
JellyMonitor: automated detection of jellyfish in
sonar images using neural networks

Geoff French∗, Michal Mackiewicz∗, Mark Fisher∗, Mike Challiss†, Peter Knight†, Brian Robinson† and
Angus Bloomfield‡

∗School of Computing Sciences, University of East Anglia, Norwich, UK
Email: g.french@uea.ac.uk, m.mackiewicz@uea.ac.uk, m.fisher@uea.ac.uk

†Cefas Technology Ltd., Cefas, Lowestoft, UK
‡EDF Energy R&D UK

Abstract—JellyMonitor is an self-contained automated system
that detects jellyfish blooms and reports their presence. It uses
an embedded platform to analyse sonar imagery captured by
a sonar imaging device. The software utilises a combination of
classic computer vision techniques and deep neural networks to
detect and classify objects captured by the sonar imaging device.
We report on the development of this system and present results
obtained from deploying a prototype.
Keywords: jellyfish, sonar, deep neural networks, image classifi-
cation, object detection

I. INTRODUCTION

Coastal nuclear power stations use seawater for cooling
purposes and incur significant cost when jellyfish blooms clog
the seawater inlets. With sufficient advance warning, these
costs can be significantly reduced. JellyMonitor is designed
to be a self-contained system that uses an embedded platform
to analyse images captured by a sonar imaging device in order
to detect jellyfish blooms and report their presence, providing
advance warning of their approach.

The software component of JellyMonitor is designed to
analyse sonar imagery in real-time while operating within the
computational constraints of an embedded platform. It uses
classic computer vision techniques to detect and track potential
objects of interest after which a deep neural network classifier
is used to identify them. This process is complicated by the
large quantities of noise present in sonar imagery. We report
on the development of the software component of JellyMonitor
system and present results acquired from the deployment of a
prototype.

This paper is organised as follows: in section II we cover
the hardware component of JellyMonitor; in section III we
describe our data set; in section IV we discuss the image pro-
cessing software in JellyMonitor; in section V we present our
results and finally we present our conclusions in section VI.

II. HARDWARE

The end goal of the JellyMonitor project is to develop a
system that can be deployed offshore and can detect and report
jellyfish blooms via satellite or other telemetry uplink. It is
intended to consist of an underwater rig tethered to a floating
buoy. The sonar device, battery and processing hardware are
housed in a module attached to the underwater rig while
the buoy houses the transmitter. A prototype deployment

Fig. 1. The underwater rig with capture device, deployed in Oban, Scotland.
Image courtesy of Dr. Martin Sayer at the National Facility for Scientific
Diving at the Scottish Association for Marine Science (SAMS).

consisting of an underwater rig and the sonar capture device
can be seen in Figure 1. The system must be capable of
operating autonomously for two to three months – the length
of a typical jellyfish season – once deployed. This necessitates
strict power usage constraints as the battery must be able to
sustain the system for the deployment period.

The use of 3MHz sonar to detect and image moon jellyfish
was reported by Han et al. [1] in 2009. These results were
confirmed by experiments with the Sound Metrics ARIS
Explorer 3000 sonar imaging device [2].

Many computer vision algorithms – particularly those that
utilise deep learning – are computationally intensive. This ne-
cessitates the use of a high performance embedded computing
platform that is able to process the incoming sonar footage in
real-time while utilising less than 20W of power. The nVidia
Jetson TX2 [3] is currently (as of writing) the best choice
given these constraints. Its small physical footprint combined
with its ability to execute deep neural network based image
classifiers quickly were essential for our system.

III. DATA

The data used to develop and test our approach was captured
in 3 locations over the course of the project; within an enclosed
tank, within Lowestoft harbour and on a coastal site in Oban,
Scotland.



The tank based footage was captured at the beginning of
the project by Cefas and Cefas Technology Ltd. staff. The
controlled environment and the presence of captive jellyfish
allowed the capture device settings to be optimised for ac-
quiring clear sonar images of moon jellyfish. Furthermore, it
generated large quantities of footage in which jellyfish were
known to be present and could usually be easily seen.

Later footage was captured by placing the sonar device
underwater within Lowestoft Harbour and releasing jellyfish
within its field of view. Towards the end of the project, footage
more representative of real life conditions was captured by
placing the capture device within an underwater rig on the
seabed off the coast of Oban, Scotland. This resulted in footage
of jellyfish in the wild and would be more representative of
real life conditions.

A breakdown of the footage obtained is shown in Table I.

Capture location Period Time (days, H:MM:SS) # of frames
Tank 2015 8:39:07 186,164
Lowestoft Harbour 2015 3:22:53 180,277
Seabed survey 2015 4:33:20 134,778
Oban, Scotland 2016 11:55:55 598,926
Oban, Scotland 2017 27d, 7:14:14 14,119,741

TABLE I
SONAR FOOTAGE OVERVIEW

IV. AUTOMATED SONAR IMAGE ANALYSIS

A. Sonar imagery

The ARIS Explorer 3000 captures sonar images in a po-
lar co-ordinate system. Each ‘pixel’ has a bin, beam co-
ordinate with its value representing the strength of the signal
reflected back to the device. The beam identifies the angle
while the bin identifies the range / distance. The ARIS
Explorer 3000 has an angular field of view of 29.5◦ split into
128 beams. It has a maximum range of 15m. This is however
adjustable; the sonar footage captured over the course of the
JellyMonitor project had a maximum range of 10m or less
(jellyfish were visible at a range of up to 5m). The number of
bins depends on the distance chosen by the user. The sonar
images take the form of 8-bit per pixel greyscale images that
represent accoustic intensity in the range of 0 to 80dB.

B. Challenges

1) Images in polar vs cartesian co-ordinate frames:
Processing sonar images without first converting them to a
cartesian co-ordinate frame is challenging as the appearance
of objects varies – mainly in terms of aspect ratio – depending
on their distance from the sonar capture device. While the
apparent size of an object in the distance axis will remain
constant, it will vary in the angular axis as it will occupy a
larger angular segment the closer it is to the capture device.
This problem can be addressed by converting the image to a
cartesian co-ordinate frame.

Convering a polar-space sonar image to a cartesian co-
ordinate frame and processing the complete image can incur
a high computational load due to the size – in pixels –

10 5 0 5 10
Accoustic intensity (dB)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
op

or
tio

n 
of

 sa
m

pl
es

Fig. 2. Signal vs noise: histogram of accoustic intensity values found in a
0.05m radius region surrounding a faint object (red) vs empty background
(blue).

of the resulting cartesian space image. An example image
can be seen in the left panel of Figure 5. The area of the
image is proportional to the square of the maximum range
of the polar image; the range is projected along the vertical
axis, while the width of the of the radial arc traced out is
proportional to the maximum range. At a resolution of 5mm
per pixel, a sonar image with a distance range of 0.7m to
10m would require a 800×1864 pixel image in a cartesian
co-ordinate frame. Processing a complete image of this size
using a neural network is essentially infeasible on all but the
most powerful of desktop GPUs due to the large resolution.
Furthermore, the polar to cartesian image conversion itself can
be expensive at such resolutions due to the per-pixel bilinear
filtering operations involved in this process.

2) Noise: There is a great deal of noise inherent in sonar
imagery. Object detection, tracking and identification in such
noisy conditions is one of the major hurdles that must be
overcome.

In order to quantify the noise present in our dataset, we
found a faint object that we intended for our system to be able
to detect and track in footage captured in Oban. We extracted
pixel values from a 0.05m radius circular region of footage
over 33 frames centred on the faint object, resulting in 11,814
pixel values, which were converted to accoustic intensity in
dB. We contrast this with an approximately rectangular region
of 0.88m x 0.6m over 130 frames of empty footage, consisting
of 2,688,000 accoustic intensity values. Histograms of these
are shown in Figure 2. While the pixel values generated by
the capture device measure accoustic intensity in decibels we
adopt an image processing variant of signal to noise ratio
(SNR), given the domain in which we are operating. Our SNR
is shown in Table II. Please note that background subtraction
(see section IV-C1) is applied prior to computing the values
shown.

C. Approach

In order to work within the computational power available,
we developed a multi-stage algorithm that first attempts to
quickly locate potential objects of interest and track their
motion across the field of view of the sonar device. These



TABLE II
SIGNAL VS NOISE; µbg AND σsig ARE THE MEAN AND STANDARD

DEVIATION OF THE ACCOUSTIC INTENSITY OF BACKGROUND PIXELS, µsig
AND σsig ARE THE MEAN AND STANDARD DEVIATION OF THE ACCOUSTIC
INTENSITY OF SIGNAL PIXELS AND SNR IS THE SIGNAL TO NOISE RATIO.
FILTERED PIXELS ARE OBTAINED BY APPLYING GAUSSIAN FILTERING TO

THE DEVICE SPACE IMAGE WITH σ = 6.

µbg σbg µsig σsig SNR (µsig

σbg
)

Raw pixels 0.003 2.286 0.789 2.623 0.343
Filtered 0.003 0.152 0.46 0.2 3.014

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Accoustic intensity (dB)

0.0

0.5

1.0

1.5

2.0

2.5

Pr
op

or
tio

n 
of

 sa
m

pl
es

Fig. 3. Signal vs noise histogram of filtered accoustic intensity.

objects are later passed to a neural network classifier to
identify them.

1) Background removal: Fixed structures are visible in
some of the sonar footage, particularly that from the tank and
harbour footage (see section III). Given that later components
of the system detect bright regions for the purpose of locat-
ing objects of interest, removing fixed background structures
simplifies their task. We maintain a per-pixel running mean of
the previous 50 frames of footage and subtract this from the
current frame. This is performed on the polar-space image.

2) Blob detection: The first step of detecting objects of
interest is blob detection. We detect blobs in polar-space
images in order to avoid the need to convert the images
to cartesian-space first. Our blob detection algorithm is very
simple; we first perform Gaussian filtering with σ = 6 pixels in
polar-space to suppress the noise inherent in sonar images (see
section IV-B2). After filtering we locate local maxima whose
value exceed a threshold value of 0.58dB. The locations of
the detections are converted to cartesian space as a scale of 1
unit to 1 metre.

Filtering the polar-space images increases the SNR from
0.343 to 3.014, as seen in Table II. The effect is illustrated in
Figure 3.

The values for the filter radius and the threshold were
determined by manual experimentation in order to ensure
that faint objects can be detected – paying attention to the
faint object mentioned in section IV-B2 – while keeping
false detections to a minimum. We experimented with non-
uniform filter shapes and filters whose radius varied with the
distance from the sonar device in order to account for the
varying horizontal scale factor across the polar space image.

We found that the best performamnce was achieved when the
filter averages over a consistent number of samples.

The detections are filtered in order to remove blobs that
are closer than a minimum separation distance (0.05m); for
any pair of detections that are too close to one another, the
detection with the lowest brightness in the underlying image
is discarded.

Note that the filtered image is only used for blob detection as
the filtering smooths away the detail and visual cues required
for identifying the object later in the pipeline.

3) Object tracking and patch extraction: Subsequent to
detection, objects are tracked through multiple frames of
footage. Given that the tracker receives a list of detection
co-ordinates for the current frame from the blob detector, it
must attempt to match each detection with one of the objects
currently being tracked.

We use a Kalman filter [4] to predict the location in the
current frame of all objects currently being tracked, given their
motion history in previous frames. The predicted locations are
matched with detections using the Hungarian algorithm [5].
Any matches where the distance between the predicted loca-
tion and the detection is greater than a tracking error threshold
of 0.13m are discarded.

When a tracked object has been visible for less than 4
frames, we do not consider there to be sufficient data to
initialise Kalman filter. When there are less than 4 successful
detections available we use the location of the last successful
detection as the predicted position in the current frame.

The challenging conditions present in sonar footage result
in objects frequently failing to be detected. To overcome this,
we allow tracked objects to be absent for runs of up to 10
frames or absent in up to 80% of frames over which they
are tracked, whichever is less. Objects absent for longer are
considered to have disappeared from view and tracking is
ceased. When tracking ceases, the motion path considered to
represent a tracked object is passed to the next stage of the
tracking process.

We discard objects that were tracked for less than 7 frames –
incuding frames in which they are absent – as early experience
showed that objects tracked for short periods of time most
frequently resulted from false positive detections. We then
apply Kalman smoothing to the sequence of observed positions
– with gaps for frames where the object was absent – to
generate a smooth path for the tracked object.

The blob detection threshold value of 0.58dB mentioned
in section IV-C2 had to be chosen carefully, as too many
spurious detections will result in legitmate detections from
the previous frame being matched to spurious detections in
the current frame, causing the object tracker to fail.

A sequence of 48x48 pixel (24cm) image patches centred
on the object’s location (drawn from the smoothed path) in
each frame are extracted for classification in the final step.

4) Object classification: The object patches from the pre-
vious step are passed to a deep neural network (DNN) image
classifier. A class probability vector is generated for each
frame in which the object is visible. The predicted class



Background Sediment Artefacts

Jellyfish Fish Seaweed

Fig. 4. Object class example images

probabilites are averaged across frames to produce a final
classification result.

Our classifier is trained to distinguish among the variety of
objects and phenomena that may trigger the blob detection and
object tracking system, besides the jellyfish that are the focus
of the system. We describe them below and illustrate them in
Figure 4.

Background: noise within the imagery can overcome the
threshold and cause a false detection. These objects are
assigned to the background class.

Sediment: diffuse clouds of sediment arising from water
turbulence

Artefacts: Strong reflections from the ocean surface can
cause ringing artefacts. They have a distinctive pattern.

Jellyfish: Moon jellyfish have a distinctive central core
surrounded by a ring. Their pulsating motion is also a strong
cue.

Fish: Fish have a fairly distinctive shape. Their swimming
motion is also a strong cue.

Seaweed: Drifts with ocean current much like jellyfish,
although their shape is less uniform. This class is the most
easily confused with jellyfish.

D. Training data

Deep neural networks (DNNs) have achieved state of the
art results in image classification in recent years. It is for this
reason that we chose to use them for the purpose of classifying
objects of interest that are detected in the sonar footage. This
accuracy however comes at the cost of large quantities of
labelled training data.

Our DNN classifier identifies the contents of image patches
extracted from the sonar data. Its training set consists of image
patches containing various kinds of object extracted from the
sonar footage.

Manually locating and annotating objects – with a partic-
ular focus on jellyfish – on a frame-by-frame basis was the
approach used to develop our training set early in the project.
This approach was satisfactory for footage acquired in a tank
due to the constrained motion of the jellyfish and their relative
abundance. This did not hold for ocean footage that by nature
would be most representative of intended use case scenarios,
when jellyfish presentations can be infrequent and rare. As a
consequence they can easily be missed by human annotators.
Once located, annotating their position in each frame in which

they are present is a very laborious and time consuming task.
Manually analysing the volume of footage acquired over the
course of the project (see Table I) would not be achievable in
a reasonable amount of time.

After developing the blob detection and tracking technique
described in sections IV-C2 and IV-C3 we were able to use
them grow our training set far more rapidly by automatically
detecting and tracking objects of interest, thereby alleviating
manual labellers of the task of finding objects and annotating
their frame-by-frame position. By assigning a ground truth
classification to an automatically tracked object (this is done
using a labelling tool described in section IV-D1) they add
multiple training images – one per frame – along with a
corresponding ground truth class to the training set. This
approach has the added benefit that the training set will consist
of patches that will be more similar to those seen at interence
time in the field.

1) Labelling tool: A labelling tool (see Figure 5) was
developed that allows a user to browse the objects found by
the automatic detection and tracking system and assign ground
truth classifications to them.

The 16 panes in the right side of the user interface (UI)
show videos of detected objects. Each frame of video is a patch
extracted from the corresponding frame of the sonar footage
centred on the objects’ position. Selecting a pane causes a full
view of the original footage in which the object was detected
to be displayed in the large pane on the left of the UI. The
object’s position and path are displayed, as the objects motion
and surroundings can assist in its identification.

The controls above the object panes allow the user to filter
the objects displayed. False positives frequently result from
very short detections, so setting a minimum frame length filters
many of these out. The by class dropdown allows the user
to choose to see previously classified objects for the purpose
of reviewing them or unclassified objects for the purpose of
annotating unlabelled objects. The by file dropdown allows the
user to see only objects from a specific file. The buttons on
the bottom right allow the user to assign a ground truth class
to the currently selected object. Navigation and ground truth
assignment can also be achieved through the use of keyboard
shortcuts.

2) Hard negative mining and active learning: The object
detection process yielded 53 million objects, 7.3 million of
which were present for 15 frames or longer. Even with the
filtering approaches listed above, searching the detections for
rare objects among them can be time consuming. To make
more optimal use of manual labeller’s time we incorporated
hard negative mining and active learning into the labelling
tool.

Our implementation encourages a cyclic work-flow. The
user can load predictions generated by a previously trained
classifier into the labelling tool. The predictions can be used
to prioritise the labelling of objects that will be most beneficial
when training a new classifier. The new classifier is used to
generate a new set of predictions that are loaded into the
labelling tool for the next round of labelling.



Fig. 5. The labelling tool.

The labelling tool guides the users’ choice of objects to
label in two ways. The user may choose to view objects that
have not yet been manually labelled, but have been predicted
as belonging to a specified class. Incorrectly classified objects
may stand out to the user, in which case they can provide the
correct classification for these hard negatives.

The labelling tool can also sort objects in order of increasing
prediction confidence. Predictions with low confidence corre-
spond to objects that lie close to the decision surface and are
more likely to be incorrectly classified. Labelling objects close
to the decision surface results in larger gains in accuracy per
additional label [6], in addition to making hard negatives easier
to find.

3) Object identification data set: The labelling tool was
used to identify 3,313 automatically detected objects. The
composition of the resulting object identification data set is
descibed in Table III. It was used to train our network as
described below.

TABLE III
DATA SET USED TO TRAIN OBJECT CLASSIFIER

Class Non-Oban Oban Total
Background 154 358 512
Sediment 0 189 189
Artefacts 187 812 999
Jellyfish 236 78 314
Fish 169 632 801
Seaweed 38 460 498
Total 784 2529 3313

E. Deep neural network classifier

1) Network architecture: Our deep neural network image
classifier has an architecture inspired by the VGG-16 Ima-
geNet [7] classifier of Simonyan et al. [8]. We also experi-
mented with network architectures based on ResNets by He

et al. [9], but found their performance to be slightly worse
than that of our VGG style architecture. Our architecture is
shown in Table IV.

TABLE IV
DEEP NEURAL NETWORK CLASSIFIER ARCHITECTURE

Description Shape
48× 48 greyscale image patch 48× 48× 1
Conv 3× 3× 32, pad 1, batch norm 48× 48× 32
Conv 3× 3× 32, pad 1, batch norm, stride 2 24× 24× 32
Conv 3× 3× 64, pad 1, batch norm 24× 24× 64
Conv 3× 3× 64, pad 1, batch norm, stride 2 12× 12× 64
Conv 3× 3× 128, pad 1, batch norm 12× 12× 128
Conv 3× 3× 128, pad 1, batch norm, stride 2 6× 6× 128
Conv 3× 3× 256, pad 1, batch norm 6× 6× 256
Conv 3× 3× 256, batch norm 4× 4× 64
Fully connected, 512 units 512
Fully connected, 6 units, softmax 6

2) Training: Our classifier was trained using the object
identification data set described above. We used a learning
rate of 1× 10−4 with the Adam [10] optimisation algorithm.
We trained our network for 200 epochs. The data set was
split into 75%/12.5%/12.5% for training, validation and test.
The per-patch error rate was evaluated after each epoch and
used as a signal to drive early stopping [11]; the state of the
network was saved for use after the epoch at which the lowest
validation error rate was achieved.

At the start of training the mean and standard deviation of
the patch pixel values of the training samples is computed in
order to offset and scale them to have zero mean and unit
variance. The data augmentation used during training consists
of the following: random crops (58×58 pixel training patches
are extracted from the sonar data so that random 48 × 48
crops can be extracted), random horizontal and vertical flips
and X-Y swaps, random per-patch contrast modification by
multiplying the pixel values by a value in the range [0.4, 2.5]
(logarithmically spaced) and random per patch brightness
modification by offsetting the pixel values by a value in the
range [−3, 3].

V. RESULTS

A. Object identification data set

The performance of our object classifier measured on the
validation and test sets (as described above in section IV-E2)
is summarised in the confusion matrices in Figures 6 and
7. The strong performance on the object identification data
set is indicated by the strong diagonal line in both confusion
matrices. The confusion between the background and sediment
classes will have little impact on the effectiveness of our
system as sediment detections will be ignored for the purpose
of reporting jellyfish blooms. The sediment class was added for
the purpose of completeness and to demonstrate the systems
ability to quantify a variety of different types of object. The
confusion between jellyfish and seaweed is of more concern.
In situations where jellyfish are relatively rare, mis-detecting a
proportion of instances of seaweed will results in a high false
positive rate.



Back
gro

un
d

Jell
yfi

sh

Arte
fac

ts Fis
h

Se
aw

ee
d

Se
dim

en
t

Predicted label

Background

Jellyfish

Artefacts

Fish

Seaweed

Sediment

Tr
ue

 la
be

l

89.06% 0.00% 1.56% 0.00% 0.00% 9.38%

0.00% 84.62% 0.00% 0.00% 15.38% 0.00%

0.80% 0.00% 97.60% 0.00% 1.60% 0.00%

0.00% 0.00% 0.00% 97.00% 3.00% 0.00%

0.00% 6.45% 0.00% 4.84% 88.71% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

Validation set confusion matrix

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6. Validation set confusion matrix

Back
gro

un
d

Jell
yfi

sh

Arte
fac

ts Fis
h

Se
aw

ee
d

Se
dim

en
t

Predicted label

Background

Jellyfish

Artefacts

Fish

Seaweed

Sediment

Tr
ue

 la
be

l

87.50% 0.00% 1.56% 1.56% 1.56% 7.81%

0.00% 90.00% 0.00% 0.00% 10.00% 0.00%

1.60% 0.00% 96.00% 1.60% 0.80% 0.00%

1.00% 2.00% 0.00% 94.00% 3.00% 0.00%

1.59% 6.35% 0.00% 0.00% 92.06% 0.00%

0.00% 0.00% 0.00% 0.00% 4.35% 95.65%

Test set confusion matrix

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. Test set confusion matrix

B. Overall

Our object identification dataset was grown in four rounds
using the cyclic work-flow described in section IV-D2. Each
round consists of using predictions from the classifier trained
in the previous round to guide manual labelling using active
learning and hard negative mining to grow the data set, after
which a new classifier is trained. The size of the object
identification dataset in each round (identified by date) is
presented in Table V and the predictions generated by a
classifier trained in that round are presented in Table VI. It
is worth noting that the class predictions include objects for
which there are ground truth labels.

We consider the majority of jellyfish detections in Table VI
to be false positives as there are only 78 known definite
sightings. This number could increase if more are found with
addition manual annotation effort.

TABLE V
OBJECT IDENTIFICATION DATA SET SIZE

Date 2017-11-17 2017-12-30 2018-02-07 2018-03-20
Class
Background 478 479 494 512
Sediment 0 0 166 189
Artefacts 807 983 995 999
Jellyfish 239 273 293 314
Fish 517 666 743 801
Seaweed 0 235 309 498
TOTAL 2041 2636 3000 3313

TABLE VI
PREDICTIONS FOR DETECTED OBJECTS TRACKED FOR >= 7 FRAMES

Date 2017-11-17 2017-12-30 2018-02-07 2018-03-20
Class
Background 5738412 4965645 5068860 5474754
Sediment 0 0 0 3288
Artefacts 8003451 8461955 8367755 7978190
Jellfish 28643 4641 4421 3996
Fish 705961 982538 985809 882576
Seaweed 0 61688 49622 133663
TOTAL 14476467

VI. CONCLUSIONS AND FUTURE WORK

The main limitation of the analysis of our results was due
to the rarity of jellyfish presentations in the Oban 2017 data.
Despite having captured 27 days of sonar footage during the
Oban jellyfish season, only 78 definite sightings of individual
jellyfish were found. This severely limits our ability to assess
the effectiveness of our system in detecting jellyfish blooms as
we have no blooms – in which a large number of individuals
would be present – for our system to detect. The next stage of
the JellyMonitor project involves further deployments of the
prototype system, including a deployment adjacent to a coastal
power station. The data gathered will permit a more rigorous
analysis of the system and will hopefully contain numerous
jellyfish sightings.

The classifier in our system uses only image patches as
input. We would like to explore the use of motion paths
generated by the object tracker as an additional input to the
classifier.

During the project we noticed that artefacts that result from
reflections from the surface of the water generate pattern with
a repetitive appearance. Large numbers of artefact detections
will tend to cluster around a region of the footage for a signif-
icant period of time. Detection of these clusters of detections
could be used to suppress any false positives resulting from
mis-identifying artefacts.

ACKNOWLEDGMENT

This project was jointly funded by Innovate UK (grant
#102072) and EDF Energy. We would like to thank nVidia
for the generous donation of an nVidia Jetson development
kit.



REFERENCES

[1] C.-H. Han and S.-I. Uye, “Quantification of the abundance and distri-
bution of the common jellyfish aurelia aurita s.l. with a dual-frequency
identification sonar (didson),” Journal of Plankton Research, 2009.

[2] Sound Metrics Corp. Sound Metrics - ARIS Explorer 3000. [Online].
Available: http://www.soundmetrics.com/Products/ARIS-Sonars/ARIS-
Explorer-3000

[3] NVidia Corp. Jetson TX2 Module - NVidia Developer. [Online].
Available: https://developer.nvidia.com/embedded/buy/jetson-tx2

[4] H. W. Sorenson, Kalman filtering: theory and application. IEEE, 1985.
[5] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval

Research Logistics (NRL), 1955.
[6] D. Wang and Y. Shang, “A new active labeling method for deep

learning,” in IJCNN, 2014.
[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:

A Large-Scale Hierarchical Image Database,” in CVPR, 2009.
[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” CoRR, 2014.
[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in CVPR, 2016.
[10] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in ICLR, 2015.
[11] L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks of

the trade. Springer, 1998, pp. 55–69.


