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Abstract

Constructing a viable lipreading system is a challenge because it is claimed that
only 30% of information of speech production is visible on the lips. Nevertheless, in
small vocabulary tasks, there have been several reports of high accuracies. However,
investigation of larger vocabulary tasks is rare.

This work examines constructing a large vocabulary lipreading system using an
approach based-on Deep Neural Network Hidden Markov Models (DNN-HMMs). We
present the historical development of computer lipreading technology and the state-of-
the-art results in small and large vocabulary tasks. In preliminary experiments, we
evaluate the performance of lipreading and audiovisual speech recognition in small
vocabulary data sets. We then concentrate on the improvement of lipreading systems
in a more substantial vocabulary size with a multi-speaker data set. We tackle the
problem of lipreading an unseen speaker. We investigate the effect of employing several
steps to pre-process visual features. Moreover, we examine the contribution of language
modelling in a lipreading system where we use longer n-grams to recognise visual
speech. Our lipreading system is constructed on the 6000-word vocabulary TCD-
TIMIT audiovisual speech corpus. The results show that visual-only speech recognition
can definitely reach about 60% word accuracy on large vocabularies. We actually
achieved a mean of 59.42% measured via three-fold cross-validation on the speaker
independent setting of the TCD-TIMIT corpus using Deep autoencoder features and
DNN-HMM models. This is the best word accuracy of a lipreading system in a large
vocabulary task reported on the TCD-TIMIT corpus. In the final part of the thesis,
we examine how the DNN-HMM model improves lipreading performance. We also give
an insight into lipreading by providing a feature visualisation. Finally, we present an
analysis of lipreading results and suggestions for future development.



Table of contents

List of abbreviations vi

List of figures ix

List of tables xv

1 Introduction 1
1.1 Motivation and aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Statement of originality . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Contributing publications . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Introduction to computer lipreading 9
2.1 Development of lipreading technology . . . . . . . . . . . . . . . . . . . 9

2.1.1 Lipreading tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Visual features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Deep learning in lipreading and AVSR . . . . . . . . . . . . . . . . . . 18

2.3.1 Classification approach . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Tandem approach . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Hybrid approach . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4 End-to-end approach . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Audio visual database . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 RM-3000 single-speaker audiovisual speech corpus . . . . . . . . 22
2.4.2 RMAV multi-speaker audiovisual speech corpus . . . . . . . . . 22
2.4.3 TCD-TIMIT audiovisual speech corpus . . . . . . . . . . . . . . 24

3 Visual aspects of speech 25
3.1 Speech production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



Table of contents iv

3.2 Visual speech unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Speechreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Homophenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Machine learning techniques 33
4.1 Overview of lipreading architecture . . . . . . . . . . . . . . . . . . . . 33
4.2 Visual speech model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Hidden Markov Model (HMM) . . . . . . . . . . . . . . . . . . 35
4.2.2 Deep neural network (DNNs) . . . . . . . . . . . . . . . . . . . 40
4.2.3 DNN-HMMs hybrid structure . . . . . . . . . . . . . . . . . . . 47

4.3 WFST decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Visual feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Front-end processing . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.2 Feature transformation techniques . . . . . . . . . . . . . . . . . 59

4.5 Full pipeline DNN-HMM training . . . . . . . . . . . . . . . . . . . . . 62
4.6 Measurement objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7 Visualising data via t-Distributed Stochastic Neighbor Embedding (t-SNE) 69

5 Lipreading and audiovisual speech recognition in small vocabulary
tasks 72
5.1 An overview of audiovisual speech recognition . . . . . . . . . . . . . . 72
5.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Speaker-dependent results . . . . . . . . . . . . . . . . . . . . . 76
5.2.3 Speaker-independent results . . . . . . . . . . . . . . . . . . . . 82

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Lipreading for large vocabulary continuous speech recognition task 86
6.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Visual Speech Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.2 Discrete Cosine Transform (DCT) . . . . . . . . . . . . . . . . . 87
6.2.3 Eigenlips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.4 Feature transformation . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Pronunciation dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.1 Analysis of the pronunciation dictionary . . . . . . . . . . . . . 90



Table of contents v

6.4 Decoding lipreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4.1 Visual speech model . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5.1 Effect of visual speech unit . . . . . . . . . . . . . . . . . . . . . 92
6.5.2 Word based DNN-HMMs . . . . . . . . . . . . . . . . . . . . . . 95
6.5.3 Word based DNN-HMM sequence discriminative training . . . . 99

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Investigation of visual representations 102
7.1 Visual features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1.1 Deep Autoencoder (DAE) . . . . . . . . . . . . . . . . . . . . . 104
7.1.2 Dual-tree complex wavelet transform (DTCWT) . . . . . . . . . 105

7.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2.1 Effect of feature processing for DNN-HMM . . . . . . . . . . . . 107
7.2.2 Effect of deep and shallow network . . . . . . . . . . . . . . . . 109
7.2.3 Comparing of representation summary results . . . . . . . . . . 111
7.2.4 Effect of language modelling . . . . . . . . . . . . . . . . . . . . 115

7.3 Analysis and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.3.1 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8 Results analysis 126
8.1 Analysis of error type and position . . . . . . . . . . . . . . . . . . . . 128
8.2 Analysis of word length and word frequency . . . . . . . . . . . . . . . 130
8.3 Analysis of speaker accuracy . . . . . . . . . . . . . . . . . . . . . . . . 132
8.4 Investigation of visual silence . . . . . . . . . . . . . . . . . . . . . . . 134
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9 Summary and future work 141
9.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Appendix A Optimising GMM-HMM visual speech modelling 145

Bibliography 158



List of abbreviations

Acronyms

AAM Active appearance model

ASR Automatic speech recognition

AVSR Audio visual speech recognition

CCA Canonical correlation analysis

CD Contrastive divergence

CE Cross-entropy

CNN Convolutional neural network

CTC Connectionist temporal classification

DAE Deep autoencoders

DBMs Deep Boltzmann machines

DBN Deep belief network

DCT Discrete cosine transform

DNN Deep neural network

DNN-HMMs Deep neural network hidden Markov models

DTCWT Dual-tree complex wavelet transform

DWT Discrete wavelet transform

EI Early integration



List of abbreviations vii

EM Expectation-maximisation

FDCT Fast discrete curvelet transforms

fMLLR Feature space maximum likelihood linear regression

GANs Generative adversarial networks

GMM Gaussian mixture model

HiLDA Hierarchical linear discriminant analysis

HMM Hidden Markov model

ICA Independent component analysis

IPA International phonetic alphabet

LDA Linear discriminant analysis

LI Late integration

LM Language model

LSTM Long short-term memory

LVCSR Large vocabulary continuous speech recognition

MFCC Mel-frequency cepstral coefficients

MLLR Maximum likelihood linear regression

MLLT Maximum likelihood linear transform

MMI Maximum mutual information

MP Matched pair sentence segment error

MPE Minimum phone error

MSE Mean square error

PCA Principal components analysis

PDF Probability density function



List of abbreviations viii

PER Phoneme error rate

RNN Recurrent neural networks

ROI Region-of-interest

ROVER Recogniser output voting error reduction

SAT Speaker adaptive training

SGD Stochastic gradient descent

sMBR State-level minimum Bayes Risk

SNR Signal-to-noise ratio

SP Signed paired comparison

t-SNE t-Distributed Stochastic Neighbour Embedding

TDNN Time delay neural network

WER Word error rate

WFST Weighted finite-state transducer

WI Wilcoxon signed-rank test



List of figures

1.1 Performance of automatic speech recognition system (ASR) comparing
between deep learning approachs and conventional approach. . . . . . . 5

2.1 History of computer lipreading showing the accuracy of various experi-
mental systems versus time. Each database is shown as a different line
and the colours refer to tasks where blue denotes isolated words and
phase recognition; green denotes continuous digits and letters; orange
denotes restricted-grammar; black denotes unit recognition; magenta
denotes small vocabulary continous speech recognition; and red denotes
large vocabulary continuous speech recognition. . . . . . . . . . . . . . 11

2.2 TCD-TIMIT utterence, “Don’t ask me to carry an oily rag like that”.
There are ten words in this utterance. Colour-boxes indicate the bound-
ary between words. No-box indicates a silence area. The boundary
comes from acoustic force alignment provided in the corpus. . . . . . . 16

2.3 Examples of the RM-3000 corpus. . . . . . . . . . . . . . . . . . . . . . 23
2.4 Examples of the Resource Management Audiovisual speech corpus

(RMAV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Examples of the AAM automatic tracker on the RMAV corpus. The

green dots are the landmarks. . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Examples of the TCD-TIMIT corpus. . . . . . . . . . . . . . . . . . . . 24

3.1 Speech organs presented in [54] . . . . . . . . . . . . . . . . . . . . . . 26
3.2 IPA vowels chart CC-BY-SA-3.0. . . . . . . . . . . . . . . . . . . . . . 29

4.1 Overview of our lipreading system. . . . . . . . . . . . . . . . . . . . . 34
4.2 The HMM-based model adapted from [43]. . . . . . . . . . . . . . . . . 35
4.3 An example of univariate (1D) Gaussian Mixture Model. . . . . . . . . 36

http://linguistics.ucla.edu/people/keating/IPA/2016_IPA_charts.html
https://creativecommons.org/licenses/by-sa/3.0/


List of figures x

4.4 Variations of the covariance matrice (Σ) of the multivariate normal
distribution with a single Gaussian. . . . . . . . . . . . . . . . . . . . . 37

4.5 An example of a multivariate Gaussian Mixture Model. It is a 2-d
representation, where the contours represent equal probability and the
dots are the data points. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 An example of the deep network architecture adapted from Yu and Deng
[163]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7 Non-linear activation functions. . . . . . . . . . . . . . . . . . . . . . . 42
4.8 Variation of gradient descent optimisation. The blue arrows indicate

the batch gradient descent method. The green arrows refer to the SGD
method. The pink arrows indicate the mini-batch SGD method. The
surface here is an error surface where the smallest error is in the middle
of the ellipses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9 A pre-trained DBN-DNN training method proposed by Hinton et al.
[55], Mohamed et al. [89]. . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.10 The hybrid DNN-HMM architecture adapted from [33]. The HMM
structure captures the sequential information and the GMM is replaced
with a DNN to model the speech observation. . . . . . . . . . . . . . . 48

4.11 An example of HMM transducer. . . . . . . . . . . . . . . . . . . . . . 50
4.12 An example of context-dependency transducer. . . . . . . . . . . . . . . 51
4.13 An example of lexicon transducer. . . . . . . . . . . . . . . . . . . . . . 51
4.14 An example of grammar transducer. . . . . . . . . . . . . . . . . . . . . 52
4.15 An example of AAM feature from Deena [35]. . . . . . . . . . . . . . . 54
4.16 The 2D DCT basis functions. This image illustrates the 64 DCT basis

functions that are formed by 8-by-8 matrices. The contrast patterns
represent positive (white) and negative (black) values of the funtion. . . 55

4.17 An example of reconstructed lip ROIs from DCT features. The real
data refers to the original lip ROIs provided in the TCD-TIMIT corpus.
We keep the same dimension as presented in the TCD-TIMIT baseline
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.18 The DTCWT proposed by Kingsbury [73] taken from [73] . . . . . . . 56
4.19 Image reconstruction from DTCWT coefficients at different levels (from

1st to 10th). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



List of figures xi

4.20 Examples of reconstructed lip ROIs from DTCWT features. Note that
66-dimensions come from the concatenation of the top three levels
(from 5th to 7th) containing most information (highest energy) and 258-
dimensions come from the combination of the top four levels (from 4th

to 7th). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.21 Image reconstruction from Eigenlips coefficients at different modes

(between 1st and 307th). . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.22 Examples of reconstructed lip ROIs from Eigenlips features. Note that

30-dimensions cover 85% variance and 307-dimensions cover 95% variance. 58
4.23 Schematic diagram of a typical deep autoencoder that maps x to x′.

Each box illustrates a layer of neurons that is fully connected (illustrated
with the dotted lines) to the next layer. . . . . . . . . . . . . . . . . . . 59

4.24 An example of reconstructed lip ROIs from 30-dimensional DAE features. 59
4.25 Visual speech modelling scheme used in DNN-HMM based machine

lipreading system trained on Kaldi [116]. . . . . . . . . . . . . . . . . . 63
4.26 A comparison of data visualisations on MNIST dataset (6000 hand-

written digits) with three different mapping methods (a) t-SNE, (b)
Sammon mapping, and (c) Isomap. Each colour is a different digit class.
These visualisations are from Van der Maaten and Hinton [150] . . . . 71

5.1 Overview of audiovisual speech recognition system adapted from [115] . 73
5.2 Early integration based on feature fusion technique. . . . . . . . . . . . 74
5.3 Late-integration using ROVER technique. . . . . . . . . . . . . . . . . 75
5.4 The result of the audio-only speech recognition system in ten conditions

including clean and nine babble noise levels. . . . . . . . . . . . . . . . 78
5.5 The result of the audiovisual speech recognition system. . . . . . . . . . 79
5.6 Comparing the result of visual only, audio only and audiovisual speech

recognition system using the DNN model. . . . . . . . . . . . . . . . . 80
5.7 Early-integration (EI) vs. Late-integration (LI) Audiovisual Speech

Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.8 Comparing the results under matched acoustic conditions for the CD-

DNN with LDA-MLLT. . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.9 Comparing the result of visual only, audio only and audiovisual speech

recognition system of the speaker-independent setting. . . . . . . . . . 84



List of figures xii

6.1 Comparing the original ROI image (left) and its reconstruction via 44-
coefficient DCT (middle) and 30-coefficient Eigenlip (right). Note that
the 44-coefficient DCT is equivalent to the features of the TCD-TIMIT
baseline system [49]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 DCT feature extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3 Eigenlips feature extraction. . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 FMLLR feature pre-processing pipeline. . . . . . . . . . . . . . . . . . . 89
6.5 Frequency of duplicated pronunciation in the TCD-TIMIT dictionary

(top) and vocabulary size (bottom) for both phoneme and viseme units. 91
6.6 Lipreading system performance in GMM and DNN systems. . . . . . . 94
6.7 Comparison of visemes confusion matrix (left) vs phonemes confusion

matrix (right). The boxes in the phonemes confusion matrix show viseme
classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.8 Comparison of lipreading performance of SD and SI systems among
three discriminative training criteria; sMBR, MPE, and MMI when we
increase the training iterations. The best performance of SD is 52.88%
on the 10th-iteration of sMBR and that of SI is 48.71% on 10th-interaton
of sMBR. (Note: 0th-iteration means baseline DNN) . . . . . . . . . . 100

7.1 Deep autoencoder feature extraction and feature processing methods. . 104
7.2 DTCWT feature extraction and feature processing methods. . . . . . . 105
7.3 Word accuracy (%) of DNN-HMM lipreading on speaker dependent

(red) and speaker independent (blue) comparing four-types of feature
representations as a function of feature transformation methods with
±1 standard error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4 Word accuracy (%) of speaker independent lipreading (SI) comparing
the shallow network (one-layer) and deep network (multi-layer) as a
function of context window. The shallow network has one-layer with
12288 nodes, and the deep network has six-hidden layers with 2048
nodes/layer. The graphs on the top are the results from (a) Eigenlips,
and (b) DAE. The graphs at the bottom are results via (c) DCT, and (d)
DTCWT. Also, plotted in each graph is the result of the GMM baseline. 110



List of figures xiii

7.5 Comparison of lipreading word accuracy (%) over four types of repre-
sentations as a function of model training methods. Speaker dependent
(SD) results are at the top, and speaker independent (SI) results at the
bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.6 T-SNE plots for the different types of features coloured by speaker. The
speaker class discriminant ratio is provided underneath the plot of each
feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.7 T-SNE plots for the different types of features coloured by word. The
linguistic F-ratio of word level (w) and phonetic level (ph) are provided
underneath the plot of each feature. . . . . . . . . . . . . . . . . . . . . 119

7.8 T-SNE plots show the comparison of the original representation of the
DAE visual speech features (left) and the MFCC acoustic speech features
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.9 T-SNE plots of Deep autoencoder features with different feature trans-
formation methods and transformation inside DNN layers. Three class
discriminant ratios - speaker (spk), word (w), and phonetic (ph) - are
provided underneath the plot of each feature transformation method. . 122

8.1 Seven examples of word transcriptions produced by the DNN-HMM
sMBR model comparing four feature types. ‘REF’ refers to the reference
sentence (ground-truth sentence). Words in capital letters refer to the
misrecognised words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2 Seven examples of word transcriptions produced by the DNN-HMM
sMBR model on DAE. ‘REF’ refers to the reference sentence (ground-
truth sentence), ‘HYP’ is a hypothesis (lipreading result), ‘Eval’ shows
the type of errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3 The phoneme accuracy ranging from the lowest to the highest accuracy. 132
8.4 Word accuracy in SD vs SI for a variety of talkers. . . . . . . . . . . . . 133
8.5 The difference between acoustic and visual alignments. . . . . . . . . . 135
8.6 Example of visual speech alignment of a sentence "Don’t ask me to

carry an oily rag like that" shown in word level. The word alignment
shown here is obtained from visual speech DNN-HMM via sMBR model
trained on deep autoencoder (DAE) features. Colour-boxes indicate
word boundary while no box indicates no word or a silence phone. . . . 136



List of figures xiv

8.7 Word accuracy (%) of speaker dependent lipreading (top) and speaker
independent lipreading (bottom) comparing between original data (blue)
and the modified silence data (red) as a function of model training
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.8 Positive and negative effect of modifying visual silence in terms of
absolute change in word accuracy of each speaker. . . . . . . . . . . . . 139

A.1 Word accuracy (%) of speaker dependent lipreading (SD) using various
LDA/MLLT dimensions (ranging from 20 to 40) as a function of context
window (±N) where N = {1, 2, ..., 15}. The graphs on the top are the
results from utilising LDA-MLLT on (a) Eigenlips, (b) DAE; at the
bottom are the results on (c) DCT, (d) DTCWT. . . . . . . . . . . . . 151

A.2 Word accuracy (%) of speaker independent lipreading (SI) using various
LDA/MLLT dimensions as a function of context window (±N) where
N = {1, 2, ..., 15}. The graph on the top are the results from utilising
LDA-MLLT on (a) Eigenlips, (b) DAE; at the bottom are the results
on (c) DCT, (d) DTCWT. . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.3 Tuning the number of context dependent states of the CD-GMM SAT
method. The top graph shows speaker dependent (SD) and the bottom
speaker independent (SI) results. . . . . . . . . . . . . . . . . . . . . . 155



List of tables

2.1 Small vocabulary lipreading datasets and state-of-the-art performance . 13
2.2 Medium-sized lipreading databases and state-of-the-art performance . . 14
2.3 Transform functions used in lipreading. . . . . . . . . . . . . . . . . . . 15
2.4 Statistics from all three datasets. Note that statistics of RM-3000 are

provided in [60]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Phonetic alphabets and Neti et al. [95] viseme class. This table is
adapted from [106] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Phoneme-to-viseme mapping by Neti [95]. . . . . . . . . . . . . . . . . 28
3.3 The categorisation of consonants. . . . . . . . . . . . . . . . . . . . . . 28
3.4 Example of phoneme and Neti viseme [95] dictionary with its corre-

sponding IPA symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 A cross-matched 2 × 2 contingency table. . . . . . . . . . . . . . . . . 68

5.1 Word accuracy of visual only speech recognition system . . . . . . . . 77
5.2 The result of the visual only speech recognition system on the speaker-

independent setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 Viseme-based lipreading accuracy (%). . . . . . . . . . . . . . . . . . . 93
6.2 Phoneme-based lipreading accuracy(%). . . . . . . . . . . . . . . . . . 94
6.3 DNN-HMM lipreading word accuracy with various hidden layers. . . . 96
6.4 DNN-HMM lipreading word accuracy with various hidden units. . . . 97
6.5 DNN-HMM lipreading word accuracy with/without RBM pre-training

using sigmoid and tanh nonlinear function. . . . . . . . . . . . . . . . . 97
6.6 DNN-HMM lipreading word accuracy with various learning rates. . . . 98
6.7 DNN-HMM lipreading word accuracy with various temporal context

sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



List of tables xvi

6.8 Comparisons of three sequence-discriminative training criteria sMBR,
MPE, and MMI against the DNN baseline. The results show word
accuracy of the first iteration. . . . . . . . . . . . . . . . . . . . . . . . 99

7.1 Summary of features used in this experiment. . . . . . . . . . . . . . . 106
7.2 Significant tests on speaker dependent set (SD). Each cell shows the

P -value for a pairwise comparison between the tests. An underline
indicates P -value < 0.05 and a double underline indicates P -value < 0.01.114

7.3 Significant tests on speaker independent set (SI). Each cell shows the P -
value for a pairwise comparison between the test. An underline indicates
P -value < 0.05 and a double underline indicates P -value < 0.01. . . . . 114

7.4 Word accuracy (%) of lipreading system decoded with different language
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.1 Sentence level error analysis . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2 Word level error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.3 The statistical of word length and word frequency between correct and

incorrect recognised words . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.4 Examples of challenging to predict words and easy to predict words . . 131
8.5 Level of significance for the test H0 : R = 0. t is modeled by the

t-student distribution with DF degrees of freedom. . . . . . . . . . . . 134
8.6 Word accuracy (%) and errors of speaker independent lipreading trained

on DAE features with/without silence modification. (Corr: word correc-
tion, Sub: substitution error, Del: deletion error, Ins: insertion error,
Err: all error and S.Err: sentence error) . . . . . . . . . . . . . . . . . . 138

8.7 Sentence level error analysis . . . . . . . . . . . . . . . . . . . . . . . . 138

A.1 Word accuracy (%) of speaker dependent lipreading using CI-GMMs. . 146
A.2 Word accuracy (%) of speaker independent lipreading using CI-GMMs. 147
A.3 Word accuracy (%) of speaker dependent lipreading using context de-

pendent GMMs (tri-phone models) with various numbers of tied-states. 149
A.4 Word accuracy (%) of speaker independent lipreading using context

dependent GMMs (tri-phone models) with various numbers of tied-states.149



Acknowledgements

I would like to thank my advisor, Prof. Richard Harvey, for his invaluable guidance. I
am grateful to all of my supervisory team, Dr. Ben Milner, Dr. Barry-John Theobald,
Prof. Stephen Cox. Without you, this thesis would not have been possible.

A very special gratitude to the Office of the Civil Service Commission (OCSC) and
the Royal Thai government for funding my PhD.

I would like to thank my examiners Assoc.Prof. Gerasimos Potamianos, and Dr.
Gavin Cawley, for your comments, suggestions and the once-in-a-lifetime joy moment
during my Viva. With a special mention to Dr. Dominic Howell, Dr. Helen L. Bear,
Dr. Sarah Taylor, Dr. Yuxuan Lan, all CMP and HPC staff for all your help. Thank
you to all my friends at UEA, Dr. Aki, Danny, Seth, Dr. Tom, Zhuoyi, and everyone
in the UEA Thai-Soc 2014-2018. I am grateful to 5clubs (Aor, Fai, Nan, Yui) and my
colleague at NECTEC. Special thanks to my boss, Dr. Chai Wuttiwiwatchai, you are
the best boss, work-coach, and life-coach ever.

Finally, I would like to thank you to my family members, my mom, Sommai
Saykham, my dad, Berm Saykham, my husband Dr. Ausdang Thangthai and his fam-
ily, for your unconditional love, support, and encouragement. Thanks to my younger
brother Aof and his wife, Tidtee, you are amazing.

Thanks for all your encouragement!



Chapter 1

Introduction

Automatic speech recognition (ASR) systems are ubiquitous. Voice has become the
primary input method in many existing products, especially in a group of smart devices
and smart assistants such as Google Assistant, Amazon Alexa, Microsoft Cortana
and Apple Siri. At Google I/O 2018, Google announced a new product called Google
Duplex which is a human-like smart assistant that can book a restaurant or hair salon
by making a phone call and talking to staff like a human. This product involves
many complex systems such as text-to-speech (TTS), natural language understanding,
natural conversation and, of course, speech recognition. After the first ASR system
was announced in 1952, it took more than half a century of intensive research and
development to bring ASR to face the real market. Nowadays, with the power of deep
learning and massive datasets, voice input exceeds human-level performance in various
benchmarks [5, 159, 136]. In English, speech input is three times faster than typing. It
is very remarkable that ASR beats human performance in a natural conversational
speech task such as CallHome and Switchboard. However, the recording conditions
of these corpora are quite ideal: close-talking and hence a high signal-to-noise ratio
(SNR). Speech input is still challenging in some situations in real-world scenarios such
as speech in the far field, and under cocktail party noise. It is also challenging to use
ASR in a place where the SNR is extremely low such as music concerts, football games
and so on. Plus, ASR needs to be a real-time recogniser in those examples. Indeed, a
human is still superior to a machine in those circumstances.

Human speech perception is bimodal. That visual information affects human speech
perception has been known for several decades. An excellent illustration of this effect
is provided in a study by McGurk and MacDonald [87] who reported that people tend
to hear the sound /da/ when the video of the lip movements of the syllable /ga/ is
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played alongside the speech sound /ba/ (The McGurk Effect). Moreover, research from
Summerfield [142], shows that visual information contains three important clues for
human speech perception: speaker localisation, speech segmental information and the
place of articulation for certain phonemes. For instance, visual speech, which provides
information about lip movements can help to distinguish between the acoustic confusion
of consonant /m/ and /n/ [83]. There is a great deal of additional evidence about the
use of visual speech in human speech perception. We cite, for example, supporting sign
language in the hearing-impaired [82, 14] and obtaining better understanding in second
language listeners [94]. Experiments over many years have shown that intelligibility
scores are higher in noisy conditions if visual information, as well as audio information,
are available [141, 142, 86]. Consequently, visual information has also been integrated
into ASR systems to improve the robustness to acoustic noise [114, 52]. However,
current commercial speech recognition systems use only acoustic speech. Thus, it
would be useful to study the visual speech modality for increasing speech recognition
system performance or as a replacement for situations when there is no acoustic signal
available: this is known as computer lipreading.

Computer lipreading is a speech recognition system that extends the ability to
work without speech sounds by using a visual form of speech such as the visibility of
lips, teeth, tongue and lower face. It enables a normal speech recogniser to work even
without a perfect speech sound. There are applications that could potentially benefit
from a lipreading system. The first example is to use computer lipreading to aid forensic
lipreading. In forensic lipreading, an expert speechreader who has intensive training
in a particular language analyses output from a silent CCTV camera and produces
a transcription of what was said. The second example of lipreading application is to
use as a silent speech interface. This lipreading interface allows a user to command
and access devices using their lip movements without making any audible sounds. In a
situation where we want to interact with a device with confidential information such as
password, personal information, sensitive information, a private method is needed. This
silent input method could be used as for hands-free privacy and security information
transmission in a military setting. The third example is to use as an assessment for
lipreading learners. This type of application can help students learn and practice their
lipreading and talking skills. The final example is to use as an audiovisual interface to
enhance speech recognition systems. However, these applications require an accurate
lipreading system that works well for a large vocabulary continuous speech recognition
(LVCSR) task and real environments.
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The challenges of lipreading

While modern-day speech recognition systems are nowadays commercially utilised,
lipreading systems face some challenges that make them less reliable compared to the
acoustic counterpart as listed below.

• Visual speech provides less information than the acoustic signal.

Speechreading may be a natural way of silent speech communication between
humans but, compared to the audio signal, the video signal is impoverished.
Various works including [99, 102, 10, 134] estimate that only about 30% of speech
production information is visible on the lips as the vocal cords, nasal cavity, and
oral cavity are mostly hidden. This leads to homopheneous words which look the
same on the lips but sound different (words such as /b/ bat and /m/ mat are
often perceived to be identical by lip readers). This becomes the main limitation
of computer lipreading. Visual speech captures only visible speech articulators
such as an appearance of lip shape, teeth and tongue. It misses information from
the vocal cords which is a main source of speech, and many more articulators
are not visible. A study by Newman et al. [97] noted that electromagnetic
articulography (EMA) signals illustrate that removing signals generated at the
back of the mouth such as the velum (soft palate), tongue dorsum, and tongue
blade decreases speech recognition performance significantly. In fact, the missing
information leads to confusion in humans. For example, perceiving a similar
group of sound such as /b/ bat and /m/ mat with no sound can look the same.
Therefore, to decode lipreading the context of speech including a conversation
topic, and the background knowledge for the topic is far more important than it
is for acoustic speech.

• Lipreading has impoverished data sets. A modern machine learning tech-
nique requires a massive dataset to train an accurate model. Furthermore, a
study by Howell [60] shows evidence that visual speech modelling needs more
training data than acoustic modelling to achieve optimum performance in the
same task. Unfortunately, the size of most available audiovisual speech corpora
is small and may be unsuitable to train a sophisticated machine learning.

• Lipreading performs poorly on LVCSR. In the early day of lipreading as in
2004 [63], computer lipreading for LVCSR was believed to produce meaningless
results because it is a highly confusable task. Recent advances in computer vision,
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speech processing and machine learning ought to feed-in to better lipreading
systems. Of these advances, deep-learning is the most prominent. In a small
vocabulary task, for example, lipreading systems via convolutional neural network
(CNN) features and attention-based encoder-decoders achieved word accuracies of
97% [26] on the GRID dataset [30]. An end-to-end lipreading system using Long
Short-Term Memory (LSTM) networks on the OuluVS2 [7] dataset achieved 84.5%
phrase accuracy [111]. However, in larger vocabulary tasks, the performance
of lipreading is much lower even if a complex deep learning approach has been
employed. In the MV-LRS task [28], the word accuracy of lipreading is reported
as 43.6% in frontal view and 37.2% in profile view using sequence-to-sequence
LSTMs. In the LRS task [26], a lipreading system achieved 49.8% word accuracy
using a system called Watch Attend and Spell (WAS) which involves CNNs and
multiple LSTMs.

• Lipreading is sensitive to speaker variation and identity which brings
difficulties in multi-speaker, speaker-independent scenarios. Cox et al. [32]
reveal the great challenge in lipreading unseen speakers in the isolated alphabet
recognition task on the AVletters 2 corpus. They illustrate that visual speech
features are highly sensitive to the identity of the speaker. In a situation where
some of the data from a test speaker were seen (speaker dependent and multi-
speaker), the word accuracy of lipreading reaches more than 70%. Conversely,
the mean of word accuracy in the unseen scenario is only 21%. Several techniques
in ASR have been explored to improve lipreading visual speech features. In [32],
a speaker normalisation technique based on maximum likelihood linear regression
(MLLR) has been applied to enhance lipreading accuracy. Recently, Almajai
et al. [4] employ several Gaussian Mixture Model hidden Markov model (GMM-
HMM) training and feature transformation steps to pre-possess visual features
including linear discriminant analysis (LDA) and feature space MLLR. They
use DNN-HMMs as a visual speech model. The results show that these feature
normalisation and pre-processing steps increase the performance of lipreading
unseen speakers significantly.

• Lipreading requires that the front-end system handle visual variations.
Compared to the acoustic signal, videos of lips have a number of sources of
variability: environment, angle, lighting, distance, etc.
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1.1 Motivation and aims

This study aims to tackle the problem of large-vocabulary continuous speech recognition
in lipreading, which is not yet a solved problem; partly because of the lack of a
visual speech corpus for this task and partly because machine learning methods for
visual speech modelling are usually based on HMM. In 2015, Howell [60] proposed
incorporating a phoneme confusion model to enhance lipreading output and achieved
76.14% word accuracy in single speaker 1000-vocabulary continuous speech task on the
RM-3000 dataset. Although acoustic ASR achieved over 90% word accuracy in the
resource management (RM) which is the same task since 1991, this level of achievement
might make lipreading a practical reality in the future.

End-to-End approach  
Deep learning 

Hybrid approach 
Deep learning  

Traditional ASR 

Accuracy

Amount of data
Fig. 1.1 Performance of automatic speech recognition system (ASR) comparing between
deep learning approachs and conventional approach.

Another important motivation is the development of ASR systems. Significant
progress in ASR has resulted from the introduction of deep learning in the form of
DNNs. Figure 1.1 sketdus that the word accuracy of ASR tends to increase via a deep
learning approach more than the traditional method. This has improved the accuracy
achieved by conventional HMM-based ASR systems in both clean and noisy conditions
[131]. The speech parameters learned in the deeper layers of the network are believed
to be less influenced by noise, and the trained network can be used instead of the
traditional GMM to estimate the likelihoods in the HMM. This notion can be extended
to the visual modality of speech by incorporating visual information into deep learning.
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In this work, we combine the DNN with HMMs to the, so called, hybrid DNN-
HMM configuration which we train using a variety of sequence discriminative training
methods. This is then followed by a weighted finite-state transducer. We consider
the same feature processing methods as in [32, 4] such as LDA, and fMLLR. These
methods are useful and general in ASR. This study focuses on using a type of DNNs
model in lipreading. More specifically we use deep belief network (DBN) proposed by
Mohamed et al. [89] to model HMM state probabilities instead of the conventional
GMM. Regarding the use of deep learning with visual information for noise robust
speech recognition, [62] constructed a noise robust audiovisual speech recogniser using
deep belief network (DBNs) to recognise connected digits. Their result showed that
using mid-level feature fusion DBNs reduced the word error rate by 21% relative
to the baseline multi-stream GMM-HMM in noisy conditions (average 7dB). Deep
learning techniques in the form of Deep Autoencoders (DAE) [98] and Deep Boltzmann
Machines (DBMs) [135] have also been used in cross-modality unsupervised feature
learning for improving the classification performance on the AVLetters and CUAVE
databases.

1.2 Research question

In this thesis, we ask ‘Can we simply employ the DNN-HMM hybrid approach, which
is used successfully in ASR, to improve computer lipreading in the LVCSR task?’

There are several relevant points why we are interested in this topic as listed below.

1. Many authors believe that lipreading machine learning needs to be bespoke to
lipreading.

2. Any bespoke system will have considerable more difficulty in using the existing
language models (developed for acoustic recognition).

3. There is therefore a very strong practical and theoretic justification for trying
carry-over techniques from the acoustic domain to the visual.

1.3 Statement of originality

Unless otherwise noted or referenced in the text, the work described in this thesis is
that of the author. Novel contributions of this thesis can be summarised as follows:
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• A graph summarising the developement in computer lipreading (Chapter 2).

• The use of existing techniques in ASR – the DNN-HMM approach– to make
viable computer lipreading in an LVCSR task.

• Evidence that AVSR is more robust than audio-only ASR in any SNR in matched-
conditions by simply using DNN-HMMs and feature fusion (Chapter 5).

• The achievement of best results of lipreading system with around 60% word
accuracy in a 6000-vocabulary TCD-TIMIT corpus (Chapter 8) and 85% word
accuracy in a 1000-vocabulary RM-3000 corpus (Chapter 5).

• A comparison of unit accuracy and word accuracy particularlly in LVCSR task
between a phoneme recogniser and a viseme recogniser (Chapter 6.5.1).

• A full benchmarking of lipreading on four feature types: Discrete Cosine Trans-
form (DCT), Eigenlips, Dual-tree complex wavelet transform (DTCWT), and
DAE (Chapter 7).

• Evidence to explain why DNN improves lipreading (Chapter 7.2.2).

• An insight into visual features and the importance of feature transformations
(Chapter 7.3.1).

• An analysis of lipreading results regarding speaker dependency (Chapter 8).

• A new evidence regarding the complexity of visual silence that caused errors at
the start and end of sentences (Chapter 8).

1.4 Contributing publications

The following publications have been produced by the work in this thesis:

• Thangthai, K., Harvey, R. W., Cox, S. J., Theobald, B. J., Improving lip-
reading performance for robust audiovisual speech recognition using
DNNs. – In Proceedings of The 1st Joint Conference on Facial Analysis, Ani-
mation and Auditory-Visual Speech Processing (FAAVSP), Vienna, Austria, pp
127–131, 2015.
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• Thangthai, K., Harvey, R., Improving Computer Lipreading via DNN
Sequence Discriminative Training Techniques. – In Proceedings of the
Annual Conference of the International Speech Communication Association IN-
TERSPEECH 2017, Stockholm, Sweden, pp 3657–3661, 2017.

• Thangthai, K., Bear, H. L., Harvey, R., Comparing phonemes and visemes
with DNN-based lipreading. – In LRDLM Workshop on Lip-reading using
Deep Learning Methods (at BMVC 2017), London, UK, 2017.

• Thangthai, K., Harvey, R., Building large-vocabulary speaker-independent
lipreading systems. – In Proceedings of the Annual Conference of the Inter-
national Speech Communication Association INTERSPEECH 2018, Hyderabad,
India, pp 2648–2652, 2018.



Chapter 2

Introduction to computer
lipreading

This section provides an overview of lipreading systems including background, recent
developments, and the state-of-the-art.

2.1 Development of lipreading technology

Lipreading technology was first formulated in the 1980s. The first lipreading system
was created by Petajan [110] in 1984; which was launched three decades later after
the AT&T Bell Laboratories had built “Audre” the first speech recognition system
in the 1950s. Brooke and Scott [19] summarised an early development of lipreading
technology. In the early days, lipreading systems were targeted at simple tasks such as
recognising isolated digits and letters. A typical system worked by capturing binary
black and white images of lip regions in real time via special-purpose hardware. The
captured images were then decoded using a template matching method to compare to
the stored templates of different vocabularies. At that time, the main challenge was
to make a system that was capable of processing sequences of facial images within a
reasonable time [19], since there were very serious limitation in the hardware.

Visual speech processing via an Artificial Neural Network (ANN) approach had
been explored since the late 1980s. An ANN is a computer model which is inspired by
the human brain, that can learn a mapping function between input and output. In
1986, Peeling et al. [108] used the Multi-Layer Perceptron (MLP), a form of ANN, with
three layers and two units per layer to classify vowels from 16 × 16 gray-scale lip image.
In 1990, Brooke and Templeton [20] reported 91% classification accuracy identifying
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11 vowels from 16 × 12 monochrome lip images via a six-unit MLP-based model. This
technique reveals a possibility of representing visual cues from a multi-dimensional lip
image using a few MLP parameters. However, MLPs were found to be sensitive to
small changes in the image space, so other feature dimensionality reduction techniques
such as Principal Components Analysis (PCA) [156] and DCT [2] were proposed in
lipreading later on.

The statistical approach based on HMMs has been adopted in lipreading systems
in the mid-1990s. HMMs are a mathematical model based-on a statistical approach
using Markov chains and GMMs that have strong abilities to model time sequence
data with a complex distribution such as speech input. The HMM-based approach
for speech recognition has been very popular in the ASR and AVSR research areas,
where a well-known tutorial of using HMMs in speech recognition was published by
Rabiner [122] in 1989. Since then, HMMs have become a primary technology for speech
recognition, audiovisual speech recognition and lipreading systems over the last two
decades.

2.1.1 Lipreading tasks

Most of the current benchmarking audiovisual speech corpora such as CUAVE [107],
AVLetters [85], and GRID [30], contain only 10 to 50 word vocabularies and are
also constructed on a simple task such as digits and letters. Figure 2.1 shows some
development of lipreading technology, which we have gathered from reports and
publications spanning the last 20 years. The graph reveals the development of lipreading
performance over time on several audiovisual speech corpora and tasks where difference
colours represent a task, and each line represents the performance on each corpus. The
tasks are isolated words and phrase recognition (shown in blue); connected digits and
letters recognition (shown in green); restricted grammar recognition (shown in orange);
small vocabulary continuous speech recognition task (shown in magenta); and large
vocabulary continuous speech recognition (shown in red).
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According to Figure 2.1, lipreading performance has increased over time. In the
beginning, the accuracy of computer lipreading continuously improves which we can
see on three main corpora: CUAVE, AV-Letter, and TULIPS. Since 2010, the results
of these three corpora have saturated while results of many other corpora started to
develop. Here we can see a sharp improvement again after a new wave of deep learning
technology after 2012. In this graph, the most challenging task is the large vocabulary
continuous speech shown in the red lines. The large vocabulary defines the vocabulary
size roughly between 5,000 to 60,000 words [66]. The word accuracy of this task rarely
reaches 50% even with extensive training.

In lipreading, the simplest task is isolated word and phrase recognition which
achieves good performance as can be seen from those blue lines. The isolated word task
means that there is a pause between words. TULIPS1 [91] is an example of an isolated
word task. There are four digits captured from 12 speakers. The state-of-the-art word
accuracy of visual-only speech recognition is 90.60%, reported by Luettin and Thacker
[81] in 1997. Luettin and Thacker [81] also reported that a professional lipreader gets
95.59%, and a normal hearing person gets 89.93%. This is a pattern repeated in future
systems: automatic systems give performances inferior to trained human lipreaders
but superior to untrained ones. More well-known datasets such as CUAVE [107],
AVLetter [85], OuluVS [164], OuluVS2 [7], and a part of AVICAR [78] also fall into this
simple task. Initial works report low performance, but later systems quickly reach more
than 60% performance within a few years. AVICAR [78] is one of the more challenging
audiovisual speech corpora. It was built to tackle challenges in both computer vision
and acoustic conditions. The acoustic challenge is a recording in a car with various
driving speeds, while the computer vision challenge combines various camera angles,
moving speaker, multi-speakers in a video frame and so on. These conditions make the
AVICAR performance drop below the results of other corpora in this category.

The second category is connected digits and letters. The performance is shown by
the green lines. This task has the same vocabulary size compared to the isolated word
task. The difference is that the speech signal of this task is more natural since there is
no pause between words. Most of the corpora in this task are not publicly open. We
can see that there is no continuous development over time and the performance still
fluctuates.

The third category is continuous speech with restricted grammar. The primary
dataset is the GRID corpus [30]. The script of GRID corpus can be viewed as a
command and control speech style for example “SET WHITE WITH P TWO SOON”,
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“PLACE RED IN A ZERO NOW”. This task has a 51-word vocabulary. The state-of-
the-art lipreading result is 97% word accuracy which was reported recently by Chung
et al. [26]. This is the highest word accuracy of any visual only speech recognition
system albeit on a very restricted task.

The last category is continuous speech with larger vocabularies. We separate the
results of this task into three levels: unit recognisers, medium vocabulary recognisers,
and large vocabulary recognisers. A unit recogniser (black lines) evaluates the visual
speech model performance rather than the transcription performance. They measure
the success rate in terms of phoneme accuracy or viseme accuracy. This is based on
an assumption that the improvement of unit accuracy may directly translate to the
performance in word level.

Word accuracy of the medium vocabulary lipreading task is shown in magenta.
Performance of this task varies depending on its complexity. For example, the word
accuracy of a single speaker RM-3000 [60] is higher than 70%, but the performance is
much lower in multi-speaker (as in RMAV [77] and LRW [27]) and multi-angle camera
(as in AVICAR).

Small vocabulary tasks

Table 2.1 shows the state-of-the-art results for small vocabulary lipreading tasks. Also
shown are the number of talkers and the number of utterances.

Table 2.1 Small vocabulary lipreading datasets and state-of-the-art performance

Corpus ASR task Speaking style Talkers Vocab size Utt Accuracy (%)
CUAVE [107] Isolated digits Read speech 36 10 7k 83.00 [104]
OuluVS [164] phrases Read speech 20 10 1k 70.60 [165]
OuluVS2 [7] phrases Read speech 52 20 3.6k 91.10 [28]
AVLetters [85] Isolated letters Read speech 10 26 0.7k 69.60 [109]
AVLetters2 [32] Isolated letters Read speech 5 26 0.9k 91.80 [109]
GRID [30] Restricted grammar Command and control 34 51 34k 97.00 [26]

Medium and large vocabulary tasks

Table 2.2 shows the best performances on larger vocabulary tasks, measured as word
accuracy, for isolated (I) and continuous speech recognition (C) tasks.

The first system to report on a large vocabulary task, IBM ViaVoice [95], was
devised in 2000 and reports a word accuracy of 48.92% on a 10,400 word vocabulary.
Unfortunately, the first system was not a full lipreading system since it used the visual
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Table 2.2 Medium-sized lipreading databases and state-of-the-art performance

Corpus ASR task Speaking style Talkers Vocab size Utt Word accuracy (%)
LRW [27] C Spontaneous speech 1,000+ 500 500k 84.50 [26]
RM-3000 [60] C Read speech 1 1,000 3k 84.67 [149]
LiLiR (RMAV) [77] C Read speech 12 1,000 2.4k ∼53.00 [4]
AVICAR [78] I and C Read speech 100 1,356 59k ∼33.00 [15]
AV-TIMIT [51] C Read speech 223 1,793 4.6k 3.7 [50]
TCD-TIMIT [49] C Read speech 62 6,019 5.7k 51.29 [148]
IBM ViaVoice [95] C Read speech 290 10,400 18k 48.92 [95, 113]
MV-LRS [28] C Spontaneous speech 1,000+ 14,960 74.5k 37.2 [28]
LRS [26] C Spontaneous speech 1,000+ 17,428 118k 49.80 [26]

model to re-score a lattice produced from noisy audio. More recently, using data
recorded from the BBC news, the LRW task, the best result was 84.5% accuracy
but was achieved on a small vocabulary. For larger vocabularies the word accuracy
drops as does, often, the number of talkers. For example in RM-3000 and LiLiR, a
continuous lipreading task with a DNN-HMM hybrid architecture, for the single-speaker
1000-vocabulary, 3000-word-utterance database, RM-3000 accuracies of 76.14% [60, 61]
and 85.67% [149] are reported. For the AVICAR data [15], which consists of isolated-
words, connected-digit and continuous speech tasks, the word accuracies range between
24.53% and 33% on combined 4-camera using multi-stream HMM. Recently in 2017, [26]
reported using an end-to-end deep learning system to obtain a 49.8% word accuracy
on 4960 hours of BBC news audiovisual speech data (the LRS task). The data contain
118k utterances recorded from thousands of speakers with a vocabulary size of 17,428
words. Notably, on a a similar task, a professional lipreader achieved only 26.2% word
accuracy1.

2.2 Visual features

A feature extraction method aims to extract static and dynamic (or temporal features)
of visual representations from a video. A static feature is a set of numbers extracted
from a video frame. It involves techniques based on image transformations to compress
image pixels of the lip region. A dynamic feature extracts a visual representation by
considering lip movements from multiple frames.

Visual speech features can be grouped into shape-based (lip-contours) and appearance-
based (pixels). Here we focus on the appearance-based derived from pixel values.
Considering the mouth image as the region-of-interest (ROI), many image-based com-

1This disparity between human and automatic systems has also been reported in [77].
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pression algorithms were proposed to deal with the high dimensional space. The
purpose is to compress the raw pixels into a feature vector while retaining the most
relevant speech feature from the visible articulators such as the lips, teeth, and the
tongue tip. Feature compression is a key to extract informative representations from
shigh-dimensional data. It becomes a common technique in speech recognition, since
most machine learning models including the conventional HMM need a compact feature.
Table 2.3 illustrates feature compression techniques that have been tried to extract
a static feature. We group these techniques into four categories based on transform
functions. The columns separate features into linear and non-linear transform functions.
The rows separate features into fixed transform and learnt transform approaches.

Table 2.3 Transform functions used in lipreading.

Linear Non-linear

Fixed transforms
Cosine transform
Wavelet transform
Other transform

Sieve

Learnt transforms
Principal component analysis (PCA)
Independent component analysis (ICA)
Linear discriminant ananlysis (LDA)

Non-linear PCA
Restricted Boltzmann machines (RBM)
Deep autoencoder (DAE)
Convolutional neural network (CNN)
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DON'T

ASK

ME CARRY

AN

RAG

LIKE

THAT

TO

OILY

Fig. 2.2 TCD-TIMIT utterence, “Don’t ask me to carry an oily rag like that”. There
are ten words in this utterance. Colour-boxes indicate the boundary between words.
No-box indicates a silence area. The boundary comes from acoustic force alignment
provided in the corpus.

The temporal properties of a speech signal play an important role in identifying a
linguistic unit [124]. More specifically different phone categories change at different
temporal scales. To provide enough information to decode visual speech, a temporal
feature computed from the changes between video frames is needed. Figure 2.2 is an
example of a sequence of lip ROIs for the sentence “Don’t ask me to carry an oily rag
like that”. Figure 2.2 illustrates how tricky it is to define a speech class by providing
only a single image since its mouth shape is similar to other images. The temporal
transition of video frames between one another is a very useful source to predict a
word. Therefore it is essential to provide a static feature that preserves detail such as
the lip shape, the visibility of teeth and tongue as much as possible, along with the
temporal coherence information which helps to identify a speech class.

Fixed transforms

We separate the static transform features into two types: linear and non-linear trans-
forms.
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Here are examples of linear visual features transforms: DCT as in [96, 53], discrete
wavelet transform (DWT) as in [121], and DTCWT as in [38]. The DCT feature is
the most common method used to extract visual features (as in [96, 53]). Neti et al.
[96] used the score from the visual speech model to re-score noisy audio lattices. They
found that DCT-based features achieved a better result than the active appearance
model based features (AAM) discussed later. Seymour et al. [133] compared lipreading
performance on corrupted videos among four features: DCT, fast discrete curvelet
transforms (FDCT), PCA, and LDA. The results showed that DCT provided the best
result in blurring conditions but poor results on the jitter condition. An alternative
approach, the wavelet transform, does a multi-resolution analysis at different scale and
resolution. All of these transform techniques help reduce image dimension using fewer
selected parameters as a feature.

The only example of visual feature based on a static non-linear transform is the
sieve feature proposed by Matthews et al. [84] (also used in [32]). The sieve feature
contains extra information such as scale, amplitude and position. The scale parameter
is robust to intensity and translation, so they extracted the scale histogram sieve
feature to build lipreading system. They reported 50% accuracy visual for only speech
recognition on the AVLetter task using 30 coefficients of the scale histogram.

Learnt transforms

Feature transformation via a data-driven approach can extract both static and dynamic
features. There are two broad types of data-driven approach: unsupervised (data
without labels) and supervised (data with labels).

In the unsupervised method, PCA is the most well known dimensionality reduction
technique in lipreading. PCA projects the data in such a way that the largest variation
of the data has been captured. PCA can be applied directly to lip ROIs to yield
Eigenlips features [17]. Moreover, it can also be used to reduce the feature dimension
of other features such as AAM [85] and DCT [24, 59].

Another well-known method is linear LDA. LDA is a supervised method which
reduces feature dimension to preserve the class separation ability rather than the
variation of the data. Thus, the speech class labels are necessary to determine the LDA
transform. Potamianos and Graf [112] apply the LDA method on a stack of lip ROIs
using the labels generated from an acoustic alignment. LDA obtained the highest word
accuracy over PCA and DWT features. LDA has become a common method to extract
compact features that contain dynamic information of speech in acoustic, audiovisual
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and visual speech. We also see a variant version of LDA as in the hierarchical linear
discriminant analysis (HiLDA) feature [113] in the audiovisual domain.

The last group is visual feature extraction via a non-linear data-driven approach.
Most of this group is based on deep learning. Visual features can also be derived via a
deep learning in the tandem approach. The basic idea is to learn data via multiple
layers of non-linear functions. Deep learning features can also be extracted via an
unsupervised approach such as RBM, DAE or a supervised approach such as CNN.
We explain this group in Section 2.3.2.

2.3 Deep learning in lipreading and AVSR

HMMs have been the dominant algorithm of speech recognition both in auditory speech
and visual speech systems for more than 20 years. Recently, DNNs, a modified version
of the ANN, have become increasingly common. A good starting point for the use of
DNNs in speech recognition were the 2012 reports by Hinton et al. [55] and Mohamed
et al. [89]. They proposed a DBN to solve the vanishing gradient problem that is found
when training a very deep model. Since then, the deep learning approach has been
increasingly replacing the HMM model.

A deep learning approach is a type of machine learning technique that learns multiple
layers of data through time and/or space. The motivation for deep learning relates
to the human brain where several nodes and layers mimic the work of neurons in the
human brain. Deep learning has many different architectures and various learning types.
Examples of deep learning architectures are feed-forward neural networks handling
complexity in a high dimensional space, recurrent neural networks (RNN) handling
sequence data, and CNN handling information of local connection in sub-regions.

This section demonstrates the four main approaches that have been used in audio-
visual speech and lipreading systems, which are the classification approach, tandem
approach, hybrid approach, and end-to-end approach.

2.3.1 Classification approach

Ngiam et al. [98] applied the DAE to learn the cross-modality and the shared repre-
sentation of audio and visual speech features and then evaluated the performance of
isolated word recognition tasks on CUAVE and AVLetters audiovisual speech corpora.
They found that the visual-only DAE provided better representation and outperformed
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the other feature representation methods on both tasks. Moreover, the shared represen-
tation of audio and visual streams that were learned by using RBMs in an unsupervised
fashion, significantly outperformed the conventional shared representation learning
technique2 even when one stream was missing while testing.

Srivastava and Salakhutdinov [135] investigated the DBM method for joint represen-
tation learning in multimodal aspects. This method involved the layer-wise pre-training
procedure (to train one layer at a time), which effectively predefines the network weight
by training on unlabeled data, and the discriminative fine-tuning procedure using
supervised back-propagation. Evaluating in the isolated word recognition task, their
method outperformed the classification performance proposed by [98] when compared
to the best result of the bimodal DAE.

Mroueh et al. [92] proposed bilinear bimodal DNNs for audio-visual phoneme
recognition. The proposed DNN models are constructed by fusing the softmax bilinear
layer of DNNs trained on each modality individually, then the weights in the entire
networks are optimised by using factored bilinear sharing back-propagation. The
experiments have been done on the IBM AV-AVSR large vocabulary speech dataset,
which contains about 40 hours of audio-video speech data and the vocabulary size is
10400 words. Compared to the baseline audio-only DNNs, the proposed method has
shown significant improvement by 7.22% absolute reduction in phoneme error rate
(PER) and the bilinear bimodal DNN shown to be a better method for capturing the
correlation between the audio and visual streams.

2.3.2 Tandem approach

The tandem approach aims at extracting more informative representations from signals
by using deep learning techniques. An extracted representation is then used as a
feature in conventional GMM-HMM training. The benefit of using these as features is
to gain advantage from several advanced techniques in GMM-HMM training especially
discriminative model training methods such as minimum phone error (MPE) and maxi-
mum mutual information (MMI). In this approach, several deep network structures can
be adopted for extracting audio and visual features such as deep denoising autoencoder
(DAE), the CNN, LSTM, DBMs.

Noda et al. [101] investigated the robustness of audiovisual speech recognition by
using the CNN to extract visual features and the DAE to extract more robust audio

2Canonical Correlation Analysis (CCA) [48].
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features from the bottleneck layer. The audio and visual features which were obtained
from the deep networks were used to train a multi-stream HMM. They found that
using a bottleneck audio feature could gain approximately 65% word accuracy in the
unimodal setting compared to the raw Mel-frequency cepstral coefficient (MFCC)
features and the huge gain can be more clearly seen at less than 10 dB SNR. Moreover,
the proposed approach on a multi-stream HMM can result in further improvements
for SNR conditions below 10 dB, provided the proper stream weights were carefully
selected. Similarly, Takashima et al. [144] use convolutive bottleneck networks (CBN)
to extract more robust audiovisual features to enhance speech recognition in noise.

Additionally, Ninomiya et al. [100] and Tamura et al. [145] propose a similar method
of using deep bottleneck features from the individual modality DNNs to train multi-
stream GMM-HMMs. Ninomiya et al. [100] have further focused on exploring the level
of integrating both modality features, while Tamura et al. [145] mainly investigated
constructing robust visual features. Indeed, their experiments were then set on the
same task which is the connected-digits by using a Japanese audio-visual corpus. Their
results show that multi-stream HMMs trained on the bottleneck features can achieve
81.1% word accuracy and the further gained about 8.77% absolute from the availability
of more informative visual features.

Sui et al. [140] proposed DBMs to extract visual features in the form of bimodal
infer learning. Instead of learning DBM features for visual-only, they incorporate the
audio signal into the DBMs training process using a separate DBM network, and then
combine the DBMs from both modalities in the final layer. The idea of this study
is that the learnt DBMs can be used for feature extraction even though one of the
speech modalities was missing while testing. Their visual DBM feature was used in
GMM-HMM training in combination with DCT before applying LDA. They evaluate
the lipreading system on the digit-string task from the Austalk [21] database. The
proposed method achieved 69.1% accuracy of which 15% was gained from a standard
DCT + LDA feature and 1.3% from the state-of-the-art of this corpus at the time.

Zimmermann et al. [166] proposed the combination of PCA and LSTMs to extract
visual features to train conventional GMM-HMMs for visual speech modelling. They
evaluated the proposed techniques on phrase recognition task using OuluVS2 dataset.
The results show that the proposed features achieved 79% sentence correctness on
the cross-validation set, which is a 5% increase from the OuluVS2 baseline, and 73%
sentence correctness on the test set.
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2.3.3 Hybrid approach

The hybrid approaches mainly use a deep network to predict the state instead of GMM
then the HMM was applied on top of the network to estimate the state transition
probabilities.

Huang and Kingsbury [62] demonstrated the effectiveness of using a DBN to find a
robust audiovisual representation, by reporting on continuous spoken digit recognition,
which was compared against a baseline multi-stream GMM-HMM system. They also
investigated the effectiveness of using DBN in AVSR by comparing between training
the hybrid DBN-HMM recogniser and training the GMM-HMM on top of the DBN
bottleneck feature. The best result showed that these methods can reduce word error
rate by as much as 21% relative over a baseline multi-stream audio-visual GMM-HMM
system.

2.3.4 End-to-end approach

Unlike a conventional speech recogniser that needs a feature extraction process, a
speech model, a language model, and a lexicon model, the end-to-end approach learns
a direct mapping between the input speech and the character sequence. There are
two types of deep architectures to handle such complex mappings, (1) attention-based
encoder-decoder methods, (2) Connectionist Temporal Classification (CTC). Attention-
based methods use an attention mechanism to generate the alignment between an input
sequence and output characters. The model then trains on encoder-decoder structure
via LSTM networks. CTC uses the Markov assumption and dynamic programming to
avoid the requirement of a predefined time alignment.

Chung et al. [26] proposed the ‘Watch, Listen, Attend and Spell’ (WLAS) network
that uses attention-based encoder-decoder architectures in lipreading and the AVSR
system. The proposed system uses a CNN as visual features and MFCC as acoustic
features. In the visual-only system, they achieved 50.2% word error rate (WER) on
the LRS dataset.

2.4 Audio visual database

We aim to tackle the challenge of building a lipreading system on the large vocabulary
continuous speech recognition task which is more realistic. We, therefore, select the
largest vocabulary size that was available at the time we began experiments to evaluate
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our lipreading system. So, we use three audiovisual speech corpora: RM-3000 [60],
RMAV [77] and TCD-TIMIT [49]. RM-3000 and RMAV were derived from the acoustic
RM database and TCD-TIMIT was derived from the TIMIT database. They have
high potential in terms of vocabulary size, continuous speech task and large number of
speech utterances as shown in Table 2.4. Note that at the time we did experiments,
larger AV datasets such as LRS and MV-LRS were not available.

Table 2.4 Statistics from all three datasets. Note that statistics of RM-3000 are provided
in [60].

Statistic RM-3000 RMAV TCD-TIMIT
Total number of speakers 1 20 59
Total number of sentences 3,000 4,000 5,488
Total number of unique phonemes 45 45 38
Total number of phoneme tokens 105,561 139,951 213,115
Total number of unique words 979 984 5,958
Total number of word tokens 26,114 33,031 47,503
Average number of phonemes per sentence 35.19 34.98 38.83
Average number of words per sentence 8.70 8.25 8.65
Average number of phonemes per word 4.04 4.23 4.48

2.4.1 RM-3000 single-speaker audiovisual speech corpus

The Resource Management (RM)-3000 corpus [60] is a single-speaker continuous
audiovisual speech database, which contains 3000 speech utterances spoken by a
single male native English speaker. The data were captured in the frontal pose in
clean conditions. The corpus contains 260 minutes of audio-visual speech data. The
vocabulary size is about 1000 words, and the mean sentence length is 8.7 words
equating to approximately 5 seconds. The AAM features were produced by an AAM
built by hand-labelling 20-30 video frames, which was then fitted to the video sequences
automatically.

2.4.2 RMAV multi-speaker audiovisual speech corpus

The Resource Management Audiovisual speech corpus (RMAV) [77] is a multi-speaker
continuous audiovisual speech database. This corpus contains totally 4000 utterances
of speech data from 20 speakers, ten male and ten female, i.e. 200 utterances for each
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Fig. 2.3 Examples of the RM-3000 corpus.

speaker. The vocabulary size is 1000 words. The corpus was recorded in full-frontal
by HD cameras, and several other views and the AAM features were also provided by
using a speaker-independent AAM automatic tracker.

Fig. 2.4 Examples of the Resource Management Audiovisual speech corpus (RMAV).

Fig. 2.5 Examples of the AAM automatic tracker on the RMAV corpus. The green
dots are the landmarks.
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2.4.3 TCD-TIMIT audiovisual speech corpus

TCD-TIMIT [49] is a publicly available audio-visual continuous speech corpus that
has a 6019 word vocabulary recorded from 59 talkers (the volunteer set) and three
professional lip speakers comprising over seven hours of speech data. The video is
recorded in two views: frontal and 30◦ view captured in a studio environment with
Sony PMW-EX3 cameras and a wireless clip-on microphone. We use only the frontal
view. Each talker reads 98 sentences selected from TIMIT. The majority of talkers (56)
have an Irish accent. The remaining three talkers are removed as prescribed in [49].
Thus the total number of utterances is 5488, captured from 56 speakers. Harte and
Gillen [49] provide a preliminary report of the accuracy using 12 viseme classes: the
best results were 34.54% and 34.77% viseme accuracy in the speaker-dependent (SD)
and speaker-independent (SI) conditions respectively.

Speaker 01M Speaker 02M Speaker 03F Speaker 04M

Speaker 05F Speaker 06M Speaker 07F Speaker 08F

Speaker 09F Speaker 10M Speaker 11F Speaker 12F

Fig. 2.6 Examples of the TCD-TIMIT corpus.



Chapter 3

Visual aspects of speech

This Chapter provides background knowledge of speech organs for speech production.
We give a summary of human speechreading. We describe linguistic representations
and the homophene problem.

3.1 Speech production

Here we provide the basic knowledge of speech production (summarising from Parsons
[106]). Speech production involves three parts of the vocal organs: lungs and trachea,
larynx, and vocal tract, as shown in Figure 3.1. These three parts have different
functions to control the airstream. First, the lungs and trachea, known as a power
source, mainly control the loudness of speech by controlling the delivery of compressed
air. Since humans use lungs for the exchange between oxygen and carbon dioxide,
we, therefore, have to manage breath during talking. Second, the larynx, known as a
vibrator, controls the vocal cords. Third, the vocal tract involving the oral cavity, and
the nasal cavity provides speech modulation.
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Fig. 3.1 Speech organs presented in [54]

Speech information provided by the vocal cords is the excitation that is generated
by the different form of the glottis. These organs vibrate when the air stream generated
in the lungs passes through. The vibration of the vocal cords is called voiced sound
and speech with no vibration of vocal cords is called unvoiced or voiceless sound. Here
are examples of sound pairs between voiced and voiceless sounds: Zoo (/z/) vs. Sue
(/s/); Down (/d/) vs. Town (/t/). The vocal tract in the oral cavity and nasal cavity
works as a modulation. This modulation is the primary factor to produce consonants
and vowel sounds.

3.2 Visual speech unit

Visual speech units divide into two broad categories: phonemes and visemes. A
phoneme is the smallest unit of speech that distinguishes one sound from another [8].
Therefore it has a strong relationship with an acoustic speech signal. In contrast, a
viseme is the basic visual unit of speech that represents a gesture of the mouth, face
and visible parts of the teeth and tongue, the visible articulators. Generally speaking,
mouth gestures have less variation than sounds, and several phonemes may share the
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same gesture so a class of visemes may contain many different phonemes. Table 3.1
represents phonemes and their phonetic representation along with the viseme mapping.

Table 3.1 Phonetic alphabets and Neti et al. [95] viseme class. This table is adapted
from [106]

IPA symbol Phoneme Viseme Examples IPA symbol Phoneme Viseme Examples
i iy V4 heed v v G verve
ı ih V4 hid T th F thick
e ey V3 hayed ð dh F those
E eh V3 head s s B cease
æ ae V3 had z z B pizzaz
A aa V1 hod S sh D mesh
O ao V1 hawed Z zh D measure
o ow V2 hoed m m E mom
u uh V2 hood n n C noon
U uw V2 who’d ŋ ng H ringing
Ç er V1 heard l l A lulu
@ ax V4 ahead l el A battle
2 ah V1 bud n en C button
Aı ay V3 hide R dx G batter
AÚ aw V1 how’d P q
Oı oy V1 boy w w H wow
h hh V1 heat j y A yoyo
p p E pop r r A roar
b b E bob Ù ch D church
t t C tug Ã jh D judge
d d C dug û wh where
k k H kick
g g H gig
f f G f ife

In Table 3.1, the first column indicates the international phonetic alphabet (IPA),
which is widely used to represent the different speech sounds. The second column shows
the computer symbol of a phoneme. The third column indicates the visual clue of a
phoneme which has a many-to-one mapping relationship. There are many choices of
visemes [12]. Here we use the Neti mapping [95] as shown in Table 3.2. This mapping
groups multiple phonemes into 13 viseme clusters including silence. The phonemes in
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the same viseme class are hardly distinguishable on the lips. For example, the words
like dug, tug and pop, bob look pretty much the same.

Table 3.2 Phoneme-to-viseme mapping by Neti [95].

Viseme TIMIT phonemes Description
A /l/ /el/ /r/ /y/ Alveolar-semivowels
B /s/ /z/ Alveolar-fricatives
C /t/ /d/ /n/ /en/ Alveolar
D /sh/ /zh/ /ch/ /jh/ Palato-alveolar
E /p/ /b/ /m/ Bilabial
F /th/ /dh/ Dental
G /f/ /v/ Labio-dental
H /ng/ /g/ /k/ /w/ Velar
V1 /ao/ /ah/ /aa/ /er/ /oy/ /aw/ /hh/ Lip-rounding based vowels
V2 /uw/ /uh/ /ow/ "
V3 /ae/ /eh/ /ey/ /ay/ "
V4 /ih/ /iy/ /ax/ "
S /sil/ /sp/ Silence

The Neti et al. [95] viseme clusters are inspired by linguistic as can be seen in
the description of each viseme group. Therefore, this viseme cluster is related to
speech organs as in characteristics of acoustic phonetics. In acoustic, each phonetic
unit corresponds to consonant sounds or vowel sounds. Consonants and vowels have
different characteristics, and consonants have some restriction of airflow but vowels do
not.

Table 3.3 The categorisation of consonants.

Manner Voicing
Place

Bilabial Labiodental Interdental Alveolar Palatal Velar Glottal

Obstruent

Stop
Voiceless p t k P

Voiced b d g

Fricative
Voiceless f T s S h
Voiced v ð z Z

Affricate
Voiceless Ù

Voiced Ã

Sonarant

Nasal Voiced m n ŋ
Lateral Voiced l
Rhotic Voiced r
Glide Voiced w j (w)
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In articulatory phonetics [106], consonants can be described via three criteria:
voicing, place of articulation, and manner of articulation as shown in Table 3.3. The
voicing refers to the vibration of the vocal cords: voiced stand for vibration, and
voiceless stand for no vibration. However, both cases are visually unobserved. The
place of articulation defines the location of the articulator where the airflow is restricted.
Here the positions range from the front to the back of the mouth. The phoneme classes
that appear in the front are easier to observe than those that occur at the back. For
example, phonemes /p/,/b/ in the bilabial group (happened between the lips) are easier
to see than phonemes /k/,/g/ in the velar group occurring at the back of the tongue.
The manner of articulation determines the level of airflow constriction. Manners of
articulation in the top of the table are called obstruent, have full airflow constriction
as in a stop consonant (/b/, /p/), or partial constriction as in a fricative (/f/, /s/)
and an affricate (/ch/). Manners of articulation in the bottom called sonorant, have
less constriction. In the nasal group, for example, most of the air passes through the
nasal cavity. Since this group has low airflow constriction while still functions as a
consonant, some of them are known as semivowels such as /w/, /j/, /l/, /r/.

Fig. 3.2 IPA vowels chart CC-BY-SA-3.0.

http://linguistics.ucla.edu/people/keating/IPA/2016_IPA_charts.html
https://creativecommons.org/licenses/by-sa/3.0/
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There are three criteria to describe vowel sounds: height, backness, roundedness.
The height and the backness refer to the position of the tongue, and the roundedness
refers to the lip shape. The tongue can stay in three positions to produce a vowel
sound: front position, central position, and back position. There are four levels of
height: close (high), close-mid (middle-high), open-mid (middle low) and open (low) as
shown in Figure 3.2. The changes of the tongue are difficult to see. The roundedness
of a vowel is the only information that is possible to observe from the lips. Each pair
of vowels the rounded vowel presents on the right and the unrounded vowel presents
on the left. For example, /i/ is an unrounded vowel. Thus the lip shape of the vowel
/i/ is wider than the vowel /u/ which is a rounded vowel.

3.3 Speechreading

Speechreading in a hearing-impaired society is a very rich skill. It is composed of
multiple components that are used together to understand speech. Kaplan et al. [68]
explain that these components could be separated into two main groups: the analytic
component perceived by eyes and the synthetic component interpreted by the mind.
The analytic component involves physical body movements, such as the speaker’s face,
gesture and body language, facial expression, and other clues such as situation and
linguistic factors. The synthetic component combines all those clues to “fill in the blanks”
before interpreting a message. A speechreader uses these redundancies in information
to avoid misunderstandings since information on the lips alone is limited. So, they use
a situation to scope the topic and word choices and also use the linguistic knowledge
together with other physical movements as a hint to deal with the ambiguities.

Speechreading has limitations in which it is nearly impossible to understand every
speaker in any situation in the same level. Kaplan et al. [68] summarise these limitations
into four groups of problems: 1) problems due to the talker, 2) problems due to the
environment, 3) problems due to the speechreader, and 4) problems due to the speech
signal.

The first problems are related to talkers where some people are easier to lipread
than other people. Speechreading tends to be more difficult with an unfamiliar person,
a person who barely moves their lips, or persons with facial hair. Other factors are
related more on speaking styles. A talker who speaks more loudly and a bit slow is easy
to understand. In fact, a low speaking rate relates directly to a clearer lip movement
and voice projection.
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The second problem is related to environmental factors such as distance from a
talker, lighting conditions, and other sources of distractions. A speechreader needs a
clear vision to see the talker face, which requires that it is not too close or too far, and
not too dark or too shaded. They also need strong attention and concentration that
could be distracted by irrelevant movements, and busy background both visually and
acoustically.

The third problem is related to the speechreader themselves. Speechreading will
be more successful if a speechreader has these characteristics: visual acuity, visual
attention, familiarity with languages and topics, and the right attitude. Moreover, a
good speechreader uses context and also has the flexibility to think about the possibility
of a sentence that makes sense. These refer to the level of their synthetic skill.

The last problem is related to the limit of speech signal itself where speech infor-
mation is partly visible on the lip. According to the study of Woodward and Barber
[157], about 60% of speech sounds are invisible which means that almost 40% of the
sounds are possible to see. However, Jeffers and Barley [64] found even less. They
reported that visual speech presents only about 25% of information available in the
sounds. This missing information leads to the homophene words problem: words that
differ but appear to be identical on the lips.

3.4 Homophenes

A major reason for the difficulty in speechreading is the invisibility of many sounds.
Since the vocal cord information is completely missing one cannot observe which sounds
are voiced or voiceless. (Many consonants and vowels are invisible when they originate
from inside the mouth.)
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Table 3.4 Example of phoneme and Neti viseme [95] dictionary with its corresponding
IPA symbols.

Word Entry IPA Symbol Phoneme Dictionary Viseme Dictionary
TALK t O k t ao k C V1 H
TONGUE t 2 N t ah ng C V1 H
DOG d O g d ao g C V1 H
DUG d 2 g d ah g C V1 H
CARE k e r k eh r H V3 A
WELL w e l w eh l H V3 A
WHERE w e r w eh r H V3 A
WEAR w e r w eh r H V3 A
WHILE w Aı l w ay l H V3 A

Homophenes are words that have a similar lip shape or movement. Table 3.4 reveals
examples of homophenes where the first column shows words, the second and third
columns are its phoneme sequence, the fourth column indicates the viseme sequence.
It can be seen that talk, tongue, dog and dug have a different sequence of phonemes,
but share the same viseme sequence. These make speechreading much more confusing
especially as the number of homophenes increases.



Chapter 4

Machine learning techniques

This section provides background knowledge ranging from conventional techniques to
recent advanced techniques employed in lipreading.

4.1 Overview of lipreading architecture

A computer lipreading system converts video frames of lip ROIs into text. This can be
done with a similar approach to that of an automatic speech recogniser, but the model
is built using visual speech observations instead of acoustic speech observations.

To decode any speech sequence X, the word sequence Ŵ can be defined by

Ŵ = arg max
W

P (W|X), (4.1)

or, after applying Bayes’ Rule:

Ŵ = arg max
W

P (X|W)P (W), (4.2)

where P (X|W) is the visual speech model likelihood and P (W) refers to the language
model likelihood. The word sequence that has the best likelihood score from both the
speech model and the language model is the output of the system. Figure 4.1 illustrates
the system architecture used in this work. We use a weighted finite-state transducer
(WFST) framework to decode visual speech observations. We compute the visual speech
likelihood via a DNN-HMM model. The language model probability is generated from
word N -grams. A lexicon dictionary represents words with corresponding phonetic
pronunciations. The WFST decoder has two-passes: the first-pass generates a word
lattice; the second-pass re-scores the lattice and returns the 1-best word transcription.
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HMM topology with 
state-level likelihood estimation (GMM or DNN)

Video  
30 fps [ [ [ [ [ [

Visual  feature vectors 
Real feature vectors
Interpolated vectors 
up to 100 fps 

Feature extraction

Words

WFSTs decoder
Word N-gram LM

Lexicon dictionary

....

"CARRY""TO"

time

Fig. 4.1 Overview of our lipreading system.

Alternatively, these modules can easily be replaced by a deep learning architecture
to build an end-to-end system. However, to achieve a good performance, it might
require a few thousand hours of speech data from various speakers to learn a speech
representation and a language representation. In practice, it seems a massive size of
available training data is essential for building an end-to-end speech recogniser. For
example, Deep Speech II [5] is trained on 12k hours of labelled speech data (around 8
million utterances) to achieve performance comparable to a human. A conventional
architecture, such as a hybrid DNN-HMM technique works well in a small dataset.
For example, the results in Graves and Jaitly [47] illustrate that a DNN-HMM system
with a bigram and a trigram language model, as a baseline system, outperforms their
proposed end-to-end methods in both 14-hour and 81-hour training sets. The benefits
of a deep end-to-end system in a small training set was that their proposed method can



4.2 Visual speech model 35

be still functional even without a dictionary and a language model. A disadvantage of
the end-to-end system is that it ignores prior knowledge of linguistics.

Since most lipreading corpora are relatively small, we can still get benefits from
using a separate speech model, N -gram language model and dictionary. Therefore, we
build our lipreading systems via a conventional architecture with hybrid DNN-HMM
models. Our systems have a similar architecture to the baseline system in Graves
and Jaitly [47]. The rest of this Chapter explains each component of these lipreading
systems in more detail.

4.2 Visual speech model

This section presents background knowledge about algorithms to model visual speech
observations. We describe techniques to train a conventional approach HMM. We also
provide the basic idea to train a DNN. Information on the hybrid DNN-HMM model
and the training methods are available at the end of the section.

4.2.1 Hidden Markov Model (HMM)

S1 S2 S3

a33

X2 X3 X4 X5 X6 X7X1 X8

HMM-based model

a11 a22

a12 a23

Observation sequence 
(Visual feature vectors)

Transition probabilities

Observation probabilities 
estimated via GMM 

b1(x1) b1(x2)

b2(x3) b2(x4) b2(x5)
b3(x6) b3(x7) b3(x8)

Fig. 4.2 The HMM-based model adapted from [43].

HMMs have been used in ASR/AVSR and lipreading as the state-of-the-art for
speech modelling for the last several decades. Figure 4.2 shows the structure of the
HMM-based model of a phoneme. HMM-based speech modelling uses a probabilistic
model that is composed of two main probabilities: the transition probability and the
observation probability which is derived from a probability density function. The
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transition probability is present to capture the sequence information from speech via
a Markov process. The probability density function (PDF) of speech feature vectors
is usually modelled by a GMM that is parameterised by the mean and the variance
of each component (covariance matrices are usually assumed to be diagonal also the
mixture weights).

Gaussian Mixture Model (GMM)

A GMM is a generative model that can represent the PDF of an arbitrary random
variable (RV). A GMM is a linear combination of a number of multivariate Gaussian
models.1 It can be shown that a GMM can model the PDF of an arbitrary RV to any
required degree of precision by adding more components to the GMM. A univariate
Gaussian model can be used to model the distribution of data points where the mean
(µ) specifies the center of the distribution, and the variance (σ2) determines the spread
of the distribution. Figure 4.3 shows a univariate example of how a GMM can model
an arbitrary RV. The red trace represents the PDF of an arbitrary RV and the blue
traces are the PDFs of three normal distributions with different means and variances
that, when added together in the correct proportions, model the red trace to a high
degree of accuracy. The weights and the set of means and variances of the three blue
distributions are the parameters of the GMM.

Fig. 4.3 An example of univariate (1D) Gaussian Mixture Model.

In a multidimensional dataset, the PDF of the observation x of multivariate data is
a joint probability distribution that is defined as

1Gaussian distribution are common in nature due to the central limit theorem.
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p(x) = 1
(2π)D/2

1
|Σ|1/2 exp

{
−1

2(x − µ)T Σ−1(x − µ)
}

, (4.3)

also denoted as
X ∼ N (µ, Σ), (4.4)

where X refers to multivariate data that have a normal distribution of a single Gaussian,
µ is the mean vector, Σ is the covariance matrix, and D is the number of dimensions.
The mean vector has elements that centre along every dimension. The covariance
matrix determines the spread and the orientation of the data intensity of the joint
space. The elements along the diagonal of the covariance matrix give the variance σ2

of each dimension. The off-diagonal elements specify the correlation structure of the
distribution which determines the orientation of the data space.

Σ =
[
σ2 0
0 σ2

]
Σ =

[
σ2

x 0
0 σ2

y

]
Σ =

[
σ2

x σxy

σyx σ2
y

]

X

Y

X

Y

X

Y

Diagonal covariance Diagonal covariance Full covariance

Fig. 4.4 Variations of the covariance matrice (Σ) of the multivariate normal distribution
with a single Gaussian.

The GMM is used to estimate the observation probabilities of a sequence of frames
derived from a speech utterance. The GMM is usually constructed in a constrained
version in which the components of the GMM have a diagonal covariance matrix rather
than a full covariance matrix. This reduces the number of free parameters that need to
be estimated for the Gaussian models (the number of parameters reduces from O(D2)
to D), as shown in Figure 4.4. Since a diagonal covariance matrix does not contain
correlation coefficients between each dimension of random variables, the spread of
distribution is axis aligned, and any changes in each variable do not affect the other
variables. Figure 4.5 illustrates the GMM distribution of a speech model. The Gaussian
mixture distribution has the joint PDF of
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p(x) =
M∑

m=1
wmN (x; µm, Σm), (wm > 0), (4.5)

where M refers to the number of Gaussian components, wm denotes the weight of each
component which has to be larger than zero, Σm is the diagonal covariance of each
component, and ∑M

m=1 wm = 1.
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Gaussian mixture model

Fig. 4.5 An example of a multivariate Gaussian Mixture Model. It is a 2-d representation,
where the contours represent equal probability and the dots are the data points.

Expectation-maximisation (EM) parameter estimation algorithm

The expectation-maximisation (EM) algorithm [36] is used to fit the GMM to any
distribution. The EM algorithm is an iterative technique that adjusts the parameters
of a model to maximise the likelihood of the data given the model and any distribution.
It is a powerful tool to optimise GMM parameters but it must be emphasised that
no guarantee exists that it converges to the maximum likelihood estimate for the
parameters: it converges to a local maximum.
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The EM algorithm iteratively maximises the likelihood p(X|θ) of the GMM param-
eters, where the parameter θ consists of {(wm, µm, Σm), m = 1, ..., M}. The likelihood
of θ is increased by computing

θ∗ = arg max
θ

p(X|θ) = arg max
θ

p(X|θ)
J∏

j=1
p(xj|θ), (4.6)

where j is the number of iteration. The EM algorithm involves two steps: the
expectation step (E-step), and the maximisation step (M-step).

The expectation step (E-step) estimates the likelihood of the distribution given the
data with the current Gaussian parameters.

hj
m(t) = w(j)

m N (x(t); µ(j)
m , Σ(j)

m )∑M
i=1 w

(j)
i N (x(t); µ

(j)
i , Σ(j)

i )
. (4.7)

The EM algorithm assigns the posterior probability as a soft decision to each data
point. At the current iteration (j), the posterior probability of a mixture component
(hm) of the data point (xt where t = 1, .., N and N is the sample size) is computed by
estimating the likelihood of the data point given that particular mixture component
then dividing by the summation of the likelihood of all components.

The maximisation step (M-step) computes the parameters (θ) that maximise the
expected log-likelihood.

wj+1
m = 1

N

N∑
t=1

hj
m(t), (4.8)

µj+1
m =

∑N
t=1 hj

m(t)x(t)∑N
t=1 hj

m(t)
, (4.9)

Σj+1
m =

∑N
t=1 hj

m(t)[x(t) − µj
m][x(t) − µj

m]T∑N
t=1 hj

m(t)
. (4.10)

This step updates parameters with the soft updates by re-estimating the parameters
(θ) from the likelihood of the data points.

Weakness of GMM

The GMM has a useful property which is the ability to learn a normal distribution
without labels. This property benefits DNN-HMM training since it is used to initialise
the transition probabilities of the HMM and generate time alignment labels. However,
GMMs also have weaknesses.
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The GMM suffers from the “curse of dimensionality” problem. This problem refers
to the sparse data problem as the volume of the space increases when the feature
dimension is increased. Bouveyron and Brunet-Saumard [16] claim that in GMM
parameter estimation, the number of free parameters grows quadratically with feature
dimension (D). Their paper illustrates that this problem leads to poor performance.

There are some weaknesses of GMMs in acoustic modelling pointed by Hinton et al.
[55]. It is statistically inefficient for modelling data that lie on or near a non-linear
manifold in the data space. For example, if the data lies on the surface of a sphere, it
can be modelled by computing sphere of radius r where the volume of D-dimensional
is O(r/D). This is much smaller than the volume of the D-dimensional in GMM
either diagonal covariance GMM or full covariance GMM. Furthermore, a GMM is also
impractical to model information of dynamic speech, which refers to a large window of
frames, because the signal is not stationary over a longer window. These deficiencies
motivate the consideration of alternative learning techniques.

4.2.2 Deep neural network (DNNs)

A DNN is a feed-forward artificial neural network with many hidden layers. Each layer
consists of many neurons. Each neuron, or node, has a non-linear property (or nonlin-
earities) via a non-linear activation function which applies on top of the combination
of linear input. These nonlinearities enable the DNN to represent any function as a
universal function approximator. In a DNN, multiple nodes are interconnected, and the
input signal passes through these nodes allowing the data to be learnt hierarchically.
This structure represents the data in multiple layers of abstraction.

Figure 4.6 shows an example of a fully connected deep network architecture contain-
ing five layers including an input layer, an output layer and three hidden layers. The
input layer handles a high dimensional vector that is usually in the form of concatenated
feature vectors from many input frames. The hidden layers perform nonlinear feature
transformations. Classification is performed on the transformed feature that appears
at the output layer.

Each neuron, also called a hidden unit, represents a linear combination of the data
from the layer below with weights and bias, and then passes it through an activation
function:

xj = bj +
∑

i

yiwij, (4.11)
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Fig. 4.6 An example of the deep network architecture adapted from Yu and Deng [163].

and
yj = f(xj), (4.12)

where wij refers to the connection weight between the neuron unit j and the neuron
unit i from the layer below, bj is the bias of the unit, and yj refers to a scalar output
of an activation function f(x).

Non-linear activation function

The activation function f(x) in each neuron maps the total input from the lower layer
to a scalar that is passed to the next layer. An activation function models the action
potential (an electrical impulse sending between neurons) of each hidden unit as it
should or should not be activated. There are many choices to use as a non-linear
activation function. Here are the three commonly used functions:

the sigmoid function (output range from 0 to 1)

f(x) = 1
1 + e−x

, (4.13)

the hyperbolic tangent function (tanh) (output range from -1 to 1)
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f(x) = ex − e−x

ex + e−x
, (4.14)

and the Rectified Linear Unit (ReLu) (output range from 0 to x)

f(x) = max(0, x). (4.15)

In Figure 4.7, we plot all three activation functions. These non-linear activation
functions are used in the hidden layers.
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Fig. 4.7 Non-linear activation functions.

Softmax function

To estimate the class probability (pj), the softmax layer output based on the softmax
non-linearity function can be computed as:

pj = exp(xj)∑
k exp(xk) , (4.16)

where k is a total number of classes. In the output layer of a multi-classes classification
task, we use the softmax function (Bridle [18]) to estimate the class probability.
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DNN training

DNN training is a discriminative learning process where a class label (which is used as
the target output) for every data frame is needed. The full training process involves
three steps: forward propagation, backward propagation, and optimisation to update
the weights.

The forward propagation process makes a prediction from the current weights,
then compares the predicted output with the target label. Here, the weight matrix is
initialised via random values or via pre-training. An output in the softmax layer is
iteratively computed throughout the hidden layers, by multiplying the input and the
weight matrix via (4.11) and then applying the activation function. A loss function
(also called a cost function) is then applied to quantify the error between the predicted
output and the actual target. A typical loss function is cross-entropy (CE):

C = −
∑

j

djlog pj, (4.17)

where C refers to the CE cost function, p is the softmax output, and d is the actual
target output. Here C determines the prediction error generated from the current
parameters.

The backward propagation process uses the backpropagation algorithm proposed
by Rumelhart et al. [126]. It computes the derivative of the error and propagates this
back to each layer of the network using the chain rule. This process calculates the
error of each hidden unit in the hidden layer and goes backwards to calculate layer by
layer. This can be done by computing the partial derivative of the error function with
respect to each weight of the network ( ∂C

∂W
). The chain rule is used to compute the

partial derivative of a composite function; it is necessary to use in the backpropagation
since neural networks are a nested composite function.

The optimisation process updates all the weights to minimise the error via gradient
descent. Gradient descent is the process of finding an optimal value of each weight of
the network which satisfies the smallest error. The process starts with computing the
gradient of the error surface and taking a step toward the minimum error which is in
the opposite direction to the gradient.

In the “vanilla” version of the gradient descent method, the gradient is computed
from all training samples: this is sometimes called batch processing. The weights of the
network can be updated as
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Ŵ = W − α
∂C

∂W
, (4.18)

where W is the current weight matrix, α is the learning rate, 0 < α < 1. Updating
weights via the batch process is pretty slow as the gradient of each iteration is computed
from all training samples.

An alternative approach is to use stochastic gradient descent (SGD). Stochastic
gradient descent computes the gradient from a small batch (training samples) of the
available training data, usually called a mini-batch. The training samples of each
mini-batch are selected randomly. The stochastic gradient descent method is then used
to update the weights of the network as

Ŵ = W − α

mb

∑
t

∂Ct

∂W t
, (4.19)

where t refers to the index of mini-batch and mb is the mini-batch size.
Figure 4.8 illustrates the different gradient descent methods. In each learning

iteration, the weights are tuned by following the gradient descent to reduce errors
in the training data (shown by a small arrow). This process can be called as a
discriminative fine-tuning process. The mini-batch SGD method aims to avoid “noisy”
gradients which might occur in normal SGD. The effectiveness of back-propagation
based on SGD depends on the availability of a large amount of labelled training data
along with the proper mini-batch size.

Generative pre-training

There are some alternative approaches (such as transfer learning and generative pre-
training) that initialise DNN weights using a specified technique rather than using
random initialisation. The transfer learning approach [160] uses a deep model optimised
on one task as a feature extractor, and then does fine-tuning on the last couple of layers
with the actual target in another task. The transfer learning approach usually takes
a pre-trained model for a similar task learned from a massive corpus. For example,
VGG-Face [105] is a pre-trained convolution neural network for face recognition and
GoogLeNet [143] is a pre-trained convolution neural network for image classification.

Another approach is initialising weights from unlabelled data using the unsupervised
pre-training method. This method uses an unsupervised technique to learn weights
from input data. Examples of unsupervised pre-training techniques include a method
to learn for reconstruction such as autoencoder [58]; a method to learn the distribution
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Fig. 4.8 Variation of gradient descent optimisation. The blue arrows indicate the batch
gradient descent method. The green arrows refer to the SGD method. The pink arrows
indicate the mini-batch SGD method. The surface here is an error surface where the
smallest error is in the middle of the ellipses.

of the data such as RBM [57]. RBM is an energy-based model that can learn a complex
distribution of the data. The generative pre-training approach is helpful for convergence
when the available training data is limited.

In this work, we use a pre-training method based on DBNs proposed by Hinton et al.
[55], Mohamed et al. [89]. A DBN model is a type of deep learning model constructed
via the layer-wise generative pre-training. This model was proposed to reduce a
difficulty encountered when training multi-layered neural networks with gradient-based
methods and backpropagation called the vanishing gradient problem. The vanishing
gradient problem is a fundamental problem where the gradient in the earlier layers
becomes very small and difficult to train for layers near the output. Therefore, the
weights in very early layers may not change during the training process. Hinton et al.
[55], Mohamed et al. [89] use the RBM to model the distribution of the input data
one layer at the time, then stack the trained RBMs as a deep network called a DBN.
They then apply the standard backpropagation fine-tuning process on top of the DBN
model. Here, the DBN model is constructed by extracting meaningful features using
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Fig. 4.9 A pre-trained DBN-DNN training method proposed by Hinton et al. [55],
Mohamed et al. [89].

an RBM energy function. The RBM training process is repeated until every layer of
the network is trained as shown in Figure 4.9.

RBM training is now described. An RBM is an undirected graphical model that
finds distributions over the input vector using a layer of binary hidden units. The
RBM training is optimised by using contrastive divergence (CD) [56]. The distribution
of the input data is then learned layer by layer where the output of the previous step
becomes an input of the current step.

The RBM energy function of the joint distribution between visible units (v) and
hidden units (h) is defined as

E(v, h) =
∑

i∈visible
aivi −

∑
j∈hidden

bjhj −
∑
i,j

vihjwij, (4.20)

and the energy function of the real values is Gaussian-Bernoulli RBM (GRBM) which
is defined as

E(v, h) =
∑

i∈visible

(vi − ai)2

2σ2
i

−
∑

j∈hidden
bjhj −

∑
i,j

vi

σi

hjwij, (4.21)
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where vi denotes a visible unit i and ai is a bias of the visible unit, σi is the variant
of i, hj refers to a hidden unit j and bj is its bias, wij represents the weight between
those units.

4.2.3 DNN-HMMs hybrid structure

Here we describe the visual speech modelling method using the hybrid DNN-HMM
structure. In acoustic speech recognition, the hybrid DNN-HMM structure is known
to provide significant performance gains over the standard GMM-HMM [89, 34, 132].
There have also been some preliminary applications to lipreading systems [149, 4].

The deep network structure can be considered as a feature extractor in which
neurons in multiple hidden layers learn the essential class patterns from the input
features. In addition, the backpropagation algorithm, with its learning method, is
essentially optimising the model to fit to the training data discriminatively. However,
to decode a speech signal, temporal features and models that can capture the sequential
information in speech such as an observable Markov sequence in the HMM is still
necessary. Thus, the DNN-HMM hybrid structure in which the DNN has been using
instead of GMM in the HMM, essentially combines the advantages from those two
algorithms.

The state observation probability is computed by the softmax function in the
softmax output layer of the network, and the transition probability conventionally
defines the HMM transition between the states. Then, the decoding techniques that
have been developed for GMM-HMM systems can be simply applied to the hybrid
DNN-HMMs structure to recognise the input speech sequence. This concept improves
the performance of speech recognition systems significantly in many speech recognition
tasks as well as in audiovisual speech recognition.

In the DNN-HMM hybrid approach, let X = x1, ..., xT be the T sequence of feature
vectors extracted from each video and w be a word sequence that is represented by a
language model. The likelihood of an input sequence can be computed by

p(X|w) =
T∏

t=1
p(xt|st)p(st|st−1), (4.22)

where p(xt|st) denotes the emission probability and p(st|st−1) is the transition prob-
ability obtained from the HMMs state transition. The emission probability can be
approximated by p(xt|st) = p(st|xt)p(xt)/p(st), via a GMM, in which case we have
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Fig. 4.10 The hybrid DNN-HMM architecture adapted from [33]. The HMM structure
captures the sequential information and the GMM is replaced with a DNN to model
the speech observation.

the conventional HMM speech recognition architecture or, via a DNN. To estimate
the DNN’s posterior p(s|xt) on each state of an utterance u, the DNN uses a pseudo
log-likelihood obtained via the softmax activation function

p(s|xut) = exp {aut(s)}∑
s′ exp {aut(s′)} , (4.23)

where aut(s) refers to an activation of state s at the output layer. In which case, the
pseudo log-likelihood of the visual speech model is

log p(xut|s) = log p(s|xut) − log p(s), (4.24)

The DNNs used in visual speech modelling have conventionally been trained to
optimise the CE between the prediction and the target HMM-state labels using
mini-batch Stochastic Gradient Descent (mini-batch SGD) optimisation and error
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backpropagation (BP) algorithm [126], to provide the posterior probability estimates
of the HMM states. The HMM-state alignments are obtained from a GMM-HMM
training process. Here, we use BP to minimise the cross-entropy between the predicted
output and the HMM-state target. This is similar to DNN-HMM training in acoustic
speech recognition as in [55].

Cross-entropy (CE)

The cross-entropy objective is a frame-level training criterion for classification tasks
and usually provides significant performance gain over standard GMM-HMM acoustic
modelling in speech recognition. In visual speech model training, we use frame level
alignment generated from a context-dependent GMM-HMM system and the initial
DNN-HMM parameters via stacking RBMs pretraining [55]. We use CE to fine-tune
the DNN parameters.The CE objective function is defined as

FCE = − 1
T

U∑
u=1

Tu∑
t=1

∑
s

lut(s) log p(s|xut), (4.25)

where the T here is the total number of frames from all training utterances and lut(s)
is the Kronecker delta of the target state.

Sequence-discriminative DNN training

Here, we describe some other discriminative techniques for training DNNs.

MMI

The MMI training criterion [9, 67] aims to maximise the mutual information between
the distributions of observation and the reference word sequences. Let Xu represent
the sequence of visual features and wu is the word reference in an utterance u. MMI
attempts to maximise

FMMI =
∑

u

log p(Xu|Su)kP (wu)∑
w p(Xu|Sw)kP (w) , (4.26)

where Su is the state sequence corresponding to the correct word wu and k is the
model scaling factor. For computational efficiency, the sum in the denominator may be
practically estimated from a decoding lattice (generated from a weak language model
instead of using all the possible word sequences. We also apply frame rejection proposed
by [152] to avoid infinite gradients, caused by missing words in the denominator lattice.
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sMBR/MPE

The sMBR/MPE training criteria aims to minimise the expected error, measured at
state-level (sMBR [72]) or phone-level (MPE, [119]), between the sequence of visual
features and the word sequence of each training utterance. Specifically, sMBR/MPE
attempts to minimise

FMBR/MP E =
∑

u

log
∑

w p(Xu|Sw)kP (w)A(w, wu)∑
w′ p(Xu|Sw′ )kP (w′) , (4.27)

where A(w, wu) is the raw accuracy between the word sequence w and the reference
wu. Raw accuracy refers to the number of correct state labels in sMBR and the phone
labels in MPE.

4.3 WFST decoder

Here is a brief explanation of the framework in visual speech decoder based on the
WFSTs. A WFST is a weighted finite state automaton that transduces an input
sequence to an output sequence [90]. Each state in a transducer is connected by a
transition that has an input symbol, an output symbol, and a weight. The WFSTs
decoder is comprised of four transducers: HMM structure (H), phonetic context-
dependency (C), lexicon model (L), and grammar or n-gram language model (G),
called collectively the HCLG decoding-graph. Details of the transducers are listed
below.

HMM transducer: H represents an HMM where the input sequence is the HMM
states and the output sequence is the context-dependent phones (CD).

0 1ey1:-/1

ey1:-/0.66

2ey2:-/0.33

ey2:-/0.71

3ey3:-/0.29

ey3:-/0.8

4-:d-ey+t/1

Fig. 4.11 An example of HMM transducer.
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Context-dependency transducer: C represents phonetic context-dependency where
the input sequence is the CD phones and the output is the phones.

0

1
d-ey+t:ey

d-ey+z:ey

2
d-ey+d:ey

dh-ey+d:ey

Fig. 4.12 An example of context-dependency transducer.

Lexicon transducer: L represents pronunciation lexicon where the input sequence
is phones and the output sequence is words. The L transducer can contain a
set of alternative pronunciations in each word if it is available in the dictionary.
Here is an example of an L transducer from [90].

0

1d:data/1

2
d:dew/1

3ey:<epsilon>/0.5

ae:<epsilon>/0.5

6uw:<epsilon>/1

4t:<epsilon>/0.3
dx:<epsilon>/0.7

5ax:<epsilon>/1

Fig. 4.13 An example of lexicon transducer.

Grammar transducer: G represents word-level grammar where the input sequence
is words and the output sequence is words. Here is example of G transducer from
[90].

There are three steps to decode the speech utterances: decoding graph generation,
decoding and lattice generation, and lattice re-scoring. The first-pass decoder generates
a word lattice containing possible seqeunces of words that match the input lip signal;
then the final result comes from the lattice re-scoring via a language model.
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0 1using:using/1
2data:data/0.66

3
intuition:intuition/0.33

4

is:is/0.5
are:are/0.5
is:is/1

5better:better/0.7
worse:worse/0.3

Fig. 4.14 An example of grammar transducer.

HCLG decoding-graph

A HCLG decoding-graph is generated using three algorithms: composition, determini-
sation, and minimisation, to combine the different levels of linguistic representations
while maintaining the feasibility to decode. The HCLG is composed as

HCLG = min(det(H ◦ C ◦ L ◦ G)), (4.28)

where H, C, L, and G are the transducers defined earlier, ◦ refers to the composition
algorithm that is used to combine transducers, det refers to a determinisation algorithm
that is used to transform a nondeterministic weighted automation into a deterministic
automation to reduce redundancy, and min is the minimisation algorithm that is
used to reduce the size of a deterministic automaton to save search space and time.
These algorithms help to make a compact HCLG decoding-graph suitable for a large-
vocabulary decoder and long n-gram language model. As presented by Mohri et al.
[90], this also has the benefit of speeding up the processing time without damaging the
system performance.

Lattice generation in the first-pass decoder

To generate a lattice, each arc of an HCLG is traversed for each input feature vector
and state-level arcs are created for the acoustic and graph costs. In the Kaldi toolkit
[116], a lattice generator, described in [117], handles graph and acoustic costs separately
to keep track of both the acoustic score and the language model score by simply using
a data structure of a full-state HCLG. Then a beam search algorithm with beam
width pruning (as suggested between 4⩽ α ⩽8) is applied every 25 frames (rather than
waiting to the end as this helps conserve memory). The beam search algorithm retains
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to keep only the most likely result with the corresponding graph and acoustic costs in
the lattice.

In the first step, the pruned graph P is generated from

P = prune(B, α), (4.29)

where B is the un-pruned HCLG graph which is a full state-level lattice, and α is the
lattice beam width. The Kaldi decoder sets α=8 in a DNN-based decoder and α=6 in
a GMM-based decoder as a default parameter. We use a larger α in the DNN-based
decoder since the DNN-decoder runs on a higher performance machine (we run this
decoder on a GPU machine). We then use the pruned graph P , which is an acyclic
graph that keeps only the best path within the beam α. This pruned graph can be used
in the language model re-scoring step directly. However, the Kaldi decoder embeds
the state-level alignment information into the lattice and also keeps track of acoustic
and graph costs separately. The decoder in Kaldi extends the algorithm to process
inv(P ) which is the inverted version of the pruned state-level lattice, where the input
symbols are words and the output symbols are the PDF labels. The decoder in Kaldi
also defines E as the encoded version of inv(P ) that encodes the state labels into the
weights. The final lattice is defined as

L = prune(det(rmeps(E)), α), (4.30)

where rmeps is an operation to remove the epsilon symbol. The lattice L is the word
lattice (containing the best pass within the beam α) that has information of the graph
cost, the acoustic cost and the state-level alignment embedded into the weights. Note
that the larger the value of α used, the slower the processing time and the deeper the
lattice.

Lattice re-scoring in the second-pass decoder

In a multi-pass decoder, the second-pass uses an external score to reorder the lattice.
Here, the final transcription is generated by re-ranking the lattice using the score of a
language model. The lattice L that contains the entire surviving path is re-scored by
applying a language model scaling factor over the range 15-20 (between 4-40 and 15-20
appear to be the optimum range for lipreading). This rescoring technique over the
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lattice gives a low score to nonsensical sequences of words that have a low probability
in the language model. We pick only the first best as the transcription result.

4.4 Visual feature extraction

4.4.1 Front-end processing

Active Appearance Models (AAM)

Fig. 4.15 An example of AAM feature from Deena [35].

An active appearance model (AAM), as described by Cootes et al. [31], consists of a
shape component plus an appearance component that models the lip region in a video
frame. The shape component is constructed by, first, hand-labelling a set of images
with the x- and y-coordinates of the set of n vertices of a mesh, and then applying
PCA to the shapes:

s = s0 +
m∑

i=1
pisi (4.31)

where s is a vector of (x, y) coordinates of the shape vertices, s0 is the mean shape, pi

are the modes of shape variation corresponding to the m largest eigenvectors, and si a
vector of shape parameters. The appearance component is constructed by warping the
pixels inside the mesh in each training image to the mean shape (s0). PCA is then
applied to the images, providing a compact, linear model of appearance variation of
the form:

A = A0 +
m∑

i=1
λiAi (4.32)
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where λi are the appearance parameters, A0 is the mean appearance and Ai are the
eigenvectors corresponding to the m largest eigenvalues.

Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT[2]) is a simple transform used in image coding and
compression. The DCT aims to represent the frequency domain of a signal periodically
and symmetrically using the cosine function. The DCT has a great advantage in
energy compaction (Rao and Yip [123]). In particular, the DCT is a part of the Fourier
Transform family but contains only the real part (Cosine). Because of its popularity,
most modern processors execute it very quickly (roughly O(N) for modern algorithms),
so this also explains its ubiquity. For strongly correlated Markov processes the DCT
approaches the Karhunen-Loeve transform in its compaction efficiency. Possibly this
also contributes to its popularity as a benchmark feature [95]. Figure 4.16 shows the
DCT basis functions.

Fig. 4.16 The 2D DCT basis func-
tions. This image illustrates the
64 DCT basis functions that are
formed by 8-by-8 matrices. The
contrast patterns represent positive
(white) and negative (black) values
of the funtion.

DCT feature selection can be done in many ways; for example, conventional energy
selection [53, 114], or mutual information based selection [130]. Here we use simply
zigzag scanning [158]. The quality of the image reconstructed from DCT features is
shown in Figure 4.17.
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Real data

44-D DCT

Fig. 4.17 An example of reconstructed lip ROIs from DCT features. The real data
refers to the original lip ROIs provided in the TCD-TIMIT corpus. We keep the same
dimension as presented in the TCD-TIMIT baseline results.

Dual-tree complex wavelet transform (DTCWT)

DTCWT (proposed by Kingsbury [73]) is the enhanced version of the DWT. The
DTCWT has approximate shift invariance in magnitude i.e. it is relatively insensitive
to the object position in an image. This property is well-suited to texture analysis
in a lip-image since it makes the texture feature independent of the texture location.
Additionally, it provides a multi-resolution, sparse representation and is a useful
characterisation for image reconstruction.

g0[n]

h0[n]

  2

  2

g0[n]

h0[n]

  2

  2

g0[n]

h0[n]

  2
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g1[n]

h1[n]
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  2

g1[n]

h1[n]
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  2

g1[n]

h1[n]

  2

  2x[n]

Real part
Tree a

Imaginary part
Tree b

Fig. 4.18 The DTCWT proposed by Kingsbury [73] taken from [73]

The DTCWT coefficients are computed from the two wavelet trees as shown in
Figure 4.18. These trees separate into real and imaginary parts where both parts
work as a complex transformation. These transforms handle orientation as there
are different subbands covering six directions: ±15◦, ±45◦, ±75◦. Figure 4.19 shows
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image reconstruction from different levels. The quality of an image reconstructed from
DTCWT features is shown in Figure 4.20.

(1st) (2nd) (3rd) (4th) (5th)

(6th) (7th) (8th) (9th) (10th)

Fig. 4.19 Image reconstruction from DTCWT coefficients at different levels (from 1st

to 10th).

Real data

66-D DTCWT

258-D DTCWT

Fig. 4.20 Examples of reconstructed lip ROIs from DTCWT features. Note that
66-dimensions come from the concatenation of the top three levels (from 5th to 7th)
containing most information (highest energy) and 258-dimensions come from the
combination of the top four levels (from 4th to 7th).

Eigenlips

The Eigenlips feature is another appearance-based approach [74]. The Eigenlips feature
has been generated via PCA [156]. It models latent factors that exist in the data. The
PCA optimisation algorithm maximises the variance of the lip ROI data. Only the
top k eigenvalues are retained, where, in our case, k = 30. The reconstructions of each
individual mode are shown in Figure 4.21 and the quality of images reconstructed from
Eigenlips features is shown in Figure 4.22.
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(1st mode) (2nd mode) (3rd mode) (4th mode) (5th mode)

(10th mode) (12th mode) (25th mode) (30th mode) (307th mode)

Fig. 4.21 Image reconstruction from Eigenlips coefficients at different modes (between
1st and 307th).

Real data

30-D Eigenlips

307-D Eigenlips

Fig. 4.22 Examples of reconstructed lip ROIs from Eigenlips features. Note that
30-dimensions cover 85% variance and 307-dimensions cover 95% variance.

Deep Autoencoder (DAE)

The Autoencoder (AE) was introduced to address the problem of dimensionality
reduction of multivariate data. The difference between PCA and AE is that PCA
finds dimensions that maximise the variance while the AE objective is to minimise
the reconstruction error via a non-linear function. Therefore, AE is more suitable
for dealing with real-world problems, which lie on the non-linear manifold. A Deep
autoencoder (DAE) or multilayer autoencoder is a feed-forward neural network that
learns non-linear mappings to reconstruct the input with minimum error. The network
structure is separated into two parts: a decoder and an encoder. Figure 4.23 shows
the schematic diagram of a deep autoencoder. A DAE feature is obtained from the
layer in the middle (called a code layer or a bottleneck layer) that usually contains the
smallest number of units, i.e. 30 hidden-units. This code layer is a low-dimensional
representation that is trained to yield the best reconstruction of the output. DAE
optimises the mean square error (MSE) to minimise the reconstruction error between
the input and its reconstruction. The quality of images reconstructed from DAE
features is shown in Figure 4.24.
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x'

Decoder Encoder 

x

30 

code 

bottleneck layer 
used as a feature 

Fig. 4.23 Schematic diagram of a typical deep autoencoder that maps x to x′. Each
box illustrates a layer of neurons that is fully connected (illustrated with the dotted
lines) to the next layer.

Real data

30-D DAE

Fig. 4.24 An example of reconstructed lip ROIs from 30-dimensional DAE features.

4.4.2 Feature transformation techniques

Utterance-level mean and variance normalisation

To reduce the high variation in each dimension of a feature vector, we perform z-score
normalisation to force a zero mean and unity standard deviation by subtracting a
mean of each dimension of a static feature. This is done on a per-utterance basis.
Let X refer to the static coefficient vectors of visual features in an utterance where
X = x1, x2, ..., xt, and t is the time frame. The normalised vector is calculated as:

Normalised(xi) = xi − X̄

std(X) , (4.33)
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where
X̄ = 1

t

t∑
i=1

xi, (4.34)

and

std(X) =

√√√√ 1
t − 1

t∑
i=1

(xi − X̄)2. (4.35)

In the event of scale differences between dimensions, using this common technique
modifies the feature vector to be equally scaled which generally improves machine
learning, especially in algorithms that use scaled various of the input.

Capturing visual dynamics via delta coefficients

Delta coefficients were proposed by Furui [41] to deal with the temporal coherence or
dynamics in the speech signal and have become widely used since then. The idea is
straightforward but useful when enhancing the performance of speech recognition.

Delta coefficients are computed as

∆ =
∑Θ

θ=1 θ(xt+θ − xt−θ)
2 ∑Θ

θ=1 θ2 , (4.36)

where ∆ is the delta coefficients at time t computed from static coefficients xt+θ and
xt−θ, and θ refers to the delta window.

Incorporating this kind of dynamic information into a feature vector is beneficial
to acoustic speech and also visual speech. Most reported lipreading results usually
combine the first- and the second-order derivative into the visual feature.

Linear discriminant analysis and maximum likelihood linear transform (LDA-
MLLT)

For capturing dynamic information over time while searching for discriminatory fea-
tures in a raw input space, we use the LDA transformation [40] as an intermediate
representation of the visual feature. LDA is a supervised dimensionality reduction
method that finds discriminatory features for specific classes via a linear analysis. The
method maximises the ratio of between-class variance to the within-class variance thus
ensuring maximal linear separability.

The within-class variance is given by
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Sw =
C∑

c=1

Nc∑
i=1

(xc
i − µc)(xc

i − µc)T , (4.37)

where c refers to a class, µc is the mean of the class c, xc
i denotes the data point xi

of the class c. Note that the total number of the classes (C) here indicates the HMM
states.

The between-class variance is given by

Sb =
C∑

c=1
(µc − µ)(µc − µ)T , (4.38)

where µ refers to the mean of the data set.
A further step is to apply a maximum likelihood linear transform (MLLT) [46]

that rotates the features into a new space to maximise the observation likelihood in
the original feature space. LDA-MLLT has been used regularly in the audio speech,
visual speech and audio-visual speech recognition (also as a part of the HiLDA feature
extraction [113]). It accommodates expanding the wider context window of the dynamic
information while retaining the compact size of feature dimension. To examine the
influence of dynamic information, we apply LDA-MLLT method to the spliced ±n

context feature where n is ranged between 1 − 15 and then reduce the dimension to
15 − 45.

Feature space maximum likelihood linear regression (fMLLR)

Feature space maximum likelihood linear regression (fMLLR) [42] is a feature transfor-
mation method based-on the maximum likelihood linear regression (MLLR) technique.
The MLLR transformation is a model space adaptation method to reduce the mismatch
due to speaker, channel or additive noise effects. The method adapts the Gaussian
mean of each HMM state to maximise the likelihood of the data from a particular
speaker or an environment. The fMLLR transform is speaker specific. The main idea
of the fMLLR transformed features is to normalise features to better fit a speaker
dependent model.

We use the fMLLR transformation for speaker adaptive training (SAT). For a
speaker, s, the fMLLR transformed feature is defined by

x̂t = W (s)ξ(t), (4.39)
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where W (s) = [A(s)b(s)] denotes a transform matrix of a particular speaker [118], and

ξ(t) =
xt

1

 is the extended input vector by 1 as to multiply with a bias term. Note

that A(s) refers to a variance transform (AT Σ(m)A) where m indicates the Gaussian
index.

According to the fMLLR transform presented in [118], the auxiliary function equals:

log(|det(A)|) −
d∑

i=1
wT

i ki − 0.5wT
i Giwi, (4.40)

where the linear term is:

ki =
M∑

m=1

c(sm)µ
(m)
i ε(ξ)(sm)

σ2(m)
i

, (4.41)

and the quadratic term is:

Gi =
M∑

m=1

c(sm)ε(ξξT )(sm)

σ2(m)
i

. (4.42)

The c(sm) is a soft count of Gaussian m from the current speaker, ε(·)(sm) is the
mean value for speaker s and Gaussian m, d is the dimension of speech features.

4.5 Full pipeline DNN-HMM training

We use Kaldi toolkit [116], an open source toolkit for ASR, to train visual speech models
following a pipeline of the wall street journal (WSJ) recipe. Kaldi toolkit provides
a proper workflow to build ASR called a recipe. However, we have to implement
novel feature extraction methods to support visual speech signals since Kaldi does not
offer any visual features. We then pass visual features into the DNN-HMM training
pipeline taken from the sub-folder s5 in the WSJ recipe. The WSJ recipe contains
several training steps including GMM-HMM training, Subspace GMM-HMM training,
DBN-DNN-HMM training (nnet1), DNN-HMM training (nnet2), Time Delay Neural
Network (TDNN)-HMM training (chain). We use nnet1 setting to build DNN-HMM
visual speech models (the main training script called run_dnn.sh can be found in the
folder egs/wsj/s5/local/nnet). Here we give detail step-by-step to build visual speech
DNN-HMM modeling where all of the modules related to these steps exist in the Kaldi.

DNN-HMM training involves six steps: the steps in GMM-HMMs training are used
as an initialisation for the DNN-HMM training. This pipeline can be called a sequence
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training process as the next step uses outputs generated in the previous step. The main
outputs from a GMM step include visual speech GMM-HMM, state-level alignment,
feature transformation matrix. The following step uses these products to generate a
feature and to initialise the training process. The HCLG graph is usually re-estimated
in each particular step except for the DNN-HMM steps where the HCLG graph is
obtained from the GMM with an SAT system. Figure 4.25 illustrates all those steps
which we explain the main idea of each step and the parameter set as followed.

Full pipeline DNN-HMMs training  using Kaldi toolkit

STEP 4
Context-Dependent GMM (CD-GMM) training 
FMLLR feature transformation (40 dim) 
Recompute triphone state cluster  
Compile training graph (HCLG.fst) 
Reestimate CD-GMM model 
Updating time alignment (Viterbi)

STEP 3
Context-Dependent GMM (CD-GMM) training 
- Extracting linear discriminant feature via LDA/MLLT 
transformation (40 dims) from 15 context-frames 
- Recompute triphone state cluster  
- Compile training graph (HCLG.fst) 
- Reestimate CD-GMM model 
- Updating time alignment (Viterbi)

STEP 2
Context-Dependent GMM (CD-GMM) training 
- Adding context dependency information via  
decision tree-based triphone state clustering 
- Recompute triphone state cluster  
- Compile training graph (HCLG.fst) 
- Estimate CD-GMM model 
- Updating time alignment (Viterbi)

STEP 5
Context-Dependent DNN (CD-DNN) training 
- Train on FMLLR feature  
(40 dims * 11 frames = 440 dimensional input layer) 
- Use DNN and softmax function to estimate  
posterior probability 
- Use HCLG graph from step 4 
- Opimising frame cross entropy between  
the predicted output and the label 

STEP 6
Context-Dependent DNN (CD-DNN)  
sequence discriminative training 
- Train on FMLLR feature  
(40 dims * 11 frames = 440 dimensional input layer) 
- Use HCLG graph from step 4 
- Opimising via state-level minimum Bayes risk (sMBR) 

STEP 1
Context-Independent GMM (CI-GMM) training 
- Initialise visual speech model 
- Compile training graph (HCLG.fst) 
- Estimate CI-GMM model 
- Create time alignment (Viterbi)

Prepare Lexicon (L.fst) 
 

Generate lexicon FST from dictionary
Audio-visual 

Speech corpus
Pronunciation dictionary

Visual feature  
Word level transcription with speaker info

Lexicon transducer : L.fst Visual speech model 
CD-DNN-HMMs

CI-GMM model 
Time alignment 

CD-GMM model 
Updated time alignment 

state PDF label, HCLG graph 
Updated time alignment 
fMLLR transformation matrix 

CD-DNN 
Updated time alignment 

CD-GMM model 
Updated time alignment 
LDA/MLLT transformation matrix 

Fig. 4.25 Visual speech modelling scheme used in DNN-HMM based machine lipreading
system trained on Kaldi [116].
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Initialise with GMM-HMMs training

Step 1: Context-Independent Gaussian Mixture Model (CI-GMM)

The first step is to initialise a model by creating a simple Context Independent (CI)
GMM. This step creates a time alignment for the entire training corpus by simply
constructing a mono phoneme/viseme model that contains a 3-state GMM-HMM for
each speech unit.

The CI-GMMs are trained on the raw features along with their first and second
derivative coefficients (∆ + ∆∆). We use 3-state GMM-HMMs on each visual speech
unit. Instead of setting a fixed number for increasing Gaussian mixtures, we have
set the maximum number of Gaussians to be 1000 so that each state will continue
to increase the number of Gaussians independently until their variances reach the
maximum. When the training process starts, the training data is uniformly segmented
and the segmentation is then updated using the Viterbi algorithm [122] in every
iteration for the first ten iterations, then updated every two iterations until a maximum
of 40 iterations.

Step 2: Context-Dependent Gaussian Mixture Model (CD-GMM)

The context-dependent visual speech model (CD-GMMs) is specified using the same
features as in the CI-GMM system. The context-dependent model uses information
from phonetic context in order to handle visual coarticulation. It is well known that
adding phoneme context provides speech coarticulation information. Coarticulation
refers to changes in the articulation of a speech segment depending on preceding and
succeeding segments. This concept applies to both acoustic speech [124] and visual
speech [29, 146] modalities.

Here we use tied states of triphone-context visual speech model, where the tied-
states are obtained from the data-driven approach tree-clustering [116]. A tied-state
cluster is a reduced set of triphone-states that has been tied together to share the
same training data. A triphone context model is usually built to cover all possible
cross-word triphones that can be encountered, so it is unlikely to have enough data to
train. Here we use the conventional state-tying technique [162] to reduce the number
of phonetic states. We have specified the maximum number of leaf nodes to be 2000,
which limits the number of states. The maximum number of Gaussians is set to 10k

for the system. The training iterations continue until there is convergence which in
practice is after fewer than 35 iterations. We realign every 10 iterations.
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Step 3: CD-GMM with LDA-MLLT feature transformation

This training step is also based-on CD-GMMs, but trained on the LDA-MLLT features.
The CD-GMM model obtained from step two and the time alignment information are
used to estimate the LDA transform. Indeed, the model from the previous step is
used to accumulate statistical information from the training set which is essential to
estimate a new set of tied-states triphones. The 40-dimensional LDA-MLLT features
are formed by splicing 15 frames of the current frame (seven on the left and seven on
the right) then reducing, via LDA, to 40 dimensions per frame. This compact set of
LDA-MLLT features parameterises to the 40-dimensions that best associate with the
visual speech units and also comprises the dynamics of visual speech over 150 ms. Here,
the different set of tied-state CD-GMM has been constructed considered to the current
feature. The maximum number of leaf nodes is set to 2500, and the total number of
Gaussians is 15k. This step utilises the same number of training iterations and the
realignment iterations as those used in the previous step.

Step 4: CD-GMM with Speaker Adaptive Training (SAT)

This step normalises speaker variations in CD-GMM training via the SAT method
[6]. The SAT method is a type of speaker adaptation technique based-on feature
normalisation via a linear transformation. Since speaker identity has a substantial
effect on speech recognition results in both acoustic speech and visual speech, the SAT
method had been proposed to overcome the mismatch between speakers. This method
estimates affine transforms of mean and variance parameters for each speaker via the
constrained MLLR method [42]. The CD-GMM model is then trained on the fMLLR
transformed features. In the training process, the SAT model and fMLLR feature
transformation are re-estimated simultaneously via the supervised method. In each
iteration, the speaker adaptive model is trained on a recent estimation of the fMLLR
transformed features. There are two passes in the decoding process where the result
from the first pass is used to estimate the fMLLR transform and then used to decode
with the trained SAT model in the second pass. The decoding process works by using
an unsupervised method.

Here, the CD-GMMs are built on an fMLLR transformation on top of LDA-MLLT
features by estimating a transform for each speaker. The same training process in the
preceding step is then applied on the 40-dimensions of the fMLLR features, where the
number of leaf nodes and Gaussians are identical.
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DNN-HMM training

Step 5: Frame-level DNN-HMM training

This step initialises the DNN-HMM model using RBM pre-training and optimises the
model using backpropagation based on frame level cross-entropy. DNN-HMMs are
trained on the fMLLR features, where the input layer is a splicing of fMLLR features
with ±N context frames and the output layer refers to the state label PDF generated
from the SAT system.

In the pre-training process, the model learns a distribution of the features without
any labels. The RBM learning rate is 0.4 and the L2 penalty (a regularisation term also
known as weight decay) is 0.0002. The first layer is the Gaussian-Bernoulli RBM that
is used for modelling the distribution of input features. The later layers are trained on
Bernoulli-Bernoulli RBM.

In the optimisation process, the parameters are updated using the mini-batch SGD
method and the backpropagation algorithm. The learning rate (α in (4.19)) is 0.008
which is the optimal value evaluated among eight values (0.1, 0.01, 0.008, 0.006, 0.004,
0.002, 0.001, 0.0001) (Chapter 6.5.2). We use a halving factor to decrease the learning
rate while training. The weights are updated using mini-batches of size 256 frames
(mb in (4.19)). Note that we found no improvement on a smaller mini-batches size. We
train the model with 50 epochs and monitor the training loss and validation loss. We
apply the early stop criterion when the improvement of the validation loss is less than
0.001.

Step 6: DNN-HMM sequence discriminative training

The final step optimises the DNN-HMM parameters using the sMBR method. The
sMBR method takes the inter-frame sequence into consideration and minimises state-
level errors rather than the frame-level cross-entropy. We train the DNN-HMM model
with 10 iterations of sMBR training. The state-level errors are estimated by decoding
training utterences with a unigram language model. Here the learning rate is 1 × 10−5.
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4.6 Measurement objectives

Word Error Rate

Word error rate (WER) is an objective measure of speech recognition systems. The
WER reports the edit distance in words between the hypothesised result (the transcrip-
tion) and the ground-truth (what was actually said). The edit distance is the sum of
the number of insertions, deletions or substitutions of words in the transcription com-
pared with the ground truth. These edits are computed by aligning the transcription
result and the ground-truth via dynamic programming and minimising the Levenshtein
distance [80].

The WER is computed as

WER = S + D + I

N
× 100, (4.43)

where S refers to the number of substitution errors, D is the number of deletion errors,
I represents the number of insertion errors and N is the number of words in the
ground-truth.

Word Accuracy

Word accuracy (WAcc) directly reports performance of speech recognition system. The
WAcc is simply computed by

WAcc = 100 − WER = N − S − D − I
N × 100. (4.44)

Here is an example of this computation.

REF: INTERNAL national responsibility now A truism need not be documented
HYP: NEITHER national responsibility now * truism need not be documented
Eval: S D

The ground-truth of this sentence (REF) has ten words. The transcription (HYP)
has two errors: a substitution error (from INTERNAL to NEITHER) and a deletion
error (missing A). Therefore, the WER is 20% and WAcc is 80%, which can be computed
as WER = 1+1+0

10 × 100 = 20%, and WAcc = 100 − 20 = 10−1−1−0
10 × 100 = 80%.

In our lipreading system, we measure the word accuracy since it is much easier
to see the changes of the performance when the WER is still high. Note that the



4.6 Measurement objectives 68

terms error rate and accuracy are used on other linguistic levels depending on the
measurement unit e.g. sentence level, phoneme level, viseme level, character level, etc.

Significant test

There are standard methods to measure a statistical difference between speech recog-
nisers. Here we introduce four: McNemar’s test; the matched pair sentence segment
test; the signed paired comparison test; and the Wilcoxon signed rank test. All of
these methods are available in the NIST scoring toolkit (SCTK).

The McNemar’s test [88] calculates a chi-square statistic to measure the significance
of the difference in transcription results from two recognisers. McNemar’s test is used
to compare the results of two classifiers tested on the same data where the classification
result is either “correct” or “incorrect”. Hence it is most suitable to be used on an
isolated word recognition task, but it can be used on complete sentence transcriptions
if they are marked as either “correct” or “incorrect”. Table 4.1 represents the cross-
matched table that is used to identify the number of correct and incorrect sentences
between two systems via cross comparison.

Table 4.1 A cross-matched 2 × 2 contingency table.

System B
Correct Incorrect

System A Correct a b
Incorrect c d

The chi-square is calculated as:

χ2 = (b − c)2

b + c
, (4.45)

where a is the number of utterances if both systems predict correctly, b and c denote
the number of utterances that one system predicts wrong but another system predicts
right, and d is a number of the utterances if both systems get it wrong.

The matched pair sentence segment error (MAPSSWE:MP) [44] is similar to the
McNemar’s test except that it operates in the sentence segment error instead. This
technique is more appropriate for measuring a significant difference between two
classifiers in a continuous speech recognition task.

The above example shows how to identify segment errors of the hypothesis results
from system A and system B. There are three segments where the first segment (I) can
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I II III
REF: INTERNAL national responsibility now A truism need NOT BE documented
HYP A: NEITHER national responsibility now * truism need not be documented
HYP B: internal national responsibility now * truism need NO * documented

be counted as c, the second segment (II) can be counted as d, and the third segment
(III) can be counted as b. We can compute the chi-square (χ2) via (4.45).

The signed paired comparison (SP) observes the differences between results in each
pair of a speaker from two recognisers. The SP test computes the difference of WER
of each test speaker and records only the plus sign (+) and the minus sign (−) of
each pair. The critical value and P -value are defined via the sign test table using two
parameters: the total number of plus signs (r) and the total number of test speakers
(n).

The Wilcoxon signed-rank test (WI) [155] also operates on the WER of a speaker
pair to identify the significant difference between two systems. It is similar to the SP
test. The WI test computes the differences of the WERs of each test speaker, except
that it keeps both the sign and the values of the difference between each pair. The
rank is computed on the absolute value of the paired differences. The critical value is
defined via the signed-rank table for paired differences. The WI method needs two
parameters: the total number of test speakers (n) and the summation of the smallest
rank between the plus and the minus sign (Wstat). The null hypothesis will be rejected
if the Wstat is less than the critical value (Wcrit).

4.7 Visualising data via t-Distributed Stochastic
Neighbor Embedding (t-SNE)

The t-Distributed Stochastic Neighbour Embedding (t-SNE) visualisation technique
was introduced in 2008 by Van der Maaten and Hinton [150]. T-SNE is a tool for
visualising high-dimensional data. It reduces high-dimensional data into a 2D or a
3D space that retains the original information and illustrates the structure existed
in the data. It groups similar data points and estimates distances between dissimilar
ones. This can be done by computing the similarity matrix of data points which are
converted into a joint probability then minimised via the Kullback-Leibler divergence
[76] between the joint probabilities of low-dimensional (Q) and the original high-
dimensional data (P ). The similarity matrix of the high-dimensional data is computed
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from a Gaussian distribution. Conversely, in the low-dimensional space, the similarity
matrix is computed from a t-distribution instead.

As presented in [150], the t-SNE minimises the Kullback-Leibler divergence between
P and Q using gradient descent. The cost function is defined as:

C = KL(P ||Q) =
∑

i

∑
j

pij log pij

qij

, (4.46)

where pij refers to the pairwise similarities of the high-dimensional space, and qij is
the pairwise similarity of the low-dimensional map.

The pij are defined as
pij = pj|i + pi|j

2N
, (4.47)

where
pj|i = exp(−∥xi − xj∥2)/2σ2

i∑
k ̸=i exp(−∥xi − xk∥2)/2σ2

i

, (4.48)

where pj|i is the probability to illustrate that the data points xi and xj are neighbors.
The qij are defined as

qij = (1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1 , (4.49)

where y refers to the data point in the low-dimensional map, and i, j, k, l are indexes
of the data points.

We use the t-SNE method to visualise features (in Section 7.3.1). We prepare an M

by D matrix, where M is the number of samples and D is the dimensionality of each
sample. We can also provide a class label vector in the form of an M by one vector.
To use t-SNE, we simply put the input and the label matrix to the tsne() function,
which is available in MATLAB. The algorithm will start reducing the dimensionality
and finally plots the transformed data points in a 2-D space. Note that each plot of
t-SNE using the same data will appear different due to random initialisation of the
parameters. T-SNE also reduces high dimensional data into the initial dimension (30
dimensions by default) using PCA. (Further information of t-SNE user guide can be
found in https://lvdmaaten.github.io/tsne/User_guide.pdf)

Compared to other nonlinear dimensionality reduction techniques such as Sammon’s
mapping [128] and Isomap [147], t-SNE provides superior results as shown in Figure
4.26. In [150], they summarised a weakness of Sammon mapping regarding its cost
function as it specifies a high value to model the small distance between data points

https://lvdmaaten.github.io/tsne/User_guide.pdf
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that are very close. Whereas, Isomap concerns only with modelling large distances
rather than small ones.

t-SNE Sammon mapping

Isomap

Fig. 4.26 A comparison of data visualisations on MNIST dataset (6000 handwritten
digits) with three different mapping methods (a) t-SNE, (b) Sammon mapping, and (c)
Isomap. Each colour is a different digit class. These visualisations are from Van der
Maaten and Hinton [150]



Chapter 5

Lipreading and audiovisual speech
recognition in small vocabulary
tasks

This chapter concerns the connection between the acoustic speech signal and the visual.
We are interested in the correlation that might exist between the two modalities. Our
approach to explore this question is to build novel machine learning systems that allow
us to exploit any common information. Ultimately we hope to answer the extent to
which the visual signal can be useful in multispeaker noisy environments.

The contributing publication of this chapter is:

• Thangthai, K., Harvey, R. W., Cox, S. J., Theobald, B. J., Improving lip-
reading performance for robust audiovisual speech recognition using
DNNs. – In Proceedings of The 1st Joint Conference on Facial Analysis, Ani-
mation and Auditory-Visual Speech Processing (FAAVSP), Vienna, Austria, pp
127–131, 2015.

5.1 An overview of audiovisual speech recognition

Audiovisual speech recognition, which is illustrated in Figure 5.1, comprises three main
processing blocks that are audio feature extraction, visual front-end processing and
the audiovisual fusion. Compared to conventional audio-only ASR, this bimodal ASR
system has the additional challenge of finding a useful signal in the visual speech and
in the effective integration of the two modalities.
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Audio-visual
fusion

AUDIO INPUT

VIDEO INPUT

Audio feature
extraction

Audio
segmentation

Face dectection
Mouth localization

Lip tracking

Visual feature
extraction

AUDIO-VISUAL ASR

AUDIO-ONLY ASR

VISUAL-ONLY ASR

Fig. 5.1 Overview of audiovisual speech recognition system adapted from [115]

Audiovisual integration and decoding

Audio and visual speech information can be integrated using two different types of
fusion techniques: feature and decision fusion.

Feature fusion techniques

Feature fusion, so-called early integration (EI) technique, can be as simple as concate-
nating the features from both modalities and then training the speech recogniser on
those feature vectors. We can then apply a state-of-the-art model in ASR such as an
HMM to train the AVSR system directly. More advanced methods in feature fusion
employ discriminant feature extraction to improve the representation of the original
features for both modalities by using the LDA and MLLT transform feature techniques.

The early-integration audiovisual speech recognition in this work achieves feature
fusion by concatenating the audio and visual features together. The system used in
this work is implemented via the Kaldi toolkit [116].

Our system is illustrated in Figure 5.2. First, raw features need to be prepared and
converted into a format suitable for reading and writing in Kaldi. The acoustic features
are 39-dimensional MFCCs with energy, delta and delta-delta coefficients appended.
The visual features are 23-dimensional AAMs features; hence the fused audiovisual
features are 62-dimensional vectors formed by concatenating the audio and the visual
features.

To train the DNN model, the precise time alignments of training data obtained
from the GMM system are needed. Therefore, we initialise and train the monophone
and triphone models based on the GMM technique. The DNN model can be trained on
top of the LDA-MLLT features as well as on the concatenated audiovisual features. To
construct LDA-MLLT features, supervectors consisting of a central frame and the three
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Kaldi model
training procedure

MFCC
Feature extraction

AAMs
Feature extraction

Convert to
Kaldi format

23-dim AAMs

39-dim MFCC+E+∆+∆∆ 62-dim MFCC+AAMs

Fig. 5.2 Early integration based on feature fusion technique.

frames before and after it are formed by concatenating these frames. LDA and MLLT
are applied to these supervectors and the top 40 components are used to represent the
frame.

Our context-dependent (CD) DNN-HMMs (referred to as the CD-DNN model) are
trained based on the tanh recipe in Kaldi. We train the neural network using plain
‘vanilla’ SGD for four hidden layers, using the hyperbolic tangent activation function.
The input feature vectors are the original features (audio, visual or audiovisual) or the
40-dimensional LDA-MLLT features. We set the learning rate to 0.004 (the default
setting), and the weights are updated using a mini-batch size of 64 frames (related to
α and mb in equation (4.19) respectively). The alignments for the training data are
generated from the standard CD-GMM system.

Decision fusion techniques

While feature fusion is more focused on the improvement of audiovisual speech features,
decision fusion tends to be applied at the classification stage. The most popular
technique uses a multi-stream HMM to construct a separate model for each modality.
An alternative method is to train a separate HMM model for audio and video, then
combine the result into a single recogniser. These fusion techniques are usually called
intermediate- or late-integration (LI) depending on the decision level. Additionally,
decision fusion is also widely explored via some other model structures such as the
coupled HMM (CHMM) which composes the HMM states rather than simply training
a multi-stream system.
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Another technique that has been investigated in this work is the late-integration
(LI) using the recogniser output voting error reduction (ROVER) technique proposed
by [39].

Voting

DNN
Audio-only

Alignment

DNN
Visual-only

Best Score
Transcription

Fig. 5.3 Late-integration using ROVER technique.

The results from the DNN-HMM systems of the individual audio and visual recog-
nisers were used as input to the ROVER system which was meant to find the best
transcription from both results. The ROVER technique then tries to reduce the error
that occurred in the results by aligning all those results together and selecting the
word that has highest confidence score or the mostly occurred word.

5.2 Experiments and Results

5.2.1 Experimental setting

Lexicon model and Language model

The British English Pronunciation (BEEP) pronunciation dictionary was used as the
lexicon. The 5000 sentences in the original RM corpus [120] that were held-out from
RM-3000 were used to train a trigram language model using the SRILM toolkit [137].
The total size of language model training data is 42708 words of which 989 are unique,
and the language model perplexity is relatively low (mean over folds is 13.73).

Standard feature setting

We extract the 39 dimensional MFCC+E+∆+∆∆ from 16-bit wav files sampled at
16kHz (mono) with a frame size 25 ms and a 10 ms step giving 100 feature vectors
per second. For the visual features, the AAM features, which contain the inner and
outer lip shapes along with the appearance, were extracted from the video frames. The
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total vector size of AAM is 23 dimensions where the first 12 dimensions are the shape,
and the rest are the appearance information. To be comparable to the frame rate of
the audio feature, the AAMs were post-processed by upsampling from 25Hz to 100Hz.
For audiovisual features, the audio and visual features are concatenated into a single
feature vector.

K-fold cross-validation evaluation

We evaluate the performance via k-fold cross-validation and report the word accuracy
from the mean over k-fold with ±1 standard error. In the k-fold cross-validation,
the parameter estimation process has to be done k times repeatedly using different
train-test splits. We partition the data into k non-overlapping subsets with equal
samples, where each subset called a fold. We then evaluate one subset at a time. The
rest of the subsets are used as a training set. This method ensures that all observations
will be used for training and once for evaluation.

Baseline system

Most experiments on speech reading systems have used the HTK toolkit [161] for
training and decoding. Therefore, the baseline system, which was trained on phoneme
units, was based on HMMs using the standard HTK training and decoding procedures
[151]. Both context-independent (CI) and context-dependent (CD) HMMs, which
represent the mono-phones and triphones respectively were used to observe the difference
in the recognition results. In addition, two different Viterbi decoders, including HVite
and HDecode, were used as the recognisers for the baseline system.

5.2.2 Speaker-dependent results

The first preliminary experiments were conducted based on a speaker-dependent setting
on the RM-3000 corpus which has the larger available training data to train the network,
in order to avoid the effect and errors of too little data. The results are reported the
mean of ten-fold cross-validation with ±1 standard error.

Visual-only speech recognition system

To evaluate the performance of visual-only speech recognition, we compare the word
accuracy of the visual only recogniser with CI-GMM and CD-GMM systems with our
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CD-DNN. In addition, the baseline CI/CD-GMM results are compared with the results
from CI/CD-GMM on Kaldi to observe the performance of the Viterbi and WFST
decoder. Furthermore, the result of the DNN on simple AAM features and LDA-MLLT
features was considered.

Table 5.1 Word accuracy of visual only speech recognition system

Decoder Model Feature %Word accuracy
HTK CI-GMM AAM 33.32 ±0.3

CD-GMM AAM 47.48 ±0.3
Kaldi (WFST) CI-GMM AAM 37.76 ±0.8

CD-GMM AAM 49.19 ±0.8
CD-DNN AAM 77.49 ±0.3
CD-DNN LDA-MLLT 84.67 ±0.3

Table 5.1 shows the performance of the visual only speech recognition systems
by comparing the baseline system and the DNN-based system. It shows that the
use of DNNs leads to very large improvement over conventional GMM systems, and
LDA-MLLT features further improve performance to a word accuracy of 84.67%.

Audio-only speech recognition system

To investigate and compare the noise robustness of the audiovisual recognition system,
the audio only recogniser was set up as a baseline system.
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Fig. 5.4 The result of the audio-only speech recognition system in ten conditions
including clean and nine babble noise levels.

The acoustic model was trained on clean speech and then evaluated using test data
at nine different SNR levels of babble noise. The babble noise refers to a background
noise that contains human speech sounds. The result, shown in Figure 5.4, is that
the DNN is more robust to noise than the GMM. The DNN is able to achieve 90%
word accuracy at 10dB, while the GMM accuracy drops to nearly 60% at the same
SNR level. However, in clean conditions, the recognition result of CI and CD-GMM
is relatively high at 95.81% and 98.13% respectively. The DNN is slightly better at
98.45% for raw features and 98.25% for LDA-MLLT features, which is not a significant
improvement (p = 0.064053 by the MP test). The benefit of DNNs becomes apparent
as noise is introduced.

Early-integration audiovisual speech recognition

Results for the audiovisual recognition (Figure 5.5) show that the DNN systems have
an effective gain of about 12 dB over the GMM systems. Interestingly, for audiovisual
CI/CD-GMM models in clean conditions, we observe a slight drop when compared to
the audio-only recogniser, but the DNNs recover the accuracy to levels comparable
with the audio-only system.
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Fig. 5.5 The result of the audiovisual speech recognition system.

Figure 5.6 illustrates the CD-DNN result of three recognition systems: Visual-only,
audio-only and audiovisual, and also compares raw features vs. LDA-MLLT features.
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Fig. 5.6 Comparing the result of visual only, audio only and audiovisual speech
recognition system using the DNN model.

As shown in Figure 5.6, there are two points that require discussion: the effect
of LDA-MLLT features and the performance of early integration audiovisual speech
recognition.

Firstly, the LDA-MLLT features significantly improve recognition accuracy of
visual-only speech (p < 0.01 by the MP test) and provide a modest improvement
in AV accuracy in high noise conditions. However, they do not show any significant
improvement for an audio-only system (p = 0.893266 by the MP test). This is because
the MFCC feature together with the velocity and acceleration coefficients have sufficient
discriminative information for the DNN.

Secondly, we have found that it is only beneficial to add visual information in an
early integration style when the SNR is at (or above) 5dB. After 5dB SNR there is no
effective gain by incorporating the visual features, and the audiovisual system degrades
much like the audio-only system.
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Late-integration AVSR using the ROVER technique

The proposed use of the late-integration approach by using the ROVER technique
is mainly focused on training individual models for each modality, then recognising
each separately, before fusing those results together based on their confidence scores.
Indeed, results from lipreading systems and audio-only system were aligned, then the
best word confidence score was selected from those results, which finally become the
final result of the system.
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Fig. 5.7 Early-integration (EI) vs. Late-integration (LI) Audiovisual Speech Recognition

In contrast to the early-integration approach, the result of late integration in Figure
5.7 is much closer to the visual-only system. These seem to show that this approach
is not affected by acoustic noise, especially when the noise is much louder than the
actual speech. However, the performance of LI-AVSR was significantly lower than the
EI-AVSR in the clean condition and higher SNRs (p < 0.01 by the MP test).
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Matched vs. unmatched condition recognisers

It has long been known that visual features can improve the accuracy of a speech
recogniser in noise. By using deep learning with a visual only recogniser, we are able
to achieve almost 85% word accuracy.

The assumption of mismatched acoustic conditions (i.e. trained in clean conditions
and tested in noisy conditions) has a big effect on the recognition system so we setup
another decoder, which was trained in matched conditions (i.e. recognisers were trained
with acoustic features trained to a particular SNR). This result is shown in Figure
5.8, which shows that the performance of a matched condition audiovisual DNN-based
audiovisual recognition system is significantly better than the audio-only system at
lower SNR (p < 0.01 by the MP test), and is close to the visual-only performance.

Clea
n

20
dB

15
dB

10
dB 5d
B

0d
B

-5
dB

-1
0d

B
-1

5d
B

-2
0d

B

0

20

40

60

80

100

W
or

d
ac

cu
ra

cy
(%

)

Audio-only matched

AVSR Matched

EI-AVSR

LI-AVSR

Visual-only

Fig. 5.8 Comparing the results under matched acoustic conditions for the CD-DNN
with LDA-MLLT.

5.2.3 Speaker-independent results

As shown in the previous section, the DNN-HMM has successfully improved the
performance of the all recognition systems in a speaker-dependent setting. This section
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will explore the performance of hybrid DNN-HMMs in a speaker-independent setting
on RMAV corpus described in Chapter 2.4.2. This is a more challenging problem on a
smaller dataset (per talker). We use audio and video of 12 subjects (seven male, five
female). Each subject reads around 200 sentences that were selected from the Resource
Management corpus [120]. The the dataset contains 2358 utterances (about three
hours), and the vocabulary size is about 1000 words. There are 42 utterances short
of 200 per speaker because eight speakers missed a couple of utterances. This corpus
provides 16-bit 16 kHz audio data along with AAMs [85] features as a representation
of visual features that are tracked by a speaker-dependent AAM tracker.

The RMAV data was in twelve-fold cross-validation with one speaker per fold.
However, we only used the four speakers (four folds) for testing that correctly uttered
all 200 phrases. Thus our word accuracy are the mean of four speakers (one female
and three male) with ±1 standard error. Note this is speaker-independent since the
same speaker is never in the test and training sets.

Visual-only

Table 5.2 The result of the visual only speech recognition system on the speaker-
independent setting.

Decoder Model Feature Dimension %Word accuracy

Kaldi (WFST) CI-GMM-HMM AAM 23 9.99 ±2.0
CD-GMM-HMM AAM 23 10.84 ±0.7
CD-GMM-HMM LDA-MLLT 40 14.09 ±0.3
CD-GMM-HMM+SAT fMLLR 40 39.99 ±2.6
CD-DNN-HMM LDA-MLLT 40 37.79 ±2.6
CD-DNN-HMM+SAT fMLLR 40 53.26 ±2.0

As shown in the Table 5.2, DNN systems tend to give better performance than GMM
systems. However, the best gain obviously comes from SAT on the fMLLR features.
This achieved 25.90% absolute gain on word accuracy (from 14.09% to be 39.99%).
Indeed, DNNs which were built on top of SAT and fMLLR can provide 53.26%
word accuracy. This suggests that with speaker-independent recognisers, SAT can
help overcome the difficulty in speaker variation. However, the results of speaker-
independent lipreading are still a lot worse than that the speaker-dependent setting.
Therefore, speaker-independent lipreading is still a challenge.
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Audiovisual speech recognition

In Table 5.2, the best word accuracy in speaker-independent lipreading is about
53% where the single-speaker lipreading performance can reach almost 85% accuracy.
However, it can be seen from Figure 5.9 that incorporating visual speech features
still has a benefit in terms of improving the robustness of the recognition system
even in this challenging task. Therefore, improving the recognition results in the
speaker-independent setting over these baseline results is going to be our next research
focus.
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Fig. 5.9 Comparing the result of visual only, audio only and audiovisual speech
recognition system of the speaker-independent setting.

5.3 Discussion

This Chapter has explored the use of DNNs in visual and audiovisual speech recogni-
tion. The experiments are mainly based on two different settings: speaker-dependent
experiments and speaker-independent experiments.
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In the speaker-dependent visual speech (lip-reading) experiment, DNNs gave 85%
word accuracy, a huge improvement on the baseline HMM performance of 33%. More-
over, we found that DNNs improved the robustness of audio-only and audiovisual
recognition tasks by approximately 10 and 12dB respectively. In addition, we found
that audiovisual recognisers degraded in a similar fashion to audio-only recognisers in
high-noise environments by the early-integration approach, where the late-integration
seems to show more benefit when the acoustic signal is corrupted by acoustic noise.
Finally, it is interesting to see that the performance is significantly improved for
matched-condition recognisers, where the performance of the audiovisual system closely
followed the visual-only system.

For the speaker-independent setting, DNNs on top of fMLLR features trained by
the SAT technique gives the best performance of 53.26% word accuracy. Incorporating
visual information into the recogniser yields better results than pure audio speech
recognition.

The experimental results obviously demonstrate that the DNN techniques even in
standard settings can beat the conventional GMM-HMM speech recogniser for both
unimodal and bimodal speech recognition systems. However, a major problem with
the system is due to the size of the data to train DNNs which is quite small. In the
next Chapter, we draw our attention to understand and to improve lipreading on
TCD-TIMIT (described in Chapter 2.4.3), a large vocabulary multispeaker dataset
which is a more realistic task.



Chapter 6

Lipreading for large vocabulary
continuous speech recognition task

The previous Chapter illustrates the connection between acoustic and visual speech
signals where the improvement of visual speech can directly enhance the performance
of speech recognisers. There have been some promising results in computer lipreading
especially in the single speaker system where we got 85% word accuracy. However the
word accuracy dropped significantly in the 12-speaker scenario.

This Chapter concerns making a viable computer lipreading for a more realistic task.
We develop computer lipreading on the large vocabulary continuous speech recognition
task using the TCD-TIMIT corpus. The TCD-TIMIT corpus has around 6000 words
and seven hours of recorded audio-visual speech collected from 59 speakers. We deploy
DNN-HMM models and further improve the models with sequence discriminative
training. Furthermore, we explore the effect of visual speech units between phonemes
and visemes by evaluating unit recognisers and word recognisers. We compare two type
of visual features: DCT and Eigenlips. We then optimise DNN training parameters:
number of hidden layers, number of hidden units, and learning rate.

The contributing publications of this chapter are:

• Thangthai, K., Harvey, R., Improving Computer Lipreading via DNN
Sequence Discriminative Training Techniques. – In Proceedings of the
Annual Conference of the International Speech Communication Association IN-
TERSPEECH 2017, Stockholm, Sweden, pp 3657–3661, 2017.
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• Thangthai, K., Bear, H. L., Harvey, R., Comparing phonemes and visemes
with DNN-based lipreading. – In LRDLM Workshop on Lip-reading using
Deep Learning Methods (at BMVC 2017), London, UK, 2017.

6.1 Dataset

We use the TCD-TIMIT [49] corpus (Section 2.4.3) containing 59 volunteer speakers.
We chose this dataset because, at the time we did the experiments, it was the largest
vocabulary audio-visual speech corpus available in the public domain. The WFST
operates on a vocabulary of almost 6000 words from a dictionary of 160k entries.
This dataset provides lists of non-overlapping utterances for training and evaluation
in two scenarios: speaker-dependent (SD) and speaker-independent (SI). In the SD
scenario, visual models are trained on 3752 utterances and evaluated on 1736 utterances.
Whereas in the SI experiment, 3822 utterances from 39 talkers are in the training set
and we evaluate on the remaining 17 talkers containing a total 1666 utterances. We
report the mean over three-fold cross validations (with ±1 standard error) where we
use the recommended set as the first-fold and we prepare another two-folds by retaining
the similar proportion.

6.2 Visual Speech Features

6.2.1 Feature extraction

The literature provides a variety of feature extraction methods, often combined with
tracking (which is essential if the head of the talker is moving). Here we focus on
features that have been previously described as “bottom-up” [85] meaning that they
are derived directly from the pixel data and require only a Region-Of-Interest, or ROI.
Figure 6.1 illustrates a typical ROI taken from the TCD-TIMIT dataset described in
Chapter 2.4.3 plus two associated feature representations: eigenlips (Chapter 4.4.1)
and DCT (Chapter 4.4.1).

6.2.2 Discrete Cosine Transform (DCT)

Here we use DCT II with zigzag selection [158], which means that the first elements of
the feature vector contain the low-frequency information. The resulting feature vector
has 44 dimensions extracted from 64 × 128 grey-scale lip images, as shown in Figure
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Fig. 6.1 Comparing the original ROI image (left) and its reconstruction via 44-coefficient
DCT (middle) and 30-coefficient Eigenlip (right). Note that the 44-coefficient DCT is
equivalent to the features of the TCD-TIMIT baseline system [49].

Fig. 6.2 DCT feature extraction.

6.2, which is equivalent to the DCT feature presented in the TCD-TIMIT baseline
system [49].

6.2.3 Eigenlips

Fig. 6.3 Eigenlips feature extraction.

The Eigenlips feature is another appearance-based approach [74]. The Eigenlips
features have been generated via PCA [156]. As shown in Figure 6.3, we use PCA to
extract the Eigenlips features from 64 × 128 grey-scale lip images, where we retain
only 30-dimensions of PCA (covering 85% of the principal component variances while
still maintaining the compact size of feature). To construct the PCA, 25 ROI images
of each training utterance were randomly selected to be the set of training images.
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Almost about 100k images in the training set were used to perform eigen analysis.
Only 30 dimensions of principal components with high variation were retained.

6.2.4 Feature transformation

Raw	  feature	   FMLLR	  feature	  Splicing	   LDA	   MLLT	   FMLLR	  

Fig. 6.4 FMLLR feature pre-processing pipeline.

The raw features are 30-dimensional Eigenlips and 44-dimensional DCT features.
The 15 (±7) consecutive frames of these raw features are spliced onto the feature to
add dynamic information. Second, LDA [40] and MLLT [42] are applied to reduce and
map the features to a new space to minimise the within-class distance and maximise
the between-class distance, where the class is the HMM-state, whilst simultaneously
maximising the observation likelihood in the original feature space.

Finally, fMLLR [118],[42], also known as the feature-space speaker adaptation
technique, is employed to normalise the variation within a speaker. These new 40-
dimensional fMLLR features are used as inputs to the subsequent machine learning.
The use of LDA is quite commonplace in lipreading and is derived in the HiLDA
framework [113]. MLLT and fMLLR are commonplace in acoustic speech recognition
but have only recently been applied to visual speech recognition [4] albeit on small
datasets.

6.3 Pronunciation dictionary

A pronunciation dictionary or a lexicon is essential to a DNN-HMM based lipreading
system. This work uses the Irish accent pronunciation dictionary provided in the TCD-
TIMIT corpus that contains 156,516 word entries adapted from the CMU dictionary.

However, there is debate if phoneme or viseme units are the most effective for a
lipreading system. Some studies use phoneme units even though phonemes describe
unique short sounds rather than lip shapes; other studies tried to improve lipreading
accuracy by focusing on visemes with varying results.
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6.3.1 Analysis of the pronunciation dictionary

Reducing the set of speech units, such as reducing a set of phonemes to a set of
visemes, reduces the discriminative power of the classification model whilst increasing
the complexity of the pronunciation dictionary by increasing the volume of homophene
words. This suggests that word accuracy of a viseme based system will be lower than
a phoneme based system. The counter argument is that visemes might be simpler to
classify (because there are fewer of them and they are meant to be better matched
to the visual signal) so there is clearly a trade-off between homophenes and unit
accuracy [32].

Table 3.4 (in Chapter 3.4) shows examples of the homophone and homophene words
that occur in the TCD-TIMIT dictionary. Figure 6.5 describes the homophone problem
in two ways. On the top words are binned according to how many homophones they
have. Thus the column labelled “1 occur” is the count of all unique words, the column
labelled “2 occur” is the count of words that have one other homophone and so on. It
is evident the switch to visemes causes more homophones particularly large numbers
of high-multiplicity homophones. This effect can also be seen in the dictionary size
(bottom of Figure 6.5). Homophones cause dictionary entries to merge so the visual
dictionary is smaller than the acoustic one.

6.4 Decoding lipreading

6.4.1 Visual speech model

We train GMM-HMM models and DNN-HMM models on fMLLR features (Chapter
6.2.4) by following the full pipeline training (explained in Chapter 4.5).

We construct the CD-DNN model on the hybrid DNN-HMM architecture. The
CD-DNNs are trained and optimised by minimising frame-based cross-entropy between
the prediction and the PDF target. The PDF refers to the tied-state context-dependent
label, which is generated from the SAT system, that is aligned to every frame. The
features we adopted for all DNN training are based on LDA+MLLT+fMLLR features
with mean and variance normalisation.

The CD-DNNs model is trained on six hidden layers with 2048 neurons per layer
(optimised in Section 6.5.2), where we use the sigmoid non-linearity function in each
neuron. The input layer is the fMLLR feature with temporally spliced 11 consecutive
frames. The model is initialised by a stacking of RBM with 15 iterations on a single-
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Fig. 6.5 Frequency of duplicated pronunciation in the TCD-TIMIT dictionary (top)
and vocabulary size (bottom) for both phoneme and viseme units.

GPU machine. The learning rate for RBM training is 0.4 and applying L2 penalty
(weight decay) at 0.0002 (default of Kaldi). The learning rate for fine-tuning has been
set to 0.008 (optimised in Section 6.5.2). We use the minibatch-Stochastic Gradient
Descent (SGD) for fine-tuning with minibatch size of 256. We produce a development
set for tuning the network by randomly selecting 10% of the training data. Every DNN
training iteration is required to have a cross-validation loss lower than the previous
training iteration. If an iteration is rejected then one retries with a new stochastic
gradient descent parameter. The terminating condition is that the new loss is little
different from the old loss (specifically we use a difference smaller than 0.001 of the
loss as a suitable terminating condition).
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Language model

A language model (LM) is also essential to our system. The LM helps discriminate
similar input patterns of words found in the lexicon and also reduces the search cost.
For the LM, we use a statistical based n-gram model where we train a word bi-gram
from the TCD-TIMIT provided text. To make it fair we use only text provided in
the training set, thus we have two word bi-gram LMs; one for SD and one for SI.
We know already that longer n-grams mean better performance but extending the
number of word n-grams can be too restrictive and will lead to difficulty in finding
an appropriate parameter for visual speech modelling. Here we evaluate our LM by
computing the perplexity of SD (35.16) and SI (33.10) evaluation sets against their
LM with no out-of-vocabulary words found in both cases.

6.5 Experiments and results

To clarify, in these experiments we report the lipreading accuracy from the mean over
three-fold cross-validation. Also, the model parameters are fine-tuned by observing
the best result from the three-fold cross-validation. We want to point out that our
method may lead to the over-fitting problem on model selection indicated by Cawley
and Talbot [22]. To avoid the overfitting issue, Cawley and Talbot [22] suggest that
the nested cross-validation [138] is a better method for model selection.

6.5.1 Effect of visual speech unit

We compare the performance of a lipreading system by modelling visual speech using
either 13 viseme or 38 phoneme units. We report the accuracy of our system at
both word and unit levels. The evaluation task is large vocabulary continuous speech
using the TCD-TIMIT corpus. We complete our visual speech modelling via hybrid
DNN-HMMs and our visual speech decoder is a WFST. We use DCT and Eigenlips as
a representation of the mouth ROI image.

As lipreading transitions from GMM/HMM-based technology to systems based
on DNNs there is merit in re-examining the old assumption that phoneme-based
recognition outperforms recognition with viseme-based systems. Also, given the greater
modelling power of DNNs, there is value in considering a range of hand-crafted features
such as DCT [2] and Eigenlips [17].
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In the SAT system, the CD-GMMs are built on an fMLLR transformation on top
of LDA-MLLT features by estimating a transform for each speaker. The same training
process in the preceding step is then applied on the 40-dimensions of fMLLR features,
where the number of leaf nodes and Gaussians are identical.

Viseme-based lipreading

One fundamental measure of the performance of an automatic lipreading system is
viseme accuracy. Since the viseme recogniser requires no dictionary or language model,
it is quicker to build and optimise. The TCD-TIMIT release includes a baseline
viseme accuracy for both speaker dependent and speaker independent settings using
the Neti visemes [95] used here. The best viseme accuracy of recognising 12 viseme
units reported on TCD-TIMIT is 34.77% in speaker independent tests and 34.54%
on speaker dependent tests. The context independent viseme models (referred to as
mono-visemes in the paper) were trained on 44-coefficient DCT features with 4-state
HMMs and 20 Gaussian mixtures per state.

Table 6.1 lists the accuracies achieved with our viseme based lipreading system. In
comparison to the viseme accuracies benchmarked with the TCD-TIMIT corpus, our
best SD viseme accuracy is 46.57% with Eigenlips, compared to 34.54%, an improvement
of 12.03%. Our best SI viseme accuracy is 45.41% which improves on the benchmark
34.77% by 10.64%, again with the Eigenlips features.

Table 6.1 Viseme-based lipreading accuracy (%).

Model Feature Viseme accuracy (%) Word accuracy (%)
SD SI SD SI

CD-GMM + SAT DCT 41.30 ±0.3 40.70 ±0.1 16.25 ±0.3 14.89 ±0.6
CD-DNN 44.21 ±0.6 42.00 ±1.2 22.43 ±1.1 20.95 ±0.8
CD-GMM + SAT Eigenlips 45.85 ±0.0 45.16 ±0.1 18.63 ±0.8 17.64 ±0.6
CD-DNN 46.57 ±0.5 45.41 ±0.7 30.65 ±1.3 28.33 ±0.8

Phoneme-based lipreading

Table 6.2 shows the word and phoneme accuracies achieved with our phoneme-based
lipreading system. This system achieved the most accurate lipreading with a word
accuracy of 45.83%. It is interesting that with the phoneme recogniser, word accuracy
is greater than phoneme accuracy, while in the viseme recogniser, this is vice versa.

Again, highest accuracy is achieved with Eigenlip features rather than DCT.
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Table 6.2 Phoneme-based lipreading accuracy(%).

Model Feature Phoneme accuracy (%) Word accuracy (%)
SD SI SD SI

CD-GMM + SAT DCT 28.26 ±0.3 27.41 ±0.8 27.73 ±1.0 24.61 ±1.6
CD-DNN 30.31 ±0.4 28.39 ±0.7 37.59 ±1.2 33.91 ±2.2
CD-GMM + SAT Eigenlips 28.77 ±0.1 27.83 ±0.0 28.61 ±0.8 25.91 ±0.7
CD-DNN 32.85 ±0.4 31.24 ±0.6 45.83 ±0.4 41.66 ±0.6

One interesting observation apparent in Tables 6.1 and 6.2 is that the introduction
of the DNN makes little difference to the unit accuracy but a bigger difference to a
word accuracy for both DCT and eigenlips features.
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Fig. 6.6 Lipreading system performance in GMM and DNN systems.

Figure 6.6 has two clusters: one, in the bottom right, represents the viseme
experiments and the other, on the upper left the phonemes. Here we are representing
viseme classifiers with circles (filled represents the DNN, open the GMM) and the
phonemes with squares (either filled or open depending on the classifier). The colours
represent the various SI/SD or DCT/Eigenlips combinations.

The phoneme recogniser naturally obtained lower unit accuracy scores because it
has three times more phoneme classes than viseme classes (13 to 38 respectively). But
this does not mean that phoneme classes have less power to model a visual gesture.
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This is visualised in the confusion matrices in Figure 6.7 where the colour patterns are
consistent between phoneme classes (on the left of Fig 6.7 and between viseme classes
on the right of Fig 6.7).
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Fig. 6.7 Comparison of visemes confusion matrix (left) vs phonemes confusion matrix
(right). The boxes in the phonemes confusion matrix show viseme classes.

We note that reducing the set of visual speech units also reduces the discriminant
power of the classification model whilst increasing the complexity of pronunciation
dictionary by increasing the volume of homophenes. This suggests that word accuracy
of a viseme based system will be less likely to outperform the phoneme based system.

One observation we found is that DNN-HMM viseme recognisers can easily overfit
to the training observations. This is shown in the performance disparity between
SD and SI configurations. It could potentially be interesting to use visemes as an
initialisation for phoneme recognition in a hierarchical training method similar to that
in [11] in the future.

6.5.2 Word based DNN-HMMs

The previous experiments demonstrated that phoneme classifiers can outperform those
of visemes. We have also illustrated the noticeable performance gain by changing
visual representation from DCT to Eigenlips. The best word accuracy in this work is
45.83% on SD and 41.66% on SI achieved with the DNN-HMM phoneme unit recogniser
trained on the Eigenlips feature.

The rest of these experiments will carry on by focusing on building the word
recogniser from the phoneme-based lipreading with DNN-HMMs and the Eigenlips
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feature. We optimise the DNN model training parameters: hidden layer, hidden unit,
initialising method, and input window size. The CD-DNNs are trained and optimised
by minimising frame-based cross-entropy between the prediction and tied-state context-
dependent label, which are generated from the Speaker Adaptive Training (SAT) system
(Section 4.5), and then aligned into every frame. The features which we adopted for
the DNN training process is based on 40-dimensional fMLLR features with mean and
variance normalisation, where the fMLLR obtained via LDA-MLLT projection of 15
frames spliced of Eigenlip feature.

DNN-HMM parameter optimisation: Number of hidden layers

The first parameter to optimise is the number of DNN hidden layers. Table 6.3 presents
the lipreading word accuracy for various number of hidden layers. Increasing of number
of hidden layers improves lipreading accuracy. The best SD result is 46.02% obtained
from eight hidden layers with 2048 units per layer. The best SI word accuracy is
41.66% obtained from six hidden layers and 2048 units per layer.

Table 6.3 DNN-HMM lipreading word accuracy with various hidden layers.

Model Feature processing No. hidden layer Word accuracy (%)
SD SI

1 43.08 ±0.9 39.27 ±0.6
2 43.36 ±0.9 39.37 ±0.3
3 43.54 ±1.0 39.91 ±0.5
4 44.25 ±0.7 40.20 ±0.7

DNN fMLLR 5 44.79 ±0.7 40.98 ±0.7
6 45.83 ±0.6 41.66 ±0.4
7 45.93 ±0.9 41.19 ±0.9
8 46.02 ±0.6 41.27 ±1.0
9 45.82 ±0.7 41.52 ±0.6
10 45.84 ±1.0 41.37 ±0.4

Setting the optimum number of hidden layer gains between 2 and 3% word accuracy
(2.94% in SD, 2.39% in SI) from the lowest word accuracy at one hidden layer. We use
six hidden layers for the rest of the experiments as it obtains the best result on the SI
task, and six layers are within an error bar of eight on the SD task.

DNN-HMM parameter optimisation: Number of hidden units

Here we investigate the effects of reducing and extending the number of hidden units.
We vary five different sizes: 256, 512, 1024, 2048, and 4096. Table 6.4 presents
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lipreading word accuracies of various numbers of hidden units. The results show that
using 2048 units per layer gives the best results for both SD and SI.

Table 6.4 DNN-HMM lipreading word accuracy with various hidden units.

Model Feature processing No. hidden unit Word accuracy (%)
SD SI

256 43.29 ±0.8 39.95 ±0.8
512 44.75 ±0.6 40.11 ±0.7

DNN fMLLR 1024 44.77 ±0.8 40.94 ±0.5
2048 45.83 ±0.6 41.66 ±0.4
4096 45.73 ±0.5 41.23 ±0.9

DNN-HMM parameter optimisation: With/without RBM pretraining

Here we investigate the effect of employing the RBM pre-training method. Also, we
examine the word accuracy when using different nonlinear functions: Sigmoid and Tanh.
Table 6.5 shows that the RBM pre-training method gives the best word accuracy in
both scenarios. Results from RBM pre-training achieved around 1% higher compared
to no pretraining although the difference is marginal. The sigmoid nonlinear function
obtains better results than Tanh by around 10%.

Table 6.5 DNN-HMM lipreading word accuracy with/without RBM pre-training using
sigmoid and tanh nonlinear function.

Model Feature processing RBM pre-training Non-linear Word accuracy (%)
SD SI

Yes Sigmoid 45.83 ±0.6 41.66 ±0.4
DNN fMLLR No Sigmoid 44.78 ±1.0 40.31 ±1.2

No Tanh 35.64 ±1.4 31.67 ±1.7

DNN-HMM parameter optimisation: Learning rate

Here we optimise the learning rate parameter. Table 6.6 shows the word accuracy of
the SD and SI tasks using different learning rates, ranged between 0.0001 and 0.1. It
seems that performance has changed only a little within the certain values of learning
rate from 0.001 to 0.01. Using too large (0.1) and too small (0.0001) learning rate
decrease word accuracy significantly (p < 0.05). The best results are obtained using a
learning rate of 0.008 in both SD and SI.
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Table 6.6 DNN-HMM lipreading word accuracy with various learning rates.

Model Feature processing Learning rate Word accuracy (%)
SD SI

0.1 39.77 ±3.5 29.20 ±0.4
0.01 45.19 ±0.7 41.06 ±0.6

0.008 45.83 ±0.6 41.66 ±0.4
DNN fMLLR 0.004 45.45 ±0.7 41.64 ±0.7

0.002 45.49 ±0.9 41.57 ±0.7
0.001 45.43 ±0.7 41.21 ±0.5

0.0001 15.39 ±1.7 14.48 ±1.0

DNN-HMM parameter optimisation: Window size

Here we optimise the window size of the fMLLR feature. We vary the number of
dimensions of the input layer by splicing of ±n consecutive frames of fMLLR features
where n = (0, ..., 7).

Table 6.7 DNN-HMM lipreading word accuracy with various temporal context sizes.

Model Feature processing Feature dim Word accuracy (%)
(±frame splicing) SD SI

CD-GMM+SAT fMLLR 40 28.61 ±0.8 25.91 ±0.7
40 (±0) 43.55 ±0.4 40.00 ±0.9
120 (±1) 45.35 ±0.9 41.16 ±0.5
200 (±2) 45.31 ±0.6 41.42 ±0.7

DNN fMLLR 280 (±3) 45.72 ±0.7 40.46 ±0.6
400 (±4) 45.51 ±0.6 40.89 ±0.7
440 (±5) 45.83 ±0.6 41.66 ±0.4
520 (±6) 45.20 ±0.8 40.88 ±0.5
600 (±7) 45.06 ±0.9 40.78 ±0.5

Table 6.7 presents the word accuracy of lipreading using the DNN model optimised
on CE with various dimensions of the fMLLR input features compared to the GMM-
SAT model. We clearly see the learning ability of the DNN systems even with no
spliced features (n = 0) by a 14.94% increase in accuracy on SD (from 28.61% to
43.55%) and 14.09% on SI (from 25.91% to 40.00%). The benefit of augmenting the
neighboring context frames brings further improvement in the accuracy (at least 2.28%
on SD and 1.66% on SI) compared to using the current frame alone. Here, the best
performance of baseline SD is 45.83% and SI is 41.66% with ±5 context.
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6.5.3 Word based DNN-HMM sequence discriminative train-
ing

The DNN-HMM training via CE optimisation is the most common objective function
to construct a classification model but it is based on a frame-by-frame comparison.
For lipreading where co-articulation and context are important, effective training of a
DNN-HMM implies consideration of a longer window. We use sequence-discriminative
training techniques to fine-tune the existing DNN parameters, initially trained by CE,
by using sequence-level criteria which take into consideration the HMM topology and
language model. There are some reports of speech recognition systems that apply the
sequence-discriminative training in the DNN acoustic model [152, 139] and also the
RNN-LSTM acoustic model [127, 153]. This experiment examines three criteria for
sequence-discriminative training of the DNN visual speech model: maximum mutual
information (MMI); state-level minimum Bayes risk (sMBR) and minimum phone error
(MPE).

We conduct experiments on sequence discriminative training on top of the DNN
model initiallised by CE via the three training criteria, sMBR, MPE, and MMI. First,
decoding lattices and alignments of training data are needed. Here, the DNN trained
on the CE criterion has been used as a seed model to decode training utterances
by utilising a unigram language model. The DNN model trained on CE is used for
generating the posterior probabilities, then the raw state accuracy of each sentence
in the lattice is computed. These steps are essential because they give us the actual
performance of the current visual speech model by decoding the training data with
fewer constraints in the language model so we can identify the errors that need to
be improved via sequence discriminative training criteria (Chapter 4.2.3). We set
the learning rate to 1 × 10−5, while the acoustic-scale and LM-scale are 0.1 and 1.0
respectively as in [152].

Table 6.8 Comparisons of three sequence-discriminative training criteria sMBR, MPE,
and MMI against the DNN baseline. The results show word accuracy of the first
iteration.

Model Training objective Word accuracy (%)
SD SI

DNN-beseline CE 45.83 ±0.6 41.66 ±0.4
sMBR CE + sMBR 50.67 ±1.0 47.11 ±1.1
MPE CE + MPE 51.13 ±0.8 47.15 ±0.9
MMI CE + MMI 49.19 ±0.8 45.06 ±0.8
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Table 6.8 shows the word accuracy before and after applying sequence discriminative
training. The significant improvement can be seen in all cases compared to CD-DNN
trained on CE (p < 0.05 by the MP test in all cases).
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Fig. 6.8 Comparison of lipreading performance of SD and SI systems among three
discriminative training criteria; sMBR, MPE, and MMI when we increase the training
iterations. The best performance of SD is 52.88% on the 10th-iteration of sMBR and
that of SI is 48.71% on 10th-interaton of sMBR. (Note: 0th-iteration means baseline
DNN)

We also examine the word accuracy when increasing the number of training iterations.
Results in Figure 6.8 illustrate the performance variation over training iterations and
alignment updates. The 0th iteration means CE. For the SD configuration, sMBR and
MPE have small changes after the sixth iteration, while MMI still increases. However,
the best result of SD is 52.88 % obtained from the 10th iteration of sMBR (7.05%
higher than CE). For the SI configuration the highest word accuracy is 48.71% at the
10th iteration of sMBR (7.05% higher than CE).



6.6 Conclusions 101

6.6 Conclusions

This section presents the construction of computer lipreading on a large vocabulary
continuous speech recognition task using the TCD-TIMIT corpus. We have built a
successful lipreading system using DNNs and sequence discriminative training. Com-
paring our result with a conventional HMM, we see that performance has increased
from around 25% word accuracy to around 48% in speaker independent mode. Looking
in more detail, large improvements are obtained using fMLLR, the DNN rather than a
GMM, some temporal stacking and the use of sequence discriminative training. The
sequence discriminative training converges quickly (two or three iterations) but the
method does not matter very much (sMBR, MPE, MMI). We think that if we had
more data then the methods would differ and possibly more iterations would give
greater benefit.

The best word accuracies are 52.88% in speaker dependent and 48.71% in speaker
independent obtained on the phoneme unit rather than the viseme unit. We have
added more evidence to the argument that phoneme classifiers can outperform those
of visemes. Whilst there remains debate about visemes, but given the evidence
showing an improvement in word accuracy from the reduction in homophene words in
a pronunciation dictionary, we suggest that phonemes are the current best class labels
for lipreading.

One of the disadvantages of the DNN is that it is not easy to examine the internals
of the network to discover from where it is getting its performance. However, there is
a clue in the previous observation which is that the DNN appears to make the most
difference to word accuracy rather than unit accuracy. Visual speech is notorious for
extensive co-articulation, so the implication is that either there are differences in the
window length between the GMM and the DNN or the DNN is better able to model
co-articulation than the GMM. Here we were able to use identical features, and we
also found the DNN is superior; furthermore we know the DNN is better able to learn
data structured on non-linear manifolds. In the next Chapter, we examine where the
successful improvement of DNN model comes from.



Chapter 7

Investigation of visual
representations

In previous Chapters we have shown that lipreading via DNN-HMMs significantly
outperforms the conventional GMM-HMM system in small and large vocabulary tasks.
A sequence discriminative training process trained on top of a DNN-HMM offers
significant improvement in word accuracies of lipreading systems on the TCD-TIMIT
large vocabulary task.

This Chapter investigates the effect of the feature extraction and feature trans-
formation processes used in DNN-HMM lipreading systems. The potential capability
of a DNN model is that its deep structure performs feature transformation using a
non-linear function. We describe the entire process of feature extraction and feature
transformation as the extraction of visual representation. To examine the impact
of visual representation, we select four types of appearance-based features to build
lipreading systems. These features are the DCT, the DTCWT, Eigenlips, and the DAE.
The evaluation task is a large vocabulary continuous speech task using the TCD-TIMIT
corpus.

The contributions of this chapter are:

• We achieve the highest word accuracy reported on TCD-TIMIT task. There are
57.35% word accuracy on the speaker-dependent task and 53.83% word accuracy
on speaker-independent task. We conclude that it is possible to achieve more than
50% word accuracy in lipreading on a large vocabulary task with DNN-HMMs in
combination with a proper feature transformation method.
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• Although a DNN may not, in principle, require feature engineering, with only the
seven hours of available training data, feature engineering as a prepossessing step
is necessary. We have noticed that many features are influenced by the speaker
identity. The support evidence shows a large gap between the word accuracy of
the seen and unseen speaker scenarios. We found that LDA/MLLT and fMLLR
help minimise the speaker identity effect and improve word accuracy.

• We investigate visual speech modelling via the hybrid DNN-HMM approach
where we compare results between training shallow and deep models. We found
that using a deep model benefits word accuracy. Our conclusion is two-fold.
First, the higher capacity in DNN models makes them better able to handle the
multivariate features than the GMM. Second, unlike the EM algorithm which
optimises the likelihood to fit the fixed distribution of the dataset, each DNN
layer represents a dataset in a different form which means that it produces feature
transformations throughout hidden layers. The idea behind the DNN model is
that it does not require feature engineering since feature transformations can
be learnt by minimising the error between the prediction and target classes.
We support our conclusion with visualisations where we have shown that the
distribution of features extracted from the last layer of the network tends to be
more aligned to ground truth words, compared to features extracted from the
first layer.

The contributing publication of this chapter is:

• Thangthai, K., Harvey, R., Building large-vocabulary speaker-independent
lipreading systems. – In Proceedings of the Annual Conference of the Inter-
national Speech Communication Association INTERSPEECH 2018, Hyderabad,
India, pp 2648–2652, 2018.

7.1 Visual features

In the previous Chapter, we use two common features to construct lipreading systems
which are the DCT and Eigenlips. Here we add two new features which are the DAE
(Chapter 4.4.1) and DCTWT (Chapter 4.4.1). We extract all features from 64 × 128
pixels grey-scale lip images.

We use three feature processing steps: (1) z-score normalization, (2) LDA/MLLT,
(3) and fMLLR [42] transformation. Previous reports in lipreading use different sizes
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of LDA context window i.e. ±3 [4, 1], ±7 [114, 148], and 40 dimensions were retained.
Here we tune these parameters for each feature to obtain their best word accuracy
in GMM-HMM systems (in Appendix A). Therefore we define specific parameters in
LDA/MLLT and fMLLR transforms for each feature. We use ±14 context window and
retained 25 dimensions for Eigenlips features. And we use ±11 context window and
retained 20 dimensions for DCT features.

7.1.1 Deep Autoencoder (DAE)

Fig. 7.1 Deep autoencoder feature extraction and feature processing methods.

Our 30-dimensional DAE feature is obtained from 64 × 128 pixels grey-scale lip
images. Figure 4.23 shows the DAE network construction. There are 11 hidden layers
where the units in the encoder layer are (1024, 512, 256, 128, 64) and the units in
the decoder layer are (64, 128, 256, 512, 1024) and 30 units in the code layer. We
use the ReLU activation function (more details in Section 4.2.2) in each unit in the
hidden layers except in the code layer where we use the linear unit. The DAE model is
trained on 480k images which were obtained from all training videos and optimised
for the MSE loss-function via the Adam optimisation algorithm [71] using 50 epochs
and mini-batch size of 256. The DAE network has been implemented in KERAS [25]
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on Theano backend [3] and trained on a single GPU node in the high-performance
computing cluster (HPC) at UEA.

In the LDA/MLLT transform on DAE, we use dynamic information covering 21
frames window (stacking ±10 frames) and retain 25 dimensions. The fMLLR feature
also retains 25 dimensions.

7.1.2 Dual-tree complex wavelet transform (DTCWT)
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Fig. 7.2 DTCWT feature extraction and feature processing methods.

DCTWT was proposed for lipreading by Feng and Wang [38] where they obtained
an 8% improvement compared to PCA via 24-dimensional DTCWT features. Their
experiment investigated Chinese isolated-word and regular digit-string tasks. In our
work, we retain detail at fifth, sixth and seventh orders. The DCTWT feature becomes
a 66-dimensional vector. We use the magnitude to identify the DTCWT order. More
details of the DTCWT feature can be found in Section 4.4.1.

For DTCWT, we obtain the best word accuracy from LDA/MLLT with stacking
±8 frames (covering 17 frames window) and retaining 25 dimensions.
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7.2 Experimental results

We evaluate visual representations covering the extraction of static features, dynamic
features, speaker adaptive features, and the transformations inside a DNN model. We
build lipreading systems using GMM-HMM and DNN-HMM training methods with
three-state left-to-right HMM topologies. We extract four types of static appearance-
based features: DCT; DTCWT; Eigenlips and DAE, as summaried in Table 7.1. We
use 30-dimensional Eigenlips; and DAE; 44-dimensional DCT; and 66-dimensional
DTCWT. We then apply LDA/MLLT and fMLLR feature transformation methods.
The evaluation task is large vocabulary continuous speech recognition using the TCD-
TIMIT corpus, detailed in Section 2.4.3. There are two scenarios: speaker dependent
(seen speakers), and speaker independent (unseen speakers). We report the word
accuracy on the mean of three-fold cross validation with ±1 standard error.

Table 7.1 Summary of features used in this experiment.

Representation Transform method Feature dimension
Eigenlips Unsupervised learning via PCA transform 30
DAE Unsupervised learning via non-linear transform 30
DCT Cosine transform 44
DTCWT Wavelet transform 66

There are five sets of experiments as following here.

• We optimise parameters in GMM-HMM training in Appendix A.

• We investigate the effect of feature transformation methods in DNN-HMM
systems (Section 7.2.1).

• We examine the impact of the deep structure in DNN-HMM model by comparing
between the shallow network (1-layer) and the deep network (6-layer) (Section
7.2.2).

• We evaluate visual features used in DNN-HMM training with sMBR (Section
7.2.3).

• We investiate the effect of longer order of word N -gram language model (Section
7.2.4).
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All experiments were done using the Kaldi speech recognition toolkit (Povey et al.
[116]). We apply the same training steps as presented in Chapter 6.4.1. We use word
bigram language models and the TCD-TIMIT dictionary which are the same as in
Chapter 6. The DCT, DTCWT and Eigenlips features are implemented in Matlab,
and the DAE feature is implemented via the Keras neural network API [25] with the
Theano framework [3].

7.2.1 Effect of feature processing for DNN-HMM

This experiment aims to investigate the effect of feature transformation in DNN-HMM
training. Does the DNN-HMM need feature preprocessing since a deep model has its
feature transformation through the network layers? We investigate this effect by using
different feature transformation methods and comparing to standard feature processing,
via the fMLLR feature transform. Here the DNN-HMM visual speech models are
trained on six hidden layers and with sigmoid non-linearity 2048 units per layer. We
optimise the DNN parameters using the standard CE. The training parameters are
equivalent to the system explained in Section 6.5.2. For each input feature type,
we splice ±5 consecutive frames as a dynamic feature covering 11 frames context
(optimised in Chapter 6.5.2). We use the constrained time alignments generated from
GMM-HMMs with speaker adaptive training.

The scatter plot in Figure 7.3 shows word accuracy (y-axis) of DNN-HMM lipreading
as a function of feature transformation methods (x-axis). There are four feature
transformation methods: original, Z-Score with Delta, LDA/MLLT, and fMLLR. The
different type of marks refer to four static features: Eigenlips, DAE, DCT, DTCWT.
The different colours refer to scenarios where SD shows in blue and SI shows in red.

In Figure 7.3, there is a clear trend of increasing word accuracy from each step of
feature transformation. This trend applies to all features. The original untransformed
features have the lowest performance in both scenarios. The dependency of speaker
identity is evident in the difference in performance between the SI and SD systems
which is around 15%. Applying feature normalisation and deltas is highly beneficial
to both SD and SI word accuracy, especially with DAE features where the word
accuracy improves by almost 20% compared to the original results. Next, we found
that LDA/MLLT and fMLLR help minimise the speaker identity effect and enhance
word accuracy which is shown by the small gap between the performance on seen and
unseen speakers. The explanation for the LDA/MLLT is that it transforms the feature
space to satisfy the class discrimination which indirectly reduces speaker identity effects.
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Fig. 7.3 Word accuracy (%) of DNN-HMM lipreading on speaker dependent (red)
and speaker independent (blue) comparing four-types of feature representations as a
function of feature transformation methods with ±1 standard error.

The fMLLR is directly proposed to solve the speaker identity effect. Overall the highest
word accuracy of speaker-independent lipreading is 46.69% using the DAE feature with
the fMLLR transformation method.

To conclude, in this task we found that using feature processing and transformation
is useful. Although each DNN layer performs a unique representation, it is still unable
to handle complexity in the original feature space. This is also due to the small size of
the available training data. Thus, using the intermediate representation of a feature
helps obtain a better result over the original feature. More detail of visualising features
and transformations are in Section 7.3.1.
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7.2.2 Effect of deep and shallow network

In the previous experiment we investigated the affect of feature transformation. We
found that using fMLLR feature transform is useful and provides the best result in
DNN-HMM training.

One interesting question concerning the DNN model is which property of the model
makes it superior to other models. There is previous study that attempts to answer
this question in speech recognition [103]. In [103], they compared speech recognition
performance between GMMs and DNNs. For the DNN, they trained a one-layer
neural network and a DNN model with six layers. They also varied the size of context
input between 1 and 13 frames. Here we would like to consider the same question on
lipreading. We study the difference between the shallow structure and deep structure
of the DNN model. We compare the performance of a DNN with a shallow neural
network model. We set up a shallow model using one hidden layer. We then increase
the number of nodes in the shallow network to 12288 which is comparable to 6 layers
× 2048 nodes in the deep structure. We vary the dimensionality of input features to
observe the differences in learning ability between the shallow and the deep model.
Here we splice the input features with ±N context frame where N={0,1,3,...,15}. We
use fMLLR feature processing. The evaluation task is speaker independent (SI).

We compare the performance of lipreading between the shallow neural network and
the deep neural network model in the hybrid configuration with HMMs. We evaluate
on the speaker independent task (SI). Figure 7.4 provides the results from four feature
types: Eigenlips (a), DAE (b), DCT (c), DTCWT (d). The graphs show word accuracy
of the DNN and the Shallow NN as a function of context window (and corresponding
input dimension).

Although we evaluate four different features, the performance trend is similar in
many ways. Firstly the DNN and the shallow NN work better than the GMM. In fact,
at the same input dimension ±0, the shallow network outperforms the deep network
and the GMM. Second, the DNN and shallow NN do not suffer from the curse of
dimensionality problem (explained in Chapter 4.2.1) and the features do not require to
be decorrelated. These capabilities are seen from the improvement of accuracy even
when we increased the feature dimension from 25 to 775. Third, with the same capacity,
deeper is better. The results show that DNN performance improves more than the
shallow NN when we increase the feature dimension. These results are consistent with
[103] which concludes that the gain of the DNN is associated with the long context
window of speech frames in the input feature vectors.
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Fig. 7.4 Word accuracy (%) of speaker independent lipreading (SI) comparing the
shallow network (one-layer) and deep network (multi-layer) as a function of context
window. The shallow network has one-layer with 12288 nodes, and the deep network
has six-hidden layers with 2048 nodes/layer. The graphs on the top are the results
from (a) Eigenlips, and (b) DAE. The graphs at the bottom are results via (c) DCT,
and (d) DTCWT. Also, plotted in each graph is the result of the GMM baseline.

One thing we would like to add to the conclusions of [103] is that the DNN,
especially with the RBM pretraining, has representation learning in each hidden
layer. By representation learning with the RBM, we mean that the DNN performs an
unsupervised feature learning providing different feature transformations in its hidden
layers. Moreover, the DNN model in general also has multiple feature transformations
in the network via supervised fine-tuning with the backpropagation algorithm. This
concept is obviously different from the GMM by its nature, where representation is
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changed mainly by feature engineering. The GMM tries to represent the distribution
rather than modify the representation. More explanation of representation learning can
be found in [13]. This might also explain why the shallow network performs slightly
worse than the deeper one. We provide more discussion in this topic later in the
analysis and discussion section 7.3.1.

7.2.3 Comparing of representation summary results

The previous experiment demonstrates the effect of using the Deep neural network
model and the shallow neural network model in lipreading. We found that the deep
structure helps the model to achieve better performance than the shallow one. In this
step we utilise the sequence discriminative training with sMBR in the DNN-HMM
training. We present lipreading accuracy using our best training configuration.

This experiment aims to investigate the final result of lipreading in the large
vocabulary task on the TCD-TIMIT. Here we demonstrate the summary results of
visual speech modelling trained on four feature types: Eigenlips, DAE, DCT, and
DTCWT. Results show in sequence of model training methods; starting from GMM to
DNN with sMBR. The DNN-HMM with sMBR was initialised by RBM pretraining
and CE then optimised via 10 iterations of sMBR (as explained in Chapter 4.2.3).

Here are the feature processing methods in each step. In CI-GMM and CD-GMM, we
use delta features. In +LDA/MLLT, we use the CD-GMM model with the LDA/MLLT
transformation. In +SAT, we use the CD-GMM with the LDA/MLLT and fMLLR
feature transforms. Then the fMLLR feature is used in CD-DNN and CD-DNN with
sMBR training.

Figure 7.5 summaries the results of our lipreading system trained on Eigenlips,
DAE, DCT, and DTCWT features. Figure 7.5 (top) shows the SD results and Figure
7.5 (bottom) shows the SI results. Shown on the x-axis is the model training sequence
that we used in the entire training process, from GMM-HMM to DNN-HMM with
sMBR. As expected, DAE yields the best word accuracy. It obtained 57.36% in SD
and 53.83% in SI via DNN-HMM on sBMR training. Compared to the DNN, sMBR
offers a 6.98% gain in SD, and 7.13% gain in SI. If we compare only results from the
sBMR, in the SD scenario DAE obtained 6.12% higher than the DCT, 3.25% higher
than the Eigenlips, 2.70% higher than the DTCWT. In the SI scenario, DAE offers
7.28% higher than the DCT, 3.16% higher than the Eigenlips and 4.80% higher than
the DTCWT.
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Fig. 7.5 Comparison of lipreading word accuracy (%) over four types of representations
as a function of model training methods. Speaker dependent (SD) results are at the
top, and speaker independent (SI) results at the bottom.

It can also be seen from Figure 7.5 that the majority of gains come from the training
method rather than the features. Here we observe that the highest increase in the
word accuracy is obtained from the transition between the CD-GMM with delta and
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CD-GMM with LDA/MLLT with more than 20% gained in both scenarios. It implies
that the information provided in the original feature with delta feature processing is
too complex for visual speech modelling. We visualise the data distribution of original
features in Figure 7.6 and 7.7 in the analysis section.

Significant tests

The present results are different in term of the standard errors across the three-fold
cross-validation results. However, a speech recogniser has specific methods to compare
performance between algorithms whether they produce identical results or not. Here,
we report significant tests of lipreading on the DNN-HMM with sMBR using four
techniques: Matched pairs sentence segment word error (MAPSSWE or MP), Signed
paired comparison (SP), Wilcoxon signed rank (WI), and McNemar (MN). These
methods compare error rate between algorithms in different levels. The MN test
analyses the statistical difference between algorithms using the sentence error rate.
The SP and WI compare word error rate of each speaker. The MP test, most used in
ASR, compares word error rate of each sentence segment level. More detail of each
algorithm can be found in Chapter 4.6.

Table 7.2 reports the SD lipreading results. It presents the significant measurement
methods in each pair of features. The first column indicate the test methods: MP,
SP, WI, MN. The second column and the first row show four feature types: Eigenlips,
DAE, DTCWT, DCT. The significant tests show that the result of DAE features
significantly outperforms other features with (p<0.001). Considering the MP test,
there are no significant differences between results of Eigenlips compared with DTCWT
and Eigenlips compared with DCT. The result from DTCWT is statistically better
than the DCT result (p = 0.011).

Turning to the unseen speaker test in Table 7.3, the result of the DAE feature is
not significantly better than the Eigenlips feature. The statistical tests of SI lipreading
show that DAE and Eigenlips results are not so different in terms of word error rate in
speaker level according to the MN test. The DAE and Eigenlips results are significantly
better than DTCWT and DCT results. The DTCWT result significant outperforms
the DCT result.

To summarise, this section presents the evaluation of lipreading systems on a large
vocabulary continuous speech recognition task. We evaluate lipreading performance
on the TCD-TIMIT database in two scenarios: SD and SI. We investigate the visual
representations using four types of features: Eigenlips, DAE, DCT, and DTCWT.
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Table 7.2 Significant tests on speaker dependent set (SD). Each cell shows the P -value
for a pairwise comparison between the tests. An underline indicates P -value < 0.05
and a double underline indicates P -value < 0.01.

Test
Abbrev. Eigenlips DAE DTCWT DCT

MP
SP
WI
MN

Eigenlips

DAE 5.8497e-09
DAE <0.001
DAE 1.3006e-05
DAE 7.9784e-04

Eigenlips 0.472
DTCWT <0.001
Eigenlips 0.352
DTCWT 0.0337

Eigenlips 0.070
Eigenlips <0.001
Eigenlips 0.162
DCT 0.8552

MP
SP
WI
MN

DAE

DAE 1.4794e-06
DAE <0.001
DAE 1.5065e-04
DAE 0.4594

DAE 5.3539e-13
DAE <0.001
DAE 2.4772e-06
DAE 0.0067

MP
SP
WI
MN

DTCWT

DTCWT 0.011
DTCWT <0.001
DTCWT 0.112
DTCWT 0.0289

Table 7.3 Significant tests on speaker independent set (SI). Each cell shows the P -value
for a pairwise comparison between the test. An underline indicates P -value < 0.05
and a double underline indicates P -value < 0.01.

Test
Abbrev. Eigenlips DAE DTCWT DCT

MP
SP
WI
MN

Eigenlips

DAE 0.007
DAE 0.049
DAE 0.022
DAE 0.0699

Eigenlips 1.7882e-06
Eigenlips 0.629
Eigenlips 0.028
Eigenlips 0.0154

Eigenlips 2.3742e-23
Eigenlips <0.001
Eigenlips 3.5698e-04
Eigenlips 2.7481e-04

MP
SP
WI
MN

DAE

DAE 4.6638e-14
DAE 0.002
DAE 5.0141e-04
DAE 4.8899e-05

DAE 5.6543e-35
DAE <0.001
DAE 2.9460e-04
DAE 4.1298e-07

MP
SP
WI
MN

DTCWT

DTCWT 8.7470e-08
DTCWT 0.049
DTCWT 0.004
DTCWT 0.3125

Here the best result of SD lipreading is 57.36% obtained on DAE using DNN-HMMs
with sMBR sequence discriminative training. This result is statistically better than
Eigenlips, DCT, and DTCWT, according to the MP test. The best result of SI
lipreading is 53.83% which is obtained from the same configuration as the SD. This
result significantly outperforms the Eigenlips, DCT and DTCWT.
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7.2.4 Effect of language modelling

A language model (LM) can be used to constrain word combinations to form legitimate
sentences or sentence fragments. It is usually learnt from the training text. We use
five n-gram language models: zerogram; unigram; bigram (mainly used); trigram and
4gram. The term zerogram means that we use no language model (a unigram model
with uniform probabilities). We show the word accuracy obtained from the 1-best and
also show the corresponding lattice oracle which represents the quality of the lattices.

Table 7.4 Word accuracy (%) of lipreading system decoded with different language
models.

Word-based n-gram
language model (LM)

Word accuracy (%)
SI testset Lattice oracle Guessing

zerogram LM 6.24 ±0.1 48.54 ±0.6 1.63 ±0.7
unigram LM 10.69 ±0.3 60.10 ±0.5 2.04 ±0.6

(currently used) bigram LM 53.83 ±0.8 83.25 ±0.5 2.02 ±0.6
trigram LM 67.69 ±0.7 85.44 ±0.2 2.03 ±0.6
4gram LM 68.45 ±0.9 85.20 ±0.2 2.02 ±0.6

The results in Table 7.4 illustrate that the n-gram order of language modelling
contributes to noticeable changes in lipreading performance. Lipreading performance
gets below 10% without an LM, but the word accuracy increases significantly to about
68% when we use trigrams and 4grams. Although the lattices generated by bigram
LM, trigram LM, and 4gram LM obtain similar quality observed by the oracle results,
the word accuracy of a less LM-constrained system (bigram LM) is 15% lower than
the higher LM-constrained systems (trigram and 4gram). These observations are
consistent with what is known about human lipreaders who make considerable use
of their linguistic and domain knowledge. We also evaluate if the language model
dominates the lipreading performance by decoding a random noise vector. Results
in the guessing column indicated that language modelling has successfully increased
lipreading accuracy only in combination with a suitable associated visual input signal.

In the next section, we analyse lipreading results and provide visualisations of each
representation. We also offer discussions and some practical suggestions to improve
lipreading systems.
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7.3 Analysis and discussion

The results so far indicate that extracting a good representation of visual speech is
important to the improvement of lipreading accuracy. In the previous section we
illustrate the increase in word accuracy when we utilise feature transformations and the
DNN model. Moreover, we found that the deep layer in a DNN model yields further
improvement than the shallow model. We reported that DAE significantly outperforms
DCT and DTCWT features and achieved more than 50% word accuracy in both SD
and SI scenarios.

In the next section, we aim to analyse lipreading results. First, we examine why
the original visual representations are difficult to model. Second, we illustrate how
feature transformations and DNN modeling affect visual representation.

7.3.1 Visualisation

As mentioned in the conclusion of the experiment in Section 7.2.1, feature processing
methods are essential for visual speech modelling. This is because they transform
the visual representation to associate with the linguistic unit of speech. Moreover, in
Section 7.2.2 we conclude that DNNs cause feature transformations in each hidden
layer. Here, we support our claim by visualising to see what occurred after transforming
a feature inside the DNN layers. There are two questions we attempt to answer: first,
what is the information contained in an original feature?; second, to explain why feature
transformation is necessary. To find an answer, we analyses visual representations
using t-SNE visualisation techniques, explained in Section 4.7.

Original representation

For answering the first question, we plot t-SNE of four feature types from their original
representation. They are 30-d Eigenlips, 30-d DAE, 44-d DCT and 66-d DTCWT. We
plot the distribution of each feature collected from multiple speakers. We then observe
a cluster of data points at speaker level and word level. There are 2841 data points of
utterance Don’t ask me to carry an oily rag like that extracted from six speakers; three
male and three female. To clarify, the t-SNE algorithm does not require the label of
each data point. The data points are clustered by similarity. We then use the label
to verify the clustered data points whether they are grouped by speaker similarity or
word similarity.
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We measure the t-SNE output by computing the magnitude of the class discriminant
ratio using Fisher’s Ratio analysis by considering the speaker class label and a linguistic
class label. The class discriminant ratio is the ratio of the between-classes variance
and the within-classes variance. The class discriminant ratio can be computed by

Class F-ratio = SB

SW

, (7.1)

where SB is the between-class covariance matrix and SW is the within-class covariance
matrix. The definition of these covariance matrices are:

SB =
∑

c

(µc − x̄)(µc − x̄)T , (7.2)

SW =
∑

c

∑
iϵc

(xi − µc)(xi − µc)T , (7.3)

where µc refers to the mean of each class and xi refers to each data point. This F -ratio
identifies the goodness of the data clustered regarding the provided class label. In our
case we can also use this ratio to identify whether the data are clustered by speaker
similarity or linguistic similarity. For instance, if the F -ratio of speakers is higher than
the F -ratio of linguistic units, we assume that the feature represents speaker similarity
and vice versa. Note that we compute three F -ratios using speaker label (spk), and
two linguistic labels which are word label (w) and phonetic label (ph).

Figures 7.6 and 7.7 illustrate t-SNE visualisation of the data points obtained from
four-types of original representations. In Figure 7.6 the data points are labelled by
speakers. There are six speakers. The three male speakers are 02M labelled in red;
19M labelled in green; and 56M labelled in magenta. The three female speakers are
15F labelled in cyan; 58F labelled in blue; and 45F labelled in black. Here we observe
that the data points are relatively separated according to speakers. These are also
confirmed by the high value of speaker F-ratios. This is due to the fact that the original
features directly capture variability existing in the data. These include environment,
speaker, and phonological patterns variability. Here we use the controlled environment
and the controlled sentences. The most variation of the data points is the speakers.
Therefore, the representation in an original feature shows that it suffers from speaker
dependencies. This finding is in agreement with Cox et al. [32] findings which showed
a high sensitivity of visual features to speaker identity.

Figure 7.7 shows the same structure as Figure 7.6, but data points are coloured by
words instead of speakers to reveal the linguistic representation of the data. There are
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Fig. 7.6 T-SNE plots for the different types of features coloured by speaker. The
speaker class discriminant ratio is provided underneath the plot of each feature.

11 words including silence. Each word is represented by a different colour. Here we plot
the word level, instead of the phonetic level and the HMM state level, because it is much
more apparent to see a change of linguistic representation. Here, we observed that the
word and phonetic class discriminant ratios are much smaller than the speaker F-ratios.
For example, the word F-ratio and speaker F-ratio of the Eigenlips features are 0.02
and 2.32 respectively. The low value of the F-ratio means that the between-classes
variance of the data is smaller than the within-classes variance. In other words, it
indicates that the distribution of the data is less dependent to the linguistic class than
the speaker class.
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(a) Eigenlips (30-D) (b) Deep autoencoder (30-D)
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(c) DCT (44-D) (d) DTCWT (126-D)
F-ratio w=0.03; ph=0.02) F-ratio w=0.02; ph=0.03

Fig. 7.7 T-SNE plots for the different types of features coloured by word. The linguistic
F-ratio of word level (w) and phonetic level (ph) are provided underneath the plot of
each feature.

Figure 7.8 illustrates the difference of the original representation between the visual
(left) and acoustic (right) speech features. In Figure 7.8 on the top the data points are
labelled (with colours) by speakers, while in the bottom the data points are labelled
(coloured) by words. In these data, variations in the environment, and phonological
patterns are controlled so variation is attributable to speaker identity. The – acoustic
and visual features look quite different – in the visual we have clusters from different
speaker identities, but the acoustic features have largely removed identity as we can
see from the mixed-colour clusters. This is confirmed by the speaker F-ratio (3.56). In
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other words, features extracted from lip ROIs are highly speaker dependent. The red
points in the bottom show silence which is well-clustered in the acoustic and, again,
separated by identity in the visual case. In the acoustic data, a slight effect of speaker
dependency can be found in the non-silence classes.

DAE visual feature MFCC acoustic feature
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Fig. 7.8 T-SNE plots show the comparison of the original representation of the DAE
visual speech features (left) and the MFCC acoustic speech features (right).

Visual representation after applying a feature transformation method

As we show earlier, the original features, which are directly extracted from a video
frame, represent other information rather than speech classes. The F-ratio reveals that
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the original space of all four features has higher speaker F-ratio than the linguistic
F-ratio. In our lipreading system, we apply multiple feature transformation techniques
to enhance the quality of features. These techniques are feature normalisation, adding
delta, using LDA/MLLT, using fMLLR and using a DNN model. The goal of feature
transformation is to provide a suitable structure of visual speech representation so
that it is comprehensive and robust to predict a linguistic unit of speech. Here we use
t-SNE visualisation to illustrate why these feature transformation methods play an
important role to the improvement of the lipreading performance.

We run t-SNE on different feature transformation methods including a hidden layer
in the DNN model. We compare the visual representation of DAE features in six steps
of feature transforms: original, normalisation and delta, LDA/MLLT, fMLLR, DNN
layer-1, and DNN layer-6. We extract features generated inside a trained DNN model
by ignoring the weights from the last N components of the trained DNN model, where
N refers to the number of layers. For example, if we would like to extract layer five
from the six hidden layer model, we have to avoid the last two layers: the output layer
and layer six. We then pass the input vector through the rest of the DNN model, and
the output vector is the DNN feature generated from layer five. Note that this is the
implementation on a DNN model generated from the Kaldi toolkit.
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(a) Deep autoencoder (30-D) (b) Normalisation and delta (90-D)
F-ratio spk=3.56; w=0.03; ph=0.03 F-ratio spk=1.77; w=0.06; ph=0.06
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(c) LDA/MLLT (25-D) (d) LDA/MLLT fMLLR (25-D)
F-ratio spk=0.62; w=0.19; ph=0.09 F-ratio spk=0.50; w=0.26; ph=0.16
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(e) DNN layer-1 (2048-D) (f) DNN layer-6 (2048-D)
F-ratio spk=0.28; w=0.71; ph=0.55 F-ratio spk=0.13; w=0.91; ph=0.61

Fig. 7.9 T-SNE plots of Deep autoencoder features with different feature transformation
methods and transformation inside DNN layers. Three class discriminant ratios -
speaker (spk), word (w), and phonetic (ph) - are provided underneath the plot of each
feature transformation method.
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We observe the change of the linguistic F-ratio and the speaker F-ratio throughout
each feature processing step. We suspect if the data frames are more clearly clustered
in their word group, the linguistic F-ratio will be increased, while the speaker F-ratio
will be degraded. Figure 7.9 demonstrates that the structure of the data changed when
different transformation methods had been applied. The data points are coloured in
the word level. Figure 7.9 (a) is the original DAE feature. Figure 7.9 (b) shows the
distribution when we applied utterance level mean-variance normalisation and delta as
feature processing. This step contributes a tiny change in the data structure. But none
of these words is clustered. The speaker F-ratio reduces from 3.56 to 1.77, although
it is higher than the word F-ratio. This implies that the complexity of the original
representation is slightly modified by using feature normalisation and delta.

The next step, Figure 7.9 (c), is the data distribution from the LDA/MLLT feature
transformation. As described in Chapter 4.4.2, the LDA/MLLT method provides
a discriminative feature associated with phonetic classes. It can be seen that the
LDA/MLLT method enhances the linguistic representation of the features. The word
F-ratio increases by 0.13 (from 0.06 to 0.19) from the previous step. The effect of
speaker dependency has been reduced by 1.15 (from 1.77 to 0.62) observed from the
speaker F-ratio. Here, the data points appear to connect into a small piece of words
where joined data points mostly contain a single colour. The same word seems to be
located in the similar region. Comparing to the previous step, this shows the significant
changes in the data structure. This plot is the evidence to support why we got a
considerable increase of word accuracy in Section 7.2.3. Comparing the LDA/MLLT
in this plot, the fMLLR in Figure 7.9 (d) retains pretty much the same structure. The
word F-ratio slightly increases from 0.19 to 0.26, while the speaker F-ratio reduces to
0.50.

Figure 7.9 (e) and Figure 7.9 (f) show the visualisation of the features extracted
from the first hidden layer and the sixth hidden layer of the DNN model. As we
explained earlier in Section 7.2.2, the capability of a DNN model is that it performs an
intermediate representation through a hidden layer using a nonlinear function. In a
definition of a DNN, the higher-level features present the hierarchy of concepts of the
lower-level features [37]. It can be seen that the features in the sixth hidden layer have
a better representation of the word classes than the first hidden layer. We observe that
many words are well clustered. The word F-ratio in the first hidden layer increases
by 0.45 (from 0.26 to 0.71) from the fMLLR step. And the word F-ratio of the sixth
hidden layer additionally increases by 0.2 to become 0.91. Here the linguistic F-ratios
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of word and phonetic classes are higher than the speaker F-ratio which reduces to 0.13.
This illustrates that the deep architecture of a DNN model represents a higher level in
semantic concepts of the visual speech. This is the evidence to support the lipreading
performance accomplishment of a DNN model.

Overall, these visualisations of visual speech representation confirm the importance
of each step of feature transformation. They clearly reveal the different feature
presentation produced inside a DNN model throughout its hidden layers. As a result,
after enough feature transforms, the words are well defined and clustered. The effect of
speaker dependency has been reduced, but is still higher than the speaker dependency
effect found in the original MFCC feature. We observe that the silence representation
of visual speech feature is not clustered even after feature transformation methods are
applied. The silence phone (red) has a unique character: it is placed outside the word
group and separated from one another. This raises a question about an issue of visual
speech silence modelling which will be analysed in the following section and will be
discussed in the investigation of the visual silence subsection.

7.4 Conclusion

This chapter demonstrates that lipreading systems can be built via the conventional
techniques of acoustic speech recognition systems based-on DNN-HMMs and sMBR
training. In a 6000-word vocabulary task, we achieved 57.36% word accuracy in the
speaker dependent scenario and 53.83% word accuracy in the speaker independent
scenario using DAE features and the fMLLR transformation method. The results and
the visualisation of each feature indicate that feature processing steps are relevant to
gain speaker-independent lipreading accuracy because they reduce the influence of
speaker identity found in the original space of the DAE features.

We demonstrated that a feature transformation minimises the effect of decoding
irrelevant information to predict a speech class. Such irrelevant information might
exist in an original feature space. And a DNN model which has many transformed
layers, is able to reduce these effects. However, a DNN model needs to be trained on a
comprehensive training set. Unless, we provide them with a massive variety of data
collected from a real situation. Otherwise, a step to pre-process features is still needed.

Although accomplishment of computer lipreading is dependent on the order of the
n-gram language model, we observe that language modelling does not dominate the
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entire lipreading decoder a fact verified by the poor results of decoding the random
signal. In the next Chapter, we provide an analysis of lipreading results.



Chapter 8

Results analysis

Developing of a lipreading system is a difficult task. Our best system for large
vocabulary task yields 57.36% word accuracy in SD and 53.88% word accuracy in
SI on the TCD-TIMIT dataset. This section aims to analyse lipreading results and
understand lipreading errors. We investigate errors of lipreading transcriptions in the
word level and the speaker level. For word level, we focus on error types, position,
word length, and word frequency. For speaker level, we found high variation of word
accuracy between talkers. Therefore, we investigate their general information and
speaking styles involving five factors: age, gender, speaking rate, visual energy, and
visual dynamics. Finally, we examine the further improvement of lipreading systems if
we can handle visual silence.

The contributions of this chapter are:

• Word accuracy of a talker has a strong positive correlation between their SI
accuracy and SD accuracy due to a speaker identity. We found a significant
positive correlation (p < 0.05) between word accuracy and the rate of change in
lip signal which we call a visual dynamic.

• We found that the complexity of lip movements in silence is a critical part which
causes errors and is hard to predict. Our further investigation demonstarted that
the word accuracy in speaker dependent task can be improved by 4.45% from
57.36% to 61.82% and by 5.59% absolute (from 53.83% to 59.42%) in a speaker
independent task by simply eliminating the silence phone at the end of sentences.
To date, this is the best word accuracy of lipreading reported on the TCD-TIMIT
corpus which is a large vocabulary task covering 6000 words.
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REF:   we are   open every monday evening 
Eigenlips: ** WE'RE open every monday evening 
DAE:   ** WE'RE open every monday evening 
DCT:   A  BIG   open every monday evening 
DTCWT:  ** WE'RE open every monday evening 
!
REF:   john's brother repainted the garage door 
Eigenlips: john's brother repainted the ENJOY  IT 
DAE:   john's brother repainted *** ENJOY  IT 
DCT:   john's brother repainted the ****** ATTITUDE 
DTCWT:  john's brother repainted the ****** ENTIRE 
 
REF:   to  further his  prestige     he       occasionally 
Eigenlips: *** ******* IT'S FUN          TO       PARTICULARLY 
DAE:   SHE FOR     his  prestige     he       occasionally 
DCT:   *** ******* **** CONSERVATISM POSITION INTEGRATION 
DCTWT:  *** ******* **** ************ THE      SHUFFLE 
 
REF:   she always jokes about too much garlic in his food 
Eigenlips: she always jokes about too much garlic in *** FOOT 
DAE:   she always jokes about too much garlic in *** FOR 
DCT:   she always jokes about too much garlic in *** FILES 
DTCWT:  she always jokes about too much garlic in THE FIRST 
!
REF:   he believed that brave boys didn't cry 
Eigenlips: he believed that brave boys didn't cry 
DAE:   he believed that brave boys didn't cry 
DCT:   he believed that brave boys didn't cry 
DTCWT:  he believed that brave boys didn't cry 
!
REF:   can't seem  to locate landmarks in this snow 
Eigenlips: YEAH  SEEMS to locate landmarks in THE  snow 
DAE:   can't seem  to locate landmarks in THE  snow 
DCT:  THE KAYAK DOWN  to locate landmarks in **** SEATTLE 
DTCWT:  can't seem  to locate landmarks in **** SO 
 
REF:   they remain   lifelong friends and companions 
Eigenlips: they REMAINED lifelong friends and companions 
DAE:   they REMAINED lifelong friends and MAINTENANCE 
DCT:   they REMAINED lifelong friends and MAINTENANCE 
DTCWT: THE they REMAINED lifelong friends and companions 
!

Fig. 8.1 Seven examples of word transcriptions produced by the DNN-HMM sMBR
model comparing four feature types. ‘REF’ refers to the reference sentence (ground-
truth sentence). Words in capital letters refer to the misrecognised words.

Figure 8.1 shows examples of lipreading results obtained from Eigenlips, DAE,
DCT, and DTCWT. There are seven examples of word transcriptions produced by
the DNN-HMM sMBR model. ‘REF’ refers to the reference sentence (ground-truth
sentence). Words in capital letters are the misrecognised words. These show that
results obviously vary between sentences. Some sentences are easier to predict than
others. An error can be caused by a different word form such as we are and WE’RE,
remain and REMAINED, seem and SEEMS. It can also be caused by a similarity in a
viseme group such as food and FOOT, snow and SO. It could also become a completely
different word such as garage and ENJOY, he and POSITION. It is not easy to observe
the word confusion matrix because many errors propagate from previous errors, and
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sometimes many words are missing. Thus we investigate the error type and error
position instead.

8.1 Analysis of error type and position

Here we investigate three error types and five positions. The error types are insertion
(I), deletion (D) and substitution errors (S) as explained in Chapter 4.6.

REF:  this IS no assignment for a frivolous girl she assures him  
HYP:  this ** no assignment for a frivolous girl she assures him  
Eval:      D       
 
REF:  INTERNAL national responsibility now A truism need not be documented  
HYP:  NEITHER  national responsibility now * truism need not be documented  
Eval: S                                    D                                
!
REF:  the tooth fairy forgot to come when roger's tooth fell OUT   
HYP:  the tooth fairy forgot to come when roger's tooth fell AXIS  
Eval:                                                        S     
 
REF:  *** twenty nine exhibits received AWARDS   
HYP:  THE twenty nine exhibits received WORRIED  
Eval: I                                 S        
 
REF:  FOR roast insert meat thermometer diagonally so IT DOES NOT   REST ON BONE  
HYP:  BUT roast insert meat thermometer diagonally so ** **** THERE WAS  A  BOWL  
Eval: S                                               D  D    S     S    S  S     
 
REF:  the source IS KNOWN SO THERE IS    no necessity to remove insecticide residues  
HYP:  the source ** ***** ** OWNER KNOWS no necessity to remove insecticide residues  
Eval:            D  D     D  S     S                                                  
 
REF:  YOU'D THINK HER STOMACH WOULD'VE GOT   USED TO    IT  IN  THREE WEEKS    
HYP:  ***** ***** *** ******* COCONUT  CREAM WITH THOSE WHO HIS WORK  WITHOUT  
Eval: D     D     D   D       S        S     S    S     S   S   S     S        
!

Fig. 8.2 Seven examples of word transcriptions produced by the DNN-HMM sMBR
model on DAE. ‘REF’ refers to the reference sentence (ground-truth sentence), ‘HYP’
is a hypothesis (lipreading result), ‘Eval’ shows the type of errors.

Figure 8.2 shows seven lipreading results obtained from the DNN-HMM sMBR
model on DAE features. Also shown is the error evaluation (Eval). The error positions
are classified into five areas: (1) error on the entire length of a sentence, (2) error in the
middle, (3) error at the beginning, (4) error at the end, (5) error at the beginning and
the end. We can match these error positions to our lipreading results by identifying
if errors occur in the predefined area. For example, the first sentence and the sixth
sentence have errors occurred in the middle. The seventh sentence has errors in the
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entire sentence. The reason why we try to analyse these error positions is because we
have an assumption about the complexity of the visual silence model. In silence speech
area, where there is no sound, sometimes the lips do not close completely. Therefore,
there is high possibility to find an error occuring at the beginning and/or the end of a
predicted sentence.

Table 8.1 Sentence level error analysis

Sentence level analysis #Utt %
Total utterances 1666 100.00
Correct utterances 390 23.41

Error type
Insertion 215 12.91
Deletion 960 57.62
Substitution 1159 69.57

Error position

Entire sentence 291 17.47
Middle 91 5.46
Begin 333 19.99
End 306 18.37
Begin and end 255 15.31

Here we analyse 1666 utterances of lipreading results from the first-fold of SI.
Table 8.1 shows the percentage of specific types and positions of the sentence errors.
The first column reveals the category of error. The second column shows the actual
number of utterances and the third column shows its percentage. The first row lists
the total number of utterances and the second row shows the number of correctly
predicted sentences. There are 23.41% of utterances that we recognise correctly. The
rest of the utterances contain an error. The error type shows how many sentences
contain that kind of error. It shows that the main type of error found in our lipreading
system is substitution error. We found that almost 70% of predicted sentences contain
substitution errors. Deletion errors are also a major issue that is found in nearly 60%
of predicted sentences. The insertion errors are a minor issue in our lipreading result;
we found only 12.91% of sentences that contain an insertion error.

The lower part of Table 8.1 shows the position of sentence errors (number and
percentage). Let’s start with the error positions that we assume might relate to the
difficulty in predicting a visual silence. As we can see, the majority number of results
have an error occurring at the beginning or the end or both positions which totally
amount to 53.67% of utterances. There are only 5.46% of predicted results that found
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an error appearing in the middle. These numbers of position errors are an indicator
that guides to a problem of modelling visual speech in the visual silence area.

Table 8.2 Word level error analysis

Word level error analysis
Total reference words = 13809

#Words
Correct Insertion err Deletion err Substitution err

Actual % Actual % Actual % Actual %
Sum 7480 54.17 250 1.81 2507 18.15 3822 27.68
Correct sentence 2857 20.69

Error position

Entire sentence 0 0 23 0.17 804 5.82 1351 9.78
Middle 588 4.26 7 0.05 122 0.88 130 0.94
Begin 1708 12.37 71 0.51 411 2.98 694 5.03
End 1475 10.68 45 0.33 484 3.50 654 4.74
Begin and end 852 6.17 104 0.75 686 4.97 993 7.19

Table 8.2 shows the error types and positions in the word level. In this table, we
investigate the area that generates a large number of each error type. The columns
present the number of correct words and the number of words in each type of errors.
Each line refers to an error position. The error position in the entire sentence means
that all predicted words are incorrect. There are 13809 words in total, with about 54%
of them correctly recognised. The majority of errors are substitution errors, totally
27.68% with 9.78% of them found in the entire incorrect sentence and 16.96% of error
words found at the beginning and/or the end of the sentence area. The deletion errors
are also considerably high. As we can see, deletion errors cover 18.15% of words where
11.45% of them occur in the area of the beginning and/or the end of sentences.

The analysis of error type and position leads to a further investigation in visual
silence modelling. It can be seen that the majority of error occurs at the beginning
and/or the end of utterances rather than in the middle of utterances. To understand
further, we carry a further investigation in this issue in Section 8.4.

8.2 Analysis of word length and word frequency

This investigation analyses errors in terms of word length and word frequency. We
define three groups of word length and three groups of word frequency. The groups of
word length are short words (one to four characters), medium-length words (five to
nine characters), and long words (⩾10 characters). The groups of word frequency are
low frequency words (occur one or two times), middle frequency words (occur between
three to nine times), and high frequency words (occur ⩾10 times).
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Table 8.3 The statistical of word length and word frequency between correct and
incorrect recognised words

Word frequency total correct incorrect
short medium long short medium long

high frequency word (10 times) 48.66 18.24 3.08 0.06 25.46 1.81 0.01
middle frequency word (3-9 times) 30.70 3.89 12.87 1.76 4.08 7.36 0.74
low frequency word (1-2 times) 20.64 1.24 7.50 1.83 1.68 7.24 1.15

Table 8.3 compares the statistical information of word length and word frequency
between correct and incorrect recognised words. Most of the high-frequency words are
short and harder to recognise than longer words. We get 25.46% false recognition in
the short words that occur frequently. We tend to get more correct results if the words
are longer than four characters even if they do not occur often.

Table 8.4 Examples of challenging to predict words and easy to predict words

Examples of difficult to predict words (< 10% correct)
high frequency word middle frequency word low frequency word

A ->(ah)
IT ->(ih t)
I ->(ay)
IN ->(ih n)
IS ->(ih z)
YOU ->(y uw)
HE -> (hh iy)
DOES ->(d ah z)
THEM ->(dh eh m)
AT -> (ae t)

YET ->(y eh t)
TELL ->(t eh l)
DESSERT ->(d ih z er t)
ORDER ->(ao r d er)
DOCTOR ->(d aa k t er)
SURE ->(sh uh r)
MUSTARD ->(m ah s t er d)
CHURCH ->(ch er ch)
MARINE ->(m er iy n)
HOUSE ->(hh aw s)

SITUATION ->(s ih ch uw ey sh ah n)
UNDERSTANDINGLY ->(ah n d er s t ae n d ih ng l iy)
ANALYSIS ->(ah n ae l ah s ah s)
BOARDINGHOUSES ->(b ao r d ih ng hh aw s ah z)
LEATHER ->(l eh dh er)
FOOLING ->(f uw l ih ng)
INSTANTANEOUS ->(ih n s t ah n t ae n iy ah s)
RESULT ->(r ah z ah l t)
ERRORS ->(eh r er z)
HINT ->(hh ih n t)

Examples of easy to predict words (> 90% correct)
high frequency word middle frequency word low frequency word

SHE ->(sh iy)
CAN ->(k ae n)
YEAR ->(y ih r)
WOULD ->(w uh d)
OILY ->(oy l iy)
SMALL ->(s m ao l)
BROTHER ->(b r ah dh er)
MAKES ->(m ey k s)
SELDOM ->(s eh l d ah m)
OVER ->(ow v er)

SHORTAGE ->(sh ao r t ah jh)
BECOME ->(b ih k ah m)
STEEP ->(s t iy p)
BOB ->(b aa b)
REDWOODS ->(r eh d w uh d z)
OUTDOORS ->(aw t d ao r z)
BRIGHT ->(b r ay t)
WIRE ->(w ay er)
LET ->(l eh t)
INCREASES ->(ih n k r iy s ah z)

PANELIZATION ->(p ae n ah l ah z ey sh ah n)
INTELLIGIBLE ->(ih n t eh l ah jh ah b ah l)
ILLUMINATING ->(ih l uw m ah n ey t ih ng)
MERCILESSLY ->(m er s ah l ah s l iy)
VIEWPOINT ->(v y uw p oy n t)
GIGANTIC ->(jh ay g ae n t ih k)
WARDROBE ->(w ao r d r ow b)
GARBAGE ->(g aa r b ih jh)
CONFIRM ->(k ah n f er m)
OPEN ->(ow p ah n)

Table 8.4 gives example words which are relatively easy or difficult to lipread. There
are two effects at play: firstly there is homophene or the confusion of words because
they have identical shapes on the lips and secondly there is the observation that certain
sounds are more visible on the lips than others. Words such as “brother” and “makes”
have bilabials at the start of the word which makes them easier to spot than “at” or
“he”. Longer words are easier to lipread than shorter ones, and the homophene effect
means the classifier has to guess from a considerable number of alternatives (which
might explain why some of the low-frequency difficult words still contain bilabials –
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Fig. 8.3 The phoneme accuracy ranging from the lowest to the highest accuracy.

albeit weakly enunciated bilabials such as found in “marine” or “mustard”). Table 8.4
is also essentially an illustration of various effects - the more frontal-labial is, the easier
it is to lipread; the more homophemes, the worse it is to lipread.

Additionally, in Figure 8.3, we plot the phoneme recognition performance by ranging
from the worst to the best of phoneme accuracy. There is a relation between phoneme
accuracy and the place of articulation in which it related to the level of visibility from
the lips. The phoneme accuracy gives an idea to understand why some words are
harder to predict than others. We suspect that many of the hard-to-predict words,
especially short words, usually start with a vowel sound. This is because they contain
less hints than words starting with a consonant, therefore it is obviously harder to
distinguish between similar words such as A, I, IN and IT. However, words starting
with some consonants, which are invisible on the lips, are also difficult to predict. For
example, words started with /hh/ and /d/.

8.3 Analysis of speaker accuracy

As usual with lipreading systems the identity of the talkers can be very significant. As
shown in Figure 8.4, we plot word accuracy between SI and SD from 56 speakers, word
accuracies are in a wide range, ranging from 20% to 80%. It can be seen that there is
a rough linear relationship between word accuracy of SI and SD (correlation coefficient
R = 0.82). An easy-to-lipread speaker tends to get high word accuracy even if their
data was unseen. In contrast, a hard to lipread speaker got low word accuracy even if
some part of their data is in training. This suggests a link to the speaker identity effect
that still exists in the data although we applied multiple transformations to handle it.

This section attempts to analyse factors from an individual speaker that affect their
lipreading performance. Here we conduct a test to study whether word accuracy of
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Fig. 8.4 Word accuracy in SD vs SI for a variety of talkers.

each speaker is correlated with speaking rate, age, gender, visual dynamics and visual
energy. We investigate the correlation between these factors and SI word accuracy.
We also determine the level of significance of each factor. We test the null hypothesis
H0 : R = 0 where R is the correlation between word accuracy and speaking rate, word
accuracy and gender, word accuracy and age, word accuracy and visual energy, word
accuracy and visual dynamics. Speaking rate is the number of syllables per second.
The mean of speaking rate of TCD-TIMIT corpus is 5.14 syllables per second. Visual
dynamics refers to the rate of change of the lip signal while speaking. The visual
dynamics of each speaker is calculated by averaging the gradient magnitude of the
DAE features over time. The visual energy of each speaker is the mean energy of their
DAE features.

Among many factors, results in Table 8.5 show that there is a significant correlation
between speaker accuracy and the visual dynamics (p < 0.05). There is no significant
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Table 8.5 Level of significance for the test H0 : R = 0. t is modeled by the t-student
distribution with DF degrees of freedom.

Speaker factors R t DF p(|t|)
word accuracy vs. speaking rate -0.19 -1.4221 54 0.1607
word accuracy vs. gender 0.18 1.3447 54 0.1843
word accuracy vs. age 0.12 0.8882 54 0.3784
word accuracy vs. visual energy -0.26 -1.9787 54 0.0530
word accuracy vs. visual dynamic 0.34 2.6568 54 0.0104

correlation between word accuracy and other factors. In particular, we have no evident
to support the conventional wisdom which is that women are easier to lipread than
men. A simple explanation of Table 8.5 might be that it is easier to lipread speakers
that make high-energy motions in their mouth regions.

8.4 Investigation of visual silence

Visual silence is the visual signal present during acoustic silence. Visual silence strongly
relates to speech co-articulation where the lips are getting into position for the next
sound. Indeed the function of silences between words is to allow for breaths and for
the articulators to reposition themselves in time for the next word. So lip movements
in audio silence are caused by the future production of sound.

Our analysis in error position shows that 53% of the total sentence error rate occurs
either at the start or end of a sentence due to lip movements of visual silence. Before a
talker utters a sentence, at the sentence start, the talker has moved their lips once to
take a breath and again to position their lips to wait for the ready-to-speak position.
We analyse delays between acoustic and visual alignment in the TCD-TIMIT training
data and found that there are 200-600 millisecond shifts from a starting point of the
sound. Several observations reported that the audio lags behind the visual within the
range of 100 to 300 milliseconds without disrupted speech perception [154, 93, 23].
However, the mismatch in the auditory and visual alignment in our training data is
longer than that. Thus, the start of the breath generates extra movement in the lip
region. At the end of a sentence, this process has happened again to move the lips back
to the original shape and position which is taking another 200-300 milliseconds. The
problem occurs when we train a model with a single silence model to handle all of this
visual silence process. Our model can deal with stationary lip signals when the lips do



8.4 Investigation of visual silence 135

not move. The rest of the process such as lip opening to take a breath and return to
the original position causes errors due to the high energy motion of the lip signal.

Acoustic signal

Acoustic energy

Visual energy

Acoustic alignment

Visual alignment

Fig. 8.5 The difference between acoustic and visual alignments.

When this unexpected visual silence occurs in the model training, it causes false
sentence alignment even with the training utterances. Figure 8.5 shows time alignment
created by an acoustic signal and visual signal. The mismatch in time alignment
between audio and visual is obviously seen at the start/end of the sentence between
silence and first/last word. Even though the breath can also be observed via the
acoustic signal in the same position in visual, it has very low energy. In visual speech,
in contrast, mouth opening or closing causes significant temporal changes over frames.

To see this problem more clearly, we draw the visual alignment word boundary
onto the video frame which we show in Figure 8.6. Looking at the figure we can see
the first word “don’t” in the magenta label. It is quite unrealistic that a monosyllabic
word takes longer than 25 frames covering approximately 833 milliseconds. The issue
comes from mislabeling of the visual silence area. More specifically, the mislabeling
has happened due to the mouth opening to take a breath preparing to speak. This
problem directly affects words at the start and the end of an utterance both in training
and testing and still needs to be solved.
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DON'T

ASK ME

Fig. 8.6 Example of visual speech alignment of a sentence "Don’t ask me to carry an
oily rag like that" shown in word level. The word alignment shown here is obtained
from visual speech DNN-HMM via sMBR model trained on deep autoencoder (DAE)
features. Colour-boxes indicate word boundary while no box indicates no word or a
silence phone.

Although the DNN-HMM is better at modelling a complicated visual signal com-
pared to a conventional GMM-HMM, it is still unable to model the high variation that
occurs within visual silence. As a consequence, word recognition results at the start
and end of sentences are more likely to be incorrect compared to words in the middle.
Furthermore, the misalignment in visual silence effect to the first and the last word that
leads to unreliable modelling phonetic classes in that particular area. Our assumption
is that there would be a further improvement if we can eliminate the visual silence
problem. To support this idea, we reproduce the visual speech model using modified
silence features where we remove the silence phone at the end of all TCD-TIMIT
sentences. The alignment of the silence phone is obtained from the acoustic forced
alignment. The results are shown in Figure 8.7.

Not surprisingly, removing the silence has benefits to system performance. This
is seen in Figure 8.7, where the model trained on the modified silence yields better
word accuracy than the original feature. We detailed the improvement and reduction
of errors in Table 8.6. There is a 5.59% absolute increase in word accuracy which
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Fig. 8.7 Word accuracy (%) of speaker dependent lipreading (top) and speaker inde-
pendent lipreading (bottom) comparing between original data (blue) and the modified
silence data (red) as a function of model training methods.
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Table 8.6 Word accuracy (%) and errors of speaker independent lipreading trained
on DAE features with/without silence modification. (Corr: word correction, Sub:
substitution error, Del: deletion error, Ins: insertion error, Err: all error and S.Err:
sentence error)

Model Feature Silence %Word acc Corr Sub Del Ins Err S.Err

DNN+SMBR10 DAE original 53.83 55.87 27.90 16.23 2.03 46.17 75.17
DAE modified 59.42 60.73 24.07 15.13 1.33 40.60 68.30

Absolute change +5.59 +4.87 -3.83 -1.10 -0.70 -5.57 -6.87
Relative change +10.38 +8.71 -13.74 -6.78 -34.43 -12.06 -9.14

Table 8.7 Sentence level error analysis

Modified silence
(sentence level error analysis)

#Utt
Before After

Total 1666 1666
Correct 390 497

Error type
Insertion 215 185
Deletion 960 908
Substitution 1159 1046

Error position

Entire sentence 291 247
Middle 91 109
Begin 333 364
End 306 248
Begin and end 255 202

obtained almost 60% word accuracy in speaker independent lipreading when we train
the model on the modified silence utterances. Indeed, we can obtain high relative error
reduction for all three types of errors especially insertion and substitution. Also we
observe error reduction in sentence level as shown in Table 8.7. However, we chose
not to cut the silence phone at the start of a sentence since it still contains a clue to
predict phonemes in the first word. We believe if we could identify the breath at the
beginning of an utterance and remove it, we could further improve the word accuracy
of the system.

Although we see improvement in overall word accuracy, there is some negative
effect of removing a silence area. Figure 8.8 illustrates a positive and a negative effect
of eliminating silence in terms of absolute change in word accuracy of each speaker.
We plot the absolute change of word accuracy of speaker dependent against speaker
independent results. Word accuracy has been improved in most cases in the speaker
independent scenario, but word accuracy has also degraded in many cases in the speaker
dependent scenario.
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Fig. 8.8 Positive and negative effect of modifying visual silence in terms of absolute
change in word accuracy of each speaker.

8.5 Conclusion

This Chapter presents results analysis of transcriptions generated from our best lipread-
ing system. We found that long words are easier to lipread than short words. A word
carrying more visibility-on-the-lip sound has higher chance to be predicted correctly
than a word with invisible sound originating inside the mouth.

In terms of speaker identity, we found that the word accuracy of a talker has a
strong positive correlation between their SI accuracy and SD accuracy. We found
a significant positive correlation (p < 0.05) between word accuracy and the rate of
change in lip signal which we call visual dynamics. The high volume of visual dynamics
means a talker open their mouth wider.

Finally, we observe that lipreading transcriptions contain lots of substitution and
deletion errors. These errors obviously occur mostly at the beginning and end of a
sentence due to the misalignment of the silence model. We conduct a preliminary
investigation on visual silence. We eliminate the silence area at the end of a sentence
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and retrain the model. We get around 5% improvement in word accuracy in both SD
and SI scenarios.



Chapter 9

Summary and future work

9.1 Thesis summary

To return to the research question: can we simply employ the DNN-HMM hybrid
approach, which is gaining usage in acoustic recognition, to improve visual speech model
and computer lipreading? The answer is yes we can. We successfully built a computer
lipreading system for the LVCSR task using the DNN-HMM hybrid approach proposed
in speech recognition systems. Our approach is to tackle challenges in lipreading
presented in Chapter 1. We built a word recogniser based on the phoneme unit. We use
30-dimensional deep autoencoder (DAE) features extracted from gray-scale lip ROIs.
The features are then pre-processed via LDA-MLLT and fMLLR feature transformation
methods. We train visual speech models on a six-hidden layer DNN-HMM optimised
via the cross-entropy criterion and the sMBR sequence distriminative training method.
In recognising a 6000-word vocabulary, we achieve word accuracy of 61.82% in a speaker
dependent scenario and 59.42% in a speaker independent scenario.

We also attempt to answer how does a DNN-HMM work better than a GMM-HMM?
and why? Conventional systems have shown speaker independence to be a challenge,
here with a novel DNN-HMM architecture we have reduced the speaker effects. We
speculate that the success of the DNN has likely to do with its ability to better model
the effects of co-articulation which is a well-known bugbear of human and machine
lipreaders. Furthermore, we found that visual speech features extracted from lip ROIs
retain most of the variation regarding speaker identity information. Employing multiple
feature transformation methods to pre-process features can reduce the speaker identity
effect and enhance the performance in the speaker-independent scenario. Indeed,
each DNN layer works as a feature transformation and also minimises this effect.
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We observed evidence where a deeper model obtains higher word accuracy than a
shallow model (one hidden layer) when the number of nodes in total was constrained
to be the same. This evidence is further investigated and explained by feature space
visualisation. We demonstrated that the speaker dependency effect reduces throughout
feature pre-processing steps and DNN layers.

Our contributions of each chapter can be summarised as follows:
In Chapter 5, we incorporate visual information in an audiovisual speech recognition

system. We have explored the use of DNNs in visual and audiovisual speech recognition.
The experimental results obviously demonstrated that the DNN techniques, even in
standard settings, can beat the conventional GMM-HMM speech recogniser (both the
unimodal and bimodal speech recognition system). In a speaker-dependent visual
speech (lipreading) experiment, DNNs gave 85% word accuracy, a huge improvement
over the baseline HMM performance of 33%. Moreover, we found that DNNs improved
the robustness of audio-only and audiovisual recognition tasks by approximately 10 and
12dB respectively. It is interesting to see that the performance is improved for matched-
condition recognisers, where the performance of the audiovisual system closely followed
the visual-only system. This highly suggests that DNNs have the power to model
complex signals in very challenging conditions (lower than 0dB) if we provide enough
information. The result of matched-condition recognisers is the primary motivation for
us to start explore more on lipreading technology based on DNNs.

Chapter 6 presents the development of LVCSR computer lipreading on the TCD-
TIMIT corpus. We have built a successful lipreading system using DNNs and sequence
discriminative training. Comparing our result with a conventional HMM, we see that
performance has increased from around 25% word accuracy to around 48% in speaker
independent mode. Looking in more detail, large improvements are obtained using
fMLLR, the DNN rather than a GMM, some temporal stacking and the use of sequence
discriminative training. The best word accuracies are 52.88% in speaker dependent
mode and 48.71% in speaker independent mode obtained on the phoneme unit rather
than the viseme unit. We have added more evidence to the argument that phoneme
classifiers can outperform those of visemes. Based on evidence showing an improvement
in word accuracy from the reduction in homophene words in a pronunciation dictionary,
we suggest that phonemes are the current best class labels for lipreading.

In Chapter 7, we show that the original space of visual features is influenced by
speaker identity. This problem induces a difficulty to train visual speech classification
to match to a linguistic unit (phoneme/viseme) even with DNN models. We apply
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several feature processing steps that are relevant to reduce this effect and gain speaker-
independent lipreading accuracy. We achieved 53.83% word accuracy in the speaker
independent scenario using DAE features. Furthermore, we illustrate benefits of DNN
models in term of providing extra feature transformations inside their hidden layers.
Thus, the deeper layers of the representation tend to be more abstract (less affected by
the environment).

Chapter 8 presents a results analysis of transcriptions generated from our best
lipreading system. We investigate the visual silence problem where we eliminate
the silence area at the end of a sentence and retrain the model. We get around 5%
improvement in word accuracy in both SD and SI scenarios. Our best system for the
large vocabulary task yields 61.82% word accuracy in SD and 59.42% word accuracy
in SI on the TCD-TIMIT dataset.

In this work, we confirm that computer lipreading an unseen speaker in LVCSR is
possible. According to advances in machine learning, more specifically deep learning
and a high growth rate of video data, we expect that computer lipreading is soon to
be a viable product. There are some limitations in our work discussed in the following
section. We also plan further investigation for future work to enhance lipreading
systems discussed a later section.

9.2 Limitations

In this thesis, we evaluated lipreading in a studio environment which is the most simple
condition concerning challenges to video processing. Also, this system still works as
an offline system where we have enough time to process complex features and use
a two-pass decoder. Indeed, the decoding process starts after receiving the whole
utterance, because the feature pre-processing steps are computed in an utterance basis.

A limitation in terms of the training method is that DNN-HMM training strongly
relies on a state level alignment and the fMLLR features generated from a GMM-HMM
system. Therefore, the limitations of the GMM-HMM system somehow transfer to the
DNN-HMM system. It can be seen that the DNN-HMM is not yet an ultimate answer
for every problem since it cannot handle the visual silence model properly. Although
a deep neural network visual speech model has more potential modelling a complex
signal, this model still needs correct labels to train. And the quality of labels heavily
relies on the performance of a GMM-HMM.
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9.3 Future work

So far, this thesis shows that computer lipreading an unseen speaker for LVCSR is
possible. The visual speech model via DNN-HMMs improves lipreading accuracy over
the GMM-HMM system in both speaker dependent and speaker independent scenarios.

We also plan further investigation for future work to enhance lipreading system as
follows:

• We see a wide range of word accuracy among different talkers due to the effect
of speaker identity. We can improve the DNN-HMM by incorporating a speaker-
informed feature such as i-vectors into the input layer. In ASR, this technique is
known as a speaker adaptation of DNN acoustic models [129, 70, 69] that offers
5-10% relative improvement in ASR performance.

• In terms of a visual speech unit, there are other choices of speech units that can be
used to model visual speech, for example, syllable, subsyllable such as onset-rime
[75], and dynamic visemes [146]. According to a study by Chandrasekaran et al.
[23], visual speech moves at a similar time scale as the syllabic level of speech and
could provide a cue to identify a syllable segment. Therefore, we can consider a
longer unit to model visual speech instead of a short unit as a phoneme.

• In robust speech recognition system, an acoustic model is trained on thousands
of hours of speech data. One technique to increase training data size is to use
data augmentation. Generative Adversarial Networks (GANs) [45] have been a
powerful method to generate images in different styles. We could apply GANs to
augment the visual speech corpus by transforming an appearance of a speaker
and use this data as an additional training set.

• There are many advanced techniques in deep learning that we could also consider,
for example, TDNN, LSTM, and the end-to-end approach.



Appendix A

Optimising GMM-HMM visual
speech modelling

The idea of tuning GMM-HMM parameters is inspired by Joy et al. [65], in work in
TORGO [125] for a Dysarthric speech recognition task. They trained an acoustic model
for dysarthric speech recognition system using GMM-HMMs and DNN-HMMs with
careful tuning of speaker-specific parameters. They reported a new state-of-the-art
result with a relative WER reduction of 17.62% from the baseline system trained on a
more complex model. There is an assumption here that dysarthric speech is similar in
some way to visual speech [60].

This set of experiments aims to examine the optimal parameters of visual speech
modelling via the conventional GMM-HMM training on the Kaldi toolkit. Since Kaldi
recipes are developed for acoustic speech modelling, most of the parameters are tuned
on acoustic features with a large speech dataset. In contrast, our available training
dataset is small and the visual speech signal is complex. Thus, we fine-tune parameters
in GMM-HMM visual speech modelling most suitable for each feature.

Training the GMM-HMM visual speech model involves these steps: (1) context-
independent training; (2) context-dependent training, (3) context-dependent training
with LDA/MLLT, (4) context-dependent training with speaker adaptive training. The
model obtained in the last step often outperforms the models trained from the previous
steps.
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Effect of adding delta and normalisation

This experiment investigates the effect of feature processing for context-independent
GMM-HMM (CI-GMM) visual speech modelling. CI-GMM is used as an initialising
step for context-dependent GMM-HMM. It also generates phonetic-state labelling for
the entire training set.

Here we explore feature processing parameters including the Delta windowing
and feature normalisation. The default setting uses two context-windows (w=2) for
calculating the velocity (∆) and the acceleration (∆∆) which is a standard setting for
acoustic modelling. Feature normalisation is optional since acoustic speech has many
choices to normalise features for example, vocal tract length normalisation (VTLN).
For visual features there may be a large scale difference between the dimensions of the
feature vector. Therefore, we apply feature mean and variance normalization (FMVN)
to rescale the visual features (Chapter 4.4.2).

In this experiment, we train the CI-GMM with the standard three-state left-to-right
topology. We set the maximum number of Gaussian components to 1000. There
are ten variations of feature processing. The variations include using a raw static
feature, adding FMVN, adding derivatives up to third order, using w context window
to calculate the derivative, where w = 1, 2, 3, 4, 5.

Table A.1 Word accuracy (%) of speaker dependent lipreading using CI-GMMs.

Speaker dependent (SD)

Feature processing Eigenlips
30 dim

DAE
30 dim

DCT
44 dim

DTCWT
66 dim

Raw + ∆ + ∆∆ (default w = 2) 6.78 ±0.20 7.63 ±0.18 3.90 ±0.05 -1.82 ±0.14
Raw 2.89 ±0.14 3.65 ±0.13 2.23 ±0.09 1.74 ±0.09
Raw + FMVN 3.59 ±0.19 4.29 ±0.20 2.38 ±0.08 2.13 ±0.08
Raw + FMVN + ∆ 9.95 ±0.61 8.38 ±0.28 5.29 ±0.25 2.22 ±0.16
Raw + FMVN + ∆ + ∆∆ (w = 1) 9.62 ±0.24 7.81 ±0.40 4.97 ±0.38 1.40 ±0.26
Raw + FMVN + ∆ + ∆∆ (w = 2) 8.26 ±0.17 7.65 ±0.45 4.93 ±0.10 0.92 ±0.38
Raw + FMVN + ∆ + ∆∆ (w = 3) 8.44 ±0.40 7.79 ±0.37 5.10 ±0.13 0.98 ±0.31
Raw + FMVN + ∆ + ∆∆ (w = 4) 9.39 ±0.71 8.78 ±0.29 4.76 ±0.05 1.53 ±0.06
Raw + FMVN + ∆ + ∆∆ (w = 5) 8.57 ±0.21 8.54 ±0.30 4.67 ±0.01 1.38 ±0.07
Raw + FMVN + ∆ + ∆∆ + ∆∆∆ 7.41 ±0.28 6.80 ±0.34 4.65 ±0.32 -0.10 ±0.01

Table A.1 shows the mean word accuracy with ±1 standard error for the speaker-
dependent (SD) system. The column on the left presents ten variations of feature
processing. The raw feature refers to the original form of a static feature and (+) means
augmenting the feature vector. The FMVN is equivalent to z-score normalisation, ∆
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Table A.2 Word accuracy (%) of speaker independent lipreading using CI-GMMs.

Speaker independent (SI)

Feature processing Eigenlips
30 dim

DAE
30 dim

DCT
44 dim

DTCWT
66 dim

Raw + ∆ + ∆∆ (default w = 2) 6.57 ±0.10 7.04 ±0.28 3.47 ±0.08 -1.62 ±0.48
Raw 2.53 ±0.04 3.21 ±0.21 2.11 ±0.07 1.99 ±0.13
Raw + FMVN 3.01 ±0.12 3.82 ±0.25 2.47 ±0.02 1.58 ±0.48
Raw + FMVN + ∆ 8.44 ±0.41 8.16 ±0.55 4.55 ±0.07 2.19 ±0.39
Raw + FMVN + ∆ + ∆∆ (w = 1) 9.03 ±0.56 7.60 ±0.46 4.87 ±0.09 1.23 ±0.08
Raw + FMVN + ∆ + ∆∆ (w = 2) 7.89 ±0.19 7.40 ±0.76 4.64 ±0.06 0.87 ±0.30
Raw + FMVN + ∆ + ∆∆ (w = 3) 8.10 ±0.21 8.17 ±0.33 4.84 ±0.47 0.69 ±0.61
Raw + FMVN + ∆ + ∆∆ (w = 4) 8.37 ±0.35 7.82 ±0.47 4.78 ±0.26 1.32 ±0.33
Raw + FMVN + ∆ + ∆∆ (w = 5) 7.98 ±0.03 7.85 ±0.34 4.72 ±0.22 1.49 ±0.32
Raw + FMVN + ∆ + ∆∆ + ∆∆∆ 6.77 ±0.06 6.71 ±0.41 4.84 ±0.56 0.09 ±0.35

and ∆∆ are usually known as velocity and acceleration respectively. w is the size
of window for computing ∆. Word accuracy for the four feature types is shown in
the columns on the right. Looking at the first row (default setting), the best word
accuracy is 7.63%, obtained using DAE features; followed by 6.78%, obtained by
Eigenlips; and 3.90% obtained by DCT. The word accuracy of lipreading trained on
the DCTWT features is down to -1.82%. The negative number indicates large numbers
of insertions (detailed in Chapter 4.6). Applying FMVN increases word accuracy in
all features. Comparing systems without FMVN (∆ + ∆∆, w = 2) and with FMVN
(FMVN + ∆ + ∆∆, w = 2), the latter yield +1.48% for Eigenlips; +0.02% for DAE;
+1.03% for DCT; and +2.74% for DTCWT. The best word accuracy of SD CI-GMM is
9.95% obtained from Eigenlips features with FMVN + ∆. Followed by DAE features,
there is 8.74% word accuracy obtained from FMVN + ∆ + ∆∆ (w = 4).

Table A.2 shows the mean word accuracy of speaker-independent (SI) systems
obtained from four features with ten variations of feature processing. The results
between SD and SI are similar, although the SI results are worse than SD, as SI
is regarded as a tougher problem. The best result of SI is 9.03% also obtained by
Eigenlips, but obtained for different feature processing which is FMVN + ∆ + ∆∆
(w = 1).

These results show that improvements due to feature processing tend to be main-
tained irrespective of whether the system is trained in the SI or SD configurations.
The results suggest that adding dynamic information is useful since the information
provided in a static feature has insufficient cues to predict a linguistic unit. The support
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evident is the increasing of word accuracy from 2-5% in each feature by adding ∆.
This result is consistent with the previous work reported on TCD-TIMIT [49]. Second,
setting the window size w = 2 is not the optimal solution in lipreading. We found that
the word accuracy can still increase when we change the window size, i.e. at w = 1
and w = 3. Third, adding more dynamic features by using the third-order of derivative
does not improve accuracy. Finally, applying FMVN enhances word accuracy.

To select feature processing for CI-GMMs and context-dependent GMM-HMMs in
the next step, we choose ∆ + ∆∆ at w = 3 with FMVN. We observe that using FMVN
and adding up to second-order derivatives significantly outperforms the default setting,
but changing the size of the window does not gain very much. Note that, w = 3 is
equivalent to using information from the actual video frame after applying feature
interpolation for upsampling 29.97fps to 100fps. The next experiment moves on to the
context-dependent GMM-HMM system.

Tuning of context-dependent tied-states clustering

The previous experiment demonstrates the effect of feature processing for CI-GMMs.
The best word accuracy of the SD system is 9.95%, and of the SI is 9.03% obtained
using the Eigenlips features. Here we use a context-dependent model to improve word
accuracy. In this experiment, we train a context-dependent GMM (CD-GMM). We
construct a triphone-context model by adding context information over three phonemes:
the middle phone, and the phonemes to the left and right.

An important parameter in this step is to set the number of triphone tied-state
clusters as described in Section 4.5. This experiment determines the proper number
of the tied-state clusters for CD-GMM training. In Chapter 6, we set the number of
the tied-states clusters to 2000. However, this number was tuned for the Wall Street
Journal (WSJ) speech corpus that is a large speech corpus containing 400 hours. In
this experiment, we reduce the number of context-dependent tied-states from 2000 to
between 50 and 1500. It is important to note that these numbers refer to the maximum
number of the tied-state cluster. The actual cluster size can be slightly less depending
on the variance of each feature. Here we use ∆ + ∆∆ and w = 3 for feature processing
and set the maximum number of Gaussian component to 15000.

Table A.3 compares the word accuracy of SD lipreading among four types of features
obtained by CD-GMMs with seven different sets of tied-state clusters. The best result
is 13.62% obtained from a CD-GMM with 100 state-clusters trained on DAE features.
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Table A.3 Word accuracy (%) of speaker dependent lipreading using context dependent
GMMs (tri-phone models) with various numbers of tied-states.

Speaker dependent (SD)

# Context dependent states Eigenlips
30 dim

DAE
30 dim

DCT
44 dim

DTCWT
66 dim

50 10.28 ±0.17 12.26 ±0.32 4.27 ±0.14 -4.24 ±0.18
100 12.13 ±0.36 13.62 ±0.14 5.16 ±0.25 -1.84 ±0.47
200 11.27 ±0.37 12.18 ±0.06 4.26 ±0.48 -3.94 ±0.37
500 10.14 ±0.67 10.63 ±0.34 2.85 ±0.63 -8.27 ±0.32
1000 9.14 ±0.57 9.41 ±0.22 1.18 ±0.27 -10.05 ±0.55
1500 8.64 ±0.65 8.90 ±0.37 0.35 ±0.18 -11.70 ±0.09

2000 (default) 7.81 ±0.61 7.14 ±0.48 -0.71 ±0.38 -12.29 ±0.41

Table A.4 Word accuracy (%) of speaker independent lipreading using context dependent
GMMs (tri-phone models) with various numbers of tied-states.

Speaker independent (SI)

# Context dependent states Eigenlips
30 dim

DAE
30 dim

DCT
44 dim

DTCWT
66 dim

50 7.97 ±0.28 10.50 ±0.49 3.90 ±0.21 -0.75 ±0.42
100 10.48 ±0.47 12.46 ±0.86 5.18 ±0.51 0.84 ±0.45
200 11.23 ±0.30 12.36 ±0.25 5.11 ±0.53 -0.67 ±0.50
500 11.39 ±0.44 10.49 ±0.54 4.09 ±0.55 -4.26 ±0.32
1000 9.97 ±0.33 9.28 ±0.46 2.79 ±0.52 -6.36 ±0.44
1500 9.83 ±0.29 8.13 ±0.64 1.91 ±0.57 -8.08 ±0.54

2000 (default) 9.46 ±0.14 6.98 ±0.60 1.38 ±0.52 -9.08 ±0.69

For the Eigenlips features, the word accuracy is 12.13% obtained on 100 clusters. For
the DCT and the DTCWT features, we observe no significant gain.

If we now turn to the SI result in Table A.4, we observe similar results. Increasing
the number of clusters tends to decrease word accuracy, and 100 state-clusters seem to
be optimal. The best word accuracy is 12.46% at 100 state-clusters trained on DAE
features, followed by Eigenlips features that archive 10.48% word accuracy. We found
no significant gain for DCT and DTCWT features.

Increasing the context-dependent state clusters reveals more benefits when more
training data is available. As reported in a speaker-independent continuous speech
recognition task [79], they found that increasing the number of triphone clusters reduces
WER only when they use more data. For example, the optimal cluster for 30 speakers
(1200 utterances) is 300 clusters, where 1000 clusters are optimal for 105 speakers (4200
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utterances). Therefore, in our task with this particular feature processing, 100 clusters
are the optimal number that gives the best word accuracy in SD and SI lipreading.

However, the proposal of applying CD-GMMs is motivated by two reasons: first,
to model the phone contextual variations dealing with the visual coarticulation effect;
second, to share the training data within the phone cluster. Moreover, the tuned CD
cluster is further used for LDA/MLLT estimation in the next step. Therefore, we
choose 500 clusters which are high enough to separate the phone group while still yield
an equivalent or better result than the monophone (significantly better is only the
DAE feature set (p < 0.01)).

Tuning of window length and dimension of LDA/MLLT transformation

In the previous experiment, we showed that using CD-GMMs with the optimal number
of cluster increases lipreading performance. However, the result obtained from the
CD-GMM with the ∆ + ∆∆ feature processing is not very high. In this step, we
use a well-known feature processing method, called LDA/MLLT, to find discriminant
features associating with phonetic-state clusters.

A successful lipreading system that employs LDA/MLLT is reported in [113, 114].
As a supervised feature dimensionality reduction method, LDA/MLLT has been applied
to reduce dimensionality for both intra-frame to retain class discriminant features and
inter-frame to embed dynamic information associated with a speech class. The retained
LDA/MLLT dimension is usually 40-41, but the number of concatenated frames differs.
In [114, 148], they use ±7 frames, but [4, 1] use only ±3 frames which is equivalent to
the setting in acoustic speech recognition.

In this experiment, we investigate LDA/MLLT feature processing over a varying
window size starting from ±1 to ±15 frames (10 milliseconds/frame). And we also
vary the retained LDA dimension between 20 and 40 dimensions for the five-dimension
interval. Here we train CD-GMM, with 500 clusters, and we use 15000 components for
the number of Gaussians.

We compare lipreading performance using various configurations of the LDA/MLLT
feature transformation to train CD-GMMs for visual speech modelling. Figure A.1
presents the speaker dependent lipreading results. The four sub-figures present the
results by the four-types of features: (a) Eigenlips, (b) DAE, (c) DCT, and (d) DTCWT.
Each sub-figure presents word accuracy of lipreading (y-axis) as a function of context
window size (x-axis) ranging from ±1 to ±15. Here the number following the ± sign
indicates the number of frames added. For example, the ±1 case computes LDA/MLLT
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Fig. A.1 Word accuracy (%) of speaker dependent lipreading (SD) using various
LDA/MLLT dimensions (ranging from 20 to 40) as a function of context window
(±N) where N = {1, 2, ..., 15}. The graphs on the top are the results from utilising
LDA-MLLT on (a) Eigenlips, (b) DAE; at the bottom are the results on (c) DCT, (d)
DTCWT.

features by splicing three static vectors: the current frame, one from the preceding
frame, and one from the succeeding frame. Thus, the spliced vector will cover 30-ms.
Furthermore, each line in the graph indicates the result obtained from different retained
LDA dimensions. Also shown in each line is the ±1 standard error.

Here we report the best result of each feature set using their best configuration
of the LDA/MLLT transformation. For Eigenlips (a), the best result is 34.56% with
±9 context window and retained 25 dimensions. For the DAE (b), the best result is
37.72% with a ±15 context window and 20 retained dimensions. For the DCT (c), the
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best result is 32.90% with a ±12 context window and 20 retained dimensions. For the
DTCWT (d), the best result is 36.20% with a ±11 context window and 20 retained
dimensions.

Figure A.2 presents the speaker independent lipreading results. Here word accuracies
are reported, ranging from the highest to the lowest performance. First, the best result
of SI CD-GMM with LDA/MLLT feature transform is 32.60% word accuracy obtained
from the DAE feature with a ±10 context window and 25 retained dimensions. Second,
the Eigenlips (a) feature obtained 29.30% word accuracy using a ±14 context window
and 25 retained dimensions. Next, the DTCWT (d) result is 26.79% using a ±8 context
window and 25 retained dimensions. Last, the DCT (c) feature obtained 26.27% with
a ±11 context window and 20 retained dimensions.

Using the LDA/MLLT transformation to find linear discriminant features highly
impacts the performance of computer lipreading, resulting in the improvement of word
accuracy of all features in both SD and SI conditions. We report the absolute word
accuracy gained by comparing to the previous step. In the SD scenario, the absolute
performance increases are 22.43% for Eigenlips, 24.10% for DAE, 27.74% for DCT, and
56.54% for DTCWT features. The absolute gain in the SI scenario is also high, namely
17.91% for Eigenlips, 20.14% for DAE, 21.09% for DCT, and 44.94% for DTCWT
features.

There is no evidence to retain up to 40 dimensions of LDA/MLLT features. It
appears that retaining too many LDA dimensions is unnecessary. We find that reducing
the number of dimensions to 20 to 25 dimensions gives the highest word accuracy. This
result is in agreement with the findings of Joy et al. [65] on the TORGO dysarthric
speech data. They found that reducing LDA dimensions to 25–30 outperforms the
40-dimensional LDA. For context windows, the results show that using ±3 consecutive
frames is not optimal. We found that increasing the context window can improve
lipreading performance and ±7 seems to be the best. However, if we look at the error
bar in the graph, we hardly see the significant improvement among different window
sizes. Also there must be a trade-off between accuracy and ability to design online
lipreading systems: large context windows increase latency.

It is relevant to note that the best window size differs across features and scenarios.
For example, DCT and DTCWT seem to give good results when increasing the window
length. However, if we look at the SI scenario where we test on unseen speakers,
the best solution is located in the middle, between ±6 and ±8. Therefore, we select
LDA/MLLT dimension and window length for each feature set from the best result in
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Fig. A.2 Word accuracy (%) of speaker independent lipreading (SI) using various
LDA/MLLT dimensions as a function of context window (±N) where N = {1, 2, ..., 15}.
The graph on the top are the results from utilising LDA-MLLT on (a) Eigenlips, (b)
DAE; at the bottom are the results on (c) DCT, (d) DTCWT.

their SI scenario. In the next step we train speaker adaptive CD-GMMs using fMLLR
features. We estimate the speaker adaptive transform on top of the LDA/MLLT
feature.

Tuning the number of context-dependent states on CD-GMM-SAT

The previous experiment applied the LDA/MLLT feature transformation resulting in
noticeable gains in CD-GMM lipreading. The best results are 37.72% and 32.60% on the
SD and SI tasks respectively, both obtained from the DAE features with LDA/MLLT
transformation. Here is the last step of the GMM-HMM training. We use the SAT
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method to reduce speaker variability and to enhance lipreading performance. We
estimate speaker normalised features by applying fMLLR on the extracted LDA/MLLT
features. Note that each feature set uses different LDA dimensions and context windows
depending on its best configuration.

In this experiment, we investigate the context-dependent state cluster to finalise
an appropriate state cluster for each feature set. This fine-tuned cluster will carry
on to the DNN-HMM training as a class label, called senone label. We evaluate six
different sizes of tied-states clusters: 100, 200, 500, 1000, 1500, and 2000. Here we
compare the model on four-types of features with fMLLR feature processing. We train
CD-GMM-SAT visual speech model with 15000 Gaussian components.
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Fig. A.3 Tuning the number of context dependent states of the CD-GMM SAT method.
The top graph shows speaker dependent (SD) and the bottom speaker independent
(SI) results.
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Figure A.3 presents the results obtained from the CD-GMM-SAT system on the SD
(top) and the SI (bottom) scenarios. We report word accuracy (y-axis) as a function of
the number of tied-state clusters (x-axis). The colours in the bar chart refer to the
four feature types with LDA/MLLT and fMLLR feature transforms.

Here we investigate six different numbers of tied-state clusters: 100, 200, 500, 1000,
1500, 2000. In contrast to the results obtained from the CD-GMM system with Delta
features, in this CD-GMM-SAT system we found that increasing state clusters improves
lipreading performance. The results indicate that 1000 is the optimal number of state
clusters for all four feature types and scenarios.

The speaker adaptive training method offers a significant improvement in GMM-
HMM training over the LDA/MLLT features. Here we report performance of the
SD scenario on the CD-GMM-SAT with fMLLR in word accuracy and the absolute
gain compared to the LDA/MLLT results. The DAE features achieved 41.50% word
accuracy which is significantly better than other features. It yields a 3.78% gain
over the LDA/MLLT feature transformation. There are no significant differences
among DTCWT, Eigenlips, and DCT performance. The DTCWT obtains 40.26%
word accuracy with 4.06% increase over LDA/MLLT. The Eigenlips features obtain
39.80% word accuracy with a 5.24% improvement. The DCT features obtain 39.35%
word accuracy with a 6.45% enhancement.

There is a more substantial improvement in word accuracy of the SI scenario
compared to the CD-GMM with LDA/MLLT system. The SI results on CD-GMM-
SAT are shown in Figure A.3 (b) and the LDA/MLLT results in Figure A.2. Here DAE
still obtains the highest performance but smallest gain compared to other features.
The word accuracy of DAE features is 39.17% with a 6.57% absolute increase. The
Eigenlips, DCT, and DTCWT results are 36.45%, 35.20% and 35.46% respectively.
Compared to the LDA/MLLT, there are 7.15% gains for Eigenlips, 8.93% for DCT,
and 8.67% for DTCWT.

From both graphs, it can be seen that by far the highest performance of the GMM-
HMM lipreading system is obtained using the DAE feature. The optimal number of
clusters is 1000. The best result for SD is 41.50% and for SI is 39.17%. In addition,
DAE performance has the highest consistency with the smallest performance differences
between scenarios. Comparing word accuracy between SD and SI, the performance
differences are 2.33% for DAE, 3.35% for Eigenlips, 4.15% for DCT, and 4.80% for
DTCWT features.
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In summary, the results in each GMM-HMM training step indicate that applying
feature transformation methods, such as LDA/MLLT and fMLLR, contribute directly
to the word accuracy of the lipreading system. Careful fine-tuning of the feature
extraction parameters that suit each static feature set is necessary. However, we want
to note that this fine-tuning over three-fold cross-validation can induce an optimistic
bias specially if the dataset is small [22]. To avoid this bias, a better method such as
nested cross-validation [138] has been suggested. The final GMM-HMM-SAT model,
the context-dependent state clustering, the phonetic time alignment, and the fMLLR
features are carried on to use in DNN-HMM training.
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