunction with xylanases are powerful additives in the pulp 

and paper industry (Uma Maheswari and Chandra, 2000; Nampoothiri et al., 2004). 
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 Aims and objectives of the project 

This project aims to study the structure-function relationships of purple acid 

phytases (PAPhy), members of the purple acid phosphatase (PAP) class and the 

calcineurin-like metallophosphoesterase (MPE) superfamily of proteins. PAPhy are the 

least studied enzymes among the four structural classes of phytases, with no structural 

information available and no members employed as commercial feed additives. The 

project focuses on the identification of the specific features of PAPhy that make them 

able to use phytate as substrate through the study of their amino acid sequence and 3D 

structure. The main objectives of the project can be outlined in three points: (1) analysis 

of PAP sequences with and without phytase activity for the selection of targets for 

structural and enzymatic studies; (2) preparation of recombinant PAPhy samples for 

X-ray crystallography experiments with the aim to obtain the first crystal structure of a 

PAPhy enzyme; and (3) rational mutagenesis, biochemical and biophysical 

characterisation of PAPhy to stablish structure-function relationships of these enzymes 

in order to determine the PAPhy substrate specificity pockets.
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 Bioinformatic analysis of PAP sequences 

In this chapter, the amino acid sequences of known PAPhy are analysed and 

compared with those of PAPs not demonstrated to show phytase activity. The aim of 

the analysis is to identify the key differences between PAPs with and without phytase 

activity, using sequence and structure information. Only a limited number of PAPhy have 

been characterised so far. Others have been predicted by sequence homology with 

previously characterised PAPhy. However, even taking predicted proteins into account, 

not many PAPhy have been identified considering that PAPs constitute a large class of 

enzymes. This analysis could provide bioinformatic tools to help in the identification of 

novel PAPhy candidates among known PAPs through database searches. 

Multiple sequence alignments allow the assessment of sequence conservation 

of protein domains, tertiary and secondary structures, as well as evolutionary 

relationships. No structure information is available for PAPhy yet, but various crystal 

structures of HMW plant and LMW animal PAPs have been solved (Klabunde et al., 1996; 

Guddat et al., 1999; Lindqvist et al., 1999; Uppenberg et al., 1999; Schenk et al., 2005, 

2008; Sträter et al., 2005; Feder et al., 2012; Antonyuk et al., 2014; Selleck et al., 2017). 

The identification of homologues of PAPhy with crystal structures deposited in the PDB 

would allow the generation of a PAPhy 3D homology model as a first step towards 

obtaining a crystal structure by molecular replacement. 

All PAPs with phytase activity identified so far have been found in plants. They 

are usually purified from the source or expressed in eukaryotic expression systems to 

allow for the post-translational modification essential for the protein function, such as 

N-linked glycosylation. Abundant and homogeneous protein samples are required to 

determine a structure through X-ray crystallography, hence simple, robust bacterial 

expression systems would be desirable. Finding PAPhy homologues in simpler organisms 

than higher plants, such as bacteria, would be advantageous to potentially simplify the 

process of protein expression and purification for crystallographic purposes. 
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 Materials and methods 

2.1.1. Collection of PAP sequences 

Amino acid sequences from all the PAPhy and several PAPs found in the 

literature review (see Chapter 1) were collected from the UniProt database (Bateman et 

al., 2017). Twenty-eight PAPhy, forty-four HMW plant PAP, fifteen LMW plant PAP, ten 

HMW animal PAP, ten LMW animal PAP and two fungal PAP sequences were included 

in the analysis. Six bacterial PAP sequences out of the fifty-eight prokaryotic sequences 

analysed by Yeung et al. were found in the UniProt database and added to the collection 

(Yeung et al., 2009). Twelve PAP sequences from microscopic algae, reported by 

Rivera-Solís et al. but not present in the UniProt database, were also included, as the 

gene expression of two of them had been correlated with phytase activity. The 

microalgal sequences were retrieved from Phytozome version 8.0 (Goodstein et al., 

2012) or Protein BLAST (BLASTP; Altschul and Gish, 1996) searches following the 

methods in the article Rivera-Solís et al. (2014). A total of 127 sequences were collected. 

Sequence groups were created to facilitate the analysis, taking into account (1) reported 

phytase activity of the protein, (2) kingdom of life of the source organism, and 

(3) estimated molecular weight of the protein. Inside the PAPhy group, distinctions were 

made for characterised proteins, those predicted by sequence homology with 

characterised PAPhy, or sequence outliers compared to the rest of the PAPhy enzymes. 

A specific group was created for the microalgal PAPs, as they shared insufficient 

sequence conservation with the higher plant enzymes. The sequences collected are 

shown in Appendix 1, Table A1. 

2.1.2. Analysis of PAP sequences through multiple sequence alignments 

Multiple sequence alignments (MSA) of the PAP sequences were performed and 

analysed with Jalview (Waterhouse et al., 2009). The MUltiple Sequence Comparison by 

Log-Expectation (MUSCLE) algorithm (Edgar, 2004) with default parameters was used 

for all the MSAs. A phylogenetic analysis of the PAP sequences was performed with the 

MEGA7 software (Kumar, Stecher and Tamura, 2016), and a phylogenetic tree 

constructed using the Maximum Likelihood method with default parameters.  
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Four MSAs were performed: (1) including all PAP sequences; (2) a comparison of 

PAPhy sequences with plant and animal HMW PAPs; (3) a comparison of PAPhy 

sequences with plant and animal LMW PAPs; and (4) a comparison of PAPhy sequences 

with microalgal, fungal and bacterial PAPs (i.e. microbial PAPs). The comparison of 

PAPhy with LMW PAPs had to be manually modified in order to force the alignment of 

the PAP motifs in all sequences, due to the difference in length between the PAPhy and 

the LMW PAPs. The alignment containing all the PAP sequences was used to generate 

the phylogenetic tree. Upon examination of the tree, the sequences in the MSAs were 

manually sorted within each group according to the tree to help in the identification of 

conserved and non-conserved regions. 

The conservation of the five PAP consensus motifs was examined in all 

sequences, paying special attention to the metal ligands. The conservation of the PAPhy 

motifs was also studied, both inside the PAPhy groups and in comparison with other 

PAPs lacking phytase activity. 

2.1.3. Protein homology modelling of a PAP phytase 

Crystal structures of PAP enzymes were obtained from the PDB (Berman et al., 

2000). The sequences of two HMW plant PAPs with published structures, the red kidney 

bean (Phaseolus vulgaris) PvPAP1 and the sweet potato (Ipomoea batatas) IbPAP1, were 

aligned to the sequence of the wheat (Triticum aestivum) isoform b2 purple acid phytase 

(TaPAPhy_b2) using the T-Coffee server (Notredame, Higgins and Heringa, 2000) with 

default parameters. The alignment of the three proteins with secondary structure 

information was displayed with ESPript 3.0 (Robert and Gouet, 2014). Optimal global 

sequence alignments of TaPAPhy_b2 with each of the two HMW plant PAPs were 

generated with EMBOSS Needle (Rice, Longden and Bleasby, 2000) using the 

Needleman-Wunsch algorithm (Needleman and Wunsch, 1970). The pairwise sequence 

alignments were used as input to generate 3D homology models of TaPAPhy_b2 based 

on the HMW plant PAP structures. The 3D models were produced using the 

SWISS-MODEL automated protein structure homology-modelling server employed in 

alignment mode (Biasini et al., 2014). 



 

49 
 

2.1.4. Identification of novel PAPhy through database searches 

A PAPhy consensus sequence was obtained from the alignment of all 

characterised and predicted PAPhy, excluding two PAPhy outliers. Signal peptides and 

endoplasmic reticulum (ER) retention sequences were excluded from the consensus 

sequence. The PAPhy consensus was used as query sequence in the NCBI BLASTP server 

(Altschul et al., 1990) to perform searches using default parameters against the 

non-redundant protein sequences database. Searches were performed (1) without 

organism restriction in the output results; (2) excluding plant sequences; and (3) 

including only prokaryotic sequences. 

 Results and discussion 

2.2.1. Analysis of PAP sequences through multiple sequence alignments  

The three MSAs comparing PAPhy with other PAP groups are shown in 

Appendix 1, Figure A2, Figure A3 and Figure A4. These were analysed in conjunction 

with the phylogenetic tree (shown in Figure 14) to determine the correct allocation of 

each PAP sequence into a group.  

Three of the initial sequences were excluded from the analysis at different 

stages. AtPAP13 contained only three out of seven of the PAP metal ligands, and so was 

removed from the initial alignment of all the sequences before generation of the 

phylogenetic tree. LlPPD3 was similarly removed from the alignment of LMW PAPs 

against PAPhy for reason of its much shorter amino acid sequence than the rest of the 

PAPs. ZmPAP was excluded at the same stage for lacking PAP motifs I and II. In addition 

to these rejections, some sequences were reassigned to a different group than the one 

initially deduced from the literature after analysis of the MSAs and the phylogenetic 

tree. AtPAP23 and GmPAP4 seemed more related to some HMW plant PAPs than to the 

rest of PAPhy in size, sequence homology and phylogenetic relationships, so they were 

treated as PAPhy outliers and counted as HMW plant PAPs in the PAP motif analysis. On 

the other hand, the characteristics of three HMW plant PAPs (RcPAP1, VvPAP and 

AlPAP15) were more similar to the plant PAPhy than to the proteins in their group, so 

they were transferred to the predicted PAPhy group. The results of this sequence 



 

50 
 

analysis are then based on 124 sequences (100%): twenty-nine PAPhy (23.4%), of which 

fourteen are characterised and fifteen predicted; forty-two HMW plant PAPs (33.9%), 

with two of them being PAPhy outliers; thirteen LMW plant PAPs (10.5%); ten HMW 

animal PAPs (8.1%); ten LMW animal PAPs (8.1%); twelve microalgal PAPs (9.7%); two 

fungal PAPs (1.6%); and six bacterial PAPs (4.8%). 

The PAPhy sequences range from 442 to 566 amino acids, with only the two 

PAPhy outliers being shorter than 532 residues. HMW Plant PAP sequences are 396 to 

638 amino acids long, with the majority of the proteins in this group being shorter than 

500 amino acids. HMW animal PAPs are between 378 and 463 amino acids long. LMW 

plant PAPs range from 312 to 366 residues, while LMW animal PAPs are between 325 

and 340 amino acids long. The microalgal PAPs are the most diverse in this respect, with 

sequences from 264 to 691 residues. The two fungal PAPs are 614 and 618 amino acids 

long, and bacterial enzymes range from 434 to 561 residues.  

2.2.1.1. Phylogenetic relationships 

The first branching event of the tree appears to differentiate LMW from HMW 

PAP sequences. As expected, PAPhy are found in the HMW PAP branch with the LMW 

PAPs being their most distant relatives. Most of the PAPs within the groups chosen for 

this analysis are observed to be phylogenetically related in the tree, with a few 

exceptions. Microalgal PAPs are the group most dispersed across the tree. All LMW plant 

PAPs except LlPPD3 are in the same clade and share a common ancestor with the LMW 

animal PAPs, which also form a common clade. However, although CePAP1 was initially 

classified as a HMW animal PAP, it appears to be more related to LMW animal PAPs, as 

it appears within their clade. Its size and sequence conservation does not match very 

well with any of the two groups, so it was still treated as HMW for the sequence analysis. 

Two microalgal PAPs, CrPAP6 and MpPAP3, occupy an outgroup in the LMW PAPs clade. 

Most of the HMW plant PAPs, including PAPhy, form a clade. An outgroup of this clade 

containing the HMW animal PAP CePAP3 and the LlPPD HMW plant PAPs is observed. 

The remaining HMW animal PAPs form a separate clade, more related to microbial PAPs 

than to the HMW plant PAPs. Microalgal MpPAP4 is an outgroup of this clade. Five 

microalgal PAPs (i.e. MpPAP1, OlPAP2, CrPAP1, CrPAP2 and CrPAP3) are contained in 
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the HMW plant PAP branch, but not within the PAPhy clade. The six bacterial PAPs group 

all together and seem to be related to HMW animal PAPs and two microalgal PAPs, 

OlPAP1 and MpPAP2. Fungal PAPs form a clade with the microalgal PAPs CrPAP4, CrPAP5 

and MpPAP4, in between HMW plant and animal PAPs. 

 

Figure 14. Molecular Phylogenetic analysis of PAP sequences by Maximum Likelihood method  

The evolutionary history was inferred by using the Maximum Likelihood method based on the JTT matrix-
based model (Jones, Taylor and Thornton, 1992). The tree with the highest log likelihood (-5950.08) is 
shown. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbour-Join and 
BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the 
topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in 
the number of substitutions per site. The analysis involved 126 amino acid sequences. All positions 
containing gaps and missing data were eliminated. There was a total of 59 positions in the final dataset. 
Evolutionary analyses were conducted in MEGA7 (Kumar, Stecher and Tamura, 2016). 

Neither of the two microalgal PAPs, CrPAP1 or CrPAP5, for which expression had 

been correlated with phytate response, is found in the PAPhy clade. The PAPhy outlier 
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AtPAP23 appears in a clade of non-phytase HMW plant PAPs, but these are the closest 

non-phytase relatives to PAPhy. GmPAP4 belongs to a more distant clade of the HMW 

plant PAP group. Of the three newly-identified predicted PAPhy, RcPAP1 and VvPAP are 

in the main PAPhy clade, while AlPAP15 forms a separate one with the characterised 

PAPhy AtPAP15, immediately adjacent to the main one. 

2.2.1.2. PAP motif conservation 

Tables showing details of the conservation of the PAP motifs can be seen in 

Appendix 1 (Table A2, Table A3, Table A4, Table A5 and Table A6 for motif PAP I, II, III, 

IV and V, respectively). For the PAP motif analysis, both characterised and predicted 

PAPhy were considered as a single group, while PAPhy outliers were counted among the 

HMW plant PAPs. After the initial exclusions, all but one of the sequences included in 

the analysis contained all five PAP motifs. The HMW animal PAP, TnPAP1, lacked PAP I 

motif, but it was retained in the analysis as it contained the remaining four PAP motifs 

with the expected invariant metal ligands. Five exceptions among the PAP sequences 

were identified that deviate from one of the usual PAP metal ligands, as shown in Table 

2. 

Table 2. PAP invariant metal ligands exceptions 

Protein Group PAP motif Expected Observed 

PtPAP3 PAPhy II xDxxY xGxxY 

OsPAP1 LMW Plant PAP II xDxxY xDxxL 

LlPPD2 HMW Plant PAP III xNxx xSxx 

MpPAP3 Microalgal PAP III xNxx xDxx 

TaPAPhy_b1 PAPhy IV xxxH xxxY 

According to the literature (Schenk et al., 2013), the PAP sequence pattern 

shared by proteins of this class is comprised of the following five conserved motifs: 

GDxG-xn-GDx2Y-xn-GNH[E/D]-xn-Vx2H-xn-GHxH. However, the results of the present 

sequence analysis suggest a wider variability of some of the amino acids comprising 

these motifs.  

The GDxG PAP I motif reported in the literature was shared by the 87.1% of the 

sequences analysed, with 7.3% of the sequences bearing a different amino acid in the 

first position of the motif (alanine, asparagine, serine or cysteine instead of glycine), 
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while 4% of the sequences had a different amino acid in the fourth position (alanine, 

serine or cysteine instead of glycine). Only one sequence (0.8%), the microalgal CrPAP1, 

had variant amino acids in both first and fourth positions. The amino acid observed in 

the third position of the GDxG PAP I motif varied between leucine, tryptophan, 

methionine, threonine, valine and isoleucine. The identity of this third amino acid was 

conserved for some of the PAP groups. 90.1% of HMW plant PAPs, including the PAPhy, 

showed a PAP I motif of the form GDLG. Two bacterial PAPs, MbPAP and MtubPAP, 

contained a similar motif, but interrupted by a four-residue insertion (GDQSTPALG). All 

the LMW plant and animal PAPs showed a PAP I motif of the form GDWD. The microalgal 

MpPAP3 and CrPAP6 also showed this motif. 

Little variation was observed for the GDx2Y PAP II motif described in the 

literature, with 98.4% of the sequences analysed agreeing with it. Only two exceptions 

were observed in sequences presenting a different amino acid in the first or second 

position of the motif. As indicated in Table 2, the characterised PAPhy PtPAP3 presented 

a PAP II motif of the form GGVTY, with an unusual metal ligand. The HMW animal PAP 

TnPAP1, which also lacked the PAP I motif, contained a PAP II motif of the form RDFAY. 

The PAP II motif was GDVSY in 51.7% of the PAPhy; GDLSY in 73.8% of the HMW plant 

and 100% of the fungal PAPs; GDFAY in 70% of the HMW animal PAPs; GDNFY in 100% 

of the LMW plant and animal PAPs; and GDLCY in 83.3% of the bacterial PAPs analysed.  

The reported GNH[E/D] PAP III motif was conserved in 96% of the sequences 

included in this analysis. This motif was ANHE in the two microalgal PAPs CrPAP2 and 

CrPAP3; GNYE in the HMW plant PAP AtPAP11; GSHE in the HMW plant PAP LlPPD2; and 

GDHD in the microalgal PAP MpPAP3. The PAP III motif was GNHE in 93.8% of the HMW 

plant and animal PAPs, 50% of the microalgal PAPs, 100% of the fungal PAPs and 83.3% 

of the bacterial PAPs. Only 3.7% of the HMW plant and animal PAPs showed GNHD, in 

contrast with 100% of the LMW plant and animal, 25% of the microalgal and 16.7% of 

the bacterial PAPs.  

Only 57.3% of the sequences included in this analysis presented a PAP IV motif 

of the form Vx2H. Valine in the first amino acid position of the motif was replaced by 

alanine in 31.5% of the sequences, by threonine in 5.6%, by phenylalanine in 3.2%, by 



 

54 
 

leucine in 1.6% and by isoleucine in 0.8%. As already indicated in Table 2, TaPAPhy_b1 

constitutes a metal ligand exception with the sequence AGWY in the PAP IV motif, 

meaning the metal in the MII site (predicted to be iron for this enzyme) is coordinated 

by asparagine, histidine and tyrosine residues rather than asparagine and two histidine 

residues as in the rest of PAPs (Dionisio et al., 2011; Schenk et al., 2013). The motif was 

not conserved within any group analysed, but 58.6% of the PAPhy had a motif of the 

form AGWH, while 47.6% of the HMW plant PAPs contained VLMH. 

The GHxH PAP V motif reported in the literature was shared by 93.5% of the 

sequences analysed, with 6.5% of the sequences, all in the HMW animal PAP group, 

replacing glycine with alanine. The PAP V motif was GHVH in 98.6% of the HMW plant 

PAPs, including the PAPhy, and 50% of the microalgal PAPs. GHDH was observed in 

86.7% of the LMW plant and animal PAPs, and in 66.7% of the bacterial PAPs. The fungal 

PAPs had a PAP IV motif of the form GHIH, while 80% of the HMW animal PAPs contained 

AHEH.  

In summary, a higher variability has been observed in this sequence analysis for 

motifs PAP I, IV and V than previously reported in the literature (Schenk et al., 2013). 

Some exceptions have also been observed for motifs PAP II and III, but these were minor 

compared to the other motifs. Therefore, a modified PAP sequence pattern is proposed 

based on the results of this analysis, being xDx2-xn-GDx2Y-xn-GNH[E/D]-xn-x3H-xn-

[G/A]HxH.  

2.2.1.3. PAPhy motif conservation 

Tables showing the conservation of the PAPhy motifs can be seen in Appendix 1 

(Table A7, Table A8, Table A9 and Table A10 for motif PAPhy 1, 2, 3 and 4, respectively). 

For the purposes of PAPhy motif analysis, characterised, predicted and PAPhy outliers 

were considered separately (with fourteen, fifteen and two sequences, respectively, and 

thirty-one sequences in total). HMW plant and animal PAPs (forty and ten sequences, 

respectively), as well as the three microbial PAP groups (twelve microalgal, two fungal 

and six bacterial sequences) were examined for PAPhy motif conservation with the aim 

to identify new targets. The LMW plant and animal PAPs were excluded from this part 
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of the analysis due to their low sequence similarity with PAPhy. Therefore, a total of 101 

sequences were analysed for PAPhy motif conservation.  

64.5% of the PAPhy sequences matched the PAPhy 1 motif 

RG[H/V/Q/N]A[V/I]D[L/I]P[D/E]TDP[R/L]VQR[R/N/T] described by Dionisio et al. (2011). 

These included ten of fourteen characterised PAPhy and ten of fifteen predicted PAPhy, 

with no other sequences in the analysis showing this exact motif. The PAPhy 1 motif was 

not conserved in the PAPhy outlier GmPAP4. The PAPhy outlier AtPAP23, the six HMW 

plant PAPs that appear as the closest relatives to PAPhy in the phylogenetic tree (i.e. 

PpPAP, OsPAP3, OsPAP4, HvPAP_c, ZmPAP_c and SbPAP) and the microalgal CrPAP5 

showed partial to low conservation in PAPhy 1. Accepting one substitution, the PAPhy 1 

motif would give the RGx[A/T][V/I]D[L/I]P[D/E][T/S]DP[R/L]V[Q/R]R[R/N/T] consensus, 

including all the characterised PAPhy except LaPAPhy and eleven out of fifteen predicted 

PAPhy. This motif would agree with 77.4% of the PAPhy and would still not be present 

in any non-phytase PAPs. Allowing two to four substitutions to PAPhy 1 would result in 

[R/P][G/T]x[A/T/S][V/I]D[L/I]P[D/E/P][T/S]DP[R/L]V[Q/R]R[R/N/T] and would include 

90.3% of the PAPhy sequences. This motif would only rule out the predicted VrPAPhy 

and the outlier AtPAP23 and it still would not include the outlier GmPAP4 or any 

non-phytase PAP. The inclusion of VrPAPhy and AtPAP23 would require nine and ten 

substitutions, respectively. However, if such a number of substitutions were accepted, 

five of the six non-phytase HMW plant PAPs mentioned above would also show 

conservation of the motif.  

Of the 83.9% PAPhy sequences with a conserved PAPhy 2 motif 

S[V/I]V[R/Q][Y/F]G, thirteen of the fourteen characterised PAPhy and thirteen of the 

fifteen predicted PAPhy were included. A modification of the motif to 

S[V/I]V[R/Q/H][Y/F]G would also include LaPAPhy and, therefore, all the characterised 

PAPhy, all the predicted PAPhy except VrPAPhy and RcPAP1, and not the PAPhy outliers. 

The inclusion of one to two substitutions would give the motif SxVx[Y/F]G and would 

include 100% of the PAPhy, including the two sequence outliers. However, conservation 

of this last motif could also be observed in 32% of non-phytase HMW plant and animal 

PAPs. Two microalgal sequences, MpPAP4 and CrPAP1, showed only a single 

substitution from the original PAPhy 2 motif, while the three fungal PAPs showed three 
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substitutions. Therefore, the present analysis of PAPhy 2 motif suggested that it may not 

be exclusive of PAPhy enzymes. 

The published PAPhy 3 AMSxx[H/Y][A/Y/H]F[R/K]TMP motif was conserved in 

77.4% of the PAPhy sequences. These include all the characterised PAPhy and ten of 

fifteen predicted ones. The motif was not conserved in the PAPhy outlier GmPAP4, and 

four substitutions would be necessary to include PAPhy outlier AtPAP23, the same as for 

the predicted VrPAPhy. Five to six substitutions in the motif would include 15.7% of 

non-phytase PAPs from HMW plant, HMW animal and microalgal PAP groups. A single 

substitution would include all the characterised and predicted PAPhy except VrPAPhy, 

and would result in a motif with the sequence [A/T][M/T]Sx[V/I/T][H/Y]xF[R/K]TMP. 

The PAPhy 4 DCYSC[S/A]FxxxTPIH motif described in the literature was 

conserved in 80.7% of the PAPhy sequences, including thirteen of fourteen 

characterised PAPhy and twelve of fifteen of the predicted ones. One to two 

substitutions would result in DCY[S/K]C[S/A]Fxx[S/-][T/S]PIH and would include all the 

characterised PAPhy and all the predicted PAPhy except VrPAPhy. The PAPhy 4 motif 

was not conserved in the outlier GmPAP4 and four substitutions would be needed to 

include AtPAP23. However, four to five substitutions would also result in conservation 

of the PAPhy 4 motif in 15% of non-phytase HMW plant PAPs, the six closest relatives to 

PAPhy. Two microalgal PAPs, CrPAP2 and CrPAP3, showed a very low conserved motif 

with nine substitutions. 

Therefore, to properly account for the diversity of all the characterised and 

predicted PAPhy studied in this analysis, the four published PAPhy motifs would need to 

be subject to modification. The PAPhy outliers AtPAP23 and GmPAP4 only had PAPhy 2 

motif conserved. The sequence of LaPAPhy was the worst fit to the currently published 

PAPhy motifs, but the modifications to the motifs proposed in this analysis would 

accommodate it and still discriminate non-phytase PAPs. However, the degree of 

conservation of the PAPhy motifs in the predicted VrPAPhy was similar to that of 

AtPAP23, suggesting that, even if phytase activity was confirmed for this protein, it 

would also lie in the PAPhy outliers group. The possibility of PAPhy 2 motif not being 

exclusive to PAPs with phytase activity was also noted. In addition to the four PAPhy 
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motifs described by Dionisio et al. (2011), another conserved region was observed in the 

MSAs for all the characterised and predicted PAPhy. The region was partially conserved 

in the six HMW plant PAPs with a close phylogenetic relationship to the PAPhy group, 

and was missing in the remaining non-phytase PAPs and PAPhy outliers. It consisted of 

a long sequence near the C-terminus and it could be considered an extra PAPhy motif. 

The proposed PAPhy 5 consensus sequence is displayed in Figure 15. 

 

Figure 15. Proposed PAPhy 5 motif 

Motif conservation in PAPs with phytase activity (top) compared with relatives lacking phytase activity 
(bottom, with conserved residues in bold). 

The distribution of the PAP and PAPhy motifs, including the proposed PAPhy 5 

motif, is shown in Figure 16.  

 

Figure 16. Schematic representation of the distribution of PAPhy motifs and PAP motifs in the amino 
acid sequence, including a potential new PAPhy motif 

Sequence motifs conserved in PAPs are represented in purple boxes. The PAPhy motifs conserved in 
sequences of PAPs that display phytase activity identified by Dionisio et al. (2011) are represented in red 
boxes. The new PAPhy 5 phytase motif proposed in this analysis is represented in a light red box. 

2.2.2. Protein homology modelling of a PAP phytase 

Sequence information can be used to generate 3D models of PAPhy enzymes 

from the crystal structures of PAP homologues. TaPAPhy_b2 was selected as target to 

generate a 3D homology model, as it is one of the best characterised enzymes of this 

class of phytase. The closest homologues to PAPhy enzymes with published crystal 

structures are HMW plant PAPs. Several structures for the red kidney bean PvPAP1 are 

available in the PDB (accessions 1KBP, 4KBP, 3KBP, 2QFR, 2QFP, 4DT2, 4DSY, 4DHL and 

4KKZ), as well as a structure for the sweet potato IbPAP1 (PDB accession 1XZW) and the 

yellow lupin LlPPD1 (PDB accession 3ZK4). LlPPD1 was discarded as a candidate 
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template, as it is an exception among the HMW plant PAPs. While most HMW plant PAPs 

are homodimers of approximately 55 kDa subunits, LlPPD1 presents a homohexameric 

organisation of 75 kDa subunits (Antonyuk et al., 2014). Among the red kidney bean PAP 

structures published, SWISS-MODEL identified the PvPAP1:SO4 complex structure (PDB 

accession 2QFR) as the best template match to generate the TaPAPhy_b2 model. 

The alignment between TaPAPhy_b2, the red kidney bean and the sweet potato 

PAPs revealed the conservation of most of the secondary structure elements (Figure 17), 

but not the cysteine residue involved in the formation of the disulfide bridge that links 

the two PAP subunits. This result agreed with the fact that cereal PAPhy have been 

previously purified as monomers (Dionisio et al., 2011, 2012).  

The quality of a protein structure model can be evaluated with the QMEAN4 

scoring function. QMEAN4 gives a score for the whole model indicating its reliability. It 

allows comparison between alternative models of a target (Benkert, Tosatto and 

Schomburg, 2008). The TaPAPhy_b2 model generated with SWISS-MODEL using the red 

kidney bean PAP as template had a QMEAN4 of -8.65 and 43.54% sequence identity. The 

model generated using the sweet potato PAP as template had a QMEAN4 of -9.36 and 

the sequence identity was 42.29%. Both models were fairly similar and in both cases 

TaPAPhy_b2 was modelled as a homodimer following the quaternary structure of the 

template proteins, but only one subunit was analysed. Based on the QMEAN4 score, the 

model from the red kidney bean PAP was chosen as it had better quality than the sweet 

potato one, as well as higher sequence identity with the target.  

The TaPAPhy_b2 model resulting from the red kidney bean PAP template is 

shown in Figure 18. As predicted in the alignment, the overall structure was well 

conserved, with only a few loops poorly modelled. The PAP motifs with the residues 

coordinating the metal ligands in the active site were conserved. An overlay of the 

TaPAPhy_b2 model and the red kidney bean PAP template locating the PAPhy motifs in 

the phytase is shown in Figure 19.  
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Figure 17. Alignment of TaPAPhy_b2 and two HMW plant PAP homologues with solved structures 

The top sequence corresponds to one subunit of a structure of the red kidney bean PAP (PvPAP1; PDB 
accession 2QFR), along with its secondary structure. The middle sequence corresponds to the wheat 
phytase TaPAPhy_b2 without its signal peptide and ER-retention signal. The bottom sequence 
corresponds to one subunit of the structure of the sweet potato PAP (IbPAP1; PDB accession 1XZW), along 
with its secondary structure. The η symbol represents 310-helices. α-Helices, 310-helices and π-helices are 
displayed as medium, small and large squiggles, respectively. β-Strands are rendered as arrows, strict 
β-turns as TT letters and strict α-turns as TTT. The green digit (1) at the bottom of the sixth line of the 
alignment shows the disulphide bridge that links the two subunits of HMW plant PAPs. Red boxes show 
regions with strict identity. Yellow boxes show regions with similarity. The alignment was generated with 
T-Coffee (Notredame, Higgins and Heringa, 2000) and displayed with ESPript (Robert and Gouet, 2014) . 
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Figure 18. TaPAPhy_b2 homology model and PvPAP1 template 

One subunit of the red kidney bean PvPAP1 (PDB accession 2QFR), displayed in cyan (A), was used as 
template to generate a 3D homology model of TaPAPhy_b2, in green (B). Cartoon representations of the 
proteins are displayed, created with the UCSF Chimera package (Pettersen et al., 2004). Fe3+, brown 
sphere; Zn2+, purple sphere; sulfate ion coloured by element and displayed as sticks. 

The structure of the PAPhy motifs 2 and 3 was conserved and partially conserved, 

respectively, in the red kidney bean phosphatase. These motifs appear to be located 

away from the active site in the 3D organization of the enzymes (Figure 19A). The 

PAPhy 1 motif was modelled as the N-terminus of the wheat phytase due to its proximity 

to the beginning of the protein and its absence in the kidney bean PAP template 

structure. PAPhy 4 corresponded to an insertion in the model with respect to the kidney 

bean enzyme, so it was modelled as a loop. The long insertion identified as a potential 

PAPhy 5 motif during the sequence analysis is observed as a loop not present in the PAP 

enzyme. Motifs PAPhy 1, 4 and 5 were modelled as loops located in the proximity of the 

catalytic centre of TaPAPhy_b2 (Figure 19B). The predicted structural arrangement of 

these motifs possibly allows them to fold over the active site, making them potential 

good ‘phytase signature sequences’ for the identification of novel PAPhy enzymes. 

Examination of the model in Figure 19B, the alignment in Figure 17 and the MSAs 

in Appendix 1 Figure A2, Figure A3 and Figure A4, reveals the PAPhy 4 motif is located 

in an insertion absent in non-phytase PAPs a few amino acids longer than the currently 

defined motif (Dionisio et al., 2011), suggesting that the PAPhy 4 motif could be 

extended to L[T/S]NGT[G/S][T/A/S]DCY[S/K]C[S/A]Fxx[S/-][T/S]PIH.  
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Figure 19. Localisation of PAPhy motifs in TaPAPhy_b2 model overlay with red kidney bean PAP 

TaPAPhy_b2 model is displayed in green overlaid with the red kidney bean PvPAP1 (PDB accession 2QFR), 
displayed in cyan. The brown sphere depicts the Fe3+ metal ion from PvPAP1, while the Zn2+ is represented 
as a purple sphere. PAPhy motifs are coloured red in TaPAPhy_b2. (A) PAPhy motifs 2 and 3. (B) PAPhy 
motifs 1, 4 and 5. Cartoon representations of the proteins are displayed, created with the UCSF Chimera 
package (Pettersen et al., 2004).  

2.2.3. Identification of novel PAPhy through database searches 

The PAPhy consensus sequence used as query for the BLASTP searches is shown 

in Figure 20. Tables with the results of the three BLASTP searches carried out with the 

PAPhy consensus against the non-redundant protein sequences database can be found 

in Appendix 1 Table A11, Table A12 and Table A13. 100 hits were retrieved per search. 
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Figure 20. PAPhy consensus sequence for BLASTP searches 

The PAPhy consensus sequence was obtained from the alignment of all the characterised and predicted 
PAPhy, excluding the two PAPhy outliers GmPAP4 and AtPAP23, after the removal of signal peptides and 
potential ER-retention signals.  

The sequences resulting from the three BLASTP searches performed were 

analysed for conservation of the three PAPhy motifs identified as PAP phytase signature 

sequences. Figure 21 shows the consensus sequences of the three motifs, deducted 

from the MSA analysis, that were used to discriminate PAPhy from non-phytase PAPs 

among the BLAST hits. 

 

Figure 21. PAPhy motifs used to identify new PAPhy in the BLASTP results 

Consensus amino acid sequences of the PAPhy signature sequences PAPhy 1, 4 and 5 motifs. The 
sequences were obtained from the MSA analysis carried out in section 2.2.1.3. Among the different 
consensus sequence options presented for each motif, those that included the maximum number of 
PAPhy enzymes without comprising any non-phytase PAPs were selected. 

The BLASTP search with no organism restrictions resulted in a collection of plant 

PAP protein sequences, ranging from cereals, grasses and legumes to flowering plants, 

trees and shrubs. 34% of the sequences corresponded to already characterised or 

predicted PAPhy and were ignored in the analysis. 21% of the sequences were not 

directly identified as PAPhy in the search results, although they belonged to plants that 

already have known characterised or predicted PAPhy, while the remaining 45% 

corresponded to plants with no PAPhy enzymes reported so far. 25% of the sequences 

had the three PAPhy signature motifs conserved, 27% had two motifs conserved and 
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one partially conserved, and 11% of the sequences had one motif conserved and two 

partially conserved. All the sequences with partially conserved motifs showed only one 

to two substitutions compared to the motifs in Figure 21. Only 3% of the sequences 

presented either an absent PAPhy 1 motif or a low conserved PAPhy 4 motif. Therefore, 

twenty-five sequences resulting from this BLAST search could be considered new 

predicted PAPhy. Among them, Oryza brachyantha (XP_015690330.1), Corchorus 

capsularis (OMO71036.1), Citrus trifoliata (AFY06666.1), Hevea brasiliensis 

(XP_021641480.1 and XP_021641479.1), Solanum lycopersicum (XP_004247857.1), 

Solanum pennellii (XP_015086742.1 and XP_015086743.1) and Cicer arietinum 

(XP_004502218.1) were plants with no previously reported PAPhy enzymes. Another 

thirty-eight plant PAP sequences could also be considered new predicted PAPhy if a little 

more flexibility was allowed in the PAPhy signature motifs, but they would need to be 

examined more closely and tested for phytase activity before making a decision. 

However, none of these newly identify PAPhy sequences would, in principle, 

present an advantage as targets for crystallographic structure determination over those 

already known. A BLASTP search excluding plant proteins from the results was carried 

out in order to try to expand the range of predicted PAPhy to other organisms. The 

sequences retrieved from this search belonged to a wider variety of organisms, including 

animals, protists and archaea. The first eight hits corresponded to synthetic constructs 

of already known plant PAPhy. A single sequence belonged to a bat species, while six 

others were from anemones and corals. There were five amoeba proteins among the 

results, forty-eight sequences corresponded to proteins from microscopic algae, and 

twenty-five were proteins from fungus-like moulds. Only five of the sequences obtained 

were non-eukaryotic proteins, belonging to organisms classified inside the archaea 

domain. All the sequences in the search results had the PAP motifs conserved. However, 

none of them showed conservation for the PAPhy motifs. PAPhy 1, 4 and 5 motifs were 

deletions in 53% of the sequences (Figure 22A). Another 12% of the sequences did not 

present deletions for one or two of the PAPhy signature motifs, but they were not 

conserved. 18% and 8% of the sequences presented very low conservation in one or two 

of the PAPhy motifs, respectively, and only one microalgal sequence showed very low 

conservation of the three motifs (Figure 22B). Three of the five archaea sequences 
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retrieved showed deletions in place of PAPhy 1 and 4 motifs, and no conserved or very 

low conserved PAPhy 5 motifs. Hence, it was not possible to discern from these results 

the presence of novel PAPhy. 

A final BLASTP search was performed restricting the results to proteins from 

prokaryotic organisms only. The 100 resulting sequences were comprised of bacterial 

proteins with the PAP consensus motifs conserved. 55% of the sequences belonged to 

bacteria from the Streptomyces genus. The bacterial protein sequences resulting from 

the search were significantly shorter than the PAPhy consensus sequence, meaning that 

only PAPhy 4 conservation could be assessed due to the absence of PAPhy 1 and PAPhy 5 

in all the sequences. The PAPhy 4 motif was a complete deletion in 47% of the bacterial 

proteins (Figure 23A), while another 44% showed a non-conserved sequence aligned to 

half of the motif (Figure 23B). 1% of the sequences showed non-conservation of 

PAPhy 4, while 8% presented very low conservation (Figure 23C). As for the previous 

BLAST search, it was not possible to determine if novel PAPhy were found among the 

sequences identified. 
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Figure 22. Two BLASTP hits with PAPhy consensus as query against the non-redundant protein 
sequences database excluding plant proteins 

(A) Hit 40, a slime mould PAP showing deletions in place of the three PAPhy signature motifs. (B) Hit 11, 
a microalgal PAP with very low conservation of the three PAPhy signature motifs. Purple frames, PAP 
motifs. Red frames, PAPhy 1,4 and 5 motifs (when present). 
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Figure 23. Three BLASTP hits with PAPhy consensus as query against the non-redundant protein 
sequences database, results restricted to prokaryotic proteins 

(A) Hit 2, a hypothetical PAP showing a deletion in place of PAPhy 4. (B) Hit 3, a hypothetical PAP showing 
a partial deletion in place of PAPhy 4. (C) Hit 76, a hypothetical PAP showing a poorly conserved PAPhy 4 
motif. Purple frames, PAP motifs. Red frames, PAPhy 4. 
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 Conclusions 

The analysis of purple acid phosphatase sequences performed in this chapter 

suggests that proteins of this class seem to be even more widespread across all 

kingdoms of life than the current literature suggests. More flexibility in the sequence 

pattern characteristic of PAPs currently described would also be necessary to account 

for the diversity of all the proteins already classified as PAPs.  

Key differences in the five PAP consensus motifs have not been identified 

between PAPs which have or do not have the ability to hydrolyse phytate. Further PAP 

motif conservation beyond the consensus seems to be more related to kingdom or 

complexity of the organism producing the enzyme than to the enzyme’s substrate 

preference, data that is absent for the majority of the sequences identified. However, 

sequence information has shown potential to be sufficient to discern between phytase 

and non-phytase PAPs in particular cases. Two out of the four PAPhy consensus motifs, 

together with the fifth PAPhy motif proposed in this chapter, could be used to predict 

phytase activity in PAPs from plants with sufficient sequence similarity to the currently 

characterised PAPhy. Despite PAPs being present across all kinds of organisms, it has not 

been possible to predict phytase activity in organisms other than plants based on 

sequence information alone, as the PAPhy motifs have not shown conservation in PAPs 

from other organisms. 

All the phytases from the PAP class identified to date, except two exceptions 

considered outliers, have strong phylogenetic relationships. A group of non-phytase 

HMW plant PAPs has been identified as close phylogenetic neighbours of the PAPhy, 

with the PAPhy 2 motif conserved and low conservation of the other PAPhy motifs 

observed, as well as being of similar size. The sequence conservation between the PAPhy 

and the proteins of this group has been used to update the PAPhy motifs so that they 

represent the maximum number of PAPs with proven phytase activity, without including 

those that are known to lack it. The PAPhy outlier AtPAP23 shares both phylogenetic 

relationships and sequence conservation with the PAPhy-related, non-phytase HMW 

plant PAPs, rather than with the PAPhy. The fact that only a weak phytase activity has 

been reported for this protein could explain the differences in sequence with the 
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remaining PAPhy. Based on this hypothesis, the predicted VrPAPhy would also be 

expected to show weak phytase activity due to its sequence similarity with AtPAP23. As 

for GmPAP4, the other PAPhy outlier, the sequence similarity with other PAPhy is lower, 

and not even very close to AtPAP23 and the PAPhy-related PAP group. Although a weak 

activity is not specifically described for this enzyme, that explanation could also apply in 

this case. The two microalgal PAPs whose gene expression had been correlated with 

phytase activity, CrPAP1 and CrPAP5, do not share enough sequence homology with the 

currently characterised plant PAPhy to assure or discard their ability to use phytate as 

substrate. 

In light of these results, the most reasonable way to proceed the work of this 

thesis seemed to be to attempt the determination of the three-dimensional structure of 

a PAPhy enzyme that has already been characterised, rather than to pursue the 

identification of new targets in simpler organisms.
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 Generation of recombinant plant PAPhy 

samples for X-ray crystallography 

In the previous chapter, the identification of PAPhy in organisms other than 

plants proved unsuccessful. Attempts to produce protein samples of known plant PAPhy 

suitable for X-ray crystallography are detailed in this chapter. Two different expression 

systems are described. 

There are six different PAPs with known structures in the PDB. The three HMW 

plant PAP structures (i.e. red kidney bean, sweet potato and yellow lupin PPD1 PAPs), 

as well as the pig PAP structures, were obtained by crystallising native protein samples 

purified from the source organisms. Only the structures of two PAPs have been 

generated using recombinant protein. The rat PAP structure was obtained with protein 

generated with a baculovirus-insect cell expression system, while human PAP structures 

were obtained from protein samples produced in Escherichia coli and Pichia pastoris. 

The purification of native proteins from the source organism and especially from plants, 

however, can be an expensive, complicated and long process. The heterologous 

expression of recombinant proteins allows the production of proteins in simpler 

organisms than the natural source, making large-scale production and purification for 

the study of biochemical and biophysical properties easier (Yesilirmak and Sayers, 2009). 

Several PAPhy have been successfully expressed in heterologous expression systems, as 

summarised in Table 3. 
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Table 3. Heterologous expression of recombinant PAPhy summary 

N- = N-terminal; C- = C-terminal; HIS = 6x histidine tag; GST = glutathione S-transferase fusion protein; TRX = thioredoxin fusion protein; ΔSP.= N-terminal signal peptide 
sequence excluded from the expression construct; ΔC-term = C-terminal ER-retention signal sequence excluded from the expression construct. 

Source Protein Host Strain Vector Tag Purification/Results Reference 

Soybean GmPhy E. coli BL21 (DE3) pET-28a N-HIS 
62kDa ΔSP pET-GmPhy band in non-purified cell-free 
extracts. 

(Singh et al., 2013) 

 GmPAP4 E. coli Transetta pET-32a (+) C-HIS 
61.2kDa ΔSP GmPAP4-His electrophoretic band from 
His-bind Purification Kit. 

(Kong et al., 2014) 

Arabidopsis AtPAP15 E. coli BL21 pGEX-4T-3 N-GST GST affinity column purification. (Zhang et al., 2008) 

  S. cerevisiae 
INVSc1 MATα hishis3Δ1 leu2 trp1-289 
ura3-52 

pYES2/CT C-HIS Metal affinity column purification. (Zhang et al., 2008) 

 ATPAP23 E. coli XA90 pGEX-KG N-GST 
77.7kDa GST-AtPAP23 band from affinity chromatography 
and GF. 

(Zhu et al., 2005) 

White lupin LASAP3 E. coli Origami (DE3) pLysS pET-32b (+) N-TRX Non-purified cell lysate. (Maruyama et al., 2012) 

Wheat TaPAPhy_a1 P. pastoris KM71H pPICZαA (NdeI) C-HIS 
2.5 mg L-1 of secreted ΔSP ΔC-term protein purified from 
soluble fraction. 

(Dionisio et al., 2011) 

 TaPAPhy_b1 E. coli Rosetta B pRARE 2 (DE3) pLysS pET15m N-HIS Insoluble protein used for antibody production. (Dionisio et al., 2011) 

  P. pastoris KM71H pPICZαA (NdeI) C-HIS 
12-20 mg L-1 of secreted ΔSP ΔC-term protein purified from 
soluble fraction. 

(Dionisio et al., 2011) 

 TaPAPhy_b2 P. pastoris KM71H pPICZαA C-HIS 
30 mg L-1 of secreted ΔSP ΔC-term protein purified from 
soluble fraction. 

(Dionisio et al., 2012) 

Barley HvPAPhy_a P. pastoris KM71H pPICZαA (NdeI) C-HIS 
1.5 mg L-1 of secreted ΔSP ΔC-term protein purified from 
soluble fraction. 

(Dionisio et al., 2011) 

 HvPAPhy_b1 P. pastoris KM71H pPICZαA C-HIS 
2.4 mg L-1 of secreted ΔSP ΔC-term protein purified from 
soluble fraction. 

(Dionisio et al., 2012) 

 HvPAPhy_b2 P. pastoris KM71H pPICZαA C-HIS 
2.5 mg L-1 of secreted ΔSP ΔC-term protein purified from 
soluble fraction. 

(Dionisio et al., 2011) 

Maize ZmPAPhy_b P. pastoris KM71H pPICZαA C-HIS 
3.5 mg L-1 of secreted ΔSP ΔC-term protein purified from 
soluble fraction. 

(Dionisio et al., 2011) 

Rice OsPAPhy_b P. pastoris KM71H pPICZαA C-HIS 
3.5 mg L-1 of secreted ΔSP ΔC-term protein purified from 
soluble fraction. 

(Dionisio et al., 2011) 
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A wide variety of protein expression systems with different expression vectors is 

available. Among them, Escherichia coli is the most popular host choice due to its rapid 

growth rate, ease of culture and rapid expression with high production levels at a 

relatively low cost. PAPhy from soybean, Arabidopsis and white lupin have been 

successfully expressed in E. coli, with soluble protein obtained and purified in some 

cases (see Table 3). One of the main objectives of this project was to determine the 

crystal structure of a PAPhy. The engineering of phytases with improved characteristics 

is a common step towards their potential application as feed additives. Due to the 

nature of the project, the advantages of succeeding in E. coli expression justified it being 

the first choice for expression trials of PAPhy enzymes. As depicted in Table 3, yeast 

hosts, in particular Pichia pastoris, are the organism of choice for the heterologous 

expression of most PAPhy. The main advantages of eukaryotic expression systems over 

bacterial ones are their ability to produce posttranslational modifications, such as 

glycosylation and disulfide bonds, representative of the native eukaryotic protein. Yeast 

systems are easier and less expensive to work with than insect or mammalian cells, and 

P. pastoris usually gives better protein yields (Demain and Vaishnav, 2009; Yesilirmak 

and Sayers, 2009). 

A subset of plant PAPhy constructs were obtained and subjected to extensive 

expression trials in various E. coli strains under different conditions. One target was 

taken forward to the Pichia pastoris expression system to obtain samples for 

crystallographic and enzymological studies. 

 Materials and methods 

3.1.1. Expression of recombinant plant PAPhy in Escherichia coli  

Plasmids containing the coding region of several plant PAPhy genes were 

obtained from two different sources. Seven constructs for expression of cereal PAPhy in 

Pichia pastoris were kindly donated through a collaboration with Professor Henrik 

Brinch-Pedersen’s group (Flakkebjerg Research Centre, Aarhus University, Denmark). 

The constructs contained the coding region of PAPhy genes from wheat (TaPAPhy_a1, 

TaPAPhy_b1 and TaPAPhy_b2), barley (HvPAPhy_a), rice (OsPAPhy_b) and maize 
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(ZmPAPhy_b), with C-terminal 6xHis tags and without signal peptides and ER-retention 

signals. A synthetic construct for the expression of the soybean PAPhy (GmPAPhy_b, 

also known as GmPhy) in E. coli was also acquired (GenScript).  

3.1.1.1. The Escherichia coli expression system 

Escherichia coli is one of the most widely used hosts for the production of 

heterologous proteins. The main advantages of using E. coli as host for protein 

production are (1) fast growth kinetics; (2) easy achievement of cultures with high cell 

density; (3) inexpensive, rich and complex growth media; and (4) fast and easy 

transformation with exogenous DNA. These advantages make E. coli the least expensive, 

easiest and quickest expression system, with the potential for facile production of high 

yields of protein in a short period of time. On the down side, E. coli is unable to perform 

posttranslational modifications (like protein glycosylation), which are often required for 

the correct folding and function of proteins, and cannot produce very large proteins. In 

addition, proteins rich in disulfide bridges also present problems for E. coli expression 

and they often end up degraded by proteases or misfolded in inclusion bodies. Some 

eukaryotic proteins are still active in a non-glycosylated form, and protocols to solubilise 

and refold proteins from inclusion bodies are available. The production of proteins that 

are stabilised by disulfide bonds can also be targeted to the periplasm, where a reducing 

environment and the presence of specific enzymes allows their formation. Despite E. coli 

not seeming the most suitable candidate to produce eukaryotic proteins, a wide variety 

of engineered strains have been developed to reduce some of the problems that can 

arise (Yesilirmak and Sayers, 2009; Rosano and Ceccarelli, 2014). 

A selection of E. coli expression strains relevant to this project is displayed in 

Table 4. All the strains used for the E. coli expression of PAPhy in this project contained 

chromosomal copies of the T7 RNA polymerase gene under the lacUV5 promoter, 

allowing expression of recombinant proteins driven by the T7 promoter (i.e. DE3 or T7 

strains). Expression of the T7 RNA polymerase and, therefore, the recombinant protein, 

is induced in the presence of the non-hydrolysable lactose analogue isopropyl 

β-D-1-thiogalactopyranoside (IPTG). Despite the expression of the T7 RNA polymerase 

being inducible in this system, basal expression can occur, and it leads to leaky 
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expression of the recombinant protein. Some strains (i.e. pLysS strains) contain an 

additional plasmid that expresses the T7 lysozyme, an inhibitor of the T7 RNA 

polymerase, providing an effective control measure for leaky expression of recombinant 

proteins (Rosano and Ceccarelli, 2014). Auto-induction of the lacUV5 promoter is also 

possible in culture media containing glucose, lactose and glycerol. The preferred carbon 

source of E. coli is glucose and it will be consumed first, preventing the uptake of lactose. 

Once the glucose is depleted, usually in mid to late log phase, the bacteria starts 

consuming the glycerol and lactose, with the second also inducing recombinant protein 

expression. The auto-induction method eliminates the need of biomass monitoring for 

addition of the inducer and allows the production of higher yields of recombinant 

protein. 

Table 4. Description of some Escherichia coli expression strains 

Tet, tetracycline. Str, streptomycin. Cam, chloramphenicol. Spec, spectinomycin. Gen, gentamycin. ompT, 
outer membrane protease gene. trxB, thioredoxin reductase gene. gor, glutathione reductase gene. DSbC, 
periplasmic chaperone and disulfide bond isomerase. Cpn10 and Cpn60, cold-adapted chaperonins from 
the psychrophilic bacterium Oleispira antarctica. 

Strain Origin Resistance Characteristics Applications 

BL21 
B line 
derivative 

None 
lon and ompT protease deficient, 
preventing degradation of foreign and 
extracellular proteins. 

Most popular host for first 
expression screens. 

Origami 2 
K-12 
derivative 

Tet + Str 
trxB and gor mutations, enhancing 
disulfide bond formation in the 
cytoplasm. 

Cytoplasmic expression of proteins 
containing disulfide bridges. 

Rosetta 
BL21 
derivative 

Cam 
pRARE plasmid expressing six rare 
tRNAs. 

Expression of eukaryotic proteins 
that contain codons rarely used in 
E. coli. 

Rosetta 2 
BL21 
derivative 

Cam 
pRARE2 plasmid expressing seven rare 
tRNAs. 

Expression of eukaryotic proteins 
that contain codons rarely used in 
E. coli. 

Rosetta-gami 2 
Origami 2 
derivative 

Tet + Str + 
Cam 

trxB/gor mutations and pRARE2 
plasmid. 

Expression of eukaryotic proteins 
that contain disulfide bridges and 
codons rarely used in E. coli. 

SHuffle 
K-12 
derivative 

Spec + Str 

trxB/gor mutations. Constitutive 
expression of DsbC in cytoplasm, 
allowing correction of mis-oxidised 
disulfide bonds. 

Cytoplasmic expression of proteins 
containing multiple disulfide 
bridges. 

SHuffle Express 
B line 
derivative 

Spec 

lon and ompT protease deficient. 
trxB/gor mutations. Constitutive 
expression of DsbC in cytoplasm, 
allowing correction of mis-oxidised 
disulfide bonds. 

Cytoplasmic expression of proteins 
containing multiple disulfide 
bridges. 

ArcticExpress 
BL21 
derivative 

Gen 

Hte phenotype, increasing 
transformation efficiency. endA 
deficient, preventing plasmid DNA 
degradation. Constitutive expression of 
Cpn10 and Cpn60. 

Expression of proteins at low 
temperatures for improved protein 
folding and solubility. 

ArcticExpress RIL 
BL21 
derivative 

Gen + Str 
Same as ArcticExpress. Plasmid 
expressing four rare tRNAs. 

Expression of heterologous proteins 
from organisms with AT-rich 
genomes at low temperatures. 

ArcticExpress RP 
BL21 
derivative 

Gen + Str 
Same as ArcticExpress. Plasmid 
expressing three rare tRNAs. 

Expression of heterologous proteins 
from organisms with GC-rich 
genomes at low temperatures. 
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Vectors of the pET and pOPIN series were used for the E. coli expression of plant 

PAPhy. The pET vectors (Novagen) provide a powerful method for expression of 

recombinant proteins in E. coli driven by the T7 promoter, with a wide variety of fusion 

tags to choose from. The pOPIN vector suite is a versatile system designed for the 

high-throughput screening of recombinant protein expression across different hosts, 

with one-step cloning and minimal unwanted amino acids added to the final protein. It 

relies on a ligation-independent cloning (LIC) method carried out by the commercial 

In-Fusion™ enzyme (Clontech-Takara Bio Europe), and a range of fusion tags are also 

available (Berrow et al., 2007). The In-Fusion™ enzyme is able to fuse a PCR amplified 

gene insert and a previously linearized plasmid with specific restriction enzymes when a 

15 bp overlap is present at their ends.  

One of the most useful characteristics of the heterologous expression of 

recombinant proteins is that it allows for the addition of fusion tags to the protein, extra 

amino acid sequences that help in its purification, solubility or detection. Vectors that 

include poly-histidine (6xHis) and glutathione-S-transferase (GST) tags, two of the most 

frequently used fusion partners, were tested for expression of plant PAPhy in E. coli. 

Although useful for the protein purification, fusion tags may interfere with subsequent 

steps such as crystallisation, hence mainly vectors that codify for cleavable fusion tags 

were used in the project. 

3.1.1.2. GmPAPhy_b construct design for E. coli expression 

A synthetic construct for the expression of the soybean PAPhy (GmPAPhy_b) in 

E. coli was designed and ordered from GenScript. The GmPAPhy_b protein sequence 

was obtained from the UniProt database (Bateman et al., 2017). The signal peptide of 

GmPAPhy_b was predicted with the SignalP 4.1 server (Petersen et al., 2011) with 

default parameters for eukaryotes and excluded from the construct (GmPAPhy_b-SP). 

Disordered regions of the protein sequence without the signal peptide were predicted 

with the PrDOS server (Ishida and Kinoshita, 2007). The GmPAPhy_b-SP sequence was 

aligned to the red kidney bean (PvPAP1) and sweet potato (IbPAP1) PAP homologue 

sequences using the T-Coffee server (Notredame, Higgins and Heringa, 2000) with 
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default parameters. The sequence alignment with secondary structure information was 

displayed with ESPript 3.0 (Robert and Gouet, 2014).  

A truncated GmPAPhy_b sequence was designed for synthesis with codon 

optimisation for expression in E. coli. The designed sequence was obtained in a pET15b 

vector, which allows recombinant protein expression from the T7 promoter with a 

cleavable N-terminal 6xHis tag and carries an ampicillin resistance selection marker. The 

E. coli preferred stop codon TAA was added at the 3’ end of the truncated GmPAPhy_b 

coding sequence. Cleavage sites for two restriction enzymes compatible with cloning 

into pOPIN vectors (although not exploited for cloning in this work), NdeI (CA˅TATG, 5’ 

end) and BamHI (G˅GATCC, 3’ end), were also included in the GmPAPhy_b-pET15b 

construct.  

3.1.1.3. Cloning of PAPhy into pOPIN vectors 

The seven plant PAPhy available for the project were subjected to the In-Fusion™ 

LIC procedure into the vector pOPINB, a 5642 bp long vector for the recombinant 

expression of proteins in E. coli with an N-terminal cleavable 6xHis tag. The pPICZαA 

constructs and GmPAPhy_b-pET15b were used as templates. Specific primers to amplify 

the coding region of each plant PAPhy with 15 bp 5’ extensions to allow cloning into the 

pOPINB vector were designed according to manufacturer’s instructions. An ATG start 

codon is already included in the pOPINB vector sequence, before the N-terminal 6xHis 

tag and a 3C protease cleavage site. A stop codon is introduced with the reverse primer 

5’ extension, immediately after the 3’ gene specific region of the primer. Primer 

properties were assessed using the Eurofins Genomics Oligo Analysis Tool 

(https://www.eurofinsgenomics.eu/en/ecom/tools/oligo-analysis.aspx). GC content 

and melting temperatures (Tm) of the primers were kept between 40-60% and 58-65°C, 

respectively, and whenever possible. They were calculated for the 3’ gene specific region 

of each primer, excluding the 5’ extensions. The Tm difference between forward and 

reverse primers was always below 4°C. All 3’ gene specific regions were designed to be 

between 18 and 25 bp long.  

In preparation for the cloning, the pOPINB vector was linearized by digestion 

with the restriction enzymes HindIII and KpnI (NEB). The reactions were set up on ice as 
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detailed in Table 5. The digestion was carried out by incubating the reactions at 37°C for 

1 h, then at 80°C for 20 min in order to inactivate the restriction enzymes. Gene specific 

PCR experiments were carried out to amplify each PAPhy gene with the appropriate 

primers. The reactions were set up on ice as detailed in Table 6. The PCR protocol on 

Table 7 was used for the amplification, varying the annealing temperature for each set 

of primers. 20 µL digestion and PCR trial reactions were set up to check for complete 

digestion of the vector and amplification of the correct PCR product. 50 µL reactions 

were set up for the actual cloning. Negative control reactions were always included, 

using water instead of plasmid DNA. Results of the digestion and PCR reactions were 

assessed on 1% (w/v) agarose gels containing ethidium bromide. Once the desired 

results were confirmed, the 50 µL reactions were loaded on fresh 1% (w/v) agarose gels 

containing ethidium bromide and desired bands cut under UV light. DNA was extracted 

and purified from the agarose bands using the NucleoSpin® Gel and PCR Clean-up kit 

(Macherey-Nagel). The recovered DNA was assessed on 1% (w/v) agarose gels 

containing ethidium bromide. 

Table 5. Reaction set up for the digestion of pOPIN vectors  

(*) Depending on the concentration of the pOPINB (40-60 ng µL-1) or pOPINK (101 ng µL-1) plasmid stock 
used for each digestion. 

Reagent [Stock] [rxn] V for 1x 20 µL rxn (µL) V for 1x 50 µL rxn (µL) 

Water n/a n/a Variable* Variable* 

CutSmart buffer 10x 1x 2 5 

pOPINB/K Variable* 20 ng µL-1 Variable* Variable* 

HindIII 20 U µL-1 0.2 U µL-1 0.2 0.5 

KpnI 20 U µL-1 0.2 U µL-1 0.2 0.5 

TOTAL   20 50 

In-Fusion™ cloning reactions were set up on ice with 2.5 µL of linearized and 

purified pOPINB, 1.5 µL of the appropriate purified PCR product and 1 µL of 5x 

In-Fusion™ HD Enzyme Premix (Clontech-Takara). The reactions were incubated at 50°C 

for 15 min. The total volume of each reaction (5 µL) was transformed into 50 µL of Stellar 

competent cells (Clontech-Takara). The reactions were added to the competent cells 

and left to mix by diffusion for 30 min on ice, before ‘heat-shocking’ at 42°C for 45 s. 

After the heat-shock, the transformations were put back on ice for 1-2 min before 

adding 350 µL of Super Optimal broth with Catabolite repression (SOC) medium. The 

transformations were then incubated at 37°C for 1 h with agitation. Blue/white colony 
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screening was carried out by plating the whole volume of each transformation (400 µL) 

in Lysogeny Broth (LB) agar plates with kanamycin (50 µg mL-1, pOPINB resistance), IPTG 

(1 mM) and X-Gal (40 µg mL-1), incubated at 37°C overnight. Negative controls for the 

In-Fusion™ reactions and the transformation were set up with water instead of plasmid 

DNA or reaction. 

Table 6. Reaction set up for PCR with Phusion polymerase 

All the plasmid templates were diluted to a working concentration of 2 ng µL-1. Primer mixes were 
prepared in water from 100 µM stocks.  

Reagent [Stock] [rxn] V for 1x 20 µL rxn (µL) V for 1x 50 µL rxn (µL) 

Water n/a n/a 13.4 33.5 

Phusion HF buffer 5x 1x 4 10 

dNTP mix 10 mM each 0.2 mM each 0.4 1 

Primer mix 10 µM each 0.5 µM each 1 2.5 

Plasmid template 2 ng µL-1 0.1 ng µL-1 1 2.5 

Phusion polymerase 2 U µL-1 0.02 U µL-1 0.2 0.5 

TOTAL   20 50 

Table 7. PCR protocol for amplification with Phusion polymerase  

(*) Annealing temperatures were calculated for each set of primers, using a temperature 3°C higher than 
the temperature of the primer with the lowest Tm. TaPAPhyA1-F1 and TaPAPhyA1-R1, 66.1°C; 
TaPAPhyB-F1 and TaPAPhyB-R1, 62.8°C; HvPAPhyA-F1 and HvPAPhyA-R1, 66.7°C; OsPAPhyB-F1 and 
OsPAPhyB-R1, 63.3°C; ZmPAPhyB-F1 and ZmPAPhyB-R1, 68.3; GmPAPhyT-F1 and GmPAPhyT-R1, 67.6.  

Step Cycles Time T (°C) 

Initial denaturation 1 3 min 98 

Denaturation 

30 

15 s 98 

Annealing 30 s Variable* 

Extension 45 s 72 

Final Extension 1 10 min 72 

Hold 1 ∞ 4 

White colonies were picked from the plates and each was grown in 10 mL of LB 

liquid culture at 37°C and 180 rpm overnight. The overnight cultures were used to purify 

the plasmids using the QIAprep® Spin Miniprep Kit (Qiagen). The concentration of the 

plasmids after their isolation was calculated by absorbance measurement at λ = 260 nm 

with a NanoDrop™ Spectrophotometer (Thermo Scientific). Plasmids isolated from 

several colonies per cloned construct were screened for the presence of the correct 

gene insert by PCR. The same protocol used to amplify the PAPhy genes in preparation 

for the cloning was followed, using the plasmid templates of this initial PCR experiment 

as positive controls for the colony screening. The plasmid isolated from one colony per 
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construct showing the expected PCR product was also sequenced with the T7 promoter 

and terminator standard primers to further confirm the success of the cloning into 

pOPINB. Stocks of the positive transformants of PAPhy-pOPINB constructs in E. coli 

Stellar competent cells in 30% (v/v) glycerol were prepared, snap-frozen in liquid 

nitrogen, and stored at -80°C.  

TaPAPhy_b2 was additionally cloned into pOPINK to produce recombinant 

protein with an N-terminal cleavable GST tag. As pOPINK shares the same 5’ extensions 

as pOPINB, the same PCR product previously obtained to clone the second was used for 

the first. The protocol described above was followed for the cloning. 

3.1.1.4. Transformation of E. coli constructs into expression strains 

The PAPhy E. coli work was initiated with the GmPAPhy_b-pET15b synthetic 

construct. GmPAPhy_b-pET15b was transformed into Rosetta 2 (DE3) pLysS, BL21 (DE3) 

pLysS, Rosetta-gami 2 (DE3) and SHuffle T7. The five PAPhy successfully cloned into 

pOPINB (GmPAPhy_b, TaPAPhy_b2, HvPAPhy_a, OsPAPhy_b and ZmPAPhy_b) were all 

transformed into SHuffle T7 and SHuffle T7 Express. In addition, HvPAPhy_a-pOPINB and 

OsPAPhy_b-pOPINB were transformed into ArcticExpress (DE3) RP. The construct 

TaPAPhy_b2-pOPINK was transformed into SHuffle T7, SHuffle T7 Express and 

BL21 (DE3). Empty pOPINB and pOPINK vectors were also transformed into the 

expression strains to serve as negative controls for the expression trials. 

Transformations were carried out with 1 µL of each construct into 50 µL of the 

corresponding competent cells, following protocol detailed in section 3.1.1.3. Negative 

controls were set up, by transforming the competent cells with water instead of plasmid 

DNA. Colonies were selected in LB agar plates with ampicillin (100 µg mL-1, pET15b 

construct) or kanamycin (50 µg mL-1, pOPIN constructs) and the appropriate antibiotics 

for each E. coli strain. Selected colonies were inoculated into 10 mL LB with the same 

antibiotics and grown at 37°C and 180 rpm overnight. The overnight cultures were used 

to prepare 30% (v/v) glycerol stocks of the positive transformants and to initiate 

expression trials. 
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3.1.1.5. Expression trials of PAPhy in E. coli 

Several small-scale expression trials of PAPhy enzymes were carried out in 

various expression hosts under different conditions. The IPTG induction expression trials 

were set up by inoculating 100-200 µL of a suitable overnight culture from section 

3.1.1.4. into 10 mL of LB media with ampicillin (100 µg mL-1, pET15b construct) or 

kanamycin (50 µg mL-1, pOPIN constructs) in 30 mL universal flasks. The cells were left 

to grow at 37°C and 180 rpm to an OD600 of 0.5-0.8 before addition, or not (control), of 

up to 1 mM IPTG. For each IPTG concentration, cultures were left to express for 4 h, 

overnight or three days and/or at various temperatures, depending on each particular 

experiment. 

The auto-induction expression trials were set up by inoculation 50 µL of a 

suitable overnight culture from section 3.1.1.4. into 5 mL of auto-induction media with 

kanamycin (100 µg mL-1) in 100 mL conical flasks. The ZYP-5052 (without trace metals) 

auto-induction media described by Studier (2005) was used for these trials, consisting 

of 1% (w/v) N-Z-amine, 0.5% (w/v) yeast extract, 50 mM Na2HPO4, 50 mM KH2PO4, 

25 mM (NH4)2SO4, 2 mM MgSO4, 0.5% (w/v) glycerol, 0.05% (w/v) glucose and 0.2% 

(w/v) lactose. The cultures were incubated overnight or for periods up to six days and/or 

at various temperatures, depending on the experiment. Protein expression levels were 

assessed by SDS-PAGE of denatured total cell protein samples normalised with the OD600 

of the cultures. The gels were stained with InstantBlue™ (Expedeon), a ready-to-use 

single step Coomassie stain. In addition, most gels were also stained with InVision™ (Life 

Technologies). InVision™ is a ready-to-use in-gel stain for the detection of recombinant 

proteins with 6xHis tags. It consists of a fluorescent dye conjugated to a 

nickel-nitrilotriacetic acid (Ni-NTA) complex that binds the His tag, allowing the 

detection of recombinant proteins under UV light.  

Samples from cultures in conditions for which expression of recombinant protein 

was detected were taken to perform a solubility test, normalised with the OD600 of the 

cultures. The cells were harvested from liquid culture by centrifugation. Cell pellets were 

snap-frozen in liquid nitrogen and stored at -80°C to aid with cell disruption. BugBuster® 

10x Protein Extraction Reagent (Novagen), consisting of a mixture of detergents, was 
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used to lyse the cells and release the proteins. The cell pellets were resuspended in 

500 µL of 1x BugBuster® diluted in lysis buffer (50 mM Tris/HCl pH 7.5, 100 mM NaCl, 

1 mM EDTA, 50 µg mL-1 DNase), and incubated in gentle agitation for 20 min at room 

temperature. The lysed cells were centrifuged at 16000 x g for 20 min at 4°C in order to 

separate the soluble and insoluble phases. Insoluble fractions were resuspended in 

500 µL of the lysis buffer. The presence of recombinant protein in the soluble or 

insoluble fractions was checked through SDS-PAGE, staining the gels with InstantBlue™ 

and InVision™. 

Soluble fraction samples were further subjected to a preliminary phytase activity 

assay in some expression trials. The assay consists on the quantification of inorganic 

phosphate (Pi) released by the phytase enzymes from InsP6 over a period of time at a 

certain pH. The detection of phosphate in the assay is based on the molybdenum blue 

reaction (Nagul et al., 2015), a reaction of orthophosphate ions with ammonium 

molybdate in acidic solution to form phosphomolybdic acid. The complex formed is 

reduced with sulfuric acid, acquiring an intense blue colour. The absorbance of the 

coloured solution can be measured at λ = 700 nm, and it is directly proportional to the 

concentration of phosphate in the solution. The phosphate release assay was carried 

out in 0.1 M acetate buffer pH 5 in the presence and absence of 1 mM potassium phytate 

(≥95% purity, Sigma), carrying out 100 µL reactions for 20 min at room temperature. 

10 µL of soluble fraction were used per reaction. The total protein absorbance at 

λ = 280 nm was measured in the soluble fraction samples used for the assay in order to 

normalise the results. A standard curve was prepared with monopotassium phosphate. 

Buffer background and positive control reactions with 800 nM of E. Coli AppA HAP 

phytase were also set up. The reactions were stopped with 100 µL of a colour reagent 

that reacts with the free phosphate, containing four volumes of 1.5% (w/v) ammonium 

molybdate in a 5.5% (v/v) sulfuric acid solution and one volume of a 10.8% (w/v) iron(II) 

sulfate solution. The stopped reactions were left to develop colour for 30 min before 

measuring the absorbance at λ = 700 nm in a microplate reader (Hidex Sense). 
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3.1.2. Expression of recombinant plant PAPhy in Pichia pastoris  

The enzyme TaPAPhy_b2 was selected as the preferred target among the PAPhy 

available to generate protein samples for crystallography in Pichia pastoris. Selection 

was made on the basis that this isoform gave highest yield previously (Dionisio et al., 

2011, 2012), as can be seen in Table 3. 

3.1.2.1. The Pichia pastoris expression system 

Despite the popularity and convenience of the E. coli expression system, 

producing eukaryotic proteins in prokaryotic hosts often results in the formation of 

inclusion bodies and/or low yields of recombinant protein. Yeasts are single cell 

eukaryotic microbes with molecular, genetic and biochemical characteristics similar to 

higher eukaryotes. Pichia pastoris and Saccharomyces cerevisiae are the most 

commonly used yeast hosts. Unlike E. coli, yeasts have the ability to perform 

posttranslational modifications, can handle proteins rich in disulfide bridges and can 

assist protein folding. In addition, the wealth of molecular and genetic resources 

available for yeast, together with cost effective cultures, rapid growth and production 

of high yields of recombinant protein, provide substantial advantages over mammalian 

or insect cell hosts (Bill, 2014). Although quicker than other eukaryotic systems, yeast 

recombinant expression takes longer than E. coli. Other disadvantages of yeast 

expression systems are the lack of chaperonins, proteins required for the proper protein 

folding of some proteins, differences in glycosylation patterns, and hyperglycosylation 

of N-linked sites of recombinant proteins compared to higher eukaryotes. However, 

hyperglycosylation is less extensive in P. pastoris (up to 20 residues) than in S. cerevisiae 

(50-150 residues). Tightly regulated promoters, higher biomass, simpler transformation 

process and the ability to generate more posttranslational modifications, constitute 

other advantages over S. cerevisiae that make P. pastoris the preferred yeast host 

(Demain and Vaishnav, 2009; Yesilirmak and Sayers, 2009). 

As a methylotrophic yeast, P. pastoris is able to use methanol as sole carbon 

source. The first step in methanol metabolism is catalysed by the enzyme alcohol 

oxidase (AOX). Although AOX is encoded by two genes AOX1 and AOX2, most of the 

enzyme activity comes from AOX1, which has a stronger promoter. The AOX1 promoter 
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is induced by methanol but repressed in the presence of excess glycerol or glucose. 

Several Pichia expression vectors, such as the pPICZ vectors, use the AOX1 promoter for 

the high-level expression of recombinant proteins. Alternatively, constitutive expression 

of the recombinant protein can be achieved with the glyceraldehyde-3-phosphate 

dehydrogenase GAP promoter, available in the pGAPZ vectors. Both expression 

constructs codify for the Zeocin™ resistance selectable marker, which can also be used 

in E. coli during the cloning and vector propagation process, and integrate into the 

P. pastoris genome through recombination at the AOX1 (pPICZ vectors) or the GAP 

(pGAPZ vectors) locus. The P. pastoris expression system allows for the production of 

proteins in the cytoplasm or secreted to the culture media, using the efficient 

S. cerevisiae α-mating factor pre-pro-peptide as a secretion signal. The level of native 

proteins secreted by P. pastoris is very low, greatly simplifying the purification process 

of secreted recombinant proteins. 

3.1.2.1.1. KM71H OCH1 knock-out engineered strain 

An engineered version of the KM71H Pichia pastoris strain was provided for this 

project by Professor Henrik Brinch-Pedersen’s group (Flakkebjerg Research Centre, 

Aarhus University, Denmark). KM71H is a mutant P. pastoris strain compatible with 

Zeocin™ resistant expression vectors, in which the AOX1 gene has been deleted and 

replaced with the S. cerevisiae ARG4 gene. As a result, KM71H relies on the production 

of alcohol oxidase from the AOX2 gene and growth in methanol is slower than the wild 

type strains due to its weaker promoter. 

Most secreted eukaryotic proteins are glycosylated, but different glycosylation 

patterns are observed depending on the organism. The cereal PAPhy enzymes appear 

to be heavily glycosylated secreted proteins, containing from seven to nine potential 

N-linked glycosylation sites (Dionisio et al., 2011). Glycosylation is one of the most 

common and complex posttranslational modifications performed by P. pastoris. 

N-glycosylation takes place in the lumen of the ER as a protein is being translated. The 

oligosaccharide Glc3Man9GlcNAc2 (consisting of three glucoses, nine mannoses and two 

N-acetylglucosamine sugars) is assembled on the cytoplasmic side of the ER and 

anchored to the membrane through dolichol pyrophosphate. The preassembled 



 

83 
 

Glc3Man9GlcNAc2 unit is translocated to the lumen of the ER and transferred from 

dolichol pyrophosphate to the amide nitrogen of appropriate asparagine residues from 

the nascent protein. The consensus sequence for N-glycosylation in P. pastoris is Asn-X-

Thr/Ser. The three glucoses are then removed by glucosidases I and II along the 

secretory pathway, together with the α-1,2-linked mannose by α-1,2-mannosidases. The 

resulting glycoprotein contains the Man8GlcNAc2 core structure and is transported to 

the Golgi for further processing. The mechanism up to this stage is highly conserved 

between plants, mammals and yeast, but the processing that takes place in the Golgi 

results in different types of N-linked glycans according to the organism (Figure 24B). 

Complex type oligosaccharides are found in higher eukaryotes, while in yeast only high 

mannose type N-linked glycans have been observed (Bretthauer and Castellino, 1999; 

Macauley-Patrick et al., 2005). In yeast, the Man8GlcNAc2 core structure is modified by 

the addition of an α-1,6-mannose residue to the α-1,3-mannose of the trimannosyl core. 

This reaction is catalysed by an α-1,6-mannosyltransferase encoded by the OCH1 gene, 

and the mannose residue added is known as the branching point from which a variable 

number of mannose residues are added by further mannosyltransferases. Even within 

the same cell, different molecules of the same protein can be glycosylated with 

N-glycans containing heterogeneous numbers of mannoses, resulting in structural 

heterogeneity of the glycoprotein population (Daly and Hearn, 2005; Rich and Withers, 

2009). Thus, the OCH1 gene is responsible for hyperglycosylation in yeasts, although this 

phenomenon is not as prominent in P. pastoris as in S. cerevisiae (average of 

Man8-14GlcNAc2 against Man>30GlcNAc2 sizes) (Bretthauer and Castellino, 1999; Ahmad 

et al., 2014). A schematic representation of the N-glycosylation pathway in P. pastoris is 

shown in Figure 24C. 

Variations in the glycosylation pattern of recombinant proteins, e.g. produced by 

the pharmaceutical industry, can trigger allergic reactions in humans. For this reason, 

strategies have been developed to engineer the glycosylation machinery of P. pastoris, 

and commercial strains that can reproduce humanised N-glycosylation patterns are 

available (Ahmad et al., 2014). Although immunological reactions are not relevant for 

this project, the heterogeneity that the P. pastoris expression system can introduce in 

recombinant proteins could reduce the ability of the obtained protein samples to form 
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crystals. In order to reduce hyperglycosylation and, therefore, heterogeneity of 

recombinant proteins, a glycoengineered derivative of the KM71H P. pastoris strain was 

used for the expression of plant PAPhy. In this KM71H (OCH1::G418R) strain, the OCH1 

gene has been replaced with G418R, which confers geneticin resistance. 

 

Figure 24. N-glycosylation in Pichia pastoris 

(A) Symbols for monosaccharides according to the nomenclature from the Consortium for Functional 
Glycomics. (B) Representative structures of the three principal classes of N-gycans. (C) Schematic 
representation of the N-glycosylation pathway in P. pastoris. (*) Branching point for hyperglycosylation. 

3.1.2.2. Transformation of Pichia pastoris through electroporation  

Construct TaPAPhy_b2-pGAPZαA was chosen over the equivalent pPICZαA 

construct for the production of TaPAPhy_b2 protein samples for crystallography, after 

being advised a higher yield of recombinant protein was expected from the GAP 

promoter and to avoid methanol induction. The vector pGAPZαA uses the GAP promoter 

to drive the constitutive production of extracellular proteins in Pichia pastoris, in fusion 

with an N-terminal peptide encoding the Saccharomyces cerevisiae α-factor secretion 

signal. A twenty-amino acid signal peptide and a C-terminal seven-amino acid 
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ER-retention signal was excluded from the construct, while a C-terminal 6xHis-tag was 

included.  

Table 8. Reaction set up for the digestion of pGAPZα vector with AvrII 

(*) Depending on the concentration of the plasmid stock used for each digestion. 

Reagent [Stock] [rxn] V for 1x 20 µL rxn (µL) 

Water n/a n/a Variable* 

CutSmart buffer 10x 1x 2 

pGAPZα construct Variable* 500 ng µL-1 Variable* 

AvrII 5 U µL-1 0.25 U µL-1 1 

TOTAL   20 

Electroporation is the recommended method for the transformation of 

P. pastoris. In preparation for transformation, competent cells of the desired strain were 

prepared, and plasmid DNA was linearized with the appropriate restriction enzyme for 

the vector used in order to stimulate recombination and integration in the genome. 

P. pastoris cells can be stored for months at 4°C in 1 M sorbitol stocks. To perform the 

transformation, 10 µL of a KM71H (OCH1::G418R) strain 1M sorbitol stock were mixed 

with 190 µL of 1 M sorbitol and plated on a yeast extract peptone dextrose solid medium 

(YPD agar) plate containing kanamycin (100 µg mL-1). The plate was incubated for three 

days at room temperature to allow for the yeast to grow, before inoculating one full 

loop of cells into 50 mL of YPD liquid medium containing kanamycin (100 µg mL-1). The 

culture was incubated at 30°C and 200 rpm overnight. 10 µg of the 

TaPAPhy_b2-pGAPZαA construct were linearized with AvrII (NEB) at 37°C overnight to 

ensure complete digestion. Reaction set up for AvrII digestion is detailed in Table 8. 

Complete construct digestion before transformation was checked on a 

1% (w/v) agarose gel containing ethidium bromide. The preparation of Pichia 

KM71H (OCH1::G418R) competent cells was initiated by harvesting cells from the 50 mL 

overnight culture by centrifugation. Sterile conditions were kept during the preparation 

of P. pastoris competent cells and all the centrifugation steps were performed in 50 mL 

conical centrifuge tubes for 5 min at 4000 x g and 4°C. The culture media was discarded, 

and the cells washed by resuspension in 50 mL of water. The cells were pelleted again 

by centrifugation, the water discarded and the cells resuspended in 25 mL of SED 

solution (50 mM Tris/HCl pH 7.5, 20 mM DTT, 25 mM EDTA pH 8.0, 1M sorbitol). The 
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cells were incubated with the SED solution for 15 min at room temperature to allow for 

the disruption of the cell wall glycoproteins, which facilitates the incorporation of DNA. 

After the incubation, the cells were pelleted and washed by resuspension in 50 mL of 

1 M sorbitol. A final centrifugation step was performed and the cells were resuspended 

in a final volume of 3 mL of 1 M sorbitol. The competent cells were stored on ice up to 

30 min before electroporation. 10 µg of linearized TaPAPhy_b2-pGAPZαA construct 

(20 µL digestion reaction) were mixed with 390 µL of KM71H (OCH1::G418R) competent 

cells in a 0.2 cm gap cuvette (BIO-RAD), and incubated on ice for 5 min. The cuvette was 

dried before carrying out transformation through electroporation (1.8 kV, 25 µF, 200 Ω). 

After electroporation, the cuvette was returned to ice before transferring the 

transformed cells to 15 mL conical centrifuge tubes mixed with 1 mL of 1 M sorbitol. The 

cells were left to recover in agitation at 28°C overnight before plating different volumes 

on YPD agar plates with Zeocin™ (400 µg mL-1). After four days of incubation at 28°C, 

eight of the biggest colonies were picked and restreaked on a fresh YPD agar plate with 

Zeocin™ (400 µg mL-1) and incubated for a further two days at 28°C. 

3.1.2.3. Trial expression of TaPAPhy_b2 P. pastoris transformants 

A small volume expression trial was set up in a 48-well plate to test the selected 

colonies for the production of secreted recombinant protein. Buffered minimal glucose 

medium (1.34% (w/v) yeast nitrogen base, 2% (w/v) casamino acids, 2% (w/v) glucose, 

100 mM phosphate buffer pH 5.0, 100 µg mL-1 kanamycin, 100 µM iron(II) sulfate, 

100 µM iron(III) citrate) was prepared for the expression and distributed in the plate, 

1 mL per well. Cultures for the eight selected transformants were set up by inoculating 

a small amount of cells into the medium with a sterile loop. A negative control culture 

with the untransformed KM71H (OCH1::G418R) strain was also set up. Cultures were 

incubated for five days at 26°C and 200 rpm. The expression of recombinant 

TaPAPhy_b2 was checked every day by monitoring phosphatase activity in the culture 

media. A 10 mM solution in 0.1 M acetate buffer pH 4.5 of the chromogenic substrate 

para-nitrophenyl phosphate (pNPP, Sigma) was used for the phosphatase activity assay. 

Phosphatases catalyse the hydrolysis of pNPP to para-nitrophenyl (pNP), a yellow 

compound in alkaline conditions. 10 µL of culture media per well were taken every day, 

mixed with 190 µL of substrate and incubated at 37°C for 10 min. After the incubation, 



 

87 
 

50 µL of 1 M NaOH were added to each reaction and the absorbance at λ = 405 nm 

measured in 96-well plates in a microplate reader (Hidex Sense). The production of 

yellow pNP and, therefore, the absorbance at λ = 405 nm is proportional to the 

production of recombinant TaPAPhy_b2. Cultures were also topped up daily with 

100 µM iron(II) sulfate and 100 µM iron(III) citrate, as well as more buffered minimal 

glucose medium to compensate for loss by evaporation (approximately 100 µL per day) 

and the samples taken to check for activity. 

After five days of constitutive expression, the highest expressing 

KM71H (OCH1::G418R) transformant was selected for further protein expression. A 

1 M sorbitol stock, for storage at 4°C, and a 10% (v/v) glycerol stock, for storage at -20°C, 

of the KM71H (OCH1::G418R) highest expressing transformant were prepared. 

3.1.2.4. Expression scale-up for the generation of TaPAPhy_b2 samples for 

crystallography 

A fresh YPD agar plate with Zeocin™ (400 µg mL-1) was prepared from the 

1 M sorbitol stock of the selected P. pastoris KM71H (OCH1::G418R) transformant and 

incubated for at least two days at room temperature before each expression experiment 

in order to have inoculum.  

A medium scale expression test was performed growing the selected P. pastoris 

KM71H (OCH1::G418R) transformant with TaPAPhy_b2-pGAPZαA in 150 mL of buffered 

minimal glucose medium, distributed in 250 mL conical flasks with 50 mL per flaks, for 

five days under continuous shaking (200 rpm) at 26°C, adding 100 µM iron(II) sulfate and 

100 µM iron(III) citrate daily. An untransformed KM71H (OCH1::G418R) control culture 

was grown alongside. Recombinant TaPAPhy_b2 for crystallography was obtained from 

800 mL of buffered minimal glucose medium, distributed in 2 L conical flaks with 400 mL 

each, following the same protocol. On the third day, cultures were topped up with 

200 µM iron(II) sulfate and 200 µM iron(III) citrate, as well as 2% (w/v) glucose and 

0.5% (w/v) casamino acids. Nothing else was added to the cultures until harvesting on 

the fifth day.  
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After five days of expression, the cultures were centrifuged in order to separate 

the cells from the culture media containing the recombinant protein. Medium scale 

cultures were distributed in 50 mL conical centrifuge tubes and centrifuged for 5 min at 

4000 x g and 4°C in a bench top centrifuge. Large scale cultures were distributed in 

500 mL centrifuge pots and centrifuged at 11900 x g for 20 min at 4°C in a standing 

high-speed centrifuge. A phosphatase activity assay with pNPP as substrate was carried 

out in samples of the culture media to check for expression of recombinant protein as 

described in section 3.1.2.3. 

3.1.2.5. Purification of recombinant TaPAPhy_b2 

Samples of recombinant TaPAPhy_b2 suitable for X-ray crystallography were 

generated following a two-step purification procedure. All the purification steps were 

carried out at 4°C. Nickel-affinity chromatography was performed as first purification 

step using the C-terminal 6xHis tag fused to the recombinant protein. Before the nickel-

affinity chromatography, the pH of the culture media was adjusted with 10 M NaOH 

from pH 5.0 to the recommended pH 8.0. The shifting of pH causes salts in the culture 

media to precipitate. Clear culture media at pH 8.0 was obtained by incubation at 4°C in 

gentle agitation for 15-20 min before centrifugation to separate the precipitate. The 

centrifugation was carried out as indicated in section 3.1.2.4., according to the 

expression scale. Recombinant TaPAPhy_b2 in the medium scale expression test was 

purified by nickel-affinity chromatography directly from the clear culture media with pH 

adjusted to 8.0. Culture media volumes larger than 100-150 mL were subjected to 

concentration and dialysis prior to nickel-affinity chromatography. The pH-adjusted 

culture media was concentrated below 50 mL using a stirred cell (Amicon) with a 

regenerated cellulose ultrafiltration membrane (10 kDa NMWL; Merck). Dialysis against 

binding buffer for nickel-affinity chromatography (50 mM Tris/HCl pH 8.0, 500 mM NaCl, 

20 mM imidazole) was carried out in gentle agitation at 4°C overnight using 3.5 kDa 

MWCO Spectra/Por dialysis tubing (Spectrum Labs). The concentrated and dialysed 

culture media was centrifuged once more and forced through a 0.22 µm filter to 

eliminate residual salt precipitate prior loading onto the nickel-affinity chromatography 

column.  
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A 5 mL Ni-NTA Superflow cartridge (Qiagen) was used to perform nickel-affinity 

chromatography in an ÄKTA Pure chromatography system (GE Healthcare) at a flow rate 

of 3 mL min-1. The culture media was loaded onto the Ni-NTA cartridge, pre-equilibrated 

with 10 column volumes (CV) of binding buffer (50 mM Tris/HCl pH 8.0, 500 mM NaCl, 

20 mM imidazole). The culture media was recirculated twice to allow all the 

recombinant protein to bind the Ni-NTA resin. The cartridge was then washed with 

binding buffer until a stable UV signal was registered by the ÄKTA. The recombinant 

protein was eluted with a 50 mL imidazole gradient (20 mM-500 mM), resulting from 

the gradual mixing of binding buffer and elution buffer (50 mM Tris/HCl pH 8.0, 

500 mM NaCl, 500 mM imidazole), and a 20 mL step with elution buffer. 2 mL fractions 

were collected during the elution. The success of the nickel-affinity chromatography 

purification was assessed by running denatured samples of the peak fractions on 

SDS-PAGE. The 5 mL Ni-NTA Superflow cartridge was regenerated by stripping and 

recharging according to the manufacturer’s instructions after each TaPAPhy_b2 batch 

and subsequently stored in 20% (v/v) ethanol at 4°C. 

Fractions containing the TaPAPhy_b2 recombinant protein were concentrated 

below 1 mL using a 10 kDa MWCO centrifugal filter (Merck). In order to reduce the 

imidazole concentration before the second purification step, the protein was diluted in 

20 mM Tris/HCl pH 8.0 up to 15 mL (maximum capacity of the centrifugal filter) and 

concentrated again below 1 mL. The concentration of recombinant TaPAPhy_b2 was 

calculated by absorbance measurement at λ = 280 nm with a NanoDrop™. Predictions 

of TaPAPhy_b2 extinction coefficient and molecular weight (taking into account only the 

amino acid sequence) were calculated with the ExPASy ProtParam tool (Gasteiger et al., 

2005) and are displayed in Appendix 2, Table A15. 

The second step of TaPAPhy_b2 purification was realised at 4°C by gel filtration 

on a HiLoad 16/600 Superdex 75 pg column (GE Healthcare) pre-equilibrated and eluted 

at a flow rate of 0.4 mL min-1 with 20 mM Tris/HCl pH 8.0 and 250 mM NaCl. Fractions 

(2 mL, or 200 µL upon detection of peaks) were collected. The results of the gel filtration 

were assessed by SDS-PAGE. Fractions containing TaPAPhy_b2 with the most 

homogeneous glycosylation degree possible were selected for crystallography. Selected 
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fractions were concentrated and dialysed as described above for the first purification 

step, measuring the protein concentration in the same way.  

3.1.2.5.1. Enzymatic deglycosylation of TaPAPhy_b2 

Trials for the enzymatic deglycosylation of recombinant TaPAPhy_b2 produced 

in P. pastoris were initiated with two different commercial glycosidases, incubating 10µL 

reactions at 4°C and using 5 µg of TaPAPhy_b2 per reaction. As a starting point, time 

courses were performed with 100 U of commercial PNGase F (NEB) or 500 U of 

commercial Endo H (NEB) per reaction, with reactions set up for 1 h, 2 h, 3 h, 4 h and 

overnight. An overnight reaction reducing the amount of commercial Endo H to 50 U 

was also performed. 

In addition to the commercial glycosidases tested, constructs for the ‘in-house’ 

expression of two recombinant glycosidases with GST fusion tags, GST-PNGase F and 

GST-Endo F1, were kindly donated by Dr Yoav Peleg (The Israel Structural Proteomics 

Center, The Weizmann Institute of Science, Rehovot, Israel). The expression and 

purification of GST-recombinant glycosidases is detailed in Appendix 3. In order to 

compare the activities of the recombinant glycosidases with respect to the commercial 

ones, the concentration of the former in ng µL-1 was approximated by measuring the 

absorbance at λ = 280 nm with a NanoDrop™, employing extinction coefficients and 

molecular weights predicted for the wild type version of the enzymes (PNGase F from 

Flavobacterium meningosepticum, MW = 34.84 kDa and ε = 73340 M-1 cm-1; Endo H 

from Streptomyces plicatus, MW = 33  kDa and ε = 34840 M-1 cm-1). A trial for the 

deglycosylation of TaPAPhy_b2 with GST-recombinant glycosidases was carried out with 

0.5x, 1x, and 2x the concentration of the commercial enzymes, setting up 10 µL 

overnight reactions at 4°C with 5 µg of TaPAPhy_b2. A second trial was performed with 

10x and 50x the commercial enzymes.  

All the PNGase F reactions were performed in 1x GlycoBuffer 2 (50 mM sodium 

phosphate pH 7.5, NEB) with 1% NP-40 (NEB), while 1x GlycoBuffer 3 (50 mM sodium 

acetate pH 6.0; NEB) was used for Endo H and GST-Endo F1. The results of the 

deglycosylation trials were assessed by running 9 µL denatured samples of each reaction 
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on SDS-PAGE and performing a phosphatase activity assays using pNPP as substrate with 

the remaining 1 µL, following protocol described in section 3.1.2.3. 

Partially deglycosylated samples of recombinant TaPAPhy_b2 (TaPAPhy_b2d) for 

crystallography were generated with either commercial Endo H or recombinant 

GST-Endo F1. The glycosidase treatments were performed on TaPAPhy_b2 after nickel-

affinity chromatography at a concentration of 1 mg mL-1. For Endo H deglycosylation, 

10 U (approximately 16.8 ng) of glycosidase per µg of TaPAPhy_b2 were incubated at 

4°C overnight in 1x GlycoBuffer 3 (50 mM sodium acetate pH 6.0; NEB). For GST-Endo F1 

deglycosylation, 168 ng (approximately 100 U) of glycosidase per µg of TaPAPhy_b2 

reactions were set up in the same conditions. Partially deglycosylated TaPAPhy_b2d 

resulting from Endo H treatment was concentrated and gel filtered as described in 

section 3.1.2.5. An extra purification step was performed before gel filtration for protein 

deglycosylated with GST-Endo F1, using a 1 mL GSTrap 4B cartridge (GE Healthcare) and 

elution with a gradient of 0–10 mM of reduced glutathione (see Appendix 3, section 

A3.1.3. for method). TaPAPhy_b2d was obtained in the flow through, while GST-Endo F1 

was eluted from the column with the reduced glutathione gradient. 
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 Results and discussion 

3.2.1. Expression of recombinant plant PAPhy in Escherichia coli 

3.2.1.1. GmPAPhy_b construct design for E. coli expression 

An N-terminal signal peptide consisting of the first 28 residues of the protein 

sequence was predicted for GmPAPhy_b, with cleavage site at FGHC˅HIPS (Figure 25). 

As signal peptides get cleaved in vivo when the protein is secreted, it was omitted in the 

final construct.  

 

Figure 25. GmPAPhy_b signal peptide prediction with SignalP 4.1 

A peak in the C-score (red lines) indicates the potential cleavage site. A high S-score (green line) indicates 
the presence of a signal peptide, while low S-scores correspond to the mature protein. A combination of 
the two scores is represented by the Y-score (blue line). 

A disorder prediction study of GmPAPhy_b-SP was undertaken to identify 

potential disordered regions in the protein that could decrease its propensity to 

crystallise (Figure 26). The PrDOS server predicted a segment of ten amino acids in the 

N-terminus after the signal peptide (His29 to Phe38) and another segment of ten amino 

acids in the C-terminus (Arg520 to Ile527) to be disordered. GmPAPhy_b was aligned to 

the sequences of two plant PAP homologues with structure information available, the 

red kidney bean PvPAP1 and the sweet potato IbPAP1, to check for the presence of 

conserved secondary structure elements in those segments.  
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Figure 26. GmPAPhy_b disorder prediction study 

The PrDOS server output plot is shown at the top. Two segments of disordered residues above the red 
threshold line were predicted with a prediction false positive rate of 5%. N- and C-terminal sequences of 
GmPAPhy_b are shown below, aligned to the red kidney bean PAP (PvPAP1; PDB accession 2QFR) at the 
top, along with its secondary structure, and the sweet potato PAP (IbPAP1; PDB accession 1XZW) at the 
bottom, along with its secondary structure. The alignment was generated with T-Coffee (Notredame, 
Higgins and Heringa, 2000) and displayed with ESPript (Robert and Gouet, 2014). PrDOS predicted 
disordered segments are marked in green in the alignment.  

Based on the results of the disorder prediction study, N- and C-terminal 

truncations were introduced in the GmPAPhy_b construct. The ten disordered residues 

at the N-terminus (HIPSTLEGPF) were excluded from the final construct as they are not 

conserved in the HMW plant PAPs. The last eight of the C-terminal disordered residues 

(NIDCIASI) were also omitted for the same reason. The predicted protein sequence from 

the codon optimised for E. coli expression GmPAPhy_b-pET15b construct is displayed in 

Appendix 2, Table A15. 
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3.2.1.2. Cloning of PAPhy into pOPIN vectors 

 

Figure 27. Trial digestions of pOPINB and pOPINK with HindIII and KpnI 

Results of the 20 µL trial digestions of (A) pOPINB and (B) pOPINK in 1% (w/v) agarose gels. 5 µL samples 
mixed with 6x Purple Loading Dye (NEB) were loaded. Lane M, HyperLadder 1kb DNA standards (Bioline); 
lane 1, HindIII and Kpn1 double digestions (5309 bp pOPINB, 5966 bp pOPINK); lane 2, HindIII digestions 
(5642 bp pOPINB, 6299 bp pOPINK); lane 3, KpnI digestions (5642 bp pOPINB, 6299 bp pOPINK); lane 4, 
digestions negative control; lane 5, circular plasmids (bands for nicked, linear and supercoiled DNA can be 
observed). 

Complete double digestion of pOPINB and pOPINK with HindIII and KpnI was 

achieved, as displayed in Figure 27. The primers designed for the cloning of PAPhy genes 

into pOPIN vectors for E. coli expression are listed in Appendix 2 Table A14, with 

expected PCR product sizes for each set of primers. Successful amplification with the 

designed primers was obtained for TaPAPhy_b1, TaPAPhy_b2, HvPAPhy_a, OsPAPhy_b, 

ZmPAPhy_b and GmPAPhy_b, as shown in Figure 28. No amplification was obtained for 

TaPAPhy_a1. 

 

Figure 28. Trial PCR amplification of PAPhy coding sequences 

Results of the 20 µL gene specific PCR experiments in 1% (w/v) agarose gels, carried out to amplify the 
coding sequences of PAPhy for cloning into pOPIN vectors. 5 µL samples mixed with 6x Purple Loading 
Dye (NEB) were loaded. Lane M, HyperLadder 1kb DNA standards (Bioline). (A) Lane 1, HvPAPhy_a PCR 
product (1556 bp); lane 2, HvPAPhyA-F1/R1 primers negative control; lane 3, OsPAPhy_b PCR product 
(1565 bp); lane 4, OsPAPhyB-F1/R1 primers negative control. (B) Lane 1, TaPAPhy_a1 PCR product (1559 
bp); lane 2, TaPAPhyA1-F1/R1 primers negative control. (C) Lane 1, empty; lane 2, TaPAPhy_b1 PCR 
product (1556 bp); lane 3, TaPAPhy_b2 PCR product (1556 bp); lane 4, TaPAPhyB-F1/R1 primers negative 
control; lane 5, ZmPAPhy_b PCR product (1565 bp); lane 6, ZmPAPhyB-F1/R1 primers negative control; 
lane 7, GmPAPhy_b PCR product (1541 bp); lane 8, GmPAPhyT-F1/R1 primers negative control. 
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The concentration of the purified digestion and PCR products obtained after 

extraction from agarose gels could not be measured accurately with a NanoDrop™, due 

to carry over of chaotropic salts from the gel extraction kit that interfere with DNA 

absorbance at λ = 260 nm. Alternatively, the purified digestion and PCR products were 

assessed visually by agarose gel electrophoresis (Figure 29) prior to setting up the 

In-Fusion™ reactions. Bands of the purified PCR products were always more intense than 

those of the linearized pOPIN vectors. The use of equal amounts of PCR product and 

linearized vector is recommended by the In-Fusion™ manufacturer (for products from 

0.5 to 10 kb and vectors shorter than 10 kb). In order to approximate this 

recommendation, a ratio of 1.66:1 of linearized vector over PCR product was used in the 

reactions.  

 

Figure 29. Gel extraction and purification results assessment 

Visual quantification of gel extracted and purified PCR and digestion products in 1% (w/v) agarose gels 
before setting up In-Fusion™ reactions. 2.5 µL samples mixed with 6x Purple Loading Dye (NEB) were 
loaded. Lane M, HyperLadder 1kb DNA standards (Bioline). (A) Lane 1, HvPAPhy_a PCR product; lane 2, 
OsPAPhy_b PCR product; lanes 3 and 4, linearized pOPINB. (B) Lane 1, TaPAPhy_b1 PCR product; lane 2, 
TaPAPhy_b2 PCR product; lane 3, ZmPAPhy_b PCR product; lane 4, GmPAPhy_b PCR product; lanes 5 and 
6, linearized pOPINB. (C) Lane 1, TaPAPhy_b2 PCR product; lanes 2 and 3, linearized pOPINK. 

Several white colonies and a few blue colonies were observed in the plates from 

transformations carried out with positive In-Fusion™ reactions, and no colonies in the 

negative controls. All but one plasmid extracted from the white colonies picked from 

the plates for each of the PAPhy cloning experiments displayed bands of the expected 

size for the PAPhy genes in the colony screening PCR (Figure 30). Sequencing confirmed 

the correct gene insert and, therefore, successful cloning into pOPIN vectors of 

TaPAPhy_b2 (both into pOPINB and pOPINK), HvPAPhy_a, OsPAPhy_b, ZmPAPhy_b and 

GmPAPhy_b. Although the cloning procedure also worked for TaPAPhy_b1, the resulted 

TaPAPhy_b1-pOPINB construct turned out to be the same as TaPAPhy_b2-pOPINB, so it 

was not used for expression.  
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Figure 30. Colony screening of PAPhy clones 

1% (w/v) agarose gels showing the PCR screening of plasmids extracted from 2 to 4 colonies for the correct 
gene insert in each cloning experiment. 5 µL samples mixed with 6x Purple Loading Dye (NEB) were 
loaded. Lane M, HyperLadder 1kb DNA standards (Bioline). (A) Lane 1, OsPAPhy_b-pOPINB colony 1; 
lane 2, OsPAPhy_b-pOPINB colony 2; lane 3, OsPAPhyB-F1/R1 primers negative control; lane 4, 
OsPAPhy_b-pPICZαA positive control. (B) Lane 1, HvPAPhy_a-pOPINB colony 1; lane 2, 
HvPAPhy_a-pOPINB colony 2; lane 3, HvPAPhy_a-pOPINB colony 3; lane 4, HvPAPhy_a-pOPINB colony 4; 
lane 5, HvPAPhyA-F1/R1 primers negative control; lane 6, HvPAPhy_a-pPICZαA positive control. 
(C) Lane 1, TaPAPhy_b2-pOPINK colony 1; lane 2, TaPAPhy_b2-pOPINK colony 2; lane 3, 
TaPAPhy_b2-pOPINK colony 3; lane 4, TaPAPhy_b2-pOPINK colony 4; lane 5, TaPAPhyB-F1/R1 primers 
negative control; lane 6, TaPAPhy_b2-pPICZαA positive control. (D) Lane 1, TaPAPhy_b1-pOPINB colony 1; 
lane 2, TaPAPhy_b1-pOPINB colony 2; lane 3, TaPAPhy_b1-pOPINB colony 3; lane 4, TaPAPhy_b2-pOPINB 
colony 1; lane 5, TaPAPhy_b2-pOPINB colony 2; lane 6, TaPAPhy_b2-pOPINB colony 3; lane 7, 
TaPAPhyB-F1/R1 primers negative control; lane 8, TaPAPhy_b1-pPICZαA positive control; lane 9, 
TaPAPhy_b2-pPICZαA positive control; lane 10, ZmPAPhy_b-pOPINB colony 1; lane 11, 
ZmPAPhy_b-pOPINB colony 2; lane 12, ZmPAPhy_b-pOPINB colony 3; lane 13, ZmPAPhyB-F1/R1 primers 
negative control; lane 14, ZmPAPhy_b-pPICZαA positive control; lane 15, GmPAPhy_b-pOPINB colony 1; 
lane 16, GmPAPhy_b-pOPINB colony 2; lane 17, GmPAPhy_b-pOPINB colony 3; lane 18, GmPAPhyT-F1/R1 
primers negative control; lane 19, GmPAPhy_b-pET15b positive control. 

The cloning results are summarised in Table 9. One PAPhy per plant species was 

cloned successfully into pOPINB, and the wheat PAPhy b2 isoform was also cloned into 

pOPINK. Including the original GmPAPhy-pET15b, a total of seven constructs were 

available to perform E. coli expression trials (sequences and parameters in Appendix 2, 

Table A16). 
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Table 9. Plant PAPhy constructs for heterologous expression 

TaPAPhy_b2, HvPAPhy_a, OsPAPhy_b and ZmPAPhy_b were successfully cloned from the original 
pPICZαA P. pastoris vector into the E. coli pOPINB vector. TaPAPhy_b2 was also cloned into pOPINK. 
Primers deigned to amplify the coding region of TaPAPhy_a1 failed in the conditions tested. The cloning 
procedure to clone TaPAPhy_b1 worked, but the resulting construct was had the same sequence as 
TaPAPhy_b2-pOPINB. GmPAPhy_b was also cloned from the original pET15b vector into pOPINB. 

Original construct Organism Original host Origin New construct 
Cloning 
result 

TaPAPhy_a1-pPICZαA Wheat Pichia pastoris Aarhus University, Denmark TaPAPhy_a1-pOPINB - 

TaPAPhy_b1-pPICZαA Wheat Pichia pastoris Aarhus University, Denmark TaPAPhy_b1-pOPINB - 

TaPAPhy_b2-pPICZαA Wheat Pichia pastoris Aarhus University, Denmark TaPAPhy_b2-pOPINB/K +/+ 

TaPAPhy_b2-pGAPZαA Wheat Pichia pastoris Aarhus University, Denmark n/a n/a 

HvPAPhy_a-pPICZαA Barley Pichia pastoris Aarhus University, Denmark HvPAPhy_a-pOPINB + 

OsPAPhy_b-pPICZαA Rice Pichia pastoris Aarhus University, Denmark OsPAPhy_b-pOPINB + 

ZmPAPhy_b-pPICZαA Maize Pichia pastoris Aarhus University, Denmark ZmPAPhy_b-pOPINB + 

GmPAPhy_b-pET-15b Soybean Escherichia coli GenScript USA Inc. GmPAPhy_b-pOPINB + 

3.2.1.3. Transformation of E. coli constructs into expression strains 

All transformations performed into the different E. coli expression hosts with the 

PAPhy constructs were successful. No colonies were observed in negative control plates 

in any transformation. 

3.2.1.4. Expression trials of PAPhy in E. coli 

Small-scale expression trials of PAPhy enzymes in Escherichia coli were initiated 

with the codon optimised GmPAPhy_b-pET15b construct using the IPTG induction 

method. The heterologous expression of the soybean PAPhy with an N-terminal 6xHis 

tag had previously been described in BL21 (DE3) cells induced with 1 mM IPTG at 37°C 

for 5 h (Singh et al., 2013). For this reason, a similar expression trial was carried out with 

GmPAPhy_b-pET15b in BL21 (DE3) pLysS, but no recombinant expression was detected. 

Expression trials in Rosetta 2 (DE3) pLysS were also performed for this construct with 

the same results. Low levels of recombinant protein expression from the 

GmPAPhy_b-pET15b construct were only observed in a Rosetta-gami 2 (DE3) expression 

trial. However, upon performance of solubility tests, it was concluded that all or most of 

the recombinant protein produced remained in the insoluble fraction.  

The wheat TaPAPhy_b2 enzyme contains nine cysteine residues, of which eight 

have been predicted to form disulfide bridges (Dionisio et al., 2012). The cysteines in the 

wheat enzyme are also conserved in GmPAPhy_b, HvPAPhy_a, OsPAPhy_b and 



 

98 
 

ZmPAPhy_b, indicating that PAPhy enzymes may contain four disulfide bonds. 

Therefore, the SHuffle strains, engineered for the cytoplasmic expression of proteins 

containing multiple disulfide bridges, were the E. coli host of choice for further 

expression trials. 

The construct GmPAPhy_b-pET15b again expressed no recombinant protein 

from the SHuffle T7 strain. Further expression trials using the IPTG induction method 

were performed with constructs HvPAPhy_a-pOPINB and OsPAPhy_b-pOPINB. Protein 

expression was tested in the strains SHuffle T7, SHuffle T7 Express and ArcticExpress 

(DE3) RP. Although it does not address the disulfide bridge problem, the ArcticExpress 

strain was used to attempt to improve protein solubility by expressing at low 

temperature. High expression levels of recombinant PAPhy were detected in all the 

trials. However, the solubility tests revealed that all the protein produced was insoluble.  

From this point, the expression trials were switched to the auto-induction 

method. Since there is no need to monitor the OD600 of the cultures for induction or to 

try different inducer concentrations, auto-induction allows the screening of different 

constructs, strains and conditions in parallel for expression and solubility in a more 

efficient way. In addition, the yields of recombinant protein produced are expected to 

be higher than with conventional IPTG induction. The same expression trials carried out 

with IPTG induction were repeated with auto-induction for constructs 

HvPAPhy_a-pOPINB and OsPAPhy_b-pOPINB. High levels of expression, but 

corresponding to insoluble protein, were also obtained. Auto-induction expression trials 

of GmPAPhy_b-pET15b in SHuffle T7 together with GmPAPhy_b-pOPINB, 

ZmPAPhy_b-pOPINB and TaPAPhy_b2-pOPINB in SHuffle T7 and SHuffle T7 Express were 

also performed. GmPAPhy_b-pET15b in SHuffle T7 produced again no target protein. No 

clear levels of recombinant protein expression were observed from the 

GmPAPhy_b-pOPINB and ZmPAPhy_b-pOPINB expression trials either, while 

TaPAPhy_b2-pOPINB showed expression of high levels of insoluble protein. 

Phytase activity was tested in samples of the soluble fractions resulting from 

several expression trials. However, no significant difference in activity was observed 
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between expression trial samples from strains containing PAPhy constructs and the 

equivalent empty vector controls.  

 

Figure 31. SDS-PAGE results of a representative expression trial of a PAPhy in E. coli 

Samples run on 10% (v/v) acrylamide gels from an autoinduction expression trial with the construct 
OsPAPhy_b-pOPINB in SHuffle T7. Black arrows point to the bands corresponding to recombinant 
OsPAPhy_b. (A) Total cell protein gel stained with InstantBlue™. Lane M, dual colour protein standards 
(BIO-RAD); lane 1, 25°C expression; lane 2, 30°C expression; lane 3, 37°C expression; lane 4, 25°C empty 
vector control; lane 5, 30°C empty vector control; lane 6, 37°C empty vector control. (B) Solubility test gel 
stained with InstantBlue™ and (C) InVision™. Lane M, unstained protein standards (Thermo Scientific); 
lane 1, 25°C soluble fraction; lane 2, 25°C insoluble fraction; lane 3, 30°C soluble fraction; lane 4, 30°C 
insoluble fraction; lane 5, 37°C soluble fraction; lane 6, 37°C insoluble fraction; lane 7, total cell protein 
control from OsPAPhy_b 37°C expression. Bands of the target protein could only be observed in total cell 
protein and insoluble fraction samples. 

To conclude, the TaPAPhy_b2-pOPINK construct was used for the expression of 

a recombinant PAPhy with a different fusion tag other than 6xHis. An N-terminal GST 

tag was chosen with the hope of improving solubility. Auto-induction expression trials 

in SHuffle T7 and SHuffle T7 Express were carried out, as well as in BL21 (DE3). 

Expression of recombinant protein was observed in all the trials, with especially high 

levels in BL21 (DE3). However, once more all the protein obtained was insoluble. 

The results of the E. coli expression trials are summarised in Appendix 2, Table 

A17. 

3.2.2. Expression of recombinant plant PAPhy in Pichia pastoris 

3.2.2.1. Transformation of Pichia pastoris through electroporation  

Complete linearization of the construct TaPAPhy_b2-pGAPZαA was achieved by 

digestion with AvrII (Figure 32). The linearized construct was successfully transformed 
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into freshly prepared KM71H (OCH1::G418R) Pichia competent cells by electroporation. 

Single colonies were observed in all the transformation plates after four days of 

incubation. A higher concentration than the standard to select Zeocin™ resistant Pichia 

transformants was used for the transformation of TaPAPhy_b2-pGAPZαA (400 µg mL-1, 

rather than 100 µg mL-1), as advised by our collaborators, in order to isolate multi-copy 

clones. After the four days of incubation, the biggest colonies on the transformation 

plates presented the highest Zeocin™ resistance and, therefore, were likely to contain 

multiple copies of the construct encoding for TaPAPhy_b2 expression. Eight of these 

colonies (named A to H) were selected and transferred to fresh YPD agar plates, showing 

optimal growth levels to initiate expression trials after two days of incubation.  

 

Figure 32. Digestion of TaPAPhy_b2-pGAPZαA with AvrII 

1% (w/v) agarose gel showing complete linearization of construct TaPAPhy_b2-pGAPZαA by digestion with 
AvrII in preparation for Pichia pastoris transformation. Lane M, O’GeneRuler 1kb DNA standards (Thermo 
Scientific); lane 1, linearized TaPAPhy_b2-pGAPZαA (4623 bp). 

3.2.2.2. Trial expression of TaPAPhy_b2 P. pastoris transformants 

As a purple acid phosphatase, TaPAPhy_b2 requires Fe3+ for its activity. In 

addition, a preference for Fe2+ in the MII site has been reported for the PAPhy_b 

isoforms of these enzymes (Dionisio et al., 2011, 2012). In order to provide the enzyme 

with sources of these two metal ions, the culture media for the constitutive expression 

of recombinant TaPAPhy_b2 was supplemented with iron(II) sulfate and iron(III) citrate. 

The levels of expression of recombinant protein can vary for different P. pastoris 

transformants. Occasionally, the recombination that takes place to integrate the 

expression construct into the Pichia genome can occur in a way that the selection 

marker for Zeocin™ resistance gets inserted, but not the gene of interest. Screening of 

several transformants is thus recommended for the P. pastoris expression system. 
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Figure 33. Results of TaPAPhy_b2-pGAPZαA expression trial in KM71H (OCH1::G418R) 

The expression of recombinant TaPAPhy_b2 was monitored for five days by measuring the absorbance at 
λ = 405 nm resulting from the hydrolysis of pNPP assayed in samples taken from the cultures. 
Transformant H was the highest expressing transformant at the end of the experiment. 

The results of the trial expression of eight KM71H (OCH1::G418R) colonies 

resulting from the transformation with TaPAPhy_b2-pGAPZαA are displayed in Figure 

33. The production of recombinant TaPAPhy_b2 was monitored by the presence of 

phosphatase activity against pNPP in the culture media. As the activity assay was carried 

out for colony screening and no with quantification purposes, no pNP standard curve 

was included and the results were analysed in absorbance units. Maximum expression 

levels of recombinant TaPAPhy_b2 were detected after four days of constitutive 

expression and remained stable on the fifth day. All transformants tested were positive 

for the production of recombinant protein. Transformant H showed the highest 

phosphatase activity and, therefore, the highest expression levels on the fifth day, 

followed closely by transformant C. The untransformed KM71H (OCH1::G418R) strain 

showed the same levels of phosphatase activity as the assay negative control (with 

water rather than culture media), indicating Pichia pastoris does not secrete its own 

phosphatases to the culture media in the expression conditions (culture media 

containing a high concentration of phosphate). Transformant H was selected for further 

expression experiments. 
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3.2.2.3. Expression scale-up and purification of samples for crystallography 

3.2.2.3.1. Medium scale expression test 

The expression scale of TaPAPhy_b2-pGAPZαA construct in the engineered strain 

KM71H (OCH1::G418R) was first increased from 1 mL to 50 mL cultures in 250 mL conical 

flasks. After five days of constitutive expression, phosphatase activity was detected in 

the culture media of the TaPAPhy_b2 transformant cultures and not in the 

untransformed strain control. The 150 mL of culture media were subjected to 

nickel-affinity chromatography purification to check for the yield and purity of 

recombinant protein generated.  

 

Figure 34. Results of the Ni-NTA purification of recombinant TaPAPhy_b2 from P. pastoris culture media 

(A) Chromatogram generated by the ÄKTA Pure chromatography system (GE Healthcare). Blue line, UV 
trace; orange line, conductivity trace; green line, concentration of elution buffer. A single peak of 18 mL 
volume corresponding to TaPAPhy_b2 appears at a retention volume of 9.5 mL into the elution imidazole 
gradient. (B) 10% (v/v) acrylamide gel with peak fractions. Lane M, dual colour protein standards 
(BIO-RAD); lane 1, P. pastoris culture media before Ni-NTA purification; lane 2, Ni-NTA purification flow-
through; lane 3, Ni-NTA purification wash; lanes 4 to 16, Ni-NTA purification elution fractions 4.A4 to 4.B4. 
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The results of the purification by nickel-affinity chromatography of recombinant 

TaPAPhy_b2 from the culture media of KM71H (OCH1::G418R) P. pastoris strain are 

shown in Figure 34. Recombinant TaPAPhy_b2 was secreted to the culture media with 

already a high degree of purity, and all the bands observed in the elution fraction 

samples run on SDS-PAGE are expected to correspond to TaPAPhy_b2 with different 

levels of N-glycosylation. TaPAPhy_b2 SDS-PAGE bands ranged from 57.49 kDa, the 

predicted molecular weight of the deglycosylated protein, to 75 kDa. Despite using a 

glycoengineered strain, a smear above 75 kDa and up to 250 kDa was observed on the 

SDS-PAGE, corresponding to heterogeneous hyperglycosylation of the recombinant 

protein. Pooling and concentrating the peak fractions yielded approximately 30 mg of 

recombinant TaPAPhy_b2 recovered directly per litre of P. pastoris culture media by 

nickel-affinity chromatography. 

3.2.2.3.2. Generation of glycosylated TaPAPhy_b2 samples for crystallography 

In order to generate enough recombinant TaPAPhy_b2 to carry out 

crystallisation screenings, the expression scale was further increased to 400 mL cultures 

in 2 L conical flasks. Phosphatase activity of the recombinant protein was detected in 

the culture media after five days of expression. Purification of recombinant TaPAPhy_b2 

from a total of 800 mL of culture media was attempted directly as for the medium scale 

expression experiment. However, the recirculation of such a volume of culture media 

caused the stripping of the nickel particles from the Ni-NTA cartridge, resulting in the 

protein ending back in the culture media. Certain components of the buffered minimal 

glucose medium, such as iron not incorporated in the metalloprotein, could be 

interfering with the binding of 6xHis tags of the recombinant protein to the Ni-NTA 

matrix. Although adjustment of the pH of the culture media to 8.0 was an effective 

measure for volumes up to 150 mL, larger amounts of culture media needed further 

pre-processing before carrying out nickel-affinity chromatography. The culture media 

was successfully concentrated below 50 mL and dialysed against Ni-NTA binding buffer 

maintaining recombinant TaPAPhy_b2 in solution. The addition of these steps resulted 

in the successful purification of TaPAPhy_b2 by nickel-affinity chromatography with the 

expected yield of 30 mg L-1.  
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Figure 35. Gel filtration purification of recombinant TaPAPhy_b2 produced in KM71H (OCH1::G418R) 
P. pastoris strain 

(A) Amplified region of the chromatogram generated by the ÄKTA Pure chromatography system (GE 
Healthcare). Blue line, UV trace; orange line, conductivity trace. A single peak of 20 mL volume 
corresponding to TaPAPhy_b2 begins to elute at a retention volume of 44 mL. The peak can be split into 
main peak fractions (62%) and higher molecular weight shoulder fractions (38%), the latter corresponding 
to hyperglycosylated recombinant protein. (B) 10% (v/v) acrylamide gel with peak fractions. Lane M, dual 
colour protein standards (BIO-RAD); lane 1, shoulder maximum (1.D8); lanes 2 to 8, interface between 
shoulder and main peak (1.E5 to 1.E11); lanes 9 to 27, main peak (even fractions from 1.E12 to 1.H12); 
lane 28, Ni-NTA purified TaPAPhy_b2. 
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Different degrees of glycosylation are reflected in differences in molecular 

weight of the recombinant protein, as observed in the Ni-NTA purification SDS-PAGE 

(Figure 34). As gel filtration (GF) chromatography separates proteins based on size, it 

was chosen as second purification step to generate TaPAPhy_b2 samples for 

crystallography.  

The results of the purification by gel filtration of recombinant TaPAPhy_b2 

produced in KM71H (OCH1::G418R) P. pastoris strain are shown in Figure 35. A higher 

molecular weight shoulder corresponding to hyperglycosylated protein can be observed 

on the side of the main peak, indicating that partial separation of differentially 

glycosylated TaPAPhy_b2 was achieved through gel filtration. A smaller 

hyperglycosylated protein shoulder was obtained with KM71H (OCH1::G418R) 

compared to published results of the purification of PAPhy expressed in the 

non-engineered strain (Dionisio et al., 2011, 2012). From 6.2 mg of Ni-NTA purified 

TaPAPhy_b2 injected onto the gel filtration column, 2 mg of TaPAPhy_b2 with a lower 

N-glycosylation degree were recovered by pooling and concentration of the main peak 

fractions. In other words, two thirds of the recombinant protein obtained were not used 

for crystallography due to N-glycosylation heterogeneity. Two samples of glycosylated 

TaPAPhy_b2 were generated for crystallography screenings following this protocol 

(TaPAPhy_b2 batch 02 and batch 03). 

3.2.2.3.3. Enzymatic deglycosylation of TaPAPhy_b2 

Despite use of a glycoengineered strain for the expression of recombinant 

TaPAPhy_b2 in Pichia pastoris, samples with certain degree of heterogeneity were still 

observed after two purification steps. The enzymatic deglycosylation of recombinant 

proteins is a common approach in the preparation of samples for X-ray crystallography. 

When deglycosylated proteins are generated for crystallography, a balance between 

homogeneity and solubility of the protein needs to be achieved, and this often requires 

testing the effect of different glycosidases under various conditions. Recombinant 

TaPAPhy_b2 is predicted to have seven N-glycosylation sites (Dionisio et al., 2011, 2012), 

which are susceptible to contain N-glycans of the high mannose type when P. pastoris is 

the expression host. Three glycosidases able to cleave N-linked glycans of the high 
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mannose type were tested for deglycosylation of TaPAPhy_b2. A representation of the 

cleavage site of these enzymes is shown in Figure 36. Peptide N-glycosidase F (PNGase F) 

is an amidase that cleaves between the innermost N-acetylglucosamine and asparagine 

residues of high mannose, hybrid and complex N-glycans, removing the whole N-linked 

glycan. Both endoglycosidases H and F1 (Endo H and Endo F1, respectively) are able to 

cleave between the two N-acetylglucosamine residues of high mannose and most hybrid 

N-glycans, leaving one N-acetylglucosamine residue attached to the asparagine. 

 

Figure 36. Schematic representation of the cleavage site of glycosidases PNGase F and Endo H/Endo F1 

The monosaccharides are represented with symbols according to the nomenclature from the Consortium 
for Functional Glycomics. Green circles, mannose; blue squares, N-acetylglucosamine. (*) Branching point 
for hyperglycosylation. 

The results of the TaPAPhy_b2 deglycosylation trials are shown in Figure 37. 

Initially, the two commercial glycosidases PNGase F and Endo H were tested. The 

duration of the commercial PNGase F treatment did not seem to have an effect in the 

degree of TaPAPhy_b2 deglycosylation obtained. Treatment of 5 µg TaPAPhy_b2 

samples with 100 U of commercial PNGase F resulted in the elimination of most of the 

hyperglycosylation smear, the reduction of the 75 kDa band and the increase of the 

double band above 50 kDa (Figure 37A). Treatment of recombinant proteins for X-ray 

crystallography with PNGase F has the advantage of the complete elimination of the 

protein flexibility conferred by the N-glycans, and, therefore, a higher degree of 

conformational homogeneity than treatment with endoglycosidases. However, being 

PNGase F the enzyme that cuts deepest on the N-glycan, the inaccessibility of certain 

cleavage sites can result in the incomplete deglycosylation of the target protein, as 

observed for TaPAPhy_b2. Treating 5 µg TaPAPhy_b2 samples with 500 U of commercial 

Endo H resulted in more efficient deglycosylation, with no significant differences 
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observed in treatments from 1 to 4 h. Complete elimination of the hyperglycosylation 

smear and the 75 kDa band was observed, with the strongest TaPAPhy_b2 band running 

above 50 kDa accompanied by multiple, less intense bigger bands (Figure 37B). 

Degradation of recombinant TaPAPhy_b2 seemed to occur in the overnight reaction. 

Optimisation of Endo H treatment was attempted with the aim to reduce the ratio 

glycosidase-target protein in the reaction and to increase the homogeneity of the 

resulting target protein. Treatment of 5 µg TaPAPhy_b2 samples with 50 U of 

commercial Endo H at 4°C overnight resulted in partially deglycosylated TaPAPhy_b2 

with a homogeneity deemed appropriate to allow crystallisation screenings (Figure 37C).  

 

Figure 37. Enzymatic deglycosylation trials of recombinant TaPAPhy_b2  

All the trials were carried out at 4°C with 5µg of Ni-NTA purified TaPAPhy_b2 per reaction. Reactions were 
incubated overnight, except in the time courses (gels A and B). All the gels are 10% (v/v) acrylamide with 
dual colour protein standards (BIO-RAD, lanes M). (A) Commercial PNGase F time course with 100 U per 
reaction. Lane 1, 1 h reaction; lane 2, 2 h reaction; lane 3, 3 h reaction; lane 4, 4 h reaction; lane 5, 
overnight reaction; lane 6, TaPAPhy_b2 untreated control. Bands corresponding to PNGase F can be 
observed at 36 kDa in lanes 1 to 5. (B) Commercial Endo H time course with 500 U per reaction. Lane 1, 
1 h reaction; lane 2, 2 h reaction; lane 3, 3 h reaction; lane 4, 4 h reaction; lane 5, overnight reaction; 
lane 6, TaPAPhy_b2 untreated control. Bands corresponding to Endo H can be seen at 29 kDa in lanes 1 
to 5. (C) Optimisation of Endo H treatment with 50 U per reaction incubated overnight. Lane 1, 
deglycosylation reaction of TaPAPhy_b2 with commercial Endo H (29 kDa band); lane 2, TaPAPhy_b2 
untreated control. (D) Recombinant glycosidases trial. Lane 1, TaPAPhy_b2 untreated control; lane 2, 0.5x 
GST-PNGase F reaction; lane 3, 1x GST-PNGase F reaction; lane 4, 2x GST-PNGase F reaction; lane 5, 0.5x 
GST-Endo F1 reaction; lane 6, 1x GST-Endo F1 reaction; lane 7, 2x GST-Endo F1 reaction. (E) Optimisation 
of treatment with recombinant glycosidases. Lane 1, TaPAPhy_b2 untreated control; lane 2, 10x 
GST-PNGase F reaction; lane 3, 50x GST-PNGase F reaction; lane 4, 10x GST-Endo F1 reaction; lane 5, 50x 
GST-Endo F1 reaction; lane 6, 10x GST-PNGase F control (61.76 kDa); lane 7, 50x GST-PNGase F control 
(61.76 kDa); lane 8, 10x GST-Endo F1 control (58.66 kDa); lane 9, 50x GST-Endo F1 control (58.66 kDa). 
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Constructs encoding recombinant glycosidases with GST fusion tags were 

acquired later in the project. After successful expression and purification, stocks of 

GST-PNGase F and GST-Endo F1 at 1 mg mL-1 were prepared. The concentration of the 

commercial enzymes is expressed in units (U), where one unit is defined as the amount 

of enzyme required to remove over 95% of the N-glycan from 10 μg of denatured 

RNase B in 1 h at 37°C with 10 μL reactions (NEB). The ratio of commercial glycosidase 

per µg of TaPAPhy_b2 (originally in U µg-1) was approximated in ng µg-1 in order to 

compare their activity with that of the recombinant enzymes in deglycosylation trials 

with the same reaction conditions (Table 10). Ratios of recombinant glycosidases up to 

double those used for the commercial enzymes achieved less TaPAPhy_b2 

deglycosylation, indicating a lower activity of the recombinant glycosidase with respect 

to the commercial enzymes (Figure 37D). Nevertheless, a closer partial deglycosylation 

degree of TaPAPhy_b2 was achieved with both recombinant glycosidases when using 10 

to 50 times as much as the equivalent commercial enzyme, with no significant 

differences between these two ratios (Figure 37E). 

Table 10. Comparison of commercial and recombinant glycosidases for TaPAPhy_b2 deglycosylation 

‘E’, commercial glycosidase enzyme; ‘S’, TaPAPhy_b2 substrate; ‘E/S’ units or ng of commercial 
glycosidase used per µg of TaPAPhy_b2. The activity of the recombinant glycosidases was tested at ratios 
half, equal, double, ten times and fifty times of the ratios used for the commercial enzymes.  

E 
[E] 

(U µl-1) 
[E] 

(ng µl-1) 
E/S 

(U µg-1) 
E/S 

(ng µg-1) 
0.5x 

(ng µg-1) 
1x 

(ng µg-1) 
2x 

(ng µg-1) 
10x 

(ng µg-1) 
50x 

(ng µg-1) 

PNGase F 500 405 20 16.2 8.1 16.2 32.4 162 810 

Endo H 500 840 10 16.8 8.4 16.8 33.6 168 840 

No major losses in TaPAPhy_b2 phosphatase activity were observed after 

deglycosylation with any of the glycosidases tested, as deglycosylated samples retained 

at least 95% of the activity with respect to the untreated controls. Carrying out 

deglycosylation at 4°C overnight, it was concluded that treatment with 10 U of the 

commercial Endo H per µg of TaPAPhy_b2 yielded the best results, followed by 

treatment with 168 ng of the ‘in-house’ recombinant Endo F1 per µg of TaPAPhy_b2.  

 

 



 

109 
 

3.2.2.3.4. Generation of partially deglycosylated TaPAPhy_b2d samples for 

crystallography 

Four partially deglycosylated TaPAPhy_b2d samples were generated for X-ray 

crystallography by endoglycosidase treatment. Two batches (TaPAPhy_b2d batch 01 

and batch 03) were generated by treatment with commercial Endo H at 4°C overnight 

with a ratio of 10 U per µg of recombinant protein, deglycosylating 5 mg of TaPAPhy_b2 

per batch (Figure 38A). The loss of phosphatase activity was between 10 and 15% when 

compared to the phosphatase activity of untreated TaPAPhy_b2. Another two batches 

(TaPAPhy_b2d batch 04 and batch 07) were generated by treatment with recombinant 

GST-Endo F1 at 4°C overnight with a ratio of 100 U per µg of recombinant protein, 

deglycosylating 10 mg of TaPAPhy_b2 per batch (Figure 38B). Here, the loss of 

phosphatase activity was up to 17% of the activity of untreated TaPAPhy_b2. 

 

Figure 38. Partial deglycosylation of TaPAPhy_b2 samples for crystallography with Endo H and Endo F1 

SDS-PAGE (10% (v/v) acrylamide) gels with dual colour protein standards (BIO-RAD, lanes M). 
(A) Deglycosylation of TaPAPhy_b2d batch 01 with commercial Endo H at 4°C overnight. Lane 1, 
TaPAPhy_b2 with Endo H (29 kDa band) reaction at 10 U µg-1 ratio; lane 2, TaPAPhy_b2 untreated control. 
(B) Deglycosylation of TaPAPhy_b2d batch 07 with recombinant GST-Endo F1 at 4°C overnight. Lane 1, 
TaPAPhy_b2 untreated control; lane 2, TaPAPhy_b2 with GST-Endo F1 (58.66k kDa) reaction at 100 U µg-1 
ratio. 

Representative results of the purification of recombinant TaPAPhy_b2d, 

produced in KM71H (OCH1::G418R) P. pastoris strain, after commercial Endo H 

treatment are shown in Figure 39. A higher molecular weight shoulder corresponding to 

hyperglycosylated protein was still observed on the side of the main peak even after 

Endo H treatment. From 5 mg of Ni-NTA purified TaPAPhy_b2 injected onto the gel 

filtration column, 1.4 mg of partially deglycosylated TaPAPhy_b2d batch 01 were 

recovered by pooling and concentrating the main peak fractions. For batch 03, 3.2 mg 
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were recovered. Complete separation of TaPAPhy_b2 and Endo H was achieved by gel 

filtration. The commercial glycosidase could be recovered from the gel filtration 

fractions and reused in further deglycosylation reactions.  

Although samples of TaPAPhy_b2 similar to those obtained with commercial 

Endo H treatment could be achieved with recombinant GST-Endo F1 treatment by 

increasing the amount of enzyme used, the recombinant enzyme with its GST fusion tag 

has a molecular weight that overlaps with TaPAPhy_b2. For this reason, an extra 

purification step was introduced when TaPAPhy_b2d samples for X-ray crystallography 

were generated by GST-Endo F1 treatment. Recombinant TaPAPhy_b2d was 

successfully purified by GST-affinity purification followed by gel filtration, obtaining 

results like those from Endo H treatment. When purifying TaPAPhy_b2d batch 04, from 

10 mg of Ni-NTA purified TaPAPhy_b2 subjected to Endo F1 treatment, 9.9 mg were 

recovered after GST-affinity purification, and 5.7 mg after gel filtration. TaPAPhy_b2d 

batch 07 yielded 7.1 mg after GST-affinity purification, and 3.9 mg after gel filtration. 
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Figure 39. Gel filtration purification of partially deglycosylated TaPAPhy_b2d with Endo H 

(A) Amplified region of the chromatogram generated by the ÄKTA Pure chromatography system (GE 
Healthcare). Blue line, UV trace; orange line, conductivity trace. A single peak of 30 mL volume 
corresponding to TaPAPhy_b2 begins to elute at a retention volume of 45 mL. The peak can be split into 
main peak fractions (75%) and higher molecular weight shoulder fractions (25%), the latter corresponding 
to hyperglycosylated recombinant protein. A second peak corresponding to Endo H can be observed at a 
retention volume around 69 mL. (B) SDS-PAGE (10% (v/v) acrylamide) with peak fractions. Lane M, dual 
colour protein standards (BIO-RAD); lane 1, Ni-NTA purified TaPAPhy_b2; lane 2, first shoulder (peak A) 
maximum (1.C2); lane 3, second shoulder (peak B) maximum (1.D8); lanes 4 to 6, interface between 
shoulder and main peak (even fractions from 1.E4 to 1.E8); lanes 7 to 17, main peak (peak C, even fractions 
from 1.E10 to 1. F10 and fractions 1.G4, 1.H1, 1.H11 and 2.A1); lanes 18 to 23, Endo H peak (peak D, 
fractions 2.A2 to 2.A7).  
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 Conclusions 

Despite the generous range of strains and conditions tested, all the recombinant 

PAPhy expression trials performed in Escherichia coli proved unsuccessful. Good levels 

of recombinant protein expression were obtained for HvPAPhy_a, OsPAPhy_b and 

TaPAPhy_b2 with N-terminal 6xHis tags, although their coding sequences were not 

optimised for E. coli expression. Surprisingly, the soybean phytase GmPAPhy_b 

performed the worst in the expression trials, despite being the only sequence codon 

optimised for E. coli expression of the available PAPhy. When tested for solubility, 

however, all the recombinant PAPhy produced in E. coli were recovered in the insoluble 

fraction. The strategy of employing a GST fusion tag instead of a 6xHis tag did not 

improve the solubility of PAPhy. The high level of N-glycosylation and disulfide bridge 

content of these enzymes, together with their dependence on metal ions, may have 

contributed to the formation of inclusion bodies in E. coli hosts, even using engineered 

strains designed for the expression eukaryotic proteins.  

Good yields of soluble recombinant TaPAPhy_b2 were obtained using Pichia 

pastoris as expression system, allowing for the generation of samples for X-ray 

crystallography after an optimised expression and purification process. The 

glycoengineered strain used for the recombinant expression of TaPAPhy_b2 in 

P. pastoris did not result in the generation of completely homogeneous recombinant 

protein, even after two purification steps. However, although ideal, samples with 100% 

purity and homogeneity are often not required for crystallisation. Partially 

deglycosylated TaPAPhy_b2d samples with an acceptable homogeneity degree for X-ray 

crystallography were also generated with commercial Endo H and recombinant 

GST-Endo F1 glycosidases. The fully glycosylated and partially deglycosylated 

recombinant TaPAPhy_b2 samples obtained were subjected to extensive crystallisation 

screening in Chapter 4. 
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 The X-ray crystal structure of a wheat PAP 

phytase isoform b2 

After optimisation of a method for the expression and purification of the wheat 

PAPhy isoform b2, sufficient recombinant protein material was available to perform 

extensive crystallisation screening in order to initiate X-ray crystallographic structure 

determination. 

X-ray crystallography is one of the most common methods to determine atomic 

structures of biomolecules, provided the biomolecule of interest can form high quality 

crystals that diffract to high-resolution when illuminated with X-rays. When determining 

the crystal structure of an eukaryotic protein, the high or heterogeneous carbohydrate 

content often present in these proteins is a frequently encountered problem that often 

requires enzymatic deglycosylation strategies (Grueninger-Leitch et al., 1996). In 

addition, metalloprotein crystallography usually presents challenges such as 

incorporation and identification of the correct metal, the possibility of X-ray induced 

damage to the metals or ensuring the correct refinement of the metal centre (Bowman, 

Bridwell-Rabb and Drennan, 2016). Computer simulation methods have become almost 

essential in the study of biomolecules. While a crystal structure provides a snapshot of 

a protein in a single conformation, molecular dynamics simulations can provide detailed 

information of the motion of the protein as a function of time in a realistic environment. 

The information obtained through molecular dynamics simulations can be used to 

understand structure-function relationships of proteins that prove problematic or more 

difficult to determine with conventional experiments. 

This chapter describes the strategies followed to determine the first crystal 

structure of a purple acid phytase, glycosylated enzymes with two metal ions in the 

active site. Following crystal structure determination, the structural information 

acquired in combination with computer simulation methods was used to study the 

interactions between the TaPAPhy_b2 enzyme and the substrate phytate. 
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 Materials and methods 

4.1.1. Crystal growth 

Crystallisation screening experiments were initiated with fully glycosylated 

TaPAPhy_b2, freshly purified and concentrated to 6.7 - 7.9 mg mL-1 as described in 

Chapter 3, section 3.1.2.5. and section 3.2.2.3.2. These experiments were performed at 

4°C and 16°C with five commercially available screens: (1) Structure Screen™ 1 and 2 Eco 

Screen (Jancarik and Kim, 1991); (2) JCSG-plus™ Eco Screen (Collins, Stevens and Page, 

2005); (3) PACT premier™ Eco Screen (Newman et al., 2005); (4) Morpheus® Screen 

(Gorrec, 2009); and (5) MIDAS™ Screen (Grimm et al., 2010); all from Molecular 

Dimensions. The screens were set up in 96-well 2-drop MRC plates sealed with ClearVue 

Sheets (Molecular Dimensions) employing an OryxNano protein crystallisation robot 

(Douglas Instruments Ltd.). The sitting drop vapour diffusion technique was used with a 

drop size of 0.5 µL containing the protein and screen solution at a 1:1 ratio, equilibrated 

against 50 µL of screen solution per reservoir of the 96-well plate. The screening plates 

were monitored for crystal formation using a SZX9 Stereo Microscope (Olympus). Plates 

to optimise crystal growth were set up with screen solutions in which microcrystals were 

observed. The optimisation was carried out in the presence and absence of salt, varying 

the buffer pH ± 0.2 units and the precipitant concentration ± 2%. 

Crystallisation screenings following the procedure described above were also set 

up with partially deglycosylated TaPAPhy_b2d, freshly purified to concentrations 

ranging from 6.9 to 8.1 mg mL-1 as described in Chapter 3, section 3.1.2.5. and section 

3.2.2.3.4. Crystal growth was reproduced by setting up multiple drops containing the 

protein and the appropriate screen solution following the same protocol. 

4.1.2. Crystal harvesting and cryoprotection 

Single crystals formed in the different plates set up were harvested using round 

LithoLoops™ (Molecular Dimensions) at the growth temperature. Crystals were 

cryoprotected prior to being stored in liquid nitrogen by soaking them for a few seconds 

in solutions containing the screen solution in which the crystal was formed to which had 

been added a cryoprotectant (i.e. 25% (v/v) PEG 400, 30% (v/v) glycerol, or 
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30% (w/v) sucrose). When appropriate for the experiment, variable concentrations of 

specific ligands were also included in the cryoprotecting solution (i.e. sodium molybdate, 

sodium tungstate dihydrate, or para-nitrophenyl sulfate), soaking the crystals for 

variable lengths of time ranging from minutes to over an hour. The cryoprotecting 

solution pH was also adjusted in some experiments to promote ligand binding. 

4.1.3. X-ray data collection 

X-ray data was collected at Diamond Light Source (DLS; Didcot, UK) on beamlines 

I03 (with Pilatus3 6M detector and BART sample changer) or I04 (with Pilatus 6M-F 

detector and BART sample changer). Single-wavelength X-ray diffraction data collection 

was carried out at a wavelength of 0.9763 Å (12.6994 keV) for native datasets. A 

wavelength of 1.7389 Å (7.1300 keV) was used for data collection at the iron edge, 

0.6100 Å (20.3253 keV) for data collection at the molybdenum edge and 0.9159 Å 

(13.5369 keV) for data collection at the tungsten edge. 

4.1.4. Data processing and refinement 

The X-ray diffraction images collected from single crystals were scaled and 

integrated using the DLS automated software pipeline. Data reduction was performed 

with XIA2 (Winter, Lobley and Prince, 2013). Programmes from the PHENIX suite (Adams 

et al., 2010) were used for data processing. The quality of the data was analysed with 

XTRIAGE (Zwart, P. H., Grosse-Kunstleve, R. W., Adams, 2005). A molecular replacement 

search model was generated with SCULPTOR (Bunkóczi and Read, 2011), including as 

input files the protein chain (containing Fe3+-Zn2+ metal ions) of one subunit of the red 

kidney bean PvPAP1 structure (PDB accession 2QFR, Schenk et al., 2008) and the 

sequence alignment between the red kidney bean PvPAP1, the sweet potato IbPAP1 

(Schenk et al., 2005) and the wheat TaPAPhy_b2 sequences, created in Chapter 2, 

section 2.1.3. and section 2.2.2. to obtain a 3D homology model of TaPAPhy_b2. 

SCULPTOR was run with default parameters, including the two side chain pruning 

methods (i.e. schwarzenbacher and similarity) and the options to remove alternate 

conformations and sanitize occupancies. The search model generated was further 

modified in PyMOL (Schrodinger LLC, 2015) according to the structure alignment 
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between PvPAP1, IbPAP1 and the TaPAPhy_b2 3D homology model, and the metal 

content was changed to Fe3+-Fe2+ (the predicted for TaPAPhy_b2). The structures were 

solved by automated molecular replacement using PHASER (McCoy et al., 2007) with 

the default settings, but preserving heteroatoms and without searching in alternative 

space groups. The molecular replacement solutions were subjected to several rounds of 

automatic refinement using PHENIX REFINE (Adams et al., 2010) with the default 

settings (unless specified otherwise) and manual refinement using COOT (Emsley et al., 

2010). All atoms except water were considered anisotropic in the final stages of 

refinement. Ligand restraints were generated with READYSET or REEL (Adams et al., 

2010) and included in the refinement when needed, together with files specifying the 

links for the carbohydrates in the N-glycosylation sites. Metal coordination restraints 

were also generated with READYSET and included in the refinement for structures with 

a resolution lower than 1.60 Å. 

4.1.5. TaPAPhy_b2 metal content 

X-ray fluorescence spectra were collected for various TaPAPhy_b2d crystals at 

DLS beamlines I03 or I04 in order to determine the identity of the elements bound in 

the active site of the protein. In addition, element edge scans were performed to screen 

crystals for the presence of specific elements before collecting anomalous datasets.  

A single-wavelength anomalous diffraction dataset was collected at the iron 

edge (Fe-SAD, 1.7389 Å or 7.1300 keV) for a TaPAPhy_b2d crystal and molecular 

replacement carried out as described in section 4.1.4. An anomalous difference electron 

density map was generated using tools from the PHENIX suite (Adams et al., 2010) and 

inspected in COOT (Emsley et al., 2010). 

4.1.6. Determination of substrate binding interactions in the 

TaPAPhy_b2 active site 

The binding mode of InsP6 in the TaPAPhy_b2 active site was studied through 

different methodologies, with the aim to identify the structure elements responsible for 

the ability of this enzyme to hydrolyse phytate. 
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4.1.6.1. Determination of the X-ray crystal structure of TaPAPhy_b2 in 

complex with a phytate analogue 

Attempts to obtain the crystal structure of TaPAPhy_b2 with the phytate 

analogue myo-inositol hexakissulfate (InsS6) were carried out following two different 

approaches. Extensive soaking experiments of TaPAPhy_b2d crystals, grown from 

different recombinant protein batches, in cryoprotecting solutions including either 

1 mM or 5 mM InsS6 (potassium salt; Alfa Chemistry) and for different lengths of time 

were performed. In addition, a co-crystallisation screening experiment was set up with 

a protein:ligand reaction consisting of freshly-purified, partially deglycosylated 

TaPAPhy_b2d concentrated to 7.3 mg mL-1 (generated with recombinant GST-Endo F1 

treatment) with 5 mM InsS6, as described in section 4.1.1. 

As well as varying the concentration of InsS6 and length of the soak, different 

cryoprotectants were tried and the pH of the cryoprotecting solution was adjusted in 

order to promote binding. Soaks of TaPAPhy_b2d crystals in cryoprotecting solutions 

containing InsP6 were also attempted. 

4.1.6.2. Docking of phytate into the active site of TaPAPhy_b2 

Molecular docking experiments were carried out with the crystal structure of 

TaPAPhy_b2 as receptor and its substrate InsP6 as ligand using AutoDock Vina (Trott and 

Olson, 2010). The TaPAPhy_b2 structure was stripped from all the ligands to perform 

the docking experiments (i.e. crystallographic water molecules, carbohydrates, 

phosphates and other solvent molecules), keeping the two metal ions in the active site. 

A model of myo-InsP6 in the pentaequatorial (1a5e) conformation predicted to be 

predominant at the acidic pH optimum of PAPhy (Bohn, Meyer and Rasmussen, 2008) 

was used for the docking, obtaining atomic coordinates from the HIC-Up database 

(Kleywegt et al., 2003). The structures of the ligand and receptor were prepared for the 

docking experiments in pdbqt format with AutoDockTools 1.5.6 (Morris et al., 2009). 

Torsion flexibility was introduced in the InsP6 ligand by allowing the free rotation of the 

twelve bonds involving the six phosphate groups. Polar hydrogen atoms were added to 

the protein and a search space was defined centred on and encompassing the active 

site, consisting of grid parameters x = -32; y = -26; z = 21; and grid size x = 28; y = 22; 
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z = 24, with all the parameters expressed in Å. A molecular docking experiment was first 

run with a fixed protein model, followed by a second run introducing flexibility in the 

side chains of specific amino acids around the active site, selected upon inspection of 

the binding modes obtained in the first run. Results of the molecular docking 

experiments were analysed in PyMOL (Schrodinger LLC, 2015). 

4.1.6.3. Molecular dynamics simulations of TaPAPhy_b2 in complex with 

phosphate and phytate 

A model for the complex structure of the substrate InsP6 in the binding pocket 

of TaPAPhy_b2 was obtained through molecular dynamics (MD) simulations. The 

simulations were based on a modified version of the crystal structure of TaPAPhy_b2 in 

complex with phosphate resembling substrate binding, containing the µ-(hydr)oxo 

bridge in the active site. Processing of the structure prior to the MD simulations was 

performed in COOT (Emsley et al., 2010). Residues with side chains in multiple 

conformations were simplified to the conformation with the highest occupancy. The 

conformation of unresolved residues Asp20-Arg21-Gly22, present in a flexible loop in 

the crystal structure, was modelled using COOT. Disordered side chains of residues 

Arg11, Arg18, Glu19 and Lys224, missing in the crystal structure, were also added as the 

most common rotamer for each amino acid. Solvent molecules were eliminated, 

excluding the µ-(hydr)oxo bridge bound to the metals. Only one N-acetylglucosamine 

(NAG) molecule (i.e. the one directly bound to the protein through asparagine residues) 

was retained per N-glycosylation site in order to simplify the simulations.  

The simulations were performed using the GROMACS 4.6.5 molecular dynamics 

package (Hess et al., 2008) with the GROMOS-96 53a6 force field (Oostenbrink et al., 

2004). The metal ion in the MI site was modelled as Fe3+, while the one in the MII site 

was modelled as Fe2+. Potential errors associated with the use of the formal charges of 

the metal atoms in the simulations were disregarded due to the tight restraints applied 

to the active site (see next paragraph for more details). The bridging solvent molecule 

was modelled as a µ-oxo bridge. The 53a6 force field was modified to include 

parameters for the Fe3+, Fe2+ and µ-oxo bridge. A modified residue for the metal ligand 

Tyr204 was created, consisting of a negatively charged tyrosinate residue. A second 
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modified residue was introduced to account for the N-glycosylation sites, consisting of 

an asparagine residue covalently bound to a NAG residue through an Asn Nδ2-C1 NAG 

bond. NAG coordinates and topology were obtained from the Automated Topology 

Builder (ATB) version 2.2 (Koziara et al., 2014). The protein topology was generated 

using the pdb2gmx command in GROMACS. The MD simulations were performed at pH 

5.5. The protonation state of histidine and aspartate residues was manually selected 

upon careful inspection of their environment. The protonation state of glutamate 

residues was assigned automatically. The specific protonation state of each of these 

residues is collected in Appendix 2, Table A18. 

MD simulations of the enzyme-phosphate complex and the enzyme-phytate 

complex were performed. HPO4
2- coordinates and topology were generated with the 

PRODRG2 Server (Schüttelkopf and Van Aalten, 2004). InsP6 coordinates and topology 

were obtained from ATB version 2.2. The InsP6 was modelled as C6H12O24P6
6- at pH 5.5 

(Veiga et al., 2014), the optimum pH for the enzyme (as determined in Chapter 5, 

section 5.2.2.1.). The MD simulations were carried out restricting the position of the 

two iron ions, the amino acid residues coordinating the irons, the µ-oxo bridge and the 

phosphate molecule coordinated to the metals by applying harmonic force constants of 

106 kJ mol-1 nm-2. In the simulations of the enzyme-phytate complex, the D-4-phosphate 

and the D-6-phosphate were manually docked in turn over the phosphate in the crystal 

structure in order to perform two separate MD runs. The rest of the InsP6 molecule was 

rotated for its accommodation in the active site cavity, so as to avoid short van der Waals 

contacts.  

MD simulations in aqueous solution were performed at a constant temperature 

of 298 K in a cubic box with 10 Å distance from the centre of the protein to the edge of 

the box. The box was solvated by the Simple Point Charge (SPC) 216 water model, adding 

sodium counter ions to ensure neutral charge of the system. Prior to the unrestrained 

MD simulations, the systems were subjected to a maximum of 10000 steps of energy 

minimisation using the steepest descent method and position restrained MD for 20 ps 

with force constants of 1000 kJ mol-1 nm-2 in order to equilibrate the water molecules in 

the solvation box. The equilibrated systems were subjected to 1 ns of production MD 

runs. Analysis of the MD runs was carried out using embedded tools in the GROMACS 
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package. Root mean square deviation (RMSD) values and root mean square fluctuations 

(RMSF) of the Cα atoms were calculated with the original model as a reference. 

Distances of key residues or regions of the protein to neighbouring phosphate groups of 

the InsP6 molecule were monitored for the production MD runs. 

 Results and discussion 

Two sets of crystallisation screening experiments were set up with fully 

glycosylated TaPAPhy_b2, using two different recombinant protein batches. 

Microcrystals grew overnight from TaPAPhy_b2 batch 02 (6.7 mg mL-1) in Structure 

Screen™ Eco Screen 1.23 drops both at 4°C and 16°C, containing 0.2 M calcium chloride 

dihydrate, 0.1 M HEPES pH 7.5 and 28% (v/v) PEG 400 (Figure 40A). Crystal growth was 

reproduced in an optimisation plate, but while the crystals formed in all the drops 

containing calcium chloride, none were observed in the absence of the salt. Harvesting 

of one crystal, cryoprotected with a solution consisting of the screen solution and 

30% (v/v) glycerol, and analysis by X-ray diffraction identified the crystal form as a 

calcium salt.  

One month after setting up, microneedles were observed in drop 1.14 of the 

Structure Screen™ Eco Screen plate at 16°C, containing 0.2 M ammonium sulfate, 

0.1 M MES pH 6.5 and 30% (w/v) PEG 8000 (Figure 40B). The crystals dissolved during 

harvesting, indicating a possibility of them being of protein in nature. The second set of 

crystallisation screen plates was set up with TaPAPhy_b2 batch 03 (7.9 mg mL-1). Spare 

recombinant protein was also employed to reproduce the microneedle crystal growth 

in an optimisation plate. Once again, crystal formation was only observed in drops 

containing ammonium sulfate and not in the absence of the salt, suggesting a strong 

possibility of the crystals being sulfate salts despite their fragility. A new crystal form 

with needle morphology was observed in the second set of screening plates one week 

after setting up. Needles were observed in drop 2.44 of the Structure Screen™ Eco 

Screen plate at 16°C, containing 0.2 M ammonium sulfate and 5% (v/v) 2-propanol 

(Figure 40C). The crystals were harvested in a cryoprotectant containing the screen 

solution and 30% (v/v) glycerol. Upon screening of one of these needle crystals a very 

poor diffraction pattern was obtained, although not corresponding to a salt. 
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Figure 40. Crystal forms observed in fully glycosylated TaPAPhy_b2 screenings 

(A) Calcium salt microcrystals grown in 0.2 M calcium chloride dihydrate, 0.1 M HEPES pH 7.5 and 
28% (v/v) PEG 400. (B) Sulfate salt microcrystals grown in 0.2 M ammonium sulfate, 0.1 M MES pH 6.5 
and 30% (w/v) PEG 8000. (C) 0.15 µM LithoLoop™ containing needle crystal used for X-ray data collection 
screen, grown in 0.2 M ammonium sulfate and 5% (v/v) 2-propanol. 

Another two sets of crystallisation screening experiments were set up with two 

batches of partially deglycosylated TaPAPhy_b2d, i.e. TaPAPhy_b2d batch 01 

(6.9 mg mL-1) and TaPAPhy_b2d batch 03 (7.3 mg mL-1), both deglycosylated with 

commercial Endo H (NEB). The two batches of TaPAPhy_b2d formed crystals in the H3 

trigonal space group in drop 1.14 (B2 in the 96-well crystallisation plate) of the 

JCSG-plus™ Eco Screen at 16°C two to four days after plate set up, containing 

0.2 M sodium thiocyanate and 20% (w/v) PEG 3350. Crystals of the same morphology 

were also observed in the equivalent drop at 4°C, but with a considerably smaller size. 

The H3 crystals were reproduced with two further partially deglycosylated protein 

batches, TaPAPhy_b2d batch 04 (7.3 mg mL-1) and TaPAPhy_b2d batch 07 (8.1 mg mL-1), 

both deglycosylated with recombinant GST-Endo F1.  

 

Figure 41. H3 crystals formed by partially deglycosylated TaPAPhy_b2d 

(A) Drop from TaPAPhy_b2d batch 01 screening containing 0.2 M sodium thiocyanate and 
20% (w/v) PEG 3350. (B) 0.15 µM LithoLoop™ containing crystal from TaPAPhy_b2d batch 01 used for 
X-ray data collection of the TaPAPhy_b2:PO4 complex structure resembling product binding (section 
4.2.1.3.). (C) 0.2 µM LithoLoop™ containing crystal from TaPAPhy_b2d batch 03 used for X-ray data 
collection of the TaPAPhy_b2:PO4 complex structure resembling substrate binding (section 4.2.1.4.). 
(C) 0.1 µM LithoLoop™ containing crystal from TaPAPhy_b2d batch 04 used for X-ray data collection of 
the TaPAPhy_b2:PO4 complex structure resembling enzyme regeneration (section 4.2.1.5.). 
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Attempts to replicate the crystal growth in optimisation plates set up with 

isolated JCSG-plus™ 1.14 reservoir solution were unsuccessful. The same result was 

observed when solution 1.14 (B2) and solution 1.26 (C2, the previous solution the robot 

sets up in plates containing the whole screen) were set up in alternate rows of the 

96-well crystallisation plate. However, crystals were observed in solution 1.14 drops 

every time it was set up preceded by all the solutions located prior to 1.14 in the original 

96-well crystallisation screen plate. This indicated the need for a certain degree of carry 

over to drops with solution 1.14 from a number of the previous reservoir solutions of 

the JCSG-plus™ Eco Screen in order to reproduce crystal growth.  

TaPAPhy_b2d crystals in the H3 trigonal space group from different batches of 

freshly purified protein diffracted to high resolution, allowing the determination of 

various crystal structures of the wheat PAPhy isoform b2, as described in the following 

sections. 

4.2.1. Determination of the X-ray crystal structure of TaPAPhy_b2 in 

complex with phosphate in different binding poses 

4.2.1.1. Overall structure and comparison with PAPs 

Single crystals in the H3 space group grown with TaPAPhy_b2d batch 01 were 

harvested and cryoprotected by briefly soaking them in a solution containing 

0.2 M sodium thiocyanate, 20% (w/v) PEG 3350 and 25% (v/v) PEG 400. An initial 

dataset with resolution down to 2.64 Å was collected at DLS beamline I04. This dataset 

was used to perform molecular replacement with the search model described in 

section 4.1.4. A solution was found and refined to an Rwork of 27.09% and an Rfree of 

33.56% before collection of a higher resolution dataset. The partial TaPAPhy_b2 

structure was used as search model to perform molecular replacement with a dataset 

with a resolution of 1.42 Å collected at DLS beamline I03 from the crystal shown in Figure 

41B, a cube with sides of approximately 30 µM. The final model was refined to Rwork and 

Rfree values of 13.22% and 15.80%, respectively, to give the TaPAPhy_b2:PO4 complex 

structure resembling product binding (section 4.2.1.3.), as shown in Figure 42. Crystal 
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parameters, data collection and refinement statistics for the initial and the higher 

resolution structures are summarised in Table 11. 

 

Figure 42. Cartoon representation of the overall structure of TaPAPhy_b2 in complex with phosphate 

Polypeptide chain coloured in light grey. The two iron ions are shown as brown spheres. Side chains of 
residues displayed as sticks are involved in metal ion coordination, ligands of phosphate molecules, 
cysteine residues involved in disulfide bond formation or N-glycosylated asparagine residues. Phosphates 
are shown as sticks and coloured by element. NAGs are displayed as sticks and coloured by element, with 
carbons in green. Image created with the UCSF Chimera package (Pettersen et al., 2004). 

One monomer of the TaPAPhy_b2 enzyme was present in the asymmetric unit, 

with a solvent content of 56.6% (v/v). TaPAPhy_b2 shares domain arrangements with 

the previously crystallised plant PAPs (Sträter et al., 1995; Schenk et al., 2005). The 

phytase structure consists of a smaller N-terminal domain composed mainly of two 

sandwiched β-sheets and not involved in active site interactions, and the bigger 

C-terminal MPE α/β domain, composed of two β-sheets forming a β-sandwich decorated 

by α-helices and containing the active site (Matange, Podobnik and Visweswariah, 

2015). A cartoon representation of the secondary structure elements of TaPAPhy_b2 is 

shown in Figure 43A. 
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The majority of the residues (97.23%) were found in the most favourable region 

of the Ramachandran plot, with no outliers present. Continuous electron density was 

present for the whole polypeptide excluding Glu1 at the N-terminus, Leu509, Lys510 and 

the 6xHis tag at the C-terminus, probably due to disorder. In addition, the side chains of 

the surface residues Glu19, Arg37 and Lys224 could not be modelled, as they were not 

defined in the electron density. A list of 24 residues were modelled with alternative 

conformations: Ser51, Ser56, Gln127, Arg155, Arg168, Ser183, Glu186, Ser190, Ser249, 

Asn267, Lys268, Met282, Ser311, Arg318, Ser330, Ser345, Glu355, Ser401, Met411, 

Thr414, Ser449, Val494, Glu497 and Tyr499. Of the nine cysteine residues present in the 

TaPAPhy_b2 enzyme, eight of them formed four disulfide bridges (i.e. Cys217-Cys220, 

Cys356-Cys437, Cys395-Cys507 and Cys422-Cys451) with only one existing as a free 

cysteine (Cys139), as predicted previously (Dionisio et al., 2012). However, single 

difference electron density features were observed around the modelled disulfide 

bonds, indicating possible photoreduction of the crystal during data collection. Electron 

density for NAG residues was observed in the seven predicted N-glycosylation sites, i.e. 

Asn115, Asn180, Asn211, Asn267, Asn389, Asn440 and Asn475 (Dionisio et al., 2011, 

2012). A single NAG was modelled per site except for Asn475, in which electron density 

for a second NAG was present with 80% occupancy, indicating the endoglycosidase 

treatment was inefficient in cleaving the β-(1,4)-glycosidic bond in that site. In addition, 

occupancies lower than 100% were observed for NAGs in Asn267 (81%) and Asn389 

(79%). 

Two iron ions were modelled in the TaPAPhy_b2 active site, with occupancies of 

47% for the iron in the MI site (44.78 Å2 B factor) and 89% for the iron in the MII site 

(12.78 Å2 B factor). The architecture of the TaPAPhy_b2 active site was in accordance to 

that described for PAPs in Chapter 1, section 1.3.3.4.2., with the metal ligand residues 

conserved (Mitić et al., 2006; Schenk et al., 2012; Matange, Podobnik and Visweswariah, 

2015). Amino acid residues coordinating the iron in the MI site were Asp174, Tyr204, 

His379 and the bridging Asp201, while the iron in the MII site was coordinated by 

Asn258, His340, His377 and the bridging Asp 201. A tetrahedral and an octahedral 

geometry were assigned to the irons in the MI and MII sites, respectively, by the 

CheckMyMetal Metal Binding Site Validation Server (Zheng et al., 2014).  



 

125 
 

 

Figure 43. Cartoon representation of the TaPAPhy_b2 secondary structure arrangements and selected 
PAPhy motifs 

(A) Overall view of TaPAPhy_b2 coloured by its secondary structure elements. α-Helixes, red; β-strands, 
yellow; loops, green. (B) Overlapped view of PAPhy 1, (C) PAPhy 4 and (D) PAPhy 5 motifs and relative 
positions to the active site. TaPAPhy_b2, light grey; red kidney bean PvPAP1, cyan; sweet potato IbPAP1, 
coral. Images created with the UCSF Chimera package (Pettersen et al., 2004). 

Electron density for two inorganic phosphate molecules bound to the 

TaPAPhy_b2 structure was observed. The first phosphate was bound in the active site 

with 95% occupancy (29.73 Å2 B factor), coordinated to the two iron ions and the side 

chains of His259, His350 and Glu409, resembling the enzyme-product complex (see 

section 4.2.1.3. for details). A second phosphate was modelled in the vicinity of the 

active site with an occupancy of 97% (58.12 Å2 B factor), coordinated by residues Lys410, 

Met411, Thr413 and Thr414. Both phosphate molecules were presumably scavenged 

during recombinant protein expression, as the yeast was grown in culture media 

containing phosphate buffer. As well as phosphates, electron density was observed for 

additional solvent molecules originated from the crystal growth solution or the 

cryoprotectant. The TaPAPhy_b2 structure contained 489 waters, twelve ethylene glycol 
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molecules (three-letter code: EDO, formula: C2H6O2), five diethylene glycol molecules 

(PEG, C4H10O3), two triethylene glycol molecules (PGE, C6H14O4) and a single 

pentaethylene glycol molecule (1PE, C10H22O6). 

The crystal structure of TaPAPhy_b2 confirmed the structural proximity to the 

active site of the phytase motifs PAPhy 1, PAPhy 4 and PAPhy 5 predicted on Chapter 2, 

section 2.2.2. upon observation of the TaPAPhy_b2 3D homology model. The proximity 

to the active site of these motifs, especially PAPhy 4 and PAPhy 5, can be observed in 

Figure 43B, C and D, together with the lack of conservation in the phosphatase 

structures. PAPhy 1 motif was formed by residues Arg21 to Arg37 (Arg21-Leu50 

displayed in Figure 43B). PAPhy 4 motif contains residues Asp216-His229 (Ala205-

Thr247 displayed in Figure 43C). PAPhy 5 motif extends from residue Arg408 to residue 

Arg454 (Val398-Glu463 displayed in Figure 43D). Phytase motifs PAPhy 2 and PAPhy 3 

were located in the N-terminal domain of the TaPAPhy_b2 enzyme and, therefore, away 

from the active site as predicted from the 3D homology model. 

 

Figure 44. Conservation between the TaPAPhy_b2 phytase and the PAPs active sites 

Detailed view of the active sites of the enzymes in complex with phosphate with no bridging solvent 
molecule present. (A) TaPAPhy_b2 in light grey overlapped to red kidney bean PvPAP1 phosphatase in 
cyan (PDB accession 4KBP). (B) TaPAPhy_b2 in light grey overlapped to sweet potato IbPAP1 phosphatase 
in coral (PDB accession 1XZW). Residue labels in brackets correspond to the phosphatases. Images created 
with the UCSF Chimera package (Pettersen et al., 2004). 

A detailed comparison of the active site of the wheat TaPAPhy_b2 phytase with 

the red kidney bean PvPAP1 phosphatase and the sweet potato IbPAP1 phosphatase is 

displayed in Figure 44A and Figure 44B, respectively. The TaPAPhy_b2 structure was 

compared to those of the plant phosphatases with a phosphate molecule bound to the 
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active site and in the absence of a solvent molecule bridging the two metal ions. PDB 

accessions 4KBP and 1XZW were used for the red kidney bean PvPAP1 phosphatase 

(Klabunde et al., 1996) and the sweet potato IbPAP1 phosphatase (Schenk et al., 2005), 

respectively. Little variation was observed between the three structures regarding the 

metal ions (Fe3+-Fe2+ in TaPAPhy_b2, Fe3+-Zn2+ in PvPAP1 and Fe3+-Mn2+ in IbPAP1) and 

their ligands. The amino acid residues stabilising the binding of the phosphate molecule 

to the active site were also conserved between TaPAPhy_b2 (His259, His350 and 

Glu409) and IbPAP1 (His201, His295 and Glu365). PvPAP1 showed conservation of the 

two histidines coordinating the phosphate (His202 and His296) but not the glutamate 

residue. Instead, PvPAP1 contained an extra histidine residue (His295) in the active site 

with respect to the other two structures. In the PvPAP1 enzyme, His296 (His350 in 

TaPAPhy_b2 and His295 in IbPAP1) is responsible for the protonation of the leaving 

group (Klabunde et al., 1996; Schenk et al., 2008). However, in the IbPAP1 enzyme this 

role is shared by His295 (His350 in TaPAPhy_b2 and His296 in PvPAP1) and Glu365 

(Glu409 in TaPAPhy_b2 and not conserved in the PvPAP1). It has been proposed that at 

low pH Glu365 acts as proton donor for the leaving group, while at higher pH His295 

performs this task (Schenk et al., 2005). Noting that these two residues are conserved 

in the TaPAPhy_b2 structure, a similar mechanism is likely to occur.  
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Table 11. Data collection and refinement statistics for the TaPAPhy_b2:PO4 complex structures 

The ‘Initial’ structure data corresponds to the initial dataset collected and first used to perform molecular 
replacement. The partial model obtained was the initial model for the ‘Product’ structure. Values in 
brackets correspond to the high resolution outer shell. The X-ray flux is the total experimented by the 
crystal during data collection, corrected for transmission. The Rmerge value corresponds to Rmerge (all I+ & 
I-). The number of reflections stated are the unique reflections used in refinement. 

Structure Initial Product Substrate Regeneration 

PDB ID n/a 6GIT 6GIZ 6GJ9 

Crystal parameters     

Space group H3 H3 H3 H3 

a, b, c (Å) 126.9, 126.9, 107.0 126.5, 126.5, 106.8 126.7, 126.7, 107.0 127.0, 127.0, 107.5 

α, β, γ (°) 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 120 

Data collection         

Wavelength (Å) 0.9763 0.9763 0.9763 0.9763 

Ω Oscillation (°) 0.10 0.10 0.10 0.05 

Total Ω (°) 147 125 120 123 

Exposure (s) 0.220 0.025 0.300 0.025 

Beam size (μm) 19x10 50x20 63x50 50x20 

X-ray flux (ph) 4.53x1013 4.38x1012 5.04x1013 5.23x1013 

Resolution (Å) 63.44-2.64 (2.69-2.64) 63.24-1.42 (1.44-1.42) 48.11-1.54 (1.57-1.54) 48.30-1.76 (1.79-1.76) 

Rmerge (%) 13.7 (58.4) 4.7 (50.6) 5.6 (71.4) 14.6 (53.9) 

< I/σ(I) > 8.8 (2.6) 14.6 (2.4) 13.4 (1.5) 8.3 (2.4) 

Completeness (%) 99.5 (99.5) 92.6 (99.4) 99.8 (99.7) 99.0 (98.4) 

Multiplicity 4.1 (4.2) 3.5 (3.3) 3.4 (2.9) 3.5 (3.2) 

CC1/2 1.0 (0.7) 1.0 (0.7) 1.0 (0.5) 1.0 (0.8) 

Wilson B factor (Å2) 44.7 14.5 18.8 14.2 

Refinement     

Total No. of atoms 3034 5093 4915 4948 

Water molecules 0 489 433 670 

No. of reflections 18748 111798 94712 63506 

Rwork (%) 27.1 13.2 13.6 14.4 

Rfree (%) 33.6 15.8 16.7 19.6 

Anisotropy 0.274 0.135 0.131 0.357 

RMS deviations     

Bonds (Å) 0.009 0.005 0.006 0.006 

Angles (°) 1.211 0.838 0.896 1.060 

Planes (Å) 0.008 0.006 0.005 0.005 

Ramachandran plot     

Favoured (%) 84.76 97.23 96.80 97.00 

Allowed (%) 10.43 2.77 3.20 3.00 

Outliers (%) 4.81 0.00 0.00 0.00 

Mean B factors (Å2) 39 23.0 28.0 18 

4.2.1.2. TaPAPhy_b2 metal content 

PAPs are characterised for containing Fe3+ in the MI site and a preference for Fe2+ 

in the MII site has been reported for the PAPhy_b isoforms (Dionisio et al., 2011, 2012). 
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For these reasons, sources of iron(III) and iron(II) were included in the Pichia pastoris 

culture media for the recombinant expression of TaPAPhy_b2, and two iron ions had 

been modelled in the crystal structure. Further confirmation of the TaPAPhy_b2 metal 

content was achieved by collecting fluorescence data of TaPAPhy_b2d H3 crystals at DLS 

beamline I03. Peaks for iron were observed when recording an X-ray fluorescence 

spectrum (Figure 45A), while no zinc or manganese peaks were identified (the other two 

common metals in the MII site of PAPs). The X-ray fluorescence spectrum of the 

TaPAPhy_b2d crystal suggested a small presence of gadolinium (Gd). These peaks are 

likely to be an artefact due to noise in the fluorescence spectrum and the iron and 

gadolinium edges being very similar in energy (7.1120 keV and 7.2428 keV, respectively).  

 

Figure 45. Fluorescence data collected from a TaPAPhy_b2d crystal 

(A) X-ray fluorescence spectrum. XRF, X-ray fluorescence. Compton, Compton scattering. (B) Iron edge 
and (C) Manganese edge scans. Black line, raw fluorescence. Yellow line (f’’), anomalous scattering factor. 
Blue line (f’), dispersive scattering factor. 

In addition, an iron edge scan was performed in the crystal and a peak was 

detected at the iron edge (1.7389 Å or 7.1300 keV), as shown in Figure 45B. However, 
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manganese could also give a signal in a dataset collected at the iron edge. In order to 

disregard the presence of manganese in the TaPAPhy_b2d crystals, a manganese edge 

scan was also performed, and no peak was detected at the manganese edge (1.8897 Å 

or 6.5611 keV), as shown in Figure 45C.  

To conclude, an Fe-SAD dataset was collected for a TaPAPhy_b2d H3 crystals at 

DLS beamline I04. The anomalous difference map obtained showed two regions of 

strong electron density (peak heights 32 σ and 29 σ for sites MI and MII, respectively) 

around the location of the iron ions in the TaPAPhy_b2 structure, as displayed in Figure 

46. 

 

Figure 46. Anomalous difference electron density map from a TaPAPhy_b2d Fe-SAD dataset 

Anomalous difference electron density map displayed as a blue mesh at a contour level of 10 r.m.s.d. Iron 
ions showed as brown spheres. Side chains of the metal ligands in the TaPAPhy_b2 active site are shown 
as sticks and coloured by heteroatom. Image created with PyMOL version 1.3 (Schrodinger LLC, 2015). 

4.2.1.3. TaPAPhy_b2:PO4 complex structure resembling product binding 

A detailed overview of the catalytic mechanism of PAPs was described in 

Chapter 1, section 1.3.3.4.2., alongside crystal structures from representative PAPs 

supporting most of the steps. The X-ray crystal structure of the TaPAPhy_b2:PO4 

complex at 1.42 Å resolution described in the sections above resulted from a crystal 

soaked in the screen solution in which it was formed, with the only addition of the 

cryoprotectant PEG 400. This structure contains a phosphate molecule in the active site 

and resembles the red kidney bean PvPAP1:PO4 complex structure representing the 

product-bound state (PDB accession 4KBP), with bidentate coordination to the metal 

ions and absence of a bridging solvent molecule (Sträter et al., 1995; Schenk et al., 2008). 



 

131 
 

Distances to phosphate ligands are depicted in Figure 47, while remaining active site 

distances are summarised in Table 12. 

 

Figure 47. Active centre of the TaPAPhy_b2:PO4 complex resembling product binding 

Double difference electron density map around the phosphate displayed as a blue mesh with a contour 
level of 1 r.m.s.d. Distances between the phosphate and the amino acid residues involved in the binding 
are indicated. Image created with PyMOL version 1.3 (Schrodinger LLC, 2015). 

4.2.1.4. TaPAPhy_b2:PO4 complex structure resembling substrate binding 

Single crystals in the H3 space group grown with TaPAPhy_b2d batch 03 were 

harvested and cryoprotected by soaking them for a few minutes in a solution containing 

0.2 M sodium thiocyanate, 20% (w/v) PEG 3350, 25% (v/v) PEG 400 and 5 mM InsS6. The 

non-hydrolysable phytate analogue InsS6 was combined with the original screen solution 

and cryoprotectant mixture used to obtain the TaPAPhy_b2:PO4 product-bound 

structure described in the previous sections, with the aim to obtain a TaPAPhy_b2:InsS6 

complex structure and gain insights into PAPhy substrate binding. A dataset with 

resolution down to 1.54 Å was collected at DLS beamline I04 from crystal in Figure 41C, 

wedge-shaped with approximate dimensions of 135 x 60 x 30 µM3, and the structure 

was solved by molecular replacement with the TaPAPhy_b2:PO4 complex structure in 

the product-bound state. The final model was refined to Rwork and Rfree values of 13.62% 
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and 16.74%, respectively. Crystal parameters, data collection and refinement statistic 

for this structure are summarised in Table 11. The structure consisted of 

TaPAPhy_b2:PO4 complex, with no electron density observed for InsS6 bound to the 

active site or anywhere else. However, upon close inspection of the active site of this 

new structure, it was observed that there was spherical electron density present for a 

solvent molecule bridging the two iron ions and that the phosphate molecule was 

positioned higher up in the active site (Figure 48). This TaPAPhy_b2 crystal structure 

resembled the pig SsPAP5:PO4 complex structure representing the substrate-bound 

state or catalytic complex (PDB accession 1UTE), with bidentate coordination of the 

µ-hydroxide and phosphate groups to the metal ions (Guddat et al., 1999; Schenk et al., 

2008). Selected active site distances of the TaPAP_b2:PO4 complex structure resembling 

substrate binding are collected in Table 12, compared to the other enzyme-phosphate 

complex structures. 

 

Figure 48. Active centre of the TaPAPhy_b2:PO4 complex resembling substrate binding 

Double difference electron density map around the phosphate displayed as a blue mesh with a contour 
level of 1 r.m.s.d. Distances between the phosphate and the amino acid residues involved in the binding 
are indicated. Image created with PyMOL version 1.3 (Schrodinger LLC, 2015). 
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The bridging solvent molecule observed in the red kidney bean PvPAP1 

phosphatase crystal structure in complex with sulfate (PDB accession 2QFR) has been 

identified as a µ-hydroxide, being within hydrogen bond formation distance of the 

carbonyl oxygen of His323, one of the Zn2+ ligands (Schenk et al., 2008). The carbonyl 

oxygen of the equivalent residue in the present TaPAPhy_b2 structure, His377, was also 

observed to be at a distance that would allow hydrogen bond formation with the 

bridging solvent molecule (2.35 Å) and, therefore, is likely to be a µ-hydroxide too. 

The iron ion in the MI site, modelled with an occupancy of 62% (20.09 Å2 

B factor), was coordinated by a nitrogen atom from the side chain of His379, oxygen 

atoms from the side chains of the Tyr204, Asp174, the bridging Asp201, and the bridging 

hydroxide. The iron ion in the MII site was modelled with an occupancy of 90% (16.66 Å2 

B factor) and ligated by the side chain oxygen atoms of the bridging Asp201 and Asn258, 

the side chain nitrogen atoms of His340 and His377, and the μ-hydroxide. Both metals 

were coordinated with an octahedral geometry, as assigned by the CheckMyMetal 

server (Zheng et al., 2014). No Ramachandran outliers were present in the final 

structure, and 96.80% of the residues were found in the most favourable region of the 

plot. Gaps in electron density were found at Glu1 in the N-terminus; three consecutive 

residues Asp20, Arg21 and Gly22; and Leu509, Lys510 and the 6xHis tag at the C-

terminus. The side chains of surface residues Arg11, Arg18, Glu19 and Lys224 were not 

defined in the electron density and, therefore, not modelled. The following 14 residues 

were modelled with alternative conformations: Asp26, Ser56, Gln127, Glu130, Arg168, 

Ser249, Asn267, Met303, Ser345, Glu353, Glu363, Thr414, Ser449 and Asp457. The 

disulfide bonds formed by Cys217-Cys220, Cys356-Cys437and Cys422-Cys451 displayed 

signs of photoreduction of the crystal during data collection. Electron density for NAG 

residues was observed in the seven predicted N-glycosylation sites, with a second NAG 

in the Asn115 and Asn180 sites with occupancies of 75 and 77%, respectively. 

Occupancies lower than 100% were also observed for NAGs in Asn211 (86%), Asn267 

(84%), Asn389 (78%) and Asn475 (89%). 

In addition to the phosphate molecule bound to the active site, with 79% 

occupancy (33.81 Å2 B factor), the second phosphate in the vicinity of the active site was 

also bound in this structure with 91% occupancy (38.47 Å2 B factor). Electron density for 



 

134 
 

a third inorganic phosphate molecule was observed in the protein surface, with 81% 

occupancy (67.11 Å2 B factor) and coordinated by residues Ser311, Lys312 and Ser313. 

The TaPAPhy_b2:PO4 substrate-bound complex structure contained 433 waters, eight 

ethylene glycol molecules (EDO, C2H6O2), four diethylene glycol molecules (PEG, 

C4H10O3), and three triethylene glycol molecules (PGE, C6H14O4). 

4.2.1.5. TaPAPhy_b2:PO4 complex structure resembling enzyme 

regeneration 

Failing to obtain a TaPAPhy_b2:InsS6 complex structure by soaking crystals in a 

solution containing InsS6, co-crystallisation of the enzyme with the non-hydrolysable 

substrate analogue was attempted. Single crystals in the H3 space group resulting from 

the co-crystallisation of TaPAPhy_b2d batch 04 and 5 mM InsS6 were harvested and 

cryoprotected by soaking them for two minutes in a solution containing 0.2 M sodium 

thiocyanate, 20% (w/v) PEG 3350, 30% (w/v) sucrose and 1 mM InsS6. A dataset with 

1.76 Å resolution was collected at DLS beamline I03 from a crystal with approximate 

dimensions 60 x 40 x 10 µM3 (shown in Figure 41D) and the structure was solved by 

molecular replacement with the TaPAPhy_b2:PO4 complex structure in the product-

bound state. The final model was refined to Rwork and Rfree values of 14.37% and 19.55%, 

respectively. Crystal parameters, data collection and refinement statistics for this 

structure are summarised in Table 11. Another TaPAPhy_b2:PO4 complex structure with 

no electron density for InsS6 apparent was obtained. Spherical electron density for a 

solvent molecule bridging the two iron ions was also observed for this structure, but 

positioned closer to the Fe(III) than to the Fe(II) (1.99 Å vs 2.31 Å) in comparison to the 

substrate-bound structure described in the previous section (2.13 Å vs 2.24 Å). In this 

case, the phosphate molecule bound to the active site seemed to be ‘leaning’ towards 

the iron ion in the MI site and the Glu409, as can be observed in Figure 49. No other PAP 

crystal structure was found in the PDB database with phosphate (or another tetrahedral 

ion) bound to the active site in a similar position and, according to the PAP catalytic 

mechanism described in Chapter 1, section 1.3.3.4.2., this structure could represent a 

stage of regeneration of the enzyme active site. However, since the differences in the 

active site interatomic distances between the current structure and the other 

TaPAPHy_b2:PO4 complex structures obtained in this project are quite subtle (especially 
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compared to the substrate-bound structure) and the resolution of this potential 

regeneration structure was slightly lower (1.76 Å vs 1.42 Å and 1.54 Å), the possibility 

that uncertainties in the position of the active site atoms may be at least partially 

responsible for the differences observed cannot be ignored. Nevertheless, addition of a 

water molecule and monodentate coordination of the phosphate to the metal in the MI 

site has been predicted as the first step carried out by PAP enzymes to return to their 

resting state (Schenk et al., 2008), an interpretation that would fit with the current 

TaPAPhy_b2 structure. Higher resolution structures of the PAP enzyme regeneration 

steps would aid in confirming this prediction. 

 

Figure 49. Active centre of the TaPAPhy_b2:PO4 complex resembling enzyme regeneration 

Double difference electron density map around the phosphate displayed as a blue mesh with a contour 
level of 1 r.m.s.d. Distances between the phosphate and the amino acid residues involved in the binding 
are indicated. Image created with PyMOL version 1.3 (Schrodinger LLC, 2015). 

The iron ion in the MI site was modelled with an occupancy of 63% (16.54 Å2 

B factor) and displayed octahedral coordination geometry, while the iron in the MII 

showed 100% occupancy (12.57 Å2 B factor) and trigonal bipyramidal coordination 

geometry, as assigned by the CheckMyMetal server (Zheng et al., 2014). The final 

structure did not contain Ramachandran outliers and 97% of the residues were found in 

the most favourable region of the plot. Gaps in electron density were found at Glu1 in 
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the N-terminus; three consecutive residues Glu19, Asp20 and Arg21; and Leu509, Lys510 

and the 6xHis tag at the C-terminus. The side chains of surface residues Arg11, His23, 

Arg37, Lys224, Lys410 and Glu424 were not defined in the electron density and, 

therefore, not modelled. The following 23 residues were modelled with alternative 

conformations: Thr39, Ser56, Ser105, Glu111, Gln114, Arg125, Glu130, Ser164, Arg168, 

Ser190, Leu199, Ser249, Asn267, Met282, Ser288, Met303, Leu304, Lys322, Val331, 

Ser345, Glu355, Thr414 and Val494. Signs of photoreduction were only visible around 

the disulfide bond formed by Cys356-Cys437, and in a lower degree than in the previous 

datasets. Electron density for NAG residues was observed in the seven predicted 

N-glycosylation sites, with a second NAG in the Asn475 site modelled with 100% 

occupancy. Occupancies lower than 100% were observed for NAGs in Asn267 (81%) and 

Asn389 (74%). The phosphate molecule bound to the enzyme’s active site was the only 

one modelled in this structure, displaying an occupancy of 72% (21.93 Å2 B factor). The 

TaPAPhy_b2:PO4 complex structure resembling an enzyme regeneration step contained 

670 waters, a single ethylene glycol molecule (EDO, C2H6O2) and a single diethylene 

glycol molecule (PEG, C4H10O3). 

Table 12. Selected active site distances of the TaPAPhy_b2:PO4 complex structures 

All distances are expressed in Å. 

From To Product Substrate Regeneration 

Fe(III) Fe(II) 3.57 3.45 3.37 
 Asp174 Oδ2 1.79 1.89 1.96 

 Asp201 Oδ2 2.35 2.35 2.34 
 Tyr204 O- 1.86 1.88 1.91 
 His379 Nε2 2.75 2.42 2.48 

 µ-(hydr)oxo O n/a 2.13 1.99 

Fe(II) Asp201 Oδ2 2.25 2.21 2.16 
 Asn258 Oδ1 2.18 2.13 2.10 
 His340 Nε2 2.00 2.12 2.14 
 His377 Nδ1 2.08 2.13 2.10 
 µ-(hydr)oxo O n/a 2.24 2.31 

PO4 O1 Fe(III) 1.49 2.27 2.03 

PO4 O2 Fe(II) 2.00 2.45 2.73 

PO4 O3 His350 Nε2 2.83 2.59 2.57 

PO4 O4 His295 Nε2 2.72 3.03 2.87 
 Glu409 Oε1 2.56 2.63 2.44 

µ-(hydr)oxo O PO4 P n/a 2.63 2.51 
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Selected active site distances of the TaPAP_b2:PO4 complex structure resembling 

enzyme regeneration are collected in Table 12, compared to the other enzyme-

phosphate complex structures. The three states of the active site obtained in the 

different TaPAPhy_b2:PO4 complex structures are displayed superimposed in Appendix 

2, Figure A5. 

4.2.1.6. Determination of the X-ray crystal structures of TaPAPhy_b2 in 

complex with inhibitors 

Single crystals in the H3 space group grown with TaPAPhy_b2d batch 07 were 

harvested and cryoprotected by soaking for a few min to over one hour in solutions 

containing 0.2 M sodium thiocyanate, 20% (w/v) PEG 3350, 25% (v/v) PEG 400 and 

either 1 mM sodium molybdate, 5 mM sodium tungstate dihydrate, 10 mM sodium 

tungstate dihydrate or 5 mM para-nitrophenyl sulfate (pNPS). In addition, the pH of all 

the cryoprotectants prepared was adjusted to 5.5 with acetate buffer (the optimum for 

the enzyme, as determined in Chapter 5, section 5.2.2.1.) in an attempt to promote 

ligand binding. Mo-SAD datasets, W-SAD datasets and native datasets were collected 

for molybdate, tungstate and pNPS soaked crystals, respectively, as well as performing 

fluorescence scans and element specific edge scans. All the datasets collected displayed 

electron density for only a phosphate molecule bound to the active site, irrespective of 

the ligand present in the cryoprotectant solution. 

4.2.2. Determination of substrate binding interactions in the 

TaPAPhy_b2 active site 

4.2.2.1. Determination of the X-ray crystal structure of TaPAPhy_b2 in 

complex with a phytate analogue 

Following the frustrated attempts to obtain the crystal structure of TaPAPhy_b2d 

in complex with the non-hydrolysable phytate analogue InsS6 that resulted in the 

TaPAPhy_b2:PO4 complex structures described in sections 4.2.1.4. and 4.2.1.5., further 

soaking experiments were set up with single crystals in the H3 space group grown with 

TaPAPhy_b2d batch 07. The crystals were harvested and cryoprotected in solutions 

containing 0.2 M sodium thiocyanate, 20% (w/v) PEG 3350, 25% (v/v) PEG 400 and 
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either 1 mM InsS6 or 5 mM InsS6, but with the pH adjusted to 5.5 with acetate buffer in 

this occasion. The crystals were soaked in the cryoprotectants for different lengths of 

time ranging from a few minutes to over one hour. Results of the inhibitory effect of 

InsS6 in the phytase activity of TaPAPhy_b2 are presented in Chapter 5, section 5.2.2.4. 

A number of crystals were also soaked in a cryoprotectant with the same composition 

but containing 1 mM InsP6 instead of InsS6 and datasets were collected but, as expected, 

electron density for the substrate was not observed in the active site. 

A dataset with 1.68 Å resolution was collected at DLS beamline I03 from a 

wedge-shaped crystal with approximate dimensions of 60 x 50 x 15 µM3, and the 

structure solved by molecular replacement with the TaPAPhy_b2:PO4 complex structure 

in the product-bound state. The final model was refined to Rwork and Rfree values of 

13.41% and 17.60%, respectively. Crystal parameters, data collection and refinement 

statistic for this structure are summarised in Table 13. The map obtained revealed once 

again electron density for a phosphate molecule bound to the active site. However, 

positive single difference electron density features not present in the previous datasets 

were also spotted in the active site. Further refinement allowed to assign this electron 

density to an InsS6 molecule bound to the active site of the TaPAPhy_b2 enzyme. 

However, no coordination to the metal ions was observed for any of the InsS6 sulfate 

groups due to the phosphate molecule present at the active centre. It was then 

concluded that, although the binding of InsS6 to TaPAPhy_b2 in the position observed in 

this structure would have an inhibitory effect to the activity of the enzyme by blocking 

access to the active site, the InsS6 did not mimic substrate binding. In addition, the InsS6 

molecule modelled in the TaPAPhy_b2 structure was not in the expected myo-inositol 

pentaequatorial (1a5e) conformation. The InsS6 conformation that best fitted the 

electron density consisted of the inverted pentaaxial (5a1e) state. Such a conformational 

change has been most often observed for InsP6 at pH values above 9.5 (Volkmann et al., 

2002; Bohn, Meyer and Rasmussen, 2008; Veiga et al., 2014), higher than the pH 5.5 of 

the cryoprotectant used in this case, but no similar studies were found for InsS6. 

Nevertheless, InsS6 in the pentaaxial (5a1e) conformation has previously been found in 

crystal structures in complex with other phytases (Chu et al., 2004; Ariza et al., 2013).  
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Table 13. Data collection and refinement statistics for the structure of TaPAPhy_b2 in complex with 
phosphate and InsS6 

Values in brackets correspond to the high resolution outer shell. The X-ray flux is the total experimented 
by the crystal during data collection, corrected for transmission. The Rmerge value corresponds to Rmerge (all 
I+ & I-). The number of reflections stated are the unique reflections used in refinement. 

Structure TaPAPhy_b2d:PO4 & InsS6 

PDB ID 6GJ2 

Crystal parameters  

Space group H3 

a, b, c (Å) 126.0, 126.0, 105.9 

α, β, γ (°) 90, 90, 120 

Data collection  

Wavelength (Å) 0.9763 

Ω Oscillation (°) 0.10 

Total Ω (°) 180 

Exposure (s) 0.040 

Beam size (μm) 50x20 

X-ray flux (ph) 6.12x1013 

Resolution (Å) 48.51-1.68 (1.71-1.68) 

Rmerge (%) 6.4 (118.4) 

< I/σ(I) > 12.6 (1.3) 

Completeness (%) 99.9 (100) 

Multiplicity 5.1 (5.1) 

CC1/2 1.0 (0.5) 

Wilson B factor (Å2) 26.2 

Refinement  

Total No. of atoms 4748 

Water molecules 286 

No. of reflections 71408 

Rwork (%) 13.4 

Rfree (%) 17.6 

Anisotropy 0.24 

RMS deviations  

Bonds (Å) 0.011 

Angles (°) 0.838 

Planes (Å) 0.006 

Ramachandran plot  

Favoured (%) 96.20 

Allowed (%) 3.60 

Outliers (%) 0.20 

Mean B factors (Å2) 37.0 

The binding pose of InsS6 above the active site cavity of TaPAPhy_b2 can be 

observed in Figure 50, with the positions of phytase motifs PAPhy 1, 4 and 5 highlighted 

in the surface.  
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Figure 50. Surface representation of the TaPAPhy_b2 structure in complex with phosphate and InsS6 

Phytase motifs PAPhy 1, 4 and 5 are highlighted in red in the surface and shown in cartoon representation. 
The two iron ions are shown as brown spheres. Phosphate and InsS6 molecules are displayed as sticks and 
coloured by element, with carbons in InsS6 coloured in lime green. Sulfate groups are numbered S1-S6. 
Image created with the UCSF Chimera package (Pettersen et al., 2004). 

The iron ions in the active site were modelled with occupancies of 70% (56.88 Å2 

B factor) and 71% (20.38 Å2 B factor) in the MI and MII site, respectively, and the 

coordination geometry of both metals was classified as octahedral by the 

CheckMyMetal server (Zheng et al., 2014). The position of the phosphate molecule in 

the active site resembled that of the TaPAPhy_b2:PO4 complex structure in the product 

bound state (section 4.2.1.3.), with no spherical electron density for a bridging solvent 

molecule observed between the metals. The majority of the residues (96.20%) were 

found in the most favourable region of the Ramachandran plot, with no outliers present. 

Gaps in electron density were found at four consecutive residues Glu19, Asp20, Arg21 

and Gly22; and Leu509, Lys510 and the 6xHis tag at the C-terminus. The side chains of 

surface residues Glu1, Arg11, Arg37 and Lys224 were not defined in the electron density 

and, therefore, not modelled. Seven residues were modelled with alternative 

conformations: Arg36, Arg85, Gln138, Ser345, Ser367, Met411 and Glu476. Signs of 

photoreduction were observed in the four disulfide bonds described for TaPAPhy_b2. 

N-glycosylation was observed in six of the seven predicted sites, with no electron density 

for a NAG residue visible in the Asn267 site. A second NAG was modelled in the Asn475 
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site with an occupancy of 91%. Occupancies lower than 100% were observed for NAGs 

in Asn211 (90%) and Asn389 (74%). The phosphate molecule bound to the enzyme’s 

active site was the only one modelled in this structure, displaying an occupancy of 100% 

(49.76 Å2 B factor). The occupancy of the InsS6 molecule was 95% (119.08 Å2 B factor). 

The TaPAPhy_b2structure in complex with phosphate and InsS6 contained 286 waters, 

four ethylene glycol molecules (EDO, C2H6O2), five diethylene glycol molecules (PEG, 

C4H10O3), four triethylene glycol molecules (PGE, C6H14O4), and one tetraethylene glycol 

molecule (PG4, C8H18O5). 

4.2.2.2. Docking of phytate into the active site of TaPAPhy_b2 

Failing to obtain substrate utilisation information from the crystal structure of 

TaPAPhy_b2 in complex with the InsS6 phytate analogue, molecular docking of InsP6 into 

the active site of the TaPAPhy_b2:PO4 product-bound complex structure was 

attempted. However, the results obtained both with a fixed protein model and 

introducing flexibility in the side chains of some active site residues were even less 

promising, since none of the generated InsP6 binding modes included any of the 

phosphate groups coordinating the irons. Instead, most of the binding modes consisted 

of InsP6 lying above the active site at distances greater than 8 Å from the iron ions. It 

was then suspected that the presence of two metal ions in the active site added an extra 

complexity to the enzyme difficult to model in molecular docking experiments and, 

therefore, a different approach was sought. 

4.2.2.3. Molecular dynamics simulations of TaPAPhy_b2 in complex with 

phosphate and phytate 

Molecular dynamics simulations of TaPAPhy_b2 at pH 5.5 and 298 K were 

performed in order to obtain a model of the enzyme-substrate complex. The starting 

protein model (TaPAPhy_b2:PO4 resembling substrate binding, section 4.2.1.4.), force 

field parameters and simulation settings were tested and optimised by running a 

simulation of the enzyme-phosphate complex prior to introduction of InsP6. Once the 

system was ready, starting poses for the TaPAPhy_b2: InsP6 MD runs were prepared by 

manually docking InsP6 into the active site pocket, overlapping selected phosphate 

groups of InsP6 onto the phosphate molecule bound to the metal ions. Wheat phytases 
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and, in general, plant phytases are commonly classified as D-4/L-6-phytases, with a 

preference of hydrolysis for the D-4-phosphate in InsP6 (Lim and Tate, 1973; Nakano et 

al., 1999, 2000; Brinch-Pedersen, Sørensen and Holm, 2002; Bohn et al., 2007; 

Rasmussen, Sorensen and Johansen, 2007; Bohn, Meyer and Rasmussen, 2008). A 

product profile of InsP6 degradation for the TaPAPhy_b2 enzyme was obtained in 

Chapter 5, section 5.2.2.2., confirming TaPAPhy_b2 can be classified into this category. 

However, since the technique used in this project to obtain the product profile of 

phytate hydrolysis cannot resolve the enantiomers D-Ins(1,2,3,5,6)P5 and 

D-Ins(1,2,3,4,5)InsP5, starting poses for the MD runs were generated with the 

D-4-phosphate and the D-6-phosphate in the metallic centre.  

 

Figure 51. Energy minimised model of the TaPAPhy_b2:InsP6 complex bound in ‘D-4-phytase’ mode 

A model for the structure of the complex of TaPAPhy_b2 with InsP6 bound so as to present the 
D-4-phosphate for hydrolytic removal. Motif PAPhy 4 and a fraction of PAPhy 5 are displayed in light grey 
with cartoon representation. The metal ions and µ-(hydr)oxo bridge are shown as spheres and coloured 
by element. The docked InsP6 molecule is shown as sticks and coloured by element, with carbons in cyan. 
Phosphate groups are numbered P1-P6. The side chains of selected amino acid residues are displayed as 
sticks and coloured by element. Carbons of residues involved in metal coordination are coloured purple. 
Carbons of basic residues in the TaPAPhy_b2 active site pocket not conserved in PAPs without phytase 
activity are coloured green. Carbons of remaining residues are coloured light grey. 
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The TaPAPhy_b2 model with the D-4-phosphate of InsP6 docked in the active site 

after 10000 steps of energy minimisation is displayed in Figure 51. The active site 

residues involved in metal coordination, conserved in the PAPs, were highlighted in 

purple. An active site lined with basic residues to balance the negatively charged 

phosphates of InsP6 is a common feature of phytases belonging to the other 

phosphatase families, as detailed in Chapter 1, section 1.3.3. Such a characteristic was 

not obvious in the TaPAPhy_b2 enzyme. Although a concentration of basic residues 

appeared to occur in the active site cavity, the majority of them consisted of the metal 

(His340, His377 and His379) or the scissile phosphate ligands (His259 and His350) and, 

therefore, were conserved in the PAPs lacking phytase activity. 

However, it was possible to identify three basic residues in the TaPAPhy_b2 

structure located in the vicinity of the docked InsP6 molecule that were conserved in 

PAPhy and not in the non-phytase PAPs (coloured green in Figure 51). The first of these 

residues was His229, located at the end of PAPhy 4 motif (an insertion absent in non-

phytase PAPs) with distances of approximately 5.1 Å and 7.6 Å to the D-3-phosphate 

(P3) and the D-2-phosphate (P2) of the InsP6 molecule, respectively (measured from the 

centre of the imidazole ring to the phosphorus atoms). A ring stack interaction was also 

observed between His229 and Tyr218 that may play a role in stabilising the PAPhy 4 

motif α-helix. The second residue was Lys410, located in the closest portion to the active 

site of the long PAPhy 5 motif (Val367 in the red kidney bean PvPAP1 and Gly366 in the 

sweet potato IbPAP1 phosphatases) with distances of approximately 4.1 Å and 3.5 Å to 

the D-5-phosphate (P5) and the D-6-phosphate (P6), respectively (measured between 

the NZ and the phosphorus atoms). The third and most distant residue was Lys348, 

located in a small unconserved region not corresponding to any PAPhy motif (Asn294 in 

the red kidney bean PvPAP1 and Glu293 in the sweet potato IbPAP1 phosphatases) with 

distances of approximately 10.9 Å and 8.5 Å to the D-1-phosphate (P1) and P6, 

respectively (measured between the NZ and the phosphorus atoms). 

Residues Asn206 (Asp169 in PvPAP1 and Asn168 in IbPAP1 phosphatases) and 

Ser219 (in PAPhy 4 insertion) were also identified as close neighbours of P3 and P1, 

respectively, with distances of 3.9 Å (from Nδ2) and 3.6 Å (from the side chain O). In 

addition, it was noted that the negative charge resulting from the dipole moment at the 
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end of the α-helix in the PAPhy 4 motif could also be contributing to the stabilisation of 

InsP6 binding in the TaPAPhy_b2 active site, with approximate distances of 6.6 Å to P1 

and 8.3 Å to P6 (measured from the centre of the amino groups of Tyr218, Ser219 and 

Cys220). A similar phenomenon may be occurring between P2 and residues Ala431, 

Phe432 and Met433 in the PAPhy 5 motif, arranged in a short α-helical conformation, 

with an approximate distance of 7.4 Å (measured from the P2 phosphorus atom to the 

centre of the amino groups of Ala431, Phe432 and Met433). This last interaction 

between the P2 phosphate and the PAPhy 5 short α-helix was not observed in the 

energy minimised model with P6 rather than P4 docked in the active centre (i.e. to 

model the enzyme acting as a D-6-phytase). In the TaPAPhy_b2:InsP6 model resulting 

from the docking of P6 as the scissile phosphate, P2 (axial) would be in an equivalent 

location to P6 in the first pose (i.e. modelling the enzyme acting as a D-4-phytase), while 

the location of P2 would be taken by P4 (equatorial), increasing the phosphate-helix 

distance to 9.4 Å. Hence, the interaction between the InsP6 axial phosphate and the 

PAPhy 5 short α-helix in the model of TaPAPhy_b2 acting as a D-4-phytase could imply 

a preference of TaPAPhy_b2 for the D-4-phosphate over the D-6-phosphate. 

Key TaPAPhy_b2-InsP6 interactions described in the energy minimised model 

with P4 as the scissile phosphate were validated with a 1 ns MD run. The dynamic 

behaviour of the enzyme during the 1 ns simulation was examined by analysing the 

trajectory for root mean square deviation (RMSD) values of the Cα atoms with the 

starting model as reference (Figure 52A). The structure was equilibrated after 

approximately 600 ps. Root mean square fluctuations (RMSF) of the Cα atoms of each 

amino acid residue in the TaPAPhy_b2 structure during the 1 ns MD run were also 

calculated (Figure 52B). The RMSF of key residues identified in Figure 51 was between 

0.33 Å and 1.1 Å. 
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Figure 52. TaPAPhy_b2 RMSD values and RMSF of amino acid residues for 1 ns MD run 

(A) Root mean square deviation (RMSD) values of the Cα atoms during 1 ns MD run. (B) Root mean square 
fluctuations (RMSF) of the Cα atoms of each amino acid residue in the TaPAPhy_b2 structure during 1 ns 
MD run. Phytase motifs PAPhy 1, 4 and 5 marked with motif number, arrows and dashed lines in red. 
Selected amino acid residues are labelled. 

Average distances and standard deviation from His229 to the P3 and P2 

phosphate phosphorus were 6.63 Å ± 0.47 Å and 9.24 Å ± 0.45 Å, respectively (Figure 

53B). Distances from Lys348 to P6 and P1 phosphorus were 8.38 Å ± 1.20 Å and 

11.83 Å ± 1.20 Å, respectively (Figure 53C). Distances from Lys410 to P5, P6 and P1 

phosphorus were 4.43 Å ± 0.70 Å, 5.27 Å ± 0.97 Å and 7.89 Å ± 0.90 Å, respectively 

(Figure 53D). Distances from the PAPhy 4 helix to P1 and P6 phosphorus were 

6.31 Å ± 0.53 Å and 9.06 Å ± 0.56 Å, respectively (Figure 53E). And last, the distance 

from the PAPhy 5 helix to P2 phosphorus was 6.87 Å ± 0.31 Å (Figure 53F). In general, 

the monitored interactions identified in the energy minimised TaPAPhy_b2:InsP6 model 

persisted over the course of the 1 ns MD simulation. 
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Figure 53. InsP6 phosphate-protein distances monitored during 1 ns MD run 

Distances were recorded every 10 ps. (A) Legend, indicating the colour in the graphs of each InsP6 
D-phosphate to which the distances were monitored (to the phosphorus atom of each phosphate). 
(B) Distances from the centre of mass of the His229 imidazole ring to phosphorus in P2 and P3 of InsP6. 
(C) Distances from the Lys348 NZ nitrogen to phosphorus in P1 and P6 of InsP6. (D) Distances from the 
Lys410 NZ nitrogen to phosphorus in P1, P5 and P6 of InsP6. (E) Distances from the centre of mass of the 
α-helix N-terminus in PAPhy 4 to phosphorus in P1 and P6 of InsP6. (F) Distances from the centre of mass 
of the Ala431-Phe432 short α-helical fragment in PAPhy 5 to phosphorus in P2 of InsP6. 
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4.2.2.4. Identification of likely TaPAPhy_b2 phytate-specificity pockets 

Once validated through the 1 ns MD simulation, the TaPAPhy_b2:InsP6 model 

with P4 as the scissile phosphate was analysed in detail for ligand binding (Figure 54). 

For comparison, a similar analysis was performed on the TaPAPhy_b2:InsS6 structure 

described in section 4.2.2.1. (Figure 55). The analysis was carried out with the LigPlot+ 

programme (Laskowski and Swindells, 2011), allowing the automatic generation of 2D 

ligand-protein interaction diagrams (Figure 54A and Figure 55A) and 3D visualisation 

through PyMOL (Figure 54B,C and Figure 55B) (Schrodinger LLC, 2015).  

In the TaPAPhy_b2:InsP6 model, six hydrogen bonds (represented as green 

dashed lines in the 2D diagram and cyan lines in the 3D view) were detected between 

the P4 scissile phosphate and the protein: two connecting P4 oxygens to each of the iron 

ions; two more connecting P4 oxygens to the two metal ligands Asn258 and His379; and 

the last two connecting P4 oxygens to His350 and Glu409. A hydrophobic interaction 

(represented by red strokes radiating towards the ligand in the 2D diagram and surface 

representation around the residue involved in the 3D view) between P4 and His259 was 

also present. The interactions picked up by LigPlot+ agreed with those described for the 

TaPAPhy_b2:PO4 structures in section 4.2.1. (Figure 54A and B). The P3 phosphate 

displayed hydrogen bonds with Asn206 and the metal ligand Asn258, and hydrophobic 

interactions with His259 and His229. A hydrogen bond between the P1 phosphate and 

Ser219 was present, while P6 formed a hydrogen bond with Lys410. The P5 phosphate 

formed hydrogen bonds with Glu409 and Lys410 (Figure 54A and C). Interactions 

between the PAPhy 4 α-helix and InsP6 phosphates were not picked up by LigPlot+, and 

neither did the PAPhy 5 short α-helix interaction with P2. 
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Figure 54. Interactions in the energy minimised model of the TaPAPhy_b2:InsP6 complex bound in 
‘D-4-phytase’ mode (on previous page) 

Phosphate groups in InsP6 are numbered P1-P6. (A) 2D representation generated with LigPlot+ version 1.4 
(Laskowski and Swindells, 2011). C, N, O and P atoms are displayed as black, blue, red and purple balls, 
respectively. Protein and ligand bonds are represented in brown and purple, respectively. Hydrogen 
bonds are represented by green dashed lines, with their lengths labelled in Å. Hydrophobic interactions 
are represented by red strokes radiating towards the ligand. (B) 3D representation of interactions 
involving the 4-phopshate and (C) the remaining phosphate groups. The metal ions and µ-(hydr)oxo bridge 
are shown as spheres and coloured by element. InsP6 is shown as sticks and coloured by element, with 
carbons in cyan. The side chains of residues involved in interactions with InsP6 are displayed as sticks and 
coloured by element. Carbons of residues involved in metal coordination are coloured purple. Carbons of 
basic residues in the TaPAPhy_b2 active site pocket not conserved in PAPs without phytase activity are 
coloured green. Carbons of remaining residues are coloured light grey. Hydrogen bonds are depicted as 
cyan lines. Hydrophobic interactions are depicted with the surface of the residue involved. Images created 
with PyMOL version 1.3 (Schrodinger LLC, 2015). 

In the TaPAPhy_b2:InsS6 structure, hydrogen bonds were observed between 

oxygens in the S1 sulfate group and residues Asn206 and Asn258, together with a 

hydrophobic interaction with His259. S2 oxygens formed hydrogen bonds with the 

amino groups of Tyr218 and Ser219, the side chain oxygen of Ser219, and a hydrophobic 

interaction with Cys217, all residues belonging to the α-helix in PAPhy 4 motif. Leu207 

and Glu409 also showed hydrophobic interactions with S2. The sulfate group S3 formed 

a hydrogen bond with the Nδ1 nitrogen of His229 and a hydrophobic interaction with 

Ala223. S5 and S6 displayed hydrophobic interactions with Ala431 (forming part of the 

PAPhy 5 short α-helix) and His350, respectively, and no interactions were picked up by 

Ligplot+ for the S4 sulfate (Figure 55). 

When the TaPAPhy_b2:InsP6 model and the TaPAPhy_b2:InsS6 structure were 

superimposed, none of the InsS6 sulfate groups overlapped with any of the InsP6 

phosphates. Groups P1 and S4 were the closest, 1.62 Å apart measured between the 

phosphorus and sulfur atoms, located near Ser219. S1 and P3 were 2.14 Å apart, both 

located near Asn206. Lastly, S5 and P2 were 3.49 Å apart but in a similar orientation with 

respect to the PAPhy 5 short α-helix formed by Ala431, Phe432 and Met433.  
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Figure 55. Interactions in the TaPAPhy_b2:InsS6 complex structure (on previous page) 

Sulfate groups in InsS6 are numbered S1-S6. (A) 2D representation generated with LigPlot+ version 1.4 
(Laskowski and Swindells, 2011). C, N, O and S atoms are displayed as black, blue, red and yellow balls, 
respectively. Protein and ligand bonds are represented in brown and purple, respectively. Hydrogen 
bonds are represented by green dashed lines, with their lengths labelled in Å. Hydrophobic interactions 
are represented by red strokes radiating towards the ligand. (B) 3D representation created with PyMOL 
version 1.3 (Schrodinger LLC, 2015). InsS6 is shown as sticks and coloured by element, with carbons in lime 
green. Double difference electron density around the InsS6 is displayed as a blue mesh contoured to 
1 r.m.s.d. Residues involved in interactions with InsS6 are displayed as sticks and coloured by element. 
Carbons of residues involved in metal coordination are coloured purple. Carbons of basic residues in the 
TaPAPhy_b2 active site pocket not conserved in PAPs without phytase activity are coloured green. 
Carbons of remaining residues are coloured light grey. Hydrogen bonds are depicted as cyan lines. 
Hydrophobic interactions are depicted with the surface of the residue involved.  

Based on the analysis of the TaPAPhy_b2:InsP6 model with P4 as the scissile 

phosphate, the InsP6 specificity pockets defined in Figure 56 are proposed for phytase 

enzymes belonging to the purple acid phosphatase class (with residue numbers 

according to the TaPAPhy_b2 structures). The specificity pocket for the P4 scissile 

phosphate was named SA and consisted of the two metal ions, the µ-(hydr)oxo bridge 

and residues Asn258, His259, His350, His379 and Glu409. Placing the axial phosphate 

group P2 towards the viewer, the remaining specificity pockets were named SB-SF 

anticlockwise from the scissile phosphate P4. With this nomenclature, the P3 specificity 

pocket SB was formed by Asn206, His229, Asn258 and His259; the P2 specificity pocket 

SC contained the short α-helical conformation formed by residues Ala431, Phe432 and 

Met433 in PAPhy 5 motif; the P1 specificity pocket SD was formed by Ser219 and possibly 

the PAPhy 4 α-helix comprising residues Tyr218, Ser219 and Cys220; the P6 specificity 

pocket SE contained the residue Lys410; and the P5 specificity pocket SF was formed by 

residues Glu409 and Lys410.  

Rotation of the InsP6 molecule in Figure 56 to place the P6 phosphate in the 

position of P4, i.e. in specificity pocket SA, retains contacts of individual phosphates with 

all specificity pockets except SC. In the TaPAPhy_b2:InsP6 model with P4 as the scissile 

phosphate, the distance SC specificity pocket-phosphate increases by approximately 2 Å, 

causing a loss of the interaction between the PAPhy 5 short α-helix of TaPAPhy_b2 and 

the substrate due to the change in position of the axial phosphate group. The absence 

of this interaction may indicate that D-6-phytase activity is disfavoured over D-4-phytase 

activity in this enzyme. 
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Figure 56. Schematic representation of the InsP6 specificity pockets in TaPAPhy_b2 

Phosphate groups in the InsP6 molecule are numbered P1-P6. Specificity pockets encompassing the amino 
acid residues involved in interactions with each of the phosphate groups are named SA-SF. Iron ions are 
shown as brown spheres. The µ-(hydr)oxo bridge is displayed as a red sphere. InsP6 is displayed in stick 
representation, coloured by element and with carbons in cyan. Amino acid residues are shown in stick 
representation, coloured by element and with carbons in light grey. Carbons of residues involved in metal 
coordination are coloured purple. 
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 Conclusions 

Successful determination of the high-resolution crystal structure of the wheat 

phytase TaPAPhy_b2 is reported in this chapter, being the first time the structure of a 

purple acid phytase has been solved. The crystallographic data collected also confirms 

that TaPAPhy_b2 has a diiron metal centre. Moreover, the crystal structures determined 

in this project of TaPAPhy_b2 in complex with phosphate in different binding poses 

support the catalytic mechanism currently accepted for PAP enzymes and could provide 

insights into the less known enzyme regeneration steps.  

Structural information in combination with computer simulations of the enzyme-

substrate complex have also allowed to outline for the first time the potential specificity 

pockets in the active site cavity responsible for the ability of certain PAP enzymes to 

hydrolase phytate. In addition, the proposed active site residue interactions with InsP6 

provide a plausible explanation as to why TaPAPhy_b2 may favour hydrolysis for the 

D-4-phosphate group over the D-6-phosphate group of the substrate. While an 

interaction with residues in the PAPhy 5 motif, forming the SC pocket, is present when 

InsP6 is bound in the TaPAPhy_b2 active centre with the D-4-phosphate presented for 

hydrolysis (in the SA pocket), this interaction was absent when D-6 was the scissile 

phosphate. 

The power of 3D modelling when structures of homologues of the target protein 

are available is also corroborated in this chapter. Upon studying the 3D homology model 

created for the TaPAPhy_b2 enzyme in Chapter 2, it was predicted that phytase motifs 

PAPhy 1, PAPhy 4 and PAPhy 5 were likely to form part of the active centre of the 

enzyme. With the addition of crystal structure information, amino acid residues 

belonging to PAPhy 4 and PAPhy 5 motifs have been identified to form part of phytate 

specificity pockets and, therefore, confirming their importance in the enzyme activity. 

Although no interactions between PAPhy 1 residues and the substrate were identified, 

the TaPAPhy_b2 crystal structures also confirmed the position of this motif in the vicinity 

of the active site predicted by the model. 
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 Site-directed mutagenesis and enzymatic 

characterisation of wheat PAPhy isoform b2 

Based on the initiation site of phytate hydrolysis, most phytase enzymes found 

in grains and seeds of higher plants belong to the category of L-6-(D-4)-phytases 

(Chapter 1, section 1.3.2.), with a preference for the phosphate group on the carbon 

next to C5 of the inositol ring (Brinch-Pedersen, Sørensen and Holm, 2002; Bohn, Meyer 

and Rasmussen, 2008; Yao et al., 2012). Traditionally called 6-phytases (EC 3.1.3.26), 

with the 1L-(L) descriptor commonly omitted, the current convention names these 

enzymes as 4-phytases with the 1D-(D) descriptor omitted. This change in nomenclature 

reflects the relaxation by the IUPAC-IUBMB of previous rules for naming of myo-inositol 

phosphates (Bohn, Meyer and Rasmussen, 2008). Phytases purified from wheat bran 

have been classified as D-4-phytases (Tomlinson and Ballou, 1962; Lim and Tate, 1971, 

1973, Nakano et al., 1999, 2000, Brinch-Pedersen et al., 2003, 2006) and are active at 

acidic to neutral pH. In addition, attack on the D/L-3-phosphate (Brinch-Pedersen et al., 

2003, 2006; Bohn et al., 2007), 5-phosphate (Lim and Tate, 1973; Brinch-Pedersen et al., 

2003, 2006) and 2-phosphate (Lim and Tate, 1973) has also been reported for wheat 

bran phytases. At the time of these studies, the identity of the genes encoding the 

characterized activities was unknown. However, since then proteins of the PAP and the 

MINPP class have been identified in wheat (Rasmussen, Sorensen and Johansen, 2007; 

Bohn, Meyer and Rasmussen, 2008; Brinch-Pedersen et al., 2014). 

In this chapter, a series of biochemical and biophysical assays were employed to 

determine the enzymatic properties of the wild type TaPAPhy_b2 enzyme. Using the 

crystal structure and substrate binding information obtained in the previous chapter, 

rational mutagenesis of TaPAPhy_b2 was implemented by targeting amino acids with 

suggested implications in phytate utilisation. The single-site mutant proteins generated 

were subsequently utilised to study the structure-function relationships of TaPAPhy_b2. 
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 Materials and methods 

5.1.1. Design and preparation of TaPAPhy_b2 single-site mutants 

Individual residues of TaPAPhy_b2 chosen as targets for mutagenesis were 

selected through analysis of the newly solved TaPAPhy_b2 crystal structures and 

computer simulation models, combined with comparison with the published structures 

for PAPs lacking phytase activity. The multiple sequence alignment of TaPAPhy_b2, the 

red kidney bean PvPAP1 and the sweet potato IbPAP1, used to construct the 

TaPAPhy_b2 homology model, was inspected in conjunction with the structures 

(Chapter 2, section 2.1.3. for method, section 2.2.2. for result). PyMOL (Schrodinger 

LLC, 2015) and UCSF Chimera (Pettersen et al., 2004) molecular graphics systems were 

used to display and compare the structures. 

5.1.1.1. Generation of TaPAPhy_b2 mutants by QuickChange™ mutagenesis 

Single-site mutagenesis of TaPAPhy_b2 was performed with a modified version 

of the QuickChange™ method, consisting on the one-step amplification of whole 

plasmid DNA with mutagenic primers followed by the elimination of template DNA by 

digestion with DpnI. The modification uses primers containing non-overlapping 

sequences at the 3’ end and overlapping sequences at the 5’ end rather than primers 

that overlap completely. This modification results in reduction of primer dimerization 

and allows newly synthesised DNA to be used as template for subsequent PCR 

amplification cycles (Liu and Naismith, 2008).  

Table 14. List of TaPAPhy_b2 single-site mutants 

Mutant constructs generated from TaPAPhy_b2-pGAPZαA with the QuickChange™ modified method. The 
original codons were substituted by GCT, the Pichia pastoris preferred codon for alanine. 

Construct Original residue Original codon Mutated codon Mutated residue 

TaPAPhy_b2_H229A-pGAPZαA His229 1432 CAC 1435 1432 GCT 1435 Ala229 

TaPAPhy_b2_K348A-pGAPZαA Lys348 1789 AAG 1791 1789 GCT 1791 Ala348 

TaPAPhy_b2_K410A-pGAPZαA Lys410 1975 AAG 1977 1975 GCT 1977 Ala410 

Three single-site mutagenesis reactions were performed to substitute residues 

His229, Lys348 and Lys410 with alanine residues in the TaPAPhy_b2-pGAPZαA construct 

(Table 14). Primers were designed by selecting an overlapping region (12-15 bp long) 



 

156 
 

centred around the single mutation with Tm between 40-48°C, then extending towards 

the 3’ end to obtain a non-overlapping region with Tm 5-10°C higher than the 

overlapping region, when possible, and ended with C or G to promote specific binding. 

Primer properties were assessed using the Eurofins Genomics Oligo Analysis Tool 

(https://www.eurofinsgenomics.eu/en/ecom/tools/oligo-analysis.aspx). The primer 

sequences designed for TaPAPhy_b2 mutagenesis are included in Appendix 2, Table 

A14. 

Table 15. Reaction components for QuickChange™ mutagenesis PCR with Phusion polymerase 

Plasmid template was diluted to a working concentration of 10 ng µL-1. Primer mixes were prepared in 
water from 100 µM stocks.  

Reagent [Stock] [rxn] V for 1x 25 µL rxn (µL) 

Water n/a n/a 15.8 

Phusion HF buffer 5x 1x 5.0 

DMSO 100% 4% 1.0 

dNTP mix 10 mM each 0.4 mM each 1.0 

Primer mix 10 µM each 0.4 µM each 1.0 

Plasmid 10 ng µL-1 0.4 ng µL-1 1.0 

Phusion polymerase 2 U µL-1 0.016 U µL-1 0.2 

TOTAL   25.0 

The construct TaPAPhy_b2-pGAPZαA purified from an E. coli Dam+ (encoding 

Dam DNA methylase) strain was used as plasmid template for the mutagenesis 

reactions. The reactions were set up on ice as detailed in Table 15, with 25 µL final 

volume. The PCR protocol on Table 16 was used for the amplification with Phusion 

High-Fidelity DNA Polymerase (Thermo Scientific). Dimethyl sulfoxide (DMSO) was 

included in the PCR mix and a standard annealing temperature of 50°C was used for the 

three reactions. Negative control reactions were set up for each pair of primers, using 

water instead of plasmid DNA. An extra negative control reaction for DpnI digestion was 

also set up with template DNA but water instead of primers. Results of the PCR reactions 

were assessed on 1% (w/v) agarose gels by running 5 µL of each PCR product. The 

remaining volumes of the positive reactions and the DpnI control were incubated with 

0.5 U µL-1 of DpnI for 2 h at 37°C to eliminate template DNA before transformation into 

E. coli. A volume of 2 µL per digestion product was transformed into 20 µL of XL10-Gold 

ultracompetent cells (Agilent Technologies). The DNA was added to the competent cells 

and left to mix by diffusion for 30 min on ice, before a heat-shock at 42°C for 35 s. 
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Subsequently, the transformations were returned to ice for 1-2 min before adding 

180 µL of SOC medium. The transformations were then incubated at 37°C for 1 h with 

agitation before plating the whole volume on low salt LB agar plates with Zeocin™ 

(25 µg mL-1), incubated at 37°C overnight. 

Table 16. PCR protocol for QuickChange™ mutagenesis 

The plasmid template TaPAPhy_b2-pGAPZαA used was 4623 bp long. The extension time was calculated 
according to formula, time = (template length in kb x 1 min) + 1min. 

Step Cycles Time T (°C) 

Initial denaturation 1 3 min 98 

Denaturation 

25 

30 s 98 

Annealing 1 min 50 

Extension 6 min 68 

Final Extension 1 10 min 68 

Hold 1 ∞ 4 

Analysis of transformants was first carried out by colony PCR with primers 

designed to amplify the TaPAPhy_b2 gene (TaPAPhyB-F1 and TaPAPhyB-R1, Table A14 

in Appendix 2). Two single colonies of each mutant were resuspended in 25 µL of water, 

storing 10 µL at 4°C and denaturing the remaining 15 µL at 98°C for 10 min. Cell debris 

was separated by centrifugation and 1 µL of supernatant from each denatured colony 

was used as template in 20 µL colony PCR reactions, set up on ice as detailed in Table 

17. A positive control reaction with TaPAPhy_b2-pGAPZαA construct as template and a 

negative control reaction with water instead of plasmid DNA were also set up. The 

protocol of Table 18 was used for the colony PCR amplification with GoTaq® G2 Flexi 

DNA Polymerase (Promega) and results were assessed on 1% (w/v) agarose gels by 

running 5 µL of each PCR product. Positive colonies for TaPAPhy_b2-pGAPZαA 

transformation were grown in 10 mL of low salt LB liquid culture with Zeocin™ 

(25 µg mL-1) at 37°C and 180 rpm overnight, by inoculating the stored 10 µL of 

resuspended colonies. The overnight cultures were used to purify the plasmids using the 

QIAprep® Spin Miniprep Kit (Qiagen). The concentration of the plasmids after their 

isolation was calculated by absorbance measurement at λ = 260 nm with a NanoDrop™ 

Spectrophotometer (Thermo Scientific). The plasmid isolated from one positive colony 

per mutant was further analysed by sequencing with the TaPAPhy_b2 gene specific 

primers used for the colony PCR, to confirm the presence of the desired mutations. 
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Stocks of the TaPAPhy_b2 mutants in E. coli XL10-Gold ultracompetent cells in 

30% (v/v) glycerol were prepared, snap-frozen in liquid nitrogen, and stored at -80°C. 

The resulting construct sequences and properties are shown in Appendix 2, Table A16. 

Table 17. Reaction set up for colony PCR with GoTaq G2 Flexi polymerase 

Plasmid template diluted to a working concentration of 2 ng µL-1 was used for the positive control 
reaction. 

Reagent [Stock] [rxn] V for 1x 20 µL rxn (µL) 

Water n/a n/a 10.7 

Green GoTaq Flexi Buffer 5x 1x 4.0 

DMSO 100% 3% 0.6 

dNTP mix 10 mM each 0.25 mM each 0.5 

MgCl2 25 mM 2.5 mM 2.0 

Primer mix 10 µM each 0.5 µM each 1.0 

Template DNA n/a n/a 1.0 

GoTaq G2 Flexi polymerase 5 U µL-1 0.05 U µL-1 0.2 

TOTAL   20.0 

Table 18. PCR protocol for amplification with GoTaq G2 Flexi polymerase 

DMSO was included in the PCR mix and a standard annealing temperature of 55°C was used for colony 
PCR. 

Step Cycles Time T (°C) 

Initial denaturation 1 3 min 95 

Denaturation 

30 

30 s 95 

Annealing 30 s 55 

Extension 2 min 72 

Final Extension 1 10 min 72 

Hold 1 ∞ 4 

5.1.1.2. Transformation, expression and purification of TaPAPhy_b2 mutants 

in Pichia pastoris 

The transformation, expression and purification of the TaPAPhy_b2 mutants was 

performed as for the wild type (WT) enzyme. The three TaPAPhy_b2-pGAPZαA mutant 

constructs were transformed into the KM71H (OCH1::G418R) Pichia pastoris 

glycoengineered strain through electroporation following the protocol described for the 

WT construct in Chapter 3, section 3.1.2.2. Sufficient plasmid DNA of each mutant for 

P. pastoris transformation was purified from 100 mL overnight cultures using the 

Plasmid Midi Kit (Qiagen). 
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Six P. pastoris transformed colonies per mutant were subjected to a small 

volume expression trial in a 24-well plate. The selected colonies were monitored by 

pNPP assay for the production of secreted recombinant protein in 2 mL cultures for four 

days, following the protocol described for the WT enzyme in Chapter 3, section 3.1.2.3. 

A WT culture and an untransformed KM71H (OCH1::G418R) strain culture were set up 

alongside the mutants as expression controls. The highest expressing transformants for 

each TaPAPhy_b2 mutant were selected for further protein expression, storing them at 

4°C and -20°C in 1 M sorbitol and 10% (v/v) glycerol, respectively. 

Expression was carried out in 100 mL of buffered minimal glucose medium, 

distributed in 250 mL conical flasks with 50 mL per flask, for four days under continuous 

shaking (200 rpm) at 26°C, adding 100 µM iron(II) sulfate and 100 µM iron(III) citrate 

daily. The enzymes were harvested, purified by nickel-affinity chromatography and 

concentrated in the same way as the WT medium scale expression experiment described 

in Chapter 3, sections 3.1.2.4. and 3.1.2.5. Individual new 1 mL HisTrap HP columns (GE 

Healthcare) were used for the purification of each TaPAPhy_b2 mutant, at a flow rate of 

1 mL min-1, while the column from the generation of samples for X-ray crystallography 

was reused for the WT. All the columns were regenerated by stripping and recharging 

of metal ion according to the manufacturer’s instructions before storage in 20% (v/v) 

ethanol at 4°C. 

The nickel-affinity purified TaPAPhy_b2 WT enzyme and its three mutants were 

normalised to a working concentration of 150 µM and stored in 20 mM Tris/HCl pH 8.0 

at 4°C for their subsequent enzymatic characterisation. 

5.1.2. Enzymatic characterisation of wild type TaPAPhy_b2 and three 

single-site mutants 

The enzymatic characterisation of recombinant TaPAPhy_b2 WT, H229A, K348A 

and K410A mutants was performed with fully glycosylated proteins after the 

nickel-affinity chromatography purification step. 
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5.1.2.1. The phosphate release assay 

The enzymatic activity of WT TaPAPhy_b2 was characterised alongside the three 

single-site mutants mainly by means of standard phosphate release assays (Chapter 3 

section 3.1.1.5) in 0.2 M acetate pH 5.5 buffer with 5 mM potassium phytate (≥95% 

purity, Sigma). Reactions (50 µL) were performed in 96-well plates for 15 min at room 

temperature with two to four replicates per condition, depending on the experiment 

layout.  

Standard curves for each assay were prepared with monopotassium phosphate, 

carrying out serial dilutions in duplicate ranging from 1 mM down to 7.8 µM. Buffer with 

InsP6 and buffer only reactions were also set up, in order to determine background 

absorbance of small levels of contaminant inorganic phosphate present in the InsP6 

substrate. The reactions were stopped with 50 µL of a colour reagent, containing four 

volumes of 1.5% (w/v) ammonium molybdate in a 5.5% (v/v) sulfuric acid solution and 

one volume of a 10.8% (w/v) iron(II) sulfate solution, that reacts with the free 

phosphate. Absorbance at λ = 700 nm was measured in a microplate reader (Hidex 

Sense) after colour development for 30 min. 

Phosphate release was quantified by interpolation from linear least-squares 

regressions of plots of absorbance vs monopotassium phosphate. Raw absorbance data 

were processed in Microsoft Excel (2016), after subtraction of absorbances arising from 

InsP6 and free phosphate in the InsP6 substrate.  

5.1.2.2. Relative activity, pH and temperature profiles  

Scouting assays with enzyme concentrations ranging in decades of concentration 

from 10 µM to 10 nM were undertaken to evaluate differences in phytase activity of the 

TaPAPhy_b2 mutants with respect to the WT enzyme. Four replicates per enzyme 

concentration and TaPAPhy_b2 variant were set up. The same assay was repeated after 

storage of the recombinant proteins at -80°C in the presence of 30% (v/v) glycerol to 

evaluate their stability in those conditions.  

The assay was also performed to compare phytase and phosphatase activity of 

the TaPAPhy_b2 mutants, adapting the standard phosphate release assay to the 



 

161 
 

substrate pNPP. Instead of the colour reagent, 50 µL of 1 M NaOH were used to stop the 

reactions, and the absorbance of the released product pNP (as phenolate) at λ = 405 nm 

was measured immediately. The standard curve was prepared with pNP in this case, 

although results were expressed in phosphate concentration released as for the rest of 

the assays. 

Temperature and pH profiles for phytase activity of the recombinant proteins 

were obtained with 100 nM enzyme and with InsP6 as substrate. For the pH profile, the 

following buffers were used: pH 2.0 to 3.5, 0.2 M glycine/HCl; pH 4.0 to 5.5, 0.2 M 

sodium acetate; pH 6.0 to 7.0, 0.2 M bis-tris or MES; and pH 7.5 to 8.5, 0.2 M Tris/HCl. 

Reactions were carried out in duplicate. For the temperature profile, reactions were 

carried out in triplicate and incubated at 16, 25, 37 and 50°C in a thermal cycler 

(BIO-RAD). 

5.1.2.3. HPLC product profiles of phytate hydrolysis 

The product profiles of reaction of WT TaPAPhy_b2 and its three single-site 

mutants with InsP6 were obtained by separating the inositol phosphate products on high 

performance liquid chromatography (HPLC) after Blaabjerg et al. (2010). Reactions were 

performed at room temperature in 0.2 M acetate pH 5.5 buffer with 1 µM enzyme and 

1 mM sodium phytate (≥98% purity, Merck) as substrate. Reactions were stopped after 

15, 30, 60 or 120 min by boiling at 100°C for 5 min. Reaction products were resolved by 

anion-exchange HPLC on a 250 x 3 mm CarboPac PA200 column (Dionex UK, Ltd) and a 

50 x 3 mm guard column of the same material, injecting 20 µL of reaction per run. The 

elution was performed at a flow rate of 0.4 mL min-1 with a gradient of methanesulfonic 

acid delivered from solvent reservoirs containing (A) water and (B) 600 mM methane 

sulfonic acid according to the following programme: time (min), % B; 0, 0; 25, 100; 38, 

100. The separated inositol phosphates were mixed post-column with a solution 

consisting of 0.1% (w/v) ferric nitrate in 2% (w/v) perchloric acid at a flow rate of 

0.2 mL min-1 for their detection by UV absorbance at λ = 290 nm (Phillippy and Bland, 

1988). Inositol phosphate standards were prepared by reflux in 1 M HCl for 24 h with 

subsequent rotary evaporation at 35°C to remove the HCl. 

 



 

162 
 

5.1.2.4. Enzyme kinetics 

Kinetic parameters for the WT TaPAPhy_b2 enzyme and its mutants were 

obtained performing the standard phosphate release assay at pH 5.5 and 37°C, with 

sodium phytate (≥98% purity, Merck) as substrate and reactions in triplicate. A single 

timepoint (10 or 90 min) and enzyme concentration (60 nM) were chosen on the basis 

that, when less than 10-15% of the total substrate for each substrate concentration has 

been consumed during the reaction, the rate obtained can be assumed to be the initial 

rate. The substrate concentrations used to calculate the kinetic parameters for phytate 

were 0, 5, 10, 25, 50, 100, 200 and 400 µM. 

Raw absorbance data was processed by linear regression in Microsoft Excel 

(2016). In order to avoid negative values at low substrate concentrations, the data was 

transformed to increments of phosphate concentration released with respect to the 

points with 0 µM substrate. The results for each reaction were expressed as the rate of 

phosphate concentration released (µM) per time of the reaction (min) and amount of 

enzyme (0.173 µg). To estimate enzyme kinetic parameters, the data was fitted to the 

Michaelis-Menten equation (substrate vs. velocity) by performing nonlinear regression 

with the least squares (ordinary) fit method using GraphPad Prism version 7.03 

(GraphPad Software, La Jolla California USA). 

5.1.2.5. Inhibition of wild type TaPAPhy_b2 phytase activity 

The effect of the non-hydrolysable InsP6 analogue myo-inositol hexakissulfate 

(InsS6, potassium salt; Alfa Chemistry) on the phytase activity of WT TaPAPhy_b2 was 

tested through a phosphate release assay. The assay was performed with 5 mM InsP6 

substrate and 1 µM enzyme in the standard conditions described in section 5.1.2.1., 

setting up reactions in triplicate in the presence of increasing concentrations of InsS6, 

ranging from 0 to 1 mM. Equivalent reactions in the presence of sodium molybdate, a 

potent inhibitor of acid phosphatases, were set up alongside for comparison.  

The assay was repeated in the presence of increasing concentrations of the 

nonhydrolyzable pNPP analogue para-nitrophenyl sulfate (pNPS, Sigma), ranging from 

0 to 5 mM. 
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5.1.2.6. Thermal stability of wild type TaPAPhy_b2 

Thermostability is one of the principal characteristics desired of commercial 

phytases. In addition to the temperature profile described in section 5.1.2.2., the 

thermostability of WT TaPAPhy_b2 was tested by measuring its activity at fixed 

temperature after treatment at high temperature, and by determining its melting 

temperature. The thermal stability of TaPAPhy_b2 was tested with partially 

deglycosylated samples from batch 07 used for X-ray crystallography (Chapter 3, section 

3.2.2.3.4.). 

5.1.2.6.1. Recovery after heating at 80°C 

The effect on phytase activity of incubation of WT TaPAPhy_b2 at 80°C for 10 min 

was assessed by setting up a standard phosphate release assay alongside untreated 

enzyme as control. The assay was performed after cooling down the treated enzyme to 

4°C before setting up four replicate reactions using 1 µM enzyme and 5 mM InsP6 as 

substrate in 0.2 M acetate buffer pH 5.5 for 15 min at 37°C. Results were analysed using 

Microsoft Excel (2016) as described in section 5.1.2.1. 

5.1.2.6.2. Differential scanning calorimetry 

Differential scanning calorimetry (DSC) is a technique that can be used to 

determine the thermal stability of biomolecules in their native form, by measuring the 

heat (enthalpy) change associated with their denaturation. In the case of proteins, it is 

performed in a micro-differential scanning calorimeter (micro-DSC) consisting of a 

sample cell (with protein) and a reference cell (with its buffer) which temperature is 

simultaneously increased over time. The differences in composition between the sample 

and the reference translate into different amounts of energy needed to raise the 

temperature of the cells. This energy difference is measured as heat capacity by the DSC 

and can be correlated to properties of the sample such as the melting temperature (Tm). 

The molar heat capacity (Cp) is the amount of heat needed to increase the temperature 

of one mol of a substance by one degree. The Tm of a protein is the temperature at which 

the folded and unfolded states of the protein are in equilibrium (Gill, Moghadam and 

Ranjbar, 2010; Durowoju et al., 2017). 
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The Tm of WT TaPAPhy_b2 at 1.5 mg mL-1 (26.09 µM) in 20 mM Tris/HCl pH 8.0 

buffer was calculated by carrying out temperature scans from 10 to 110°C at a scan rate 

of 200°C h-1 in a MicroCal VP-Capillary-DSC (Malvern Instruments Ltd.). Up to 20 buffer-

buffer (B-B) runs with 20 mM Tris/HCl pH 8.0 in both cells were carried out overnight in 

order to warm up the instrument prior to the buffer-protein (B-P) runs. Three replicate 

B-P runs were carried out by loading fresh enzyme into the instrument sample cell in 

each run, followed by a rerun of the last sample in order to determine the ability of 

TaPAPhy_b2 to refold after thermal denaturation. Automatic analysis of the data was 

performed with Origin (OriginLab Corporation). 

5.1.3. Crystal structure of the TaPAPhy_b2 H229A mutant 

Preparation of partially deglycosylated TaPAPhy_b2-H229A mutant for 

crystallography was performed as described for the WT enzyme. Expression, purification 

and crystal growth was carried out alongside WT TaPAPhy_b2d batch 07 (Chapter 3, 

section 3.1.2.5. and section 3.2.2.3.4.; Chapter 4, section 4.1.1.), using recombinant 

GST-Endo F1 treatment for enzymatic deglycosylation. Single crystals in the H3 space 

group were harvested following protocol in Chapter 4, section 4.1.2., using 

cryoprotectants containing 0.2 M sodium thiocyanate, 20% (w/v) PEG 3350, 25% (v/v) 

PEG 400 and either 1 mM InsP6 or 1 mM InsS6, adjusting the pH to 5.5 with acetate 

buffer. X-ray data was collected at Diamond Light Source (DLS; Didcot, UK) on beamline 

I03 at a wavelength of 0.9763 Å (12.6994 keV). Data processing and structure 

refinement was performed as described in Chapter 4, section 4.1.4. for the WT enzyme. 

 Results and discussion 

5.2.1. Design and preparation of TaPAPhy_b2 single-site mutants  

The amino acid sequence, crystal structures of TaPAPhy_b2:PO4 complexes and 

the TaPAPhy_b2:InsP6 model generated by MD simulations were studied and compared 

with the red kidney bean PvPAP1 and the sweet potato IbPAP1 phosphatases to identify 

candidate amino acid residues for mutagenesis. As confirmed in the previous chapter, 

the structure of TaPAPhy_b2 contains features not present in the PAPs lacking phytase 

activity (see Figure 51 and Figure 56 Chapter 4), which presumably allow the enzyme to 
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accommodate phytate in the active site and use it as substrate. Among the amino acids 

proposed to form part of the TaPAPhy_b2 phytate specificity pockets, residues His229 

(found in the PAPhy 4 motif) and Lys410 (found in the PAPhy 5 motif, corresponding to 

Val367 in PvPAP1 and Gly366 in IbPAP1) were chosen as mutagenesis targets by virtue 

of their basic nature and conservation in PAPhy enzymes, but not in PAPs lacking phytase 

activity. Although not assigned to any of the specificity pockets due to longer distances 

to the InsP6 phosphates, the basic residue Lys348 (Asn294 in PvPAP1 and Glu293 in 

IbPAP1) was also selected as third target for mutagenesis to further study potential 

effects on activity. 

The impact on the phytase activity of TaPAPhy_b2 of these three amino acid 

residues was studied by individual substitution with the small neutral amino acid 

alanine, and subsequent characterisation of the resulting proteins alongside the WT 

enzyme. 

5.2.1.1. Generation of TaPAPhy_b2 mutants by QuickChange™ mutagenesis 

Successful amplification of the entire TaPAPhy_b2-pGAPZαA construct (4623 bp) 

was obtained with the three sets of primers designed to introduce single-site mutations 

into the TaPAPhy_b2 sequence, although less efficient in the case of the H229A 

mutation. No bands were observed in the negative controls, including the DpnI digestion 

negative control which contained template DNA but no primers (Figure 57A). The PCR 

products obtained were subjected to digestion by DpnI, a restriction enzyme specific for 

methylated DNA, before transformation into E. coli for plasmid amplification and 

storage. Through DpnI reactions, the digestion of the TaPAPhy_b2-pGAPZαA construct 

(methylated DNA) used as template for the mutagenesis PCR reactions is achieved, while 

keeping the newly synthesised mutated plasmids (non-methylated DNA) unaffected. 

Several colonies were observed on the plates resulting from the transformation of E. coli 

XL10-Gold ultracompetent cells with the mutated plasmids. No colonies were present 

on the DpnI negative control plates, indicating completed digestion of the WT template 

DNA. 
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Figure 57. Results of the generation of TaPAPhy_b2 single-site mutants by QuickChange™ mutagenesis 

(A) PCR products from the QuickChange™ mutagenesis reactions in a 1% (w/v) agarose gel. 5 µL samples 
mixed with 6x Purple Loading Dye (NEB) were loaded. Lane M, HyperLadder 1kb DNA standards (Bioline); 
lane 1, H229A PCR product; lane 2, leakage from lane 1; lane 3, TaB2_H229A-F1/R1 primers negative 
control; lane 4, K348A PCR product; lane 5, TaB2_K348A-F1/R1 primers negative control; lane 6, K410A 
PCR product; lane 7, TaB2_K410A-F1/R1 primers negative control; lane 8, DpnI digestion negative control. 
(B) Results from the colony PCR in a 1% agarose gel. 5 µL samples of each PCR product were loaded. 
Lane M, HyperLadder 1kb DNA standards (Bioline); lane 1, H229A colony 1; lane 2, H229A colony 2; lane 3, 
K348A colony 1; lane 4, K348A colony 2; lane 5, K410A colony 1; lane 6, K410A colony 2; lane 7, 
TaPAPhyB-F1/R1 primers negative control; lane 8, TaPAPhy_b2-pGAPZαA positive control. 

All the colonies tested by colony PCR for the incorporation of plasmids codifying 

for the TaPAPhy_b2 gene were positive (1559 bp PCR product size, Figure 57B). 

Sequencing of plasmids purified from one colony per mutant confirmed the successful 

introduction of the three desired single-site mutations H229A, K348A and K410A, 

respectively.  

5.2.1.2. Transformation, expression and purification of TaPAPhy_b2 mutants 

in Pichia pastoris 

 

Figure 58. Digestion of TaPAPhy_b2-pGAPZαA mutant constructs with AvrII 

1% (w/v) agarose gel showing complete linearization of TaPAPhy_b2-pGAPZαA mutant constructs (all 
4623 bp) by digestion with AvrII in preparation for Pichia pastoris transformation. Lane M, HyperLadder 
1kb DNA standards (Bioline); lane 1, linearized TaPAPhy_b2_H229A-pGAPZαA; lane 2, linearized 
TaPAPhy_b2_K348A-pGAPZαA; lane 3, linearized TaPAPhy_b2_K410A-pGAPZαA. 

Complete linearization of the three TaPAPhy_b2-pGAPZαA mutant constructs 

was achieved by digestion with AvrII. Although the same amount of plasmid was 

subjected to AvrII digestion for the three mutants, bands of much greater intensity were 

observed for K348A and K410A than for H229A when the linearized plasmids were 

analysed on agarose gel electrophoresis before Pichia transformation (Figure 58). 
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Nevertheless, the three linearized constructs were successfully transformed into freshly 

prepared KM71H (OCH1::G418R) Pichia competent cells by electroporation with similar 

efficiency. Single colonies were observed in all the transformation plates after three 

days of incubation (Figure 59). 

 

Figure 59. Selection of transformants of P. pastoris bearing TaPAPhy_b2 mutants 

Four plates per transformation were plated with decreasing volumes of transformed cells (200 µL, top 
left; 100 µL, top right; 50 µL, bottom left; 10 µL, bottom right). (A) TaPAPhy_b2_H229A-pGAPZαA. 
(B) TaPAPhy_b2_K348A-pGAPZαA. (C) TaPAPhy_b2_K410A-pGAPZαA.  

Six of the biggest colonies (i.e. highest resistance to Zeocin™) were selected for 

each mutant and transferred to fresh YPD agar plates, showing optimal growth levels to 

initiate expression trials after three days of incubation. The production of recombinant 

proteins in the culture media during the course of the expression trial was monitored by 

the presence of phosphatase activity against pNPP. As the activity assay was carried out 

for colony screening and not for quantification purposes, a pNP calibration curve was 

not included and the results were ‘quantified’ in absorbance units. Activity of 

recombinant proteins was detected for all the transformants of the three mutants and 

the WT control after one day of expression, and the expression patterns for each 

transformant were consistent across the four-day trial. Figure 60 shows the phosphatase 

activity against pNPP and, therefore, the expression levels for the six transformants of 

each mutant, on the fourth day of the trial. Transformants A of the H229A mutant, D of 

the K348A mutant and A of the K410A mutant displayed the highest expression levels of 

recombinant protein, hence were selected to produce proteins for enzymatic 

characterisation.  
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Figure 60. Enzyme activity screen of TaPAPhy_b2-pGAPZαA mutants expression in Pichia pastoris 
KM71H (OCH1::G418R) 

Phosphatase activity measured on the fourth day of the expression trial is displayed for six individual 
transformants of each of the three TaPAPhy_b2 mutants. 

TaPAPhy_b2 WT, H229A, K348A and K410A in P. pastoris KM71H (OCH1::G418R) 

were successfully expressed and purified from 100 mL of culture media by nickel-affinity 

chromatography. The yield of recombinant TaPAPhy_b2 WT protein obtained was 

33 mg L-1, consistent with previous batches. The yields of mutant TaPAPhy_b2 obtained 

were higher than the WT, with 53 mg L-1 for H229A, 70 mg L-1 for K348A and 47 mg L-1 

for K410A. 

5.2.2. Enzymatic characterisation of wild type TaPAPhy_b2 and three 

single-site mutants 

5.2.2.1. Relative activity, pH and temperature profiles 

Differences in activity against InsP6 were observed for the mutant enzymes with 

respect to WT TaPAPhy_b2, as depicted in Figure 61A. A conserved pattern by which 

H229A is less active, K348A is equally or more active and K410A is equally or less active 

than the WT was observed across all the enzyme concentrations tested. However, the 

relative activities against InsP6 of the three mutants compared to that of the WT varied 

depending on the concentration of the enzymes. At an enzyme concentration of 1 µM, 

the relative activities were 15% for H229A, 119% for K348A and 61% for K410A, while at 

100 nM the relative activities were 49%, 100% and 82% for H229A, K348A and K410A, 
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respectively. Concentrations of 10 µM and 10 nM were considered too high and too low, 

respectively, for the detection limits of the assay. Due to an unusually high InsP6 

background absorbance in this experiment, results in Figure 61A are displayed without 

subtracting this value to avoid negative values of activity. 

 

Figure 61. Phytase and phosphatase activity of WT TaPAPhy_b2 and its mutants 

(A) Phosphate release assay with 5 mM InsP6 as substrate in 0.2 M acetate buffer pH 5.5 for 15 min at 
room temperature. The average phosphate concentration released as a measure of phytase activity of 
four replicate reactions with decreasing enzyme concentrations is displayed. Error bars represent the 
standard deviation of the four replicates. (B) Phosphate release assay with 5 mM pNPP as substrate in 
0.2 M acetate buffer pH 5.5 for 15 min at room temperature. The average phosphate concentration 
released as a measure of phosphatase activity of four replicate reactions with decreasing enzyme 
concentrations is displayed. Error bars represent the standard deviation of the four replicates. pNP  

background absorbance was subtracted from the measurements. ‘Pi’, inorganic phosphate. 

Similar results were obtained when the assay was repeated after storage of the 

recombinant proteins for one month at -80°C in 20 mM Tris/HCl, pH 8.0 buffer 
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containing 30% (v/v) glycerol. The relative activity against InsP6 of the defrosted 

enzymes compared to the fresh ones at 100 nM-1 µM was 88-103% for the WT, 69-72% 

for H229A, 92-103% for K348A and 93-110% for K410A. According to these results, 1 µM 

seemed to be a suitable enzyme concentration to carry out enzymatic assays with 

recombinant TaPAPhy_b2 after -80°C storage. 

Differences in activity of the mutants compared to the WT enzyme were 

observed with pNPP as substrate (Figure 61B). In this case, both 10 µM and 1 µM 

enzyme concentrations resulted in activities higher than the detection limit of the assay. 

H229A and K3418A mutants were less active, while K410A activity was similar to the WT. 

The relative activities against pNPP also varied with the enzyme concentration, being 

24%, 58% and 93% for H229A, K348A and K410A, respectively, at 100 nM, and 36%, 71% 

and 95%for H229A, K348A and K410A, respectively, at 10 nM.  

In summary, the H229A mutation caused a 51 to 85% reduction in phytase 

activity against InsP6, and a 64 to 76% reduction in phosphatase activity against pNPP. 

The K348A mutation produced no reduction in phytase activity against InsP6 and a 

reduction of 29 to 42% in phosphatase activity against pNPP. Finally, the K410A mutation 

resulted in an 18 to 39% reduction in phytase activity against InsP6, and a reduction of 5 

to 7% in phosphatase activity against pNPP.  

The pH profile, for phytate utilisation, of recombinant TaPAPhy_b2 and its 

mutants is displayed in Figure 62. The H229A mutant showed no phytase activity across 

the whole pH range. No differences in the pH profile were observed for the other two 

TaPAPhy_b2 mutants relative to the WT enzyme. Thus, TaPAPhy_b2 showed phytase 

activity in the range of pH from 4.0 to 5.5, with an optimum at pH 5.5 and dramatic 

reduction at more alkaline pH. In order to confirm that the rapid drop in activity between 

pH 5.5 and 6.0 was actually due to pH change and not the change of buffer from 0.2 M 

acetate to 0.2 M bis-tris, the assay was repeated using 0.2 M MES instead of bis-tris for 

the pH range from 6.0 to 7.0, obtaining similar results. Although a pH optimum for 

TaPAPhy_b2 has not previously been reported, similar pH profiles and pH optimum 

values were found in the literature for the wheat PAPhy isoforms TaPAPhy_a1 and 
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TaPAPhy_b1, with 5.5 ± 0.14 and 5.0 ± 0.2 optimum pH, respectively (Dionisio et al., 

2011).  

 

Figure 62. Phytase pH profile of WT TaPAPhy_b2 and its mutants 

Enzymes were assayed with 5 mM InsP6 as substrate and 100 nM enzymes in the pH range 2.0-8.5 for 
15 min at room temperature. The average phosphate concentration released as a measure of phytase 
activity of two measurements per pH and enzyme is displayed. Error bars represent the standard deviation 
of the two replicates (not displayed when smaller than the height of the symbol). InsP6 background 
absorbance in each buffer was subtracted from the measurements. ‘Pi’, inorganic phosphate. 

The temperature profiles for phytate hydrolysis of WT TaPAPhy_b2 and the three 

mutants generated in this project are shown in Figure 63. No activity was detected for 

the H229A mutant. For the WT and other mutants, phytase activity increased with 

temperature up to 37°C, with the activity decreasing by approximately 30% between 

37°C and 50 °C for WT and K348A, but without change for the K410A mutant. The 

optimum temperature for phytate hydrolysis for the wheat PAPhy isoforms TaPAPhy_a1 

and TaPAPhy_b1 has been reported to be 55°C ± 1.8°C and 50°C ± 2°C, respectively 

(Dionisio et al., 2011). 
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Figure 63. Phytase temperature profile of WT TaPAPhy_b2 and its mutants 

Phosphate release assay with 5 mM InsP6 as substrate and 100 nM enzymes in 0.2 M acetate buffer pH 5.5 
for 15 min. The average phosphate concentration released as a measure of phytase activity of three 
measurements per temperature and enzyme is displayed. Error bars represent the standard deviation of 
the three replicates (not displayed when shorter than the height of the symbol). InsP6 background 
absorbance was subtracted from the measurements. ‘Pi’, inorganic phosphate; ‘T’, temperature. 

5.2.2.2. HPLC product profiles of phytate hydrolysis 

The extent of degradation of phytate, and the pathway(s) by which 

dephosphorylation occurs are of great interest for the animal feed industry. The benefits 

obtained by the use of adjunct phytases extend to the sparing of addition of rock-

phosphate to animal feed and the obviation of the antinutrient properties of dietary 

phytate (Blaabjerg, Hansen-Møller and Poulsen, 2010). Most commonly the pathways 

of dephosphorylation have been studied by anion-exchange HPLC by the method of 

Phillippy and Bland (1988). It is worth noting, however, that these HPLC methods are 

modern day iterations of the seminal work of Ballou, Cosgrove, Tate and co-workers 

who additionally established methods for determining the enantiomerism of inositol 

phosphates and the inositol phosphate products of phytate dephosphorylation 

(reviewed in Cosgrove, 1980).  

Here, inositol phosphates were separated by acid elution from an anion 

exchange column and subsequent detection of inositol phosphate-ferric complexes 

(Phillippy and Bland, 1988). As seen in Figure 64, Figure 65 and Figure 66 (blue trace), 

TaPAPhy_b2 shows a strong preference for initial hydrolysis of the phosphate in position 

D-4 and/or D-6 of the inositol ring. Since these columns do not resolve enantiomers it is 
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not possible to conclude whether the product(s) contain one or both enantiomers of 

InsP5 product. Nevertheless, this work identifies D-Ins(1,2,3,5,6)P5 and/or its 

enantiomer D-Ins(1,2,3,4,5)P5 as first product of InsP6 hydrolysis, indicated here with a 

peak visible in the chromatogram after 15 min of reaction (Figure 64). The potential of 

marginal D-1 and/or D-3 activity was also observed. As the reaction progresses, an 

accumulation of the D-and/or L-Ins(1,2,5,6)P4 intermediate can be observed, with 

smaller peaks of D-and/or L-Ins(1,2,3,4)P4, InsP3 and InsP2 also appearing after 15 min, 

30 min and 2 h of reaction, respectively (Figure 64, Figure 65 and Figure 66, 

respectively). 

The H229A mutant did not display phytase activity after 15 or 30 min reaction 

(orange trace, Figure 64 and Figure 65). No differences in the InsP6 product profile of the 

K348A mutant were observed when compared to the WT profile (grey trace, Figure 64 

and Figure 65), whereas slower reaction development with less accumulation of the 

D-and/or L-Ins(1,2,5,6)P4 intermediate and faster progression to InsP3 and InsP2 could 

be seen for the K410A mutant when compared to the WT enzyme profile. This was 

particularly evident when the reactions were left to progress for 1 and 2 h (yellow trace, 

Figure 64, Figure 65 and Figure 66). 

At extended periods of reaction (Figure 66) the great similarity of product 

profiles for WT and K410A mutants is especially striking. In summary, other than the 

H229A mutant which was inactive, not one of the individual mutations altered the 

specificity of attack of TaPAPhy_b2 on InsP6 or evidently on any of its hydrolysis 

products. That is with the caveat that the HPLC method does not distinguish between 

enantiomers. It remains a possibility, albeit a slight one, that individual mutations might 

alter the proportion of enantiomers of particular products at different stages of 

dephosphorylation. 
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Figure 64. Product profiles of WT TaPAPhy_b2 and its mutants after limited reaction against InsP6 

Reactions were performed for 15 min at room temperature with 1 mM InsP6 substrate and 1 µM enzymes 
in 0.2 M acetate buffer pH 5.5. An acid hydrolysate of InsP6 with relevant peaks labelled for reference is 
shown (InsP5s are identified by the residual hydroxyl). ‘Rt’, retention time. 
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Figure 65. Product profiles of WT TaPAPhy_b2 and its mutants after progressive reaction against InsP6 

Reactions were performed for 30 min at room temperature with 1 mM InsP6 substrate and 1 µM enzymes 
in 0.2 M acetate buffer pH 5.5. An acid hydrolysate of InsP6 with relevant peaks labelled for reference is 
shown (InsP5s are identified by the residual hydroxyl). ‘Rt’, retention time. 
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Figure 66. Product profiles of WT TaPAPhy_b2 and K410A mutant after extended reaction against InsP6  

Reactions were performed at room temperature with 1 mM InsP6 substrate and 1 µM enzymes in 0.2 M 
acetate buffer pH 5.5. ‘Rt’, retention time. (A) An acid hydrolysate of InsP6 with relevant peaks labelled 
for reference is shown (InsP5s are identified by the residual hydroxyl). (B) 1 h reaction. (C) 2 h reaction. 
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5.2.2.3. Enzyme kinetics 

The enzyme kinetics of recombinant TaPAPhy_b2 and the three mutants 

generated in this project was studied by means of the phosphate release assay at pH 5.5 

and 37°C (Figure 67). Reactions were limited to less than 15% conversion of substrate 

by careful titration of the amount of enzyme. While no sensible kinetic parameters were 

obtained for the H229A mutant due to its lack of phytase activity, estimates of the 

kinetic parameters of the WT enzyme and the K348A and K410A mutants were obtained 

and are presented in Table 19. 

 

Figure 67. Michaelis-Menten kinetics of WT TaPAPhy_b2 and its mutants against InsP6 

Reactions carried out in triplicate with 60 nM enzymes and increasing concentrations of InsP6 at 37°C in 
0.2 M acetate buffer pH 5.5. WT and K348A mutant, 10 min reactions. H229A and K410A, 90 min 
reactions. The results are the average of the three replicates per enzyme and substrate concentration, 
expressed as the rate of phosphate concentration released (µM) per time of the reaction (min) and 
amount of enzyme (µg). Error bars represent the standard deviation of the three replicates (not displayed 
when smaller than the height of the symbol). 

Vmax is the maximum rate of catalysis of an enzymatic reaction at a given enzyme 

concentration, approached when the enzyme is saturated with substrate (Lorsch, 2014). 

The value of Vmax for WT TaPAPhy_b2 was estimated as 85.5 ± 3.1 µM min-1 µg-1, while 

a similar or slightly higher Vmax of 102.1 ± 10.8 µM min-1 µg-1 was obtained for the K348A 

mutant, while the mutant K410A presented a much lower Vmax of 

11.3 ± 1.2 µM min-1 µg-1. The Michaelis constant Km is the concentration of substrate 

required to give a rate that is half of the Vmax, and it reflects how well the enzyme binds 
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a specific substrate (Lorsch, 2014). The estimated Km values for WT, K348A and K410A 

TaPAPhy_b2 were 76.4 ± 7.7 µM, 214.6 ± 46.6 µM and 307.6 ± 56.7 µM, respectively, 

indicating that both mutations result in a much lower affinity to InsP6 than the WT 

enzyme. High standard errors in the estimation of Km values for the K348A and K410A 

mutants were obtained consistently when repeating the experiment several times. The 

catalytic constant for the conversion of substrate to product kcat, also known as the 

turnover number, reflects the efficiency of the enzyme (Lorsch, 2014). Mutant K348A, 

with a kcat of 28.4 ± 3.0 s-1, showed similar or slightly higher efficiency than the WT 

enzyme, with a kcat of 23.8 ± 0.9 s-1. The mutation K410A resulted in a much lower 

efficiency than the WT, with a kcat of 3.2 ± 0.3 s-1. 

Table 19. Estimation of kinetic parameters of InsP6 hydrolysis for WT, K348A and K410A TaPAPhy_b2 

Km values are expressed as substrate concentration (µM). Vmax values are expressed as phosphate 
concentration release (µM) per time of reaction (min) and amount of enzyme (µg). kcat values are 
expressed per time of reaction (s). Estimated value ± standard error is shown for each parameter. The R2 
of the curve fit is also included. 

Parameter WT K348A K410A 

Km (µM) 76.4 ± 7.7 214.6 ± 46.6 307.6 ± 56.7 

Vmax (µM min-1 µg-1) 85.5 ± 3.1 102.1 ± 10.8 11.3 ± 1.2 

kcat (s-1) 23.8 ± 0.9 28.4 ± 3.0 3.1 ± 0.3 

R2 0.98 0.96 0.98 

5.2.2.4. Inhibition of wild type TaPAPhy_b2 phytase activity 

Before the sequencing of genomes, the expression of recombinant proteins and 

the elaboration of protein folds underlying biochemical activity, it was common to 

characterize enzyme activity of partially or extensively purified proteins by simple kinetic 

parameters and sensitivity of activities to inhibitors and other assay factors (see 

Konietzny and Greiner, 2002, for a review of the characterization of phytases). Among 

the factors employed to distinguish activities and reaction mechanism are analogues of 

substrate or transition state intermediates. Molybdate and vanadate are commonly 

used analogues of the penta-coordinate transition state of the acid phosphatase and 

PAP reaction mechanisms (Ishikawa et al., 2000). 

Experiments were performed to determine whether TaPAPhy_b2 is sensitive to 

the transition state analogue molybdate and the substrate analogue InsS6. A progressive 

loss of activity of recombinant TaPAPhy_b2 was achieved with sodium molybdate 
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concentrations in the range 0.1 – 100 μM, with complete inhibition at 1 mM (Figure 68 

and Figure 69), as expected for a strong inhibitor of acid phosphatases. The substrate 

analogue, InsS6, was less potent with 75% and 28% of uninhibited activity observed in 

the presence of 0.1 mM and 1 mM of InsS6, respectively (Figure 68). The results of this 

assay, together with the structure information, suggest that InsS6 is an inhibitor of PAPhy 

which, although not mimicking substrate binding (see Figure 50 in Chapter 4, section 

4.2.2.1.), is able to compete with InsP6 for the enzyme’s active site. 

 

Figure 68. Inhibition of TaPAPhy_b2 activity in the presence of myo-inositol hexakissulfate 

The PAP inhibitor molybdate was used as reference. Phosphate release assay with 5 mM InsP6 as substrate 
and 1 µM WT TaPAPhy_b2 in 0.2 M acetate buffer pH 5.5 for 15 min at room temperature. The average 
phosphate concentration released as a measure of phytase activity of three measurements per inhibitor 
concentration is displayed. Error bars represent the standard deviation of the three replicates. InsP6 
background absorbance was subtracted from the measurements. ‘Pi’, inorganic phosphate. 

For enzymes that cleave phosphoanhydride or phosphomonoester bonds, 

thioesters are commonly used non-hydrolysable analogues of substrates of these 

enzymes. While InsS6 is an analogue of the physiological substrate, InsP6, of plant 

phytases, para-nitrophenyl sulfate, pNPS, affords a non-hydrolysable analogue of the 

artificial substrate pNPP. Here, pNPS displayed only a very weak inhibitory effect on 

phytate hydrolysis of TaPAPhy_b2 in the conditions assayed, with approximately 20% 

reduction of activity with 5 mM pNPS (Figure 69). The results of this assay are in 

accordance with the inability to obtain a crystal structure of TaPAPhy_b2 in complex 

with pNPS (Chapter 4, section 4.2.1.6.) and probably reflect much weaker binding of 

pNPS, and likely pNPP, than InsP6. 
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Figure 69. Inhibition of TaPAPhy_b2 activity in the presence of para-nitrophenyl sulfate 

The PAP inhibitor molybdate was used as reference. Phosphate release assay with 5 mM InsP6 as substrate 
and 1 µM WT TaPAPhy_b2 in 0.2 M acetate buffer pH 5.5 for 15 min at room temperature. The average 
phosphate concentration released as a measure of phytase activity of three measurements per inhibitor 
concentration is displayed. Error bars represent the standard deviation of the three replicates. InsP6 
background absorbance was subtracted from the measurements. ‘Pi’, inorganic phosphate. 

5.2.2.5. Thermal stability of wild type TaPAPhy_b2 

A major goal of the animal feed adjunct enzyme sector is the enhancement of 

thermostability of phytases added to animal feed (Lei et al., 2013; Rebello et al., 2017). 

Enhanced thermostability has the additional benefit that it is commonly accompanied 

by resistance to proteolytic cleavage in the gastro-intestinal tract of animals fed with 

phytase-supplemented feed (Menezes-Blackburn et al., 2011). Thermostability is 

essential because the pelleting process by which raw plant-based feedstuffs are 

converted to feed includes a heat-treatment specific to the feed mill. Consequently, 

considerable effort is placed in the engineering of thermostability. Thermostability may 

be tested in a variety of contexts. Heat-resistance may be measured by assay of residual 

enzyme activity after a heat treatment and cooling. Measurement of protein melting 

temperature may be studied by methods including differential scanning fluorimetry 

(Niesen, Berglund and Vedadi, 2007) or DSC (Bruylants, Wouters and Michaux, 2005; 

Johnson, 2013). For this study, a DSC experiment was conducted. 
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5.2.2.5.1. Recovery after heating at 80°C 

To test the thermostability of TaPAPhy_b2, protein was incubated at 80°C for 

10 min before cooling to 4°C and subsequent assay. Complete and irreversible 

deactivation of TaPAPhy_b2 phytase activity was observed (Figure 70). 

 

Figure 70. Recovery of TaPAPhy_b2 phytase activity of after heating at 80°C 

Phosphate release assay with 1 µM WT TaPAPhy_b2 and 5 mM InsP6 as substrate in 0.2 M acetate buffer 
pH 5.5 for 15 min at 37°C. The enzyme was incubated at 80°C for 10 min, then cooled down to 4°C before 
setting up the reactions. Control enzyme was kept at 4°C. The average phosphate concentration released 
as a measure of phytase activity of four replicates is displayed. Error bars represent the standard deviation 
of the four replicates. InsP6 background absorbance was subtracted from the measurements. 

5.2.2.5.2. Differential scanning calorimetry 

When analysing the thermal denaturation of recombinant TaPAPhy_b2 by DSC, 

a complex thermogram with three peaks was obtained for three replicate runs before 

the processing of the raw data (Figure 71A). The third replicate was tested for recovery 

of structure (renaturation) by subjecting the protein to a second cycle of DSC. No 

recovery of TaPAPhy_b2 was observed in the rerun of the third replicate, consequently 

this curve was selected as baseline to subtract from the raw data in the automatic data 

processing.  
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Figure 71. Differential scanning calorimetry thermogram of TaPAPhy_b2 

‘B’, 20 mM Tris/HCl pH 8.0 buffer; ’P’ WT TaPAPhy_b2 at 1.5 mg mL-1. (A) Raw data. (B) After baseline 
subtraction. 

The thermogram of the processed DSC data for TaPAPhy_b2 after baseline 

subtraction can be observed in Figure 71B. Two melting temperatures were identified, 

a Tm1 at 52.31 ± 0.11°C and a Tm2 at 72.67 ± 0.11°C, expressed as the average and 

standard deviation of the three replicate runs. A lower temperature shoulder before the 

Tm2 peak can also be observed at approximately 65°C. The different peaks may 

correspond to metal loss and unfolding of the protein chain. 
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5.2.3. Crystal structure of the TaPAPhy_b2 H229A mutant 

Structures of phytase enzymes with the substrate InsP6 as ligand are generally 

solved with inactive mutants (Lim et al., 2000; Gruninger et al., 2012). The difficulty to 

crystallise WT phytases with InsP6 may arise from substrate turnover, even in the crystal 

form. The H229A single-site mutant displayed virtually no phytase activity in the assays 

performed. In order to take advantage of this property, the TaPAPhy_b2 H299A mutant 

was crystallised to attempt to solve its structure in complex with InsP6. Single crystals in 

the H3 space group grown with TaPAPhy_b2d-H229A batch 02 (7.0 mg mL-1, 

deglycosylated with recombinant GST-Endo F1) were harvested and cryoprotected by 

soaking them for a few minutes in a solution containing 0.2 M sodium thiocyanate, 

20% (w/v) PEG 3350, 25% (v/v) PEG 400 and 1 mM InsP6, with pH adjusted to 5.5 with 

acetate buffer. A dataset with 1.50 Å resolution was collected at DLS beamline I03 from 

a wedge-shaped crystal with approximate dimensions of 30 x 25 x10 µM3, and the 

structure was solved by molecular replacement with the TaPAPhy_b2:PO4 complex 

structure in the product-bound state (Chapter 4, section 4.2.1.1. and 4.2.1.3.). The final 

model was refined to Rwork and Rfree values of 12.83% and 15.23%, respectively. Crystal 

parameters, data collection and refinement statistic for this structure are summarised 

in Table 20.  

The structure consisted of TaPAPhy_b2 with the H229A mutation in complex 

with phosphate, with no electron density observed for the substrate InsP6 bound to the 

active site or anywhere else. Other datasets collected from crystals soaked in InsS6 did 

not show electron density for this molecule either. The iron ions in the active site were 

modelled with occupancies of 50% (20.16 Å2 B factor) and 100% (14.63 Å2 B factor) in 

the MI and MII site, respectively, and the coordination geometry of both metals was 

classified as octahedral by the CheckMyMetal server (Zheng et al., 2014). The position 

of the phosphate molecule in the active site resembled that of the TaPAPhy_b2:PO4 

complex structure in the substrate-bound state (Chapter 4, section 4.2.1.4.), with 

spherical electron density for a bridging solvent molecule observed between the metals 

and modelled with 97% occupancy. 
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Table 20. Data collection and refinement statistics for the TaPAPhy_b2-H229A:PO4 complex structure 

Values in brackets correspond to the high resolution outer shell. The X-ray flux is the total experimented 
by the crystal during data collection, corrected for transmission. The Rmerge value corresponds to Rmerge (all 
I+ & I-). The number of reflections stated are the unique reflections used in refinement. 

Structure TaPAPhy_b2d-H229A:PO4 

PDB ID 6GJA 

Crystal parameters  

Space group H3 

a, b, c (Å) 126.0, 126.0, 106.6 

α, β, γ (°) 90, 90, 120 

Data collection   

Wavelength (Å) 0.9763 

Ω Oscillation (°) 0.10 

Total Ω (°) 120 

Exposure (s) 0.040 

Beam size (μm) 50x20 

X-ray flux (ph) 4.08x1013 

Resolution (Å) 38.46-1.50 (1.53-1.50) 

Rmerge (%) 5.6 (59.1) 

< I/σ(I) > 12.4 (1.7) 

Completeness (%) 96.6 (75.0) 

Multiplicity 3.2 (2.0) 

CC1/2 1.0 (0.4) 

Wilson B factor (Å2) 16.0 

Refinement  

Total No. of atoms 4940 

Water molecules 443 

No. of reflections 97457 

Rwork (%) 12.8 

Rfree (%) 15.2 

Anisotropy 0.062 

RMS deviations  

Bonds (Å) 0.005 

Angles (°) 0.833 

Planes (Å) 0.006 

Ramachandran plot  

Favoured (%) 96.91 

Allowed (%) 3.09 

Outliers (%) 0.00 

Mean B factors (Å2) 24.0 

The majority of the residues (96.91%) were found in the most favourable region 

of the Ramachandran plot, with no outliers present. Gaps in electron density were found 

at four consecutive residues Glu19, Asp20, Arg21 and Gly22; twelve consecutive 

residues Asp216, Cys217, Tyr218, Ser219, Cys220, Ser221, Phe222, Ala223, Lys224, 

Ser225, Thr226 and Pro227, constituting the majority of the PAPhy 4 motif (Figure 72); 
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and Leu509, Lys510 and the 6xHis tag at the C-terminus. The side chains of residues 

Arg11, Arg37, Glu111, Ile228 and Lys410 were not defined in the electron density and, 

therefore, not modelled. A list of 26 residues were modelled with alternative 

conformations: Ser56, Asp100, Arg125, Leu126, Gln127, Glu130, Lys134, Arg155, 

Ser183, Ser190, Leu199, Glu244, Ser249, Ser281, Met282, Ile302, Met303, Ser330, 

Ser345, Glu355, Ser367, Arg408, Met411, Thr414, Ser449 and Val494. Signs of 

photoreduction were observed in all three disulfide bonds present in the structure 

(Cys217-Cys220 was in one of the gaps in electron density). N-glycosylation was 

observed in the seven predicted glycosylation sites. Occupancies lower than 100% were 

observed for NAGs in Asn267 (76%) and Asn389 (69%). Electron density for a second 

NAG residue linked to a β-D-mannose was present in the Asn475 site.  

 

Figure 72. Disordered PAPhy 4 motif in the TaPAPhy_b2-H229A:PO4 complex structure 

Cartoon representation of the WT structure with the PAPhy 4 motif highlighted in blue. The region 
corresponding to the PAPhy 4 motif in the H229A mutant structure is superimposed in orange, with the 
two ends of the unmodelled region (due to a gap in the electron density) connected by a dashed line. 
Ala229 in the mutant structure, Tyr218, His229, the metal ligands, the phosphate ion and the phosphate 
ligands in the WT structure are displayed in stick representation. The iron ions are shown as brown 
spheres. Image created with PyMOL version 1.3 (Schrodinger LLC, 2015). 

Three phosphate molecules were modelled in the TaPAPhy_b2-H229A mutant 

structure in the same location as in the TaPAPhy_b2:PO4 complex structure resembling 

substrate binding (Chapter 4, section 4.2.1.4.), with occupancies of 81% (23.99 Å2 

B factor, bound to the metals), 83% (65.76 Å2 B factor, near the active site) and 75% 

(77.60 Å2 B factor, in the protein surface). The TaPAPhy_b2-H229A:PO4 complex 
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structure contained 443 waters, eight ethylene glycol molecules (EDO, C2H6O2), five 

diethylene glycol molecules (PEG, C4H10O3), three triethylene glycol molecules (PGE, 

C6H14O4) and one 1-(2-methoxy-ethoxy)-2-{2-[2-(2-methoxy-ethoxy]-ethoxy}-ethane 

molecule (PG6, C12H26O6). 

Figure 72 shows the unmodelled region of the mutant structure (orange) due to 

discontinuous electron density between residues Asp216 and Pro227, covering most of 

the PAPhy 4 motif, with the equivalent region in the WT structure superimposed (blue). 

The lack of electron density in this region of the mutant enzyme preventing model 

building could be explained by the introduction of disorder due to the loss of the ring 

stack interaction between His229 and Tyr218 (displayed as blue sticks in Figure 72) 

caused by the mutation of His229 to alanine (see Figure 51 in Chapter 4, section 

4.2.2.3.). 

 Conclusions 

A full characterisation of the recombinant TaPAPhy_b2 wheat phytase has been 

completed in this project, revealing that the optimal conditions for phytate hydrolysis 

are pH 5.5 and 37°C, with kinetic parameters estimated in these conditions being 

Km = 76.4 ± 7.7 µM, Vmax = 85.5 ± 3.1 µM min-1 µg-1 and kcat = 23.8 ± 0.9 s-1. Although no 

kinetic data was found for the TaPAPhy_b2 enzyme in the literature, differences in 

kinetic parameters were observed for TaPAPhy_b2 compared to other wheat PAPhy 

isoforms. A Km of 45 ± 3.4 µM, Vmax of 216 ± 12.4 µM min-1 mg-1 and kcat of 270 s-1 have 

been reported for recombinant TaPAPhy_b1, while published kinetic parameters for 

TaPAPhy_a1 were Km = 35 ± 6.8 µM, Vmax = 223 ± 9.4 µM min-1 mg-1 and kcat = 279 s-1 

(Dionisio et al., 2011). Recombinant TaPAPhy_b2 was strongly inhibited by molybdate, 

a known phytase inhibitor (Zhang et al., 1997). An inhibitory effect on phytase activity 

was also observed when carrying out the phosphate release assay in the presence of 

InsS6, supported by the crystal structure of its complex with the enzyme solved in the 

previous chapter. In addition, this study also found that TaPAPhy_b2 is not a 

thermostable phytase, lacking recoverable phytase activity after heating at 80°C. Two 

melting temperatures were noted at 52.31 ± 0.11°C and 72.67 ± 0.11°C, respectively. 

The thermal stability data obtained through DSC explains the decrease in phytase 
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activity at 50°C observed in the temperature profile of this enzyme. Engineering of 

thermostability in TaPAPhy_b2 would be required to make it suitable as an animal feed 

additive in order to survive the pelleting process. 

The degradation profiles obtained for recombinant TaPAPhy_b2 in this study 

show a clear peak of D-Ins(1,2,3,5,6)P5 (or its enantiomer D-Ins(1,2,3,4,5)P5) as main 

product of InsP6 hydrolysis, classifying the enzyme into the D-4/6-phytase category. 

Although a hint of a peak implying certain D-1/3 phytase activity was observed, the 

suspicion that this peak corresponded to a contaminant in the substrate was confirmed 

in the product profiles obtained in Chapter 6. An accumulation of the D- and/or 

L-Ins(1,2,5,6)P4 intermediate indicating attack of the group adjacent to the 

D-4/6-phopshate, with a secondary smaller peak for the D- and/or L-Ins(1,2,3,4)P4 

intermediate, and little progression to lower inositol phosphates even after 2 h reaction 

completed the findings of this project regarding the TaPAPhy_b2 preference of InsP6 

hydrolysis. Similar phytate degradation pathways have been reported for wheat 

phytases previously (Tomlinson and Ballou, 1962; Nakano et al., 1999, 2000; Bohn et al., 

2007), while those studies showing a wider variety of InsP5 intermediates are suspected 

to belong to wheat MINPPs or a mix of PAPhy and MINPP enzymes (Lim and Tate, 1971, 

1973, Brinch-Pedersen et al., 2003, 2006). The inefficiency of the TaPAPhy_b2 phytase 

to remove more than two phosphate groups from the inositol ring of phytate could be 

the consequence of losing a subset of the interactions identified in the previous chapter 

that contribute to stabilise InsP6 binding in lower inositol phosphates (see Figure 56, in 

Chapter 4 section 4.2.2.4.). 

Mutation of residues His229, Lys348 or Lys410 in the TaPAPhy_b2 enzyme still 

produced viable protein, able to fold into a soluble enzyme, containing metal ions and 

conserving different degrees of phytase or phosphatase activity. The mutation H229A 

significantly inactivated the protein, confirming the importance of residue His229 in 

InsP6 binding or catalysis suggested in Chapter 4 through the specificity pocket SB 

(3-phosphate). Besides direct interaction with the substrate, the crystal structure of the 

mutant H229A solved in this chapter revealed perhaps a more or equally important role 

of this residue. Mutation of His229 to alanine interrupted the aromatic ring stacking with 

Tyr218, present in the WT enzyme structures. Such interruption resulted in the 
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instability of the whole PAPhy 4 motif insertion, proposed to have an essential role in 

binding the substrate in a productive mode in the active site and, therefore, likely to 

account for the loss of activity of this mutant.  

The mutation K348A produced an enzyme with similar relative phytase activity, 

pH optimum, temperature optimum and product profile to the WT. A reduction in 

relative phosphatase activity was observed compared to the WT, as well as differences 

in their kinetic parameters at least with regards to affinity for InsP6. Mutation of Lys348 

to alanine resulted in an enzyme with lower affinity for InsP6, indicating it may provide 

indirect contributions to the SE (6-phosphate) or SD (1-phosphate) specificity pockets. To 

conclude, the mutation K410A produced an enzyme with lower relative phytase activity 

and similar relative phosphatase activity to the WT protein, sharing the same pH and 

temperature optimum for phytate hydrolysis. Subtle differences in the product profile 

of InsP6 were observed with respect to the WT. Although slower in InsP6 degradation 

than the WT, the mutant K410A did not seem to accumulate the D- and/or L-

Ins(1,2,5,6)P4 intermediate as much as the WT enzyme. Looking at the kinetic 

parameters, mutation of Lys410 to alanine resulted in an enzyme with a much lower 

maximum rate of catalysis, efficiency and affinity for InsP6. The observed effects in 

phytase activity confirmed the importance of this residue in InsP6 hydrolysis by the 

TaPAPhy_b2 phytase, forming part of the SE (6-phosphate) and SF (5-phosphate) 

specificity pockets. 
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 Comparison of TaPAPhy_b2 with other plant 

PAP phytases 

Plasmid DNA for the expression of seven different plant PAPhy was acquired for 

this project, including wheat phytases TaPAPhy_a1, TaPAPhy_b1 and TaPAPhy_b2, 

barley phytase HvPAPhy_a, rice phytase OsPAPhy_b, maize phytase ZmPAPhy_b, and 

soybean phytase GmPAPhy_b. Six of these targets were put aside after failed attempts 

to produce soluble recombinant protein in Escherichia coli strains, to move onto an 

eukaryotic expression system with the wheat enzyme TaPAPhy_b2. After successful 

expression of TaPAPhy_b2 in Pichia pastoris, leading to subsequent purification, 

structural and enzymatic characterisation, advantage of the knowledge acquired was 

taken for further work on the remaining plant PAPhy targets. 

The information gathered from the newly solved crystal structures of 

TaPAPhy_b2 was used in conjunction with the data obtained from the characterisation 

of the enzyme and single-site mutants to determine common characteristics or specific 

properties between PAPhy isoforms or PAPhy from different plant species. In particular, 

3D homology models of plant PAPhy with unknown structure were generated based on 

the TaPAPhy_b2 fold, in order to compare their active site architecture with 

TaPAPhy_b2 and with each other. Structure-function relationships of the PAPhy active 

site were further examined by generating recombinant samples of a subset of plant 

PAPhy enzymes and obtaining their phytate hydrolysis product profiles. 

 Materials and methods 

6.1.1. Protein homology modelling of plant PAPhy based on the 

TaPAPhy_b2 structure 

Homology models of TaPAPhy_a1, TaPAPhy_b1, HvPAPhy_a, OsPAPhy_b, 

ZmPAPhy_b and GmPAPhy_b were produced using the SWISS-MODEL automated 

protein structure homology-modelling server employed in user template mode (Biasini 

et al., 2014). The structure of TaPAPhy_b2 in complex with phosphate resembling 

product binding was used as template for homology modelling (Chapter 4, section 
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4.2.1.1. and 4.2.1.3.). Pairwise sequence alignments of TaPAPhy_b2 with each of the 

proteins being modelled, as well as a MSA including the seven proteins, were created 

using the T-Coffee server (Notredame, Higgins and Heringa, 2000) with default 

parameters. The MSA was analysed with Jalview (Waterhouse et al., 2009), while the 

3D homology models were analysed with the UCSF Chimera package (Pettersen et al., 

2004).  

To compare the plant PAPhy structure and models, amino acid residues falling 

within at least one of the following criteria were selected: (1) non-conserved residues 

within 10 Å of the phosphate ion in the TaPAPhy_b2 structure, (2) non-conserved 

residues forming part of PAPhy motifs or in their vicinity, and (3) non-conserved residues 

forming part of PAP motifs or in their vicinity. Plant PAPhy targets to produce 

recombinant protein for phytase activity studies were chosen after inspection of the 

amino acid conservation in the selected positions. 

6.1.2. Gateway™ cloning of soybean PAPhy for expression in 

Pichia pastoris 

Of the plant PAPhy targets selected for recombinant expression after inspection 

of their active centres, the only enzyme not available in a construct for Pichia pastoris 

expression was the soybean GmPAPhy_b phytase. For this purpose, the Gateway™ 

cloning system was used to sub-clone GmPAPhy_b into a Gateway-compatible 

pPICZα-DEST vector. The GmPAPhy_b-pOPINB construct was employed as template for 

the cloning. Since the coding region of GmPAPhy_b-pOPINB had been codon optimised 

for E. coli expression (see Chapter 3, section 3.1.1.2.), a rare codon analysis for 

expression in Pichia pastoris was performed prior the cloning process using the 

GenScript Rare Codon Analysis Tool (https://www.genscript.com/tools/rare-codon-

analysis).  

The Gateway™ technology is a high-fidelity and high-efficiency cloning method 

based on the bacteriophage λ site-specific recombination system. It allows the transfer 

of DNA fragments from an entry vector to different expression vectors in a standardised 

manner, maintaining the orientation of the DNA fragment (Hartley, Temple and Brasch, 
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2000). The insertion of the gene of interest into the vectors takes place through two 

recombination reactions, based on the presence of specific recombination sites in the 

vectors and flanking the gene of interest. The first recombination reaction, known as the 

BP reaction, inserts the gene of interest into an entry vector. It consists of the 

recombination of attB sequences, flanking a PCR fragment containing the gene 

sequence, and attP sequences, present in the cloning site of the entry vector. After the 

BP recombination reaction, the gene of interest is flanked by attL sequences in the entry 

vector (Figure 73B). The target gene can then be easily transferred from the entry vector 

to different destination vectors for recombinant protein expression through a second 

recombination reaction known as the LR reaction. This reaction takes place by the 

recombination of the attL sequences, flanking the gene in the entry vector, and attR 

sequences, present in the cloning site of the destination vector, leaving the gene flanked 

again by attB sequences in the destination vector (Figure 73C).  

For the cloning of GmPAPhy_b, the vector pDONR 207, encoding gentamycin and 

chloramphenicol resistance, was used as entry vector, and the vector pPICZα-DEST, 

encoding Zeocin™ and chloramphenicol resistance, was used as destination vector. The 

destination vector pPICZα-DEST is a modified pPICZα Pichia pastoris methanol-inducible 

expression vector, in which the Gateway™ cassette containing the specific 

recombination sites has been inserted to make it compatible with the Gateway™ cloning 

system (Sasagawa et al., 2011).  

Table 21. Reaction set up for Gateway™ adapter PCRs with Phusion polymerase 

Plasmid template for adapter 1 PCR was diluted to a working concentration of 2.5 ng µL-1. Adapter 1 PCR 
product was used as template for adapter 2 PCR reactions, setting up reactions with undiluted product, 
diluted 1:20 and diluted 1:50. Primer mixes were prepared in water from 100 µM stocks.  

Reagent [Stock] [rxn] V for 1x 20 µL rxn (µL) 

Water n/a n/a 13.5 

Phusion HF buffer 5x 1x 4 

DMSO 100% 2% 0.4 

dNTP mix 10 mM each 0.2 mM each 0.4 

Primer mix 10 µM each 0.25 µM each 0.5 

Template DNA n/a n/a 1 

Phusion polymerase 2 U µL-1 0.02 U µL-1 0.2 

TOTAL   20 
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Primers were designed to perform two adapter PCRs in order to extract the 

GmPAPhy_b coding region from the GmPAPhy_b-pOPINB construct, with the addition 

of the sequence encoding for a C-terminal 6xHis tag, the P. pastoris preferred stop codon 

TAA, and flanking attB recombination sites (Figure 73A). The reactions for the two 

adapter PCRs were set up on ice as detailed in Table 21. Primers attB1_GmPAPhy-F1 and 

CHis_GmPAPhy-R1 (see Table A14 in Appendix 2) were used for adapter 1 PCR, 

introducing the first half of the attB1 site at the 5’ end, and the 6xHis tag and stop codon 

at the 3’ end of the GmPAPhy_b sequence. Primers attB1 and CHis-attB2-pPICZ (see 

Table A14 in Appendix 2) were used for adapter 2 PCR, introducing the second half of 

the attB1 site at the 5’ end, and the attB2 site at the 3’ end. The PCR protocol on Table 

22 was used for the amplification. Negative control reactions were included in both 

PCRs, using water instead of plasmid DNA. Results of the PCR reactions were assessed 

on 1% (w/v) agarose gels containing ethidium bromide. 

Table 22. PCR protocol for amplification with Phusion polymerase in the Gateway™ adapter PCRs 

A standard annealing temperature of 50°C was used for the adapter PCR reactions. 

Step Cycles Time T (°C) 

Initial denaturation 1 3 min 98 

Denaturation 

30 

30 s 98 

Annealing 30 s 50 

Extension 1 min 72 

Final Extension 1 10 min 72 

Hold 1 ∞ 4 

A BP reaction was set up to transfer the PCR-generated GmPAPhy_b construct 

to the pDONR 207 entry vector through the recombination of sites attB (PCR fragment) 

and attP (entry vector), as represented in Figure 73B. The reaction was set up with 2 µL 

of 50 ng µL-1 pDONR 207, 1 µL of adapter 2 PCR product, 1 µL of BP Clonase™ II Enzyme 

mix (Invitrogen) and 1 µL of 1x TE Buffer (10 mM Tris/HCl pH 8.0, 1 mM EDTA). The 

reaction was incubated for 2 h at 25°C in a thermal cycler (BIO-RAD). A volume of 0.5 µL 

of Proteinase K (Invitrogen) was mixed into the BP reaction for a 10 min incubation at 

37°C, before transformation of the total volume of the reaction into 50 µL of DH5α 

Library Efficiency competent cells (Invitrogen). Protocol on Chapter 3, section 3.1.1.3. 

was followed for the transformation. Selection of colonies was performed in LB agar 

plates with gentamycin (20 µg mL-1). Analysis of transformants was first done by colony 
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PCR with primers designed to amplify the attL recombination sites, followed by 

sequencing of one positive colony. Protocol on Chapter 5, section 5.1.1.1. was followed. 

 

Figure 73. Gateway™ cloning of GmPAPhy_b into pPICZα-DEST for expression in Pichia pastoris  

(A) Two-step adapter PCR to introduce attB recombination sites, C-terminal 6xHis tag and stop codon in 
the GmPAPhy_b sequence, using GmPAPhy_b-pOPINB construct as template. (B) BP reaction to introduce 
the GmPAPhy_b gene into the pDONR 207 entry vector through the recombination of attB and attP sites. 
(C) LR reaction to transfer the GmPAPhy_b gene from the pDONR 207 entry vector to the pPICZα-DEST 
destination vector through the recombination of attL and attR sites. 
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A LR reaction was set up to transfer the GmPAPhy_b construct from the 

pDONR 207 entry vector to the pPICZα-DEST expression vector, through the 

recombination of sites attL (pDONR 207) and attR (pPICZα-DEST), as represented in 

Figure 73C. The reaction was set up with 1 µL of 100 ng µL-1 pPICZα-DEST, 1 µL of 

100 ng µL-1 GmPAPhy_b-pDONR207, 0.5 µL of LR Clonase™ II Enzyme mix (Invitrogen) 

and 2.5 µL of 1x TE Buffer (10 mM Tris/HCl pH 8.0, 1 mM EDTA). The same procedure 

described above for the BP reaction was followed for the LR reaction, performing the 

selection of transformants in LB agar plates with Zeocin™ (25 µg mL-1) and using primers 

designed to amplify the attB recombination sites for the colony PCR and sequencing. 

6.1.3. Transformation, expression and purification of HvPAPhy_a, 

OsPAPhy_b, ZmPAPhy_b and GmPAPhy_b in Pichia pastoris 

The transformation, expression and purification of HvPAPhy_a, OsPAPhy_b, 

ZmPAPhy_b and GmPAPhy_b was performed as for WT TaPAPhy_b2 enzyme and its 

three mutants. The four PAPhy-pPICZα constructs were transformed into the 

KM71H (OCH1::G418R) Pichia pastoris glycoengineered strain through electroporation 

following the protocol described for the WT TaPAPhy_b2 construct in Chapter 3, section 

3.1.2.2. Sufficient plasmid DNA of each construct for P. pastoris transformation was 

purified from 100 mL overnight cultures using the Plasmid Midi Kit (Qiagen). In 

preparation for P. pastoris transformation, pPICZα constructs were linearized with DraI 

(NEB) at 37°C overnight, setting up reactions as detailed in Table 23. 

Table 23. Reaction set up for the digestion of pPICZα vector with DraI 

(*) Depending on the concentration of the plasmid stock used for each digestion. 

Reagent [Stock] [rxn] V for 1x 20 µL rxn (µL) 

Water n/a n/a Variable* 

CutSmart buffer 10x 1x 2 

pPICZα construct Variable* 500 ng µL-1 Variable* 

DraI 20 U µL-1 1 U µL-1 1 

TOTAL   20 

Six P. pastoris transformed colonies per PAPhy construct were subjected to a 

small volume expression trial in a 24-well plate. The selected colonies were monitored 

by pNPP assay for the production of secreted recombinant protein in 2 mL cultures 

during a five-day expression trial, consisting of one day of pre-growth in buffered 
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minimal glycerol medium (1.34% (w/v) yeast nitrogen base, 2% (w/v) casamino acids, 

2% (v/v) glycerol, 100 mM phosphate buffer pH 5.0, 100 µg mL-1 kanamycin, 100 µM 

zinc sulfate), followed by four days of expression in buffered minimal methanol medium 

(1.34% (w/v) yeast nitrogen base, 2% (w/v) casamino acids, 2% (v/v) methanol, 100 mM 

phosphate buffer pH 5.0, 100 µg mL-1 kanamycin, 100 µM iron(II) sulfate, 100 µM 

iron(III) citrate). For the expression of the PAPhy_a isoform HvPAPhy_a, 

100 µM manganese(II) sulfate and Complete Mini EDTA-free Protease inhibitor cocktail 

tablets (Roche) were also added to the buffered minimal methanol medium. The 

expression trial was set up and production of recombinant protein monitored as 

described for TaPAPhy_b2 in Chapter 3, section 3.1.2.3. Cultures were topped up daily 

with 1% (v/v) methanol and the appropriate metals, as well as extra medium to 

compensate for loss by evaporation (approximately 100 µL per day) and the samples 

taken to check for phosphatase activity. The highest expressing transformants of each 

PAPhy construct were selected for further protein expression, storing them at 4°C 

and -20°C in 1 M sorbitol and 10% (v/v) glycerol, respectively. 

Expression of the plant PAPhy enzymes was performed in 100 mL of buffered 

minimal glycerol/methanol medium, distributed in 250 mL conical flasks with 50 mL per 

flaks, for five days under continuous shaking (200 rpm) at 26°C, adding 

1% (v/v) methanol and the appropriate metals daily. The enzymes were harvested, 

purified by nickel-affinity chromatography and concentrated in the same way as the 

TaPAPhy_b2 medium scale expression experiment described in Chapter 3, sections 

3.1.2.4. and 3.1.2.5. Individual 1 mL HisTrap HP columns (GE Healthcare) regenerated 

by stripping and recharging were used for the purification of each protein, at a flow rate 

of 1 mL min-1. All the columns were regenerated by stripping and recharging of metal 

ion according to the manufacturer’s instructions before storage in 20% (v/v) ethanol at 

4°C.  

The nickel-affinity purified plant PAPhy enzymes were normalised to a working 

concentration of 20 µM and stored in 20 mM Tris/HCl pH 8.0 buffer containing 

30% (v/v) glycerol at -80°C. 



 

196 
 

6.1.4. Phytase activity and HPLC product profiles of HvPAPhy_a, 

OsPAPhy_b, ZmPAPhy_b and GmPAPhy_b 

The phytase activity of HvPAPhy_a, OsPAPhy_b, ZmPAPhy_b and GmPAPhy_b, 

alongside TaPAPhy_b2, was assessed by means of a standard phosphate release assay 

in 0.2 M acetate pH 5.5 buffer with 5 mM potassium phytate (≥95% purity, Sigma) for 

15 min at room temperature, as described in Chapter 5, section 5.1.2.1. Scouting assays 

with enzyme concentrations ranging in decades of concentration from 2 µM to 10 nM 

were undertaken to evaluate differences in phytase activity of the four new enzymes 

with respect to TaPAPhy_b2, setting up four replicates per enzyme concentration. 

The product profiles of the five phytases were obtained as described in 

Chapter 5, section 5.1.2.3., setting up reactions at room temperature in 0.2 M acetate 

pH 5.5 buffer with 1 mM sodium phytate (≥98% purity, Merck) as substrate. Enzyme 

concentrations used for the reactions ranged from 650 nM to 2 µM. 

 Results and discussion 

6.2.1. Protein homology modelling of plant PAPhy based on the 

TaPAPhy_b2 structure 

A very high conservation of the primary structure was observed for the plant 

PAPhy studied in this project (i.e. TaPAPhy_a1, TaPAPhy_b1, TaPAPhy_b2, HvPAPhy_a, 

OsPAPhy_b, ZmPAPhy_b and GmPAPhy_b). With sequence identities compared to 

TaPAPhy_b2 ranging from 70 to 98%, the remaining plant PAPhy constituted ideal 

targets for 3D homology modelling. 

The QMEAN scores of the 3D homology models generated for six plant PAPhy 

based on the TaPAPhy_b2 structure are displayed in Table 24. According to the QMEAN 

scoring function, the six models generated were of good quality. A clear correlation 

between percentage of sequence identity and higher QMEAN score was observed, 

indicating that model quality improves as the sequence identity of the target protein 

with the template used to originate the model increases. The two metal ions in the 

active site were automatically modelled as irons for TaPAPhy_a1, HvPAPhy_a, 
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OsPAPhy_b, ZmPAPhy_b and GmPAPhy_b. As a preference for Mn2+ in the MII site has 

been reported for the PAPhy_a isoforms (Dionisio et al., 2011), the 3D models of 

TaPAPhy_a1 and HvPAPhy_a were modified accordingly. Only Fe3+ in the MI site was 

automatically modelled in the TaPAPhy_b1 active centre, due to the lack of conservation 

of one of the metal ligands in the MII site of TaPAPhy_b2 described in Chapter 2, section 

2.2.1.2. While PAPs in general present a histidine residue in PAP IV motif (His340 in the 

TaPAPhy_b2 structure), a tyrosine residue appears in this position in the TaPAPhy_b1 

enzyme. This mutation would likely disrupt the PAP active site, indicating that an error 

in determining the amino acid sequence of TaPAPhy_b1 at this position may have 

occurred.  

Table 24. Sequence identity and QMEAN scores of 3D homology models of plant PAPhy 

The homology models were based on the TaPAPhy_b2 structure in complex with phosphate resembling 
product binding. 

Enzyme % Sequence identity QMEAN 

TaPAPhy_a1 90.32 -0.68 

TaPAPhy_b1 98.42 -0.43 

HvPAPhy_a 90.91 -0.67 

OsPAPhy_b 88.51 -1.01 

ZmPAPhy_b 85.38 -0.84 

GmPAPhy_b 71.60 -1.74 

The conservation of active site residues of the six plant PAPhy analysed in 

comparison to TaPAPhy_b2 is collated in Appendix 2, Table A19. Snapshots of the plant 

PAPhy active sites can be observed in Figure 74, highlighting the specific residues that 

were not conserved in each enzyme with respect to TaPAPhy_b2 (Figure 74A). Aside 

from the metal ligand exception noted above, TaPAPhy_b1 was identical to TaPAPhy_b2 

in all the residues studied and, therefore, the TaPAPhy_b1 homology model was not 

included in the figure. TaPAPhy_a1 (Figure 74C) showed conservation with the wheat 

PAPhy_b isoforms in 16 of the 33 positions studied, while three more residues were 

conserved in HvPAPhy_a (Figure 74D). Excluding the three extra residues in HvPAPhy_a 

showing conservation with the wheat PAPhy_b isoforms (i.e. Ser203, Thr215 and 

Ser221), the residues in the remaining 30 positions compared were conserved between 

TaPAPhy_a1 and HvPAPhy_a, the two PAPhy_a isoforms analysed. The extra three 

variant amino acids in TaPAPhy_a1, i.e. Cys203, Ala215 and Ala221 (appearing in place 

of Ser203, Thr215 and Ser221), were conserved in ZmPAPhy_b (Figure 74F), indicating a 
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lack of correlation of these mutations with the PAPhy isoform. The ZmPAPhy_b enzyme 

showed conservation with the wheat PAPhy_b isoforms in 21 of the 33 amino acids 

compared, while 24 residues were conserved in the OsPAPhy_b enzyme (Figure 74E). In 

contrast, only 11 residues out of the 33 compared were conserved in GmPAPhy_b with 

respect to the wheat PAPhy_b isoforms (Figure 74B). 

Overall, no differences in the active site of the seven plant PAPhy compared 

seemed major enough to have a dramatic impact in their phytase activity, as the likely 

substrate specificity pockets proposed in Chapter 4, section 4.2.2.4. for TaPAPhy_b2 

remained mostly unaffected in the rest of the enzymes (see Figure 56). Differences in 

substrate specificity pocket amino acids were only observed in the PAPhy 5 motif 

located in the SC (2-phosphate) pocket, affecting residues Ala431 (proline in OsPAPhy_b, 

ZmPAPhy_b and GmPAPhy_b), Phe432 (tyrosine in GmPAPhy_b) and Met433 (isoleucine 

in TaPAPhy_a1 and HvPAPhy_a). Nevertheless, the contribution of these residues is 

believed to be through their amino groups rather than their side chain and, therefore, 

such changes were not expected to interfere.  

In general, six consistent changes between PAPhy_b and PAPhy_a isoforms were 

observed among the seven enzymes analysed: L207M, A354V, S427P, T428K, D430N and 

M433I, with TaPAPhy_b2 being the reference structure. Little difference was observed 

between TaPAPhy_a1 and HvPAPhy_a. In order to also take into account potential 

differences in phytase activity between PAPhy from different plant species, HvPAPhy_a 

was chosen over TaPAPhy_a1 for further experiments. GmPAPhy_b was selected for 

activity assays for having the lowest conservation with TaPAPhy_b2 in the active site and 

for being the only non-cereal PAPhy available for the project. 

 

Figure 74. Differences in the plant PAPhy active centre with TaPAPhy_b2 as reference structure (on the 
next page) 

The TaPAPhy_b2 structure and the plant PAPhy 3D models are displayed in cartoon representation, with 
metal ions shown as spheres and coloured by element (i.e. Fe, brown; Mn, lilac). Residues that are not 
conserved in one or more of the enzymes analysed with respect to TaPAPhy_b2 are shown as sticks, 
coloured by element and labelled. Images created with the UCSF Chimera package (Pettersen et al., 2004). 
(A) TaPAPhy_b2. (B) GmPAPhy_b. (C) TaPAPhy_a1. (D) HvPAPhy_a. (E) OsPAPhy_b. (F) ZmPAPhy_b. 
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Changes in ten positions with potential interest were observed between the six 

cereal PAPhy and GmPAPhy_b: (1) His23 to Val14 in PAPhy 1 motif; (2) Ala/Gly223 to 

Pro213, (3) Lys/Asn224 to Leu214 and (4) Ser225 to deletion, corresponding to the 

region in PAPhy 4 motif before His229 (SB pocket); (5) Gln/Glu263 to Lys252, a residue 

near His229 in the PAPhy structures; (6) Lys348 to Glu337, a residue which mutation to 

alanine in the TaPAPhy_b2 enzyme results in lower substrate affinity; (7) Thr413 to 

Ile402 and (8) Thr/Ser/Ala414 to Lys403, residues near Lys410 (SE and SF pocket) in the 

PAPhy structures and described as a phosphate binding site (TaPAPhy_b2:PO4 complex 

structures in Chapter 4, section 4.2.1.1. and 4.2.1.4.); (9) Ala431 to Pro420 and 

(10) Phe432 to Tyr421, residues belonging to PAPhy 5 motif in the SC specificity pocket. 

In addition, ZmPAPhy_b and OsPAPhy_b were both selected for expression and activity 

assays, for presenting some unique mutations in the positions analysed and for being 

from different plant species. 

6.2.2. Gateway™ cloning of soybean PAPhy for expression in 

Pichia pastoris 

The rare codon analysis carried for the GmPAPhy_b sequence, codon optimised 

for E. coli expression, predicted a chance of poor expression of recombinant protein in 

Pichia pastoris due to a Codon Adaptation Index (CAI) of 0.61. The CAI is a common 

measure of codon usage bias, useful to predict the likely success of heterologous gene 

expression (Sharpl and Li, 1987). A protein coding gene with a CAI bigger than 0.8 is 

considered good for expression in the desired host, with 1.0 being the ideal value. 

However, an even lower CAI of 0.52 was obtained when the same analysis was 

performed on the TaPAPhy_b2-pGAPZαA sequence. Despite no codon optimisation for 

P. pastoris expression had been carried out for TaPAPhy_b2, good levels of expression 

were achieved from this construct and, therefore, expression of GmPAPhy_b in 

P. pastoris was attempted with the current sequence. 

The GmPAPhy_b gene with a C-terminal 6xHis tag, a stop codon and the flanking 

attB recombination sites was successfully amplified in a two-step PCR (Figure 75). The 

PCR product of the adapter 2 PCR amplified from a 1:20 dilution of the adapter 1 PCR 

product was chosen to carry out the BP reaction with pDONR 207.  
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Figure 75. Adapter PCRs for the Gateway™ cloning of GmPAPhy_b into pPICZα-DEST 

Results of the two adapter PCRs in 1% (w/v) agarose gels. 5 µL samples mixed with 6x Purple Loading Dye 
(NEB) were loaded. Lane M, HyperLadder 1kb DNA standards (Bioline). (A) Lane 1, adapter 1 PCR product 
(1541 bp); lane 2, attB1_GmPAPhy-F1 and CHis_GmPAPhy-R1 primers negative control. (B) Lane 1, 
adapter 2 PCR product (1548 bp) with undiluted adapter 1 PCR product as template; lane 2, adapter 2 PCR 
product (1548 bp) with 1:20 dilution of adapter 1 PCR product as template; lane 3, adapter 2 PCR product 
(1548 bp) with 1:50 dilution of adapter 1 PCR product as template; lane 4, attB1 and CHis-attB2-pPICZ 
primers negative control. 

Several colonies resulting from the transformation of the BP reaction into E. coli 

DH5α Library Efficiency competent cells were observed after gentamycin selection in LB 

agar plates (and no colonies in the negative control plate). Two of the four colonies 

tested by colony PCR presented bands corresponding to the GmPAPhy_b insert (Figure 

76A). Sequencing of the plasmid extracted from the first of these colonies confirmed the 

successful cloning of GmPAPhy_b into pDONR 207 and was subjected to the LR reaction 

with pPICZα-DEST.  

 

Figure 76. Colony PCRs from the Gateway™ cloning of GmPAPhy_b into pPICZα-DEST 

Results from the two colony PCRs in 1% (w/v) agarose gels. 5 µL samples of each PCR product were loaded. 
Lane M, HyperLadder 1kb DNA standards (Bioline). (A) GmPAPhy_b-pDONR207 colony PCR. Lane 1, 
colony 1; lane 2, colony 2; lane 3, colony 3; lane 4, colony 4; lane 5, SeqLA and SeqLB primers negative 
control; lane 6, positive control. (B) GmPAPhy_b-pPICZα-DEST colony PCR. Lane 1, colony 1; lane 2, 
colony 2; lane 3, colony 3; lane 4, colony 4; lane 5, attB1 and attB2 primers negative control; lane 6, 
positive control. 

Several colonies were also observed as a result of the transformation of the LR 

reaction into E. coli DH5α Library Efficiency competent cells after Zeocin™ selection. All 
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the colonies tested by colony PCR displayed bands corresponding to the GmPAPhy_b 

insert (Figure 76B). Further confirmation by sequencing of the plasmid extracted from 

the first of the colonies indicated the successful cloning of the gene encoding the 

GmPAPhy_b phytase into pPICZ α-DEST. 

6.2.3. Transformation, expression and purification of HvPAPhy_a, 

OsPAPhy_b, ZmPAPhy_b and GmPAPhy_b in Pichia pastoris 

Complete linearization of the four plant PAPhy constructs was achieved by 

digestion with DraI (Figure 77). The four linearized constructs were successfully 

transformed by electroporation into freshly prepared KM71H (OCH1::G418R) Pichia 

competent cells with similar efficiency, showing single colonies in all the transformation 

plates after three days of incubation. Six of the biggest colonies (i.e. highest resistance 

to Zeocin™) were selected for each PAPhy and transferred to fresh YPD agar plates, 

showing optimal growth levels to initiate expression trials after three days of incubation. 

The production of recombinant proteins in the culture media during the course of the 

expression trial was monitored by the presence of phosphatase activity against pNPP. 

As the activity assay was carried out for colony screening and no with quantification 

purposes, a pNP calibration curve was not included and the results were ‘quantified’ in 

absorbance units.  

 

Figure 77. Digestion of PAPhy in pPICZα constructs with DraI 

1% (w/v) agarose gels showing complete linearization of PAPhy-pPICZα constructs by digestion with DraI 
in preparation for Pichia pastoris transformation. Lane M, HyperLadder 1kb DNA standards (Bioline). 
(A) Lane 1, linearized HvPAPhy_a-pPICZαA; lane 2, linearized OsPAPhy_b-pPICZαA; lane 3, linearized 
ZmPAPhy_b-pPICZαA. (B) Lane 1, linearized GmPAPhy_b-pPICZα-DEST. 

Figure 78 shows the phosphatase activity against pNPP and, therefore, the 

expression levels for the six transformants of each enzyme, on the last day of the trial. 

Activity of recombinant OsPAPhy_b, ZmPAPhy_b and the TaPAPhy_b2 control was 
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detected after one day of expression, and the expression patterns for each transformant 

were consistent across the duration of the trial. All transformants of HvPAPhy_a and 

GmPAPhy_b displayed phosphatase activity levels similar or only slightly higher than the 

untransformed strain control across the duration of the trial, indicating poor expression 

of these enzymes in Pichia pastoris in the conditions tested.  

Transformants OsPAPhy_b-D and ZmPAPhy_b-A displayed the highest 

expression levels of recombinant protein and, hence were selected to produce proteins 

for phytase activity assays. Transformants HvPAPhy_a-A and GmPAPhy_b-B were also 

selected to attempt to obtain recombinant material of these enzymes in a medium scale 

expression trial.  

 

Figure 78. Enzyme activity screen of plant PAPhy expression in P. pastoris KM71H (OCH1::G418R) 

Phosphatase activity measured on the fifth day of the expression trial is displayed for six individual 
transformants of each of the four plant PAPhy enzymes. 

Recombinant expression of HvPAPhy_a, OsPAPhy_b and ZmPAPhy_b was 

achieved from 100 mL of P. pastoris KM71H (OCH1::G418R) culture media. The enzymes 

were purified by nickel-affinity chromatography with a yield of 1.7 mg L-1 for HvPAPhy_a, 

6.7 mg L-1 for OsPAPhy_b and 14.1 mg L-1 for ZmPAPhy_b. With the same expression 

conditions and purification method, an approximate yield of only 141 µg L-1 was 

achieved for GmPAPhy_b. 
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6.2.4. Phytase activity and HPLC product profiles of HvPAPhy_a, 

OsPAPhy_b, ZmPAPhy_b and GmPAPhy_b 

Activity against InsP6 was observed for all the plant PAPhy purified (Figure 79). 

TaPAPhy_b2 was included in the assay to serve as reference of activity, displaying 

significantly higher phytase activity than the other enzymes tested. The relative activity 

of HvPAPhy_a was 49% and 45% at enzyme concentrations of 2 µM and 1 µM, 

respectively. The relative activity of OsPAPhy_b was 9% both at 2 µM and 1 µM 

concentration. ZmPAPhy_b relative activity was 22% and 16% when tested at 

concentrations of 2 µM and 1 µM, respectively. The enzyme concentrations 100 nM and 

10 nM were considered too low for the detection limits of the assay.  

Due to the low recovery yield of recombinant GmPAPhy_b, phytase activity for 

this enzyme was only tested at one concentration, approximately 650 nM, and setting 

up reactions in duplicate. Although very low, phytase activity in the presence of 

GmPAPhy_b was detected over the InsP6 background absorbance, equivalent to 

approximately 3.6% of the predicted TaPAPhy_b2 activity at the same concentration. 

 

Figure 79. Comparative phytase activity of plant PAPhy enzymes 

Phosphate release assay with 5 mM InsP6 as substrate in 0.2 M acetate buffer pH 5.5 for 15 min at room 
temperature. The average phosphate concentration released as a measure of phytase activity of four 
replicate reactions with decreasing enzyme concentrations is displayed. Error bars represent the standard 
deviation of the four replicates. A unique concentration with two replicate reactions was assayed for 
GmPAPhy_b. InsP6 background absorbance was subtracted from the measurements. ‘Pi’, inorganic 
phosphate. 
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Product profiles resulting from InsP6 degradation by the recombinant plant 

PAPhy enzymes are shown in Figure 80 (TaPAPhy_b2), Figure 81 (HvPAPhy_a), Figure 82 

(ZmPAPhy_b), Figure 83 (OsPAPhy_b) and Figure 84 (GmPAPhy_b). Background InsP6 

control reactions in the absence of enzyme were set up in parallel for the identification 

of contaminant peaks not resulting from enzymatic hydrolysis. Product profiles of 

recombinant TaPAPhy_b2 were obtained again alongside the remaining PAPhy for 

comparison. The InsP6 product profile obtained for TaPAPhy_b2 assayed at 1 µM 

concentration for 15 and 30 min reaction was consistent with the results presented in 

Chapter 5, section 5.2.2.2. However, the possibility of TaPAPhy_b2 presenting marginal 

D-1 and/or D-3 phytase activity was discarded, as the peak for D-Ins(2,3,4,5,6)P5 and/or 

its enantiomer D-Ins(1,2,4,5,6)P5 observed in the enzyme’s product profile was also 

present in the InsP6 non-enzyme control (Figure 80). 
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Figure 80. Product profile of TaPAPhy_b2 after limited and progressive reaction against InsP6 

Reactions were performed for 15 and 30 min at room temperature with 1 mM InsP6 substrate and 1 µM 
enzyme in 0.2 M acetate buffer pH 5.5. A control reaction in the absence of enzyme was included. An acid 
hydrolysate of InsP6 with relevant peaks labelled for reference is shown (InsP5s are identified by the 
residual hydroxyl). ‘Rt’, retention time. 

The same intermediates of InsP6 hydrolysis as in the TaPAPhy_b2 reactions were 

obtained in reactions performed with 1 µM HvPAPhy_a (Figure 81). It was also noted 

that, despite HvPAPhy_a displaying lower phytase activity than TaPAPhy_b2 in the 

phosphate release assay (Figure 79), higher levels of InsP6 hydrolysis were observed for 

HvPAPhy_a in the HPLC product profile experiment under the same reaction conditions. 
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Figure 81. Product profile of HvPAPhy_a after limited and progressive reaction against InsP6 

Reactions were performed for 15 and 30 min at room temperature with 1 mM InsP6 substrate and 1 µM 
enzyme in 0.2 M acetate buffer pH 5.5. A control reaction in the absence of enzyme was included. An acid 
hydrolysate of InsP6 with relevant peaks labelled for reference is shown (InsP5s are identified by the 
residual hydroxyl). ‘Rt’, retention time. 

A higher enzyme concentration (2 µM) and longer reaction time (2 h) were 

needed in order to obtain a product profile of InsP6 hydrolysis for the ZmPAPhy_b 

enzyme. Despite its lower phytase activity, the profile of InsP6 degradation obtained for 

ZmPAPhy_b displayed the same intermediates as TaPAPhy_b2 and HvPAPhy_a (Figure 

82).  
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Figure 82. Product profile of ZmPAPhy_b after limited, progressive and extensive reaction against InsP6 

Reactions were performed for 15 min, 30 min and 2 h at room temperature with 1 mM InsP6 substrate 
and 2 µM enzyme in 0.2 M acetate buffer pH 5.5. A control reaction in the absence of enzyme was 
included. An acid hydrolysate of InsP6 with relevant peaks labelled for reference is shown (InsP5s are 
identified by the residual hydroxyl). ‘Rt’, retention time. 
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Figure 83. Product profile of OsPAPhy_b after extensive reaction against InsP6 

Reactions were performed for 2 h at room temperature with 1 mM InsP6 substrate and 2 µM enzyme in 
0.2 M acetate buffer pH 5.5. A control reaction in the absence of enzyme was included. The absorbance 
of the 1 mM InsP6 control reaction was subtracted from the OsPAPhy_b reaction for peak identification. 
An acid hydrolysate of InsP6 with relevant peaks labelled for reference is shown (InsP5s are identified by 
the residual hydroxyl). ‘Rt’, retention time. 

OsPAPhy_b had to be assayed in the same conditions as ZmPAPhy_b, at a 

concentration of 2 µM and with a reaction time of 2 h. However, this enzyme displayed 

such a low activity even in these conditions that accurate peak identification proved 

challenging. However, after subtraction of the InsP6 non-enzyme control absorbance, it 

was possible to identify again a clear D-4 and/or D-6 phytase activity for the rice phytase, 

together with very subtle peaks starting to appear which correspond to the same InsP4 

intermediates generated by the previously characterised PAPhy (Figure 83).  



 

210 
 

 

Figure 84. Product profile of GmPAPhy_b after progressive reaction against InsP6 

Reactions were performed for 30 min at room temperature with 1 mM InsP6 substrate and 650 nM 
enzyme in 0.2 M acetate buffer pH 5.5. A control reaction in the absence of enzyme was included. The 
absorbance of the 1 mM InsP6 control reaction was subtracted from the GmPAPhy_b reaction for peak 
identification. An acid hydrolysate of InsP6 with relevant peaks labelled for reference is shown (InsP5s are 
identified by the residual hydroxyl). ‘Rt’, retention time. 

The HPLC assays carried out with GmPAPhy_b were limited by the scarce 

recombinant protein produced. GmPAPhy_b was assayed at the highest concentration 

available, approximately 650 nM, and product profiles of InsP6 hydrolysis were obtained 

after 15 and 30 min reactions (Figure 84). The phytase activity displayed was too low for 

accurate peak identification, and there was not enough recombinant enzyme left to set 

up a longer reaction. Nevertheless, after subtraction of the InsP6 non-enzyme control 

absorbance, it was possible to identify three distinct InsP5 peaks. These peaks suggest 
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that the GmPAPhy_b enzyme can initiate InsP6 hydrolysis by attack of the usual D-4 

(and/or D-6) phosphate, but also by attack of the D-1 (and/or D-3) phosphate and the 

5-phosphate of the inositol ring, making it more promiscuous than the other plant PAPhy 

tested above. 

 Conclusions 

Recombinant versions of five plant PAPhy enzymes have been produced in Pichia 

pastoris in this project. Expression and purification under the described conditions only 

produced a good yield of TaPAPhy_b2. Nevertheless, even lower yields have been 

reported previously (Dionisio et al., 2011). The low expression levels of HvPAPhy_a can 

be explained by our collaborators experience that PAPhy_a isoforms are attacked by 

Pichia pastoris endogenous proteases (unpublished data). Protease inhibitors were 

added to the culture media in an attempt to improve the yield of recombinant 

HvPAPhy_a, but this proved to be an insufficient measure. Another factor influencing 

the HvPAPhy_a expression levels could be the metal preference of this enzyme. A 

preference for manganese in the MII site has been described for PAPhy_a isoforms 

(Dionisio et al., 2011). Both iron(II) and manganese(II) sources were provided in the 

culture media for the expression of HvPAPhy_a in Pichia pastoris, following our 

collaborators advice that P. pastoris has been observed to be less efficient in 

incorporating manganese than iron into metalloproteins and, therefore, providing an 

alternative metal source would be beneficial for the expression of these enzymes 

(unpublished data). In general, optimisation of the expression and purification 

conditions of each individual PAPhy may result in better yields of recombinant protein. 

HvPAPhy_a, OsPAPhy_b, ZmPAPhy_b and GmPAPhy_b displayed lower levels of 

phytase activity than TaPAPhy_b2 when tested in phosphate release assays. However, 

it is worth to point out that all the enzymes were assayed at pH 5.5, the optimum for 

TaPAPhy_b2 activity, and a full characterisation of the remaining plant PAPhy would 

help to identify optimal assay conditions for each enzyme that may improve their 

activity. 
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HvPAPhy_a, OsPAPhy_b and ZmPAPhy_b resulted in the same product profile of 

InsP6 hydrolysis than that described for TaPAPhy_b2 in Chapter 5. Despite some 

consistent amino acid variations between the active sites of the PAPhy_a and the 

PAPhy_b isoforms, all the plant PAPhy from cereal sources assayed in this work 

presented the same phytate degradation profile, regardless of the plant species or the 

enzyme isoform.  

Despite the limited recombinant protein available to test the phytase activity of 

GmPAPhy_b, it was possible to determine that this enzyme appears to show positional 

promiscuity in the first step of phytate hydrolysis as opposed to the conserved 

D-4/6-phytase activity displayed by the PAPhy from cereal sources, generating up to 

three different InsP5 intermediates in similar proportions. Such a profile of phytate 

degradation is reminiscent of that arising from MINPP phytase activity, known for their 

positional promiscuity towards InsP6 hydrolysis (Craxton et al., 1997; Stentz et al., 2014). 

A conclusive explanation for the soybean phytase positional promiscuity was not found 

in the structure analysis performed in this chapter. The residues proposed to form the 

substrate specificity pockets in TaPAPhy_b2 (see Chapter 4, Figure 56) are all conserved 

in GmPAPhy_b with the exception of Ala431 (Pro420 in soybean, but also in rice and 

maize phytases) and Phe432 (Tyr421 exclusively in the soybean phytase). Both amino 

acids form part of the PAPhy 5 short α-helix in the SC pocket (2-phosphate), believed to 

contribute to InsP6 binding through their amino groups rather than through side chain 

interactions. Differences are also observed in the PAPhy 4 α-helix (SD, 1-phosphate 

pocket), but the unconserved residues in GmPAPhy_b are at the other end of the α-helix 

of those identified in TaPAPhy_b2 as contributors to the specificity pocket. The PAPhy 4 

α-helix in TaPAPhy_b2 is formed by residues Try218-Ser219-Cys220-Ser221-Phe222-

Ala223-Lys224-Ser225, while GmPAPhy_b contains Try208-Ser209-Cys210-Ser211-

Phe212-Pro213-Leu214-deletion. In addition, the soybean phytase has a glutamate 

residue in the position of Lys348, a residue that when mutated to alanine in the wheat 

phytase is largely indistinguishable from the WT except with regards to affinity for 

phytate (see Chapter 5). Optimisation of the expression and purification of GmPAPhy_b 

would be necessary to perform in-depth studies that may allow for conclusive findings 

with regards to the particular activity and structure features of this enzyme. In addition, 
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other PAPhy from non-cereal plant species could be subjected to a similar analysis, in 

order to determine if the GmPAPhy_b characteristics are conserved in other plant 

phytases from the PAP class. 

 



 

214 
 

 General conclusion and future work 

This thesis presents the results of structure-function studies of phytases of the 

purple acid phosphatase class. Phytases are considered one of the most effective and 

lucrative additives in the animal feed industry due to their role in improving animal 

nutrition and preventing environmental pollution, as well as having additional industrial 

applications in food or biofuel production (Rebello et al., 2017). Consequently, they are 

the focus of extensive research, with efforts directed to the discovery of novel phytases 

or to the improvement of the characteristics of existing ones (Lei et al., 2013). Of the 

four structural classes of phytases, HAPhy are the subject of most of the progress 

achieved in phytase research, with the PAPhy being very much at the other end of the 

spectrum. 

This thesis presents for the first time the crystal structure of a purple acid 

phytase, that of the wheat TaPAPhy_b2 enzyme, together with a model of the 

enzyme-substrate complex revealing the residues contributing to its substrate 

specificity pockets. Furthermore, the multiple structures of TaPAPhy_b2 in complex with 

phosphate solved by X-ray crystallography provide new insights to the PAP catalytic 

mechanism (Schenk et al., 2008), by delivering snapshots of the substrate- and product-

bound forms, and that of the complex during enzyme regeneration (states c, e and f-g 

in Figure 12). 

Maximum phytase activity at pH 5.5 and 37°C, with thermal denaturation just 

over 50°C, have also been determined through the full characterisation of this enzyme, 

indicating that TaPAPhy_b2 is an acid phytase moderately sensitive to thermal 

deactivation. The reaction intermediates identified in this project for the hydrolysis of 

InsP6 by the TaPAPhy_b2 phytase indicate the production of D/L-Ins(1,2,3,5,6)P5 as first 

product and only InsP5, followed by rapid accumulation of D/L-Ins(1,2,5,6)P4 with some 

D/L-Ins(1,2,3,4)P4 and slower progression to lower inositol phosphates. Therefore, the 

hydrolysis of phytate by TaPAPhy_b2 starts with the attack of the D-4 or D-6-phosphate 

and progresses through sequential attack to the D-3 or D-1-phosphate in a major route, 

or through a minor route attacking the 5-phosphate. Since the technique used in this 

work does not resolve enantiomers of InsP, it is not possible to conclude whether the 
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first attack to InsP6 happens at the D-4 or D-6-phosphate on the basis of the obtained 

product profile alone. However, earlier studies of the InsP6 hydrolysis pathway by 

reaction with wheat phytases, in which the enantiomers of InsP were resolved, have 

determined that the initial attack occurs at the phosphate in the D-4 position (Tomlinson 

and Ballou, 1962; Lim and Tate, 1971, 1973). A finding of this project that would be in 

agreement with this specificity is the interaction between the axial 2-phosphate and a 

region with short α-helical conformation observed when the D-4-phosphate is placed 

for InsP6 hydrolysis in the TaPAPhy_b2 active centre (specificity pocket SA, Figure 56), 

absent when the D-6-phosphate is the scissile phosphate instead. In conclusion, the 

enzyme-substrate complexes generated through computer simulations in this thesis, 

together with earlier studies of wheat phytases, may point to the D-4-phosphate over 

the D-6-phosphate as preferred initiation site of InsP6 hydrolysis by the wheat 

TaPAPhy_b2 enzyme. 

Although TaPAPhy_b2 is the main subject of this project and a need for 

optimisation of the expression and purification process for other PAPhy has been 

identified in order to obtain good yields of recombinant protein, preliminary work has 

been achieved with four more plant PAPhy. The data obtained points to a conserved 

phytate hydrolysis pathway in the cereal PAPhy, while positional promiscuity such as the 

MINPP enzymes appears to be displayed by the soybean PAPhy (Craxton et al., 1997; 

Stentz et al., 2014). 

The findings in this thesis regarding TaPAPhy_b2 do not appear to be compatible 

with direct applications of this enzyme in animal feed supplementation, implying a need 

to engineer thermal stability and higher catalytic efficiency in the wheat PAPhy for such 

purpose (Rebello et al., 2017). The structural information, optimised computer 

simulation parameters, conditions for phytase activity, product profile and DSC assays 

achieved in this work may provide useful tools that can be employed in the future to 

improve PAPhy enzymes for potential industrial applications. In general, the work 

performed on this project provides a strong basis for further investigation of phytase 

activity of enzymes of the PAPhy class, either from plant enzymes such as those studied 

in this thesis, or by using the information acquired to pursue the finding of novel targets 

in other organisms.  
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Improving the fully characterised wheat PAPhy, other plant PAPhy enzymes or 

potential novel candidates in different organisms, may result in proteins suitable to be 

used as feed additives either alone or in conjunction with other phytases. 
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Appendix 1. Tables and figures from Chapter 2 

Table A1. Purple acid phosphatase sequences used in bioinformatics analysis 

Collection of the purple acid phosphatase sequences, with and without phytase activity, that were 
analysed in Chapter 2. PAPhy, pink shading. Plant PAPs, lilac shading. Animal PAPs, orange shading. 
Microalgal PAPs, green shading. Fungal PAPs, yellow shading. Bacterial PAPs, blue shading. Sequences 
excluded during the analysis, red shading. ‘n/a’, not applicable. PAPhy sequences are separated in 
characterised (PAPhy), predicted by sequence homology (Predicted PAPhy) and sequence outliers (PAPhy 
outlier). Plant and animal PAP sequences are separated in HMW and LMW. 

Name Organism Group Alternative names UniProt ID 

AtPAP15 Arabidopsis thaliana PAPhy n/a Q9SFU3 

GmPAPhy_b Glycine max PAPhy GmPhy Q93XG4 

HvPAPhy_a Hordeum vulgare PAPhy (Hv)P2 C4PKL2 

HvPAPhy_b1 Hordeum vulgare PAPhy (Hv)P1 C4PKL3 

HvPAPhy_b2 Hordeum vulgare PAPhy (Hv)P1 C4PKL4 

LaPAPhy Lupinus albus PAPhy LASAP3 D2YZL4 

MtPAPhy Medicago truncatula PAPhy MtPHY1 Q3ZFI1 

NtPAPhy Nicotiana tabacum PAPhy NtPAP A5YBN1 

OsPAPhy_b Oryza sativa PAPhy (Os)F1, (Os)F2, OsPAP5 D6QSX9 

PtPAP3 Poncirus trifoliata PAPhy n/a V9LXK5 

TaPAPhy_a1 Triticum aestivum  PAPhy (Ta)PHYI C4PKK7 

TaPAPhy_b1 Triticum aestivum  PAPhy n/a C4PKK9 

TaPAPhy_b2 Triticum aestivum  PAPhy n/a C4PKL0 

ZmPAPhy_b Zea mays  PAPhy n/a C4PKL6 

AtaPAPhy_a1 Aegilops tauschii Predicted PAPhy n/a F6MIX0 

AtaPAPhy_b1 Aegilops tauschii Predicted PAPhy n/a F6MIX1 

PvPAPhy Phaseolus vulgaris  Predicted PAPhy n/a V7B3Z4 

ScPAPhy_a1 Secale cereale Predicted PAPhy n/a F6MIX2 

ScPAPhy_a2 Secale cereale Predicted PAPhy n/a F6MIX4 

ScPAPhy_b1 Secale cereale Predicted PAPhy n/a F6MIX5 

TaPAPhy_a2 Triticum aestivum  Predicted PAPhy (Ta)PHYII C4PKK8 

TaPAPhy_a3 Triticum aestivum  Predicted PAPhy n/a F6MIW2 

TaPAPhy_b3 Triticum aestivum  Predicted PAPhy n/a F6MIW6 

TmPAPhy_a1 Triticum monococcum  Predicted PAPhy n/a F6MIW8 

TmPAPhy_b1 Triticum monococcum  Predicted PAPhy n/a F6MIW9 

VrPAPhy Vigna radiata  Predicted PAPhy VrPAP1 B5ARZ7 

AtPAP23 Arabidopsis thaliana PAPhy outlier AtPAP_c Q6TPH1 

GmPAP4 Glycine max PAPhy outlier n/a V9HXG4 

AcPAP Allium cepa HMW Plant PAP ACPEPP Q93WP4 

AlPAP15 Arabidopsis lyrata HMW Plant PAP n/a D7L636 

AoPAP32 Anchusa officinalis HMW Plant PAP n/a Q9XF09 

AtPAP10 Arabidopsis thaliana HMW Plant PAP n/a Q9SIV9 

AtPAP11 Arabidopsis thaliana HMW Plant PAP n/a Q9SI18 

AtPAP12 Arabidopsis thaliana HMW Plant PAP n/a Q38924 

AtPAP13 Arabidopsis thaliana HMW Plant PAP n/a O48840 

AtPAP20 Arabidopsis thaliana HMW Plant PAP n/a Q9LXI7 

AtPAP21 Arabidopsis thaliana HMW Plant PAP n/a Q9LXI4 

AtPAP22 Arabidopsis thaliana HMW Plant PAP n/a Q8S340 

AtPAP25 Arabidopsis thaliana HMW Plant PAP n/a O23244 

AtPAP26 Arabidopsis thaliana HMW Plant PAP n/a Q949Y3 

AtPAP5 Arabidopsis thaliana HMW Plant PAP n/a Q9C927 

AtPAP6 Arabidopsis thaliana HMW Plant PAP n/a Q9C510 
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Name Organism Group Alternative names UniProt ID 

GmPAP1 Glycine max HMW Plant PAP n/a Q09131 

GmPAP3 Glycine max HMW Plant PAP n/a Q6YGT9 

HvPAP_c Hordeum vulgare HMW Plant PAP n/a C4PKL5 

IbPAP1 Ipomoea batatas HMW Plant PAP SpPAP2 Q9SE00 

IbPAP2 Ipomoea batatas HMW Plant PAP SpPAP3 Q9SDZ9 

IbPAP3 Ipomoea batatas HMW Plant PAP SpPAP1 Q9ZP18 

LaAP1 Lupinus albus HMW Plant PAP n/a Q93VM7 

LaAP2 Lupinus albus HMW Plant PAP n/a Q9XJ24 

LlAP1 Lupinus luteus HMW Plant PAP (Ll)AP1; acPase1 Q8L5E1 

LlAP2 Lupinus luteus HMW Plant PAP (Ll)AP2; acpase2 Q8L6L1 

LlPPD1 Lupinus luteus HMW Plant PAP PPD1 Q8VX11 

LlPPD2 Lupinus luteus HMW Plant PAP PPD2 Q8VXF6 

LlPPD4 Lupinus luteus HMW Plant PAP PPD4 Q8VXF4 

LpPAP Landoltia punctata HMW Plant PAP n/a Q9MB07 

MtPAP1 Medicago truncatula HMW Plant PAP n/a Q4KU02 

NtPAP Nicotiana tabacum HMW Plant PAP n/a Q84KZ3 

OsPAP2 Oryza sativa HMW Plant PAP n/a Q8S505 

OsPAP3 Oryza sativa HMW Plant PAP Os08g0280100 Q6ZCX8 

OsPAP4 Oryza sativa HMW Plant PAP OsI_28583 B8B909 

PpPAP Physcomitrella patens HMW Plant PAP n/a A9SPI2 

PvPAP1 Phaseolus vulgaris  HMW Plant PAP PvPAP_tIII P80366 

PvPAP2 Phaseolus vulgaris  HMW Plant PAP KeACP; PvPAP_tIV Q764C1 

RcPAP1 Ricinus communis HMW Plant PAP RCOM_1019210 B9RWG6 

RcPAP2 Ricinus communis HMW Plant PAP RCOM_0003680 B9SXP8 

RcPAP3 Ricinus communis HMW Plant PAP RCOM_0003560 B9SXP6 

SbPAP Sorghum bicolor HMW Plant PAP SORBI_3007G091100 A0A1Z5R9T8 

StPAP3 Solanum tuberosum HMW Plant PAP n/a Q6J5M8 

TaACP Triticum aestivum  HMW Plant PAP n/a C4PKL1 

VvPAP Vitis vinifera HMW Plant PAP VITISV_037278 A5BGI6 

ZmPAP_c Zea mays  HMW Plant PAP n/a C4PKL7 

AtPAP17 Arabidopsis thaliana LMW Plant PAP AtACP5 Q9SCX8 

AtPAP3 Arabidopsis thaliana LMW Plant PAP n/a Q8H129 

AtPAP7 Arabidopsis thaliana LMW Plant PAP n/a Q8S341 

AtPAP8 Arabidopsis thaliana LMW Plant PAP n/a Q8VYZ2 

BrPAP17_1 Brassica rapa LMW Plant PAP n/a D6MW88 

GmPAP2 Glycine max LMW Plant PAP n/a Q9LL80 

IbPAP4 Ipomoea batatas LMW Plant PAP n/a Q9LL81 

LlACP3 Lupinus luteus LMW Plant PAP n/a Q707M7 

LlPPD3 Lupinus luteus LMW Plant PAP PPD3 Q8VXF5 

OsPAP1 Oryza sativa LMW Plant PAP OSJNBa0023I19.10 Q7XH73 

PvPAP3 Phaseolus vulgaris  LMW Plant PAP n/a D2D4J4 

PvPAP4 Phaseolus vulgaris  LMW Plant PAP n/a Q9LL79 

PvPAP5 Phaseolus vulgaris  LMW Plant PAP n/a E2D740 

StPAP1 Solanum tuberosum LMW Plant PAP n/a Q6J5M7 

ZmPAP Zea mays  LMW Plant PAP n/a C4IZM1 

AgPAP Anopheles gambiae HMW Animal PAP Aga_PAPL1 Q7PUN5 

AmPAP Apis mellifera HMW Animal PAP Ame_PAPL1 A0A087ZWE4 

CePAP1 Caenorhabditis elegans HMW Animal PAP? CELE_F02E9.7 O01320 

CePAP3 Caenorhabditis elegans HMW Animal PAP Cel_PAPL3 Q9NAM9 

DmPAP1 Drosophila melanogaster HMW Animal PAP Dme_PAPL1; DmPAP_b Q9VZ56 

DmPAP2 Drosophila melanogaster HMW Animal PAP Dme_PAPL2 Q9VZ58 

DmPAP3 Drosophila melanogaster HMW Animal PAP Dme_PAPL3; DmPAP_a Q9VZ57 

HsPAP7 Homo sapiens HMW Animal PAP Hsa_PAPL1; HsACP7 Q6ZNF0 
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Name Organism Group Alternative names UniProt ID 

MmPAP7 Mus musculus HMW Animal PAP Mmu_PAPL1; MmACP7 Q8BX37 

TnPAP1 Tetraodon nigroviridis HMW Animal PAP Tni_PAPL1 Q4RLR4 

DrPAP1 Danio rerio LMW Animal PAP Dre_PAP1; DrACP5a Q6DHF5 

DrPAP2 Danio rerio LMW Animal PAP Dre_PAP2; DrACP5a Q7SXT1 

HsPAP5 Homo sapiens LMW Animal PAP Hsa_ACP5 P13686 

MmPAP5 Mus musculus LMW Animal PAP Mmu_ACP5 Q05117 

RnPAP5 Ratus novergicus LMW Animal PAP Rn_ACP5 P29288 

SsPAP5 Sus scrofa LMW Animal PAP Ss_ACP5 P09889 

TnPAP2 Tetraodon nigroviridis LMW Animal PAP n/a Q4S7S5 

XlPAP1 Xenopus laevis LMW Animal PAP Xla_PAP1; XlACP5 Q6GNG2 

XlPAP2 Xenopus laevis LMW Animal PAP Xla_PAP2; XlACP5 Q6IP56 

XtPAP5 Xenopus tropicalis LMW Animal PAP XtACP5 Q66IG6 

CrPAP1 Chlamydomonas reinhardtii Microalgal PAP Cre16.g672250.t1.3 n/a 

CrPAP2 Chlamydomonas reinhardtii Microalgal PAP Cre13.g578350.t1.2 n/a 

CrPAP3 Chlamydomonas reinhardtii Microalgal PAP Cre11.g476700.t1.2 n/a 

CrPAP4 Chlamydomonas reinhardtii Microalgal PAP Cre11.g468500.t1.3 n/a 

CrPAP5 Chlamydomonas reinhardtii Microalgal PAP Cre12.g500200.t1.3 n/a 

CrPAP6 Chlamydomonas reinhardtii Microalgal PAP Cre06.g259650.t1.2 n/a 

MpPAP1 Micromonas pusilla Microalgal PAP MpPAP(3567) n/a 

MpPAP2 Micromonas pusilla Microalgal PAP MpPAP(48357) n/a 

MpPAP3 Micromonas pusilla Microalgal PAP MpPAP(57207) n/a 

MpPAP4 Micromonas pusilla Microalgal PAP MpPAP(146371) n/a 

OlPAP1 Ostreococcus lucimarinus Microalgal PAP OlPAP(1604) n/a 

OlPAP2 Ostreococcus lucimarinus Microalgal PAP OlPAP(2983) n/a 

AfPAP Aspergillus ficuum Fungal PAP AphA; APase6; AfPAPhyC Q12546 

AnidPAP Aspergillus nidulans Fungal PAP suApacA Q92200 

BcPAP Burkholderia cenocepacia J2315 Bacterial PAP BCAM1663 B4EKR2 

BmaPAP Burkholderia mallei ATCC 23344 Bacterial PAP BMA0259 A0A0H2WHP3 

BpsPAP Burkholderia pseudomallei K96243 Bacterial PAP BPSL0702 Q63X35 

LePAP Lysobacter enzymogenes Bacterial PAP phoA Q05205 

MbPAP Mycobacterium bovis AF2122/97 Bacterial PAP BQ2027_MB2608 A0A1R3Y2F9 

MtubPAP Mycobacterium tuberculosis H37Rv Bacterial PAP Rv2577 P9WL81 
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Figure A1. Colour key for Chapter 2 MSAs 

PAPhy sequences are separated in characterised (PAPhy), predicted by sequence homology (Predicted 
PAPhy) and sequence outliers (PAPhy outlier). Signal peptide was only displayed when the information 
was available from the UniProt database. 
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Figure A2. PAPhy vs HMW PAPs MSA (See Figure A1 for key) 
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Figure A3. PAPhy vs LMW PAPs MSA (See Figure A1 for key)  
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Figure A4. PAPhy vs Microbial PAPs MSA (See Figure A1 for key) 
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Table A2. PAP I motif conservation 

Metal ligands are coloured in dark red. Conservation is shown in a blue to white gradient, with no substitutions with respect to the literature motif being the darker blue and 
over three substitutions being white. The PAPhy group includes characterised and predicted PAPhy sequences. The HMW Plant PAPs group includes HMW plant PAP and 
PAPhy outlier sequences. *The two bacterial PAPs that contain GDLG PAP I motif have a four residues insertion in the middle (GDQSTPALG). 

 Motif  Group   

 PAP I  PAPhy 
HMW Plant 

PAPs 
HMW Animal 

PAPs 
LMW Plant 

PAPs 
LMW Animal 

PAPs 
Microalgal 

PAPs 
Fungal 
PAPs 

Bacterial 
PAPs 

Total % 

Residue 1 2 3 4 Sequences 29 42 10 13 10 12 2 6 124 100 

Literature G D x G Substitutions 29 41 8 13 10 5 0 2 108 87.1 

Observed 

G D L G 0 28 36 1 0 0 0 0 2* 67 54.0 

G D W G 0 0 0 0 13 10 2 0 0 25 20.2 

G D M G 0 0 4 6 0 0 1 0 0 11 8.9 

G D T G 0 0 0 1 0 0 2 0 0 3 2.4 

G D V G 0 1 0 0 0 0 0 0 0 1 0.8 

G D I G 0 0 1 0 0 0 0 0 0 1 0.8 

A D M G 1 0 0 0 0 0 3 0 0 3 2.4 

N D M G 1 0 0 0 0 0 0 2 0 2 1.6 

S D L G 1 0 1 0 0 0 0 0 0 1 0.8 

A D V G 1 0 0 0 0 0 1 0 0 1 0.8 

C D V G 1 0 0 0 0 0 1 0 0 1 0.8 

A D I G 1 0 0 0 0 0 1 0 0 1 0.8 

G D L A 1 0 0 0 0 0 0 0 3 3 2.4 

G D L S 1 0 0 1 0 0 0 0 0 1 0.8 

G D I C 1 0 0 0 0 0 0 0 1 1 0.8 

A D V S 2 0 0 0 0 0 1 0 0 1 0.8 

- - - - 4 0 0 1 0 0 0 0 0 1 0.8 
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Table A3. PAP II motif conservation (See Table A2 caption) 

 Motif  Group   

 PAP II  PAPhy 
HMW Plant 

PAPs 
HMW Animal 

PAPs 
LMW Plant 

PAPs 
LMW Animal 

PAPs 
Microalgal 

PAPs 
Fungal 
PAPs 

Bacterial 
PAPs 

Total % 

Residue 1 2 3 4 5 Sequences 29 42 10 13 10 12 2 6 124 100 

Literature G D x x Y Substitutions 28 42 9 13 10 12 2 6 122 98.4 

Observed 

G D L S Y 0 0 31 0 0 0 3 2 0 36 29.0 

G D N F Y 0 0 0 0 13 10 2 0 0 25 20.2 

G D V S Y 0 15 0 0 0 0 1 0 0 16 12.9 

G D F A Y 0 0 0 7 0 0 2 0 0 9 7.3 

G D L C Y 0 0 2 0 0 0 0 0 5 7 5.6 

G D V C Y 0 5 0 0 0 0 0 0 0 5 4.0 

G D V T Y 0 5 0 0 0 0 0 0 0 5 4.0 

G D M T Y 0 0 5 0 0 0 0 0 0 5 4.0 

G D I S Y 0 0 2 0 0 0 1 0 0 3 2.4 

G D L T Y 0 1 1 0 0 0 0 0 0 2 1.6 

G D L A Y 0 0 0 1 0 0 1 0 0 2 1.6 

G D A S Y 0 1 0 0 0 0 0 0 0 1 0.8 

G D A T Y 0 1 0 0 0 0 0 0 0 1 0.8 

G D L P Y 0 0 1 0 0 0 0 0 0 1 0.8 

G D N I Y 0 0 0 1 0 0 0 0 0 1 0.8 

G D N S Y 0 0 0 0 0 0 1 0 0 1 0.8 

G D N T Y 0 0 0 0 0 0 1 0 0 1 0.8 

G D N A Y 0 0 0 0 0 0 0 0 1 1 0.8 

R D F A Y 1 0 0 1 0 0 0 0 0 1 0.8 

G G V T Y 1 1 0 0 0 0 0 0 0 1 0.8 
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Table A4. PAP III motif conservation (See Table A2 caption) 

 Motif  Group   

 PAP III  PAPhy 
HMW Plant 

PAPs 
HMW Animal 

PAPs 
LMW Plant 

PAPs 
LMW Animal 

PAPs 
Microalgal 

PAPs 
Fungal 
PAPs 

Bacterial 
PAPs 

Total % 

Residue 1 2 3 4 Sequences 29 42 10 13 10 12 2 6 124 100 

Literature G N H E/D Substitutions 29 40 10 13 10 9 2 6 119 96.0 

Observed 

G N H E 0 29 38 9 0 0 6 2 5 89 71.8 

G N H D 0 0 2 1 13 10 3 0 1 30 24.2 

A N H E 1 0 0 0 0 0 2 0 0 2 1.6 

G N Y E 1 0 1 0 0 0 0 0 0 1 0.8 

G D H D 1 0 0 0 0 0 1 0 0 1 0.8 

G S H E 1 0 1 0 0 0 0 0 0 1 0.8 
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Table A5. PAP IV motif conservation (See Table A2 caption) 

 Motif  Group   

 PAP IV  PAPhy 
HMW Plant 

PAPs 
HMW Animal 

PAPs 
LMW Plant 

PAPs 
LMW Animal 

PAPs 
Microalgal 

PAPs 
Fungal 
PAPs 

Bacterial 
PAPs 

Total % 

Residue 1 2 3 4 Sequences 29 42 10 13 10 12 2 6 124 100 

Literature V x x H Substitutions 1 31 1 12 10 9 2 5 71 57.3 

Observed 

V L M H 0 0 20 0 0 0 0 0 0 20 16.1 

V V G H 0 0 0 0 9 1 1 0 0 11 8.9 

V A G H 0 0 0 0 0 9 0 0 0 9 7.3 

V L V H 0 0 5 0 0 0 0 0 0 5 4.0 

V I G H 0 0 0 0 3 0 1 0 0 4 3.2 

V Q M H 0 0 0 0 0 0 0 0 3 3 2.4 

V Q F H 0 0 0 0 0 0 2 0 0 2 1.6 

V C M H 0 0 0 0 0 0 0 0 2 2 1.6 

V M S H 0 0 0 0 0 0 0 2 0 2 1.6 

V M F H 0 0 0 1 0 0 1 0 0 2 1.6 

V T W H 0 1 0 0 0 0 0 0 0 1 0.8 

V L F H 0 0 1 0 0 0 0 0 0 1 0.8 

V L L H 0 0 1 0 0 0 0 0 0 1 0.8 

V V M H 0 0 1 0 0 0 0 0 0 1 0.8 

V V T H 0 0 1 0 0 0 0 0 0 1 0.8 

V M V H 0 0 1 0 0 0 0 0 0 1 0.8 

V I V H 0 0 1 0 0 0 0 0 0 1 0.8 

V G G H 0 0 0 0 0 0 1 0 0 1 0.8 

V G I H 0 0 0 0 0 0 1 0 0 1 0.8 

V H G H 0 0 0 0 0 0 1 0 0 1 0.8 

V V F H 0 0 0 0 0 0 1 0 0 1 0.8 

A G W H 1 17 0 0 0 0 0 0 0 17 13.7 
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 Motif  Group   

 PAP IV  PAPhy 
HMW Plant 

PAPs 
HMW Animal 

PAPs 
LMW Plant 

PAPs 
LMW Animal 

PAPs 
Microalgal 

PAPs 
Fungal 
PAPs 

Bacterial 
PAPs 

Total % 

A T W H 1 7 0 0 0 0 0 0 0 7 5.6 

A A W H 1 0 4 0 0 0 0 0 0 4 3.2 

A S W H 1 2 1 0 0 0 0 0 0 3 2.4 

A Y F H 1 0 0 0 0 0 0 0 1 1 0.8 

A A W H 1 1 0 0 0 0 0 0 0 1 0.8 

A V G H 1 0 0 0 1 0 0 0 0 1 0.8 

A M W H 1 0 0 0 0 0 1 0 0 1 0.8 

A T M H 1 0 1 0 0 0 0 0 0 1 0.8 

A L W H 1 0 1 0 0 0 0 0 0 1 0.8 

A V V H 1 0 1 0 0 0 0 0 0 1 0.8 

T M G H 1 0 0 3 0 0 0 0 0 3 2.4 

T Y G H 1 0 0 3 0 0 0 0 0 3 2.4 

T F G H 1 0 0 1 0 0 0 0 0 1 0.8 

F L A H 1 0 2 0 0 0 0 0 0 2 1.6 

F S A H 1 0 1 0 0 0 0 0 0 1 0.8 

F A G H 1 0 0 0 0 0 1 0 0 1 0.8 

L Y G H 1 0 0 1 0 0 0 0 0 1 0.8 

L G G H 1 0 0 0 0 0 1 0 0 1 0.8 

I S G H 1 0 0 1 0 0 0 0 0 1 0.8 

A G W Y 2 1 0 0 0 0 0 0 0 1 0.8 
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Table A6. PAP V motif conservation (See Table A2 caption) 

 Motif  Group   

 PAP V  PAPhy 
HMW Plant 

PAPs 
HMW Animal 

PAPs 
LMW Plant 

PAPs 
LMW Animal 

PAPs 
Microalgal 

PAPs 
Fungal 
PAPs 

Bacterial 
PAPs 

Total % 

Residue 1 2 3 4 Sequences 29 42 10 13 10 12 2 6 124 100 

Literature G H x H Substitutions 29 42 2 13 10 12 2 6 116 93.5 

Observed 

G H V H 0 28 42 0 0 0 6 0 0 76 61.3 

G H D H 0 0 0 1 13 7 1 0 4 26 21.0 

G H E H 0 0 0 0 0 3 2 0 2 7 5.6 

G H I H 0 1 0 0 0 0 0 2 0 3 2.4 

G H N H 0 0 0 0 0 0 2 0 0 2 1.6 

G H K H 0 0 0 1 0 0 0 0 0 1 0.8 

G H H H 0 0 0 0 0 0 1 0 0 1 0.8 

A H E H 1 0 0 8 0 0 0 0 0 8 6.5 
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Table A7. PAPhy 1 motif conservation 

Conservation is shown in a blue to white gradient, with no substitutions with respect to the literature motif being the darker blue and over three substitutions being white. 
Substitutions are shown in bold. LMW PAPs were not included in the PAPhy motif analysis.  

 Motif  Group   

 PAPhy 1  PAPhy 
Predicted 

PAPhy 
PAPhy 

outliers 

HMW 
Plant 
PAPs 

HMW 
Animal 
PAPs 

Microalgal 
PAPs 

Fungal 
PAPs 

Bacterial 
PAPs 

Total % 

Residue 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Sequences 14 15 2 40 10 12 2 6 101 100 

Literature R G H/V/Q/N A V/I D L/I P D/E T D P R/L V Q R R/N/T Substitutions 10 10 0 0 0 0 0 0 20 19.8 

Observed 

R G H A V D L P D T D P R V Q R R 0 8 10 0 0 0 0 0 0 18 17.8 

R G N A V D I P D T D P L V Q R N 0 1 0 0 0 0 0 0 0 1 1.0 

R G H A V D L P D T D P R V Q R T 0 1 0 0 0 0 0 0 0 1 1.0 

R G Q A I D L P D T D P R V R R R 1 1 0 0 0 0 0 0 0 1 1.0 

R G V A V D L P E T D P R V R R R 1 1 0 0 0 0 0 0 0 1 1.0 

R G N T I D L P D T D P R V Q R T 1 1 0 0 0 0 0 0 0 1 1.0 

R G H A I D L P D S D P R V Q R T 1 0 1 0 0 0 0 0 0 1 1.0 

R G K A I D L P D T D P R V R R R 2 0 1 0 0 0 0 0 0 1 1.0 

R G K A V D L P D T D P R V R R R 2 0 1 0 0 0 0 0 0 1 1.0 

R G N A V D L P P S D P R V R R R 3 0 1 0 0 0 0 0 0 1 1.0 

P T V S I D L P D T D P R V R R N 4 1 0 0 0 0 0 0 0 1 1.0 

R R G S V D L L P T D P R V A K T 7 0 0 0 1 0 0 0 0 1 1.0 

R R G S D D L P M T H P R L R K N 9 0 1 0 0 0 0 0 0 1 1.0 

R Q G S N D V P L T D P R L A P R 9 0 0 0 1 0 0 0 0 1 1.0 

R Q G S D D V P L T D P R L A P R 9 0 0 0 1 0 0 0 0 1 1.0 

R Q G S D D V P L T D P R L V P R 9 0 0 0 1 0 0 0 0 1 1.0 

R R G S D D L P M D H P R L R K R 10 0 0 1 0 0 0 0 0 1 1.0 

R R G S E D V P L S D P R L A P R 10 0 0 0 1 0 0 0 0 1 1.0 

R Q G S D E V P I T E P R L A P C 12 0 0 0 1 0 0 0 0 1 1.0 

R R S L V E Q D S V A D A R L Q R 14 0 0 0 0 0 1 0 0 1 1.0 
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Table A8. PAPhy 2 motif conservation (See Table A7 caption) 
 Motif  Group   

 PAPhy 2  PAPhy 
Predicted 

PAPhy 
PAPhy 

outliers 
HMW Plant 

PAPs 
HMW Animal 

PAPs 
Microalgal 

PAPs 
Fungal 
PAPs 

Bacterial 
PAPs 

Total % 

Residue 1 2 3 4 5 6 Sequences 14 15 2 40 10 12 2 6 101 100 

Literature S V/I V R/Q Y/F G Substitutions 13 13 0 0 0 0 0 0 26 25.7 

Observed 

S V V R Y G 0 9 11 0 0 0 0 0 0 20 19.8 

S I V Q Y G 0 1 0 0 0 0 0 0 0 1 1.0 

S V V Q F G 0 1 1 0 0 0 0 0 0 2 2.0 

S V V Q Y G 0 2 1 0 0 0 0 0 0 3 3.0 

S V V H Y G 1 1 0 0 0 0 0 0 0 1 1.0 

S V V L Y G 1 0 1 0 0 0 0 0 0 1 1.0 

S V V E Y G 1 0 0 0 1 0 0 0 0 1 1.0 

S V V E Y G 1 0 0 0 0 1 0 0 0 1 1.0 

S I V E Y G 1 0 0 0 0 2 0 0 0 2 2.0 

S T V R Y G 1 0 0 0 1 0 0 0 0 1 1.0 

S E V R Y G 1 0 0 0 1 0 0 0 0 1 1.0 

S E V Q F G 1 0 0 0 0 2 0 0 0 2 2.0 

S K V Q Y G 1 0 0 0 1 0 0 0 0 1 1.0 

S K V Q F G 1 0 0 0 1 0 0 0 0 1 1.0 

S V V Q Y A 1 0 0 0 0 0 1 0 0 1 1.0 

D V V R Y G 1 0 0 0 0 0 1 0 0 1 1.0 

S E V W Y G 2 0 1 1 3 0 0 0 0 5 5.0 

S Y V E Y G 2 0 0 1 0 0 0 0 0 1 1.0 

S M V E Y G 2 0 0 0 1 0 0 0 0 1 1.0 

S T V F Y G 2 0 0 0 1 0 0 0 0 1 1.0 

S E V L Y G 2 0 0 0 1 0 0 0 0 1 1.0 

S E V V Y G 2 0 0 0 1 0 0 0 0 1 1.0 

S Q V H Y G 2 0 0 0 1 0 0 0 0 1 1.0 

S R V E Y G 2 0 0 0 0 1 0 0 0 1 1.0 

P A V R W G 3 0 0 0 0 0 0 1 0 1 1.0 

P S V R W G 3 0 0 0 0 0 0 1 0 1 1.0 
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Table A9. PAPhy 3 motif conservation (See Table A7 caption) 

 Motif  Group   

 PAPhy 3  PAPhy 
Predicted 

PAPhy 
PAPhy 

outliers 

HMW 
Plant 
PAPs 

HMW 
Animal 
PAPs 

Microalgal 
PAPs 

Fungal 
PAPs 

Bacterial 
PAPs 

Total % 

Residue 1 2 3 4 5 6 7 8 9 10 11 12 Sequences 14 15 2 40 10 12 2 6 101 100 

Literature A M S x x H/Y A/Y/H F R/K T M P Substitutions 14 10 0 0 0 0 0 0 24 23.8 

Observed 

A M S A V H A F R T M P 0 6 7 0 0 0 0 0 0 13 12.9 

A M S D I H A F R T M P 0 1 0 0 0 0 0 0 0 1 1.0 

A M S G V H A F R T M P 0 1 0 0 0 0 0 0 0 1 1.0 

A M S D V H Y F R T M P 0 1 0 0 0 0 0 0 0 1 1.0 

A M S G T Y Y F R T M P 0 1 0 0 0 0 0 0 0 1 1.0 

A M S T I Y H F K T M P 0 1 0 0 0 0 0 0 0 1 1.0 

A M S D I Y Y F R T M P 0 2 1 0 0 0 0 0 0 3 3.0 

A M S K I H H F R T M P 0 1 1 0 0 0 0 0 0 2 2.0 

A M S D I Y H F R T M P 0 0 1 0 0 0 0 0 0 1 1.0 

A M S N I Y S F R T M P 1 0 1 0 0 0 0 0 0 1 1.0 

T M S A V H A F R T M P 1 0 1 0 0 0 0 0 0 1 1.0 

A T S A V H A F R T M P 1 0 2 0 0 0 0 0 0 2 2.0 

A M S Q E R F F E T F P 4 0 1 0 0 0 0 0 0 1 1.0 

A M S E E I S F E T L P 4 0 0 1 0 0 0 0 0 1 1.0 

G L S D E R S F R T L P 5 0 0 0 1 0 0 0 0 1 1.0 

G L S D E H S F T T L P 5 0 0 0 1 0 0 0 0 1 1.0 

T F S A E H S F T T L P 5 0 0 0 1 0 0 0 0 1 1.0 

G W S A I F Q F R T V P 5 0 0 0 0 1 0 0 0 1 1.0 

G W S A V F N F K T P P 5 0 0 0 0 1 0 0 0 1 1.0 

G W S A E F Y F H T T P 5 0 0 0 0 1 0 0 0 1 1.0 

K D S A V R S F K T T P 5 0 0 0 0 0 1 0 0 1 1.0 

G L S D E R S F T T L P 6 0 0 0 1 0 0 0 0 1 1.0 

G L S G E L S F E T L P 6 0 0 0 2 0 0 0 0 2 2.0 

G W S K E Y S F V S A P 6 0 0 0 0 0 1 0 0 1 1.0 
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Table A10. PAPhy 4 motif conservation (See Table A7 caption) 

 Motif  Group   

 PAPhy 4  PAPhy 
Predicted 

PAPhy 
PAPhy 

outliers 

HMW 
Plant 
PAPs 

HMW 
Animal 
PAPs 

Microalgal 
PAPs 

Fungal 
PAPs 

Bacterial 
PAPs 

Total % 

Residue 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Sequences 14 15 2 40 10 12 2 6 101 100 

Literature D C Y S C S/A F x x x T P I H Substitutions 13 12 0 0 0 0 0 0 25 24.8 

Observed 

D C Y S C S F G K S T P I H 0 1 0 0 0 0 0 0 0 1 1.0 

D C Y S C A F G K S T P I H 0 1 6 0 0 0 0 0 0 7 6.9 

D C Y S C S F A K S T P I H 0 4 3 0 0 0 0 0 0 7 6.9 

D C Y S C S F A N S T P I H 0 1 1 0 0 0 0 0 0 2 2.0 

D C Y S C A F A K S T P I H 0 1 0 0 0 0 0 0 0 1 1.0 

D C Y S C S F S N - T P I H 0 1 0 0 0 0 0 0 0 1 1.0 

D C Y S C S F N D - T P I H 0 1 0 0 0 0 0 0 0 1 1.0 

D C Y S C S F P H - T P I H 0 1 0 0 0 0 0 0 0 1 1.0 

D C Y S C S F P L - T P I H 0 1 0 0 0 0 0 0 0 1 1.0 

D C Y S C S F P E - T P I H 0 1 1 0 0 0 0 0 0 2 2.0 

D C Y S C S F P Q - T P I H 0 0 1 0 0 0 0 0 0 1 1.0 

D C Y S C S F A N - S P I H 1 1 0 0 0 0 0 0 0 1 1.0 

D C Y K C A F P Q - T P I H 1 0 1 0 0 0 0 0 0 1 1.0 

D C Y K C S F P Q - S P I H 2 0 1 0 0 0 0 0 0 1 1.0 

S C Y S C A F P D - A P I R 3 0 1 0 0 0 0 0 0 1 1.0 

P C F S C S F P D - A P I R 4 0 0 1 1 0 0 0 0 2 2.0 

P C F S C S F P K - A P I R 4 0 0 0 1 0 0 0 0 1 1.0 

P C F S C S F P N - A P I R 4 0 0 0 1 0 0 0 0 1 1.0 

P C Y S C A F P D - S P T R 4 0 0 0 1 0 0 0 0 1 1.0 

P C F S C S F P D - A P L R 5 0 0 0 2 0 0 0 0 2 2.0 

D N Y G A L S P D D L G D S 9 0 0 0 0 0 1 0 0 1 1.0 

D N Y G A L D T E V R N S K 9 0 0 0 0 0 1 0 0 1 1.0 
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Table A11. BLASTP search of PAPhy consensus against the non-redundant protein sequences database 

Results table for the BLAST search performed against the whole non-redundant protein sequences 
database using the PAPhy consensus sequence as query. Results shaded pink correspond to already 
characterised or predicted PAPhy. 

Accession # Description Score (Bits) E Value 

AEO00268.1 recTaPAPhy_b2_delta_C-t_cMyc_6xHIS [synthetic construct] 1015 0 

AEE99723.1 PAPhy_b2 [Triticum aestivum] 1013 0 

ACR23329.1 purple acid phosphatase isoform b2 [Triticum aestivum] 1012 0 

AEO00269.1 recTaPAPhy_b2_delta_C-t_6xHIS [synthetic construct] 1010 0 

AEE99733.1 PAPhy_b1 [Secale cereale] 1010 0 

AEE99727.1 PAPhy_b1 [Triticum monococcum] 1005 0 

AEO00267.1 recTa_PAPhy_b1_delta_C-t_6xHIS [synthetic construct] 1003 0 

AEO00271.1 recHvPAPhy_b2_delta_C-t_6xHIS [synthetic construct] 997 0 

AEE99729.1 PAPhy_b1 [Aegilops tauschii] 996 0 

ACR23328.1 purple acid phosphatase isoform b1 [Triticum aestivum] 994 0 

AEE99722.1 PAPhy_b1 [Triticum aestivum] 994 0 

AEE99724.1 PAPhy_b3 [Triticum aestivum] 993 0 

ACR23333.1 purple acid phosphatase isoform b2 [Hordeum vulgare] 991 0 

AEE99725.1 PAPhy_b3 [Triticum aestivum] 989 0 

XP_003567420.1 PREDICTED: purple acid phosphatase 15 [Brachypodium distachyon] 988 0 

ACR23332.1 purple acid phosphatase isoform b1 [Hordeum vulgare] 987 0 

AEE99735.1 PAPhy variant b1 [Hordeum vulgare] 985 0 

ACR23327.1 purple acid phosphatase isoform a2 [Triticum aestivum] 984 0 

AEO00270.1 recHvPAPhy_a_delta_C-t_6xHIS [synthetic construct] 977 0 

AEE99720.1 PAPhy_a3 [Triticum aestivum] 977 0 

XP_020191825.1 purple acid phosphatase 15-like [Aegilops tauschii subsp. tauschii] 975 0 

AEO00266.1 recTaPAPhy_a1_delta_C-t_6xHIS [synthetic construct] 975 0 

ACR23331.1 purple acid phosphatase isoform a [Hordeum vulgare] 974 0 

AEE99728.1 PAPhy_a1 [Aegilops tauschii] 972 0 

AEE99717.1 PAPhy_a1 [Triticum aestivum] 972 0 

XP_020155451.1 purple acid phosphatase 15-like [Aegilops tauschii subsp. tauschii] 972 0 

ACR23326.1 purple acid phosphatase isoform a1 [Triticum aestivum] 971 0 

AEE99730.1 PAPhy_a1 [Secale cereale] 967 0 

AEE99732.1 PAPhy_a2 [Secale cereale] 966 0 

AEE99719.1 PAPhy_a2 [Triticum aestivum] 961 0 

AEE99726.1 PAPhy_a1 [Triticum monococcum] 954 0 

AEG77017.1 purple acid phosphatase isoform b [Hordeum vulgare subsp. vulgare] 953 0 

ABF99890.1 
Ser/Thr protein phosphatase family protein, expressed [Oryza sativa Japonica 
Group] 

951 0 

XP_015631975.1 PREDICTED: purple acid phosphatase 15 [Oryza sativa Japonica Group] 944 0 

ADG07931.1 purple acid phosphatase isoform b [Oryza sativa Japonica Group] 944 0 

AEO00272.1 recOsPAPhy_b_delta_C-t_6xHIS [synthetic construct] 944 0 

XP_015690330.1 PREDICTED: purple acid phosphatase 15 [Oryza brachyantha] 943 0 

BAF13805.1 Os03g0848200 [Oryza sativa Japonica Group] 942 0 

EEC76531.1 hypothetical protein OsI_14321 [Oryza sativa Indica Group] 941 0 

KQK86187.1 hypothetical protein SETIT_034687mg [Setaria italica] 938 0 

XP_012698453.1 purple acid phosphatase 15 [Setaria italica] 938 0 

PAN44018.1 hypothetical protein PAHAL_I01134 [Panicum hallii] 932 0 

AFV28975.1 purple acid phosphatase [Triticum aestivum] 924 0 

XP_021308311.1 purple acid phosphatase 15 [Sorghum bicolor] 915 0 

AEO00273.1 recZmPAPhy_b_delta_C-t_6xHIS [synthetic construct] 900 0 

ACR23335.1 purple acid phosphatase isoform b [Zea mays] 900 0 

XP_010233761.1 PREDICTED: purple acid phosphatase 15-like [Brachypodium distachyon] 896 0 

XP_008667173.1 uncharacterized LOC100272946 isoform X1 [Zea mays] 890 0 

ONM11578.1 Purple acid phosphatase 15 [Zea mays] 884 0 

ONM11581.1 Purple acid phosphatase 15 [Zea mays] 878 0 

EEE60297.1 hypothetical protein OsJ_13361 [Oryza sativa Japonica Group] 838 0 

NP_001140870.1 uncharacterized LOC100272946 precursor [Zea mays] 837 0 

OVA06852.1 Phosphoesterase domain [Macleaya cordata] 835 0 

XP_011041900.1 PREDICTED: purple acid phosphatase 15-like isoform X1 [Populus euphratica] 832 0 
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BAS87356.1 Os03g0848200 [Oryza sativa Japonica Group] 831 0 

XP_011041903.1 PREDICTED: purple acid phosphatase 15-like isoform X4 [Populus euphratica] 831 0 

XP_011041902.1 PREDICTED: purple acid phosphatase 15-like isoform X3 [Populus euphratica] 831 0 

XP_011041901.1 PREDICTED: purple acid phosphatase 15-like isoform X2 [Populus euphratica] 831 0 

XP_012071127.2 purple acid phosphatase 15 isoform X2 [Jatropha curcas] 831 0 

KDP39361.1 hypothetical protein JCGZ_01118 [Jatropha curcas] 830 0 

XP_006420927.1 hypothetical protein CICLE_v10004642mg [Citrus clementina] 828 0 

XP_006420928.1 hypothetical protein CICLE_v10004642mg [Citrus clementina] 828 0 

XP_006493060.1 PREDICTED: purple acid phosphatase 15 isoform X2 [Citrus sinensis] 827 0 

KDO42829.1 hypothetical protein CISIN_1g008312mg [Citrus sinensis] 827 0 

XP_021595347.1 purple acid phosphatase 15-like isoform X4 [Manihot esculenta] 825 0 

XP_015574076.1 PREDICTED: purple acid phosphatase 15 isoform X1 [Ricinus communis] 825 0 

XP_002323987.2 serine/threonine protein phosphatase [Populus trichocarpa] 825 0 

XP_021595346.1 purple acid phosphatase 15-like isoform X3 [Manihot esculenta] 824 0 

OMO71036.1 hypothetical protein CCACVL1_18488 [Corchorus capsularis] 824 0 

XP_015574077.1 PREDICTED: purple acid phosphatase 15 isoform X2 [Ricinus communis] 824 0 

XP_009385494.1 PREDICTED: purple acid phosphatase 15 [Musa acuminata subsp. malaccensis] 824 0 

EEF44218.1 acid phosphatase, putative [Ricinus communis] 824 0 

AGL44402.1 calcineurin-like phosphoesterase [Manihot esculenta] 824 0 

OMO88642.1 hypothetical protein COLO4_20148 [Corchorus olitorius] 824 0 

XP_015574078.1 PREDICTED: purple acid phosphatase 15 isoform X3 [Ricinus communis] 824 0 

CDP11126.1 unnamed protein product [Coffea canephora] 823 0 

XP_006493059.1 PREDICTED: purple acid phosphatase 15 isoform X1 [Citrus sinensis] 823 0 

XP_008792903.1 PREDICTED: purple acid phosphatase 15-like [Phoenix dactylifera] 822 0 

XP_010926759.1 PREDICTED: purple acid phosphatase 15-like [Elaeis guineensis] 820 0 

AFY06666.1 purple acid phosphatase [Citrus trifoliata] 820 0 

GAU48994.1 hypothetical protein TSUD_88670 [Trifolium subterraneum] 820 0 

XP_021641480.1 purple acid phosphatase 15-like isoform X2 [Hevea brasiliensis] 819 0 

XP_021641479.1 purple acid phosphatase 15-like isoform X1 [Hevea brasiliensis] 819 0 

XP_016566379.1 PREDICTED: purple acid phosphatase 15 isoform X2 [Capsicum annuum] 818 0 

XP_009611646.1 
PREDICTED: purple acid phosphatase 15 isoform X2 [Nicotiana 
tomentosiformis] 

818 0 

XP_016566378.1 PREDICTED: purple acid phosphatase 15 isoform X1 [Capsicum annuum] 817 0 

XP_004247857.1 PREDICTED: purple acid phosphatase 15 isoform X1 [Solanum lycopersicum] 817 0 

XP_003601637.1 purple acid phosphatase superfamily protein [Medicago truncatula] 817 0 

AAX71115.1 phytase [Medicago truncatula] 816 0 

XP_015086742.1 PREDICTED: purple acid phosphatase 15 isoform X1 [Solanum pennellii] 816 0 

XP_012481726.1 
PREDICTED: purple acid phosphatase 15-like isoform X1 [Gossypium 
raimondii] 

816 0 

XP_010326830.1 PREDICTED: purple acid phosphatase 15 isoform X2 [Solanum lycopersicum] 816 0 

XP_009611645.1 
PREDICTED: purple acid phosphatase 15 isoform X1 [Nicotiana 
tomentosiformis] 

816 0 

XP_016724292.1 PREDICTED: purple acid phosphatase 15-like [Gossypium hirsutum] 816 0 

XP_006601875.1 PREDICTED: purple acid phosphatase 15-like isoform X1 [Glycine max] 816 0 

XP_004502218.1 PREDICTED: purple acid phosphatase 15-like isoform X1 [Cicer arietinum] 816 0 

PHU21359.1 Purple acid phosphatase 13 [Capsicum chinense] 815 0 

GAV67690.1 
Metallophos domain-containing protein/Metallophos_C domain-containing 
protein [Cephalotus follicularis] 

815 0 

XP_015086743.1 PREDICTED: purple acid phosphatase 15 isoform X2 [Solanum pennellii] 815 0 

XP_019180960.1 PREDICTED: purple acid phosphatase 15-like [Ipomoea nil] 815 0 
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Table A12. BLASTP search of PAPhy consensus against the non-redundant protein sequences database 
excluding plant sequences 

Results table for the BLAST search performed against the non-redundant protein sequences database 
using the PAPhy consensus sequence as query and restricting the output to non-plant sequences. Results 
shaded pink correspond to already characterised or predicted PAPhy. 

Accession # Description Score (Bits) E Value 

AEO00268.1 recTaPAPhy_b2_delta_C-t_cMyc_6xHIS [synthetic construct] 1015 0 

AEO00269.1 recTaPAPhy_b2_delta_C-t_6xHIS [synthetic construct] 1010 0 

AEO00267.1 recTa_PAPhy_b1_delta_C-t_6xHIS [synthetic construct] 1003 0 

AEO00271.1 recHvPAPhy_b2_delta_C-t_6xHIS [synthetic construct] 997 0 

AEO00270.1 recHvPAPhy_a_delta_C-t_6xHIS [synthetic construct] 977 0 

AEO00266.1 recTaPAPhy_a1_delta_C-t_6xHIS [synthetic construct] 975 0 

AEO00272.1 recOsPAPhy_b_delta_C-t_6xHIS [synthetic construct] 944 0 

AEO00273.1 recZmPAPhy_b_delta_C-t_6xHIS [synthetic construct] 900 0 

XP_005642760.1 Metallo-dependent phosphatase [Coccomyxa subellipsoidea C-169] 442 2.00E-147 

GAQ89001.1 hypothetical protein KFL_004780010 [Klebsormidium nitens] 377 7.00E-122 

XP_011400105.1 Purple acid phosphatase 15 [Auxenochlorella protothecoides] 374 8.00E-121 

XP_005651640.1 Metallo-dependent phosphatase [Coccomyxa subellipsoidea C-169] 328 4.00E-104 

GAQ79694.1 purple acid phosphatase [Klebsormidium nitens] 335 5.00E-104 

GAQ84117.1 Purple acid phosphatases superfamily protein [Klebsormidium nitens] 318 4.00E-100 

XP_011400106.1 Purple acid phosphatase 15 [Auxenochlorella protothecoides] 315 3.00E-98 

GAQ81065.1 hypothetical protein KFL_000700010 [Klebsormidium nitens] 312 6.00E-95 

GAX79017.1 hypothetical protein CEUSTIGMA_g6457.t1 [Chlamydomonas eustigma] 302 3.00E-92 

GAX79015.1 hypothetical protein CEUSTIGMA_g6455.t1 [Chlamydomonas eustigma] 300 7.00E-91 

XP_011398238.1 Purple acid phosphatase 18 [Auxenochlorella protothecoides] 295 8.00E-91 

XP_005645010.1 Metallo-dependent phosphatase [Coccomyxa subellipsoidea C-169] 298 2.00E-89 

XP_004994476.1 hypothetical protein PTSG_04388 [Salpingoeca rosetta] 291 2.00E-89 

XP_005644436.1 Metallo-dependent phosphatase [Coccomyxa subellipsoidea C-169] 289 4.00E-87 

XP_001743494.1 hypothetical protein [Monosiga brevicollis MX1] 283 2.00E-86 

XP_005650419.1 Metallo-dependent phosphatase [Coccomyxa subellipsoidea C-169] 268 3.00E-79 

XP_013898053.1 hypothetical protein MNEG_8929 [Monoraphidium neglectum] 259 8.00E-79 

KDD75912.1 hypothetical protein H632_c440p0 [Helicosporidium sp. ATCC 50920] 261 2.00E-78 

XP_001695912.1 predicted protein [Chlamydomonas reinhardtii] 261 3.00E-77 

XP_001693551.1 predicted protein [Chlamydomonas reinhardtii] 248 3.00E-71 

GAX82085.1 hypothetical protein CEUSTIGMA_g9513.t1 [Chlamydomonas eustigma] 248 3.00E-71 

XP_005845616.1 hypothetical protein CHLNCDRAFT_58566 [Chlorella variabilis] 247 7.00E-71 

XP_008867791.1 hypothetical protein H310_04978 [Aphanomyces invadans] 241 1.00E-70 

XP_002956809.1 hypothetical protein VOLCADRAFT_77270 [Volvox carteri f. nagariensis] 243 2.00E-69 

XP_008604917.1 hypothetical protein SDRG_01179 [Saprolegnia diclina VS20] 234 2.00E-68 

GAX77692.1 hypothetical protein CEUSTIGMA_g5135.t1 [Chlamydomonas eustigma] 240 2.00E-68 

XP_012194718.1 hypothetical protein SPRG_01129 [Saprolegnia parasitica CBS 223.65] 233 9.00E-68 

XP_009838177.1 hypothetical protein H257_12603 [Aphanomyces astaci] 232 2.00E-67 

KDD71970.1 hypothetical protein H632_c4075p0 [Helicosporidium sp. ATCC 50920] 226 1.00E-66 

XP_019576941.1 PREDICTED: bifunctional purple acid phosphatase 26 [Rhinolophus sinicus] 230 3.00E-66 

XP_009529776.1 hypothetical protein PHYSODRAFT_560568 [Phytophthora sojae] 227 5.00E-65 

OWZ23938.1 Iron(III)-zinc(II) purple acid phosphatase [Phytophthora megakarya] 227 6.00E-65 

ETP45786.1 hypothetical protein F442_07863 [Phytophthora parasitica P10297] 228 1.00E-64 

OQR85020.1 purple acid phosphatase 20-like [Achlya hypogyna] 224 1.00E-64 

ETM47648.1 hypothetical protein L914_07645 [Phytophthora parasitica] 227 2.00E-64 

KUG00586.1 Purple acid phosphatase 18 [Phytophthora nicotianae] 226 6.00E-64 

XP_008904647.1 hypothetical protein PPTG_10898 [Phytophthora parasitica INRA-310] 226 8.00E-64 

ETO76675.1 hypothetical protein F444_07968 [Phytophthora parasitica P1976] 225 8.00E-64 

KXZ54062.1 hypothetical protein GPECTOR_5g17 [Gonium pectorale] 227 1.00E-63 

XP_005535638.1 probable purple acid phosphatase [Cyanidioschyzon merolae strain 10D] 226 2.00E-63 

CEG46048.1 probable purple acid phosphatase 20-like [Plasmopara halstedii] 218 2.00E-62 

KUF96465.1 hypothetical protein AM588_10006046 [Phytophthora nicotianae] 217 2.00E-61 

OQS06871.1 purple acid phosphatase 20-like [Thraustotheca clavata] 214 7.00E-61 

CCI46862.1 unnamed protein product [Albugo candida] 215 1.00E-60 

CCA24554.1 Iron(III)zinc(II) purple acid phosphatase putative [Albugo laibachii Nc14] 215 1.00E-60 

XP_005786596.1 hypothetical protein EMIHUDRAFT_462501 [Emiliania huxleyi CCMP1516] 221 3.00E-60 
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KOO29270.1 purple acid phosphatase 22-like protein [Chrysochromulina sp. CCMP291] 218 5.00E-60 

XP_005535955.1 
probable purple acid phosphatase protein [Cyanidioschyzon merolae strain 
10D] 

216 1.00E-59 

XP_008867792.1 hypothetical protein, variant 1 [Aphanomyces invadans] 208 1.00E-59 

XP_009040156.1 hypothetical protein AURANDRAFT_2456 [Aureococcus anophagefferens] 206 8.00E-59 

XP_002500568.1 predicted protein, partial [Micromonas commoda] 206 4.00E-58 

EWM24423.1 putative purple acid phosphatase 20 [Nannochloropsis gaditana] 209 6.00E-58 

XP_001418076.1 predicted protein [Ostreococcus lucimarinus CCE9901] 202 3.00E-57 

OLQ13473.1 Purple acid phosphatase 18 [Symbiodinium microadriaticum] 205 9.00E-56 

XP_011400104.1 Purple acid phosphatase 15 [Auxenochlorella protothecoides] 202 9.00E-56 

XP_003057348.1 predicted protein [Micromonas pusilla CCMP1545] 195 2.00E-55 

XP_004344296.1 calcineurin-like phosphoesterase [Capsaspora owczarzaki ATCC 30864] 200 2.00E-55 

XP_002908896.1 
Iron(III)-zinc(II) purple acid phosphatase, putative [Phytophthora infestans 
T30-4] 

200 7.00E-55 

EWM24421.1 ser thr protein phosphatase family expressed [Nannochloropsis gaditana] 201 8.00E-55 

GAY02812.1 Hypothetical protein PINS_010626 [Pythium insidiosum] 206 3.00E-54 

XP_008867793.1 hypothetical protein, variant 2 [Aphanomyces invadans] 191 3.00E-53 

OUS47827.1 purple acid phosphatase-like protein [Ostreococcus tauri] 199 9.00E-53 

XP_003079493.1 
Iron/zinc purple acid phosphatase-like C-terminal domain [Ostreococcus 
tauri] 

198 9.00E-53 

KOO30306.1 purple acid phosphatase 18-like protein [Chrysochromulina sp. CCMP291] 196 1.00E-52 

CCI46863.1 unnamed protein product [Albugo candida] 182 6.00E-50 

XP_005792093.1 hypothetical protein EMIHUDRAFT_62631 [Emiliania huxleyi CCMP1516] 181 4.00E-49 

OLP85966.1 Purple acid phosphatase 18 [Symbiodinium microadriaticum] 189 4.00E-48 

XP_007513930.1 predicted protein [Bathycoccus prasinos] 187 5.00E-48 

XP_005790588.1 hypothetical protein EMIHUDRAFT_62875 [Emiliania huxleyi CCMP1516] 177 9.00E-48 

OLQ04592.1 Purple acid phosphatase 18 [Symbiodinium microadriaticum] 187 2.00E-47 

EWM20876.1 purple acid phosphatase isoform b2 [Nannochloropsis gaditana] 184 2.00E-47 

XP_005822961.1 hypothetical protein GUITHDRAFT_165854 [Guillardia theta CCMP2712] 182 6.00E-47 

XP_004334080.1 Serine/threonine phosphatase [Acanthamoeba castellanii str. Neff] 173 3.00E-45 

OIR12952.1 
hypothetical protein BEU05_00010 [Marine Group III euryarchaeote CG-
Bathy2] 

168 5.00E-43 

AIF02460.1 
purple acid phosphatase [uncultured marine group II/III euryarchaeote 
KM3_157_C11] 

163 2.00E-41 

XP_005851825.1 hypothetical protein CHLNCDRAFT_133298 [Chlorella variabilis] 160 3.00E-41 

XP_004336336.1 Ser/Thr phosphatase family protein [Acanthamoeba castellanii str. Neff] 155 7.00E-39 

XP_009497258.1 hypothetical protein H696_05131 [Fonticula alba] 160 1.00E-38 

XP_020892703.1 probable inactive purple acid phosphatase 2 isoform X2 [Exaiptasia pallida] 158 2.00E-38 

XP_022792006.1 probable inactive purple acid phosphatase 9 [Stylophora pistillata] 156 1.00E-37 

XP_020892702.1 
nucleotide pyrophosphatase/phosphodiesterase-like isoform X1 [Exaiptasia 
pallida] 

155 2.00E-37 

XP_004352814.1 
Ser/Thr phosphatase family superfamily protein [Acanthamoeba castellanii 
str. Neff] 

154 3.00E-37 

XP_020428169.1 hypothetical protein PPL_10614 [Polysphondylium pallidum PN500] 152 4.00E-37 

OIR14055.1 
hypothetical protein BEU04_03530 [Marine Group III euryarchaeote CG-
Bathy1] 

152 4.00E-37 

XP_015779285.1 
PREDICTED: probable inactive purple acid phosphatase 2 [Acropora 
digitifera] 

154 6.00E-37 

XP_015775723.1 
PREDICTED: probable inactive purple acid phosphatase 2 [Acropora 
digitifera] 

153 1.00E-36 

XP_020907484.1 probable inactive purple acid phosphatase 9 [Exaiptasia pallida] 152 2.00E-36 

OIR23119.1 
hypothetical protein BET99_00210 [Marine Group III euryarchaeote CG-
Epi2] 

150 2.00E-36 

PBO81240.1 hypothetical protein COC13_03450 [Euryarchaeota archaeon] 149 6.00E-36 

OZJ01427.1 hypothetical protein BZG36_05750 [Bifiguratus adelaidae] 149 1.00E-35 

XP_004992544.1 iron/zinc purple acid phosphatase-like protein [Salpingoeca rosetta] 148 2.00E-35 

XP_004354481.1 Ser/Thr phosphatase, putative [Acanthamoeba castellanii str. Neff] 145 3.00E-35 
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Table A13. BLASTP search of PAPhy consensus against the non-redundant protein sequences database 
including only prokaryotic sequences 

Results table for the BLAST search performed against the whole non-redundant protein sequences 
database using the PAPhy consensus sequence as query and restricting the output to prokaryotic 
sequences. Results shaded pink correspond to already characterised or predicted PAPhy. 

Accession # Description Score (Bits) E Value 

WP_091112253.1 hypothetical protein [Nocardioides psychrotolerans] 120 6.00E-26 

WP_073995362.1 hypothetical protein [Armatimonadetes bacterium GXS] 116 6.00E-25 

WP_091025310.1 hypothetical protein [Nocardioides szechwanensis] 117 8.00E-25 

CUU36519.1 Calcineurin-like phosphoesterase [Armatimonadetes bacterium GXS] 115 1.00E-24 

WP_076414819.1 hypothetical protein [Shewanella sp. UCD-KL12] 118 2.00E-24 

WP_072261434.1 MULTISPECIES: hypothetical protein [unclassified Armatimonadetes] 111 2.00E-23 

CUU34844.1 Calcineurin-like phosphoesterase [Armatimonadetes bacterium DC] 111 3.00E-23 

WP_077753580.1 hypothetical protein [Shewanella psychrophila] 112 2.00E-22 

WP_033526872.1 phosphoesterase [Streptomyces galbus] 110 3.00E-22 

PIV54789.1 
hypothetical protein COS16_09190 [Candidatus Desantisbacteria bacterium 
CG02_land_8_20_14_3_00_49_13] 

111 4.00E-22 

WP_016432483.1 hypothetical protein [Streptomyces sp. HGB0020] 109 5.00E-22 

WP_094056248.1 phosphoesterase [Streptomyces sp. XY006] 109 5.00E-22 

WP_067027069.1 phosphoesterase [Streptomyces sp. RV15] 109 6.00E-22 

PCK09148.1 metallophosphoesterase [Alteromonadaceae bacterium] 108 7.00E-22 

WP_030942929.1 phosphoesterase [Streptomyces sp. NRRL S-646] 108 1.00E-21 

WP_095985775.1 metallophosphoesterase [Cystobacter fuscus] 107 1.00E-21 

WP_083940956.1 hypothetical protein [Pseudoduganella violaceinigra] 108 1.00E-21 

WP_053760021.1 phosphoesterase [Streptomyces sp. AS58] 108 1.00E-21 

WP_079064155.1 phosphoesterase [Streptomyces sp. NRRL F-4489] 107 2.00E-21 

WP_020942412.1 phosphoesterase [Streptomyces collinus] 107 2.00E-21 

WP_019990122.1 T9SS C-terminal target domain-containing protein [Rudanella lutea] 107 2.00E-21 

KUL39863.1 phosphoesterase [Streptomyces sp. NRRL F-4489] 107 2.00E-21 

OGS18554.1 
hypothetical protein A3J83_07560 [Elusimicrobia bacterium 
RIFOXYA2_FULL_40_6] 

107 2.00E-21 

WP_046913510.1 phosphoesterase [Streptomyces stelliscabiei] 107 3.00E-21 

WP_003993161.1 phosphoesterase [Streptomyces viridochromogenes] 107 3.00E-21 

WP_067440252.1 phosphoesterase [Streptomyces lincolnensis] 107 3.00E-21 

WP_097249307.1 phosphoesterase [Streptomyces sp. 1222.2] 107 3.00E-21 

WP_025356225.1 phosphoesterase [Kutzneria albida] 107 3.00E-21 

WP_099881855.1 hypothetical protein [Massilia sp. B2] 107 3.00E-21 

WP_095753102.1 phosphoesterase [Streptomyces sp. SA15] 107 3.00E-21 

WP_099151811.1 hypothetical protein [Lewinella nigricans] 108 3.00E-21 

SHM97906.1 Phosphodiesterase/alkaline phosphatase D [Streptomyces yunnanensis] 107 3.00E-21 

WP_013050969.1 hypothetical protein [Shewanella violacea] 108 3.00E-21 

WP_099943464.1 phosphoesterase [Streptomyces sp. 93] 107 3.00E-21 

AHH96072.1 phosphoesterase [Kutzneria albida DSM 43870] 107 3.00E-21 

WP_079182190.1 phosphoesterase [Streptomyces yunnanensis] 107 3.00E-21 

WP_097224693.1 phosphoesterase [Streptomyces sp. OV198] 107 4.00E-21 

WP_054234561.1 phosphoesterase [Actinobacteria bacterium OK006] 107 4.00E-21 

SFG82570.1 Fibronectin type III domain-containing protein [Duganella sp. CF458] 107 4.00E-21 

WP_083550613.1 hypothetical protein [Chitinophaga jiangningensis] 107 4.00E-21 

SHM57947.1 
Por secretion system C-terminal sorting domain-containing protein 
[Chitinophaga jiangningensis] 

107 4.00E-21 

WP_089901422.1 metallophosphoesterase [Chitinophaga arvensicola] 106 5.00E-21 

SEW53952.1 Purple acid Phosphatase, N-terminal domain [Chitinophaga arvensicola] 106 5.00E-21 

WP_079470159.1 metallophosphoesterase [Chitinophaga ginsengisegetis] 106 6.00E-21 

EKX65667.1 Tat pathway signal sequence domain protein [Streptomyces ipomoeae 91-03] 106 6.00E-21 

EGD44950.1 putative phosphoesterase [Nocardioidaceae bacterium Broad-1] 105 6.00E-21 

WP_078875737.1 phosphoesterase [Streptomyces sp. 769] 106 6.00E-21 

WP_071899680.1 metallophosphoesterase [Cystobacter ferrugineus] 105 6.00E-21 

WP_079142593.1 phosphoesterase [Streptomyces noursei] 106 6.00E-21 

ANZ16104.1 phosphoesterase [Streptomyces noursei ATCC 11455] 106 7.00E-21 

WP_030256863.1 hypothetical protein [Streptacidiphilus jeojiense] 105 8.00E-21 

WP_089098575.1 phosphoesterase [Streptomyces hyaluromycini] 105 8.00E-21 
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WP_099920509.1 phosphoesterase [Streptomyces sp. 94] 105 9.00E-21 

WP_099931504.1 phosphoesterase [Streptomyces sp. 70] 105 9.00E-21 

WP_095852448.1 phosphoesterase [Streptomyces sp. Ag82_O1-15] 105 9.00E-21 

WP_067370936.1 phosphoesterase [Streptomyces olivochromogenes] 105 9.00E-21 

WP_069571735.1 phosphoesterase [Streptomyces lydicus] 105 9.00E-21 

WP_093485332.1 MULTISPECIES: phosphoesterase [Streptomyces] 105 1.00E-20 

WP_052067226.1 phosphoesterase [Streptomyces mirabilis] 105 1.00E-20 

WP_048580595.1 phosphoesterase [Streptomyces viridochromogenes] 105 1.00E-20 

WP_081967121.1 hypothetical protein [Kitasatospora sp. NRRL B-11411] 105 1.00E-20 

SEE57537.1 Phosphodiesterase/alkaline phosphatase D [Streptomyces sp. 2314.4] 105 1.00E-20 

WP_013927818.1 metallophosphoesterase [Runella slithyformis] 106 1.00E-20 

PIG76172.1 calcineurin-like phosphoesterase family protein [Streptomyces sp. 70] 105 1.00E-20 

WP_079023518.1 phosphoesterase [Streptomyces sp. NRRL B-24891] 104 1.00E-20 

WP_093474453.1 phosphoesterase [Streptomyces sp. 1222.5] 105 1.00E-20 

WP_015809161.1 metallophosphoesterase [Pedobacter heparinus] 103 2.00E-20 

SHH67224.1 Fibronectin type III domain-containing protein [Massilia sp. CF038] 105 2.00E-20 

WP_002624649.1 hypothetical protein [Cystobacter fuscus] 104 2.00E-20 

WP_078914265.1 hypothetical protein [Streptomyces sp. NRRL S-384] 105 2.00E-20 

WP_060896173.1 phosphoesterase [Streptomyces diastatochromogenes] 104 2.00E-20 

WP_084185652.1 metallophosphoesterase [Chitinophaga niabensis] 104 2.00E-20 

WP_072363078.1 metallophosphoesterase [Chitinophaga sancti] 104 2.00E-20 

WP_006602914.1 phosphoesterase [Streptomyces auratus] 104 2.00E-20 

WP_062723243.1 phosphoesterase [Streptomyces caeruleatus] 104 2.00E-20 

WP_086934137.1 hypothetical protein [Agarilytica rhodophyticola] 105 2.00E-20 

WP_046729223.1 phosphoesterase [Streptomyces humi] 104 2.00E-20 

WP_075031618.1 phosphoesterase [Streptomyces mirabilis] 104 3.00E-20 

WP_005479953.1 calcineurin-like phosphoesterase [Streptomyces bottropensis] 104 3.00E-20 

WP_073561531.1 metallophosphoesterase [Archangium sp. Cb G35] 103 3.00E-20 

WP_055717455.1 phosphoesterase [Streptomyces torulosus] 104 3.00E-20 

WP_033212942.1 phosphoesterase [Kitasatospora phosalacinea] 104 3.00E-20 

WP_055541125.1 phosphoesterase [Streptomyces neyagawaensis] 103 3.00E-20 

WP_077348043.1 metallophosphoesterase [Algoriphagus sp. A40] 103 3.00E-20 

WP_052856304.1 MULTISPECIES: phosphoesterase [Streptomyces] 103 3.00E-20 

WP_051399878.1 hypothetical protein [Amycolatopsis halophila] 103 3.00E-20 

WP_062708967.1 phosphoesterase [Streptomyces regalis] 103 4.00E-20 

WP_012142094.1 hypothetical protein [Shewanella sediminis] 105 4.00E-20 

WP_068141167.1 hypothetical protein [Roseimaritima ulvae] 104 4.00E-20 

WP_051661797.1 phosphoesterase [Streptomyces albulus] 103 4.00E-20 

OOG76730.1 metallophosphoesterase [Algoriphagus sp. A40] 103 4.00E-20 

AIA06105.1 phosphoesterase [Streptomyces albulus] 103 4.00E-20 

WP_016575024.1 MULTISPECIES: phosphoesterase [Streptomyces] 103 4.00E-20 

WP_086603297.1 phosphoesterase [Streptomyces swartbergensis] 103 4.00E-20 

WP_053164936.1 phosphoesterase [Streptomyces ahygroscopicus] 103 4.00E-20 

WP_083727071.1 metallophosphoesterase [[Flexibacter] sp. ATCC 35208] 103 4.00E-20 

WP_067301171.1 phosphoesterase [Streptomyces griseochromogenes] 103 5.00E-20 

WP_099970780.1 phosphoesterase [Streptomyces sp. JV178] 103 5.00E-20 

WP_093697627.1 phosphoesterase [Streptomyces sp. 2231.1] 103 5.00E-20 

WP_097286359.1 phosphoesterase [Streptomyces sp. OK228] 103 5.00E-20 
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Appendix 2. Supplemental information 

Table A14. List of primers used for cloning and mutagenesis 

The sequences of the primers used for cloning PAPhy genes in pOPIN vectors have the 5’ pOPIN extensions coloured in grey. In the sequence of the primers used for 
QuickChange™ mutagenesis, codons introducing the desired mutation are coloured red. The first Tm corresponds to the overlapping sequence and the second Tm to the 
non-overlapping sequence of the primers. In the sequence of the primers used for the cloning of GmPAPhy_b into the Gateway™-compatible pPICZα-DEST, the generic parts 
of the primers are coloured grey. The first Tm corresponds to the overlapping sequence and the second Tm to full length of the primers. 

Name Sequence Tm (°C) Product size (bp) Application 

TaPAPhyA1-F1 AAGTTCTGTTTCAGGGCCCGGAGCCGGCGTCGACGCTCA 65.3 1559 Cloning of TaPAPhy_a1 from pPICZα into pOPINB 

TaPAPhyA1-R1 ATGGTCTAGAAAGCTTTACAAGCACCTGTGCGGCTCC 63.1 1559 Cloning of TaPAPhy_a1 from pPICZα into pOPINB 

TaPAPhyB-F1 AAGTTCTGTTTCAGGGCCCGACTCTGGAGGGCCCGTCT 60.5 1556 Cloning of TaPAPhy_b1/2 from pPICZα into pOPINB/K 

TaPAPhyB-R1 ATGGTCTAGAAAGCTTTATTTGAGCAGGCATCTTTCCGG 59.8 1556 Cloning of TaPAPhy_b1/2 from pPICZα into pOPINB/K 

HvPAPhyA-F1 AAGTTCTGTTTCAGGGCCCGTCGACGCTCGCTGGCCCGT 65.3 1556 Cloning of HvPAPhy_a from pPICZα into pOPINB 

HvPAPhyA-R1 ATGGTCTAGAAAGCTTTACTTGTGCAAGCACCTCTCCGG 63.7 1556 Cloning of HvPAPhy_a from pPICZα into pOPINB 

OsPAPhyB-F1 AAGTTCTGTTTCAGGGCCCGGCTCCTTCGTCGACGTTGG 61.0 1565 Cloning of OsPAPhy_b from pPICZα into pOPINB 

OsPAPhyB-R1 ATGGTCTAGAAAGCTTTATTTGATCAGGCACTTGTCAGGC 60.3 1565 Cloning of OsPAPhy_b from pPICZα into pOPINB 

ZmPAPhyB-F1 AAGTTCTGTTTCAGGGCCCGGAGCCGGCGTCGACGCTGT 65.3 1565 Cloning of ZmPAPhy_b from pPICZα into pOPINB 

ZmPAPhyB-R1 ATGGTCTAGAAAGCTTTAGAGGCACTTGTCGGGCTCCCT 65.7 1565 Cloning of ZmPAPhy_b from pPICZα into pOPINB 

GmPAPhyT-F1 AAGTTCTGTTTCAGGGCCCGGACCCGGTGACCGTCCCGTT 65.5 1541 Cloning of GmPAPhy_b from pET15b into pOPINB 

GmPAPhyT-R1 ATGGTCTAGAAAGCTTTACACACGCTGATGAATCGGGCAAATG 64.6 1541 Cloning of GmPAPhy_b from pET15b into pOPINB 

TaB2_H229A-F1 CCCATCGCTGAGACGTACCAGCCGCGCTG 46.0, 56.0 4623 Introducing mutation H229A into TaPAPhy_b2-pGAPZαA 

TaB2_H229A-R1 GTCTCAGCGATGGGCGTGGACTTGGCGAAC 46.0, 54.3 4623 Introducing mutation H229A into TaPAPhy_b2-pGAPZαA 

TaB2_K348A-F1 ACCTACGCTGCTCACTACAGGGAGGCAGAG 42.0, 54.3 4623 Introducing mutation K348A into TaPAPhy_b2-pGAPZαA 

TaB2_K348A-R1 TGAGCAGCGTAGGTGCTGTACCATGGCGC 42.0, 53.3 4623 Introducing mutation K348A into TaPAPhy_b2-pGAPZαA 

TaB2_K410A-F1 GCGAGGCTATGGCCACCACCCACGCCG 42.0, 50.0 4623 Introducing mutation K410A into TaPAPhy_b2-pGAPZαA 

TaB2_K410A-R1 GCCATAGCCTCGCGGTTCCCGCCGTCG 42.0, 50.0 4623 Introducing mutation K410A into TaPAPhy_b2-pGAPZαA 

attB1_GmPAPhy-F1 CAAAAAAGCAGGCTTCGACCCGGTGACCGTCCCG 65.1, 75.5 1541 Cloning GmPAPhy_b from pOPINB into Gateway compatible pPICZα-DEST 

CHis_GmPAPhy-R1 TTTAATGATGATGATGATGATGCACACGCTGATGAATCGGGC 61.4, 71.4 1541 Cloning GmPAPhy_b from pOPINB into Gateway compatible pPICZα-DEST 

attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTC 46.6, 66.8 1548 Generic cloning into Gateway compatible pPICZα-DEST with C-6xHis tag 

CHis-attB2-pPICZ GGGGACCACTTTGTACAAGAAAGCTGGGTTTTTAATGATGATGATGATGA 47.0, 72.7 1548 Generic cloning into Gateway compatible pPICZα-DEST with C-6xHis tag 
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Table A15. Original PAPhy constructs 

The parameters for each protein sequence were computed with the ExPASy ProtParam tool (Gasteiger et 
al., 2005). ‘ε’, extinction coefficient at 280 nm measured in water assuming all cysteine residues are 
reduced; ‘A 0.1% (= 1 g L-1)’ absorbance at 280 nm of a 0.1% protein solution (equivalent to 1 g L-1) 
assuming all cysteine residues are reduced. 

Construct MW (kDa) ε (M-1 cm-1) A 0.1% (= 1 g L-1) 

GmPAPhy_b-pET15b 59.58 121130 2.033 

MGSSHHHHHHSSGLVPRGSHMDPVTVPFDPALRGVAVDLPETDPRVRRRVRGFEPEQISVSLSTSHDSVWISWVTGEFQIGLDIKPLDPKTVSSV
VQYGTSRFELVHEARGQSLIYNQLYPFEGLQNYTSGIIHHVQLKGLEPSTLYYYQCGDPSLQAMSDIYYFRTMPISGSKSYPGKVAVVGDLGLTYNTT
TTIGHLTSNEPDLLLLIGDVTYANLYLTNGTGSDCYSCSFPLTPIHETYQPRWDYWGRFMQNLVSNVPIMVVEGNHEIEKQAENRTFVAYSSRFAFP
SQESGSSSTFYYSFNAGGIHFIMLGAYINYDKTAEQYKWLERDLENVDRSITPWLVVTWHPPWYSSYEAHYREAECMRVEMEDLLYAYGVDIIFNG
HVHAYERSNRVYNYNLDPCGPVYITVGDGGNREKMAIKFADEPGHCPDPLSTPDPYMGGFCATNFTFGTKVSKFCWDRQPDYSAFRESSFGYGIL
EVKNETWALWSWYRNQDSYKEVGDQIYIVRQPDICPIHQRV 

TaPAPhy_a1-pPICZαA 57.26 110700 1.933 

EPASTLTGPSRPVTVALREDRGHAVDLPDTDPRVQRRATGWAPEQIAVALSAAPTSAWVSWITGEFQMGGTVKPLDPGTVGSVVRYGLAADSLV
RQASGDALVYSQLYPFEGLQNYTSGIIHHVRLQGLEPATKYYYQCGDPALPGAMSAVHAFRTMPAVGPRSYPGRIAVVGDLGLTYNTTSTVDHMA
SNRPDLVLLVGDVCYANMYLTNGTGADCYSCAFGKSTPIHETYQPRWDYWGRYMEAVTSGTPMMVVEGNHEIEEQIGNKTFAAYRSRFAFPSTE
SGSFSPFYYSFDAGGIHFLMLGAYADYGRSGEQYRWLEKDLAKVDRSVTPWLVAGWHAPWYTTYKAHYREVECMRVAMEELLHSHGLDIAFTG
HVHAYERSNRVFNYTLDPCGAVHISVGDGGNREKMATTHADEPGHCPDPRPKPNAFIGGFCASNFTSGPAAGRFCWDRQPDYSAYRESSFGHGI
LEVKNETHALWRWHRNQDHYGSAGDEIYIVREPHRCLHKHHHHHH 

TaPAPhy_b1-pPICZαA 57.10 113680 1.991 

TLEGPSRPVTVPLREDRGHAVDLPDTDPRVQRRVTGWAPEQIAVALSAAPTSAWVSWITGDFQMGGAVKPLDPGTVGSVVRYGLAADSLAREA
TGEALVYSQLYPFEGLQNYTSGIIHHVRILGLEPGTKYYYQCGDPAIPGAMSAVHAFRTMPDVGPRSYPGRIAVVGDLGLTYNTTSTVEHMASNQP
DLVLLLGDVSYANLYLTNGTGTDCYSCSFAKSTPIHETYQPRWDYWGRYMEPVTSSTPMMVVEGNHEIEQQIGNKTFAAYSARFAFPSMESESFSP
FYYSFDAGGIHFIMLAAYADYSKSGEQYRWLEKDLAKVDRSVTPWLVAGWHAPWYSTYKAHYREAECMRVAMEELLYSYGLDIVFTGHVHAYER
SNRVFNYTLDPCGAVHISVGDGGNREKMATTHADDPGRCPEPMSTPDAFMGGFCAFNFTSGPAAGSFCWDRQPDYSAYRESSFGHGILEVKNE
THALWKWHRNQDLYQGAVGDEIYIVREPERCLLKHHHHHH 

TaPAPhy_b2-pPICZαA 57.1 113680 1.991 

TLEGPSRPVTVPLREDRGHAVDLPDTDPRVQRRVTGWAPEQIAVALSAAPTSAWVSWITGDFQMGGAVKPLDPGTVGSVVRYGLAADSLVREA
TGDALVYSQLYPFEGLQNYTSGIIHHVRLQGLEPGTKYYYQCGDPSIPGAMSAVHAFRTMPAVGPRSYPGRIAVVGDLGLTYNTTSTVEHMASNQ
PDLVLLLGDVSYANLYLTNGTGTDCYSCSFAKSTPIHETYQPRWDYWGRYMEPVTSSTPMMVVEGNHEIEQQIGNKTFAAYSARFAFPSMESESFS
PFYYSFDAGGIHFIMLAAYADYSKSGEQYRWLEKDLAKVDRSVTPWLVAGWHAPWYSTYKAHYREAECMRVAMEELLYSYGLDIVFTGHVHAYE
RSNRVFNYTLDPCGAVHISVGDGGNREKMATTHADDPGRCPEPMSTPDAFMGGFCAFNFTSGPAAGSFCWDRQPDYSAYRESSFGHGILEVKN
ETHALWKWHRNQDLYQGAVGDEIYIVREPERCLLKHHHHHH 

TaPAPhy_b2-pGAPZαA 57.49 113680 1.978 

EPASTLEGPSRPVTVPLREDRGHAVDLPDTDPRVQRRVTGWAPEQIAVALSAAPTSAWVSWITGDFQMGGAVKPLDPGTVGSVVRYGLAADSLV
REATGDALVYSQLYPFEGLQNYTSGIIHHVRLQGLEPGTKYYYQCGDPSIPGAMSAVHAFRTMPAVGPRSYPGRIAVVGDLGLTYNTTSTVEHMAS
NQPDLVLLLGDVSYANLYLTNGTGTDCYSCSFAKSTPIHETYQPRWDYWGRYMEPVTSSTPMMVVEGNHEIEQQIGNKTFAAYSARFAFPSMESE
SFSPFYYSFDAGGIHFIMLAAYADYSKSGEQYRWLEKDLAKVDRSVTPWLVAGWHAPWYSTYKAHYREAECMRVAMEELLYSYGLDIVFTGHVH
AYERSNRVFNYTLDPCGAVHISVGDGGNREKMATTHADDPGRCPEPMSTPDAFMGGFCAFNFTSGPAAGSFCWDRQPDYSAYRESSFGHGILE
VKNETHALWKWHRNQDLYQGAVGDEIYIVREPERCLLKHHHHHH 

HvPAPhy_a-pPICZαA 57.60 113680 1.974 

EPPSTLAGPSRPVTVTPRENRGHAVDLPDTDPRVQRRATGWAPEQVAVALSAAPTSAWVSWITGEFQMGGTVKPLDPRTVGSVVRYGLAADSL

VREATGDALVYSQLYPFEGLHNYTSGIIHHVRLQGLEPGTKYYYQCGDPAIPGAMSAVHAFRTMPAAGPRSYPGRIAVVGDLGLTYNTTSTVDHM
TSNRPDLVVLVGDVSYANMYLTNGTGTDCYSCSFGKSTPIHETYQPRWDYWGRYMEPVTSSTPMMVVEGNHEIEEQIGNKTFAAYRSRFAFPSA
ESGSFSPFYYSFDAGGIHFIMLGAYADYGRSGEQYRWLEKDLAKVDRSVTPWLVAGWHAPWYTTYKAHYREVECMRVAMEELLYSHGLDIAFTG
HVHAYERSNRVFNYTLDPCGAVYISVGDGGNREKMATTHADEPGHCPDPRPKPNAFIAGFCAFNFTSGPAAGRFCWDRQPDYSAYRESSFGHGI
LEVKNETHALWRWHRNQDLYGSARDEIYIVREPERCLHKHHHHHH 

OsPAPhy_b-pPICZαA 57.33 112190 1.957 

APSSTLAGPTRPVTVPPRDRGHAVDLPDTDPRVQRRVKGWAPEQIAVALSAAPSSAWVSWVTGDFQMGAAVEPLDPTAVASVVRYGLAADSLV
RRATGDALVYSQLYPFDGLLNYTSAIIHHVRLQGLEPGTEYFYQCGDPAIPAAMSDIHAFRTMPAVGPRSYPGKIAIVGDLGLTYNTTSTVEHMVSN
QPDLVLLLGDVSYANLYLTNGTGTDCYSCSFANSTPIHETYQPRWDYWGRYMEPVTSRIPMMVVEGNHEIEEQIDNKTFASYSSRFSFPSTESGSFS
PFYYSFDAGGIHFVMLAAYADYSKSGKQYKWLEKDLAKVDRSVTPWVIAGWHAPWYSTFKAHYREAECMRVAMEELLYSYAVDVVFTGHVHAY
ERSNRVFNYTLDPCGPVHISVGDGGNREKMATSYADEPGRCPDPLSTPDPFMGGGFCGFNFTSGPAAGSFCWDRQPDYSAYRESSFGHGILEVK
NETHALWRWHRNQDLYGSVGDEIYIVREPDKCLIKHHHHHH 
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Construct MW (kDa) ε (M-1 cm-1) A 0.1% (= 1 g L-1) 

ZmPAPhy_b-pPICZαA 56.97 112190 1.969 

EPASTLSGPSRPVTVAIGDRGHAVDLPDTDPRVQRRVTGWAPEQVAVALSASPTSAWVSWITGDYQMGGAVEPLDPGAVGSVVRYGLAADALD
HEATGESLVYSQLYPFEGLQNYTSGIIHHVRLQGLEPGTRYVYRCGDPAIPDAMSGVHAFRTMPAVGPGSYPGRIAVVGDLGLTYNTTSTVDHLVR
NRPDLVLLLGDVCYANLYLTNGTGADCYSCAFAKSTPIHETYQPRWDYWGRYMEPVTSSIPMMVVEGNHEIEQQIHNRTFAAYSSRFAFPSEESGS
SSPFYYSFDAGGIHFVMLASYADYSRSGAQYKWLEADLEKVDRSVTPWLIAGWHAPWYTTYKAHYREAECMRVEMEELLYAYGVDVVFTGHVH
AYERSNRVFNYTLDACGPVHISVGDGGNREKMATAHADEAGHCPDPASTPDPFMGGRLCAANFTSGPAAGRFCWDRQPEYSAYRESSFGHGVL
EVRNDTHALWRWHRNQDLHAANVAADEVYIVREPDKCLHHHHHH 
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Table A16. Cloned PAPhy constructs 

The parameters for each protein sequence were computed with the ExPASy ProtParam tool (Gasteiger et 
al., 2005). ‘ε’, extinction coefficient at 280 nm measured in water assuming all cysteine residues are 
reduced; ‘A 0.1% (= 1 g L-1)’ absorbance at 280 nm of a 0.1% protein solution (equivalent to 1 g L-1) 
assuming all cysteine residues are reduced. In the TaPAPhy_b2 mutant sequences, the mutated residues 
are coloured in red. 

Construct MW (kDa) ε (M-1 cm-1) A 0.1% (= 1 g L-1) 

GmPAPhy_b-pOPINB 59.58 121130 2.033 

MGSSHHHHHHSSGLEVLFQGPDPVTVPFDPALRGVAVDLPETDPRVRRRVRGFEPEQISVSLSTSHDSVWISWVTGEFQIGLDIKPLDPKTVSSVV
QYGTSRFELVHEARGQSLIYNQLYPFEGLQNYTSGIIHHVQLKGLEPSTLYYYQCGDPSLQAMSDIYYFRTMPISGSKSYPGKVAVVGDLGLTYNTTT
TIGHLTSNEPDLLLLIGDVTYANLYLTNGTGSDCYSCSFPLTPIHETYQPRWDYWGRFMQNLVSNVPIMVVEGNHEIEKQAENRTFVAYSSRFAFPS
QESGSSSTFYYSFNAGGIHFIMLGAYINYDKTAEQYKWLERDLENVDRSITPWLVVTWHPPWYSSYEAHYREAECMRVEMEDLLYAYGVDIIFNGH
VHAYERSNRVYNYNLDPCGPVYITVGDGGNREKMAIKFADEPGHCPDPLSTPDPYMGGFCATNFTFGTKVSKFCWDRQPDYSAFRESSFGYGILE
VKNETWALWSWYRNQDSYKEVGDQIYIVRQPDICPIHQRV 

GmPAPhy_b-pPICZα-DEST 58.10 121130 2.085 

DPVTVPFDPALRGVAVDLPETDPRVRRRVRGFEPEQISVSLSTSHDSVWISWVTGEFQIGLDIKPLDPKTVSSVVQYGTSRFELVHEARGQSLIYNQL
YPFEGLQNYTSGIIHHVQLKGLEPSTLYYYQCGDPSLQAMSDIYYFRTMPISGSKSYPGKVAVVGDLGLTYNTTTTIGHLTSNEPDLLLLIGDVTYANL
YLTNGTGSDCYSCSFPLTPIHETYQPRWDYWGRFMQNLVSNVPIMVVEGNHEIEKQAENRTFVAYSSRFAFPSQESGSSSTFYYSFNAGGIHFIML
GAYINYDKTAEQYKWLERDLENVDRSITPWLVVTWHPPWYSSYEAHYREAECMRVEMEDLLYAYGVDIIFNGHVHAYERSNRVYNYNLDPCGPV
YITVGDGGNREKMAIKFADEPGHCPDPLSTPDPYMGGFCATNFTFGTKVSKFCWDRQPDYSAFRESSFGYGILEVKNETWALWSWYRNQDSYKE
VGDQIYIVRQPDICPIHQRVHHHHHH 

TaPAPhy_b2-pOPINB 58.58 113680 1.941 

MGSSHHHHHHSSGLEVLFQGPTLEGPSRPVTVPLREDRGHAVDLPDTDPRVQRRVTGWAPEQIAVALSAAPTSAWVSWITGDFQMGGAVKPL
DPGTVGSVVRYGLAADSLVREATGDALVYSQLYPFEGLQNYTSGIIHHVRLQGLEPGTKYYYQCGDPSIPGAMSAVHAFRTMPAVGPRSYPGRIAV
VGDLGLTYNTTSTVEHMASNQPDLVLLLGDVSYANLYLTNGTGTDCYSCSFAKSTPIHETYQPRWDYWGRYMEPVTSSTPMMVVEGNHEIEQQI
GNKTFAAYSARFAFPSMESESFSPFYYSFDAGGIHFIMLAAYADYSKSGEQYRWLEKDLAKVDRSVTPWLVAGWHAPWYSTYKAHYREAECMRV
AMEELLYSYGLDIVFTGHVHAYERSNRVFNYTLDPCGAVHISVGDGGNREKMATTHADDPGRCPEPMSTPDAFMGGFCAFNFTSGPAAGSFCW
DRQPDYSAYRESSFGHGILEVKNETHALWKWHRNQDLYQGAVGDEIYIVREPERCLLK 

TaPAPhy_b2-pOPINK 84.22 156540 1.859 

MAHHHHHHMSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYIDGDVKLTQSMAIIRYIADKHNMLGGCPKE
RAEISMLEGAVLDIRYGVSRIAYSKDFETLKVDFLSKLPEMLKMFEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKLVCFKKRIEA
IPQIDKYLKSSKYIAWPLQGWQATFGGGDHPPKSDLSSGLEVLFQGPTLEGPSRPVTVPLREDRGHAVDLPDTDPRVQRRVTGWAPEQIAVALSA
APTSAWVSWITGDFQMGGAVKPLDPGTVGSVVRYGLAADSLVREATGDALVYSQLYPFEGLQNYTSGIIHHVRLQGLEPGTKYYYQCGDPSIPGA
MSAVHAFRTMPAVGPRSYPGRIAVVGDLGLTYNTTSTVEHMASNQPDLVLLLGDVSYANLYLTNGTGTDCYSCSFAKSTPIHETYQPRWDYWGR
YMEPVTSSTPMMVVEGNHEIEQQIGNKTFAAYSARFAFPSMESESFSPFYYSFDAGGIHFIMLAAYADYSKSGEQYRWLEKDLAKVDRSVTPWLV
AGWHAPWYSTYKAHYREAECMRVAMEELLYSYGLDIVFTGHVHAYERSNRVFNYTLDPCGAVHISVGDGGNREKMATTHADDPGRCPEPMSTP
DAFMGGFCAFNFTSGPAAGSFCWDRQPDYSAYRESSFGHGILEVKNETHALWKWHRNQDLYQGAVGDEIYIVREPERCLLK 

TaPAPhy_b2_H229A-pGAPZαA 57.42 113680 1.980 

EPASTLEGPSRPVTVPLREDRGHAVDLPDTDPRVQRRVTGWAPEQIAVALSAAPTSAWVSWITGDFQMGGAVKPLDPGTVGSVVRYGLAADSLV
REATGDALVYSQLYPFEGLQNYTSGIIHHVRLQGLEPGTKYYYQCGDPSIPGAMSAVHAFRTMPAVGPRSYPGRIAVVGDLGLTYNTTSTVEHMAS
NQPDLVLLLGDVSYANLYLTNGTGTDCYSCSFAKSTPIAETYQPRWDYWGRYMEPVTSSTPMMVVEGNHEIEQQIGNKTFAAYSARFAFPSMESE
SFSPFYYSFDAGGIHFIMLAAYADYSKSGEQYRWLEKDLAKVDRSVTPWLVAGWHAPWYSTYKAHYREAECMRVAMEELLYSYGLDIVFTGHVH
AYERSNRVFNYTLDPCGAVHISVGDGGNREKMATTHADDPGRCPEPMSTPDAFMGGFCAFNFTSGPAAGSFCWDRQPDYSAYRESSFGHGILE
VKNETHALWKWHRNQDLYQGAVGDEIYIVREPERCLLKHHHHHH 

TaPAPhy_b2_K348A-pGAPZαA 57.43 113680 1.979 

EPASTLEGPSRPVTVPLREDRGHAVDLPDTDPRVQRRVTGWAPEQIAVALSAAPTSAWVSWITGDFQMGGAVKPLDPGTVGSVVRYGLAADSLV
REATGDALVYSQLYPFEGLQNYTSGIIHHVRLQGLEPGTKYYYQCGDPSIPGAMSAVHAFRTMPAVGPRSYPGRIAVVGDLGLTYNTTSTVEHMAS
NQPDLVLLLGDVSYANLYLTNGTGTDCYSCSFAKSTPIHETYQPRWDYWGRYMEPVTSSTPMMVVEGNHEIEQQIGNKTFAAYSARFAFPSMESE
SFSPFYYSFDAGGIHFIMLAAYADYSKSGEQYRWLEKDLAKVDRSVTPWLVAGWHAPWYSTYAAHYREAECMRVAMEELLYSYGLDIVFTGHVH
AYERSNRVFNYTLDPCGAVHISVGDGGNREKMATTHADDPGRCPEPMSTPDAFMGGFCAFNFTSGPAAGSFCWDRQPDYSAYRESSFGHGILE
VKNETHALWKWHRNQDLYQGAVGDEIYIVREPERCLLKHHHHHH 
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Construct MW (kDa) ε (M-1 cm-1) A 0.1% (= 1 g L-1) 

TaPAPhy_b2_K410A-pGAPZαA 57.43 113680 1.979 

EPASTLEGPSRPVTVPLREDRGHAVDLPDTDPRVQRRVTGWAPEQIAVALSAAPTSAWVSWITGDFQMGGAVKPLDPGTVGSVVRYGLAADSLV
REATGDALVYSQLYPFEGLQNYTSGIIHHVRLQGLEPGTKYYYQCGDPSIPGAMSAVHAFRTMPAVGPRSYPGRIAVVGDLGLTYNTTSTVEHMAS
NQPDLVLLLGDVSYANLYLTNGTGTDCYSCSFAKSTPIHETYQPRWDYWGRYMEPVTSSTPMMVVEGNHEIEQQIGNKTFAAYSARFAFPSMESE
SFSPFYYSFDAGGIHFIMLAAYADYSKSGEQYRWLEKDLAKVDRSVTPWLVAGWHAPWYSTYKAHYREAECMRVAMEELLYSYGLDIVFTGHVH
AYERSNRVFNYTLDPCGAVHISVGDGGNREAMATTHADDPGRCPEPMSTPDAFMGGFCAFNFTSGPAAGSFCWDRQPDYSAYRESSFGHGILE
VKNETHALWKWHRNQDLYQGAVGDEIYIVREPERCLLKHHHHHH 

HvPAPhy_a-pOPINB 58.75 113680 1.935 

MGSSHHHHHHSSGLEVLFQGPSTLAGPSRPVTVTPRENRGHAVDLPDTDPRVQRRATGWAPEQVAVALSAAPTSAWVSWITGEFQMGGTVKP
LDPRTVGSVVRYGLAADSLVREATGDALVYSQLYPFEGLHNYTSGIIHHVRLQGLEPGTKYYYQCGDPAIPGAMSAVHAFRTMPAAGPRSYPGRIA
VVGDLGLTYNTTSTVDHMTSNRPDLVVLVGDVSYANMYLTNGTGTDCYSCSFGKSTPIHETYQPRWDYWGRYMEPVTSSTPMMVVEGNHEIEE
QIGNKTFAAYRSRFAFPSAESGSFSPFYYSFDAGGIHFIMLGAYADYGRSGEQYRWLEKDLAKVDRSVTPWLVAGWHAPWYTTYKAHYREVECM
RVAMEELLYSHGLDIAFTGHVHAYERSNRVFNYTLDPCGAVYISVGDGGNREKMATTHADEPGHCPDPRPKPNAFIAGFCAFNFTSGPAAGRFC
WDRQPDYSAYRESSFGHGILEVKNETHALWRWHRNQDLYGSARDEIYIVREPERCLHK 

OsPAPhy_b-pOPINB 58.80 112190 1.908 

MGSSHHHHHHSSGLEVLFQGPAPSSTLAGPTRPVTVPPRDRGHAVDLPDTDPRVQRRVKGWAPEQIAVALSAAPSSAWVSWVTGDFQMGAA
VEPLDPTAVASVVRYGLAADSLVRRATGDALVYSQLYPFDGLLNYTSAIIHHVRLQGLEPGTEYFYQCGDPAIPAAMSDIHAFRTMPAVGPRSYPGK
IAIVGDLGLTYNTTSTVEHMVSNQPDLVLLLGDVSYANLYLTNGTGTDCYSCSFANSTPIHETYQPRWDYWGRYMEPVTSRIPMMVVEGNHEIEE
QIDNKTFASYSSRFSFPSTESGSFSPFYYSFDAGGIHFVMLAAYADYSKSGKQYKWLEKDLAKVDRSVTPWVIAGWHAPWYSTFKAHYREAECMR
VAMEELLYSYAVDVVFTGHVHAYERSNRVFNYTLDPCGPVHISVGDGGNREKMATSYADEPGRCPDPLSTPDPFMGGGFCGFNFTSGPAAGSFC
WDRQPDYSAYRESSFGHGILEVKNETHALWRWHRNQDLYGSVGDEIYIVREPDKCLIK 

ZmPAPhy_b-pOPINB 58.45 112190 1.919 

MGSSHHHHHHSSGLEVLFQGPEPASTLSGPSRPVTVAIGDRGHAVDLPDTDPRVQRRVTGWAPEQVAVALSASPTSAWVSWITGDYQMGGAV
EPLDPGAVGSVVRYGLAADALDHEATGESLVYSQLYPFEGLQNYTSGIIHHVRLQGLEPGTRYVYRCGDPAIPDAMSGVHAFRTMPAVGPGSYPG
RIAVVGDLGLTYNTTSTVDHLVRNRPDLVLLLGDVCYANLYLTNGTGADCYSCAFAKSTPIHETYQPRWDYWGRYMEPVTSSIPMMVVEGNHEIE
QQIHNRTFAAYSSRFAFPSEESGSSSPFYYSFDAGGIHFVMLASYADYSRSGAQYKWLEADLEKVDRSVTPWLIAGWHAPWYTTYKAHYREAECM
RVEMEELLYAYGVDVVFTGHVHAYERSNRVFNYTLDACGPVHISVGDGGNREKMATAHADEAGHCPDPASTPDPFMGGRLCAANFTSGPAAGR
FCWDRQPEYSAYRESSFGHGVLEVRNDTHALWRWHRNQDLHAANVAADEVYIVREPDKCL 
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Table A17. Summary of the PAPhy expression trials in E. coli hosts 

The levels of protein expression are represented as ‘-‘, no expression; ‘+?’no clear expression; ‘+’, low expression; ‘++’, expression; ‘+++’ or ‘++++’ high expression. The 
solubility test results are represented as ‘-‘, insoluble; ‘n/a’, not applicable. The phytase activity test results are represented as ‘+?’, no clear activity; ‘-‘, no activity; ‘n/a’, not 
applicable.  

Construct Induction method Strain Induction length [IPTG] (mM) T (°C) Expression Solubility Activity 

GmPAPhy_b-pET15b IPTG BL21 (DE3) pLysS 5 h 0 - 1 37 - n/a n/a 
  Rosetta 2 (DE3) pLysS 4 h - O/N 0 - 0.5 25 - 30 - n/a n/a 
  Rosetta-gami 2 (DE3) O/N 0 - 0.5 25 - 30 + - n/a 
  SHuffle T7 O/N 0 - 0.5 16 - 37 - n/a n/a 

  Autoinduction SHuffle T7 O/N n/a 25 - 37 - n/a n/a 

GmPAPhy_b-pOPINB Autoinduction SHuffle T7 O/N n/a 25 - 37 +? - +? 

    SHuffle T7 Express O/N n/a 25 - 37 +? - - 

HvPAPhy_a-pOPINB IPTG SHuffle T7 O/N 0 - 0.5 16 - 37 ++++ - n/a 
  SHuffle T7 Express O/N 0 - 0.5 16 - 37 ++ - n/a 
  ArcticExpress (DE3) RP 3 days 0 - 0.5 12 +++ - n/a 
 Autoinduction SHuffle T7 O/N n/a 25 - 37 ++++ - n/a 
  SHuffle T7 Express O/N n/a 25 - 37 +++ - n/a 

    ArcticExpress (DE3) RP 6 days n/a 12 +++ - n/a 

OsPAPhy_b-pOPINB IPTG SHuffle T7 O/N 0 - 0.5 16 - 37 +++ - n/a 
  SHuffle T7 Express O/N 0 - 0.5 16 - 37 +++ - - 
  ArcticExpress (DE3) RP 3 days 0 - 0.5 12 +++ - n/a 
 Autoinduction SHuffle T7 O/N n/a 25 - 37 +++ - n/a 
  SHuffle T7 Express O/N n/a 25 - 37 +++ - n/a 

    ArcticExpress (DE3) RP 6 days n/a 12 +++ - n/a 

ZmPAPhy_b-pOPINB Autoinduction SHuffle T7 O/N n/a 25 - 37 +? - - 

    SHuffle T7 Express O/N n/a 25 - 37 +? - - 

TaPAPhy_b2-pOPINB Autoinduction SHuffle T7 O/N n/a 25 - 37 ++++ - +? 

    SHuffle T7 Express O/N n/a 25 - 37 ++++ - - 

TaPAPhy_b2-pOPINK Autoinduction SHuffle T7 O/N n/a 25 - 37 + - n/a 
  SHuffle T7 Express O/N n/a 25 - 37 + - n/a 

    BL21 (DE3) O/N n/a 25 - 37 ++++ - n/a 
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Table A18. Protonation state of TaPAPhy_b2 structure for MD simulations at pH 5.5. 

The protonation state of histidine (HIS) and aspartate (ASP) residues was manually selected upon careful 
inspection of their environment. The protonation state of glutamate (GLU) residues was assigned 
automatically by the GROMACS 4.6.5 package (Hess et al., 2008). 

Residue # Residue type Location Protonation state 

7 GLU Surface Deprotonated 

19 GLU Surface Deprotonated 

20 ASP Surface Deprotonated 

23 HIS Surface Proton in Nδ1 and Nε2 

26 ASP Buried Proton in Oδ2 

29 ASP Surface Deprotonated 

31 ASP Buried Deprotonated 

44 GLU Buried Deprotonated 

65 ASP Surface Deprotonated 

76 ASP Surface Deprotonated 

91 ASP Surface Deprotonated 

96 GLU Surface Deprotonated 

100 ASP Surface Deprotonated 

111 GLU Surface Deprotonated 

122 HIS Buried Proton in Nδ1 

123 HIS Buried Proton in Nε2 

130 GLU Surface Deprotonated 

141 ASP Surface Deprotonated 

152 HIS Surface Proton in Nδ1 and Nε2 

174 ASP Fe ligand Deprotonated 

186 GLU Surface Deprotonated 

187 HIS Buried Proton in Nδ1 

194 ASP Surface Deprotonated 

201 ASP Fe ligand Deprotonated 

216 ASP Surface Deprotonated 

229 HIS InsS6 ligand Proton in Nδ1 and Nε2 

230 GLU Buried Deprotonated 

237 ASP Buried Deprotonated 

244 GLU Surface Deprotonated 

256 GLU Buried Deprotonated 

259 HIS PO4 ligand Proton in Nδ1 and Nε2 

260 GLU Buried Deprotonated 

262 GLU Buried Deprotonated 

283 GLU Buried Deprotonated 

285 GLU Surface Deprotonated 

295 ASP Surface Deprotonated 

300 HIS Buried Proton in Nδ1 and Nε2 

309 ASP Surface Deprotonated 

315 GLU Surface Deprotonated 

321 GLU Surface Deprotonated 

323 ASP Buried Deprotonated 

328 ASP Surface Deprotonated 

340 HIS Fe ligand Proton in Nδ1 



 

281 
 

Residue # Residue type Location Protonation state 

350 HIS PO4 ligand Proton in Nδ1 and Nε2 

353 GLU InsS6 ligand Deprotonated 

355 GLU Buried Deprotonated 

362 GLU Buried Deprotonated 

363 GLU Surface Deprotonated 

371 ASP Buried Deprotonated 

377 HIS Fe ligand Proton in Nε2 

379 HIS Fe ligand Proton in Nδ1 

382 GLU Buried Deprotonated 

393 ASP Buried Deprotonated 

399 HIS Buried Proton in Nε2 

404 ASP Buried Proton in Oδ2 

409 GLU PO4 ligand Deprotonated 

415 HIS Buried Proton in Nδ1 

417 ASP Buried Deprotonated 

418 ASP Surface Deprotonated 

424 GLU Surface Deprotonated 

430 ASP Buried Proton in Oδ2 

453 ASP Surface Deprotonated 

457 ASP Surface Deprotonated 

463 GLU Buried Deprotonated 

468 HIS Buried Proton in Nε2 

472 GLU Surface Deprotonated 

476 GLU Surface Deprotonated 

478 HIS Surface Proton in Nδ1 and Nε2 

484 HIS Surface Proton in Nδ1 

488 ASP Surface Deprotonated 

496 ASP Buried Deprotonated 

497 GLU Surface Deprotonated 

503 GLU Surface Deprotonated 

505 GLU Surface Deprotonated 
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Figure A5. Superimposed active sites of the TaPAPhy_b2:PO4 structures 

Comparison of the three states of the active site obtained in the different TaPAPhy_b2:PO4 crystal 
structures. Cyan, product-bound state. Magenta, substrate-bound state. Yellow, regeneration state. 
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Table A19. Comparison of the active sites of plant PAPhy with TaPAPhy_b2 as reference 

Amino acid positions compared corresponded to (1) non-conserved residues within 10 Å of the phosphate ion in the TaPAPhy_b2 structure, (2) non-conserved residues 
forming part of PAPhy motifs or in their vicinity, or (3) non-conserved residues forming part of PAP motifs or in their vicinity. Residues in each of the positions analysed that 
did not show conservation when compared to TaPAPhy_b2 were shaded in lilac (TaPAPhy_a1), green (HvPAPhy_a), orange (OsPAPhy_b), yellow (ZmPAPhy_b) or pink 
(GmPAPhy_b). 

TaPAPhy_b2 TaPAPhy_b1 TaPAPhy_a1 HvPAPhy_a OsPAPhy_b ZmPAPhy_b GmPAPhy_b Motif b → a Cereal → Soybean 

His23 His23 His23 His23 His22 His22 Val14 PAPhy 1 n/a His → Val  

Leu199 Leu199 Val199 Val199 Leu198 Leu198 Ile189 n/a n/a n/a 

Ser203 Ser203 Cys203 Ser203 Ser202 Cys202 Thr193 PAP 2 n/a n/a 

Leu207 Leu207 Met207 Met207 Leu206 Leu206 Leu197 n/a Leu → Met n/a 

Thr215 Thr215 Ala215 Thr215 Thr214 Ala214 Ser205 n/a n/a n/a 

Ser221 Ser221 Ala221 Ser221 Ser220 Ala220 Ser211 PAPhy 4 n/a n/a 

Ala223 Ala223 Gly223 Gly223 Ala222 Ala222 Pro213 PAPhy 4 n/a Ala/Gly → Pro 

Lys224 Lys224 Lys224 Lys224 Asn223 Lys223 Leu214 PAPhy 4 n/a Lys/Asn → Leu 

Ser225 Ser225 Ser225 Ser225 Ser224 Ser224 Deletion PAPhy 4 n/a Ser → Deletion 

Gln263 Gln263 Glu263 Glu263 Glu262 Gln262 Lys252 n/a n/a Gln/Glu → Lys 

Ala306 Ala306 Ala306 Ala306 Ala305 Ser305 Ala295 n/a n/a n/a 

Ala308 Ala308 Ala308 Ala308 Ala307 Ala307 Ile297 n/a n/a n/a 

Ala341 Ala341 Ala341 Ala341 Ala340 Ala340 Pro330 n/a n/a n/a 

Ser345 Ser345 Thr345 Thr345 Ser344 Thr344 Ser334 n/a n/a n/a 

Thr346 Thr346 Thr346 Thr346 Thr345 Thr345 Ser335 n/a n/a n/a 

Tyr347 Tyr347 Tyr347 Tyr347 Phe346 Tyr346 Tyr336 n/a n/a n/a 

Lys348 Lys348 Lys348 Lys348 Lys347 Lys347 Glu337 n/a n/a Lys → Glu 

Ala354 Ala354 Val354 Val354 Ala353 Ala353 Ala343 n/a Ala → Val n/a 

Ser401 Ser401 Ser401 Ser401 Ser400 Ser400 Thr390 n/a n/a n/a 

Thr413 Thr413 Thr413 Thr413 Thr412 Thr412 Ile402 PAPhy 5 n/a Thr → Ile 

Thr414 Thr414 Thr414 Thr414 Ser413 Ala413 Lys403 PAPhy 5 n/a Thr/Ser/Ala → Lys 

His415 His415 His415 His415 Tyr414 His414 Phe404 PAPhy 5 n/a n/a 

Asp418 Asp418 Glu418 Glu418 Glu417 Glu417 Glu407 PAPhy 5 n/a n/a 
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TaPAPhy_b2 TaPAPhy_b1 TaPAPhy_a1 HvPAPhy_a OsPAPhy_b ZmPAPhy_b GmPAPhy_b Motif b → a Cereal → Soybean 

Pro419 Pro419 Pro419 Pro419 Pro418 Ala418 Pro408 PAPhy 5 n/a n/a 

Arg421 Arg421 His421 His421 Arg420 His420 His410 PAPhy 5 n/a n/a 

Glu424 Glu424 Asp424 Asp424 Asp423 Asp423 Asp413 PAPhy 5 n/a n/a 

Met426 Met426 Arg426 Arg426 Leu425 Ala425 Leu415 PAPhy 5 n/a n/a 

Ser427 Ser427 Pro427 Pro427 Ser426 Ser426 Ser416 PAPhy 5 Ser → Pro n/a 

Thr428 Thr428 Lys428 Lys428 Thr427 Thr427 Thr417 PAPhy 5 Thr → Lys n/a 

Asp430 Asp430 Asn430 Asn430 Asp429 Asp429 Asp419 PAPhy 5 Asp → Asn n/a 

Ala431 Ala431 Ala431 Ala431 Pro430 Pro430 Pro420 PAPhy 5 n/a n/a 

Phe432 Phe432 Phe432 Phe432 Phe431 Phe431 Tyr421 PAPhy 5 n/a n/a 

Met433 Met433 Ile433 Ile433 Met432 Met432 Met422 PAPhy 5 Met → Ile n/a 
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Appendix 3. Recombinant expression of GST-PNGase F 

and GST-Endo F1 in Escherichia coli 

This appendix reports the expression and purification of the recombinant fusion 

protein glycosidases GST-PNGase F and GST-Endo F1, used in Chapter 3 for the 

enzymatic deglycosylation of TaPAPhy_b2 to generate samples for X-ray 

crystallography. Constructs for the expression of the two glycosidases with GST fusion 

tags in Escherichia coli were obtained from Dr Yoav Peleg (The Israel Structural 

Proteomics Center, The Weizmann Institute of Science, Rehovot, Israel) and expressed 

and purified following the procedure described by the original source of the plasmids 

(Grueninger-Leitch et al., 1996). 

A3.1. Materials and methods 

A3.1.1. Transformation 

Upon arrival, pGEX3 constructs containing the glycosidase coding sequences 

were transformed into E. coli Stellar competent cells (Clontech-Takara) for plasmid 

sequencing, storage and propagation following protocol in Chapter 3, section 3.1.1.4. 

Colonies were selected in LB agar plates with ampicillin (100 µg mL-1) and grown in 10 mL 

LB liquid culture containing the same antibiotic for plasmid extraction. Purified plasmids 

were used for the transformation of BL21 E. coli expression strain.  

A3.1.2. Expression 

A small-scale expression trial to check for recombinant protein expression and 

solubility was performed as described for the PAPhy enzymes in Chapter 3, section 

3.1.1.5. 200 µL of BL21 overnight cultures resulting from the transformation of each of 

the two glycosidase constructs were inoculated into 10 mL of LB media with ampicillin 

(100 µg mL-1), grown at 37°C and 180 rpm to an OD600 of 0.8 and cooled down to room 

temperature before induction with 0.2 mM IPTG. Expression was left to carry on for 4 h 

at 22°C and 180 rpm before samples were taken to check for total cell and soluble 

fraction recombinant protein expression on SDS-PAGE.  
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Once the production of soluble protein was confirmed, the expression of 

recombinant glycosidases was scaled-up to a total of 1 L of culture media per enzyme, 

distributed between two 2 L conical flasks with 500 mL each. The same protocol as for 

the expression trial was followed. Expression cultures were centrifuged for 20 min at 

7500 x g and 4°C in a standing high-speed centrifuge in order to separate the cells from 

the culture media. Cell pellets for each glycosidase were resuspended in 30 mL of cold 

lysis buffer (50 mM Tris/HCl pH 8.0, 0.5% (v/v) triton X-100), snap-frozen in liquid 

nitrogen and stored at -80°C ready for purification. 

A3.1.3. Purification 

Frozen pellets were left to defrost at room temperature before subjecting them 

to three cycles of cell lysis per glycosidase using a French press. The soluble fractions 

were separated from cell debris by centrifugation for 20 min at 48000 x g and 4°C in a 

standing high-speed centrifuge. Recombinant glycosidases were purified from the 

soluble fractions following a two-step purification protocol.  

The first purification step consisted of GST affinity chromatography in an ÄKTA 

Pure chromatography system (GE Healthcare), using a 1 mL GSTrap 4B cartridge (GE 

Healthcare) for each glycosidase, at 4°C and a flow rate of 0.3 mL min-1. The soluble 

fractions were loaded onto the corresponding GSTrap 4B cartridges after pre-

equilibration with 10 CV of binding buffer (50 mM Tris/HCl pH 8.0). The cartridges were 

then washed with binding buffer until a stable UV signal was registered by the ÄKTA 

system. The recombinant proteins were eluted with a gradient of 0–10 mM of reduced 

glutathione, resulting from the gradual mixing of binding buffer and elution buffer 

(50 mM Tris/HCl pH 8.0, 10 mM reduced glutathione), and a 20 mL step with elution 

buffer. 2 mL fractions were collected during the elution and results were assessed by 

running denatured samples of the peak fractions on SDS-PAGE. Fractions containing the 

recombinant glycosidases were concentrated bellow 1 mL using 10 kDa MWCO 

centrifugal filters (Merck) before further purification. 

The second step of glycosidase purification was performed at 4°C by gel filtration 

on a HiLoad 16/600 Superdex 75 pg column (GE Healthcare) pre-equilibrated and eluted 

at a flow rate of 0.4 mL min-1 with 50 mM Tris/HCl pH 8.0 and 200 mM NaCl. The elution 
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was carried out collecting 2 mL fractions and results were assessed by running 

denatured samples of the peak fractions on SDS-PAGE. Fractions containing pure 

glycosidases were pooled and concentrated for dialysis before storage in the 

recommended buffer (Grueninger-Leitch et al., 1996). GST-PNGase F was dialysed 

against 50 mM Tris/HCl pH 8.0 and 2.5 mM EDTA, while GST-Endo F1 was dialysed 

against 10 mM sodium acetate pH 5.5. After dialysis, the glycosidases were diluted in 

the appropriate dialysis buffer containing 50% (v/v) glycerol and stored at -20°C in 

1 mg mL-1 aliquots.  

A3.2. Results and discussion 

A3.2.1. Transformation 

The pGEX3 constructs encoding the fusion glycosidases GST-PNGase F and 

GST-Endo F1 were successfully transformed into E. coli for plasmid propagation and 

expression. Sequences of the glycosidases without the GST fusion tag are collected in 

Table A20. The parameters for each glycosidase were computed with the addition of the 

GST tag. 

Table A20. Constructs for the expression of recombinant glycosidases with GST fusion tags in E. coli 

The parameters for each protein sequence were computed with the ExPASy ProtParam tool (Gasteiger et 
al., 2005). ‘ε’, extinction coefficient at 280 nm measured in water assuming all cysteine residues are 
reduced; ‘A 0.1% (= 1 g L-1)’ absorbance at 280 nm of a 0.1% protein solution (equivalent to 1 g L-1) 
assuming all cysteine residues are reduced. 

Construct MW (kDa) MW + GST tag (kDa) ε (M-1 cm-1) A 0.1% (= 1 g/L) 

PNGaseF-pGEX3 31.69 61.76 116200 1.928 

APADNTVNIKTFDKVKNAFGDGLSQSAEGTFTFPADVTTVKTIKMFIKNECPNKTCDEWDRYANVYVKNKTTGEWYEIGRFITPYWVGTEKLPRGL
EIDVTDFKSLLSGNTELKIYTETWLAKGREYSVDFDIVYGTPDYKYSAVVPVIQYNKSSIDGVPYGKAHTLGLKKNIQLPTNTEKAYLRTTISGWGHAK
PYDAGSRGCAEWCFRTHTIAINNANTFQHQLGALGCSANPINNQSPGNWAPDRAGWCPGMAVPTRIDVLNNSLTGSTFSYEYKFQSWTNNGT
NGDAFYAISSFVIAKSNTPISAPVVTN 

EndoF1-pGEX3 34.78 58.66 75180 1.315 

AVTGTTKANIKLFSFTEVNDTNPLNNLNFTLKNSGKPLVDMVVLFSANINYDAANDKVFVSNNPNVQHLLTNRAKYLKPLQDKGIKVILSILGNHDR
SGIANLSTARAKAFAQELKNTCDLYNLDGVFFDDEYSAYQTPPPSGFVTPSNNAAARLAYETKQAMPNKLVTVYVYSRTSSFPTAVDGVNAGSYVD
YAIHDYGGSYDLATNYPGLAKSGMVMSSQEFNQGRYATAQALRNIVTKGYGGHMIFAMDPNRSNFTSGQLPALKLIAKELYGDELVYSNTPYSKD
W 

A3.2.2. Expression 

Good levels of recombinant protein expression were observed in BL21 cultures 

after 4 h at 22°C for both glycosidases. While most of the expressed GST-Endo F1 was 

detected in the soluble fraction, little soluble protein was detected for GST-PNGase F 
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compared to the total cell protein samples, indicating that a considerable portion of this 

protein ended up in inclusion bodies (data not shown). 

A3.2.3. Purification 

The results of the GST affinity purification of GST-PNGase F and GST-Endo F1 

recombinant glycosidases are displayed in Figure A6A and Figure A6B, respectively. 

A yield of 8.4 mg L-1 was obtained for GST-PNGase F after the first purification step, 

while 17.2 mg L-1 were obtained for GST-Endo F1.  

The results of the gel filtration step of GST-PNGase F and GST-Endo F1 

recombinant glycosidases are displayed in Figure A7A and Figure A7B, respectively. 

A total of 4.5 mg L-1 of GST-PNGase F were obtained at the end of the purification, in 

contrast to 11.3 mg L-1 of GST-Endo F1.  

A3.3. Conclusions 

The successful expression and purification of two recombinant glycosidases with 

GST fusion tags in E. coli achieved in this appendix allows for the reduction of costs in 

the generation of deglycosylated recombinant protein samples for X-ray crystallography 

obtained from Pichia pastoris expression. The activity of the recombinant glycosidases 

versus equivalent commercial enzymes is compared in Chapter 3, section 3.2.2.3.3. 
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Figure A6. GST affinity purification of recombinant glycosidases 

Chromatograms and 10% (v/v) acrylamide SDS-PAGE gels with results of the GST affinity purification of 
recombinant GST-PNGase F (A) and GST-Endo F1 (B). In chromatograms: blue line, UV trace; orange line, 
conductivity trace; green line, concentration of elution buffer. In gels: lane M, dual colour protein 
standards (BIO-RAD); lane 1, total cell protein; lane 2, soluble fraction; lane 3, column flow-through; 
lane 4, column was; lanes 5 to 14, peak elution fractions containing recombinant glycosidase. 
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Figure A7. Gel filtration purification of recombinant glycosidases 

Chromatograms and 10% (v/v) acrylamide SDS-PAGE gels with results of the GST affinity gel filtration 
purification of recombinant GST-PNGase F (A) and GST-Endo F1 (B). In chromatograms: blue line, UV 
trace; orange line, conductivity trace; green line, concentration of elution buffer. In gels: lane M, dual 
colour protein standards (BIO-RAD); lane 1, GST affinity purified protein; lanes 2 to 11, peak elution 
fractions containing pure recombinant glycosidase. 
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