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Investigating the Factors Influencing the Uptake of Electric 
Vehicles in Beijing, China: Statistical and Spatial Perspectives 

Abstract 

Electrifying urban transportation through the adoption of Electric Vehicles (EVs) has great potential 

to mitigate two global challenges, namely climate change and energy scarcity, and also to improve 

local air quality and further benefit human health. This paper was focused on the six typical factors 

potentially influencing the purchase behaviour of EVs in Beijing, China, namely vehicle price, vehicle 

usage, social influence, environmental awareness, purchase-related policies and usage-related policies. 

Specifically, this study used the data collected in a paper-based questionnaire survey in Beijing from 

September, 2015 to March, 2016, covering all of the 16 administrative regions, and tried to quantify 

the relative importance of the six factors, based on their weights (scores) given by participants. 

Furthermore, Multinomial Logit (MNL) models and Moran’s I (a measure of global spatial 

autocorrelation) were used to analyse the weights of each factor from statistical and spatial 

perspectives, respectively. The results suggest that 1) vehicle price and usage tend to be more 

influential among the six factors, accounting for 32.3% and 28.1% of the importance; 2) Apart from 

the weight of social influence, the weights of the other five factors are closely associated with socio-

demographic characteristics, such as individual income and the level of education; 3) people having 

similar attitudes towards vehicle usage (Moran’s I= 0.10) and purchase restriction (Moran’s I= 0.14) 

tend to live close to each other. This paper concludes with a discussion on applying the empirical 

findings in policy making and modelling of EV purchase behaviour.  

Keywords: Electric Vehicle (EV); Purchase Behaviour; Influential Factors; Multinomial Logit (MNL) 

Model; Spatial Analysis 

1 Introduction  

  Electric Vehicle (EV) has been increasingly recognized as a promising alternative to Conventional 

Vehicle (CV), as promoting the purchase and usage of EVs has great potential to benefit the 

environment and energy systems at both global and local levels (Zhuge and Shao, 2018a): EVs could 

reduce the greenhouse gas emissions and improve local air quality (Brady and O’Mahony, 2011; 

Sovacool and Hirsh, 2009); EVs are more efficient in terms of energy consumption per mile of travel 

(Åhman, 2001). 

  This paper uses Beijing, China as a case study, as the Beijing government appears to act actively in 

electrifying urban transportation, as partly evident from its EV-related policies. These policies can be 

essentially grouped into purchase and traffic restrictions, which are expected to promote the purchase 
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and usage of EVs, respectively. One typical purchase-related policy for EVs is the license plate lottery 

policy, which allocates a certain number of purchase permits to CV purchasers at random each year, 

but provides BEV purchase permits on a first-come-first-serve basis. Therefore, BEV purchasers tend 

to more easily get permits than CV purchasers (Yang et al., 2014). For example, the winning 

probability of getting a CV permit was around 0.05% in February, 2018. One typical usage-related 

policy for EVs is the end-number license plate policy: Specifically, the usage of CV in Beijing is 

restricted in a certain area during a specific period (e.g., from 7AM to 8PM) in weekdays, according 

to the last digit of the license plate. However, this policy does not apply to BEV drivers (Wang et al., 

2014). 

  In order to increase the adoption of EVs, many empirical studies have been carried out to investigate 

the influential factors, primarily including socio-demographic attributes, vehicle price, vehicle usage, 

social influence, environmental awareness and policies (see Section 2.1 for a review). However, little 

is known about their relative importance. Therefore, this paper attempts to compare the extent to 

which these key factors may influence the purchase behaviour of EVs at the individual level using the 

data collected in a questionnaire survey in Beijing. Furthermore, discrete choice models will be used 

to investigate how the relative importance of each factor may vary across individuals. On the other 

hand, apart from the so-called “neighbour effects”, other spatial characteristics of EV purchase have 

received relatively scant attention. In response to this, this paper will try to investigate the spatial 

patterns of the key influential factors, based on the residential locations of the survey respondents.  

  It should be noted that EV in this paper particularly refers to Plug-in Hybrid Electric Vehicle (PHEV) 

and Battery Electric Vehicle (BEV), as both of them can be recharged by connecting to the power grid 

(Zhuge and Shao, 2018a). However, in Beijing, most of the EV-related policies (e.g., end-number 

licence plate policy and license plate lottery policy) only benefit BEV owners, excluding PHEV ones, 

as PHEV has a relatively shorter electric driving range and the PHEV drivers may also use petrol on 

their journeys, which could have negative environmental impact.   

2 Literature Review 

2.1 Factors Influencing EV Purchase Behaviour 

  EV purchase behaviour could be influenced by various factors, as evident from a large number of 

empirical studies. In recent comprehensive reviews, different classification methods have been used to 

group these factor: Li et al. (2017) reviewed the factors influencing the consumers’ intentions to adopt 

BEVs and grouped the factors into socio-demographic, situational and psychological factors; Rezvani 

et al. (2015) reviewed the drivers and barriers of the uptake of EVs and grouped them into technical 

factors (e.g., driving range), contextual factors (e.g., charging infrastructures), cost factors (e.g., 
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purchase cost) and individual and social factors (e.g., age and education); Biresselioglu et al. (2018) 

reviewed the drivers and barriers from “three levels of decision-making, namely formal social units, 

collective decision-making units, and individual units”; Hardman et al. (2017)’s review was focused 

on the financial purchase incentives for BEVs. In this paper, a new classification method is proposed 

for the review of the influential factors, based on the recent reviews above. Specifically, the 

influential factors here are grouped into socio-demographic attributes, vehicle price, vehicle usage, 

social network, environmental awareness and policies, which have covered most of the factors 

reviewed in the recent work, as shown in Table 1. 

Table 1 Classification Methods used in the Recent Reviews of the Factors Influencing EV Purchase 

Previous 
Review 
Work 

Socio-
Demographic 

Attributes 

Vehicle 
Price Vehicle Usage Social 

Network 
Environmental 

Awareness Policies 

Li et al. 
(2017) 

Socio-
Demographic 

factors 
Cost 

Technical features 
(e.g., driving 

range); 
Experience 

Societal 
influence 

Environmental 
attributes 

Government 
policy 

Rezvani 
et al. 

(2015) 

Individual 
factors (e.g., 

age) 
Cost  

Technical factors 
(e.g., charging 

time); Contextual 
Factors (e.g., 

charging 
infrastructure) 

Social 
Factors 
(e.g., 

opinion 
of peers) 

Social Factors 
(e.g., concerns 
about climate 

change) 

N/A 

Biresselio
glu et al. 
(2018) 

N/A 
Economic 
restrictions 

Lack of charging 
infrastructure; 

Technical 
restrictions 

N/A 
environmental 

benefits 

Taxes, 
incentives 

and 
regulations 

Hardman 
et al. 

(2017) 
N/A N/A N/A N/A N/A 

Financial 
purchase 
incentives 

 Next, each of the influential factors above will be reviewed: 

(1) Socio-Demographic Attributes 

  Socio-Demographic attributes, including both individual and household attributes, have been 

identified as the important factors influencing the adoption of EVs (Li et al., 2017; Rezvani et al., 

2015). These socio-demographic factors include age (Hackbarth and Madlener, 2013; Hidrue et al., 

2011), gender (Carley et al., 2013; Erdem et al., 2010), education level (Carley et al., 2013; Erdem et 

al., 2010; Hackbarth and Madlener, 2013; Hidrue et al., 2011), job type (Plötz et al., 2014), income 

(Erdem et al., 2010; Li et al., 2013a) and number of vehicles (Zhang et al., 2011b).  

(2) Vehicle Price 

  Vehicle price is a common factor that could heavily influence the vehicle purchase behaviour. 

Currently, EV sale price tends to be much higher than CV price, primarily due to the cost of the on-

board batteries (Haddadian et al., 2015). Therefore, a number of empirical studies have investigated 
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whether vehicle price could influence the purchase behaviour and if yes, how it could influence 

(Biresselioglu et al., 2018; Junquera et al., 2016; Larson et al., 2014; Li et al. (2017); Qian and 

Soopramanien, 2011; Sun et al., 2017; Tamor et al., 2013; Zhang et al., 2011b). In order to reduce the 

likely negative influence of high sale price of EVs on the adoption, financial incentives (or subsides) 

have been used in many countries, especially at the early stage of the EV development, including 

China and the USA (Degirmenci and Breitner, 2017; Fearnley et al., 2015; Jenn et al., 2013; Li et al., 

2015; Ozaki and Sevastyanova, 2011; Qian and Soopramanien, 2011; Wang et al., 2017).  

(3) Vehicle Usage 

  Vehicle usage here is a broad term used to describe the satisfaction of drivers with their vehicles, 

considering the operating cost, refuelling/charging time, the availability of charging/refuelling 

infrastructures, and battery-related concerns (e.g., driving range). Currently, difficult access to 

charging facilities (e.g., charging posts), long charging time, and limited driving range have been 

commonly viewed as the barriers to the uptake of EVs, though EV drivers could save energy cost by 

using electricity. Many EV studies have considered vehicle usage as an influential factor 

(Biresselioglu et al., 2018; Daziano and Chiew, 2012; Degirmenci and Breitner, 2017; Egbue and 

Long, 2012; Fearnley et al., 2015; Hackbarth and Madlener, 2013; Hoen and Koetse, 2014; Junquera 

et al., 2016; Larson et al., 2014; Matthews et al., 2017; Morton et al., 2016; Qian and Soopramanien, 

2011; Sun et al., 2017; Tamor et al., 2013; Tanaka et al., 2014; Zhang et al., 2011b). In particular, the 

battery-related concerns (e.g., driving range), which is one key aspect of vehicle usage, appear to have 

received more attention (Chéron and Zins, 1997; Clover, 2013; Daziano, 2013; Ewing and Sarigöllü, 

1998; Golob et al., 1993; Golob et al., 1997; Hidrue et al., 2011; Krupa et al., 2014; Lieven et al., 

2011; Potoglou and Kanaroglou, 2007; Tamor et al., 2013). 

(4) Social Network  

  Social influence is a common factor in the studies of diffusion (e.g., innovation diffusion) (Bakshy et 

al., 2009; Bakshy et al., 2012; Li et al., 2017; Li et al., 2013b; Pettifor et al., 2017; Young, 2009). It is 

generally argued that individual behaviour, including the purchase behaviour of EVs, could be 

influenced through the social networks of individuals. For instance, people with a good experience of 

using EVs may encourage their friends or neighbours to purchase EVs. Essentially, individual 

behaviour could be influenced by social media and advertisements, their neighbours and friends 

through the so-called global, neighbour and fiend social networks, respectively. These social 

influences have also been investigated in the studies of EV adoption (Axsen et al., 2013; Barth et al., 

2016; Jansson et al., 2017; Liu et al., 2017; Moons and De Pelsmacker, 2012; Ozaki and 

Sevastyanova, 2011; Pettifor et al., 2017).  
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(5) Environmental Awareness 

  As aforementioned, EVs have great potential to benefit the environment: at the local level, EVs do 

not release vehicular emissions at all when they run on electricity (note that PHEVs can also run on 

petrol), which could significantly reduce the vehicular emissions and thus improve the local air 

quality; at the global level, the net reduction in vehicular emissions is closely associated with the fuel 

type (e.g., coal) used to generate electricity, but EVs allow the management of power production to be 

centralized to relatively small numbers of power stations, where emission mitigation strategies can be 

more easily put in place. Therefore, the potential environmental benefits have become one of the 

important factors influencing the adoption of EVs, as evident from many EV studies (Axsen et al., 

2013; Biresselioglu et al., 2018; Daziano and Chiew, 2012; Degirmenci and Breitner, 2017; Delang 

and Cheng, 2012; Egbue and Long, 2012; Hackbarth and Madlener, 2013; Li et al., 2013a; Ozaki and 

Sevastyanova, 2011; Smith et al., 2017).  

(6) Various Policies: Purchase and Usage-Related Polices 

  Apart from the EV subsides mentioned above, there are many other policies being applied in the EV 

market, and they are expected to promote purchase or/and usage of EVs (Hao et al., 2014). 

Accordingly, these policies can be essentially grouped into purchase- and usage- related policies: 

purchase-related policies try to reduce the fixed-cost of EVs; while usage-related policies try to 

reduce the marginal cost of EVs (Langbroek et al., 2016). Some key EV-related policies are 

summarized as follows: 

• Policies for Vehicle Purchase: subsides, tax incentives (Hackbarth and Madlener, 2013; 

Langbroek et al., 2016; Li et al., 2015; Mersky et al., 2016; Morton et al., 2016; Zhang et al., 

2011b), and license fee exemption (Wang et al., 2017); 

• Policies for Vehicle Usage: no driving restriction (e.g., end-number license plate policy) (Sun 

et al., 2017; Wang et al., 2017), free parking (Hackbarth and Madlener, 2013; Ozaki and 

Sevastyanova, 2011; Qian and Soopramanien, 2011), priority lane (e.g., bus lane access) 

(Hackbarth and Madlener, 2013; Mersky et al., 2016; Qian and Soopramanien, 2011), and toll 

exemptions (Mersky et al., 2016; Ozaki and Sevastyanova, 2011). 

  Both purchase- and usage- related policies were generally studied within “what-if” scenarios, in 

order to assess the potential influence of the policies on the uptake and usage of EVs, which could 

help policy makers to decide whether or not to implement them.  
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2.2 Methods for the Empirical Studies of EV Purchase Behaviour 

2.2.1 Data Collection Methods 

  Questionnaire survey is a general way to collect the data for the empirical studies of EV purchase 

behaviour, using one or both of Stated Preference (SP) and Revealed Preference (RP) techniques. 

They have their own limitations: RP cannot be used to collect data on any objects which do not yet 

exist (Kroes and Sheldon, 1988); For the SP technique, the stated preferences of respondents may not 

be real (Wardman, 1988). In the studies of EV purchase behaviour, SP technique (Degirmenci and 

Breitner, 2017; Delang and Cheng, 2012; Egbue and Long, 2012; Hackbarth and Madlener, 2013; 

Hoen and Koetse, 2014; Jansson et al., 2017; Junquera et al., 2016; Larson et al., 2014; Li et al., 

2013a; Morton et al., 2016; Ozaki and Sevastyanova, 2011; Qian and Soopramanien, 2011; Smith et 

al., 2017; Sun et al., 2017; Tanaka et al., 2014; Vassileva and Campillo, 2017; Zhang et al., 2011b) 

tended to be more frequently used than RP technique (Liu et al., 2017; Morton et al., 2016; Tamor et 

al., 2013). One possible reason may be that most of the countries are still staying at the early stage of 

transportation electrification, and it is rather difficult to directly survey EV users, due to a relatively 

low EV adoption rate, though few attempts have been made (Jansson et al., 2017; Larson et al., 2014; 

Sun et al., 2017; Vassileva and Campillo, 2017).  

  Questionnaires can either be distributed online or be paper-based. Compared with paper-based 

questionnaire surveys, online surveys tend to more easily get access to target respondents, but may 

introduce more bias, as paper-based surveys generally have survey assistants available who can 

explain about EVs. In the studies of EV purchase behaviour, both online surveys (Egbue and Long, 

2012; Hoen and Koetse, 2014; Jansson et al., 2017; Junquera et al., 2016; Li et al., 2013a; Qian and 

Soopramanien, 2011; Tanaka et al., 2014) and paper-based surveys (Delang and Cheng, 2012; Larson 

et al., 2014; Ozaki and Sevastyanova, 2011; Sun et al., 2017; Vassileva and Campillo, 2017; Zhang et 

al., 2011b) have been conducted. In some cases, both of them were used at the same time (Morton et 

al., 2016; Smith et al., 2017).   

2.2.2 Models for the Analysis of EV Purchase Behaviour 

  Discrete choice models, which can take many forms, have been widely used to analyse the EV 

purchase behaviour, including mixed logit model (Hackbarth and Madlener, 2013; Hoen and Koetse, 

2014), Multinomial Logit (MNL) model (Junquera et al., 2016; Qian and Soopramanien, 2011), 

nested logit model (Qian and Soopramanien, 2011), hybrid discrete choice model (Smith et al., 2017), 

generalized discrete choice model (Daziano and Chiew, 2012), binary logit model (Zhang et al., 

2011b), conditional logit model (Tanaka et al., 2014) and probit models (Li et al., 2013a). Apart from 

discrete choice models, some other statistical methods have also been used, including chi-square test 

(Egbue and Long, 2012) and structural equation modelling (Degirmenci and Breitner, 2017). In 
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addition to statistical analysis of EV purchase behaviour, spatial analysis has also received some 

attention: For instance, Liu et al. (2017) investigated if the so-called “neighbour effects” could 

influence the adoption of hybrid EVs, using some general spatial models, including spatial 

autoregressive, spatial error and geographically weighted regression models. However, the spatial 

characteristics of EV purchase have not been fully understood yet.  

2.3 Comments on Previous Work 

  Many empirical studies have been carried out to investigate if a factor could influence the EV 

adoption, using both statistical and spatial methods. Vehicle price, vehicle usage, social network, 

environment awareness, purchase-related policies and usage-related policies appear to be the six key 

influential factors, which have received substantial attention in the EV studies. However, their relative 

importance has not been well understood. In response to this, this paper delivered a questionnaire 

survey in Beijing, China, asking respondents to score these six factors, based on their influence on the 

EV purchase. Furthermore, socio-demographic attributes, which were identified as influential as well 

in previous studies, were also collected in the survey and will be further linked to the score (or weight) 

of each factor, so as to investigate how the relative importance may vary cross individuals. In addition, 

the spatial characteristics of these six key influential factors, which have received relatively scant 

attention in the previous EV studies, will also be investigated with a measure of global spatial 

autocorrelation, Moran's I (Assuncao and Reis, 1999; Waldhör, 1996).  

3 Data  

As mentioned above, the data used in this paper was collected in a fieldwork in Beijing from 

September, 2015 to March, 2016. A paper-based questionnaire survey was carried out in shopping 

malls to collect the data on vehicle purchase behaviour and social networks. It should be noted that 

only the data on EV purchase will be used here. The data is composed of two parts: Part 1- Individual 

Information and Part 2 - Information on Vehicle Purchase. Specifically, Part 2 is used to get the 

weights of each factor, including vehicle price, vehicle usage, social network (involving in friendship, 

neighbour and global influences), environmental awareness, purchase restriction and traffic restriction. 

Participants were asked to score each factor according to their relative importance in terms of 

influencing EV purchase, given the total score of 100 (see Appendix 1 for more details); Part 1 is used 

to collect the data on socio-demographic attributes (including both individual and household 

attributes), which will be related to the weights of each factor using discrete choice models, in order to 

explore how the relative importance of each factor varies across individuals (see Section 4.2). 

Furthermore, the residential location of each participant will be geocoded, in order to explore the 

spatial patterns of the six influential factors (see Section 4.3).  
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  The survey covered all of the 16 administrative regions, namely Dongcheng, Xicheng, Chaoyang, 

Fengtai, Shijingshan, Haidian, Fangshan, Tongzhou, Shunyi, Chanpin, Daxing, Mentougou, Huairou, 

Pinggu, Miyun and Yanqing, with 651 samples obtained in total. Note that the target sample size was 

550, which was calculated by the formula proposed by Krejcie and Morgan (1970), and the target 

sample sizes of each administrative region were directly proportional to their population sizes. More 

details on the sample sizes can be found in Appendix 2 (see Figure 6 and Table 7). In addition, the 

distributions of some socio-demographic attributes are shown in Figure 7 in Appendix 2.  

4 Methods 

4.1 Clustering Analysis: Grouping the Weights of Factors 

  K-means clustering algorithm, which is a typical clustering analysis method, is used here to organize 

the weights of each factor into sensible groupings (Jain, 2010), which will be further used as 

alternatives of the Multinomial Logit (MNL) models to be developed for relating the weights of each 

factor to socio-demographic attributes (see Section 4.2) and will also be used to explore the spatial 

patterns of the factors (see Section 4.3). Essentially, the algorithm tries to group the data with the 

objective of minimizing the sum of the squared error over all K clusters, which is mathematically 

formulated as Equation (1) (Hamerly and Elkan, 2004; Steinley, 2006). 

1 i k

K

i kk x x
f x µ

= ∈
= −∑ ∑                                                      (1) 

  Where, ix denotes one element of a set of points to be clustered; K denotes the number of clusters; 

kµ denotes the centre point of k th centre; kx denotes the set of points in k th cluster. 

  In general, the algorithm is composed of four steps below (Hamerly and Elkan, 2004; Steinley, 

2006): 

  Step1: Determine the number of clusters (K) into which the data will be grouped and set the initial 

centre points of the clusters; 

  Step 2: Search for the closest cluster centre for each point; 

  Step 3: Update (or recalculate) the centre point for each cluster; 

  Step 4: Check if cluster membership stabilizes (for example, the objective values calculated by 

Equation (1) change slightly over a specific number of consecutive iterations) or the number of 

iterations exceeds the maximum. If yes, then the algorithm stops; otherwise, it goes back to Step 2.  

  Determining the number of clusters (K) in Step 1 is critical, but the best K is not often obvious 

(Hamerly and Elkan, 2004). Some attempts have been made to determine K automatically using 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT  

 

9 

 

different algorithms, including Gaussian-means algorithm (Hamerly and Elkan, 2004), Bayesian 

model  (Kulis and Jordan, 2011), Minimum Description Length (MDL) principle (Bischof et al., 1999) 

and differential evolution algorithm (Das et al., 2008). This paper will use the same K for all of the 

factors, in order to compare their differences across individuals in terms of the associated socio-

demographic attributes. Specifically, K will be set to 4, meaning that the weight of each factor will be 

grouped into four clusters. These clusters correspond to four classes, namely “Very High”, “High”, 

“Medium” and “Low” according to their central points. For example, the cluster with highest central 

point will be defined as “Very High”, indicating that this cluster contains respondents who gave 

relatively higher scores to the factor. 

4.2 Multinomial Logit (MNL) Model: Relating the Weight of Influential 

Factor to Socio-Demographic Attributes 

  As a typical type of discrete choice model, Multinomial Logit (MNL) model has been widely used to 

analyse various types of individual behaviour, including the purchase behaviour of EVs (Junquera et 

al., 2016; Qian and Soopramanien, 2011). This paper attempts to use the MNL models to relate the 

weight of each factor to socio-demographic attributes (including both individual and household 

attributes), which are summarized in Table 2. As aforementioned, the weight of each factor will be 

grouped into four clusters, namely “Very High”, “High”, “Medium” and “Low”, using a K-means 

clustering algorithm introduced in Section 4.1. The four clusters will be further used as the 

alternatives of the MNL models for all of the factors, so as to compare their differences in the 

associated socio-demographic attributes. 

  A brief introduction to the MNL model is given as follows (Hosmer Jr and Lemeshow, 2004; Long 

and Freese, 2006; Stata, 2016):   

  The probability ( niP ) for individualn  to choose the alternative i ( 1,2,..., )i J= can be calculated 

with Equation (2). To each factor, alternative i in this paper refers to the cluster i , in which the 

weight of the factor is grouped.  

( ) ( )

( ) ( )

1 1 1

ni ni

V Xninj

u V X

ni J J J
u

j j j

e e e
P

e e e
ε β ε

ε β ε

+ ⋅ +

+ ⋅ +

= = =

= = =
∑ ∑ ∑

                                          (2)                      

  Where, niu is the utility of alternative i  for individual n , which can be further decomposed into the 

observable (niV ) and unobservable (ε ) components. An observable component here is composed of 

the influential factors (X ) and their coefficients (β ). In this paper, X refers to the socio-

demographic attributes in Table 2, and β is estimated within a statistical software package, Stata 
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(Stata, 2016). An unobservable component (ε ), also known as random term, is generally assumed to 

follow a specific distribution, such as Gumbel distribution.  

Table 2 Variables Used in the MNL Models 

Category Variables Denotation Choices 

Individual  

Sex Sex 1: Male; 2: Female 

Age Age 
1: ≤18 ; 2:18-24; 3:25-34; 4:35-44; 5:45-54; 
6:55-64; 7: ≥65 

Individual 
Income 

IndIcome 
1:≤3K; 2:3-4.5K; 3:4.5-6K; 4:6-8K; 5:8-10K; 
6:10-15K; 7:≥15K 

Highest Level 
of Education 

Education 

1:Not Educated; 2:Primary-School Level; 
3:Middel-School Level; 4:High-School Level; 
5:Junior-College Level; 6:Bachelor Degree; 
7:Graduate Degree 

Household 

Number of 
Driving 
License 

LicenseNum 1:0; 2:1-2; 3:≥3 

Number of 
Children 

ChildrenNum 1:0; 2:1; 3:≥2 

Household 
Income 

HouldIncome 
1:≤100K; 2:100-200K; 3:200-300K; 4:300-
500K; 5:500-700K; 6:700K-1M; 7:≥1M 

Number of 
Vehicles 

VehicleNum 1:0; 2:1-2; 3:≥3 

4.3 Moran’s I: Spatial Analysis of the Factors 

  In order to further investigate the spatial characteristics of the six factors, Moran's I, a commonly 

used spatial autocorrelation coefficient (Assuncao and Reis, 1999; Cliff and Ord, 1970; Waldhör, 

1996), is computed for the weights (or scores) of each factor, based on the residential locations of the 

participants, as presented by Equation (3).  

2

( ) ( )

( )

ij i ji j

ij ii j i

w x x x xN
I

w x x

⋅ − ⋅ −
= ⋅

−
∑ ∑

∑ ∑ ∑
                                      (3) 

  Where, N denotes the number of samples; ijw denotes the Euclidean distance between the 

residential locations of participants i  and j ; x denotes the weight of a factor; x is the mean of the 

weights of a factor. Moran’s I usually ranges from -1 to 1. A positive Moran’s I (or a positive spatial 

autocorrelation) suggests that similar values are near to each other; while a negative one suggests 

dissimilar values are near to each other (Assuncao and Reis, 1999; Cliff and Ord, 1970; Waldhör, 

1996). 
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5 Results 

5.1 Weights of the Six Influential Factors 

  As shown by Figure 1-(a), vehicle price tends to be the most influential factor among the six factors 

tested, with a score of 32.3, given the total score of 100; Vehicle usage comes in second, accounting 

for 28.1% of the importance; Purchase restriction (12.4%), which is a particular purchase-related 

policy in Beijing, comes third and tends to be more influential than the remaining three factors, 

namely social network (9.7%), environmental awareness (9.6%) and traffic restriction (7.8%). Further, 

Figure 1-(b) shows the weights of the three different social influences, namely friend (5.0%), 

neighbour (2.0%) and global (2.8%) influences, suggesting that the influence of friends tends to be 

much more significantly. In addition, the standard deviations of the factors are relatively large, 

suggesting that the weights of the factors may vary from one participant to another. Therefore, it 

would be useful to further investigate how individual attributes may influence the weights (see 

Section 5.2).  

  

(a) Influential Factors (b) Social Influences 
Figure 1 Average Weights and Standard Deviations of the Factors 

  As shown by Table 3 and Table 4, the weights of each factor are grouped into four clusters using the 

K-means clustering algorithm introduced in Section 4.1. The means in the tables are the centre points 

of each cluster; the ranges are computed by averaging two adjacent means, as the clustering algorithm 

searches for the closest centre point for the weights. With the ranges, the distributions of the weights 

of each factor can be further plotted, as shown in Figure 2 and Figure 3. It can be found from the 

figures that 1) for vehicle price (Figure 2-(a)), the majority of participants scored above 18, 

accounting for around 85%; 2) more than half of the participants (55.87%) considered the vehicle 

usage as 30% of the importance (Figure 2-(b)); 3) To most of the participants, social influence could 

be either relatively slight (with a score below 2) or significant (with a score above 8), accounting for 

32.79% and 56.98%, respectively, as shown by Figure 2-(c). Among the three types of social 

influence (Figure 3), the neighbour and global influences tend to be slighter (with a score below 1) to 

the majority of the participants; 4) more than half (58.7%) of the participants viewed environmental 

factor as the 10% of importance, but around 22% of them paid little attention to the environmental 
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benefits of EVs when they make decisions on vehicle purchase (Figure 2-(d)); 5) more participants 

score higher on purchase restriction than traffic restriction by comparing Figure 2-(e) and -(f), 

resulting in a higher average weight of purchase restriction from an overall perspective (Figure 1-(a)).  

Table 3 Means and Ranges of the Influential Factors 

Choice 
ID 

Vehicle Price Vehicle Usage Social Network Environmental 
Awareness 

Purchase 
Restriction 

Traffic 
Restriction 

Mean Range Mean Range Mean Range Mean Range Mean Range Mean Range 
1 1.4 <6 0.3 <5 0.0 <2 0.1 <1 0.0 <3 0.1 <3 
2 10.9 6-18 9.0 5-15 4.9 2-8 2.7 1-4 5.1 3-9 5.0 3-8 
3 26.1 18-39 20.2 15-30 11.3 8-19 5.1 4-10 13.5 9-30 10.4 8-18 
4 51.0 >39 39.4 >30 25.8 >19 14.8 >10 45.5 >30 26.3 >18 

Table 4 Means and Ranges of the Three Types of Social Influence 

Choice 
ID 

Friend Neighbour Global 
Mean Range Mean Range Mean Range 

1 0.05 <1 0.03 <1 0.02 <1 
2 2.62 1-4 2.61 1-4 2.79 1-4 
3 5.03 4-9 4.99 4-8 5 4-9 
4 12.1 >9 10.5 >8 12 >9 

 

  

(a) Vehicle Price (b) Vehicle Usage 

  

(c) Social Network (d) Environmental Awareness 
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(e) Purchase Restriction (f) Traffic Restriction 
Figure 2 Distributions of the Weights of the Six Factors 

 

  

(a) Friend Influence (b) Neighbour Influence 

 

 

(c) Global Influence  
Figure 3 Distributions of the Weights of the Three Types of Social Influence 

5.2 Relationships between the Weight of Influential Factors and Socio-

Demographic Attributes 

  Table 5 shows the estimated MNL models for the six influential factors, namely vehicle price 

(VehPrice), vehicle usage (VehUsage), social network (SocNet), environmental awareness 

(Environment), purchase restriction (PurchasePo) and traffic restriction (TrafficPo), presenting the 

relationships between them and socio-demographic attributes (including both individual and 

household attributes). In general, it is accepted that a variable is statistically significant with the 

confidence level of 95% if its absolute value of z (|z|) is equal to or greater than 1.96, that is, |z|≥1.96, 

with the assumption that the data is normally distributed. Next, the statistically significant variables 

will be identified for each factor according to the z value.  
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  (1) Vehicle Price. The statistically significant variables include individual income, the number of 

children and education level, according the z values (highlighted in red). Based on both the model 

coefficients and relationships between the weight of vehicle price and these variables (see Figure 8 in 

Appendix 3.1), it can be concluded that 1) people with higher income or more children tend to give 

relatively lower weights (or scores) to the vehicle price, as these people tend to have higher 

affordability; 2) people with higher level of education tend to choose Choice 3 with a score ranging 

from 18 to 39.   

  (2) Vehicle Usage. The education level is the only statistically significant variable. Roughly, people 

with higher level of education tend to not choose Choice 1 with a score below 5 (or tend to give a 

higher score to vehicle usage), as evident from both Figure 9 in Appendix 3.2 and the model 

coefficients. One possible reason may be that EV is a typical high technology, and thus those well-

educated people tend to pay more attention to its usage.  

  (3) Social Network. There appears to be no significant relationships between the weight of social 

network and socio-demographic attributes. However, the three types of social influence, namely 

friend, neighbour and global influences are separately associated with several of the attributes, such as 

individual income and the number of driving licenses, as shown by Table 6. This may be because 

these three types of social influence differ from each other and could not be simply described with a 

collective term, social influence (or social network). Therefore, they probably have to be considered 

separately in the studies of EV purchase behaviour.  

  (4) Environmental Awareness. There are three statistically significant variables in the MNL model 

for environmental awareness, namely individual income, age and the number of driving licenses. 

Roughly, the following conclusions could be made according to the model coefficients and 

relationships shown in Figure 10 in Appendix 3.3: 1) people with higher individual income tend to not 

choose Choice 1, meaning that they tend to pay more attention to (or score higher on) environmental 

awareness; 2) the probability of choosing Choice 3 with a score ranging from 4 to 10 (or scoring 

higher on environmental awareness) increases, as people get more driving licenses. This may be 

because people’s environmental awareness may become stronger, as more and more their household 

members use vehicles for their daily travel.  

  (5) Purchase Restriction. The education level is found as the only statistically significant factor 

influencing people’s attitudes towards purchase restriction. Roughly, people with higher level of 

education tend to not choose Choice 1 (or to pay higher attention to purchase restriction), as evident 

from Figure 11 in Appendix 3.4.  

  (6) Traffic Restriction. The number of vehicles owned is identified as the only statistically 

significant variable to the weight of traffic restriction. Specifically, people with more vehicles tend to 

not choose Choices 2 or 3 with a score ranging from 3 to 18 (Figure 12 in Appendix 3.5). In other 
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words, these people tend to pay either higher or lower attention to traffic restriction. The reasons may 

be that on one hand, people with more vehicles may care more about traffic restriction, and thus give 

higher scores; On the other hand, these people could use different vehicles for their daily travel and 

tend to more easily get rid of traffic restrictions, and thus may give lower scores. For example, in 

response to the end-number license plate policy, people with more vehicles could use different 

vehicles in weekdays according to the license plate numbers. As a result, traffic restrictions tend to be 

less influential to them. 

  The findings above suggest that individual income and education level tend to be more statistically 

significant than other socio-demographic attributes, and are associated with four of the influential 

factors, namely vehicle price, vehicle usage, environment, and traffic restriction. This may be because 

income and education level are closely associated with affordability and environmental awareness, 

respectively, which could influence the adoption of EV, as EV generally has a high sale price, but 

could potentially benefit the environment. Based on the separate analyses of each factor above, the 

differences between the factors in the associated socio-demographic attributes could be further 

investigated as follows: 1) people with higher education level tend to give lower scores (or choose 

Choice 1) to both vehicle usage and purchase restrictions; 2) people with higher individual income 

tend to pay less attention to vehicle price (or choose Choice 1), but have higher environmental 

awareness (or not choose Choice 1). 
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Table 5 MNL Models for the Influential Factors  

 

 

Coef. z Coef. z Coef. z Coef. z Coef. z Coef. z

Choice 1

Sex -0.07 -0.26 -0.40 -1.68

Age -0.12 -0.82 0.21 1.65

Indincome 0.35 2.87 0.15 1.67 -0.15 -2.16

Education 0.05 0.24 -0.37 -2.42 -0.07 -0.58 -0.45 -2.68

MemberNum 0.18 0.57

ChildrenNum 0.67 1.9 -0.25 -0.96

LicenseNum -0.25 -0.90 0.07 0.32 0.16 0.51

HouIncome -0.09 -0.64

VehicleNum 0.14 0.47 -0.58 -1.77

Constant -4.33 -3.33 -0.34 -0.42 1.45 1.31 -0.66 -0.97 3.25 3.27 1.54 2.41

Choice 2

Sex 0.11 0.31 -0.76 -0.6

Age -0.06 -0.30 0.88 2.18

Indincome 0.28 2.84 0.09 0.70 -0.53 -1.41

Education 0.12 0.77 0.07 0.54 0.06 0.34 -0.27 -1.58

MemberNum -0.33 -0.75

ChildrenNum 0.70 2.43 0.04 0.10

LicenseNum 0.21 0.57 0.18 0.2 0.27 0.85

HouIncome -0.14 -0.76

VehicleNum 0.26 0.69 -0.71 -2.11

Constant -3.95 -3.71 -1.69 -2.38 -1.39 -0.89 -5.21 -1.56 2.21 2.16 1.41 2.16

Choice 3

Sex 0.01 0.03 0.21 0.85

Age -0.17 -1.11 -0.11 -0.71

Indincome 0.09 1.53 0.09 1.00 0.07 0.93

Education 0.24 2.45 0.06 0.6 0.20 1.50 -0.35 -2.21

MemberNum 0.28 0.90

ChildrenNum 0.23 1.17 -0.25 -0.98

LicenseNum -0.34 -1.24 0.65 2.91 0.36 1.17

HouIncome -0.05 -0.38

VehicleNum -0.01 -0.04 -0.75 -2.28

Constant -1.63 -2.52 -1.19 -2 0.47 0.42 -2.70 -3.5 3.35 3.52 1.42 2.22

Base =Choice4  Choice4: >30

VehPrice

Chocie 1: <6

VehUsage
Variable

Chocie 1: <5

Chocie 2: 6-18 Chocie 2: 5-15

Chocie 3: 18-39

 Choice4: >39

Chocie 2: 15-30

Environment

Chocie 1: <1

Chocie 2: 1-4

Chocie 3: 4-10

Choice4: >10

Chocie 3: 9-30

 Choice4: >30

PurchasePo

Chocie 1: <3

Chocie 2: 3-9

 TrafficPo

 Choice4: >18

Chocie 1: <3

Chocie 2: 3-8

Chocie 3: 8-18

SocNet

Chocie 1: <2

Chocie 2: 2-8

Chocie 3: 8-19

 Choice4: >19
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Table 6 MNL Models for the Three Types of Social Influence 

 

5.3 Spatial Patterns of the Factors Influencing the Uptake of EVs 

  Figure 4 shows the spatial distributions of the weights of the six factors and Figure 5 is focused on 

the three types of social influence, namely friend, neighbour and global influences. Each dot in the 

maps represents the residential location of a participant. For each factor, the weights are grouped into 

four clusters, using the K-means clustering analysis (see Table 3 and Table 4). Furthermore, Moran’s 

I (see Section 4.3) is computed for each factor, in order to judge whether any spatial patterns could be 

discerned. As aforementioned, the survey tried to cover all of the 16 administrative regions, and the 

targeted sample size of each region was proportional to the population size of the region (see Table 7 

and Figure 6 in Appendix 3). As a result, the participants tended to be those who live in the central 

districts and the central areas of the outer districts, as the population density of these areas tended to 

be higher. Therefore, the dots (or the residential locations) in the maps tend to be dense in these areas.  

Coef. z Coef. z Coef. z

Choice 1

Age -0.35 -2.38

Indincome 0.11 1.57

Education -0.22 -2.02

MemberNum -0.29 -1.22

LicenseNum -0.30 -0.97 -0.52 -1.70

HouIncome 0.13 0.85 0.15 0.99

VehicleNum -0.03 -0.09 0.40 1.20

Constant 1.57 2.17 2.31 3.52 2.86 3.75

Choice 2

Age -0.42 -1.37

Indincome 0.38 2.18

Education 0.06 0.19

MemberNum -0.33 -0.48

LicenseNum -1.17 -2.12 -1.30 -2.3

HouIncome 0.32 1.38 -0.04 -0.14

VehicleNum 0.67 1.15 0.93 1.55

Constant -3.7826 -1.71 -0.45 -0.41 1.31 0.97

Choice 3

Age -0.4635 -2.74

Indincome 0.03 0.39

Education 0.07 0.58

MemberNum -0.41 -1.63

LicenseNum -0.52 -1.41 -0.63 -1.87

HouIncome 0.24 1.39 0.35 2.21

VehicleNum -0.13 -0.33 0.22 0.61

Constant 0.29 0.37 1.25 1.65 2.44 2.93

Base =Choice4

Global

Chocie 1: <1

Chocie 2: 1-4

Chocie 3: 4-9

Choice4: >9

Neighbour

Chocie 1: <1

Chocie 2: 1-4

Chocie 3: 4-8

Choice4: >8

Variable
Friend

Chocie 1: <1

Chocie 2: 1-4

Chocie 3: 4-9

Choice4: >9
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  It can be found from the maps that 1) people with similar attitudes towards vehicle usage (Moran’s 

I= 0.10) and purchase restriction (Moran’s I= 0.14) tend to live close to each other. This may be 

because the education level is identified as the only statistically significant variable for both vehicle 

usage and purchase restriction, according to their MNL models (see Table 5), and people with the 

same level of education (Moran’s I= 0.29) tend to live close to each other; 2) the Moran’s I of 

environmental awareness is -0.07, suggesting that people scored differently on environmental 

awareness a bit tend to live close to each other; 3) there appears to be no significant spatial patterns 

for the factors of vehicle price (Moran’s I= -0.004), social network (Moran’s I= -0.01) or traffic 

restriction (Moran’s I= 0.04). For the social influences, people with the similar attitudes towards the 

neighbour influence (Moran’s I= 0.07) a bit tend to live close to each other; while there seems no 

significant spatial patterns for friend influence (Moran’s I= -0.01) or global influence (Moran’s I= -

0.01). 

  

(a) Vehicle Price (Moran’s I= -0.004)  (b) Vehicle Usage (Moran’s I= 0.10) 

  

Legend 

 

Legend 

 

Legend 

 

Legend 
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(c) Social Network (Moran’s I= -0.01) (d) Environmental Awareness (Moran’s I= -0.07) 

  

(e) Purchase Restriction (Moran’s I= 0.14) (f) Traffic Restriction (Moran’s I= 0.04) 
Figure 4 Spatial Distributions of the Weights of the Six Influential Factors 

 

  

(a) Friend Influence (Moran’s I= -0.01) (b) Neighbour Influence (Moran’s I= 0.07) 

Legend 

 

Legend 

 

Legend 

 

Legend 
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(c) Global Influence (Moran’s I= -0.01)  

Figure 5 Spatial Distributions of the Weights of the Three Types of Social Influence 

6 Discussion on Applying the Empirical Findings  

  The empirical findings above could be further used for EV-related policy making and modelling of 

EV purchase behaviour. Two specific examples are given as follows:  

6.1 Application in Policy Making 

  As aforementioned, vehicle price and usage tend to be more important than the other four factors, 

accounting for 32.3% and 28.1% of the importance, respectively. Therefore, the EV-related policy 

makers are suggested to pay more attention to these two factors when shaping policies. In response to 

the relatively high EV sale price, financial incentives (e.g., EV subsides) should be effective strategies, 

which could significantly promote the purchase and usage of EVs. For vehicle usage (which is a broad 

term here involving in charging time, the availability of charging facilities and driving range), it 

would be very helpful to invest in charging infrastructures, including both slow charging posts at 

parking lots and fast enroute charging stations (e.g., battery swap stations), so as to increase the 

degree of people’s satisfaction with the use of EVs and then to promote the uptake of EVs.  

6.2 Application in Modelling of EV Purchase Behaviour 

  The approaches to modelling the purchase behaviour of EVs primarily include discrete choice 

models (He et al., 2014; Lee et al., 2012; Nemry and Brons, 2010), agent-based models (Brown, 2013; 

Cui et al., 2012; Eppstein et al., 2011; McCoy and Lyons, 2014; Mueller and de Haan, 2009; Pellon et 

al., 2010; Shafiei et al., 2012; Tran, 2012) and system dynamics (Linder, 2011; Shepherd et al., 2012; 

Struben and Sterman, 2008). The former two models investigate the purchase behaviour at the 

Legend 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT  

 

21 

 

individual level; while the latter predicts the EV penetration rates at the system-level (or macro-level). 

The empirical findings of this paper are presented at the individual level and thus tend to be more 

straightforwardly used for the former two model types: specifically, the empirical findings can be 

used to develop a utility function for both discrete choice models and agent-based models to simulate 

how individuals choose among different vehicle types (Kieckhafer et al., 2009; Mueller and de Haan, 

2009; Zhang et al., 2011a), including CVs and EVs, as presented by Equation (4). The theoretical 

basis of the function is as follows: 

• Utility maximization theory has been widely used to model the purchase behaviour of EVs, 

with the assumption that individuals always try to maximize their own utilities when choosing 

vehicles, using the influential factors as model variables (Kieckhafer et al., 2009; Mueller and 

de Haan, 2009; Zhang et al., 2011a). Similarity, the utility function (U ) in this paper also 

incorporates the influential factors (iV ) above, namely vehicle price, vehicle usage, friend 

influence, neighbour influence, global influence, environmental awareness, purchase 

restriction and traffic restriction. It is worth noting that the three types of social influence are 

used here instead of the factor of social network, as it is found that the collective term of 

social network is not directly associated with any individual attributes (as discussed in Section 

5.2). 

• The extent to which each factor influences the decision-making on vehicle purchase is 

mathematically formulated as the weight of each factor ( iW ), which varies from one 

individual to another, according to the findings in Section 5.2. Therefore, the MNL models, 

which relate the weight of each factor to socio-demographic attributes (see Section 5.2), can 

be used here to estimate the weight for each individual, so as to take into account 

heterogeneity. When heterogeneity in not necessarily considered, the average weight of each 

factor (see Figure 1) could be used instead of the MNL models. 

• The utility function also incorporates a random term (ε ), which is used to describe the 

influence of those unobserved factors. In general,ε  is assumed to follow a Gumbel 

distribution (Cascetta and Papola, 2001; Conniffe, 2007; Zhuge and Shao, 2018b; Zhuge et al., 

2016b).   

I I

i i i
i i

U U W Vε ε= + = ⋅ +∑ ∑                                                      (4) 

  Where, iU  denotes the utility of i th influential factor (e.g., vehicle price and vehicle usage), which 

is the product of the weight (iW ) and the observed value (iV ) of the factor.  
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7 Conclusions 

  This paper used the capital of China, Beijing as a case study and explored the relative importance of 

the six typical factors, which could heavily influence the purchase behaviour of Electric Vehicles 

(EVs), using the data collected from a paper-based questionnaire survey from September, 2015 to 

March, 2016. The overall weights (or scores) of the six factors, namely vehicle price, vehicle usage, 

social network, environmental awareness, purchase restriction and traffic restriction were 32.3%, 

28.1%, 9.7%, 9.6%, 12.4% and 7.8%, respectively, suggesting that people cared more about vehicle 

price and usage than the other four factors. Then, several Multinomial Logit (MNL) models were 

developed to relate the weights of each factor to socio-demographic attributes, including both 

individual and household attributes. The results indicate that people’s attitudes towards vehicle price, 

vehicle usage, environmental awareness, purchase restriction and traffic restriction were associated 

with different attributes, apart from the factor of social network. However, the three types of social 

influence, namely friend, neighbour and global influences, which were collectively referred to as 

social network here, were separately associated with some socio-demographic attributes. This 

suggests that the three types of social influence may have to be considered separately, and should not 

be studied as a collective term, social influence (or social network). Furthermore, the weights of each 

factor were analysed from a spatial perspective, using Moran’s I which is a measure of global spatial 

autocorrelation. The results suggest that among the six factors, only vehicle usage (Moran’s I= 0.10) 

and purchase restriction (Moran’s I= 0.14) tend to somewhat cluster spatially, suggesting that people 

with similar attitudes towards vehicle usage and purchase restriction tend to live close to each other, 

as probably these two factors are only associated with the education level (according to the MNL 

models) and people with similar education levels tend to live close to each other (note Moran’s I for 

the education level is 0.29). 

  As discussed above, the research findings can be applied in the modelling of EV purchase behaviour. 

The future work will be focused on developing an agent-based EV market model incorporating the 

utility function developed in this paper. In order to take into account both heterogeneity and spatial 

factors (e.g., neighbour effect), the EV market model needs to be coupled with a population 

synthesizer (Pritchard and Miller, 2012), a social network generator (Arentze et al., 2012), and an 

activity-based travel demand model (Horni et al., 2016; Zhuge et al., 2017). Specifically,  population 

synthesizer is used to generate a synthetic population containing individuals and households, as well 

as their attributes (e.g., income and car ownership) (Pritchard and Miller, 2012; Zhuge et al., 2016a; 

Zhuge et al., 2018a), which can be used as the inputs of the MNL models to predict the weights of 

each factor; the social network generator is used to generate a population-wide social network 

(Arentze et al., 2012; Zhuge et al., 2018b), so that the three types of social influence can be quantified 

and the results can be further used as the inputs of the utility function; Activity-based travel demand 

model, which is used to simulate the daily travel of each individual in the population (Horni et al., 
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2016), can be used to quantify the vehicle usage and environmental awareness (e.g., the total amount 

of vehicular emissions) by aggregating the micro-simulation results. In addition, this paper used four 

general clusters, namely “Very High”, “High”, “Medium” and “Low”, to group the weights of each 

factor, using a K-means clustering algorithm with K set to 4. These four clusters were further used as 

alternatives of the MNL models to relate the weights of each factor to socio-demographic attributes. 

Although this clustering method is unlikely to heavily influence the application of the estimated MNL 

models to predict the weight of each factor, more investigation into the clustering method (for 

example, using a different K) would be helpful for better understanding the relationships and further 

for predicting the weights.  
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Appendix  

Appendix 1: Questionnaire Survey in Beijing 

  In order to get the weight (or the relative importance) of each factor, the following scenario 

was given to the participants in the questionnaire survey in Beijing:  

Assuming that you are purchasing vehicles (either electric or conventional vehicles), please compare 

the following factors that may influence your decisions and score them with weights.  

An Example：：：：One participant views that the driving experience (Factor 2) is most important, 

accounting for 45%; the second important factors is vehicle price (Factor 1), accounting for 25%; The 

constraints on vehicle purchase permit and usage (end-number licence plate) are least influential.  

Factor 1 
Vehicle 
Price 

(The final 
price, 

considering 
any 

subsidy, 
etc.) 

Factor 2 
Driving 

Experience 
(On Driving, 

Parking, 
Refuelling/Charging, 

Cost, Safety, etc.) 

Factor 3 
Social Network 

(Influence from Friends, 
Neighbours and Social Media) 

Factor 4 
Environmental 

Awareness 
(EVs are good 
for Air Quality) 

Factor 5 
Purchase 
Permit 
(Higher 
Winning 

Probability 
of EV 

Permits) 

Factor 6 
Usage 

Constraint 
(End-

number 
licence 
plate) 

25% 45% 

10% 

10% 5% 5% Friends Neighbours 
Social 
Media 

5% 0% 5% 

 Note: The total score is 100% 

 Please now give your weights here：：：： 

Factor 1 
Vehicle 
Price 

 

Factor 2 
Driving 

Experience 
 

Factor 3 
Social Network 

 

Factor 4 
Environmental 

Awareness 
 

Factor 5 
Purchase 
Permit 

 

Factor 6 
Usage 

Constraint 

  

 

   Friends Neighbours 
Social 
Media 

   

Appendix 2: General Results of the Questionnaire Survey 

  Table 7 compares the target and actual sample sizes of each region, suggesting that the actual sample 

sizes are higher. It should be noted that the valid sample sizes for different questions may vary, as 

some of the respondents did not answer those sensitive questions, such as the residential location. As 

a result, the valid sample size for the spatial analysis in Section 5.3 is smaller than the total actual 

sample size (651), for example.  
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Table 7 Target and Actual Sample Sizes 

ID District Names 
Target  

Sample Size 
Actual  

Sample Size 
1 Dongcheng 24 26 
2 Xicheng 34 36 
3 Chaoyang 100 128 
4 Fengtai 59 77 
5 Shijingshan 17 19 
6 Haidian 93 122 
7 Fangshan 26 28 
8 Tongzhou 34 35 
9 Shunyi 26 32 
10 Chanpin 49 53 
11 Daxing 39 42 
12 Mentougou 8 8 
13 Huairou 10 10 
14 Pinggu 11 11 
15 Miyun 12 16 
16 Yanqing 8 8 

Total 550 651 

  Figure 6 shows the population density and actual sample sizes. It is worth noting that Figure 6-(b) 

maps the sample sizes of each administrative region based on survey locations (where the 

questionnaire survey was conducted), rather than the residential locations or workplaces of 

participants.  

  

(a) Population Density in 2014 
(b) Spatial Distribution of Sample Size by 

Survey Location 
Figure 6 Maps of Population Density and Actual Sample Sizes 

 

Legend 

 

Legend 
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(a) Sex (b) Age 

  

(c) Individual Income per Month (RMB) (d) Highest Level of Education 

  

(e) Job Type (f) Household Income per Year (RMB)  

  

(g) Number of Driving Licenses in a Household (h) Number of Children in a Household 
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(i) Number of Vehicles Owned by a Household (j) Number of Household Members 
Figure 7 Characteristics of Participants and their Households 

Appendix 3: Relationships between the Weight of Influential Factors and Socio-

Demographic Attributes 

Appendix 3.1 Vehicle Price 

Figure 8 shows the relationships between vehicle price and the statistically significant variables, 

including individual income, number of children and education level. It should be noted that the 

vertical axis in each subfigure is the percentage of the weight of vehicle price to a specific variable. 

Taking the number of children (Figure 8-(b)) for example, to participants with no children, the 

distribution of their weights of vehicle price is shown by the bar with “0”.  

  

(a) Relationship between Vehicle Price 
and Individual Income 

(b) Relationship between Vehicle Price 
and Number of Children 

 

 

(c) Relationship between Vehicle Price 
and Education Level 

 

Figure 8 Relationships between Vehicle Price and Significant Variables 
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Appendix 3.2 Vehicle Usage 

 

Figure 9 Relationship between Vehicle Usage and Education Level 

Appendix 3.3 Environmental Awareness 

  

(a) Relationship between Environmental 
Awareness and Individual Income 

(b) Relationship between Environmental 
Awareness and Age 

 

 

(c) Relationship between Environmental 
Awareness and Number of Licenses 

 

Figure 10 Relationships between Environmental Awareness and Significant Variables 
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Appendix 3.4 Purchase Restriction 

 

Figure 11 Relationship between Purchase Restriction and Education Level 

Appendix 3.5 Traffic Restriction 

 

Figure 12 Relationship between Traffic Restriction and Number of Vehicles 
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