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Abstract 

Thanks to rapid urbanization and climate change, most regions, particularly cities, are 

facing the risk of natural disasters and extreme weather events. Flooding, the most 

common type of natural disaster, has accounted for nearly 47% of all weather-related 

natural disasters since 1995, has killed 157,000 people, and has affected more than 

2.3 billion people. Despite physical damage, floods also interrupt economic activities 

and result in huge and unacceptable economic costs that people cannot see directly. 

Thus, comprehensive analysis of the economic impact by flood disaster on the 

industrial and economic system has become an urgent and essential part of urban 

recovery and sustainable development. However, there is a lack of studies which focus 

on assessing the indirect economic impacts resulting from floods and thereafter 

providing a common quantitative approach within their assessment.  

This PhD thesis presents a full methodology for a flood footprint accounting 

framework, so-called ‘Flood Footprint Model’ that can be applied to indirect economic 

impact assessment for both single and multiple flood disasters. The concept of ‘flood 

footprint’ is employed here to measure exclusively the total economic impact to the 

affected region and the wider economic systems that have been directly or indirectly 

caused by a flood event. Within the framework of input-output analysis, the ‘Flood 

Footprint Model’ is built upon previous contributions, with improvements regarding 

the optimization of available production imbalances and the requirements for 

recovering damaged capital. Certain factors are considered more rationally and 

accurately through mathematical and logical approaches, and the main novelties of 

the proposed methodology are: 1) a recovery scheme for industrial and household 

capital loss, set by endogenous factors and by considering industrial linkages; 2) a 

proposal for estimating degraded productive capacity constraints regarding labour 

and capital; 3) an optimized rationing scheme including basic demand and 

reconstruction requirements; 4) various extensive sensitivity analyses (as this research 
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proposes a more clear post-flooding recovery process based on this model scenario 

rather than the ‘black-box’ recovery in other studies).   

Three practical cases are applied in order to demonstrate this method. In 

particular, two hypothetical example cases are used to verify the mathematical 

equations of the model within single and multiple flood events. Chapter 4 describes 

the total and indirect flood footprint assessment of a hypothetical single-flood case, 

in which a hypothetical flood occurs in an economy with 3 sectors; while Chapter 6 

shows a flood footprint estimation of a hypothetical two-flood event that occurred in 

a region with 5 sectors. In addition, the ‘Flood Footprint Model’ is successfully applied 

to a real single-flood case ‘2012 Beijing 721 urban flooding’ which affected 1.9 million 

people and caused a 11.64 billion Chinese Yuan (CNY) direct economic loss (Chapter 

5). The total flood footprint is calculated as 21.19 billion CNY with a recovery period 

of 42 weeks (almost 1.18% of the total GDP in the Beijing area in the year 2012). In 

particular, the direct flood footprint was 11.64 billion CNY while the indirect footprint 

was 9.55 billion CNY; the tertiary industry accounted for 52%, the secondary industry 

accounted for 40% and the other 8% occurred in the primary industry. Regarding the 

42 sectors, Construction, Water Conservation and Transportation were responsible 

for the largest flood footprint, and accounted for over 12%, 10% and 9% of the total 

area flood footprint, respectively. Such results seem to correspond closely with the 

industrial output composition of Beijing in 2012. 

Aside from the modelling process being shown in three cases, a series of 

sensitivity analyses of the ‘Flood Footprint Model’ are applied to a single- and two-

flood events, as actual economic data for examining the post-flood economic recovery 

is unavailable. Several conclusions are reached: 1) regarding the results of the indirect 

flood footprint of a specific flood - the higher direct flood footprint does not mean 

that the higher indirect flood footprint is determined by inter-linkages among 

industries; similarly, in a multi-flood, larger direct damage cost from each disaster will 

result in a larger direct flood footprint of the multi-flood, but does not mean a higher 
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indirect flood footprint; 2) flood footprints of a given single and multiple floods are 

sensitive to the model-related parameters, such as labour and capital recovery paths, 

import and basic demand; 3) in a single disaster, delayed recovery scenarios resulting 

from incomplete governance show results that illustrate that delayed recovery will 

produce an accumulated effect that can increase the flood footprint and extend the 

recovery period of the whole economy; 4) in a two-flood case, the total flood footprint 

of a multi-flood within a given region is larger than the sum of individual flood 

footprints and this is the same for the indirect flood footprint, as the flood footprint is 

highly constrained by factors like occurrence time, and physical damage caused by the 

ensuing flood; 5) this model enables us to find the regional or industrial threshold for 

damaged capital caused by multi-flooding by calculating the maximum acceptable 

damage level for the first and second flood in the affected region.  

Overall, the methodology improved by this thesis is more externally oriented 

and therefore is a better fit with reality: the final aim of the flood footprint assessment 

is not confined to an estimation of the economic cost of an urban flooding event at 

industrial and regional levels per week, month or year, but also provides more options 

and scenarios for post-disaster recovery management by considering the distribution 

of any remaining production and the allocation of financial assistance within the 

economic system after flooding. 
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Chapter 1 Introduction  

1.1 Flood: A Worldwide Threat Resulting from Climate Change 

and Urbanization   

Floods are the most common natural disasters that threaten the majority of regions 

at a global level and lead to numerous and unacceptable consequences, such as the 

2016 Yangtze River floods in China. The flood alone resulted in over 3.1 million people 

being affected, the ruin of 73,000 homes and the destruction of 198,000 houses in 86 

cities in 11 provinces in China; it encompassed 27 million hectares of crops, and led to 

a direct economic loss of up to 16.18 billion British pounds (GBP), (nearly 0.19% of the 

total gross domestic product (GDP) in China in 2016 (Masters and Henson, 2016)). 

According to estimates by the United Nations, more than 80% of cities, and over 2 

billion people, are at high risk of at least one type of natural disaster (DESA, 2016, UN-

Habitat, 2016). Over 1 billion people rely on the floodplain throughout the world 

(Aerts et al., 2014). Since 1980, flood-related disasters have affected at least 2.8 billion 

people, causing 4.5 million to become homeless, 540,000 people have died and 

360,000 people have sustained injuries (this figure excludes unrecorded injuries, 

estimated at 38,000 to 2.7 million). In the last year, flooding accounts for the second 

largest part of disaster-induced economic damage with an average annual loss of 44 

billion US dollars (USD) (equal to 33 billion pounds (GBP)) (Figure 1.1), which equates 

to 16.8% of the total 2017 GDP in the UK. A growing number of researches that 

associated with environmental science and human social science illustrate the 

interactions between human activities and natural disasters (Strömberg, 2007). Even 

though humans are not able to impact directly upon the frequency and severity of 

natural disasters, the heightened risks of natural disasters, particularly floods, are 

seen as ‘feedbacks’ that result from climate change and urbanization (IPCC, 2012). 
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Figure 1.1. Global economic losses by Peril, source: Benfield (2017). 

 

Climate-induced natural disasters account for over 93% of all the natural 

disasters in the world (Palmer, 2013), and the variation of weather patterns on the 

earth has lead to changes in natural hazards. Based on the records from EM-DAT, the 

total number of climate-induced disasters has doubled over the past forty years, from 

3,017 events in 1976-1995 to 6,392 events during 1996-2015 (CRED, 2016). Climate 

change, which is a significant issue that concerns most people, mainly refers to a global 

high average temperature and the ‘greenhouse effect’ which is the main cause for 

this. The ‘greenhouse effect’ refers to the process of radiation from a planet’s 

atmosphere that raises the temperature of the earth’s surface to a level ‘above what 

it would be without its atmosphere’ (IPCC, 2014a). The majority of scientists examining 

climate change unanimously agree on the point that human expansion of the 

‘greenhouse effect’ has caused the current global warming (IPCC, 2014b, Oreskes, 

2004, NRC, 2011). In particular, in the Fifth Assessment Report by the 

Intergovernmental Panel on Climate Change (IPCC), 1,300 individual scientific experts 

from various countries came to the conclusion that the probability of human actions 

having raised the global temperature over the past 50 years is greater than 95 percent 

(IPCC, 2014b). From an environmental perspective, a warmer planet is probably 
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creating more evaporation and precipitation, causing water vapour, the most 

abundant greenhouse gas, to react physically or chemically to the dynamic 

temperatures. In addition, thanks to the greenhouse effect, warmer oceans, coupled 

with melting ice and glaciers will increase sea levels (NASA, 2018). Thus, some regions 

will suffer with more water and others will become dryer. As a result, the occurrences 

of natural disasters, primarily of extreme water-related disasters, (including floods 

and severe storms) will become more frequent worldwide (IPCC, 2012, Visser et al., 

2014, Winsemius et al., 2016, CRED, 2015b, Nordhaus, 2010, Aerts et al., 2014).  

Rapid urbanization also raises the risk during natural disasters as a growing 

amount of people will be exposed to the disasters, particularly when they hit cities. 

The great opportunities that are offered by urbanization are attracting more and more 

people to move to the urban areas. According to records, urban inhabitants 

represented nearly 54.5% of the global population in 2016 and this number will 

increase to 60% by 2030 (UN-Habitat, 2016). This means that in 2030, cities with over 

1 million inhabitants will account for one in every five people. Meanwhile, both the 

size and number of cities in the world are growing all the time. Megacities, whose 

inhabitants exceed 10 million, are projected to increase from 31 with 500 million 

people in 2016 to 41 with 730 million people by 2030 (DESA, 2016). Alongside the 

population density in urban areas, the location of these cities is another reason which 

increases the risk of disaster. Globally, around 15% of cities are located along 

coastlines, these being the regions that frequently suffer the high risk of more than 

one type of natural hazard, particularly floods and cyclones. Moreover, Asia and Africa 

have developed most of the fastest growing cities worldwide during the past 15 years. 

Nearly 47 cities show increasing population trends with an annual growth excess of 

6% since 2000 - 6 of these cities are in Africa, 40 are located in Asia (20 in China), and 

the other one is in Northern America (Shepherd et al., 2013). The lower the level of 

development within the city, and therefore the lack of financial assistance, the higher 

the risk from natural disasters (Alexander, 2017, Palmer, 2013). Cities, in particular 
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megacities, are consequently becoming more sensitive to the shock of natural 

disasters, in particular to floods (Aon Benfield, 2017a, Okuyama, 2014, Cutter and 

Finch, 2008). 

1.2 Flood Footprint Assessment: A New Way of Thinking about 

Flood-induced Economic Consequences 

In this research, the concept of a ‘flood footprint’ is applied to characterize the total 

economic impact (relative to the pre-disaster level) that is directly and indirectly 

caused by a flood event in the region, and the wider economic system (Mendoza-

Tinoco et al., 2017). The ‘flood footprint’ was proposed by Dabo’s team (Mendoza-

Tinoco et al., 2017, Li et al., 2013) and can be regarded as a comprehensive indicator 

of economic influence by natural disasters. The concept of ‘flood footprint’ only refers 

to tangible impacts; it measures the cost of human goods and services that were used 

prior to the support recovery of an affected economic system. That is, it quantifies the 

total cumulative economic losses, including direct and indirect economic losses, 

triggered by a flood event until the economy has fully recovered to the pre-disaster 

level. The direct ‘flood footprint’ is the economic impact and/or loss caused by direct 

consequences of flood events, and refers to the short-term physical impacts on 

natural resources, people and tangible assets (Nations, 2010). The indirect ‘flood 

footprint’ is the economic impact/loss resulting from flood-induced labour delay, 

capital loss, disruption of economic activities in the whole production supply chain and 

costs for physical capital reconstruction (Hallegatte, 2008, Baghersad and Zobel, 

2015). Compared with other concepts related to flooding damage, like economic 

impact and economic loss, ‘flood footprint’ is not only able to provide the amount of 

the economic loss, but also shows us the modelling recovery routes of the affected 

economic system on an industrial and economic level (Mendoza-Tinoco et al., 2017). 

Similarly with the ‘flood footprint’, the economic consequences caused by other 
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natural disasters, can also be measured with the relevant disaster footprint, such as a 

storm footprint or hurricane footprint. 

There are two reasons that this research has adopted the indicator of ‘flood 

footprint’ to describe the total economic consequences caused by flood disasters. 

Firstly, the concept of a ‘footprint’ has been introduced in many studies and used to 

track the interconnection between nature and humans (Rees, 1992, Hoekstra and 

Hung, 2002, Wiedmann and Minx, 2008). For example, the most widely known 

footprint-associated concept, the ecological footprint, proposed by William Rees in 

1992 and employed to measure human demand on natural capital (Rees, 1992), has 

been defined as “the biologically productive area needed to provide for everything 

people use”. This is followed by the carbon footprint which is a measure of the total 

amount of carbon dioxide and methane emissions of a given population, system or 

activity by considering all related sources, sinks and storage (Wright et al., 2011). 

Water footprint indicates the volume of fresh water consumed and used to assimilate 

pollution (Hoekstra et al., 2011). Further, and different to the footprints referred to 

above (which mainly illustrate human impacts on natural resources and ecosystem), 

the flood footprint reveals the flood impacts on the human economic system. 

Therefore, since ‘footprint’ demonstrates a dynamic process, flood footprint can 

propose a dynamic influence process, within a specific economy, during a certain 

affected period.  

This implies that the target of the flood footprint assessment is not confined to 

the estimation of economic cost by a flooding event, but provides more options and 

approaches for post-disaster recovery management and process monitoring, by 

considering the distribution of the remaining production, and allocation of the 

financial assistance among the economic sectors or systems after this flooding. As 

post-disaster economic recovery is a complex and hidden process and there is 

generally a lack of available realistic data for validation, flood footprint assessment 
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becomes an effective way for modelling how a flood affects the aftermath economy. 

Furthermore, flood footprint assessment enables awareness to be raised about 

natural disaster risk analysis at an industrial level and is helpful to minimise the 

economic impact after the same kind of natural disasters in the future.  

1.3 Research Motivation  

Due to climate change and rapid urbanization, more regions and populations are 

facing the challenges of risk caused by natural disasters such as flooding (Alfieri et al., 

2017). For example, China is a country that has undergone a rapid industrialization 

and urbanization process. The urban population in China increased from 170 million 

to 670 million during the period from 1978 to 2010 and now accounts for more than 

50% of the total Chinese population. More people are moving to cities in order to find 

jobs. Since 1995, the rate of urbanization has grown even faster than that of economic 

development in China (Chen et al., 2013). The majority of urban centres are located in 

climate-related hazardous-prone areas, with risks such as floods, earthquakes and 

typhoons (Baker, 2012). Such rapid urbanization has not only increased the number 

of city residents, but also other basic elements of an urban city, such as buildings, 

infrastructures and services which are now exposed to climate change and climate-

induced natural disasters (Otero and Marti, 1994, Cavallo et al., 2013). From the urban 

economic view, climate-induced extreme events directly influence human capital and 

productive capital; meanwhile, urban business flows are affected as well. Therefore, 

more economic systems will be exposed to high risk in climate-related disasters.   

Studies about natural disaster impact analysis are increasingly paying more 

attention to the socio-economic impacts of natural hazards, but not only on the direct 

impact to people and physical assets (Hallegatte et al., 2007, Steenge and Serrano, 

2012, Okuyama, 2014). In the context of impact assessment of natural disasters, these 

initial damages constitute direct damage, and their assessment is useful both in 
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understanding the immediate implications of damage and in marshalling the pools of 

capital and supplies required for rebuilding after a flooding event. Because economies 

and societies are coupled through complex economic networks, any small-scale 

damage may be multiplied and cascaded throughout the wider economic systems and 

social networks. The US National Research Council (1999) emphasized the importance 

of studying the overall social-economic impacts of major disasters because 

‘determining appropriate amounts of resources for victims of disasters cannot wait 

until after a disaster […]’. Finally, planning emergency response necessarily must 

precede a disaster’. An increasing number of studies show that direct economic losses 

are only a fraction of the total economic consequence and that the indirect economic 

impact plays an important role in natural disaster risk analysis and sustainable 

development (Baade et al., 2007, Cunado and Ferreira, 2014, Scawthorn et al., 2006a, 

Hallegatte and Przyluski, 2010). The total economic impact of natural disasters, 

especially for indirect economic impacts, however, is still poorly understood 

(Bockarjova, 2007, Okuyama and Santos, 2014, Okuyama, 2014, Koks and Thissen, 

2016).  

In addition, many studies claim that the economic consequences of disasters in 

developing countries are severer than those in developed countries, since the former 

encounter greater vulnerability (Mechler, 2004, Christoplos et al., 2001, Murlidharan 

and Shah, 2003, Pingali et al., 2005). At the same time, disruptions to industrialized 

countries should be regarded as a priority due to their increased complexity (Steenge 

and Bočkarjova, 2007, Morrow, 1999). Hence, more studies on the relationship 

between natural disasters and regional sectors and economics are required for 

disaster risk analysis and management in the future. A better understanding of the full 

economic consequences of natural hazards calls for a systematic and dynamic 

assessment tool to capture both its direct and indirect economic impact (Okuyama 

and Santos, 2014, Kellenberg and Mobarak, 2011). 
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Regarding the responsibility issue, Aerts, (2014, p.474) formulate this as a policy 

question: ‘Who should pay to make NYC (or any city) more resilient to future flood 

disasters?’ In other words, it means ‘who should responsible for the flood disasters?’ 

In recent years, there has been a shift in flood management from ‘government’ to 

‘governance’. When referring to flood risk management in particular there is an 

increasing preference for the notion of ‘governance’ that allocates responsibilities to 

multiple levels or actors rather than ‘government’ in which one single authority makes 

all the decisions (Mian, 2014). However, lack of analytical approach is able to quantify 

the industries’ responsibilities in the aftermath of natural disasters.  

Hence, this work meets these concerns by undertaking to provide an effective 

and efficient approach for assessing flood-induced economic impacts at industrial and 

economic level. With adoption of flood footprint concept, this thesis will offer a 

methodology and applications of flood footprint accounting for determing flood 

induced economic costs cascading throughout production supply chains.  

1.4 Research Design 

1.4.1 Research Question 

As described previously in Research Motivation, demands for comprehensive 

assessments of economic consequences of floods are imperative and necessary. For 

the flood-induced direct economic risk assessment, its measurements as water-depth 

function have already been accepted by most studies. Therefore, with information 

such as risk values of affected buildings or land-use types, it is easy to calculate the 

direct flood footprint. However, few studies cover the indirect economic impact or can 

quantify the indirect impact. Moreover, due to the scarcity of practical data, post-

flood economic conditions are rarely mentioned. Therefore, faced with these research 

gaps, the primary research question here is: 
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“How to measure flood induced economic costs cascading throughout production 

supply chains?” 

By addressing this issue, three other sub-questions are raised. 

 Which indicator is appropriate to express flood induced economic impacts? 

 What is the approach applied for flood footprint accounting with consideration to 

the production supply chains? 

 How to assess the relevant factors influencing flood footprint within an economic 

system? 

1.4.2 Research Aim and Objectives 

This thesis attempts to explore an effective approach for flood-induced impact 

analysis from an economic perspective by adopting the concept of the flood footprint. 

In order to assess the indirect economic impact that results from either a single or 

subsequent flood disaster, a robust methodology framework – Flood Footprint Model 

– will be used. The specific objectives of this study are to: 

 Provide an introduction of flood-related influences on human society in which 

direct and indirect impacts caused by floods are described, as well as the post-

flood economic conditions.  

 Present a review of the existing quantitative tools for flood-induced economic 

indirect impact assessment and particulars on the approaches associated with 

input-output models. 

 Build an input-output based robust methodology (Flood Footprint Model) for 

indirect flood footprint accounting both mathematically and logistically, in 

which the approach is able to quantify both single- and subsequent-flood 

induced indirect economic impacts by capturing industrial and regional 
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interdependencies and incorporating certain factors such as damaged capital 

and affected labour.  

 Apply the approach to both individual flood and two-flood cases, in which the 

flexibility of the model structure can be validated through hypothetical flood 

cases and the feasibility of the model can be tested through a real flood case. 

 Offer several post-flood economic recovery plans to policy-makers by simulating 

various recovery conditions in the aftermath, such as alternative labour or 

capital recovery plans.  

1.4.3 Research Framework 

Since the flood footprint is a new indicator that has been proposed in recent years, 

the approach of ‘flood footprint assessment’ is still lacking systematization and 

standardization. Thus, this thesis builds a framework, shown in Figure 1.2, to provide 

practical guidance for flood footprint assessment in each case. Four stages are 

referred to in the ‘flood footprint assessment’ - setting goals and scope, flood 

footprint accounting, sensitivity analysis, and response formulation. 

 Step 1. Setting goals and scope 

In the first step, the space and time units of the flood footprint are identified. In 

general, this means locating the single- or multi-flood footprint within a sector, 

municipality, province, or nation, and other administrative or economic areas at 

weekly, monthly, annual or other time periods.  

 Step 2. Flood footprint accounting 

This step deals with quantification and monetization of the flood footprint by 

considering the direct and indirect economic consequences. This thesis focuses on 

indirect flood footprint accounting, in which a methodology, the ‘Flood Footprint 

Model’, is constructed for calculating the indirect flood footprint that is produced by 
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single- and two-flood events (Chapter 3). Input-output analysis is one type of 

assessment tool for measuring the economic effects within an economy due to 

external shocks. It is able to capture the interactions between producers and 

consumers in a given economy and can extend to disaster-induced indirect economic 

impact evaluation by taking production bottleneck into account. The advantage is that 

it emphasizes the centre role of the basic sectors in the economy, and underlines their 

outstanding role in contributing to loss (Rose and Lim, 2002).  Regarding the concept 

of flood footprint - it not only serves as an output of a specific natural disaster by 

indicating the amount of economic loss, but it also serves as a dynamic process in the 

aftermath of natural disasters that closely corresponds to the resilience of the affected 

economy. Consequently, with the idea of the flood footprint and the framework of 

input-output analysis, the indirect economic impact and dynamic post-disaster 

recovery can be calculated. 

 Step 3. Flood footprint senstivity analysis 

This next step assesses the probability of a flood footprint occurring in the given 

economy during a certain period. Due to the scarcity of practical data to express post-

flood economic conditions, this step offers probable flood footprints in various 

scenarios through sensitivity analysis, such as alternative recovery plans for certain 

parameters, adaptive behaviours, different levels of governance and flood-induced 

capital damage.  

 Step 4. Flood footprint response formulation 

The last step formulates a response strategy. The goals of the flood footprint 

assessment are to assess how the flood and related disasters influence a given 

economic system and to provide options for mitigation of the flood-induced impact. 

Through analysing flood footprints at specific levels (such as sectoral, administrative 

and economic), relevant stakeholders or policy-makers can decide how to respond to 



 
 

12 
 

the flood disasters and who should be responsible for post-disaster economic 

recovery. 

Overall, the four phases of flood footprint assessment, as presented in Figure 

1.2, illustrate flood footprint issues. The goals and scope of flood footprint assessment 

are largely dependent on research interest. The flood footprint accounting phase 

determines the methodology applied and the data types that need to be collected. 

After accounting, the sensitivity analysis phase is where a variety of alternative 

exogenous factors are considered and then a database is provided for the last step of 

‘response formulation’. These four steps are just the guidelines proposed for the 

application of the flood footprint. With respect to this research, the core part is the 

indirect flood footprint accounting (Step 2) and related sensitivity analysis (Step 3).   

 

Figure 1.2. Research framework of flood footprint assessment. 
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1.4.4 Outline of the Thesis 

This thesis is divided into 7 chapters. Chapter 1 primarily contains the research design 

of this thesis. Chapter 2 is a review of flood-related literatures. Chapter 3 describes 

the methodology developed through this study. Chapters 4 to 6 outline the 

applications of the methodology in which three case studies are provided. Chapter 7 

sets out the final conclusions.  

Chapter 1 gives a brief introduction of the research background of this thesis, 

including research motivation and research design. The main concept of flood 

footprint that is employed in this research, as an indicator to quantify the economic 

impact due to flooding, is defined here.  

Chapter 2 presents an overview of current flood-related risk assessments by 

reviewing the existing literature about natural disasters. The basic definitions of 

flooding and natural disasters are introduced, as flooding is the most common type of 

natural disaster. This is followed by an analysis of flood-induced direct and indirect 

consequences on human society, particularly on the economic system. After a brief 

comparison between the diverse approaches to flood-induced indirect economic 

impact measurement, research gaps are identified which the study in this thesis is 

expected to address.  

Chapter 3 describes the methodology of the Flood Footprint Model that is 

developed in this thesis for indirect economic impact accounting. As input-output 

analysis is the basic framework of the Flood Footprint Model, relevant input-output 

models, and their extensive applications within natural disaster risk analysis, are 

reviewed. Based on the contributions of these models, the proposed Flood Footprint 

Model is outlined. Next is the building process of the Flood Footprint Model for the 

single flood and two-flood disasters, using a mathematical approach. Logical 
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explanations and model parameters are listed, such as capital and labour constraints, 

supply bottleneck, and rationing schemes.  

Chapters 4, 5 and 6 present the results of the Flood Footprint Model for indirect 

economic impact accounting of a single flood event, and the applications for flood 

footprint assessment. Chapter 4 focuses on a flood footprint assessment of a 

hypothetical single-flood event within a hypothetical numerical economy (as the aim 

of this chapter is to illustrate the modelling process of the Flood Footprint Model), and 

offers sensitivity analysis approaches for probable recovery scenarios. In Chapter 5, 

the Flood Footprint Model will be applied to a practical single flood event. Various 

sensitivity analyses are presented in order to test the feasibility and flexibility of the 

Flood Footprint Model. Chapter 6 presents another illustration of the Flood Footprint 

Model, and presents a study of a hypothetical two-flood event. A detailed 

measurement of the flood footprint is shown and the sensitivity analysis includes 

factors and physical influences. In addition, an approach for assessing the 

regional/economic threshold for flood-induced capital damage loss is proposed.  

Chapter 7 concludes with the main findings and primary contributions, policy 

implications, research limitations and direction for further study.  
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Chapter 2 Poor Measurements on Flood Induced Indirect 

Economic Costs 

This chapter provides an overview of flood-associated issues that can be described in 

the form of three questions: 

 What is a flood disaster? 

 What are the consequences resulting from flood disasters? 

 How do we measure the flood-induced economic impacts and the indirect 

economic costs throughout the production supply chain? 

The first question (Subsection 2.1) covers the definitions of flood disasters and 

associated concepts - natural disaster/hazard/catastrophe and multi-hazard, in 

particular - and distinctions are made between rapid and slow onset natural disasters. 

Subsection 2.2 answers the second question, setting out the immediate and indirect 

ways that floods influence human society, especially with regard to the economic 

system. It considers the indirect economic impact as a vital part of flood-induced 

consequences, and reviews the idea of raising its awareness due to its close links to 

post-disaster recovery and management. Measuring economic impacts resulted from 

flood-related disasters is one of the main challenges in the disaster risk studies, the 

last question that demonstrated in Subsection 2.3 offers the common quantitative 

assessment approaches for disaster-induced indirect economic consequences analysis 

and compares their advantages and disadvantages. Subsection 2.4 concludes with an 

assessment of the research gaps in the existing flood-related literatures, with regard 

to indirect economic consequence assessments and post-flood economic recovery 

analysis in a given region after a specific single- or multi-flood event. As flooding is the 

most common type of natural disaster (CRED, 2015b), it is suggested that more effort 

should be made on assessing its indirect economic consequences. 
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2.1. Flood: A Common Type of Natural Disasters 

Natural disasters are widely known for their disastrous effects on human beings. For 

example, in 1998, the Yangtze River flooded in China, leading to 4,150 people dead 

and 145 billion GBP lost; the 2005 Hurricane Katrina in the United States resulted in 

economic costs exceeding 90 billion GBP; the April 2015 Nepal earthquake killed 

nearly 9,000 people and injured 22,000. As the most common type of natural disaster, 

flooding has accounted for nearly 47% of all weather-related natural disasters since 

1995 (CRED, 2015b). It seems that in research associated with natural disaster risk 

analysis, the term ‘natural disaster’, which is simply defined as ‘a major adverse event 

resulting from natural processes of the Earth’ (Wikipedia), is frequently used, as well 

as ‘natural catastrophe’ or ‘natural hazard’. These terms are all used to indicate the 

same event in articles and reports (Cutter et al., 2008). So is there any difference 

between these terminologies? In order to assess flood impact, we should first ask 

‘what is a natural disaster?’  

2.1.1. What is a natural disaster?  

Natural disaster consists of two words, ‘natural’ and ‘disaster’. The former word shows 

the origin of a natural disaster, and the latter illustrates its consequences. ‘Natural’ 

means that the calamity has resulted from a natural phenomenon or process 

(Alexander, 2017); and ‘disaster’ is “A serious disruption of the functioning of a 

community or a society at any scale due to hazardous events interacting with 

conditions of exposure, vulnerability and capacity, leading to one or more of the 

following: human, material, economic and environmental losses and impacts” (UNGA, 

2016). Over time, there has been an increasing tendency to extend the impact of a 

natural disaster within its definition. O’Keefe et al., (1976) posited that “Disasters 

marks interface between an extreme physical phenomenon and a vulnerable human 

population”, while Turner (1976) defined a natural disaster as “an event, concentrated 
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in time and space, which threatens a society or a relatively self-sufficient subdivision 

of a society with major unwanted consequences as a result of the collapse of 

precautions which had hitherto been culturally accepted as adequate”. By the 1990s, 

natural disasters came to be regarded more as social phenomena than a natural 

calamity (Bankoff, 2001, Horlick-Jones, 1995, Morrow, 1999, Schipper and Pelling, 

2006). For instance, Alexander (2017, p.4) defined it as any rapid, instantaneous or 

profound influence that comes from the natural environment and works on the socio-

economic system. By considering the human-induced system, Quarantelli (2001, 

p.332) defined a natural disaster as an extreme phenomena caused by the combined 

effect of the natural and socio-economic systems, leading to a destructive outcome. 

Taking into account the temporality, space and severity of impact, Bockarjova (2007, 

p.26) sees a natural disaster as “a discontinuity that resulted from interaction between 

a natural phenomenon and a human-induced system, where the system becomes 

adversely affected beyond the scale of minor changes, implying loss of connectivity 

within the established system, with well-specified spatial and temporal dimensions”.  

The concept ‘natural hazard’ is more commonly used as the manifestation of a 

natural disaster in American literature (Bockarjova, 2007). However, compared with 

disaster, natural hazard primarily considers the potential damage conditions (Benson 

and Twigg, 2004), and can be summarized briefly as “natural-induced impact on the 

human society”. For example, Burton and Kates (1964) proposed that natural hazard 

is made of the elements from the physical environment and results in harmful impact 

on humans due to extraneous forces. White (1974) regarded a natural hazard as an 

interaction between nature and people that is controlled by both adjustment of the 

human use system and the natural events system. UNDRO (1982) defined a natural 

hazard as “The probability of occurrence within a specified period of time and within 

a given area of a potentially damaging phenomenon”. Alexander (2017) concludes 

that a natural hazard is a physical event that has influences on human beings and their 

environment. In addition, in the terminology list from the United Nations Offices for 
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Disaster Risk Reduction (UNISDR, 2017), a hazard is  “A process, phenomenon or 

human activity that may cause loss of life, injury or other health impacts, property 

damage, social and economic disruption or environmental degradation”, and natural 

hazards are “predominantly associated with natural processes and phenomena“. It 

also indicates that the consequences of a disaster are more severe than a hazard, as 

it states that “severe hazardous events can lead to a disaster as a result of the 

combination of hazard occurrence and other risk factors”.  

A ‘natural catastrophe’, has been simply described as ‘unusually severe disaster’ 

(Wikipedia), due to a lack of a well-defined definition. Globally, the events that have 

been referred to as natural catastrophes (such as the 2004 Indian Ocean Earthquake, 

the 2011 East Africa Drought, and the 2015 Hurricane Harvey in the United States), 

threatened millions of people’s lives and destroyed enormous amounts of property. 

Even though it is clear that the influence and scale of a natural catastrophe is much 

larger than a natural disaster, there are no clear criteria to distinguish a catastrophe 

from a disaster. However, the distinction closely responds to the vulnerability of the 

human-induced system. If the region, and residents in particular, are unlikely to 

survive and thrive in the aftermath of a natural disaster, the disaster turns into 

catastrophic event (Alexander, 2017). In some poor countries, if the industrial loss 

caused by a physical event is too large to recover from, then the event become a 

natural catastrophe. Bockarjova (2007) provided a better definition as, “A catastrophe 

is an extremely severe adverse shock, which causes a substantial disruption of the 

system, with well-specified spatial and temporal dimensions, to the extent that it fails 

to perform its vital functions for a considerable period of time, or forever.”   

 



 
 

19 
 

 

Figure 2.1. Conceptual linkages between natural disasters, hazards and catastrophe. 

 

Conceptual linkages between natural disasters, hazards and catastrophe are 

shown in Figure 2.1, and it can be concluded that a natural hazard or a natural 

hazardous event is a natural phenomenon that leads to human suffering. When the 

natural hazard leads to unacceptable damage of property and affects thousands of 

people, it becomes a natural disaster (Leroy, 2006, Smith, 2003). If the disaster leads 

to destruction on a larger scale than the region has hitherto experienced, then it can 

be referred to as a natural catastrophe (OAS, 1990). The term selected depends on 

‘how much influence there is on the humans’. If the event occurs in a region that has 

no connection with people, it is not referred to as a natural hazard or a disaster 

(O'Keefe et al., 1976).  

2.1.2. What are multiple natural disasters?  

Multiple natural disasters are another type of natural event. Some multiple disasters 

consist of multiple independent natural disaster events, like the ‘Double Typhoon 

Trouble’ case, which refers to Typhoon Chan-hom and Severe Tropical Storm Linfa. 
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These two disasters involved large and powerful tropical cyclones that formed near 

the Pohnpei State (belonging to the Federated States of Micronesia) in June 25th 

2015, and on the Philippine Sea on July 1st 2015, respectively. In early July 2015, both 

of them hit Taiwan and southern China and the direct economic loss to coastal cities 

in China exceeded 1.7 billion (Aon Benfield, 2015). In some multiple-disasters, the 

following event results from the first natural disaster, such as the storms and floods 

which occurred in UK in 2015. In early December 2015, Storm Desmond hit the UK 

bringing rainfall of 341.4mm over a 24-hour period. Severe flooding happened across 

Cumbria and the north of England, with more than 42,000 properties in Lancaster and 

1,400 properties in Cumbria losing their power (BBC, 2015, Szönyi et al., 2016, 

WIKIPEDIA, 2016). 

However, there is no certain terminology to describe such multiple disasters and 

in the most literature, the term multi-hazard is used to explain multiple hazards. The 

term multi-hazard was first mentioned in the United Nations Conferences on 

Environment & Development in Rio de Janerio, Brazil in 1992 (so-called Agenda 21 

Conference) (UNEP, 1992). Without a clear definition, the Agenda 21 Conference 

called for ‘complete multi-hazard research’ in pre-disaster planning (Paragraph 7.61a). 

After a decade, the Johannesburg Plan used this term again and provided a complete 

multi-hazard measurement for disaster management and mitigation (UN, 2002). Later, 

disaster-related agencies, such as the International Decade of Natural Disaster 

Reduction (IDNDR) and the International Strategy for Disaster Reduction (ISDR), 

emphasized the importance for multi-hazard assessment in several of their reports. 

However, this term was mainly used in relevant approaches, as Hewitt and Burton 

(1971) referred to this term as the “all hazards at a place” approach, and Greiving 

(2006) described it as “hazards that are closely tied to certain areas that are especially 

prone to a particular hazard”.  

Thanks to the effort made by scholars such as Bell and Glade (2004) and (Kappes 

et al., 2012), the conceptual framework of ‘multi-hazard’ developed and gradually 
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began concentrating on the features of the hazardous process, especially of 

occurrence time and place. Although there is no firm definition of multi-hazard, we 

can adopt the terminology from UNISDR (2017), in which multi-hazard is explained as 

“(1) the selection of multiple major hazards that the country faces, and (2) the specific 

contexts where hazardous events may occur simultaneously, cascadingly or 

cumulatively over time, and taking into account the potential interrelated effects”. 

Hence, multiple disasters in this thesis can be defined as in the similar way, “(1) the 

selection of multiple natural disasters that the region faces, and (2) the specific 

contexts where hazardous events may occur simultaneously, cascadingly or 

cumulatively over time, and taking into account the potential interrelated effects”. 

Apart from ‘multi-hazard’, another term, ‘compound events’ has become more 

popular in climate science in recent years. Compound events can be regarded as a 

special type of climate extremes, while IPCC introduced the compound/multiple 

events as, “1) two or more extreme events occurring simultaneously or successively; 

2) combinations of extreme events with underlying conditions that amplify the impact 

events, or 3) combinations of events that are not themselves extremes but lead to an 

extreme event or impact when combined. (Field et al., 2012)”. Moftakhari et al. (2017) 

concluded it as “in which the simultaneous or sequential occurrence of extreme or 

nonextreme events may lead to an extreme event or impact”. This term emphasized 

the combination impact of the natural hazard and flood in particular (Ikeuchi et al., 

2017, Moftakhari et al., 2017, Wahl et al., 2015).  

2.1.3. What is a flood? 

Since the various speeds of occurrence of disasters influence human society in 

different ways, natural disasters are categorized into two types, rapid and slow onset 

disasters. The former, also named as sudden onset natural disaster, encompasses 

natural events that occur suddenly and strike rapidly with little warning (Nelson, 2014, 
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OAS, 1990, Twigg, 2004). These events include: flash floods, lightening, and wildfires 

(which onset with virtually no warning); severe thunderstorms, hurricanes and river 

flooding (which can be projected several hours or days in advance); tsunamis and 

volcanoes (which erupt surprisingly but typically have hours, weeks or months of 

warning period). These kinds of disasters are difficult to predict precisely and lead to 

immediate short-term impacts on human society and the direct consequences of 

these disasters can be easily observed. 

Slow onset or persistent natural disasters, refer to natural hazards that take far 

longer - several months or years - to develop. These events include heat wave, 

drought, desertification, air pollution, erosion, insect infestations, subsidence and 

disease epidemics (Nelson, 2014, OAS, 1990, Twigg, 2004). Compared with rapid onset 

events, slow onset natural disasters act slowly over a long period of months and years, 

and its impact becomes evident as time passes (Development Workshop, 2017). 

Flooding is the core part of rapid/sudden natural disasters. It is a natural 

phenomenon caused when an overflow of water submerges dry land (Farooqm, 2018). 

In other words, it is “a covering by water of land not normally covered by water” (EU, 

2007). Both environmental process and human activities can lead to flood disasters 

(FLOODsite, 2009; Parker, 2014, p.91-110). In mountain areas, the principal cause of 

flooding comes from the sudden melting of ice and snow. When precipitation from 

the water cycle is so large that it breaks the holding capacity of a region, the exceeded 

water can cover an enormous area and then it becomes a flooding disaster. In some 

cases of severe natural disasters, floods that are induced from the previous events 

often followed in its aftermath, such as storm-induced flooding. Slow moving storms 

can cause intense rainfall which then can lead to flooding further inland (Shepherd et 

al., 2013). One widely known event is the hurricane-induced flooding after Hurricane 

Katrina in the United States in 2005. This flooding accounted for nearly half of the total 

damage in this multi-hazard case (Boettke et al., 2007). Meanwhile, human action is 

another major reason for flooding, such as flooding resulting from a damaged dam in 



 
 

23 
 

a coastal area (Parker, 2014, p.163-172). Depending on the physical features of floods, 

flooding disasters can be divided into several types (FLOODsite, 2009). For coastal and 

river floods, the ‘water in flooding’ is different depending on whether it is from the 

sea or river. Flash flooding is mainly caused by heavy rainfall and refers to flowing 

water that suddenly runs at fast speed, submerging a specific area; ponding or pluvial 

flooding is another type of flooding that is caused by rain water, and the flooding 

occurs in relatively flat areas. It is worth mentioning that, during recent years, 

attention has increasingly been paid to urban flooding, due to the high speed of 

urbanization (Hallegatte et al., 2013, Hammond et al., 2015). Urban flooding is a 

special flooding type that results from flash, coastal or river floods and occurs in urban 

areas, generally due to lack of urban drainage. Groundwater flooding, is another 

flooding type that occurs in many regions and the United Kingdom in particular Such 

floods occur in case of sub-surface water emerges from the ground, because of heavy 

rainfall or high river levels (SF, 2018). However, groundwater flood rarely gets less 

attention when compared with other flooding types. Currently, since it has been 

recognized as a significant source for the UK flooding, many local flood authorities in 

the UK has undertaken research for groundwater flooding, such as the British 

Geological Survey (BGS, 2017, GOV.UK, 2014). Regardless of the type, floods have 

become the most threatening natural disaster for human society (Kubal et al., 2009, 

Mens et al., 2011, Jongman et al., 2014, Winsemius et al., 2016).Storm-induced floods 

are frequently experienced by coastal regions around the world.  

With respect to storms, it shares nearly 28% of occurrences of natural disasters 

during the period of 1995-2015 (CRED, 2015b) and is the second most frequent hazard 

in the whole natural disaster system. A storm is described as “any disturbed state of 

an environment or in an astronomical body’s atmosphere especially affecting its 

surface, and strongly implying severe weather” (SSA, 2018). Phenomena like strong 

wind, hail, tornadoes, thunder, lightning, and heavy precipitation, generally 

accompany storms. When several tropical storms reach a populated area with heavy 
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rain and strong winds, this can lead to disastrous consequences in the affected regions. 

A storm system can cause familiar natural disasters such as hurricanes, cyclones or 

typhoons (NOS, 2018). 

2.2. Consequences of Floods: Direct and Indirect Effects on 

Human Society 

Flood disasters act on human society with immediate effect and with enormous 

destructive consequences. EM-DAT records the frequency and the number of affected 

countries experiencing floods as higher than any other natural disaster type. Since the 

twentieth century, flood-related disasters have accounted for 51% of the total 

affected people and 22% of the total mortality, and have created over 24% of the total 

of disaster-induced economical damages (Aon Benfield, 2017b). The indirect effects 

of flood consequences hide behind the direct influence and economic impact is 

generally responsible for the largest loss. As an invisible influence, indirect economic 

impact occurs generally in the post-disaster period along with the reconstruction 

process. However, such post-disaster impacts still remain a mystery since the practice 

data is not available due to the complexity of the situation. Unless the flood-induced 

direct/indirect consequences are realised, and the post-disaster economic system 

assessed, a full picture of the indirect economic impacts caused by flooding cannot be 

presented. 

2.2.1. Direct Impacts: First-hand and Apparent Consequences 

In general, weather-related disasters hit a region causing several direct impacts on the 

human population and physical assets (as shown in Figure 2.2). It is easily understood 

that an intense storm surge and related wave action, along with the shock of tropical 

cyclones, or the strong water flow from flooding, can lead to destruction of fixed 

assets, crops, raw materials, basic infrastructure and other physical capital (Shepherd 
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et al., 2013, Noy and IV, 2016). In the United States, historic flooding has damaged 

more than 182,000 homes and businesses in Texas alone, with major or minor 

economic loss. In 2017, flooding in Peru led to over USD 3.0 billion in damages and in 

China, flooding has caused a USD 7.5 billion loss (Aon Benfield, 2017b). The sectoral 

analysis demonstrates that residential damage accounts for over half of the total 

economic loss, followed by commercial and industrial damage (Alfieri et al., 2017).  

  

Figure 2.2. Direct influences caused by flood disasters on human society. 

 

As the most vital element of human society, millions of people, particularly 

people killed or injured during the disaster process, suffer immediate and irreversible 

consequences of natural disasters. Since 1995,  total fatalities from natural disasters 

reached 1.4 million, of which 11.2% resulted from flood disasters and storms, 

accounting for 242,000 fatalities (CRED, 2015b, CRED, 2016). When reviewing 

historical floods, Doocy et al. (2013) conclude that the influence that floods had on 

human populations varied greatly over the years and were primarily centered around 

large-scale flood events. Globally, flood-related events resulted in 8.2% of disaster-

induced death during the decade from 2006 to 2015, a reduction from 14.4% between 
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1996 and 2005. Flooding affected 2.3 billion people from 1996 to 2015, excluding the 

death, but including those affected by evacuation and retention.  This represents 

about 56% of the total affected population, while another 16%, (over 660 million) 

were affected by storms (CRED, 2015b). 

Geographically, the less developed and higher populated countries experienced 

the majority of flood-related risk. At the regional level, Asia experienced more floods 

and mortality than any other country. For example, over 2,100 people in Pakistan and 

1,900 people in China died due to flooding disasters in 2010, and three years later, the 

2013 Indian floods killed more than 6,500 people. Other regions such as Africa, Europe 

and the Eastern Mediterranean together accounted for 8% of the flood fatalities and 

4% of the flood-affected population (Doocy et al., 2013). Meanwhile, Asia and Africa 

together experienced 73% of the total economic loss while all others shared the 

remaining 27% (Alfieri et al., 2017). With the contributions of climate change, the 

majority of regions are predicted to experience more serious flood impacts on 

population and physical damage. Based on the IPCC climate-related scenarios, Alfieri 

et al. (2017) have projected future maps of average potential changes in the amount 

of river flood-induced population affected and the expected damage for each country 

in the world at specific warming levels, compared with pre-industrial levels (Figure 

2.3). With the temperature increasing by 1.5°C, 2°C and 4°C, Asia, the United States 

and Europe are expected to face increasing impacts by river floods, with only Latvia 

showing significant negative changes in all scenarios. 
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Figure 2.3. Average changes in affected population and expected damage per country 

by river floods under specific warming levels (1.5°C, 2°C and 4°C) as the baseline of 

pre-industrial level. Source: Alfieri et al. (2017). 

 

2.2.2. Indirect Impacts: Second-hand and Invisible Consequences 

Indirect consequences of natural disasters result from direct impact to damaged 

properties; these consequences include emergency cost, decreased demand or 

output, business interruptions, consequences for economic growth, health impact, 

disruptions on social-ecological system, and influence on poverty, security, stability 

and sustainability (Noy and IV, 2016, Hallegatte, 2014, Okuyama and Santos, 2014). 
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When considering the indirect loss, indirect consequences generally occur at various 

levels. At an individual level, damaged infrastructure and commercial structures may 

lead to changes in sales, wages or profits in the affected region; at the business level, 

both regional input and output may be influenced due to disrupted transactions and 

flows; more widely, the impact may extend to other regions or economic systems that 

the disaster does not hit immediately. Regardless of impact level, economic activities 

account for the most indirect loss from a given natural disaster (NRC, 1999). 

One point should be emphasized here: immediate/direct and 

secondary/indirect impact do not respectively equal the short-term or long-term 

impact in hazard research, particularly in sudden onset natural disasters. In general, 

whether the region is directly in touch with the natural disaster determines the type 

of impact - direct or indirect. However, the classification of short-term and long-term 

impact is principally determined by the time period suffered by a region. If the disaster 

loss accounts for a few months up to several years, it pertains to a short-term impact; 

when it takes at least three to five years, or even more, to cope with the economic 

loss, it pertains to long-term impact (Noy and IV, 2016). This means that, for rapid 

natural disasters, the direct impact is short-term, whereas the indirect consequences 

can involve both short-term and long-term impacts (NRC, 1999) (P.37). Since this 

thesis concentrates on assessing the indirect economic impacts at a regional level, the 

content below mainly refers to the regional indirect economic impact resulting from 

flood disasters. 

Albala-Bertrand (1993, p.104) expressed the indirect effect of natural disasters 

as “more a possibility than a reality”. In an economy it is difficult to establish accurate 

indirect loss, due to limited available data and the complexity of the economic system. 

Thus, indicators such as national income accounts (GDP), tax revenue, payments 

balance and regional production are commonly used to measure loss.  As various 

indicators are estimated by different approaches, the consequences of a given disaster 

may differ. No matter what indicator is adopted, several studies provide the evidence 
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that indirect economic assessment is necessary because the percentages of indirect 

impacts sometimes account for more than the direct impact (Rasmussen, 2004). By 

collecting the statistical data obtained from post-disaster data surveys, Charvériat 

(2000) found that natural disasters led to an average 1.7% reduction of the same-year 

GDP in 28 cases; but from the analysis by Caselli and Malhotra (2004), the results 

showed that a natural disaster has no significant influence on the local economic 

growth path. Carrera et al. (2015) combined a spatial analysis that linked direct 

damage to physical stock with a computable general equilibrium (CGE) model to test 

the direct and indirect economic impacts of the 2000 Po river flood that occurred in 

Northern Italy. Their results showed that the direct economic impacts that depended 

on water-depth were estimated in the range of 3.3 to 8.8 billion Euro (at year 2000 

values), while the indirect economic loss limited by various substitution and disruption 

duration conditions, were 0.64 to 1.95 billion Euro. In this case, the approximated 

indirect impact equals 19% to 22% of the direct economic impact. However, various 

factors determine the role of the indirect economic impact, such as the scale of 

specific natural disasters, economic conditions or the development level of the 

affected region and the resilience of the economy. As Cochrane (2004, pp 42-43) said, 

“Indirect loss […] is less sensitive to economic structure (manufacturing dominated or 

service dominated economy) than to damage pattern, degree of integration (size), 

pre-existing conditions, and who is financing the recovery”. Likewise, Cavallo et al. 

(2013) concluded that only under the condition that the natural disaster led to a 

radical political revolution, can the disaster affect economic growth and create large 

indirect economic consequences.  

Results from other quantified studies also illustrate that natural disasters 

influence economic activities through indirect means which can lead to a great 

number of losses (Hallegatte et al., 2007). As the production and consumer sectors 

determine the structure of an economy, any changes to these sectors will influence 

the economic balance and lead to indirect impacts. For example, with respect to the 



 
 

30 
 

labour force, either employment or workplaces affected by natural disasters will result 

in decreased production, which will then result in an indirect economic loss (in den 

Bäumen et al., 2015). Koks et al. (2015b) estimate that if the labour recovery period 

after the flooding is as long as two years, the indirect losses will triple when compared 

with the reference situation. Other factors, like import constrained by damaged 

transportation and alternative consumer behavior in the aftermath, can also generate 

indirect costs to the economic system (Baghersad and Zobel, 2015, Steenge and 

Bočkarjova, 2007).  

2.2.3. Post-flood Economic Recovery: A Hidden and Mysterious Process  

Increasingly, scientific research shows that climate change will increase the frequency 

of floods in the future (CRED, 2015a, Arnbjerg-Nielsen, 2014). More regions, and cities 

in particular, will be at risk of exposure to human loss and economic loss through 

natural disasters (Eakin et al., 2017). Records show that in 2016, economic loss of 

about 150 billion GBP and 8,733 fatalities were caused by natural disasters around the 

world. This included 44 billion GBP and 4,731 deaths resulting from flooding events 

(Aon Benfield, 2017a). The shocks of sudden-onset natural disasters not only result in 

human mortality and morbidity, and destroyed physical capital (such as damaged 

infrastructure and buildings), but also interrupt economic activities. This can then lead 

to a further economic cost that people would not see directly, especially as the 

majority of economic activities around the world are highly concentrated in cities. 

Hence, comprehensive analysis of economic impact by floods on industrial and 

economic systems is an urgent and essential part of urban recovery and sustainable 

development (Kubal et al., 2009, Chen et al., 2009, Haddad and Teixeira, 2015, Rose 

and Lim, 2002). As Ahrens and Rudolph (2006) have stated, “Disasters can essentially 

be viewed as a function of the risk process, i.e. they result from a combination of 

hazard, conditions of vulnerability and insufficient capacity or measures to reduce the 

negative consequences of risk”. Understanding the resilience of an economy is the 
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first step to assessing post-flood economic conditions because it illustrates the 

immediate bearing on the total damage that is sustained by an economy (Klein et al., 

2003, Cutter et al., 2008, Espinoza et al., 2016).  

2.2.3.1 Resilience of Economic System  

Research associated with the economic impact assessment of natural disasters has 

tended to concentrate on larger units of analysis rather than individual enterprises 

and firms, such as in regional and community economies (Tierney, 2007)(p.275). When 

considering the characteristics of the economic system before and after a natural 

hazard, resilience, vulnerability and adaptive capacity are the three terms commonly 

used in the relevant literature. A number of studies of social-economic system analysis 

focus on identifying the conceptual framework of these terminologies and developing 

approaches for their assessment (Burton, 2015, Meerow et al., 2016). However, there 

is no single accepted description of resilience or vulnerability of an economic system 

(Klein et al., 2003).  

The term ‘resilience’ was first used by Holling (1973) to illustrate a “measure of 

the persistence of system and their ability to absorb change and disturbance and still 

maintain the same relationships between populations or state variables”. Following 

the work by Adger et al. (2005), Folke (2006) and others, Cutter et al. (2008) concluded 

that resilience was the capacity of a system to assimilate disturbance and rearrange 

into a completely functioning system that equals or betters the pre-disaster level after 

learning and adaptation. Thus, for natural disasters, resilience particularly shows the 

ability of an economy to survive with the lowest damage and impact (Berke and 

Campanella, 2006).  

A key part of resilience, proposed by scholars from environmental and climate 

change, is adaptive capacity. This can be defined as the ability of a system to respond 

to a disaster by adapting to change and mitigating the influences (Burton et al., 2002, 

Cutter et al., 2008, Daramola et al., 2016). Another term, ‘vulnerability’, indicates the 
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physical characteristics or qualities of a given system when facing shocks. Generally it 

refers to a system’s exposure and sensitivity to disaster-induced harm (Cutter, 1996). 

In other words, it demonstrates who and what will be damaged and the degree of 

severity that they suffer due to a specific natural hazard (Siagian et al., 2014, Koks et 

al., 2015c). Both resilience and vulnerability are dynamic processes, but resilience can 

reflect both the ability of a system to recover from a disaster and to mitigate disaster 

influences through various adaption behaviours. Hence, resilience can be regarded as 

an outcome in the former condition and serves as a process in the latter situation 

(Cutter and Finch, 2008). As a dynamic process, resilience of an economy to a natural 

disaster implies minimal economic loss during the recovery process with the 

appropriate approach. The better the mitigation techniques adopted, the higher the 

resilience and the lower the sensitivity of an economy to hazards is (Bruneau et al., 

2003). 

2.2.3.2 Post-flood Recovery at Economic Level 

Since mitigation of a disaster-induced impact is the core part in hazards-related 

resilience research, the post-disaster recovery process becomes the centre of 

resilience assessment (Noy, 2009, Cutter et al., 2008). The destination of recovery 

includes two types, one is back to the pre-disaster economic state and the other is an 

advanced state, after learning and adaptation (Folke, 2006). If there is no other 

notification, the default destination for the disaster-induced recovery process is the 

first type, in which the recovery starts from the natural disaster occurrence and stops 

when economic transaction returns to the pre-disaster state. A variety of studies 

provide evidence that, either from a short-term or long-term view, various regions 

reveal a diversity of post-disaster recoveries in the aftermath of natural disasters. A 

Report by the International Monetary Fund (IMF) states, “adverse external shocks 

have a significant negative impact on short- and medium-run growth through their 

effect on aggregate demand, external balances, and the government’s fiscal position” 

(Dabla-Norris and Gündüz, 2014). Both internal and external factors can affect a 
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region’s ability to recover in the aftermath. As demonstrated by Asgary et al. (2012), 

such internal factors mainly include the disaster type and size, risk mitigation and 

industrial continuity plan, financial capacity, industry ties, and the scale of direct and 

indirect damage. External factors indicate the factors that are out of the control of 

business, such as community disruption, and available support from social institutions.  

Most studies show that regions (including household, subnational and national 

levels) with a high socio-economic structure suffer less economic impacts and are 

highly resilient to natural disasters. Noy (2009) analysed the linkages between GDP 

growth, affected population and the direct cost of natural disasters through EM-DATA 

statistical data for the period 1970 to 2003, for all recorded countries. Noy (2009) 

found that, after the same scale of natural disasters, developing countries and smaller 

economies suffered much larger output declines when compared with developed 

countries or bigger economies. Meanwhile, countries with a higher rate of salary per 

person, a greater degree of trade transparency and higher literacy rates, were better 

able to respond to the disaster shock and prevent further impact. Heger et al. (2008) 

concluded that the “diversification of the economy can help mitigate the effects of 

natural disasters”, and a higher independency to export and import can result in larger 

damages after natural disasters. There is no clear evidence to show the connections 

between capital damage and aftermath output changes. Noy (2009) and Cuaresma et 

al. (2008) propose the view that higher capital damage caused by natural disasters 

create a higher decreased output in developing regions and the opposite is 

experienced among more developed countries. Mechler (2009) adopted a cross-

country analysis and illustrated that only in low-income countries, capital loss 

adversely influenced consumption; among other regions, the damage to assets did not 

result in major changes in consumption.  

External assistance, such as import production and financial aid, are helpful to 

reduce adverse economic consequences. The Vietnam-based disaster case, studied by 

Noy and Vu (2010), concluded that, thanks to sufficient funds for reconstruction 
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supported by the central government, the affected region experienced a short-run 

growth spurt after the disaster. Hochrainer (2009) posits that greater inflows of 

remittances and external aid are able to reduce adverse economic impact, and then 

direct loss becomes more critical. In addition, the scale of the natural disaster 

determines the level of economic consequence (Cunado and Ferreira, 2014, Hallegatte 

and Przyluski, 2010). Hochrainer (2009) argues that natural disasters generally lead to 

negative consequences in a medium-term analysis (up to 5 years) and concludes that 

“although the negative effects may be small, they can become more pronounced 

depending mainly on the size of the shock”. Fomby et al. (2013) find that moderate 

floods have a positive effect while severe floods have a negative effect on economic 

growth (Cunado and Ferreira, 2014).  

In principle, the main characteristics of regional and economic recovery 

correspond significantly to the regional development level, damage degree of 

industries, external assistance (e.g. import and financial aid) and other factors such as 

insurance and reconstruction speed (Poontirakul et al., 2016, Von Peter et al., 2012). 

For example, Deraniyagala (2016) proposes that a lower speed of reconstruction may 

extend the economic consequence at both household and regional levels. However, 

in studies about post-flood economic impact and recovery analysis, less attention was 

paid to another common phenomenon, ‘delayed recovery’. It often exists in many real 

flood cases and refers to the situation after the natural disaster shock, when elements 

of an economy, such as labour and individual sectors, are not able to recover 

immediately. For instance, Hurricane Katrina, a natural disaster which hit the United 

States in 29 August 2005, and caused over 81 billion USD of property damage and the 

displacement of more than one million people, was followed by massive flooding in 

New Orleans, which caused this city to essentially be ‘closed’ for nearly a month. 

Sydnor et al. (2017) underlined that if a business is closed immediately for a long time 

after a natural disaster, the probability of customer and supplier attrition will become 

higher, and recovery and continued operation of the business will be less likely. 
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Whether ‘delayed recovery’ occurs for a certain natural disaster depends upon a 

variety of factors. At the small business level, the owners may decide to rebuild or 

repair structures some days after the disaster, due to a lack of adequate insurance or 

the fact that they primarily focused on their residence rather than their business.  

Regarding the economic level, the following two main reasons contribute the 

most to delayed recovery. One is post-flood governance. Ahrens and Rudolph (2006) 

indicate that the quality of governance directly determines the recovery quality in the 

aftermath by strengthening or weakening the regional capabilities to natural disaster. 

Pathak and Ahmad (2016) emphasize the crucial role of governance as “the governing 

of several factors such as disaster management, aid and assistance programmes form 

the foundation for faster disaster recovery and enables the economy to bounce back 

to normalcy”. In the case of Hurricane Katrina, Corey and Deitch (2011) point out that, 

after Katrina, inappropriate and uncoordinated governance at all levels - local, state 

and federal - made business recovery more difficult. As cash flow problems were faced 

by most businesses after Katrina (Runyan, 2006), external aid for these sectors was 

expected to overcome the shortfall in funds. However, relevant departments failed to 

supply direct financial aid efficiently within the post-Katrina economic recovery and 

led to a delayed recovery for many sectors.  

The other factor is related to industrial ties. Tierney (1995) researched the case 

of the 1993 Midwest floods in which floods struck the United States in the summer of 

1993 and resulted in nearly 20 billion USD of direct damage. However, utility 

disruption contributed more to business closures than direct damage. In Des Moines, 

the state capital of Iowa, only 15% of businesses in this city were extensively damaged 

by this flooding and yet the percentage of this sector that were forced to close because 

of poverty in water, sewer, electricity or phone services was estimated as high as 42%. 

Clearly, inter-linkages among industries can make a sector that is unharmed by a flood 

become a ‘damaged sector’ and this will then impact negatively on recovery. Corey 
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and Deitch (2011) reported that as power, clean water and natural gas were 

unavailable for extended periods, most businesses had to close for 2 to 8 weeks. Six 

months after Hurricane Katrina, approximately 25% of the population was still outside 

the New Orleans area. Moreover, they concluded that because “basic ‘lifeline’ services 

were non-functional for varying lengths of time across the region”, industrial recovery 

was severely hampered in this region.  

Transport infrastructure is also an important sector for recovery. As Luther 

(2006) reports, the amount of Katrina-related debris that was created was the greatest 

in the United States history; this debris blocked roads and produced constraints on 

the supply of lifeline productions, and limited the recovery of the business structure, 

creating delayed recovery for some sectors in the aftermath of Katrina (Sydnor et al., 

2017). 

2.2.3.3 Post-flood Recovery at Business Level 

One extremely important factor in post-disaster recovery is the ability of the business 

and other sectors to survive and thrive after a widespread natural disaster (Asgary et 

al., 2012). As the foundation of local and regional economies, destruction of business 

and other sectors results in greater challenges on various levels, including households 

and communities, such as the loss of jobs and a negative effect on incomes. Von 

Neumann (1971), who addressed the particular question of ‘how to grow the 

economy’, had a suggestion that so-called proportional or balanced growth is 

provided within economies for supporting a circular flow. Such proportional growth 

means that all sectors possess the same growth rate. The fact that a proportional 

rationing scheme is manipulatable, because one can artificially increase his/her 

demand to get more, will be disregarded in the following. However, there is no 

empirical evidence to illustrate how businesses recover in the aftermath and there is 

a lack of research to show the recovery path of each sector in a given economic system. 

As Tierney (2007) suggests, topics related to business vulnerability, measurements of 
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loss-reduction that are employed by business, and disaster impact on sectors and 

business recovery, have been little studied or understood .  

The United States is the region in which the most studies about impact analysis 

on business continuity and post-flood recovery are focused (Corey and Deitch, 2011, 

Asgary et al., 2012, Dietch and Corey, 2011). Rose et al. (1997) illustrated that the 

disruption of the electricity service alone, after a major earthquake that occurred in 

the Memphis area, resulted in an estimated economic loss within the recovery period 

of as much as 7% of regional GDP. Webb et al. (2002) stated that, after Hurricane 

Andrew in Florida in the United States, wholesale/retail-related sectors were less 

likely to recover than any other sectors. Corey and Deitch (2011) investigated the 

factors that impacted on the recovery and short-term performance of organizations 

during the period of the 6 to 8 months after Katrina. They found that the most 

vulnerable industries were associated with the wholesale/retail sectors and that 

construction-related sectors had higher levels of organizational performance within 

post-Katrina. In addition, they suggested that the businesses who purchased adequate 

insurance pre-disaster received more resources for their recovery from the storm than 

other sectors without any insurance.  

Regarding population-related variables (customer loss or staff loss), the analysis 

of Corey and Deitch (2011) showed that three years after Katrina, population issues 

were still affecting business recovery and this negative impact was expected to persist 

long after all the physical damage had been restored.  Similarly, Stevenson et al. (2014) 

and Sydnor et al. (2017) noted that lack of staff was one of the challenges that was 

experienced by many sectors during an aftermath recovery period.  
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2.3. Measurements of Flood-induced Economic Impacts: 

Manifold Diversity  

Several efforts have been made to measure disaster/flood-induced indirect economic 

impacts using diverse methodologies and indicators. The common approaches can be 

divided into two types, primary data collection and relevant models. Although primary 

data collection is a way of obtaining reliable data, this approach is sometimes difficult 

to carry out due to the great workload and varying quality of the data. For direct 

economic effect assessment, empirical modelling (constructed on empirical 

observations), are developed to a more mature degree, such as water-depth models 

for flood direct damage calculation. Meanwhile, the indirect economic impact analysis 

framework is still in an early development stage, and the economic-based model 

seems to be more effective than econometric models, since the former can take more 

factors into account, particularly Input-Output models. 

2.3.1. Direct Assessment Tools 

The direct economic impact of a natural disaster to human society, also known as 

immediate economic consequence, is defined as “the monetary value of total or 

partial destruction of physical assets existing in the affected area” (UNISDR, 2017). Put 

simply, direct economic loss is equivalent to the cost of physical capital/stock caused 

by natural disasters (Rose and Lim 2002). Measurement of such an impact for a given 

disaster is often organized by the relevant department or insurance companies. The 

direct economic loss from the event will then be made known to the public. For official 

agencies, especially the government in China, the commonly used method for loss 

evaluation is through primary data collection from post-disaster questionnaires, 

surveys and interviews (NRC, 1999). Although the results are sensitive to the 

inconsistencies of data sources, it is the most suitable approach to obtaining the 
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practical data. For instance, after comparing impacts and frequencies of a cross-

country sample during 1970 to 2002 that was based on the EM-DAT database of 

natural disasters, Rasmussen (2004) analysed the spatial characteristics of natural 

disaster cost in the Eastern Caribbean Currency Union and observed that the 

aftermath of natural disasters have negative effects on economic output.  

Apart from the collection of primary data, another main approach applied to the 

estimation of short-term economic loss is through empirical loss estimation models, 

which refers to the mathematical models based on damage or loss functions (Rose 

and Lim, 2002, Merz et al., 2004). Pertaining to flooding disasters, the principle theory 

of the damage/loss function is that the direct damage for a specific type of land-use 

or buildings largely corresponds to the particular features of the flood, such as water-

depth, inundation duration, flow velocity, sediment concentration, availability of 

flooding warning and other external responses to floods (Smith, 1994, Penning-

Rowsell and Fordham, 1994). Differently from flooding, the direct capital damage of 

storms to the specific use of buildings or land-use are mainly determined by the 

physical features of storms, such as maximum wind speed, storm duration and size, 

wind direction, storm surge and precipitation, and local exposure level (Zhai and Jiang, 

2014). However, regardless of the type of rapid onset natural disaster, there is no 

comprehensive approach that considers all the factors in a natural hazard, due to poor 

data and undeveloped techniques (Merz et al., 2004).  

The combination of primary data collection and mathematical models is an 

effective way to estimate the direct economic damage on tangible assets in the 

aftermath, when the practical data is not available. With improvement of observation 

tools, the results of disaster-induced direct economic impacts will become more 

reliable as we can access more precise data and information. 

Among all the models, depth-damage function is the most common 

methodology for assessing direct tangible damage resulting from floods, since the risk 
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for each building type or land-use class is highly reliant on inundation depths, and 

potential loss of total physical damage can be calculated by depth-damage curves 

(Koks et al., 2015a, Jonkman et al., 2008, Smith, 1994). This methodology dates back 

40 years, and is based on practical observation. Grigg and Helweg (1975) proposed the 

view that the depth-damage curves of buildings with similar structure or type show 

similar trends no matter what the actual value is. The economic loss for a certain 

building or land-use type resulting from various floods can be modelled using actual 

data from aftermath-damage data collection, combined with synthetic data used to 

estimate the damage of a specific flooding situation through ‘what-if analyses’ (Merz 

et al., 2004). Based on this theory, it seems that the Blue Manual of Penning-Rowsell 

and Chatterton (1977) provides the most comprehensive approach in the current 

stage because it includes stage-damage curves for commercial property and 

residential housing in the UK region. A stage-damage curve indicates the damage 

fraction of the maximum value at risk for a particular land-use category at a particular 

inundation depth. In recent years, a growing number of studies have estimated the 

direct damage loss of a certain flood by integrating depth-damage functions with 

spatial information on building or land-use types, leading to a more accurate and 

reliable result. For example, there is a more advanced model (‘HAZUS-MH Model’), 

offered by the Federal Emergency Management Agency (FEMA), from the United 

States, to evaluate the economic risk induced by earthquake, winds and floods. With 

the help of ArcGIS from the ESRI Company and the Digital Elevation Model (DEM) from 

USGS National Elevation Dataset Website, the software HAZUS-MH Flood Model is 

able to analyse structural damage to infrastructure and buildings by considering the 

spatial characteristic of water-depth and flood velocity in a given area. Although this 

model has been continuously updated since 1997, the significant limitation pertains 

to the specific study area. It can only be applied to regions in the United States as the 

default profile and basic input (such as building distribution maps) are based on the 

conditions in the United States (Scawthorn et al., 2006a, Scawthorn et al., 2006b). In 
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addition to the US-based HAZUS-MH model, other models like web-based Multi-

Coloured Manual (MCM) (Penning-Rowsell et al., 2014) and Dutch-based HIS-SSM 

(Koks et al., 2012) are also able to quantify the physical damage cost of sudden-onset 

natural disasters. Both of them are built upon depth- and stage- damage curves, but 

the former focuses on the UK region while the latter is suitable for the Netherlands. 

The variation of region-based studies by de Moel et al. (2014) help us further 

understand how to utilize these flood damage models and gain more effective and 

efficient results when the research area is beyond the relevant models’ regions, in 

particular when estimating the risk value for a certain land-use type.  

Current empirical hurricane/cyclone economic loss models are based primarily 

on the damage-intensity function due to the fact that it has been examined extensively 

(Nordhaus, 2010, Zhai and Jiang, 2014). Damage–intensity shows the relationship 

between hurricane normalized damage value and maximum wind speed. Nordhaus 

(2010) gathered information about storm features and relevant economic loss for 233 

hurricane events in the United States area during the period of 1900 to 2008 and 

concluded that ‘damages appear to rise with the ninth power of maximum wind 

speed’. HAZUS-MH Hurricane Model is another type of HAZUS-MH model that has 

been developed by FEMA to compute building damage caused by storm-related 

disasters. This model is based on the hurricane hazard model that includes the 

database of historical storms occurring along the Atlantic Basin from 1886 to 2001. By 

comparing storm factors such as wind speed, storm intensification, radius to 

maximum winds to central pressure and latitude, HAZUS-MH Hurricane Model is able 

to provide damage fractions and risk values for various types of buildings and land-use 

after storm disasters in the US regions (Vickery et al., 2006a, Vickery et al., 2000b, 

Vickery et al., 2000a, Vickery et al., 2006b). 
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2.3.2. Indirect Assessment Approaches 

Immediate damage induced by natural disasters leads to an aftermath of economic 

consequences in the affected region, since sudden-onset natural disasters disrupt 

economic activities and break the balance among suppliers and consumers after the 

event. It may require a period of weeks, months or years for the economic system to 

return to pre-disaster level. During this process, ‘a decline in economic value added as 

a consequence of direct economic loss and/or human and environmental impacts’ 

(UNISDR, 2017) is described as the term of indirect economic impact, or the secondary 

economic impact. Currently, there are three types of quantitative approaches used 

when quantifying and assessing the indirect economic impacts of natural disasters.  

2.3.2.1 Post-disaster Economic Survey 

The first type of quantitative approach is a post-disaster economic survey (Baade et 

al., 2007). It is based on receiving the exact data on real disaster events, such as data 

on reconstruction of damaged buildings and period of evacuation shelters. Kroll et al. 

(1991) evaluated the economic impacts of the 1989 Loma Prieta earthquake in 

California by collecting published economic data. Through the survey of small 

businesses at industrial and city levels, they found that the centre of the earthquake 

and the main economic activities were out of the populous region. Additionally, the 

strong communications and utilities system and alternative transportation system, are 

the main reasons why the affected regions recovered quickly from the earthquake. 

Based on the observed data of GDP and outcome, Cavallo et al. (2013) adopted 

comparative case studies, which are more general than the fixed-effects model, to 

estimate the average direct and indirect impacts of larger disasters on real GDP per 

capital. They focused on the countries that experienced severe disasters from 1970 to 

2000 (where the related data is available) and concluded that natural disasters do not 

influence subsequent economic growth significantly. This means that only destructive 

disasters affect economic growth and general hazards have less impact on incomes or 
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employment in the long-term view. Molinari et al. (2014) proposed a new procedure 

for flood-damage data collection in residential and commercial sectors at the local 

level, since the current tools and procedures for data gathering were not sufficient to 

define or validate the damage curves, due to the poor, fragmented and inconsistent 

information. They emphasised that in the surveys of disaster-induced indirect 

damage, questions of lost clients, lost working days and the consequences of labour 

should be included.  

2.3.2.2 Econometric Models 

The second type of quantitative approach is the econometric model, which primarily 

refers to statistical models used in econometrics and specifies the statistical linkages 

of various economic quantities in the aftermath of natural disasters (Noy and duPont 

IV, 2016, Husby et al., 2014, Cerra and Saxena, 2008, Barro, 1991). The standard theory 

of this methodology was first proposed by Solow (1956), who proposed that countries 

should rely on a steady-stage growth path. Thus, the Solow Model suggests that 

natural disaster will not result in a long-term impact on the economic system due to 

the fact that the interrupted economy will finally return to its pre-shock growth path. 

The concept of the Solow Model is not suitable for real cases due to the fact that 

disaster-related factors (like human capital or the quality of post-disaster governance) 

can also affect long-term growth. However, it is still regarded as a reasonable 

theoretical basis (statistical-econometric techniques) to test how the influenced area 

will return to its pre-disaster trend (Noy and duPont IV, 2016) with the contributions 

of relevant models (Husby et al., 2014, Deryugina et al., 2014, Barro, 1991), such as 

the macroeconomic model developed by Albala-Bertrand (1993). This model can be 

employed when examining the relationship between a sudden-onset natural disaster 

and its potential effects by considering the growth rate of output. Albala-Bertrand 

(1993) applied it to six disaster situations in Latin America and indicated that capital 

loss did not significantly affect the economy and very moderate response expenditure 

may be sufficient to prevent the fall of the growth rate of output. With a panel vector 
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auto-regression (VAR) model, Raddatz (2007) investigated the dynamic consequences 

of external shocks (including natural disasters) on the volatility of output in a sample 

of 40 low-income countries over the period 1965 to 1997. They gathered the disaster 

data from the EM-DAT database and illustrated that the external shocks led to modest 

effects on per capital GDP and output volatility was heavily dependent on internal 

causes. However, for climate-induced disasters, it is important to consider the 

disaster-induced influence on the economy, since it can result in a 2% decrease in real 

annual per capital GDP in the aftermath. Another widely cited methodology is short-

run macroeconomic response built by Noy (2009). By considering natural disaster-

induced mortality, affected population and direct economic cost, the authors created 

a regression of the annual GDP growth rate that is associated with disaster influence 

and other control variables to reveal the aftermath impacts of natural disasters.  

2.3.2.3 Economic-based Models  

Numerous multidiscipline methodologies based on economic models have been 

employed to describe the consequences of natural hazards and the primary methods 

include Input-Output (IO) model, computable general equilibrium (CGE) mode, and 

social accounting matrix (SAM). 

(1) Input-Output Approach 

The IO approach has been the methodology most widely employed for disaster risk 

analysis (Miller and Blair, 2009).  The IO table is the foundation of the IO model since 

it is able to capture the inter-linkages among industries and present the balance 

between supply side and consumption side for a given region or economic system. 

Due to its being focused on the supply-side of the economy, the IO model is able to 

reveal the changes in supply of outputs when the input constraints and supply 

bottleneck occurs. Hence, disaster-induced decreased production can be measured 

and the indirect economic impact can be assessed (Oosterhaven, 1988). On the basis 

of IO theory, HAZUS, an indirect damage estimation tool was developed by the United 

States Federal Emergency Management Agency and the National Institute of Building 
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Sciences and later developed into a software programme (Scawthorn et al., 2006a). 

The Indirect Economic Loss Model component of HAZUS uses the post-disaster 

surviving capacity in terms of surviving production as a starting point for recalculating 

inter-industry supplies and demands (Scawthorn et al., 2006b, Remo et al., 2016), but 

the HAZUS only suitable for the area of the United States. The application of the IO 

approach to disasters, and natural disasters in particular, can be traced to the period 

of the Second World War (Rose and Guha, 2004, Okuyama, 2007).  Other early studies 

based on the IO model, to assess the natural hazards impacts, come from scholars like 

Cochrane (1974, 1997) who offered a brief analysis of relationships between direct 

and indirect losses caused by natural disasters through an inter-industry model. Based 

on the study of the economic consequence assessment of an earthquake that 

occurred in the American Midwest, Cochrane (1997) made a suggestion based on the 

application of the inter-industry model and proved that such a method can be used as 

a measurement for natural disaster-induced indirect economic loss. More recently, 

work by Steenge and Bočkarjova (2007), Hallegatte (2008) and Li et al. (2013), Koks et 

al. (2015a) and Mendoza-Tinoco et al. (2017) showed that the IO model is the ideal 

choice for economic impact assessment, especially on indirect economic loss 

estimation.   

Although the IO model is not particularly flexible, with some adaptive 

formulation it is able to reach a high analytical specificity and allows for dynamic 

simulation (Miller and Blair, 2009, Hallegatte, 2008, Okuyama, 2008, Santos and 

Haimes, 2004). Steenge and Bočkarjova (2007) offered an imbalance growth model 

based on the IO framework to estimate the economic consequences of a major 

catastrophe, but this model is not able to show the dynamic changes in the post-

disaster economic recovery. Hallegatte (2008) proposed a new regional adaptive IO 

model to assess the economic loss of natural disaster at the regional level. However, 

his model exclusively considered the production capacity and adaptive behaviour after 

the disaster, while destruction of housing and labour constraints were neglected. Li et 
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al. (2013) constructed a monthly IO model based on dynamic inequalities to assess an 

imbalanced economic recovery in a post-disaster period. A series of dynamic 

inequalities was developed as their theoretical basis. This methodology is better 

suited to analysing changes in a regional economy and assessing regional economic 

losses, vulnerability, and resilience during the recovery period after a disaster. 

However, this model was only applied to a hypothetical flooding event around 2020 

and the data used is mostly based on scenario analysis and, therefore, lacks practical 

meaning. The IO model application to indirect economic impact assessment of natural 

disasters is reviewed in more detail in Chapter 3. 

(2) Social Accounting Matrix  

SAM is regarded as an extension of the IO models, so, like the IO models, SAM shows 

similar strengths and weaknesses. It was firstly developed by the ‘Cambridge Growth 

Project’ in UK in 1962 and was mainly employed by the World Bank (Stone and Brown, 

1962). As a complete data system, SAM represents the interdependence of a socio-

economic system by showing the flow data of all economic transactions. Under this 

consistent framework, both input and output, national and external accounts are 

taken into account in a square matrix (Pyatt and Round, 1979, Okuyama and Sahin, 

2009). Professor Sam Cole made a major contribution to the SAM approach. In order 

to assess the disaster preparedness and recovery strategies, Cole (1995) extended the 

matrix of SAM to evaluate the potential hazards’ impact caused by tourism and other 

economic activities on a small Caribbean island. Later, Cole (1998) created multi-

country SAM based on economic data on a country level and location data that was 

extracted from geographical information, and applied it into lifeline failures in the 

Memphis region. The Event Accounting Matrix (EAM), developed by Cole, Pantoja and 

Razak (Cole et al., 1993), is one of the biggest improvements to economic research on 

natural hazards, since it enables the incorporation of direct impacts into the entire 

SAM and creates a new direction of thinking about the indirect economic impact 

calculation (Cole, 1998).  
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(3) Computable General Equilibrium Models 

The CGE model, another commonly used approach for secondary economic 

consequences assessment, is a ‘multi-market simulation model based on the 

simultaneous optimizing behaviour of individual consumers and firms, subject to 

economic account balance and resource constraints’ (Shoven and Whalley, 1992). 

Rose and Guha (2004) treated CGE is “an extension rather than a replacement of the 

tradition IO model” (Santos, 2006). Through incorporating policy factors, the basic CGE 

modelling is popular when analysing the behavioural response to input scarcity and 

altering market conditions (Rose and Liao, 2005, Okuyama, 2007, Noy and IV, 2016). 

To overcome the ‘business-as-usual’ mode, which is a limitation of a basic CGE model, 

Rose and Liao (2005) improved the industrial production functions by changing the 

behavioural parameters in the CGE model through optimization of routine and 

solutions in analytical and numerical ways. As summarised in this study, “This paper 

advances the CGE analysis of major supply disruptions of critical inputs by: specifying 

operational definitions of individual business and regional macroeconomic resilience, 

linking production function parameters to various types of producer adaptations in 

emergencies, developing algorithms for recalibrating production functions to 

empirical or simulation data, and decomposing partial and general equilibrium 

responses”. 

 In recent years, Carrera et al. (2015) developed an integrated methodology 

based on the CGE model to capture the economic interaction of flooding. The 

methodology combines a high resolution of spatially explicit damage assessment with 

macroeconomic loss propagation using a regionally calibrated version of a global CGE 

model. The authors applied this model to the 2000 Po river flood in Northern Italy by 

considering three disruption and two recovery scenarios. Their study shows that the 

regionally disaggregated CGE model is instrumental to tracking how the disaster's 

effects propagate across regions. The most important characteristic of this model is 

its flexibility, as it is able to unravel the impact of a disaster into differentiated effects 
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in sub-national economies. Haddad and Teixeira (2015) proposed the SCGE (spatial 

computable general equilibrium) model, integrating spatial information to estimate 

flood-induced economic damage in the São Paulo Metropolitan Region in Brazil. 

Besides calculating the amount of economic impact, SCGE is also able to provide the 

spatial distribution of economic impacts in affected regions. SCGE is a localized model 

(Brazil region) since the input CGE data come from a local database and calibration of 

the model is limited to the Brazil region.  

2.3.2.4 Summary   

Overall, the first two types, post-disaster economic survey and econometric models, 

pertaining to Black-box techniques (Albala-Bertrand, 2013), means that we can only 

observe the input and output data, as the calculation or modelling processes are 

hidden in a visible black box. They largely rely on primary data sources but neither 

reflects the changes in economic systems nor captures the interrelationships among 

economic agents. Additionally, econometric models are highly dependent on time-

series data and, as a result, hardly contain any natural disaster experiences. Contrary 

to black-box techniques, the last one, the economic-based model, uses simulation 

techniques (Albala-Bertrand, 2013, p.20). This simulation model has a clear 

explanation on how the economy behaves and operates, and allows for analysis of the 

interconnections among economic components, such as suppliers and consumers, 

intermediate goods and demand goods.  

Compared with other methodologies, the framework of IO and CGE are more 

popular since both of them are able to reflect the economic structure of a system by 

considering inter-industrial and inter-regional linkages at the industrial and 

economical levels. However, they also have certain disadvantages, as the required 

data in these two models is quite extensive. With respect to the IO model, although it 

can provide the inter-industrial linkages, its technological ties are rigid, resulting in a 

lack of explicit resource constraints and responses to price. Therefore, this method is 

less appropriate under the situations when market-based mechanisms play a 
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significant role in the economic processes (Bockarjova, 2007). This means that IO 

modelling does not account for possible substitution of input, regardless of the 

reasons for altering the input, since the core assumption is that “any affected input 

will disseminate its scarcity through the whole economy”. Alternative suppliers or 

input from external sources leads the IO model to overestimate the economic losses.  

On the contrary, the CGE model considers the macro-economic context of the 

markets and allows instantaneous price adjustments, and it is also able to feedback 

such price effects into economic activities (Carrera et al., 2015). However, the basic 

assumption of the CGE model is possibilities and it is also overly optimistic regarding 

market flexibility, in the face of the adaptive capabilities of the real world (Rose, 1995, 

Carrera et al., 2015). Moreover, even though the CGE model does not rely on an IO 

table, it requires the exact information of the interaction between input and output 

markets, as well as adjustment of prices and quantities. Because of the complexity of 

interactions, fewer sectors are concentrated on CGE modelling than in the IO analysis. 

CGE can model the individuals and sectors’ optimization response of supply 

bottlenecks and general changes in the market. More assumptions are included in CGE 

(Hallegatte, 2008, Hallegatte, 2014, Noy and duPont IV, 2016, Okuyama and Santos, 

2014, Rose and Liao, 2005).  

Among the four approaches, the IO analysis has its advantage in its simplicity 

and ability to reflect economic sectors’ interdependencies (Steenge and Bočkarjova, 

2007, Hallegatte, 2008, Koks et al., 2016). Its main strength is the ability to 

differentiate and quantify the economic impacts at an industrial level. As Rose (1995) 

reveals, “My own use of CGE models has increased my appreciation of input-output 

economics rather than diminished it”. Furthermore, scholars associated with natural 

disaster and economy studies, like Okuyama and Santos (2014), Baghersad and Zobel 

(2015), Noy and IV (2016) also reviewed the model used in disaster impact assessment, 

and pointed out that, compared with other approaches, the IO analysis is more widely 
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applicable to sudden-onset natural disaster-induced indirect economic loss estimation 

with the benefits in its simplicities. Previous research of disaster economic 

consequences assessment based on the IO model show a lack of consideration in 

changes of productive capacity. Regarding this, Steenge and Bočkarjova (2007) 

propose to employ ‘direct labour input coefficients’ to connect labour input and 

industrial production capacity. However, this model is not able to extract the dynamic 

change in post-disaster economic recovery. Hallegatte (2008) introduced ‘production 

capacity’ factor to link industrial productive capital damage and its production 

capacity. Hallegatte (2008) proposed a regional adaptive IO model (ARIO) to assess 

the economic losses of natural disasters at the regional level. The model incorporates 

the production capacity and adaptive behaviour after the disaster as well as over-

production possibilities and import substitutions (Table 1). The ARIO was then applied 

to analyse the storm surge risks under a sea level rise scenario in Copenhagen 

(Hallegatte et al., 2011).  

2.3.3. Multi-hazard Assessment Methods 

Multi-hazard economic impact assessment is still at an early development stage due 

to the lack of a comprehensive analytical approach. In the Johannesburg Plan, the role 

of multi-hazard assessment is shown as “An integrated, multi-hazard, inclusive 

approach to address vulnerability, risk assessment and disaster management, 

including prevention, mitigation, preparedness, response and recovery, is an essential 

element of a safer world in the twenty-first century” (UN, 2002) (p.20). As the multi-

hazard consists of several natural hazards, it is important to consider impact issues 

such as how the different relevant hazards influence each other and what elements 

should be taken into account for various disasters (Marzocchi et al., 2012, Liu et al., 

2016).  

Among existing related studies, two approaches are applied in multiple natural 

disasters assessment. One is multi-hazard risk assessment, which the Department for 
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International Development of UK adopted for multi-hazard disaster risk assessment in 

order to assist the DFID Business Plan for 2012 to 2015 (DFID, 2012). In this approach, 

a multi-hazard assessment is constructed on the multi-hazard indexes that are 

observed from a single-hazard analysis (Kappes et al., 2012). The other is multi-risk 

assessment (Marzocchi et al., 2012), a more complex approach, analyzing single-

disaster risk first and then aggregating them into a multi-risk index (Carpignano et al., 

2009). As concluded by Gallina et al. (2016), the steps of multi-hazard risk assessment 

can be summarized as ‘hazard assessment → multi-hazard assessment → exposure 

assessment of elements at risk → vulnerability assessment → multi-hazard risk 

assessment’; and for multi-risk assessment is ‘hazard assessment → exposure 

assessment of elements at risk → vulnerability assessment  → single-risk assessment  

→ multi-risk assessment’. No matter what approach is applied, the basic quantitative 

methods for economic impact assessment are similar to those introduced in the 

previous part (Johnson et al., 2016) (Chapter 1.2.3 and 1.2.4).   

2.4. Research Gap  

Flood, a global threat for human society and economic systems in particular, can have 

consequences through direct and invisible impacts via second-hand means. Climate 

change will cause a growing number of natural disaster occurrences, particularly 

floods, in the future (Visser et al., 2014, Winsemius et al., 2016). Moreover, rapid 

urbanization means that more population will be exposed to floods. Therefore, the 

analysis of the impact of a flood on economies and societies is central to 

understanding its wide-reaching effects and identifying cost-effective adaptation and 

mitigation strategies (CRED, 2016). Numerous studies support the argument that 

natural disaster risk analysis and management, especially of indirect economic 

impacts assessment, is urgent and necessary for the sustainable development of a 

country or a city. However, most studies concentrate on the physical features of 

natural hazards or direct economic loss measurements, and there is a lack of research 
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measuring the indirect economic consequences and modelling post-flood recovery 

conditions in a given region after a specific single- or multi-flood event. The research 

gaps can therefore be expressed in the following three points: 

1) A dearth of studies that focus on the indirect economic impact assessment of flood-

related disasters. 

In the existing natural disaster-related studies, economic consequences assessments 

are restricted to direct economic impact, which mainly refers to the economic losses 

from affected physical capital or the economic cost that must be used to replace and 

reconstruct damaged buildings. When concerning the indirect economic consequence, 

the majority of current assessments prefer to measure the economic aftermath based 

on statistical data analysis, such as GDP and income, rather than considering the 

production loss that is produced by alternative economic activities. As indirect 

economic impact indicators, both GDP and income exclusively show simple economic 

trends in the affected economy and cannot present a full economic assessment that 

reflects the complexity of any one economy. A growing number of researches propose 

the idea that reduction of output within an economy in the aftermath of a disaster 

event is an effective indicator to demonstrate the disaster-induced indirect economic 

effects. From this perspective, studies associated with indirect economic influence 

analysis are still lacking.  

2) Lack of a generally accepted methodology to assess flood-induced indirect economic 

impacts. 

Although economic impact estimation is fundamental for natural disaster risk analysis, 

there is no generally accepted quantitative method to assess indirect economic 

disaster impacts (Steenge and Bočkarjova, 2007). The relevant studies prefer to 

measure the economic effects in the affected river basin or related national level. 

Present research reveals that the region and type of natural disasters determine 

certain preferences of model application, such as the Dutch-based flood model and 
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the US-based HAZUS model. However, when concerning the economic impact, as a 

large part of economic activities are highly bounded within a regional economic 

system, the economic impacts of natural disasters are better assessed from the 

economy rather than the geographical area. In comparison to the previous review, IO 

models, among all the relevant measurements, are the best option for analyzing flood-

induced indirect economic impacts. However, current research in assessing the 

economic consequences of flood-related disasters based on the IO framework are not 

able to fully consider the changes of inter-industry relationships and imbalances of an 

affected economic system during the aftermath of the disaster (Bockarjova, 2007).  

Following major disasters, regional economics may be affected and inter-

industry relationships may be disrupted (Mechler, 2004). Under the basic theory of IO, 

total inputs should equal total outputs. Such balance does not exist after a natural 

disaster happens. For instance, total inputs will no longer equal the total outputs and 

capital productivity will no longer match total inputs because of the disrupted supply 

chain. Firstly, as the two main input elements, labour constraints due to labour time 

loss and industrial capital damage due to natural hazards, can both cause a decrease 

in labour and capital productivity (Hallegatte and Przyluski, 2010). Since the base 

assumption of the standard IO model is that the input elements are fixed during the 

whole process, there is a lack of studies that include the labour constraints and capital 

damages in the IO framework. Next, consumption behaviour will also change after a 

disaster (Steenge and Serrano, 2012). People tend to spend more on necessities like 

food and medical services rather than on luxury goods after a disaster. Such household 

adaptive consumer behaviour is closely related to total final demand of sectors and 

ultimately, affects the resources rationing scheme and inter-industry relations. 

Detecting changing consumption behaviours in the aftermath of a disaster is, 

therefore, equally crucial in disaster risk analysis.  

In addition, there is no common methodology that can be utilized in both 

individual natural disaster and multi-hazard cases. The multi-hazard approach is still 



 
 

54 
 

in an early development stage, and its analysis is exclusively limited by quality 

assessment. Regarding quantitative assessment, practically no adaptive method is 

able to provide indirect economic impact assessment in the relevant literature. The 

main challenge is how to quantify the complexity of multiple natural shocks within a 

specific economy.  

3) Poor understanding of post-disaster economic recovery.  

After flood disasters, how the imbalanced economy returns to a pre-disaster level or 

an advanced level significantly corresponds to the resilience of the economy and the 

external influence from human actions; meanwhile, different recovery paths lead to 

various economic impacts. Because there is no actual economic data on post-disaster 

economic recovery, sensitivity analysis of recovery schemes become the only way to 

provide support for natural disaster mitigation and management at firm, industrial, 

urban or national levels in the future. However, existing approaches are unable to 

offer the detailed modelling-process of post-flood recovery that is influenced by 

exogenous or endogenous factors at weekly, monthly or yearly levels. Although 

various models are employed for the economic analysis of major natural disasters, in 

particular at the sectoral level, it seems that the modelling process from these models 

hidden in a ‘black-box’, shows no clear and detailed information on how the economy 

changes, as exogenous or endogenous parameters vary during a certain period.  

Only a few methodologies consider the post-disaster recovery scenarios by 

incorporating adaptive behavior, such as overproduction capacity, alternative labour 

recovery period and adaptation characteristic times (Li et al., 2013, Koks and Thissen, 

2016, Koks et al., 2015b, Hallegatte, 2008). As post-disaster economic recovery is 

constrained by many factors, more scenarios, such as quality of governance, and 

alternative recovery plans for certain variables, should be taken into account. 

Therefore, more options and databases could be offered to policy-makers and 
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stakeholders to mitigate post-flood economic loss and allocate available resources in 

more effective and efficient ways. 
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Chapter 3 Indirect Flood Footprint Accounting: Methodology 

of the Flood Footprint Model  

This chapter introduces the main methodology, Flood Footprint Model, established in 

this thesis to account for the indirect flood footprint of single-and two-flood events. 

As the Flood Footprint Model has been improved under the Input-output (IO) analysis 

framework, this chapter starts with a brief introduction of the origin of IO analysis and 

highlights Leontief’s contribution in IO research, followed with the presentation of the 

basic structure of Leontief’s IO model. Since this thesis restricts itself to the indirect 

economic impact analysis of flood-related disasters, applications and structures of 

several relevant improved model based on IO are presented as well (Subsection 1.1). 

Hereafter, Subsection 1.2 offers the overall conceptual framework and structure that 

underpins the methodology of the Flood Footprint Model for single- and two-flood 

events through mathematical and logical means.  Model variables such as capital and 

labour constraints, supply bottlenecks and rationing schemes, are analysed as well. 

3.1. Input-output Analysis and Natural Disasters 

As stated by Leontief (1987), ‘Input-output analysis is a practical extension of the 

classical theory of general interdependence which views the whole economy of a 

region, a country and even of the entire world as a single system and sets out to 

describe and to interpret its operation in terms of directly observable basic structural 

relationships’. Miller and Blair (2009) offer a comprehensive introduction to the 

structure and applications of the basic Leontief IO model and relevant models. IO 

analysis is advantageous due to its simplicity and ability to reflect economic sectors’ 

interdependencies (Steenge and Bočkarjova, 2007, Hallegatte, 2008, in den Bäumen 

et al., 2015). Okuyama and Santos (2014) also reviewed the model used for disaster 
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impact assessment in recent years and note that relative to the other methods, IO 

analysis is more widely applied to indirect economic loss estimation because of its 

relative simplicity.  

3.1.1. Origin of Input-Output Analysis 

IO can be dated back to the seventeenth century, when numerous scholars and 

classical economists in particular, paid much attention to the development and 

improvement of IO analysis. As concluded by Kurz and Salvadori (2000), “It is hardly 

exaggeration to say that input-output analysis is an offspring of systematic economic 

analysis whose inception is in the seventeenth and eighteenth centuries”. The founder 

of classical Political Economy is considered to be William Pretty (1623-1687), who 

placed the importance of labour and capital in the production process with the famous 

dictum “Labour is the Father and active principle of Wealth, as Lands are the Mother” 

(Petty, 1936, p.68). Meanwhile, he identified ‘agricultural surplus’ as corn output 

minus corn input by considering subsistence of labour and raised the view that value 

can reflect the interrelationship among production, distribution and disposal of the 

wealth in a given nation (Kurz and Salvadori, 2000). Based on Pretty’s work, Richard 

Cantillon (1697-1734) differentiated a commodity’s market price and natural price and 

proposed the view that the market prices of production may diverge from its natural 

prices when demand mismatches production. He introduced the concept of 

‘reproduction’ and emphasized that production of land is the basis for human and 

social survival (Cantillon, 1756, Kurz and Salvadori, 2000).  

Later, a French economist François Quesnay (1694-1774) explained the 

distribution of income through a Tableau with two-sector expression of commodities 

in contemporary France. In 1758, he published the first version of an input-output 

table, the so-called ‘Tableau Economique’, to describe the interconnected flows of 

national production and consumption in a given year for France. According to ‘Tableau 
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Economique’, a reproduction process was regarded as the entire process of 

production, distribution and expenditure. Moreover, he made clear distinctions 

between productive class (e.g. producing in agriculture) and sterile class (e.g. 

manufacturing process) and concluded that sectors have to rely on each other (Kurz 

and Salvadori, 2000, Leontief, 1936).  

More than a century later, another French mathematical economist Léon Walras, 

proposed general equilibrium theory as a new direction in economic analysis which 

was more mathematical. He adopted a ‘bottom-up’ approach in which the analysis 

starts with individual markets to study the characteristics of an economy between 

suppliers and consumers. In addition, he suggested that during economic transactions, 

suppliers or producers aim to maximize their profits through selling production or 

services to consumers, while consumers intend to maximize their utilization through 

providing fixed capital to producers. Since the market contains its own production 

coefficients and shares the same commodity price, interaction of supply and total 

demand can lead to an overall general equilibrium (Kurz and Salvadori, 2000, Walras, 

2013).  

Thanks to contributions by other relevant scholars such as Karl Marx, Vladimir K. 

Dmitriev, Georg von Charasoff, ‘a circular flow’ became the core concept of IO analysis 

(Kurz and Salvadori, 2000). Circularity proposes the idea that social and economic 

systems contain interconnected and continuous flows of production and services 

between producer and consumer. Any disruptions will break the balance. For example, 

decreased output will lead to exceeded demand. Since then, IO has served as the 

foundation for economic assessment for a given economy, especially in modern 

national economies (Kurz and Salvadori, 2006, Bockarjova, 2007). In particular, the 

Russian-American scholar Professor Wassisy Leontief contributed a great deal to IO 

theory. In 1928, Leontief published his PhD thesis ‘Die Wirtschaft als Kreislauf’, 

translated into English as ‘The economy as circular flow’ (Leontief, 1928, Leontief, 
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1991). In this thesis, he created input-output tables for the American economy in 

which the matrix was firstly introduced to Tableau Economique to quantify the 

economic flows. He proposed an appropriate analytical framework, named IO analysis 

or interindustry analysis, to better apply IO theory.  

As a quantitative approach, IO analysis is not only able to quantify the flows and 

transactions between the basic elements within an economy through a square or 

rectangular matrix, but also present impacts on altering major variables like 

technological changes and final demand shifts. Leontief defined his IO method during 

1930s-1940s as “an adaptation of the neo-classical theory of general equilibrium to 

the empirical study of the quantitative interdependence between interrelated 

economic activities” (Leontief, 1966, p. 134). Later in 1953, Leontief established a 

dynamic IO model (Leontief, 1953). Through incorporating the capital matrix, which 

shows the supply-demand transactions among individual sectors, the IO model was 

able to capture the inter-linkages of multiple sectors. Thus, Leontief’s work provided 

an improved mathematical foundation for dynamic model development in the future 

and made it possible to extend the IO approach to multi-industrial work. In recognition 

of the contribution of IO analysis, Leontief received the Nobel Prize in Economic 

Science in 1973 (Leontief, 1936).  

3.1.2. Basic Leontief Input-Output Model 

Leontief was the first person to quantify the regional economy with a matrix 

expression of flows of production of services among producers and consumers. As a 

matrix table, the IO table provides the fundamental information for IO analysis by 

generating economic data of transactions within production and consumption sectors. 

According to the IO table, the Basic IO model developed by Leontief is able to 

demonstrate the equilibrium behaviour of economies at regional and national level, 
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for which input and output are balanced. In other words, values of total consumption 

and total production are the same. 

Since this thesis contains a great number of mathematical symbols, formulas 

and equations, it is important to clarify them at first. Thus, in the following part, bold, 

upright capital letters are used for matrices, as in A; lower-case bold, upright letters 

are used for column vectors, as in x, while row vectors are in transposition, indicated 

by a prime, as x'. A diagonal matrix from vector x is expressed by a circumflex, as 𝐱̂. 

Italic lower case letters, as x, represents scalars. In this thesis, if the equations contain 

the same cited number, then these equations are derived from the same original 

equation. If the equation is a new added equation, then it will be given a new number. 

3.1.2.1 Description of Input-output Transactions Table 

The basic Leontief IO model is built upon the IO table, in which the economic 

transactions and industrial interdependence are expressed as monetary values at 

regional level (e.g. city, state, nation and global). An IO table mainly contains 

information about commodities in intermediate transactions among sectors and in 

circle flows from producers to consumers during a specific period, by recording the 

economic data from official statistic departments or institutions, individual companies 

or scholars. With the development of IO analysis, as shown in Table 3.1, the structure 

of IO table is extended to incorporate payments sectors.  

Among the IO table with n sectors, the centre part (marked with grey) 

demonstrates intermediate transactions in all countries. A column vectors stands for 

the purchasing data (e.g. the value of production that sector j purchased from all 

sectors), while a row vectors represent the selling data (e.g. the value of production 

that sector i sold to all sectors). Specifically, taking the sense of zij as an example, the 

value of zij means the amount of input from sector i required for producing outputs xj 

in sector j at column level; and from row view, it shows the amount of output of sector 

i distribute to sector j. Thus, it can say that for producing xj outputs in sector j, the 
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intermediate demand or required input from all sectors is ∑ 𝑍𝑖𝑗
𝑛
𝑖=1 . If sector i produces 

output xi, the intermediate supply or the amount used as input for all sectors is 

∑ 𝑍𝑖𝑗
𝑛
𝑗=1 . The total value of commodities delivered among intermediate flows equals 

to ∑ 𝑍𝑖𝑗
𝑛
𝑖=1,𝑗=1 .  

 

Table 3.1. General structure of basic IO table. (Unit: monetary) 

  Processing Sectors (purchasing) Final 

Demand 

Total 

Output  Sectors 1 … j … n 

Processing 

Sectors 

(selleing) 

1 z11  z1j  z1n f1 x1 

… …  …  … … … 

i zi1  zij  zin fi xi 

… …  …  … … … 

n zn1  znj  znn fn xn 

Payments 

sector 

Value 

Added 
v1  vj  vn 

 

Total Input  x1  xj  xn 

 

The right part (marked with green) is Final Demand, in which the final 

consumption on production from each sector is recorded, such as fi which shows value 

of household consumption on sector i’s production). In principle, final demand refers 

to household expenditure, governmental consumption, capital inventory/investment 

and exports. The below row (marked with yellow), labelled Value Added, indicates 

other inputs (exclude the production that used for industrial production process) used 

for support production, such as payments sectors of employment, capital depreciation, 

imports and other relevant business taxes (Miller and Blair, 2009)(p.2-3). Like vj, 

accounts for the value from other payments sector applied into producing sector j’s 

production of xj (exclude ∑ 𝑍𝑖𝑗
𝑛
𝑖=1 ). Besides, Total Input and Total Output specialize 

the value of production as input or output from the related sectors, respectively. By 

means of selling and purchasing, it allows production and services flow among 

industries. The total input xj of sector j equals to the intermediate demand ∑ 𝑍𝑖𝑗
𝑛
𝑗=1  
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plus value added part vj; the total output xi of sector i is the sum of the intermediate 

supply ∑ 𝑍𝑖𝑗
𝑛
𝑖=1  and final demand fi. 

One important data that generated from the IO table is the technical IO 

coefficient or direct input coefficient. It not only quantifies the production efficiency 

with current technology but also can reflect the dependency of sector j in an economy, 

expressed as aij, measured as the ratio of value of intermediate demand for sector j 

(zij) and total input used in sector j (xj) (Eq. 3.1). It is necessary to mention that a 

significant basic assumption in the basic IO model is that the technical coefficient of 

each sector is assumed unchanged during the given period.  

𝑎𝑖𝑗 =
𝑧𝑖𝑗

𝑥𝑗
   Ɐj1.   (3.1) 

3.1.2.2 Mathematical Structure of the Basic Leontief IO Model 

The basic IO model, also named as Leontief’s model, analyses the economic activities 

as monetary values of production flows among relevant communities, such as 

processing sectors and consumers. From a mathematical perspective, the IO model is 

constructed on a set of linear equations of a closed economic condition (see Table 3.1 

which contains n sectors, structure of IO model below). 

As a row vector illustrates the allocation of output from a particular sector within 

an economy, the relationship between outputs of sector i, and the corresponding 

intermediate sales/supply (zij) and final demand in a balanced economy (fi) can be 

expressed as Eq.3.2.  

𝑥1 = 𝑧11 + 𝑧12 +⋯𝑧1𝑗 +⋯𝑧1𝑛 + 𝑓1 =∑𝑧1𝑗 + 𝑓1

𝑛

𝑗=1

 

… 

                                                           

1 Ɐj is referred to as a universal quantifier, it means that the Eq.3.1 should be applied 

for each sector j. 
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                      𝑥𝑖 = 𝑧𝑖1 + 𝑧𝑖2 +⋯𝑧𝑖𝑗 +⋯𝑧𝑖𝑛 + 𝑓𝑖 = ∑ 𝑧𝑖𝑗 + 𝑓𝑖
𝑛
𝑗=1         (3.2) 

… 

      𝑥𝑛 = 𝑧𝑛1 + 𝑧𝑛2 +⋯𝑧𝑛𝑗 +⋯𝑧𝑛𝑛 + 𝑓𝑛 = ∑ 𝑧𝑛𝑗 + 𝑓𝑛
𝑛
𝑗=1  

Thus, for n sectors, their linkages can be summarized as matrix equation 3.3. 

Namely, total output for a particular commodity equals to the sum of total 

intermediate demand and total final demand.  

{
 
 
 
 
 
 

 
 
 
 
 
 

𝐱 =

[
 
 
 
 
𝑥1
…
𝑥𝑖
…
𝑥𝑛]
 
 
 
 

𝐙 = [

𝑧11 … 𝑧1𝑛
… … …
𝑧𝑛1 … 𝑧𝑛𝑛

]

𝐟 =

[
 
 
 
 
𝑓1
…
𝑓𝑖
…
𝑓𝑛]
 
 
 
 

   → 𝐱 = 𝐙 + 𝐟   (3.3) 

When introducing the technical IO coefficient aij in column vectors, intermediate 

demand of sector j to sector i (zij) is measured through Eq.3.4; Eq.3.2 and 3.3 can be 

written separately as Eq.3.5 and 3.6. Here, A stands for the matrix of technical 

coefficient of the all sectors. It should be noticed that A is a non-negative matrix 

because of aij≥0. If the unit of monetary is dollar, the sum of elements in column j of 

A means for producing a dollar worth of output of sector j, the dollars’ worth of inputs 

that is produced by other sectors. In some cases, part of inputs come from payments 

sectors, lead to ∑ 𝑎𝑖𝑗
𝑛
𝑖=1  <1. 

𝑧𝑖𝑗 = 𝑎𝑖𝑗𝑥𝑖     (3.4) 

↓ 
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𝑥1 = 𝑎11𝑥1 + 𝑎12𝑥2 +⋯𝑎1𝑗𝑥𝑗 +⋯𝑎1𝑛𝑥𝑛 + 𝑓1 =∑𝑎1𝑗𝑥𝑗 + 𝑓1

𝑛

𝑗=1

 

… 

𝑥𝑖 = 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 +⋯𝑎𝑖𝑗𝑥𝑗 +⋯𝑎𝑖𝑛𝑥𝑛 + 𝑓𝑖 = ∑ 𝑎𝑖𝑗𝑥𝑗 + 𝑓𝑖
𝑛
𝑗=1       (3.5) 

… 

𝑥𝑛 = 𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯𝑎𝑛𝑗𝑥𝑗 +⋯𝑎𝑛𝑛𝑥𝑛 + 𝑓𝑛 =∑𝑎𝑛𝑗𝑥𝑗 + 𝑓𝑛

𝑛

𝑗=1

 

↓ 

𝐱 = [

𝑎𝟏𝟏 … 𝑎𝟏𝒏
… … …
𝑎𝒏𝟏 … 𝑎𝒏𝒏

] 𝐱 + 𝐟   → 𝐱 = 𝐀𝐱 + 𝐟     (3.6) 

With the famous notion of Leontief inverse account or the total requirements 

matrix 𝐋 = (𝐈 − 𝐀)−𝟏, in which I is the n × n identity matrix, Eq.3.6 can be rearranged 

as Eq.3.7 and 3.8 (Miller and Blair, 2009, p.20). As Eq.3.9, 𝐋 = [𝑙𝑖𝑗] can be recognized 

as the dependency of gross outputs of the economy on the final demand, and each lij 

shows the dependency of value of sectoral gross outputs on the sectoral final 

demands. Meanwhile, L also accounts for the impact of the exogenous impact, mainly 

refers the impact of final demand changes on the amount of industrial gross output.  

𝐱 = (𝐈 − 𝐀)−𝟏𝐟     (3.7) 

↓ 

                                                                     𝐱 = 𝐋𝐟             (3.8) 

↓ 

                                       𝑥1 = 𝑙11𝑓1 + 𝑙12𝑓2 +⋯𝑙1𝑗𝑓𝑗 +⋯𝑙1𝑛𝑓𝑛 
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… 

𝑥𝑖 = 𝑙𝑖1𝑓1 + 𝑙𝑖2𝑓2 +⋯𝑙𝑖𝑗𝑓𝑗 +⋯𝑙𝑖𝑛𝑓𝑛                   (3.9) 

… 

                                        𝑥𝑛 = 𝑙𝑛1𝑓1 + 𝑙𝑛2𝑓2 +⋯𝑙𝑛𝑗𝑓𝑗 +⋯ 𝑙𝑛𝑛𝑓𝑛 

3.1.2.3 Basic Assumptions of Leontief IO Model 

Several assumptions lead to the basic Leontief IO model as a closed or open demand-

driven model. The basic assumption involved in a closed Leontief system is that the 

economy is a ‘self-replacing’ system in which the system accounts for all the economic 

activities. It illustrates that the system exclusively includes the endogenous sectors 

through translating or moving the exogenous sectors that mainly refer to final demand 

consumers into the model or system. For instance, as proposed by Miller and Blair 

(2009), external household demand can be transformed as internal consumed sectors 

and input sectors in an economy. Meanwhile, in an economic system, all the final 

demands (including intermediate demands for processing sectors and other final 

demands for immediate consumption) can be satisfied with the production supplied 

by the selling sectors (including output from process sectors and other primary inputs 

from payment sectors). Since the economy is able to provide sufficient production and 

services, the amount of production in terms of a closed system is larger or equals to 

the consumption. Thus, production and consumption are balanced as total inputs at 

least equals to total output of the commodities. Conversely, if the final demand 

categories are regarded as exogenous variables and L is sensitivity to external 

disturbances in an economy, it pertains to an open system and the IO model becomes 

an open IO model.  

𝐀 = 𝐙𝐱̂−𝟏   (3.10) 

With respect to a demand-driven model, it assumes that economies are 

constrained by final demand. Since Eq.3.7 and 3.8 are built upon the measurement of 
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A as Eq.3.10, unless technology of the sectors changed, A is assumed to remain 

constant during the given period and has no interaction with the economic activities 

beyond this period. The data of Z are merely reliant on the x during the whole process. 

Additionally, L links the industrial gross outputs to the corresponding final demand 

(Miller and Blair, 2009, p.34-41). By contrast, in Ghosh’s supply-driven model (1958), 

shortage of inputs is the main limitation for economic transactions in an economy. In 

this case, Leontief inversely shows the impact of industrial gross production on the 

primary inputs. However, the supply-driven model has been questioned by many 

authors due to the rationality of the model not seeming to respect reality (Miller and 

Blair, 2009, Aroche Reyes and Marquez Mendoza, 2013, Oosterhaven, 1988). 

Other assumptions concern issues like price and input proportions. The model 

assumes that the same commodities share the same price in the specific period, 

regardless of producer or consumer sectors. Moreover, production is assumed to hold 

fixed proportions of inputs in the entire process (Miller and Blair, 2009).  

3.1.3. Applications in Natural Disaster Risk Analysis 

Input-output (IO) analysis serves as one of the most robust and effective economic 

techniques with which to quantify the complex interdependencies of industries 

through industrial economic transactions data in modern economies. With the 

development of IO analysis, the traditional IO model is routinely applied in economic 

assessment of various aspects of risk analysis, such as regional and multiregional level, 

energy and environmental impact analysis, and disaster risk assessment. The Basic IO 

model acknowledges that multiple intermediate and primary inputs contribute to 

production processing. Constrained input due to external or internal shocks has to 

result in changes in production ability and interrupt the flow balance of the given 

economy. This is when a bottleneck is formed because of the mismatch between 

supply and demand. Therefore, once a natural disaster leads to a bottleneck in the 
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economy, IO analysis allows the effect and indirect economic impact in particular to 

be measured. Scholars have contributed a lot to the measurement of disaster impacts 

through using the Leontief IO model. Below a selection of IO-based models are 

introduced to demonstrate the development and improvement of the approaches for 

natural disaster-induced economic loss assessment. 

3.1.3.1 The Inoperability Input-Output Model  

The Inoperability Input-Output Model (IIM) is a methodology to measure “the 

propagation of perturbations or disturbances throughout a system of interconnected 

and interdependent infrastructure and economic sectors” (Crowther and Haimes, 

2005, Haimes and Jiang, 2001, Santos, 2006). To put it simply, IIM can be used to 

assess the ripple of economic losses and industrial inoperability caused by immediate 

shocks to a given sector or several particular sectors. Within the Leontief model 

framework, Haimes and Jiang (2001) explained the impacts of unauthorized attacks 

cascaded within a system via its interconnected infrastructures. Infrastructure sectors 

are those that perform the basic features or functions of a system, and refer to 

regional basic physical systems such as transportation and energy utilities sectors 

(Crowther and Haimes, 2005). Inoperability here is defined as a system’s inability to 

fulfil its intended functions, expressed as a percentage relative to the intended state 

of the system. The formulation of the physically-based IIM is shown as Eq.3.11, 

although it improved on the Leontief model (Eq.3.6), by adding the superscript P 

(Haimes and Jiang (2001) to represent the disturbance of the economy (caused by 

natural evens, accidents or willful attacks).  

𝐱𝑷 = 𝐀𝑷𝐱𝑷 + 𝐜𝑷    (3.11) 

Where xp demonstrates the output state, equals to the resulting vector of 

infrastructures’ inoperability; Ap is the physical interdependency matrix that used to 

measure the interdependency of the physical subsystems in a large-scale system; cp 

shows the vector of the disturbance input to the interconnected infrastructures. 



 
 

68 
 

Since the physical IIM requires numerous data about economic transaction due 

to building the interconnections of sectors, in order to addressing the data issue, 

demand- and supply reduction IIMs are constructed with the basic assumption of 

“economic interdependency data, which reports the annual exchange of commodities 

between sectors, scaled by producer’s prices, is surrogate for logical interdependency 

data”. Demand Reduction IIM is a system model developed from Santos and Heimes 

(2004a) to describe how terrorism-induced perturbations can propagate throughout 

an entire economic network resulting from system interconnectedness. The 

equilibrium economic transactional data, which can present logical interdependencies 

of consumption sectors (among infrastructure and other economic sectors), is set as 

the datasets of demand-reduction IIM.  

𝐀∗ = [𝑑𝑖𝑎𝑔(𝐱̂)]−1[𝐀][𝑑𝑖𝑎𝑔(𝐱̂)]     (3.12) 

𝐜∗ = [𝑑𝑖𝑎𝑔(𝐱̂)]−1[𝐜̂ − 𝐜̃] ↔ {𝑐𝑖
∗ =

𝑐𝑖̂−𝑐𝑖̃

𝑥𝑖̂
} , ∀𝑖     (3.13) 

↓ 

𝐪 = [𝑑𝑖𝑎𝑔(𝐱̂)]−1[𝐱̂ − 𝐱̃]  ↔ {𝑞𝑖 =
𝑥𝑖̂−𝑥𝑖̃

𝑥𝑖̂
} , ∀𝑖    (3.14) 

↓ 

𝐪 = 𝐀∗𝐪 + 𝐜∗   (3.15) 

Eq.3.15 is structure of the demand-reduction model, in which A* is demand-side 

technical coefficient matrix, stands for the interdependency matrix that derived from 

normalized make and normalized use matrices in Bureau of Economic Analysis (BEA) 

I-O reports (Eq.3.12). BEA is an agency for providing and documenting the industrial 

economic transactions in the United States, the make and use matrices show the 

itemized production and consumption of commodities by various industries, 

respectively. c* indicates the demand  perturbation vector and is measured as 
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normalized degraded final demand, such as ‘as-planned’ final demand minus real final 

demand (𝐜̂ − 𝐜̃), then divided by the production of ‘as-planned’ level (Eq.3.13). q is 

the inoperability vector and its elements are expressed as the ratios of unrealized 

production, equals to the gap (𝐱̂ − 𝐱̃)of ‘as-planned’ production 𝐱𝒊̂  and degraded 

production 𝐱̃ (Eq.3.14). Here, ‘as-planned’ operation means the economy without any 

disruption. 

Apart from demand-reduction IIM, another associated model from Santos and 

Haimes (2004) is Supply Reduction IIM. It is also a system model that transformed from 

supply-side Leontief model (Ghosh Model) but built upon transactional data, which 

shows the interdependencies among producing sectors. Eq.3.16 accounts for its 

balance. A(s) is the supply-side technical coefficient matrix and measured with make 

and use matrices from BEA I-O records. z* is the supply-side primary disturbance, while 

q(s) denotes the inoperability from supply reduction. 

𝐪(𝒔) = 𝐀(𝐬)∗𝐪(𝒔) + 𝐳∗   (3.16) 

Based on the IIM framework, Crowther and Haimes (2005) analysed cascading 

inoperability and economic impacts due to interdependency in a large-scale economic 

system with infrastructures and Santos (2006) assessed the impact of an 

interconnected economic system as a result of disruptive events. Regardless of 

whether the focus is demand or supply, IIM is an effective approach for measuring 

disturbance-induced economic losses due to its reliance on economic data. According 

to Anderson et al. (2004), the results from IIM were within 4% of the estimation made 

by Anderson’s economic consulting team. Consideration of the inoperability of 

interconnected sectors within an economy has made IIM more useful in risk 

management through measuring economic loss and inoperability. Moreover, IIM is 

not only able to describe the impact of the affected sector or sectors on other sectors, 

but is also extended to capture the economic ripple effect of the disrupted region on 

other regions. Baghersad and Zobel (2015) improved the IIM to analyse the rationing 
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scheme among industries in the aftermath of a disaster and provided a way to assess 

indirect economic impact for some specific sectors. However, IIM is still constrained 

by its assumptions. Firstly, the equilibrium of input and output make IIM unsuitable 

for economies with large and widespread demand perturbations. The second 

limitation regards the data source: although BEA generates comprehensive IO related 

data per five years, the data focuses on the United States. Both the individual sector 

and the region have to be within the BEA-related area to obtain reliable data. 

Meanwhile, technical coefficient matrices during periods of less than five years are 

not accessible and may result in inaccurate results. In addition, the research period 

has to be long enough to take effect (at least a few hours) and short enough to avoid 

substitutions (at most, a year). Since expenditure of substitutions from external 

sectors would change technical multipliers, the research region must be large enough 

to overcome substitutions issues and to be able to account for interregional 

substitutions. Moreover, labour constraints are not taken into account (Crowther and 

Haimes, 2005, Dietzenbacher and Miller, 2015, Okuyama, 2014).  

3.1.3.2 Post-disaster Imbalances Model 

As most literature has not taken the ‘size’ of the natural event as a separate factor in 

risk analysis, Steenge and Bočkarjova (2007) have posited that “the ‘size-factor’ 

influences the way society has to think about the recovery and reconstruction 

process”. Indeed, if the natural catastrophe confronting the economy is too large and 

exceeds the resilience of the system, the post-disaster recovery will become the most 

serious problem that is faced by the affected region. If both industrial and regional 

productive capacity decrease due to external shocks, the aftermath imbalances or 

disproportions of the supply-demand connections will be generated. Hence, Steenge 

and Bočkarjova (2007) offered a series of basic equations under the IO framework to 

systematize the economic imbalances in the aftermath of  large-scale natural disasters 

and analyse how the natural disaster impacts on production and consumption 

capacity, especially with regards to the labour force. Here, the approach is named as 
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‘Post-disaster Imbalances Model’. Household demand is considered as a labour-

related input into the economy due to the model built being a closed Leontief model 

(Eq.3.17). In addition to the IO model assumptions, two other basic hypotheses should 

be mentioned: one is that the destination of recovery is the pre-disaster level and the 

other is that a certain percentage of labour is affected after a natural disaster. Thus, 

the basic equations are showed as below. 

𝐱 = 𝐀𝐱 + 𝐟   (3.17) 

𝐿 = 𝐈′𝐱    (3.18) 

 

where A means technical coefficient matrix, x is column vector of total output and f is 

total demand. The scalar L stands for total employment, and I’ shows the row vector 

of direct labour input coefficients. Through rearrangement, Eq.3.17 and 3.18 will be 

performed as: 

[
𝐀 𝐟/𝐿

𝐈′ 0
] (
𝐱
𝐿
) = (

𝐱
𝐿
)   (3.19) 

If it assumes 

𝐡 =
𝐟

𝐿
   , 𝐌 = [

𝐀 𝐡
𝐈′ 𝟎

]   and  𝐪 = (
𝐱
𝐿
)  , (3.20) 

then Eq.3.19 can be shown as  

𝐌𝐪 = 𝐪   (3.21). 

Eq.3.21 describes the potential of the economy to self-reproduce with the 

industrial capacities at level q. The left side shows the whole input and the right side 

is the whole output. The main distinction from the standard closed model is that only 

sub-matrices A, I’ and M are assumed as the fixed coefficients in this model. It means 

that any changes of f will result in new corresponded values of x and L, and then both 

Eq.3.20 and 3.21 are changed. For measuring the available production capacity after 
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a natural disaster, (n+1) parameters γi (0≤ γi≤1) was introduced to denote the lost 

fraction of the production capacity in industry I, and c is the remaining industrial 

capacities. Thus, 

𝐜 = (𝐈 − 𝚪)𝐪   (3.21) 

and    𝚪 = [
𝛾1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝛾𝑛+1

]   (3.22) 

where I is the identity matrix, Γ is the (n+1) dimensional matrix (Eq.3.22). Various 

values of Γ lead to different economic conditions as Eq.3.23 and 3.24. If Γ is a zero 

matrix, production capacities remain unchanged from pre-disaster level because there 

is no influence on the economy. If it is not the zero matrix, only under the condition 

of 𝚪𝐪 = 𝛄𝐪   (0≤ γ≤1) in the Eq.3.23, the economy’s production capacity is shrinking 

proportionally. If 𝚪 ≠ 𝛄, it is not able to replicate the same proportions of input and 

output.  

𝚪 ≠ 𝟎   →  (𝐈 − 𝚪)𝐪 ≠ 𝐪  → 𝐌(𝐈 − 𝚪)𝐪 ≠ 𝚪𝐪  (3.23) 

After a natural disaster and flood in particular, total available inputs will become 

Eq.3.24 due to the influence of production capacities. As measured by Eq.3.25, t 

indicates the accessible inputs for next round (or next time unit) during the post-

disaster period. As the core of the ‘Basic Equation’, Eq.3.25 can be regarded as the 

immediate situation after a disaster and expresses disturbed proportions among 

inputs and outputs.  

𝐌(𝐈 − 𝚪)𝐪 = 𝐭     (3.24) 

 

[

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

    
ℎ1
⋮
ℎ𝑛

𝑙1    … 𝑙𝑛         0

]([

1 − 𝛾1 0 0
0 ⋱ 0
0 0 1 − 𝛾𝑛
0     0       0

    

0
0
0

1 − 𝛾𝑛+1

] [

𝑞1
⋮
𝑞𝑛
𝑞𝑛+1

]) = [

𝑡1
⋮
𝑡𝑛
𝑡𝑛+1

]   (3.25) 
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A post-disaster imbalances model allows the consequences of natural disasters 

to be investigated at both industrial and regional level by considering the size impact 

on interrelations and connections of an economic system from the labour perspective. 

Since it is a special IO-based model, this approach enables the labour-induced 

imbalanced linkages between affected production capacity and influenced labour 

force to be estimated, and recovery possibilities of the broken circular flow in an 

economy to be examined. Furthermore, this model provides a new direction in terms 

of thinking about the equilibrium and imbalance that are induced by external 

disturbances, and expended the influenced factor to the labour force. However, as it 

only concentrates on the employment impact on economic production, other 

influencing factors such as damage to physical capital, transportation impacts and 

changed consumption behaviour in the aftermath of natural disasters, are ignored. 

This may lead to an incomplete analysis of economic loss and post-disaster recovery.  

3.1.3.3 Adaptive Regional Input-Output Model  

There are several limitations embodied in IO models due to its rigidity. For example, it 

cannot illustrate industrial or regional productive capacity situations after an external 

shock, or respond to the flexibility of economic transactions. Thus, in order to address 

these constraints, Hallegatte (2008) built an Adaptive Regional Input-Output Model 

(ARIO) to explore the influence of natural disasters and the ensuing  recovery phase 

with consideration of production capacity changes resulting from capital loss-induced 

and consumption behaviour adaptation. ARIO is a hybrid modelling methodology 

based upon the earthquake study by Brookshire et al. (1997) and suitable for 

economies that contain a great number of households with a fixed consumption. The 

model assumes that either imports or exports are related to outside regions, and 

imports are available during the entire pre- and post-disaster period. Like other IO-

based models, IO tables are the fundamental work of the ARIO due to IO table 
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supporting the interconnections among all the sectors. Below is the basic framework 

of the ARIO.  

𝑌̅ = 𝐴̅𝑌̅ + 𝐶̅   (3.26) 

Eq.3.26 is the basic equation derived from the Leontief IO model, in which 𝑌̅ and 

𝐶̅ are the vectors of output and final demand in all industries, respectively. 𝐴̅  refers 

the IO table that is modified by removing imports to differentiate the producers of 

flowed production, which means that the system based on the new IO table is only 

rely on its own production. The system consists of n sectors and total production (Y(i)) 

of industry i allocates to other industries used as intermediate consumptions and to 

other consumers like local final demand (LFD(i)), exports (E(i)) and reconstruction 

requirement that includes rebuild demand for damaged capital from industries (D(i,j)) 

and households (HD(i)) (Eq.3.27).  

 

𝑌(𝑖) = ∑ 𝐴(𝑖, 𝑗)𝑌(𝑗) + 𝐿𝐹𝐷(𝑖) + 𝐸(𝑖) + 𝐻𝐷(𝑖) + ∑ 𝐷(𝑖, 𝑗)𝑗
⏞                      

Total Final Demand (𝑇𝐹𝐷(𝑖))

𝑗    (3.27) 

 

Natural disasters is assumed occurred at t=0. As month is the time unit here, 

ARIO starts from the estimation of industrial available production and total final 

demand in every month. Thus, in the first month, if there is no any disturbance affect 

the region, Eq.3.28 obtains industrial production Y0(i) and first-guess total demand 

(TD0(i)) should be equal to total production (Eq.3.29). Meanwhile, production of each 

industry i (Y1(i)) is measured as Eq.3.30, where industrial production capacity (Ymax) is 

from pre-disaster industrial output. As Hallegatte et al. (2007) offered the linkages 

that one value of capital is approximately accounts for four value of value-added, the 

production capacity, Eq.3.31 can get the amount of Ymax, where 𝐷̂(𝑖), 𝑉𝐴(𝑖)̅̅ ̅̅ ̅̅ ̅ and α(i) 
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is the annual industrial capital damage, annual value-added and overproduce of 

industrial i. 

𝑌0 = (1 − 𝐴)−1𝑇𝐹𝐷   (3.28) 

𝑇𝐷0(𝑖) = 𝑌0(𝑖)   (3.29) 

𝐘1 = {𝑌1(𝑖)} ↔ {𝑌1(𝑖) = 𝑀𝐼𝑁{𝑌max(𝑖); 𝑇𝐷0(𝑖)}}, ∀𝑖    (3.30) 

Ymax(𝑖) = 𝑌̅(𝑖) [1 −
𝐷̂(𝑖)

4𝑉𝐴(𝑖)̅̅ ̅̅ ̅̅ ̅̅ 𝛼(𝑖)](3.31) 

Hallegatte (2008) constructed a relationship that productive capacity and 

production capacity in the same industry share the same decreased percentages. 

Hence, damaged industrial capital may result in degraded production capacities due 

to disaster shocks. ARIO copes with the issue of production bottlenecks in the 

aftermath of disaster as followed steps. First-guess amount of orders of industry i 

(O1(i)) means the intermediate demand (commodity) of industry i required from other 

sectors (Eq.3.32). Two scenarios about the connection between the remaining 

production and first-guess orders are considered. If the available production can 

satisfy first-guess orders for all sectors, as 𝑌1(𝑖) ≥ 𝑂1(𝑖), then a natural disaster does 

not arise production bottleneck in the industry i. By contrast, if the industry i is not 

able to produce enough commodity, as 𝑌1(𝑖) ≤ 𝑂1(𝑖) , external shock produces 

production bottleneck for this sector and production of other sector j is limited by 

𝑌1(𝑖)

𝑂1(𝑖)
𝑌1(𝑗). Overall, the new production in each sector i (Y2(i)) can be estimated as 

Eq.3.32.  

𝑂1(𝑖) = ∑ 𝐴(𝑖, 𝑗)𝑌1(𝑗)𝑗     (3.32) 

   𝐘2 = {𝑌2(𝑖)} =↔ {𝑌2(𝑖) = 𝑀𝐼𝑁 {𝑌1(𝑖); for all 𝑗,
𝑌1(𝑗)

𝑂1(𝑗)
𝑌1(𝑖)}} , ∀𝑖 (3.33) 
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Therefore, if 𝐘2 = 𝐘1 , there is no bottleneck of the economy and Y2 is the actual 

production; if 𝐘2 ≠ 𝐘1 , bottlenecks are created in the economy and a new total 

demand is computed as Eq.3.34.  

𝑇𝐷1(𝑖) = 𝑇𝐹𝐷(𝑖) + ∑ 𝐴(𝑖, 𝑗)𝑌2(𝑗)𝑗    (3.34) 

Through repeating Eq.3.29-3.34, all productions eventually are limited by zero. 

At this time, the values of total final demand and total production are almost equal to 

each other, which indicate that the industry i is able to supply its relevant demand. 

During this process, rationing scheme of remaining production allows the economy to 

mitigate the influence of production bottlenecks. ARIO adopt a mix rationing scheme 

in which intermediate industrial demand served as priority and other remaining 

production proportional rationed between total final demand like reconstruction 

needs and local final demand. However, there are still some special cases for 

production allocation. For industrial allocation, if intermediate demand of industries 

cannot be satisfied with accessible production, proportional scheme is also applied as 

the rationing scheme for all industries’ intermediate demand. While in total final 

demand, although the basic scheme is proportional rationing, the actual distribution 

is determined by many facts. It implies that household consumption should be support 

as priority, followed with export and reconstruction needs, since producers of exports 

can be substituted into suppliers from other regions and rebuild costs either from 

sectors or from households in the aftermath of natural disasters are assumed repaired 

by the insurance companies (Hallegatte, 2008). 

Regarding the final demand, adapted local final demand (LFD(i)) is linked with 

original local final demand (𝐿𝐹𝐷̅̅ ̅̅ ̅̅ (𝑖)) and dynamic prices of commodities. As Eq.3.35, 

where M is a macroeconomic indicator and expressed as the ratio of total earnings 

aftermath to pre-disaster total earnings; p(i) is the price of the ith commodity; and μ 

stands for the elasticity of local final demand to the production price. Similar approach 

(Eq.3.36) used to calculate adapted export (E(i)), but there is no impact of M. 
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𝐿𝐹𝐷(𝑖) = 𝑀 ∙ 𝐿𝐹𝐷̅̅ ̅̅ ̅̅ (𝑖) ∙ [1 − 𝜇(𝑝(𝑖) − 1)]   (3.35) 

𝐸(𝑖) = 𝐸̅(𝑖) ∙ [1 − 𝜇(𝑝(𝑖) − 1)]   (3.36) 

Substitution is often assisted with post-disaster recovery. ARIO analyses two 

substituted cases, one is the industry i with possibility to utilize external production; 

and the other one is substitution is impossible. For the Eq.3.37, sector is not able to 

support the whole demand, but possibility for substitution allows both 𝑇𝐷∞(𝑖), 𝐸̅ and 

decrease to zero with times 𝜏𝐿𝐹𝐷
↓  and 𝜏𝐸

↓ , respectively (Eq.3.37 and 3.38); in addition, 

Eq.3.39 shows A(j,i) reduce with time 𝜏𝐴
↓  and Eq.3.40 displays import I(j) increase with 

time 𝜏𝐴
↓ . 

𝑌∞(𝑖) < 𝑇𝐷∞(𝑖)
𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛
→         𝐿𝐹𝐷̅̅ ̅̅ ̅̅ (𝑖) −

𝑇𝐷∞(𝑖)−𝑌∞(𝑖)

𝑇𝐷∞(𝑖)
𝐿𝐹𝐷̅̅ ̅̅ ̅̅ (𝑖)

∆𝑡

𝜏𝐿𝐹𝐷
↓  

∆𝑡
→ 𝐿𝐹𝐷̅̅ ̅̅ ̅̅ (𝑖)   

(3.37) 

𝑌∞(𝑖) < 𝑇𝐷∞(𝑖)
𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛
→         𝐸̅(𝑖) −

𝑇𝐷∞(𝑖)−𝑌∞(𝑖)

𝑇𝐷∞(𝑖)
𝐸̅(𝑖)

∆𝑡

𝜏𝐸
↓  
∆𝑡
→ 𝐸̅(𝑖)   (3.38) 

𝑌∞(𝑖) < 𝑇𝐷∞(𝑖)
𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛
→         𝐴(𝑗, 𝑖) −

𝑇𝐷∞(𝑖)−𝑌∞(𝑖)

𝑇𝐷∞(𝑖)
𝐴(𝑗, 𝑖)

∆𝑡

𝜏𝐴
↓  
∆𝑡
→ 𝐴(𝑗, 𝑖)   (3.39) 

𝑌∞(𝑖) < 𝑇𝐷∞(𝑖)
𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛
→         𝐼(𝑗) −

𝑇𝐷∞(𝑖)−𝑌∞(𝑖)

𝑇𝐷∞(𝑖)
𝐴(𝑗, 𝑖)

∆𝑡

𝜏𝐴
↓  
∆𝑡
→ 𝐼(𝑗)   (3.40) 

ARIO proved that the flexibility of IO framework allows doing indirect effects 

investigation through the taking into account of production bottlenecks and various 

substitution scenarios. As one of the significant contributions in the development of 

IO analysis and natural disaster impact assessment in particular, parameters 

considered in ARIO, like how to incorporating the production capacities and 

production bottlenecks that influenced by natural disasters, served as the basic 

guidelines for later relevant studies as Li et al. (2013) and Koks et al. (2015a). However, 

more issues should be considered in this model, such as how to deal with employment 

effect and household impact in production capacity and in post-disaster recovery 
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process; and how to set the basic assumptions since the most parameters that ARIO 

relies on are not easy to get real data or response to reality situation. 

3.1.3.4 Basic Dynamic Inequalities Model 

Li et al. (2013) constructed a Basic Dynamic Inequalities Model (BDI) to assess an 

imbalanced economic recovery in a post-disaster period by integrated both capital 

and labour constraints. The core aim for the BDI model is to present a theoretical route 

map of imbalanced economy recover to pre-disaster level with a series of dynamic 

inequalities between remaining productive capacities and supply bottlenecks. BDI was 

built upon the standard IO relationship, as Eq.3.41, in which x is sectoral output and f 

is final demand, while A is technical coefficients matrix. Labour constraint is 

introduced from the Basic Equation of Post-disaster imbalances Model (Steenge and 

Bočkarjova, 2007), as Eq.3.42 which come from Eq.3.19-3.21, l represents total 

regional employment, I’ is a row vector about direct labour input coefficients. 

𝐱 = 𝐀𝐱 + 𝐟   (3.41) 

{
 
 

 
 [

𝐀
𝐟

𝑙

𝐈′ 0
] (
𝐱
𝑙
) = (

𝐱
𝑙
)   (3.19)

 𝐌 = [
𝐀

𝐟

𝑙

𝐈′ 𝟎
]    and  𝐪 = (

𝐱
𝑙
) (3.20)

  → 𝐌𝐪 = 𝐪   (3.42) 

𝑙 = 𝐈′𝐱    (3.43) 

When the time dynamics and damage fractions added into the Eq.3.41, then 

both Eq.3.43 and 3.44 indicate the degraded total demand (𝐱𝒕𝒅
𝒕 ). While the former 

one shows it depends on final demand (ft) over time t, and the latter one illustrates it 

comes from current production capacity and total final demand, in which Γ is the 

matrix of the damage fraction and expressed as Eq.3.45. It assumes that a natural 

disaster occurs at time t=0 and the economy consists of n sectors.  

𝐱𝒕𝒅
𝒕 = (𝐈 − 𝐀)−1𝐟𝑡   (𝑡 > 0)    (3.43) 
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𝐱𝒕𝒅
𝒕 ≈ 𝐀(𝐈 − 𝚪𝑡)𝐱𝟎 + 𝐟𝑡   (𝑡 > 0)   (3.44) 

𝚪𝑡 = (
𝛾1
𝑡 ⋯ 0
⋮ ⋱ ⋮
0 … 𝛾𝑛

𝑡
)   (3.45) 

After dynamics introduced into Eq.3.43, degraded labour production capacity 

(𝐱𝑙
𝑡) determined by industrial employment at time t (𝐈𝑒

𝑡 ) (measured as Eq.36) and the 

lost fraction of production capacity in industry I (𝛾𝑖
𝑡, 0 ≤ 𝛾𝑖 ≤ 1; 1 ≤ 𝑖 ≤ 𝑛 + 1), as 

shown in Eq.3.47.  

𝐈𝑒
𝑡 = (1 − 𝛾𝑛+1

𝑡 )𝐈𝑒
0   (3.46) 

𝐱𝑙
𝑡 = 𝐈𝑒

𝑡 ./𝐈 → 𝐱𝑙
𝑡 = (𝐈̂)

−1
𝐈𝑒
𝑡     (3.47) 

Hence, both Eq.3.43, 3.44 and 3.47 are limited by Eqs.3.48-50, in which the 

economy balance is constrained by the degraded total production (𝐱𝒕𝒑
𝒕 ) and the 

balanced total output and labour (𝐪∗(𝑡)). 𝐪(𝑡) is an imbalanced indicator of input and 

output, which determined by total output ( 𝐱𝑡𝑝|𝑡𝑑|𝑙
𝑡 ) and labour ( 𝑙𝑡𝑝|𝑡𝑑|𝑙

𝒕 ) that required 

for balancing total production capacity, total demand and labour at time t.  

𝐱𝑡𝑝
𝑡 = 𝑙(𝐈 − 𝚪𝑡)𝐱0   (𝑡 > 0)   (3.48) 

𝐌𝐪∗(𝑡) = 𝐪∗(𝑡), where  𝐪∗(𝑡) = (𝐱
∗(𝑡)

𝑙∗(𝑡)
)   (3.49) 

𝐪∗(𝑡) = (𝐱
∗(𝑡)

𝑙∗(𝑡)
) ← 𝐪(𝑡) = (

𝐱𝑡𝑝|𝑡𝑑|𝑙
𝑡

𝑙𝑡𝑝|𝑡𝑑|𝑙
𝑡 )   (3.50) 

Thanks to the shok of natural disaster, inequalities take place at each time step, 

as Eq.3.51. Degarded total total production, demand and labour cannot match with 

each other and then lead to the imblanced economic recovery aftermath. 

{

𝐱𝑡𝑑
𝑡 ≠ 𝐱𝑡𝑝

𝑡

𝐱𝑡𝑑
𝑡 ≠ 𝐱𝑙

𝑡

𝐱𝑡𝑝
𝑡 ≠ 𝐱𝑙

𝑡

   (3.51) 
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The above structure comprises the key parts of the BDI model, in which the 

aftermath condition is clearly presented as inequalities. Li et al. (2013) verified the BDI 

mode with a hypothetical case of a 2020 London flood. Later, Mendoza-Tinoco et al. 

(2017) proposed a damage accounting framework that combines the advantages of 

previous IO-based disaster risk analysis models (particular of the BDI model) and 

introduced the flood footprint concept to estimate the total economic impact of the 

2007 summer floods in the region of Yorkshire and the Humber in the UK. Their 

methodologies followed the design of ARIO in terms of capturing post-disaster 

recovery, but with some improvements, such as taking labour availability into 

consideration during the disaster aftermath. However, damaged industrial and 

household capital effects in each period are still set as exogenous factors that cannot 

immediately link and respond to the recovery. Similar to the parameter of import, as 

it is limited by the transport sector, exogenous import plus exogenous recovery 

conditions of transportation increase the uncertainty of the results. Thus, current 

research in assessing the indirect economic consequences of sudden-onset natural 

disasters based on the IO framework cannot fully accommodate the changes of inter-

industry relationships and imbalances of the affected economic system during the 

aftermath of a disaster (Bockarjova, 2007).  

3.1.3.5 Flood Model 

Koks et al. (2015a) also employed both imbalanced model and the ARIO model to 

simulate production loss and economic recovery in a post-disaster economy of the 

harbour area in Rotterdam (the Netherlands). The so-called Flood Model calculates 

the direct loss through water-depth function (Eq.3.52), and then coverts direct losses 

to production losses via Cobb-Douglas production function as Eq.3.53. It translates the 

production input factors capita (K) and labour (L), which also presented as value-

added part in IO table, into the amout of output (Y) in sector j. In particular, b indicates 

the total factor productivity, α and β are output elasticities associated with the 

changed input. Capital production lossess are esitamted by Eq.3.52, and each sector 
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accounts for the approximated labour lossess since labour assumes evently 

distributed to sectors. 

𝐷𝑑𝑖𝑟 = ∑ ∑ 𝛼(ℎ𝑟)𝐷𝑙
𝑚𝑎𝑥𝑛

𝑟
𝑚
𝑙    (3.52) 

Ddir is total direct damage in the considered area;  

Dmax shows value at risk for land-use type I;  

αi(hr) represents depth-damage function, hr is flood-induced water depth of cell r. 

𝑌𝑗 = 𝑏𝑗𝐾𝑗
𝛼𝐿𝑗
𝛽

   (3.53) 

Flood model minimizes the uncertaintiy of the loss transfer process that from 

dirct damage into indirect damage, or we can say from direct capita damage to indirect 

value-added loss (the way is shown in Eq.3.54).  

∆𝑌𝑗 = 𝑌𝑗 − [𝑏𝑗(∆𝐾𝑗
𝛼)(∆𝐿𝑗

𝛽
)]   (3.54) 

∆𝑌𝑗 is the industrial value-added loss and redefined as reduce industrial production;  

∆K is the remaining capital and ∆L is the remaining labour.  

Koks et al. (2015a) built a bridge between industrial value-added and total 

output of each sector (Eq.3.55). Inoperability of the sector j is expressed as the shock 

sj, it is determined by industrial value-added, total output (Xj) and industrial value-

added loss. Since Y and X has a fixed link, any changes of ∆𝑌𝑗 will influence sj via Eq.3.55. 

For all sectors, a matrix 𝛔 is used to present the economy-wide inoperability (Eq.3.56). 

Thus, remaing production capacity matrix (1 − 𝛔) is evulated in Eq.3.57. 

𝑠𝑗 =
𝑌𝑗

𝑋𝑗
 ×

∆𝑌𝑗

𝑌𝑗
   (3.55) 

𝛔 = [
1 ⋯ 0
⋮ ⋱ ⋮
0 … 1

]  × (

𝑠1
⋮
𝑠𝑖+1

)   (3.56) 

↓ 
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𝟏 − 𝛔 = [
1 − 𝑠1 ⋯ 0
⋮ ⋱ ⋮
0 … 1 − 𝑠𝑖+1

]   (3.57) 

During the pre-recovery period, the economy pertain to the conditions of Eq.3.42. 

if the shock is taking into account, the reamining part of the aftermath system become 

Eq.3.58, in which t is a row vector in terms of reaming assets and can be regarded as 

a start-point of the post-disaster recovery.  

{
 
 

 
 [

𝐀
𝐟

𝑙

𝐈′ 0
] (
𝐱
𝑙
) = (

𝐱
𝑙
)   (3.19)

 𝐌 = [
𝐀

𝐟

𝑙

𝐈′ 𝟎
]    and  𝐪 = (

𝐱
𝑙
) (3.20)

  → 𝐌𝐪 = 𝐪   (3.42) 

(𝟏 − 𝛔) ×𝐌 × 𝐪 = 𝒕  (3.58) 

Regarding the post-recovery, labour factor at each time period t (Lj,t) is according 

to a linear recovery paths and restricted by the maximum demand production 

capacities among the sectors (Eq.3.59). Remaining capital (Kj,t) is estimated from 

Eq.3.60. At each time period, both Lj,t and Kj,t are inserted to Cobb-Douglas production 

function to measure the maximum possible industrial value-added. Finally, the 

economy will return to pre-disaster level and indirect losses can be calucated from 

Eq.3.61, which defined as sum of the gaps between post-disaster value added and pre-

disaster value added during the entire recovery period. 

𝐿𝑗.𝑡 = 𝑚𝑖𝑛 {(𝐿𝑗
𝑝𝑑 + 𝑡 ×

𝐿𝑗
0−𝐿𝑗

𝑝𝑑

𝜆
) ; (𝐿𝑗.𝑡 ×

𝑋𝑗.𝑡

𝑋𝑗
0 )}(3.59) 

𝐿𝑗
𝑝𝑑: post-disaster labour;  

𝐿𝑗
0: pre-disaster labour; 

𝜆: labour recovery period; 

𝑋𝑗.𝑡: remaining prodcution capacity 

𝑋𝑗
0: pre-disaster production capacity 
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𝐾𝑗.𝑡 = 𝐾𝑗.𝑡−1 − (𝐷𝑗.𝑡−1
𝑑𝑖𝑟 − 𝐷𝑗.𝑡−1

𝑑𝑖𝑟 𝑋𝑗.𝑡

𝑋𝑗
0 )    (3.60) 

𝐿𝑗
𝑝𝑑: post-disaster labour;  

𝐿𝑗
0: pre-disaster labour; 

𝜆: labour recovery period; 

𝐷𝑗.𝑡
𝑑𝑖𝑟: the remaining flood damage. 

𝐷𝑖𝑛𝑑 = ∑ 𝑌𝑗
0 −𝑡

𝑗 ∑ 𝑌𝑗,𝑡
𝑡
𝑗    (3.61) 

With a Cobb-Douglas production function, Flood model is able to compute the 

production capacites that constrained by both labour and capital factors. Meanwhile, 

it allows to carry out an extensive analyisis analysis for sepcific parameters of the 

model and provides a more widespread view of the indirect economic impact 

assessment under the IO framework. However, lack of impacts from import, damaged 

household and production bottleneck are considered in the flood model. Thus, it is 

difficult for the model to present a comprehensive economic impact. 

Although the balanced growth model has important implications in terms of 

disproportional damages to industrial production capacity and the post-disaster 

economic imbalances, the dynamic feature of economic recovery is yet to be fully 

investigated. An ARIO attempted to capture the post-disaster economic dynamics with 

particular emphases on price adjustments and adaptations in final consumption, 

intermediate consumption and production. However, the model neglects important 

imbalances and the nexus between capital availabilities and labour productivity (Koks 

et al., 2016). As the assumption of fixed proportions in factor inputs holds throughout 

the IO model, considering the remaining production seldom based on capital 

degradation is another drawback. Instead, injuries or excess mortality counts in the 

labour force should be transformed into degradation in labour availability and 

productivity. 
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Table 3.2. Main characterizes of ARIO, BDI, Flood Model and Flood Footprint model. 

1. ×: means do not take into consideration; 2. Price is only taken into account in ARIO model, but not in BDI model or Flood Footprint model. 

Model 

Productive Capacity of 
Industry 

Import 
Consumption 

Behaviour 

Recovery Path 

Rationing Scheme 

 
Parameters Considered in 

Sensitivity Analysis 
Relevant 
Literature Capital 

Damage 
Labour 

Constraints 
Industrial 

Capital 
Labour 

Household 
Capital 

Adaptive 
Regional 
Input-Output 
Model (ARIO) 

 

Related with 
value-added 
 

× 

× 
(Removed 
imports 
from 
original IO 
table) 

Depend on 
price levels 

Exogenous  × Exogenous 

1) Mix scheme 
Intermediate demand 
Proportional rationing: 
exports, final local demand 
and reconstruction 
 

 
1) Overproduction capacity 
2) Adaptation Characteristic 
Times 
3) Price Dynamics 
4) Demand Elasticity 
5) Macroeconomic Feedback 

Hellagatte 
(2008, 2014) 

Basic 
Dynamic 
Inequalities 
Model (BDI) 

 

Damage 
fraction = 
(degraded 
productive 
capital)/(total 
capital stock) 

Assumption 
data 

Affected by 
Transportat
ion Sectors 

Exogenous 
(consumption 
demand for 
luxury goods is 
assumed to be 
halved after the 
disaster)  
 

Exogenous  Exogenous Exogenous 

1) Mix scheme 
Intermediate demand  
→Proportional rationing: 
exports, final local demand 
and reconstruction 
2) Priority scheme 
Intermediate demand  
reconstruction  other 
demand 

1) Direct loss of disaster 
2) Rationing schemes 
3) A regional matrix, 
alternative labour and 
household recovery paths 

Li et al., 2013;  
Mendoza-
Tinoco et al. 
(2017) 

Flood Risk 
Model 

Depth-
damage 
functions → 
Capital loss 

Cobb-
Douglas 
production 
function  
Direct 
labour loss  

× 

Only change in 
retail and 
construction 
sectors 

Endogenous Exogenous × 

1) Priority scheme 
  Intermediate demand 
→basic demand 
→reconstruction 

other demand 
exports 

 
1) Maximum use of regional 
capacity 
2) Recovery period 
amount   
3) Labour recovery period 
4) The inventories 
available per sector 
5) Unrestricted stock 
availability in the 
construction and retail 
sector 
 

Koks et 
al.(2015a); 
Koks and 
Thissen 
(2016) 
 

Flood 
Footprint 
Model 

Damage 
fraction = 
(degraded 
productive 
capital)/(total 
capital stock) 

Damage 
fraction = 
(degraded 
labour time 
loss) / 
(total 
labour 
time) 

Affected by 
Transportat
ion Sectors 

Exogenous 
(basic demand, 
which need to 
be satisfied in 
priority) 

Endogenous  Exogenous 

Endogenous 
(covert into 
industrial 
capital 
reconstructio
n demand) 

1) Mix scheme 
  Intermediate demand 
→basic demand 
→reconstruction 
→Proportional rationing: 
other local demand, 
exports 

1) Labour recovery path 
2) Capital recovery scheme 
3) Delayed recovery  
4) Relationship of labour and 
capital  
5) Import 
6) Basic human demand 

 

Developed by 
this thesis 
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3.2. Methodology for Indirect Flood Footprint Accounting 

The ‘flood footprint model’ developed by this thesis seeks to assess the indirect economic 

impact of flood-related natural disasters. Relative to previous studies (Hallegatte, 2008, Li et 

al., 2013), as shown in Table 3.2, the methodology for flood footprint accounting offered here 

is largely inspired by ARIO and BDI models. With improvements on optimisation of available 

production imbalances after the disaster, this quantitative methodology framework of 

indirect flood footprint accounting is able to measure the indirect flood footprint at industrial 

and regional level in a certain period, produced by two types of flood: 1) a single flood on a 

single economic system; 2) multiple floods on a single economic system and particular focus 

on two-flood event.  

The specific novelties of the model are as follows: 

 It is a quantitative measurement for indirect flood footprint accounting that is able to 

assess both single-flood and two-flood induced indirect economic impact at both 

industrial and regional level in a certain period. 

 Both industrial and household capital limitations can be regarded as either exogenous 

or endogenous variables during the post-flood period to different recovery plans.  

 The approach to labour impact assessment is more reliable by linking labour 

constraints with total production capacity.  

 It provides a more effective rationing scheme of available resources in the aftermath 

of floods with considerations on basic human requirements and industrial 

interdependencies.  

 It allows various types of sensitivity analysis to model parameters and other external 

influences such as quality of post-flood governance, due to the flexibility of the model 

in which recovery process can be clearly simulated. 

3.2.1. Overall Conceptual Framework  

The flood footprint modelling framework is designed to capture the overall indirect impacts 

on a regional economy and simultaneously capture the industry interdependencies, post-
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disaster economic inequalities, household adaptive consumption behaviour, and effects of 

capital damages and labour constraints on production capacity during post-disaster recovery 

and supply bottlenecks. Flood Footprint Model is a further development based upon Li et al. 

(2013), and it starts with a standard Leontief demand-driven IO model (Leontief, 1936; Miller 

and Blair, 2009), which records the transaction flows between producers and consumers and 

takes the following form: 

𝐱 = 𝐀𝐱 + 𝐟   (3.6) 

where x denotes the industrial output; f is final consumption demand, including local 

household consumption, government expenditure, capital inventory and exportation; and A 

is the technical coefficient, which is assumed to be fixed throughout the economy. The left-

hand side of Eq.3.6 is the total output of the economy, while the right-hand side is the total 

demand of the economy.  

Two basic assumptions are embodied among Flood Footprint Model. One is that 

imports can be substituted by domestic productions before the disaster, it means that pre-

disaster situation does not consider the outside inputs for maintain the circular flow, which is 

the theory followed with Von Neumann (1971). The other one is that imports as an external 

resources, are allowed for contributing to post-flood economic recovery allows imports 

during the entire recovery period. Thus, before flood occurs, local production (x0) can satisfy 

intermediate demand (Ax0) and final consumption demand (f0) at the same time (Eq.3.62). 

𝐱𝟎 = 𝐀𝐱𝟎 + 𝐟𝟎   (3.62) 

𝐟𝟎 = 𝐟𝐡𝐡
𝟎 + 𝐟𝐠𝐨𝐯

𝟎 + 𝐟𝐜𝐚𝐩
𝟎 + 𝐟𝐞𝐱𝐩

𝟎    (3.63) 

where A represents domestic coefficients and describes the dependence of each sector and 

f0 is the final demand (Eq.3.63) including household demand (f0
hh), government demand 

(f0
gov), capital inventory (f0

cap) and exportation (f0
exp). 
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Figure 3.1. Post-disaster imbalanced economy and recovery. 

 

Such balances will break up after the disaster because of its influence on capital and 

labour. As the proportions of all inputs are assumed to be fixed in the basic IO model, capital 

damage and labour constraints due to the shock lead to decreases in the industrial capital and 

labour input, implying that capital production capacity and labour production capacity do not 

necessarily shrink proportionally. Thus, a series of inequalities (Eq.3.64) can be observed from 

the equations below (Figure 3.1): 1) Degraded post-disaster total production (xpro) does not 

match post-disaster total demand (xdem) (which is denoted with ‘non-equality’ sign in Figure 

1). 2) Degraded labour production capacity (xlab) does not match degraded capital production 

capacity (xcap). 3) Degraded labour/capital production capacity does not match degraded total 

production (which is denoted by red dashed arrows in Figure 4.1). Despite these inequalities, 

the quality of governance also have influence on the whole economic systems, effective 

governance encourages the recovery of production capacity while bad or incompetent 

governance resulted in reduction of industrial capacity.  

{
 
 

 
 
𝑥𝑝𝑟𝑜 ≠ 𝑥𝑑𝑒𝑚 
𝑥𝑙𝑎𝑏 ≠ 𝑥𝑐𝑎𝑝
𝑥𝑝𝑟𝑜 ≠ 𝑥𝑙𝑎𝑏 
𝑥𝑝𝑟𝑜 ≠ 𝑥𝑐𝑎𝑝 
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When the destroyed capital and affected labour are recovered, the whole economy will 

have returned to pre-disaster levels, implying that the remaining production alone is 

sufficient to meet intermediate industrial demand and original final demand; the indirect 

effects of the disaster end, and we enter the recovery period.  

During this process, five points should be analysed in the Flood Footprint Model: capital 

damage, labour constraints, household consumption behaviour, supply bottleneck and 

rationing scheme, in particular, primary endogenous factors embodied in the Flood Footprint 

Model are shown in Table 3.3. Below Section 3.2.2 and 3.2.3 present the detailed introduction 

about the variables in Flood Footprint Model for single-and two-floods’ indirect flood 

footprint accounting. 

 

Table 3.3. Primary endogenous factors in the Flood Footprint Model. 

Model 
Parameters 

Indicators 

t=0 

(Direct influence by flood) 

t>0 

(Post-flood recovery) 

Endogenous Exogenous Endogenous Exogenous 

Rationing 
Scheme 

    

√(determined by 
model 
managers/policy-
makers) 

Capital 
Limitation  

αt : damage 
fraction of 
capital 
productivity 

 
√ (affected by 
direct physical 
damage) 

√ (if there is 
no other 
recovery plan) 

√(determined by 
model 
managers/policy-
makers) 

Labour 
Constraints 

βt : damage 
fraction of 
labour 
productivity 

 
√(affected by 
direct labour time 
loss) 

 

√(determined by 
model 
managers/policy-
makers) 

Import 𝑦imp
𝑡   

√ (affected by 
transport sector) 

√ (if there is 
no other 
recovery plan) 

√(determined by 
model 
managers/policy-
makers) 

Basic 
Demand 

𝑓cd
𝑡   

√ (determined by 
model 
managers/policy-
makers) 

 

√(determined by 
model 
managers/policy-
makers) 
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3.2.2. Model Variables for Single Flood Event 

Both capital and labour limitations of industrial production capacity are inspired by the ‘Event 

Matrix’, a special matrix used to demonstrate the effect of a natural disaster. As Cole et al. 

(1993, p.4-7) explained, “In the most general case, the event matrix will be a set of tables 

corresponding to entries in the original I-O table which specifies i) the extent of damage to 

internal and external components, ii) the goal for recovery, and iii) the time scale for recovery. 

The detail of how an event matrix is specified will depend on the situation under 

investigation”. 

3.2.2.1 Capital Limitations 

Capital losses include industrial capital loss and household capital loss. Industrial capital loss 

leads to reduction in production activities, while household capital loss does not impact 

production activities but needs to be repaired/replaced during recovery. In any real case, 

information concerning destroyed industrial capital can be obtained from insurers or 

government statistics. Household capital damage information is difficult to obtain because of 

privacy protection, although insurers hold this information. Since this capital is typically within 

the sectors of electronics, general equipment, transportation equipment, manufactured 

products and construction and maintenance services, we can allocate the damaged capital of 

household into the related sectors and then turn to industrial damaged capital. 

Capital constraints are added into the model to estimate the influence of industrial 

capital production on the local economy. Destroyed capital has a negative influence on the 

production process and could result in decreased industrial production capacity. Thus, the 

production constrained by capital damage at time t (xt
cap) is shown in Eq.3.65. 

𝐱𝐜𝐚𝐩
𝐭 = (𝐈 − 𝛂𝟏̂

𝑡)𝐱𝟎 (𝑡 ≥ 1)   (3.65) 

where 𝛂𝟏̂
𝑡  is the diagonal matrix of industrial damage fractions at time t, 𝛼 is estimated as 

the ratio of damaged industrial capital to industrial original capital stock, x0 is the pre-disaster 

output level, and t is the time unit, when t=1, it stands for the first period after the flooding 

occurred.  
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3.2.2.2 Labour Constraints 

According to a previous study (Steenge and Bočkarjova, 2007), labour as one of the input 

elements can be introduced into the standard IO model (Eq.3.66),  

𝐿 = 𝐈′𝐱  (3.66) 

↓ 

𝐱𝟎 = (𝐈′)−𝟏𝐿  (3.67) 

↓ 

𝐱𝐥𝐚𝐛
𝐭 = (𝐈′)−𝟏 ((𝟏 − 𝛃𝑡)𝐿)⏟        

𝑎𝑣𝑎𝑙𝑖𝑎𝑏𝑙𝑒 𝐿

→ 𝐱𝐥𝐚𝐛
𝐭 = (𝐈 − 𝛃̂𝑡)((𝐈′)−𝟏𝐿)     (𝑡 ≥ 1)    (3.68) 

↓ 

𝐱𝐥𝐚𝐛
𝐭 = (𝐈 − 𝛃̂𝑡)𝐱𝟎     (𝑡 ≥ 1)    (3.69) 

 

where L is the total employment, and l’ represents direct labour input coefficients. Such 

equilibrium will be broken when the region is suffering a disaster. The change of final demand 

(f) resulted in different L and x. Thus, the linear relationship between labour and productivity 

of industry are applied here. This thesis introduce the damage fraction of labour productivity 

(𝛽1
𝑡) into the model, similar to Eq. 3.65, the actual production limited by labour constraints 

(xt
lab) becomes Eq.3.69. 

3.2.2.3 Basic Demand 

Household adaptive consumption behaviour during flood aftermath is set exogenously2. We 

often assume that life necessities in the disaster aftermath tend to gain greater significance, 

also called basic demand (𝐟𝐜𝐝), which belongs to the final demand in the Flood Footprint 

Model and is equal to the minimum amount of specific sectors. The amount or share of 𝐟𝐜𝐝
𝐭  in 

a period t thereby depends on policy makers, which are assured that consumers will accept 

                                                           
2 It means that household consumption after the disaster will accept what is exogenously decided. 
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their decisions. Regardless of the amount of 𝐟𝐜𝐝
𝐭 , residual production allocation in each round3 

has priority. 

3.2.2.4 Supply Bottleneck  

A new component called recovered demand (frec) (Eq.3.70), consisting of industrial capital 

recovery demand (fID) and household recovery demand (fHD), is added to the final demand 

part (Eq. 3.71), and the total required production (xd) is calculated by the new final demand 

(fd) (Eq. 3.72). 

𝐟𝐫𝐞𝐜 = 𝐟𝐈𝐃 + 𝐟𝐇𝐃                 (3.70) 

𝐟𝐝 = 𝐟𝐡𝐡
𝟎 + 𝐟𝐠𝐨𝐯

𝟎 + 𝐟𝐜𝐚𝐩
𝟎 + 𝐟𝐞𝐱𝐩

𝟎 + 𝐟𝐫𝐞𝐜  (3.71) 

𝐱𝐝 = 𝐀𝐱𝐝 + 𝐟𝐝                 (3.72) 

Economic linkages among sectors will also be disturbed in the disaster’s aftermath 

because of capital loss and labour constraints. Damage of industrial capital, decreased 

industrial capital productivity and labour constraints reduce the productivity of labour. The 

decreased productivity of the two main inputs, capital and labour, results in decreased 

domestic product. Building on Eqs. 3.65 and 3.69, maximum production capacity limited by 

capital loss (x0
cap) in the first round after the disaster is shown in Eq. 3.73, and maximum 

production under labour constraint (x0
lab) in Eq. 3.74.  

𝐱𝐜𝐚𝐩
𝟏 = (𝐈 − 𝛂𝟏𝟏̂)𝐱

𝟎    (3.73) 

𝐱𝐥𝐚𝐛
𝟏 = (𝐈 − 𝛃𝟏

𝟏̂) 𝐱𝟎    (3.74) 

In order to consider both capital and labour limitations, the available production is the 

minimum among the productions of capital and labour constraints (Eq. 3.75). The labour I 

considered in Eqs. 3.66-69 refers to the sector-specific working population, and there is no 

workforce transfer among sectors4.  

                                                           
3 In terms of mathematical meanings, ‘Round’ here and ‘period’ in this paper are used to mean the remaining 
products including available imports are fully allocated into economic systems; in the real case, it refers to the 
time unit/period, i.e. week, month or year. 
4 We did not consider that an electrician may switch to an IT job, but in reality, this transfer may occur. 
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𝐱𝟏 = min( 𝐱𝐜𝐚𝐩
𝟏 , 𝐱𝐥𝐚𝐛

𝟏 )   (3.75) 5 

The total required production exceeds the available production (𝐱𝐝 > 𝐱
𝟏) implying that 

the remaining production cannot support intermediate and final demand simultaneously, 

which then results in a supply bottleneck. 

3.2.2.5 Rationing Scheme  

Lower productivity leads to less production, and importation becomes the only way to meet 

the reconstruction needs of industrial and household capital. Import refers to the external 

input for the recovery demand, and it exists only when the local economic equilibrium is 

absent. Imports here are closely related to the capacity of the transportation sectors. As the 

capacity of the transport sector recovers, import also increases. The amount of imports at 

period t (yt
imp) depends on the remaining capacity of the transportation sector (Eq. 3.76-78). 

Here it assumed that the maximum capacity of import in the flooded area is y0
imp, and for 

supporting the capital damage demand and basic demand, imports are always provided 

during the whole disaster recovery period6. The whole recovery period starts from t=1, and t 

is the time unit, such as week, month or year.    

𝐲𝐢𝐦𝐩
𝟏 = (1 − 𝛼1_𝑡𝑟𝑎𝑛

1 )𝐲𝐢𝐦𝐩
𝟎    (3.76) 

𝐲𝐢𝐦𝐩
𝟐 = (1 − 𝛼1_𝑡𝑟𝑎𝑛

2 )𝐲𝐢𝐦𝐩
𝟎    (3.77) 

… 

𝐲𝐢𝐦𝐩
𝐭 = (1 − 𝛼1_𝑡𝑟𝑎𝑛

𝑡 )𝐲𝐢𝐦𝐩
𝟎   (𝑡 ≥ 1)  (3.78) 

Where αt
tran1 is the fraction of damaged transport sector capital at time period t times 

the original import (y0
imp); y0

imp is the amount of imports based on the pre-disaster transport 

level. 

If import has been taken into account, then the total available production at the 

beginning stage of the recovery period is (𝐱𝟏 + 𝐲𝐢𝐦𝐩
𝟏 ) . Because I assume that available 

production should first be sufficient for inter-industry demand and then goes into final 

demand, the complete recovery analysis will be based on scenarios 1 and 2 shown in Figure 

                                                           
5 x1 selects for each element the smallest corresponding element of the vectors  xt

cap and xt
lab. 

6 Here, it is assumed that import stays exogenous through the whole process. 
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3.2. Such rationing scheme is one kind of very general production allocated ways, and it can 

be adjusted according to different scopes and conditions, like proportional rationing scheme.  

(1) Scenario 1: recovery of intermediate linkages (Eq. 3.79). 

𝐱𝟏 + 𝐲𝐢𝐦𝐩
𝟏 <  𝐀𝐱𝟎 + 𝐟𝐜𝐝

𝟏   (3.79) 

If (𝐱𝟏 + 𝐲𝐢𝐦𝐩
𝟏 <  𝐀𝐱𝟎) (3.80), then all the available production should be used to recover 

intermediate demand. Several rounds are run until the original industrial demands are 

satisfied. As primary inputs must be used in fixed proportions in a standard IO model, a 

balance between capital and labour capacities should be restored first so that the production 

level can then be raised back to the pre-disaster level. The details of the rationing scheme are 

shown below. 

Round 17   

Imports (Eq. 3.77) are added because basic demand for minimal human needs (f1
cd, whose 

data depends on model managers or policy makers) is taken into account, and at the same 

time, when considering the the maximum capacity8 of the economic system, the available 

production (x1
rem) in Round 1 becomes 

𝐱𝐫𝐞𝐦
𝟏 = min(𝐱𝟏 + 𝐲𝐢𝐦𝐩

𝟏 , 𝐱𝟎 + 𝐲𝐢𝐦𝐩
𝟎 )   (3.81) 

To repair the industrial capital damage, the residual final demand (f1
rem), which excludes 

the basic demand of Round 1 (Eq. 3.82), is used first for industrial capital recovery (f1
rec; Eq. 

3.83) and then for other final demand (f1
others, Eq. 3.84)9.  

If the remaining final demand is not able to satisfy the basic demand, i.e. if f1
rem is 

smaller than f1
cd , the allocation of the goods between the capital damage recovery demand 

and basic demand should be adjusted according to the different situations. f1
others can include 

several users (similar to Eq. 3.63), and the proportion of each part is determined by the 

recovery preferences. 

𝐟𝐫𝐞𝐦
𝟏 = 𝐟𝟏 − 𝐟𝐜𝐝

𝟏   (3.82) 

                                                           
7  ‘Round 1’ here means the first time period (first week/first month) after the disaster shocked. 
8 In the original transactions, it is assumes that import can be substituted by domestic goods or services, so when 
considering imports, the maximum capacity of the sector is the sum of domestic production and imports. 
9 Recall that in this case, we do not consider the competition among all final demand users. 
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Figure 3.2. Rationing scheme of the Flood Footprint Mode in mathematical ways. 
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𝐭 − 𝐟𝐫𝐞𝐜
𝐭

Scenario 2

𝐱𝐭+𝐲𝐢𝐦𝐩
𝐭 ≥ 𝐀𝐱𝟎+ 𝐟𝐜𝐝

𝐭

Scenario 2.2    𝐱𝐭+ 𝐲𝐢𝐦𝐩
𝐭 > 𝐀𝐱𝟎 +𝐟𝐜𝐝

𝐭 +𝐟𝐫𝐞𝐜

Intermediate 

Demand 𝐀𝐱𝟎

Basic

Demand  𝐟𝐜𝐝
𝐭

Priority

Scenario 2.1   𝐱𝐭+𝐲𝐢𝐦𝐩
𝐭 ≤ 𝐀𝐱𝟎 +𝐟𝐜𝐝

𝐭 + 𝐟𝐫𝐞𝐜− ∑ 𝐟𝐫𝐞𝐜
 𝐭−𝟏

 =𝟏

Recovery Demand

𝐟𝐫𝐞𝐜
𝐭 = 𝐦𝐢 𝐟𝐫𝐞𝐜 −∑𝐟𝐫𝐞𝐜

 

𝐭−𝟏

 =𝟏

, 𝐟 𝐞 
𝐭   

Other Final Demand

𝐟𝐨𝐭𝐡𝐞𝐫𝐬
𝐭 = 𝐟 𝐞 

𝐭 − 𝐟𝐫𝐞𝐜
𝐭

Remaining Production

𝐟 𝐞 
𝐭 = 𝐱𝐭+𝐲𝐢𝐦𝐩

𝐭 −

𝐀𝐱𝟎−𝐟𝐜𝐝
𝐭

Until

Other Final Demand

𝐟𝐨𝐭𝐡𝐞𝐫𝐬
𝐭 = 𝐱𝐭+𝐲𝐢𝐦𝐩

𝐭 − (𝐀𝐱𝟎 +𝐟𝐜𝐝
𝐭 +𝐟𝐫𝐞𝐜)
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𝐟𝐫𝐞𝐜
𝟏 = min(𝐟𝐫𝐞𝐜, 𝐟𝐫𝐞𝐦

𝟏 )  (3.83) 

𝐟𝐨𝐭𝐡𝐞𝐫𝐬
𝟏 = 𝐟𝐫𝐞𝐦

𝟏 − 𝐟𝐫𝐞𝐜
𝟏   (3.84) 

 

Capital damage fractions in the next round (𝛂𝟐 ), which considers the recovered 

industrial capital (f1
rec), are calculated by Eq. 3.85, where s0

cap is the original industrial capital 

stock. 

𝛂𝟏
𝟐 = (𝐬𝐜𝐚𝐩𝟎̂ )

−1
(𝐟𝐫𝐞𝐜 − 𝐟𝐫𝐞𝐜

𝟏 )  (3.85) 

Round 2 

Production limited by industrial capital loss (𝐱𝐜𝐚𝐩
𝟐 ) and labour constraint (𝐱𝐥𝐚𝐛

𝟐 ) in Round 2 is 

quantified by Eq. 3.86 and 3.87, respectively. The available production is also based on Eq. 

3.88. 

𝐱𝐜𝐚𝐩
𝟐 = (𝐈 − 𝛂𝟏̂

𝟐)𝐱𝟎   (3.86) 

𝐱𝐥𝐚𝐛
𝟐 = (𝐈 − 𝛃̂𝟏

𝟐
) 𝐱𝟎     (3.87) 

𝐱𝟐 = min( 𝐱𝐜𝐚𝐩
𝟐 , 𝐱𝐥𝐚𝐛

𝟐 )     (3.88) 

Then, in the same way as Round 1, the new balance is   

𝐲𝐢𝐦𝐩
𝟐 = (1 − 𝛼1_𝑡𝑟𝑎𝑛

2 )𝒚  𝒑
𝟎   (3.89) 

𝐱𝐫𝐞𝐦
𝟐 = min(𝐱𝟐 + 𝐲𝐢𝐦𝐩

𝟐 , 𝐱𝟎 + 𝐲𝐢𝐦𝐩
𝟎 )  (3.90) 

The allocation of final demand (𝐟𝟐) is 

𝐱𝐫𝐞𝐦
𝟐 = 𝐀𝐱𝐫𝐞𝐦

𝟐 + 𝐟𝟐   (3.91) 

 𝐟𝟐 = 𝐱𝐫𝐞𝐦
𝟐 − 𝐀𝐱𝐫𝐞𝐦

𝟐   (3.92) 

𝐟𝐫𝐞𝐦
𝟐 = 𝐟𝟐 − 𝐟𝐜𝐝

𝟐   (3.93) 

The rest of recovery demand is the gap between total recovery demand (frec) and total 

recovered part before this round (∑ 𝐟𝐫𝐞𝐜
𝑘 , , 𝑡 ≥ 1𝑡−1

𝑘=1 ). Hence, in the Round 2, the remaining 

required demand for recovery equals to (frec -𝐟𝐫𝐞𝐜
𝟏 ). 
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𝐟𝐫𝐞𝐜
𝟐 = min(𝐟𝐫𝐞𝐜 − 𝐟𝐫𝐞𝐜

𝟏 , 𝐟𝐫𝐞𝐦
𝟐 )  (3.94) 

𝐟𝐨𝐭𝐡𝐞𝐫𝐬
𝟐 = 𝐟𝐫𝐞𝐦

𝟐 − 𝐟𝐫𝐞𝐜
𝟐   (3.95) 

The capital damage fraction of the next round is 

𝛂𝟏
𝟑 = (𝐬𝐜𝐚𝐩𝟎̂ )

−1
(𝐟𝐫𝐞𝐜 − ∑ 𝐟𝐫𝐞𝐜

𝑘𝟐
𝑘=1 )    (3.96) 

…  

Round t (Eq.3.97 to 3.104) is characterized as follows:  

𝐱𝐜𝐚𝐩
𝐭 = (𝐈 − 𝛂𝟏̂

𝐭)𝐱𝟎   (3.65) 

𝐱𝐥𝐚𝐛
𝐭 = (𝐈 − 𝛃𝟏̂

𝐭
) 𝐱𝟎     (3.69) 

𝐱𝐭 = min( 𝐱𝐜𝐚𝐩
𝐭 , 𝐱𝐥𝐚𝐛

𝐭 )     (3.97) 

𝐲𝐢𝐦𝐩
𝐭 = (1 − 𝛼1_𝑡𝑟𝑎𝑛

𝑡 )𝐲𝐢𝐦𝐩
𝟎   (3.78) 

𝐱𝐫𝐞𝐦
𝐭 = min(𝐱𝐭 + 𝐲𝐢𝐦𝐩

𝐭 , 𝐱𝟎 + 𝐲𝐢𝐦𝐩
𝟎 )  (3.98) 

𝐱𝐫𝐞𝐦
𝐭 = 𝐀𝐱𝐫𝐞𝐦

𝐭 + 𝐟𝐭   (3.99) 

 𝐟𝐭 = 𝐱𝐫𝐞𝐦
𝐭 − 𝐀𝐱𝐫𝐞𝐦

𝐭   (3.100) 

𝐟𝐫𝐞𝐦
𝐭 = 𝐟𝐭 − 𝐟𝐜𝐝

𝐭   (3.101) 

𝐟𝐫𝐞𝐜
𝐭 = min(𝐟𝐫𝐞𝐜 − ∑ 𝐟𝐫𝐞𝐜

𝑘𝑡−1
𝑘=1 , 𝐟𝐫𝐞𝐦

𝐭 ) (𝑡 ≥ 1)  (3.102) 

𝐟𝐨𝐭𝐡𝐞𝐫𝐬
𝐭 = 𝐟𝐫𝐞𝐦

𝐭 − 𝐟𝐫𝐞𝐜
𝐭   (3.103) 

𝛂𝟏
𝐭+𝟏 = (𝐬𝐜𝐚𝐩𝟎̂ )

−1
(𝐟𝐫𝐞𝐜 − ∑ 𝐟𝐫𝐞𝐜

𝑘𝐭
𝑘=1 )(𝑡 ≥ 1)  (3.104) 

… 

Until (𝐱𝐭 + 𝐲𝐢𝐦𝐩
𝐭 ≥  𝐀𝐱𝟎+𝐟𝐜𝐝

𝐭 )(𝑡 ≥ 1)   (3.105), then go to scenario 2. 

(2) Scenario 2: recovery of final demand (Eq. 3.105).  

𝐱𝐭 + 𝐲𝐢𝐦𝐩
𝐭 ≥  𝐀𝐱𝟎+𝐟𝐜𝐝

𝐭      (3.105) 
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If (𝐱𝐭 + 𝐲𝐢𝐦𝐩
𝐭 ≥  𝐀𝐱𝟎+𝐟𝐜𝐝

𝐭 ) (3.105) , the available production has already satisfied 

intermediate industrial demand (𝐀𝐱𝟎and other production can be delivered for final demand. 

Here, two points should be considered. The first is recovery demand. As capital reconstruction 

is the fundamental requirement of economic recovery, recovery demand should be treated 

as the priority. The second is basic demand. Apart from recovery demand, some necessities 

are basic human needs. Production should also be allocated to such basic demand according 

to the different requirement levels in each time period. According to the conditions of the 

remaining production, scenarios 2.1 and 2.2 are analysed below (where xt is same as Eq. 3.65, 

3.69 and 3.97, and yt
imp is estimated by Eq. 3.78). 

①  Scenario 2.1  

𝐀𝐱𝟎+𝐟𝐜𝐝
𝑡 < 𝑥𝐭 + 𝐲𝐢𝐦𝐩

𝐭 ≤  𝐀𝐱𝟎+𝐟𝐜𝐝
𝐭 + (𝐟𝐫𝐞𝐜 − ∑ 𝐟𝐫𝐞𝐜

𝑘𝑡−1
𝑘=1 ) (𝑡 ≥ 1)       (3.106) 

In this situation, current production is sufficient for intermediate demand but cannot satisfy 

recovery demand and basic demand at the same time. Thus, other rest of production is used 

to support recovery demand and basic demand in the first step. Recovery demand 𝐟𝐫𝐞𝐜
𝐭 is 

calculated as Eq. 3.108, and basic demand 𝐟𝐜𝐝
𝐭  is calculated as Eq. 3.107.  

 

𝐟 𝐞 
𝐭 = min(𝐱𝐭 + 𝐲𝐢𝐦𝐩

𝐭 , 𝐱𝟎 + 𝐲𝐢𝐦𝐩
𝟎 ) −  𝐀𝐱𝟎−𝐟𝐜𝐝

𝐭    (3.107) 

𝐟𝐫𝐞𝐜
𝐭 = min(𝐟𝐫𝐞𝐜 − ∑ 𝐟𝐫𝐞𝐜

𝑘𝑡−1
𝑘=1 , 𝐟 𝐞 

𝐭   ) (𝑡 ≥ 1)      (3.108) 

𝐟𝐨𝐭𝐡𝐞𝐫𝐬
𝐭 = 𝐟 𝐞 

𝐭 − 𝐟𝐫𝐞𝐜
𝐭   (3.109) 

𝛂𝟏
𝐭+𝟏 = (𝐬𝐜𝐚𝐩𝟎̂ )

−1
(𝐟𝐫𝐞𝐜 − ∑ 𝐟𝐫𝐞𝐜

𝑘𝑡
𝑘=1 )(𝑡 ≥ 1)    (3.110) 

… 

This situation holds until ∑ 𝐟𝐫𝐞𝐜
𝑘𝑡

𝑘=1 = 𝐟𝐫𝐞𝐜 (𝑡 ≥ 1) (3.111) and 𝛂𝐭+𝟏 = 0  (3.112). We 

then come to scenario 2.2. 

②  Scenario 2.2  

𝐱𝐭 + 𝐲𝐢𝐦𝐩
𝐭 >  𝐀𝐱𝟎+𝐟𝐜𝐝

𝐭 + 𝐟𝐫𝐞𝐜     (3.113) 

When current production has met intermediate, recovery and basic demand, the rest of 

production is used to support other final demand. Equations for allocating available resources 

for each part of the final demand depend on different rationing schemes. Take a proportional 
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rationing scheme as an example. At time period t, the recovery demand 𝐟𝐫𝐞𝐜
𝐭  and basic 

demand 𝐟𝐜𝐝
𝐭  are estimated separately as Eqs. 3.114 -115, and other final demand 

𝐟𝐨𝐭𝐡𝐞𝐫𝐬
𝐭  (‘other’ refers to demand apart from basic demand, namely, remaining needs for 

households, government, capital and exportation) is calculated through Eq. 3.116-119.  

𝐟𝐫𝐞𝐜
𝐭 = (𝐱𝐭 + 𝐲𝐢𝐦𝐩

𝐭 −  𝐀𝐱𝟎) × (𝐟𝐈𝐃./𝐱𝐝)     (𝑡 ≥ 1)   (3.114) 

𝐟𝐜𝐝
𝐭 = (𝐱𝐭 + 𝐲𝐢𝐦𝐩

𝐭 −  𝐀𝐱𝟎) × (𝐟𝐜𝐝./𝐱𝐝)   (𝑡 ≥ 1)   (3.115) 

𝐟𝐡𝐡
𝐭 = (𝐱𝐭 + 𝐲𝐢𝐦𝐩

𝐭 −  𝐀𝐱𝟎) × [𝐟𝐡𝐡
𝟎 ./(𝐱𝐝 − 𝐟𝐜𝐝

𝐭 − ∑ 𝐟𝐫𝐞𝐜
𝑘𝑡

𝑘=1 )]   (𝑡 ≥ 1)   (3.116) 

𝐟𝐠𝐨𝐯
𝐭 = (𝐱𝐭 + 𝐲𝐢𝐦𝐩

𝐭 −  𝐀𝐱𝟎) × [𝐟𝐠𝐨𝐯
𝟎 ./(𝐱𝐝 − 𝐟𝐜𝐝

𝐭 − ∑ 𝐟𝐫𝐞𝐜
𝑘𝑡

𝑘=1 )]   (𝑡 ≥ 1)   (3.117) 

𝐟𝐜𝐚𝐩
𝐭 = (𝐱𝐭 + 𝐲𝐢𝐦𝐩

𝐭 −  𝐀𝐱𝟎) × [𝐟𝐜𝐚𝐩
𝟎 ./(𝐱𝐝 − 𝐟𝐜𝐝

𝐭 − ∑ 𝐟𝐫𝐞𝐜
𝑘𝑡

𝑘=1 )]   (𝑡 ≥ 1)   (3.118) 

𝐟𝐞𝐱𝐩
𝐭 = (𝐱𝐭 + 𝐲𝐢𝐦𝐩

𝐭 −  𝐀𝐱𝟎) × [𝐟𝐞𝐱𝐩
𝟎 ./(𝐱𝐝 − 𝐟𝐜𝐝

𝐭 −∑ 𝐟𝐫𝐞𝐜
𝑘𝑡

𝑘=1 )]   (𝑡 ≥ 1)    (3.119) 

… 

Until 𝐟𝐫𝐞𝐜 + 𝐟𝐜𝐝
𝐭 + 𝐟𝐡𝐡

𝐭 + 𝐟𝐠𝐨𝐯
𝐭 + 𝐟𝐜𝐚𝐩

𝐭 + 𝐟𝐞𝐱𝐩
𝐭 = 𝐟𝐝 (3.71), and 𝐱𝐭 = 𝐀𝐱𝐭 + 𝐟𝟎      (3.62).  

End. 

3.2.2.6 Total Flood Footprint  

When the economic imbalances return to the pre-disaster situation, all the recovery period is 

complete. At this time, t denotes the time required to economic recovery, and the gap 

between the total production under pre-disaster level and the total required production of 

each round during the recovery process is the indirect economic loss of this disaster event 

(Eq.3.120); in other words, it is the amount of indirect impact (xindirect; Figure 3.3). The total 

flood footprint (xtotal) is the sum of the direct (xdirect) and indirect economic impacts (Eq.3.121). 

Many other results can be obtained from this model, such as how the destroyed capital is 

recovered step-by-step or how the labour affects the local economy.  

𝑥𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑠𝑢𝑚 (𝑡𝐱
𝟎 − (∑ 𝐱𝑘 + ∑ 𝐲𝐢𝐦𝐩

𝑘𝑡
𝑘=1

𝑡
𝑘=1 )) (𝑡 ≥ 1)  (3.120) 

𝑥𝑡𝑜𝑡𝑎𝑙 = 𝑥𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑥𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡     (3.121) 
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Figure 3.3. Indirect economic impact (for illustration purpose only). 

 

3.2.3. Model Variables for Two-flood Event 

The methodology of flood footprint assessment for multiple natural hazards is an 

improvement of the methodology that focuses on a single natural disaster event, as described 

previously. In this thesis, multiple natural disasters refers to a situation in which more than 

one disaster event occurs within the same economic system and when the second or the third 

event occurs, the economic system is still recovering from the previous natural disaster event. 

The basic theory and functions of this approach are still the same as described in Section 4.2.1 

and the final goal of the recovery is to reach the economic conditions that existed before the 

first disaster. In other words, multiple natural disasters can be treated as a ‘big’ disaster, 

different from a single continuous event, such as a ‘big’ disaster that contains more than one 

shock, and then, the recovery process displays a dynamic trend. Hence, model variables also 

suffer many shocks, particularly in terms of capital and labour constraints. 

Either for single disaster or multiple disasters, the basic supply bottleneck (Chapter 

3.2.2.4) and rationing scheme (Chapter 3.2.2.5) are the same during the whole recovery 

process. The supply bottleneck is limited by both capital and labour constraints at each stage, 
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and the rationing scheme is that intermediate demand and the basic demand are the priority 

satisfied, followed by recovery demands and other consumption demands. Here, some 

assumptions are made as follows. 1) It is assumed that import production and services in the 

pre-disaster economic system can be substituted with domestic production and services. 2) 

The amount of original imports and industrial production are assumed as being the maximum 

capacity of import and industrial production, respectively. 3) The detailed import at each 

stage is closely related to the sector of transportations system. 4) The supply bottleneck and 

rationing scheme for multiple disasters are still the same as for a single disaster (as described 

in Chapter 3.2.2.4 and 3.2.2.5) in the Flood Footprint Model. The approach that considers two 

disasters is taken as an example here, and the methodology for three or more natural hazards 

can be improved in the same way. 

According to the various timeframes of the subsequent natural disasters, there are four 

types of economic system recovery conditions (Table 3.4). When the following disaster shocks 

the economic system, the damage resulting from the first kind of natural disaster can be:  

1) both damaged capital and affected labour productivity due to the first disaster are in 

recovery; 

2) industrial capital is in the process of reconstruction and the labour has already 

completely recovered;  

3) the recovery of capital has been completed and labour is in the process of being rebuilt;  

4) both capital and labour are fully recovered.  

With consideration of the impact that induced by the following natural disaster, the 

estimation methods of capital and labour constraints caused by the four types of the 

subsequent natural hazard on the affected economic system are introduced below.  

 

Table 3.4. Four types of the two natural disaster recovery. 

Occurrence conditions of the 

subsequent natural disasters 

Recovery conditions for previous natural disaster 

Capital recovery Labour recovery 
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Type 1 Recovering Recovering 

Type 2 Recovering Completely recovered 

Type 3 Completely recovered Recovering 

Type 4 Completely recovered Completely recovered 

 

3.2.3.1 Recovery Demand 

This study assumes m stands for the time that the subsequent natural disaster shock the 

economic system. Since m is a specific time, it equals to the time gap between these two 

disasters (1≤m≤t), the unit of m is as same as t10, such as week, month or year period. 

If the subsequent event does not occur, according to Eq.3.102, the remaining recovery 

demand (ft
rec_rem) for time (m+1) equals to  

𝐟𝐫𝐞𝐜_𝐫𝐞𝐦
𝐦+𝟏 = 𝐟𝐫𝐞𝐜 − ∑ 𝐟𝐫𝐞𝐜

𝑘𝑚
𝑘=1   ( 𝑚 ≥ 1)    (3.122) 

Since attendance of the following natural disaster raises the capital recovery demand in 

the following stage, the increased capital recovery demand of the subsequent event (f0
rec2) is 

required to taken into account. Therefore, the remaining recovery demand of the time (m+1) 

is increased as Eq.3.123.  

𝐟𝐫𝐞𝐜_𝐫𝐞𝐦
𝐦+𝟏 = (𝐟𝐫𝐞𝐜 − ∑ 𝐟𝐫𝐞𝐜

𝑘𝑚
𝑘=1 ) + 𝐟𝐫𝐞𝐜𝟐

𝟎   (𝑚 ≥ 1)    (3.123) 

 

In addition, from the time (m+1), in the Flood Footprint Model, the Eq.3.102 that refers 

to estimation of recovered capital in each round becomes Eq.3.124, and the damage fraction 

for next round (Eq.3.104) become Eq.3.125. 

𝐟𝐫𝐞𝐜
𝐭 = min ((𝐟𝐫𝐞𝐜 + 𝐟𝐫𝐞𝐜𝟐

𝟎 ) − ∑ 𝐟𝐫𝐞𝐜
𝑘𝑡−1

𝑘=1 , 𝐟𝐫𝐞𝐦
𝐭 )   (𝑡 ≥ 1)    (3.124) 

                                                           
10  ‘t’ here means the time period t, when t=m, it means the time for the subsequent natural disaster 
occurs. 
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𝛂𝟐
𝐭+𝟏 = ((𝐟𝐫𝐞𝐜 + 𝐟𝐫𝐞𝐜𝟐

𝟎 ) − ∑ 𝐟𝐫𝐞𝐜
𝑘𝑡

𝑘=1 ) ./𝐬𝐜𝐚𝐩
𝟎   (𝑡 ≥ 1)    (3.125) 

 

While in Scenario 2.1, the Eq.3.108 and Eq.3.110 are changing as Eq. 3.126 and 3.127. 

𝐟𝐫𝐞𝐜
𝐭 = min ((𝐟𝐫𝐞𝐜 + 𝐟𝐫𝐞𝐜𝟐

𝟎 ) − ∑ 𝐟𝐫𝐞𝐜
𝑘𝑡−1

𝑘=1 , 𝐟 𝐞 
𝐭   )  (𝑡 ≥ 1)    (3.126) 

𝛂𝟐
𝐭+𝟏 = ((𝐟𝐫𝐞𝐜 + 𝐟𝐫𝐞𝐜𝟐

𝟎 ) − ∑ 𝐟𝐫𝐞𝐜
𝑘𝑡

𝑘=1 ) ./𝐬𝐜𝐚𝐩
𝟎   (𝑡 ≥ 1)    (3.127) 

 

3.2.3.2 Capital Limitations 

The main influence of the following natural disaster on the capital parameter is reducing 

industrial capital production by increasing the capital damage fraction (α2
0). Under the 

conditions of Type 1 and 2, the capital loss from previous shock is in recovering stage, and 

when t=m, the damage fraction of capital (αm+1) becomes  

 

 𝟐
𝑚+1 = 𝛂𝟏

𝑚+1 + 𝛂𝟐
0 (𝑚 ≥ 1)   (3.128) 

 

where α2
m+1 is industrial capital damage fractions at time m+1; α1

m+1 is the capital damage 

fractions that calculated from last round by Eq.3.125 or Eq.3.127;  α2
0 is the direct capital 

damage fractions caused by the subsequent disaster. When t=m, the result of Eq.3.128 equals 

to the damage fraction that calculated by Eq.3.125 or Eq.3.127. These equations explain the 

impact on capital productivity resulted from the subsequent disaster from different views. 

The former one provides a logical explanation to show how the following damage part directly 

influence the total capital recovery; while Eq. 3.125 or 3.127 clarify it through mathematical 

ways. It means that just in the time m, Eq.3.128 can be used to calculate the damage fractions 

for time (m+1), and in the following stages, the calculation methods for the destroyed capital 

are according to Eq.3.125 or Eq.3.127.  

For Type 3 and 4, the destroyed capital resulted from previous hazard has already fully 

recovered. Hence, from the capital perspective, the following disaster with these two types 
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can be treated as a single shock event to the economic system. Eq.128 can be directly changed 

as 

 

 𝟐
𝑚+1 = 𝛂𝟐

0 (𝑚 ≥ 1)   (3.129) 

 

Meanwhile, estimations of industrial production limited by capital damage in the 

whole period from period m+1 becomes 

 

𝐱𝐜𝐚𝐩
𝐭 = (𝐈 − 𝛂𝟐̂

𝑡)𝐱𝟎 (t > 𝑚 ≥ 1)    (3.130) 

 

3.2.3.3 Labour Constraints 

Eqs.3.66-3.69 from Chapter 3.2.2.2 shows the approach to estimate the labour constraints in 

the Flood Footprint Model. If the following disaster disrupts the recovery process of the 

labour productivity that affected by the former shock like Type 1 and 3, the damaged fractions 

of labour productivity caused by the subsequent event (β2
0) should be added in the round 

(m+1) as Eq. 3.131. If the labour productivity finished recovery when the subsequent natural 

disaster occurs like Type 2 and 4, then the methods for assessing the following disaster impact 

on labour productivity are simplified as Eq.3.132.  

 

𝛃𝟐
𝐦+𝟏 = 𝛃𝟏

𝐦+𝟏 + 𝛃𝟐
𝟎 (𝑚 ≥ 1)   (3.131) 

𝛃𝟐
𝐦+𝟏 = 𝛃𝟐

𝟎 (𝑚 ≥ 1)   (3.132) 

 

where β2
m+1 is industrial labour damage fractions at time m+1; β1

m+1 is the labour damage 

fractions at time m if the subsequent disaster influence is not taken into account. Since m is 

a specific time and recovery scheme of labour productivity is an exogenous factor, Eqs.3.131 

or 3.132 is only used to provide the labour affected fraction of the time (m+1). 
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The industrial production limited by labour constraints during next stages are measured 

as Eq.3.133. 

𝐱𝐥𝐚𝐛
𝐭 = (𝐈 − 𝛃𝟏̂

𝑡
) 𝐱𝟎  (t>m≥1)    (3.133) 

3.2.3.4 Import 

Since amount of imports depends significantly on the capital condition of transport sector, 

increased capital damaged fraction of transport sector due to the subsequent disaster (α0
tran2) 

lead to reduction of import capacity. As described in Chapter 3.2.2.5, Eq.3.134 and Eqs.3.125 

or 3.127 provides the estimation of damage fraction of transport capital in time (m+1); and 

for next stages, the methods are still based on Eq.3.125 or Eq.3.127. At the same time, the 

measurement for import is as same as Eq.3.135. 

 

𝛼2_𝑡𝑟𝑎𝑛
𝑚+1 = 𝛼2_𝑡𝑟𝑎𝑛

𝑚+1 + 𝛼2_𝑡𝑟𝑎𝑛2
0  (𝑚 ≥ 1)   (3.134) 

𝐲𝐢𝐦𝐩
𝐭 = (1 − 𝛼2_𝑡𝑟𝑎𝑛

𝑡 )𝐲𝐢𝐦𝐩
𝟎   (t > 𝑚 ≥ 1)    (3.135) 

 

3.2.3.5 Rationing Scheme 

The basic framework of rationing scheme is same as that in single natural disaster recovery 

(Chapter 3.2.2.5). Since the economic system suffered more damaged on capital, the 

conditions of two specific scenarios (scenarios 2.1 and 2.2) are improved by adding the 

increased recovery demand of the subsequent disaster into the total recovery demand. As 

results, Eq.3.79 and 3.105 are changed as Eq.3.136 and 3.137, respectively. 

 

𝐀𝐱𝟎+𝐟𝐜𝐝
𝐭 < 𝑥𝐭 + 𝐲𝐢𝐦𝐩

𝐭 ≤  𝐀𝐱𝟎+𝐟𝐜𝐝
𝐭 + (𝐟𝐫𝐞𝐜 + 𝐟𝐫𝐞𝐜𝟐

𝟎 − ∑ 𝐟𝐫𝐞𝐜
𝑘𝑡−1

𝑘=1 )  (𝑡 ≥ 1)      (3.136) 

𝐱𝐭 + 𝐲𝐢𝐦𝐩
𝐭 >  𝐀𝐱𝟎+𝐟𝐜𝐝

𝐭 + (𝐟𝐫𝐞𝐜 + 𝐟𝐫𝐞𝐜𝟐
𝟎 )     (3.137) 

 

3.2.3.6 Total Flood Footprint 

Although some methods and equations in recovery process for multiple natural disasters are 

different with the approach mentioned in single natural disaster assessment, such as the 
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estimations for damage fraction of capital (α), the basic theory framework and rationing 

scheme of the Flood Footprint Model are same. The estimations of flood footprint for multiple 

shocks are same as Eqs.3.120-121. Due to the different influences of the following natural 

hazards, total indirect flood footprint of economic system may show dynamic trends as in 

Figure 3.4. 

 

 

Figure 3.4. Examples of indirect flood footprint trends for multiple natural disasters. 
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Chapter 4 Flood Footprint Model Illustration I: A Hypothetical 

Single-flood Event 

This chapter applies the Flood Footprint Model to a hypothetical single-flood case to illustrate 

the modelling process for an individual flood event. Meanwhile, an extensive sensitivity 

analysis of the flood footprint is discussed in this chapter, in particular, labour and capital 

recovery paths, and delayed recovery scenarios due to various factors such as poor or 

incompetent governance. This chapter seeks to guide practitioners and stakeholders in single-

flood risk management by developing the modelling process step-by-step. 

4.1. Introduction 

The Flood Footprint Model can reflect the changes of product flows between industries during 

the disaster period and estimate the influence of capital damage and labour constraints 

caused by a flood event on the affected regional economy. The basic IO data of a hypothetical 

example is shown in Table 4.1 and it is retrieved from Miller and Blair (2009). Suppose that 

the local economy has only three sectors (S1, S2 and S3) and that S3 refers to the transport 

sector. The capital stock of the three sectors is 𝐬𝐜𝐚𝐩
𝟎 = [

3500
5000
1500

]. In addition, basic household 

demand for the basic human needs of each sector is fixed in every period at 𝐟𝐜𝐝
𝟎 = 𝐟𝐜𝐝

𝟏 = ⋯ =

𝐟𝐜𝐝
𝐭 = [

50
300
100

]. It assumes that the time unit in this case is week. 

As shown in Table 4.1, the total output of the three sectors 𝐱𝟎 = [
1000
2000
1000

], the final 

demand 𝐟𝟎 = [
300
1300
150

], and domestic coefficient 𝐀 = [
0.15 0.25 0.05
0.2 0.05 0.4
0.3 0.25 0.05

] (the calculation of 

A is referred to Eq.3.1). 
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Table 4.1. Flows for hypothetical example (3×3). 

             To 

 

From 

S1 S2 S3 

Final Demand (f0) 
Total 

Output (x) 
Basic 

demand (fcd) 

Other demand 

(fothers) 

Total 

S1 150 500 50 50 250 300 1000 

S2 200 100 400 300 1000 1300 2000 

S3 300 500 50 100 50 150 1000 

Value-added 325 800 300  400  2150 

Import 25 100 200     

Total Input 1000 2000 1000 350 1700  6150 

 

Once a flood event occurs, the fraction of damaged industrial capital in each sector is 

assumed to be 𝛂𝟏 = [
0.4
0.5
0.3
], while the percentage of reduced labour time loss 𝛃𝟏 = [

0.5
0.4
0.2
]. In 

addition, it is also assumed that the labour productivity of all the three sectors are fully 

recovered during first four weeks, and the recovery trends for sector 1 and 2 are non-linear 

lines, while sector 3 is a linear line (Table 4.2). 

 

Table 4.2. Percentages of labour time loss of three sectors caused by the flood event. 

 S1 S2 S3 

Week 1 50% 40% 20% 

Week 2 20% 20% 10% 

Week 3 5% 5% 0% 

Week 4 0% 0% 0% 

 

4.2. Application of Flood Footprint Model 

Then, the recovery demand is 

 𝐟𝐈𝐃 = 𝛂𝟏̂ × 𝐬𝐜𝐚𝐩
𝟎 = [

0.4 0 0
0 0.5 0
0 0 0.3

] × [
3500
5000
1500

] = [
1400
2500
450

]   (4.1) 

 𝐟𝐇𝐃 = 0    (4.2) 
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𝐟𝐫𝐞𝐜 =  𝐟𝐈𝐃 +  𝐟𝐇𝐃 = [
1400
2500
450

]   (3.70); 

The total required final demand is 

𝐟𝐝 =  𝐟
𝟎 + 𝐟𝐫𝐞𝐜 = [

300
1300
150

] + [
1400
2500
450

] = [
1700
3800
600

]   (4.3); 

The total required industrial output is  

𝐱𝐝 = 𝐀𝐱𝐝 + 𝐟𝐝  (3.72) 

𝐱𝐝 = (𝐈 − 𝐀)
−1𝐟𝐝 = ([

1 0 0
0 1 0
0 0 1

] − [
0.15 0.25 0.05
0.2 0.05 0.4
0.3 0.25 0.05

])

−1

[
1700
3800
600

] = [
4087
6376
3600

](4.4); 

According to Eqs. 10 and 11, the available production that is limited by capital damage 

is  

𝐱𝐜𝐚𝐩
𝟏 = (𝐈 − 𝛂𝟏̂

1)𝐱𝟎 = ([
1 0 0
0 1 0
0 0 1

] − [
0.4 0 0
0 0.5 0
0 0 0.3

]) [
1000
2000
1000

] = [
600
1000
700

]  (3.73). 

 

The available production that is limited by labour constraints is 

𝐱𝐥𝐚𝐛
𝟏 = (𝐈 − 𝛃𝟏̂

𝟏
) 𝐱𝟎 = ([

1 0 0
0 1 0
0 0 1

] − [
0.5 0 0
0 0.4 0
0 0 0.2

]) [
1000
2000
1000

] = [
500
1200
800

]  (3.74). 

The actual production after the shock is 

𝐱𝟏 = min( 𝐱𝐜𝐚𝐩
𝟏 , 𝐱𝐥𝐚𝐛

𝟏 ) = min([
600
1000
700

] , [
500
1200
800

]) = [
500
1000
700

]  (3.75). 

Because the available production is smaller than the required total production 

(𝐱𝟏 < 𝑥𝐝), the remaining industrial production cannot satisfy industrial requirements and 

final demands at the same time; such limited production results in a supply bottleneck. Import 

should be added as industrial input to support basic demand and recovery demand. 
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If import under the normal transport condition is supposed as 𝐲𝐢𝐦𝐩
𝟎 = [25 100 200], 

then imports after the shock becomes  

𝐲𝐢𝐦𝐩
𝟏 = (1 − 𝛼1_𝑆3

1 )𝐲𝐢𝐦𝐩
𝟎  = (1 − 0.3)[25 100 200] = [18 70 140]  (3.76). 

At this time,  

{
 
 

 
 𝐱𝟏+(𝐲𝐢𝐦𝐩

𝟏 )
′
=[
500
1000
700

]+[
18
70
140

]=[
518
1070
840

]

𝐀𝐱𝟎=[
0.15 0.25 0.05
0.2 0.05 0.4
0.3 0.25 0.05

][
1000
2000
1000

]=[
700
700
850

]

↓

𝐱𝟏+𝐲𝐢𝐦𝐩
𝟏 < 𝐀𝐱𝟎+𝐟𝐜𝐝

𝟏

 (4.5), 

We now turn to scenario 1.  

In Week 1 

The available production, which includes imports, is 𝐱𝐫𝐞𝐦
𝟏 = [

518
1070
840

] . 

The actual final demand under the new economic balance is  

𝐱𝐫𝐞𝐦
𝟏 = 𝐀𝐱𝐫𝐞𝐦

𝟏 + 𝐟𝟏    →  𝐟𝟏 = 𝐱𝐫𝐞𝐦
𝟏 − 𝐀𝐱𝐫𝐞𝐦

𝟏 = [
518
1070
840

] −

[
0.15 0.25 0.05
0.2 0.05 0.4
0.3 0.25 0.05

] [
518
1070
840

] = [
130
577
375

]   (4.6) 

To repair the industrial capital damage, the rest of final demand (𝐟𝐫𝐞𝐦
𝟏 ) which excludes 

the basic demand of Week 1, is used first for industrial capital restoring (𝐟𝐫𝐞𝐜
𝟏 ) and then for 

other final demands (𝐟𝐨𝐭𝐡𝐞𝐫𝐬
𝟏 ), such as government demand. 

𝐟𝐫𝐞𝐦
𝟏 = 𝐟𝟏 − 𝐟𝐜𝐝

𝟏 = [
130
577
375

] − [
50
300
100

] = [
80
277
275

]  (3.82) 

𝐟𝐫𝐞𝐜
𝟏 = min(𝐟𝐫𝐞𝐜, 𝐟𝐫𝐞𝐦

𝟏 ) = min ([
1400
2500
450

] , [
80
277
275

]) = [
80
277
275

]  (3.83) 

𝐟𝐨𝐭𝐡𝐞𝐫𝐬
𝟏 = 𝐟𝐫𝐞𝐦

𝟏 − 𝐟𝐫𝐞𝐜
𝟏 = [

80
277
275

] − [
80
277
275

] = [
0
0
0
]  (3.84) 

If the industrial capital of one sector has already regained pre-disaster levels, the 

damage fraction of this sector will become 0. When the damage fractions of all sectors are 0, 
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industrial capital has been recovered. The damage fraction in Week 2 is calculated from 

Eq.3.85, which is introduced in Chapter 3. 

𝛂𝟏
𝟐 = (𝐟𝐫𝐞𝐜 − 𝐟𝐫𝐞𝐜

𝟏 )./𝐬𝐜𝐚𝐩
𝟎 = ([

1400
2500
450

] − [
80
277
275

]) ./ [
3500
5000
1500

] = [
0.38
0.44
0.12

]  (3.85) 

In Week 2, 

𝐱𝐜𝐚𝐩
𝟐 = (𝐈 − 𝛂𝟏̂

𝟐)𝐱𝟎 = ([
1 0 0
0 1 0
0 0 1

] − [
0.38 0 0
0 0.44 0
0 0 0.12

]) [
1000
2000
1000

] = [
623
1111
884

]  (3.86) 

𝐱𝐥𝐚𝐛
𝟐 = (𝐈 − 𝛃𝟏̂

𝟐
) 𝐱𝟎 = ([

1 0 0
0 1 0
0 0 1

] − [
0.2 0 0
0 0.2 0
0 0 0.1

]) [
1000
2000
1000

] = [
800
1600
900

]  (3.87) 

𝐱𝟐  = min( 𝐱𝐜𝐚𝐩
𝟐 , 𝐱𝐥𝐚𝐛

𝟐 ) = [
623
1111
884

]  (3.88) 

𝐲𝐢𝐦𝐩
𝟐 = (1 − 𝛼1_𝑆3

2 )(𝐲𝐢𝐦𝐩
𝟎 )

′
 = (1 − 0.12)[25 100 200] = [22 88 177]  (3.89) 

𝐱𝐫𝐞𝐦
𝟐 = 𝐱𝟐 + (𝐲𝐢𝐦𝐩

𝟐 )
′
= [

645
1199
1060

]  (4.7) 

At this moment, the actual production of sector 3 (1060) is larger than its maximum 

production capacity (1000), it means that the actual 𝑥𝑟𝑒𝑚
2  is: 

𝐱𝐫𝐞𝐦
𝟐 = min(𝐱𝟐 + (𝐲𝐢𝐦𝐩

𝟐 )
′
, 𝐱𝟎 + (𝐲𝐢𝐦𝐩

𝟎 )
′
)  = [

645
1199
1000

]  (3.90) 

𝐱𝐫𝐞𝐦
𝟐 = 𝐀𝐱𝐫𝐞𝐦

𝟐 + 𝐟𝟐   (3.91) 

𝐟𝟐 = 𝐱𝐫𝐞𝐦
𝟐 − 𝐀𝐱𝐫𝐞𝐦

𝟐 = [
645
1199
1000

] − [
0.15 0.25 0.05
0.2 0.05 0.4
0.3 0.25 0.05

] [
645
1199
1000

] = [
199
610
457

]   (3.92) 

𝐟𝐫𝐞𝐦
𝟐 = 𝐟𝟐 − 𝐟𝐜𝐝

𝟐 = [
199
610
457

] − [
50
300
100

] = [
149
310
357

]  (3.93) 
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𝐟𝐫𝐞𝐜
𝟐 = min(𝐟𝐫𝐞𝐜 − 𝐟𝐫𝐞𝐜

𝐭 , 𝐟𝐫𝐞𝐦
𝟐 ) = min ([

1320
2223
175

] , [
149
310
357

]) = [
149
310
175

]  (3.94) 

𝐟𝐨𝐭𝐡𝐞𝐫𝐬
𝟐 = 𝐟𝐫𝐞𝐦

𝟐 − 𝐟𝐫𝐞𝐜
𝟐 = [

149
310
357

] − [
149
310
175

] = [
0
0
182

]  (3.95) 

𝛂𝟏
𝟑 = (𝐟𝐫𝐞𝐜 − ∑ 𝐟𝐫𝐞𝐜

𝑘𝟐
𝑘=𝟏 )./𝐬𝐜𝐚𝐩

𝟎 = ([
1400
2500
450

] − ([
80
277
275

] + [
149
310
175

])) ./ [
3500
5000
1500

] = [
0.33
0.38
0
] 

(3.96) 

…… 

In Week 5,             {
 
 
 

 
 
 𝐱𝟓+(𝐲𝐢𝐦𝐩

𝟓 )
′
=[
776
1741
1000

]

𝐀𝐱𝟎+𝐟𝐜𝐝
𝟓 =[

750
1000
950

]

𝐟𝐫𝐞𝐜−∑ 𝐟𝐫𝐞𝐜
𝑘4

𝑘=1 =[
871
898
0
]

↓
𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2

↓

𝐀𝐱𝟎+𝐟𝐜𝐝
𝟓 <𝑥𝟓+𝐲𝐢𝐦𝐩

𝟓 ≤ 𝐀𝐱𝟎+𝐟𝐜𝐝
𝟓 +(𝐟𝐫𝐞𝐜−∑ 𝐟𝐫𝐞𝐜

𝑘4
𝑘=1 )      

↓
𝑆𝑐𝑒𝑚𝑎𝑟𝑖𝑜 2.1

  (4.8) 

While                         𝐟 𝐞 
𝟓 = 𝐱𝟓 + 𝐲𝐢𝐦𝐩

𝟓 −  𝐀𝐱𝟎−𝐟𝐜𝐝
𝟓 = [

26
741
50
]   (4.9) 

𝐟𝐫𝐞𝐜
𝟓 = 𝑚𝑖𝑛(𝐟𝐫𝐞𝐜 − ∑ 𝐟𝐫𝐞𝐜

𝑘4
𝑘=1 , 𝐟 𝐞 

𝟓   ) = [
26
741
0
]   (4.10) 

𝐟𝐨𝐭𝐡𝐞𝐫𝐬
𝟓 = 𝐟 𝐞 

𝟓 − 𝐟𝐫𝐞𝐜
𝟓 = [

0
0
50
]  (4.11) 

𝛂𝟏
𝟔 = (𝐟𝐫𝐞𝐜 − ∑ 𝐟𝐫𝐞𝐜

𝑘𝟓
𝑘=1 )./𝐬𝐜𝐚𝐩

𝟎 = [
0.24
0.03
0
]  (4.12) 

…… 

In Week 14, 
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𝐟 𝐞 
𝟏𝟒 = 𝐱𝟏𝟒 + 𝐲𝐢𝐦𝐩

𝟏𝟒 −  𝐀𝐱𝟎−𝐟𝐜𝐝
𝟏𝟒 = [

252
1000
50

]   (4.13) 

𝐟𝐫𝐞𝐜
𝟏𝟒 = 𝑚𝑖𝑛(𝐟𝐫𝐞𝐜 − ∑ 𝐟𝐫𝐞𝐜

𝑘𝟏𝟑
𝑘=1 , 𝐟 𝐞 

𝟏𝟒   ) = [
81
0
0
]   (4.14) 

𝐟𝐨𝐭𝐡𝐞𝐫𝐬
𝟏𝟒 = 𝐟 𝐞 

𝟏𝟒 − 𝐟𝐫𝐞𝐜
𝟏𝟒 = [

171
1000
50

] (4.15) 

 

{
 
 
 
 
 

 
 
 
 
 𝐟𝐫𝐞𝐜 −∑𝐟𝐫𝐞𝐜

𝑘

14

𝑘=1

= [
0
0
0
]

𝛂𝟏
𝟏𝟓 = [

0
0
0
]

↓

𝐱𝟏𝟓 + 𝐲𝐢𝐦𝐩
𝟏𝟓   > 𝐀𝐱𝟎+𝐟𝐜𝐝

𝟏𝟓 + (𝐟𝐫𝐞𝐜 −∑𝐟𝐫𝐞𝐜
𝑘

14

𝑘=1

)    (4.16)

↓
𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2.2

 

In Week 15, 𝐱𝟏𝟓 = 𝐀𝐱𝟏𝟓 + 𝐟𝟎 = [
1000
2000
1000

]  (4.17), and the recovery period ends.  

Thus, according to my algorithm11, 14 weeks are needed for the local economic system 

to recover to the pre-disaster situation (detail calculation of Eqs.A1-10 see Appendix A).  

The total indirect impact is estimated as  

𝑥𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑠𝑢𝑚(14𝐱
𝟎 − ∑ 𝐱𝑘 + ∑ 𝐲𝐢𝐦𝐩

𝑘14
𝑘=1

14
𝑘=1 ) = 6182  (4.18); 

the total direct flood footprint is calculated as  

𝑥𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑠𝑢𝑚(𝛂𝟏̂ × 𝐬𝐜𝐚𝐩
𝟎 ) = 4350  (4.19); 

and the total flood footprint of this hypothetical flooding is 

                                                           
11 The results here are only according to the algorithm proposed in Chapter 3.2, not the practical recovery situation 

of the regional economic system.  
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𝑥𝑡𝑜𝑡𝑎𝑙 = 𝑥𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑥𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡  = 10532  (4.20). 

Direct economic loss accounts for 41% of the total flood footprint, while indirect part 

represents 59%. 

4.3. Sensitivity Analysis 

The final economic consequences of a flood event are sensitive to input data and the 

parameters of the Flood Footprint Model. Due to a lack of empirical data to do model 

validation, different recovery scenarios should be taken into consideration. In this section, 

the condition of the hypothetical numerical example in Section 4.2 is assumed as the base 

scenario. A series of sensitivity analyses based on this scenario, such as alternative labour and 

capital recovery paths, various delayed recovery, basic demands and imports, are provided as 

below.  

4.3.1.  Alternative Labour Productivity Recovery  

The recovery path of labour is an exogenous factor in the model and needs separate attention 

in each case. Although there is no real statistical data to show how labour is restored in each 

sector after a flooding event, in general, recovery labour plans often depend on the decisions 

of policy-makers and the different reality situations. In some cases, the productivity of labour 

is only affected by some specific factors, such as transportation systems. If the recovery 

scheme of this kind of factor is linear, then the labour recovery path will also follow the same 

trend. In section 4.2, the recovered parts of labour productivity in each stage are assumed as 

specific data (Table 4.2). However, apart from this plan, the recovery paths can also be 

organized as sets of continuous curves. That is to say, the percentage of available labour 

productivity (LP) of each sector at time t can be according to the different rules. To better 

analyse how a labour restoration plan may influence the recovery process, four new scenarios 

of labour productivity recovering paths have been selected (Table 4.3), Scenario L-1 shows 

linear curves, while Scenario L-2 and L-3 indicate non-linear paths, and L-4 is the mixed plan 

of both linear and non-linear trends. It should be noticed that only the labour restoring paths 

change among these four scenarios; other related factors are the same as those in Section 



 
 

114 
 

4.2; the recovery process of capital productivity can be different in each scenario because this 

factor is endogenous and no other capital restoration plan is considered here. 

In Scenario L-1, the trends of labour productivity recovery (LP) of 3 sectors are assumed 

as linear curves (Eq. 4.20), and such LP is only related to labour parameter (β) in the Flood 

Footprint Model. 

{

𝐿𝑃𝑠1 = 0.15𝑡 + 0.35
𝐿𝑃𝑠2 = 0.1𝑡 + 0.5
𝐿𝑃𝑠3 = 0.1𝑡 + 0.7  

 (4.20). 

and the available productivity of labour at each stage can be estimated as 

{

𝑥𝑙𝑎𝑏_𝑆1
𝑡 = (0.15𝑡 + 0.35)𝑥0 

𝑥𝑙𝑎𝑏_𝑆2
𝑡 = (0.1𝑡 + 0.5)𝑥0

𝑥𝑙𝑎𝑏_𝑆3
𝑡 = (0.1𝑡 + 0.7)𝑥0

 (4.21). 

Scenario L-2 is polynomial trends, and the recovered labour productivity at the time t of 3 

sectors are  

{

𝐿𝑃𝑠1 = 0.02𝑡
2 − 0.014𝑡 + 0.52

𝐿𝑃𝑠2 = 0.01𝑡
2 + 0.01𝑡 + 0.58

𝐿𝑃𝑠3 = 0.01 𝑡
2 + 0.01𝑡 + 0.8

  (4.22), 

and the remaining labour production become  

{

𝑥𝑙𝑎𝑏_𝑆1
𝑡 = (0.02𝑡2 − 0.014𝑡 + 0.52)𝑥0 

𝑥𝑙𝑎𝑏_𝑆2
𝑡 = (0.01𝑡2 + 0.01𝑡 + 0.58)𝑥0

𝑥𝑙𝑎𝑏_𝑆3
𝑡 = (0.01 𝑡2 + 0.01𝑡 + 0.8)𝑥0

 (4.23). 

Scenario L-3 reveals logarithmic trends,  

{

𝐿𝑃𝑠1 = 0.33 ln(𝑡) + 0.5

𝐿𝑃𝑠2 = 0.26 ln(𝑡) + 0.6

𝐿𝑃𝑠3 = 0.13 ln(𝑡) + 0.8

  (4.24), 

and the recovered labour production are  

{

𝑥𝑙𝑎𝑏_𝑆1
𝑡 = [0.33 ln(𝑡) + 0.5]𝑥0 

𝑥𝑙𝑎𝑏_𝑆2
𝑡 [0.26 ln(𝑡) + 0.6]𝑥0

𝑥𝑙𝑎𝑏_𝑆3
𝑡 = [0.13 ln(𝑡) + 0.8]𝑥0

  (4.25). 

Scenario L-4 is the mixed situation, 



 
 

115 
 

{
𝐿𝑃𝑠1 = 0.02𝑡

2 − 0.014𝑡 + 0.52

𝐿𝑃𝑠2 = 0.26 ln(𝑡) + 0.6
𝐿𝑃𝑠3 = 0.1𝑥 + 0.7

  (4.26), 

and Eq. 3.69 become  

{

𝑥𝑙𝑎𝑏_𝑆1
𝑡 = (0.02𝑡2 − 0.014𝑡 + 0.52)𝑥0 

𝑥𝑙𝑎𝑏_𝑆2
𝑡 = (0.01𝑡2 + 0.01𝑡 + 0.58)𝑥0

𝑥𝑙𝑎𝑏_𝑆3
𝑡 = (0.01 𝑡2 + 0.01𝑡 + 0.8)𝑥0

(4.27). 

 

Table 4.3. Results of labour productivity recovery scenarios. 

Scenario Recovery 

Path 

Available Labour Productivity 

(LP) 

Recovery 

Period 

Indirect Flood 

Footprint 

Total Flood 

Footprint 

L-1 Linear 

 
{

𝐿𝑃𝑠1 = 0.15𝑡 + 0.35
𝐿𝑃𝑠2 = 0.1𝑡 + 0.5
𝐿𝑃𝑠3 = 0.1𝑡 + 0.7  

 
14 Weeks 6182 10532 

L-2 Polynomial 

{

𝐿𝑃𝑠1 = 0.02𝑡
2 − 0.014𝑡 + 0.52

𝐿𝑃𝑠2 = 0.01𝑡
2 + 0.01𝑡 + 0.58

𝐿𝑃𝑠3 = 0.01 𝑡
2 + 0.01𝑡 + 0.8

 

18 Weeks 7247 11598 

L-3 Logarithmic 

{

𝐿𝑃𝑠1 = 0.33 ln(𝑡) + 0.5

𝐿𝑃𝑠2 = 0.26 ln(𝑡) + 0.6

𝐿𝑃𝑠3 = 0.13 ln(𝑡) + 0.8

   

14 Weeks 6182 10532 

L-4 Mixed plan 

{
𝐿𝑃𝑠1 = 0.02𝑡

2 − 0.014𝑡 + 0.52

𝐿𝑃𝑠2 = 0.26 ln(𝑡) + 0.6
𝐿𝑃𝑠3 = 0.1𝑥 + 0.7

 

19 Weeks 7537 11887 

 

Among these four scenarios, L-2 and L-4 need a longer time to complete restoration and 

their indirect flood footprints are also higher than others (Figure 4.1). The labour restoration 

path has a significant impact on the final flood footprint of a flooding event. Meanwhile, L-1 

and L-3 have the same indirect flood footprint. Such outcomes can be explained by their 

actual production, which depends on the minimum of labour and capital production. For L-1 

and L-3, despite labour recovery conditions being different, they have the same capital 

production which is smaller than their labour production, leading to the same actual 

production in each stage. It is also helpful to explain why the indirect flood footprint of S2 in 

L-2 and L-4 are almost equal.  
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Notes: the horizontal axis shows the recovery period and the whole recovery process starts from the first week (the number 

of the horizontal axis is 1) after the disaster.  

Figure 4.1. Four types of labour productivity recovery curves and their indirect flood footprint. 

L-1 is the linear recovery curve, L-2, L-3 and L-4 are the non-linear curves. 
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4.3.2. Alternative Capital Productivity Restoration  

In spite of the capital productivity recovery scheme in the Flood Footprint Model being an 

endogenous element, it can also be recovered through a specified path according to different 

situations. As a matter of fact, some sectors have their own specific recovery plan, especially 

infrastructure sectors, such as the electricity sector and water supply sector. These sectors 

are not only key to the operation of other industries, but are also the basic guarantee for 

human life. Therefore, compared with other general sectors, such critical sectors are always 

recovered as priority industries. For example, in the 2016 Leeds flooding in the UK, the West 

Yorkshire Combined Authority’s Investment Committee established a Business Flood 

Recovery Fund to support businesses from priority sectors: manufacturing, food and drink, 

low carbon and environmental, financial and professional services, health and life sciences 

and digital and creative (‘Combined Authority’, 2016, January 20). Such actions allow priority 

sectors to be rebuilt earlier than other sectors. It implies that the damaged sectors are not 

recovered simultaneously during the process of the recovery.  

Table 4.4 and Figure 4.2 display four scenarios to better illustrate how these situations 

influence the total restoration process of the affected economic system. Sector 2 is assumed 

as critical sector; the capital recovery scheme of sector 2 is different to the other two sectors 

among the scenarios below. In the Base Scenario, all of the 3 sectors recover from the same 

time—Week 1 (Section 4.2). Scenario C-1 assumes that only the capital restoration of Sector 

2 is from Week 4; while in Scenario C-2, only Sector 2 is a priority sector, with restoration time 

occurring in Week 1 and others in Week 4. Scenario C-3 shows the different recovery times 

of each sector: Sector 1 from Week 6, Sector 2 from Week 4 and Sector 3 from Week 1. 

According to the basic conditions of Scenario C-1, during the Week 1 to Week 3, the 

damage fractions of Sector 2 are 

𝛼1_𝑠2
1 = 𝛼1_𝑠2

2 = 𝛼1_𝑠2
3 = 𝛼1_𝑠2

4 = 0.5   (4.28); 

recovered capital of Sector 2 are 

𝑓𝑟𝑒𝑐_𝑆2
1 = 𝑓𝑟𝑒𝑐_𝑆2

2 = 𝑓𝑟𝑒𝑐_𝑆2
3 = 0  (4.29). 

Until in Week 4, Sector 2 starts recovering, 
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𝑓𝑟𝑒𝑐_𝑆2
4 = min(𝑓𝑟𝑒𝑐_𝑠2 − ∑ 𝑓𝑟𝑒𝑐_𝑠2

𝑘3
𝑘=1 , 𝑓𝑟𝑒𝑚_𝑆2

4 ) (4.30) 

𝛼1_𝑠2
5 = (𝑓𝑟𝑒𝑐_𝑠2 − ∑ 𝑓𝑟𝑒𝑐_𝑠2

𝑘4
𝑘=1 )./𝑠𝑐𝑎𝑝_𝑠2

0   (4.31). 

Scenario C-2 describes the situation that during the first three weeks, the damage ratio of 

Sector 1 are: 

𝛼1_𝑠1
1 = 𝛼1_𝑠1

2 = 𝛼1_𝑠1
3 = 𝛼1_𝑠2

4 = 0.4  (4.32) 

𝛼1_𝑠3
1 = 𝛼1_𝑠3

2 = 𝛼1_𝑠3
3 = 𝛼1_𝑠3

4 = 0.3  (4.33) 

The recovered parts of these two sectors are 0. Until in Week 4, the production of Sector 

1 and 3 can be allocated to recovery demand. 

 

Table 4.4. Results of capital productivity recovery scenarios. 

Scenario Capital Recovery Path Recovery Period Indirect 

Flood 

footprint 

Total 

Flood 

Footprint 

Base All the sectors from Week 1  14 Weeks 6182 10532 

C-1 Only S2 from Week 4 16 Weeks 11144 15494 

C-2 Only S2 from Week1, others from 

Week 4 

41 Weeks 14974 19324 

C-3 S2 from Week 4, S1 from Week 1, S3 

from Week 6 

15 Weeks 10116 14466 

 

The outcomes under these four kinds of industrial capital restoration paths are totally 

different according to my estimation (Table 4.4). Scenario C-2 requires the longest recovery 

period (41 weeks) and has the largest total flood footprint (19324); its indirect flood footprint 

(14974) is almost 3 times larger than that of the Base Scenario. From the sector perspective, 

the largest indirect flood footprint of S1, S2 and S3 are shown in Scenario C-2, C-1 and C-3 

(Figure 4.2) and such a situation can be explained as an accumulated effect. Taking S2 as an 

example, in the Scenario Base and C-2, the restoration of S2 is from the beginning stage; in 

other two scenarios, S2 remains damaged  during the first three weeks without any recovery 

action. Hence, the accumulated economic loss results in a longer restoration period and larger 

flood footprint. Even with the extension of the recovery time of one sector, the recovery  
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Notes: the horizontal axis shows the recovery period and the whole recovery process starts from the first week (the number 

of the horizontal axis is 1) after the disaster.  

Figure 4.2. Available capital productivity and indirect flood footprint of three sectors under 

four types of capital productivity recovery schemes. 
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time and economic loss of the whole economic system will become longer and higher, 

respectively. This example only focuses on 3 sectors; if such scenarios occurred in an 

economic system that includes 42 sectors, the final impact will be much larger.  

4.3.3. Various Delayed Recovery 

Delayed recovery examples exist in many real cases since post-disaster reconstruction is not 

usually performed immediately when the disaster occurs. Damaged physical infrastructure is 

a barrier to economic system restoration, as in the case of Haiti’s recovery. Hurricane 

Matthew struck southwestern Haiti on 4th October 2016 and along the southern coast, 90% 

of houses were damaged and most of the crops destroyed. This storm caused $1.89 billion 

loss and left about 1.4 million people (most were children and women) in need of 

humanitarian assistance (OCHA, 2016). Relief supplies could not be delivered to the affected 

area due to the damaged infrastructure and blocked roads, leading to more than 8 thousand 

people still lacking water and food one month later (ACTED, 2016). As a general rule, the 

priority work during the disaster period is rescue and relief work; the action of reconstruction 

will be conducted until the displaced people are resettled. Thus, rebuilding industrial 

production capacity has to start from a few weeks or months after a disaster. 

Lack of financial assistance or incompetent governance is another reason for delays in 

recovery, like in the cases of Sint Maarten and Puerto Rico. Hurricane Irma crossed the island 

of Sint Maarten (a constituent island country of the Kingdom of the Netherlands) on 6th 

September 2017: up to 70% of the houses were badly damaged and thousands of residents 

were affected, with an estimated economic loss of nearly $1.2 billion economic. But the 

government of Sint Maarten and Holland spent more than six weeks discussing issues of 

responsibilities, recovery plans and measures, especially for recovery funds (Sint Maarten 

Government, 2017, October 31). Lack of financial assistance was the immediate impact of 

extensive delays of the recovery work in Sint Maarten.  

Another case is the restoration of Puerto Rico after Hurricane Maria. On 20th 

September 2017, Hurricane Maria landed on Puerto Rico with a strong storm surge and heavy 

rainfall; nearly the entire power grid, 95% of cell networks and 85% of above/ground phone 

and internet cables were destroyed, leaving millions of citizens without enough food, running 

water or  electricity (Sanchez and Chavez, 2017, October 13). As estimated by Puerto Rico’s 
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governor, $94.4 billion was required to recover the damage (Associated Press, 2017, 

November 14). However, the US government refused to provide sufficient financial aid; 

additionally, the government of Puerto Rico itself accumulated over $70 billion in debt before 

this storm (Walsh, 2017, May 16), resulting in the slow process of the restoration in Puerto 

Rico. Two month later, people there still remained in the ‘dark’ with only 50% of power 

restored and some other areas maybe having to wait for at least six months (Galarza and Lee, 

2017, November 19). With serious food shortages and less recovery funds, the biggest 

challenge for Puerto Rico is how to survive under such conditions, prolonging recovery time 

for the local economic system . 

 

Table 4.5. Results of delayed recovery scenarios. 

Scenario Delay factor Delay time Recovery Period Indirect Flood 

footprint 

Total Flood 

Footprint 

Base None No delay 14 Weeks 6182 10532 

DL-1 Labour One month 21 Weeks 9166 13516 

DL-2 Labour Three months1 31 Weeks 19535 23885 

DC-1 Capital One month 14 Weeks 11322 15672 

DC-2 Capital Three months 26 Weeks 25221 29571 

D-1 Total2 One month 17 Weeks 13227 17578 

D-2 Total Three months 26 Weeks 29427 33777 

D-3 Total Six months 39 Weeks 52827 57177 

D-4 Total Twelve months 65 Weeks 99627 103977 

1. Here one year has 52 weeks, sis months equal 26 weeks and three months has 13 weeks. 

2. It should be noticed that, like the situation of D-1, imports as one kind of external support does not 

exist during the delay period of recovery. 

 

Here, we tested differences in delay parameters and delay time of the hypothetical 

numerical example (Table 4.5). In Scenario DL-1 and DL-2, only labour restoration is 

considered as the delayed parameter; while DC-1 and DC-2 only focus on the capital recovery 

delay. For the other four scenarios D-1 to D-4, both the recovery of labour and capital are 

delayed for one, three, six and twelve months. The main effect of delayed recovery, regardless 

of whether the delay factor is labour or capital, or both of them, is to increase the flood 

footprint and extend the recovery period. Base Scenario refers to no delay condition and so 
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has the smallest flood footprint and shortest recovery period; while D-4 has the longest 

recovery period (65 weeks), and the largest total flood footprint (103977), which is almost 10 

times higher than in the Base Scenario. The indirect flood footprint (99627) in Scenario D-4 

accounts for 96% of total flood footprint, which is nearly 22 times larger than the direct flood 

footprint (4350). The accumulated indirect economic impact during the delay period results 

in high cost when compared with the direct loss.  

Figure 4.3 compares available productivity and indirect flood footprint of three sectors 

under six kinds of delay scenarios. When the delay time is one month, the flood footprint of 

Scenario D-1 is larger than that of DL-1 and DC-1; similarly, with a three-month delay, the total 

flood footprint of D-2 is also bigger than DL-2 and DC-2. It can be concluded that in this 

hypothetical numerical example, delays in both labour and capital recovery can create more 

economic loss than the conditions of the single parameter delay. There is one point that 

should be emphasized: available productivity is restricted by the minimum of capital and 

labour productivity. This is why in the first month in DL-1, even though there is no recovery 

for labour productivity, the available productivity of S2 and S3 are still increasing. The main 

limitation for the productivity of S2 and S3 in DL-1 is the capital factor, and for S1 it is the 

labour factor. The key constraint also explains the indirect flood footprint trends of 3 sectors 

during the delay time. Taking Scenario DL-1 as an example, in the labour delay period, S1 

remains the same since its available production depends on labour; S2 decreases in the first 

two weeks and then stays the same because its production is mainly affected by capital in 

Weeks 1-2 and then turns to labour. S3 is in the same situation as S2: output of S3 is 

constrained by capital in Week 1 and then by labour. Two weeks for full recovery in S3 leads 

to the same indirect flood footprint results in Scenarios DL-1 and DL-2. 
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 1 

Notes: the horizontal axis shows the recovery period and the whole recovery process starts from the first week (the number of the horizontal axis is 1) after the disaster.  2 

Figure 4.3. Available productivity and indirect flood footprint of three sectors under six delay scenarios. 3 

 4 
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4.3.4. Sensitivity to the Critical Constraint Factor 

Labour and capital, as the two main parameters in the model, have significant influences on 

the whole recovery process. The available capacity of industries in each recovery step is 

primarily constrained by these two factors. In real disaster cases, not all the flooding events 

impact on the labour or capital in the flood area. Also, not all industrial productivity in the 

affected sectors is limited by labour and capital at the same time. Sometimes, although both 

labour and capital for some specific sectors are influenced by a flood event, the productivity 

of this sector is only constrained by the labour or capital factor. For example, after the 2017 

Hurricane Harvey, nearly 60% of contractors from the construction business reported the 

problem of skilled labour shortage (Grace Donnelly, 2017, September 18). High demand from 

commercial construction sectors and limited skilled labour led to a difficult recovery in the 

southern states and the Caribbean. Similarly, Hurricane Katrina hit New Orleans 11 years ago 

and caused nearly 54 billion USD damage, especially in the industries of gas and oil extraction, 

industrial chemical manufacturing and petroleum refining. The Federal Reserve Board of 

Governors reported that compared with the previous month, the production from the above 

industries was reduced by 1.7 percent in the disaster month, causing the disruptions of the 

hurricane (Timothy Boone, 2016, August 26; Kevin Kliesen, 2017, September 5). In other 

words, the production capacity of the energy sectors was seriously limited by the damaged 

capital in this event. 

Based on the situation of the hypothetical numerical example, scenarios of sectors that 

either limited by labour or capital or both of them are compared below (Table 4.6). Scenario 

R-1 assumes that the production of Sector 1 during the recovery stage is only constrained by 

the labour, here the accessible production of the time t is 

 

{

𝑥𝑆1
𝑡 = 𝑥𝑙𝑎𝑏_𝑆1

1 ,

𝑥𝑆2
𝑡 = min( 𝑥𝑐𝑎𝑝_𝑆2

𝑡 , 𝑥𝑙𝑎𝑏_𝑆2
𝑡 )

𝑥𝑆3
𝑡 = min( 𝑥𝑐𝑎𝑝_𝑆3

𝑡 , 𝑥𝑙𝑎𝑏_𝑆3
𝑡 )

   (4.34). 
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Scenario R-2 is the situation that the productivity of Sector 1 is only limited by the capital 

damage, here the actual production of the time t become 

 

{

𝑥𝑆1
𝑡 = 𝑥𝑐𝑎𝑝_𝑆1

1 ,

𝑥𝑆2
𝑡 = min( 𝑥𝑐𝑎𝑝_𝑆2

𝑡 , 𝑥𝑙𝑎𝑏_𝑆2
𝑡 )

𝑥𝑆3
𝑡 = min( 𝑥𝑐𝑎𝑝_𝑆3

𝑡 , 𝑥𝑙𝑎𝑏_𝑆3
𝑡 )

   (4.35). 

 

Scenario R-3 shows that the production of Sector 1 is only affected by the labour factor and 

Sector 2 is only influenced by industrial damaged capital, here the available production of the 

time t is 

 

{

𝑥𝑆1
𝑡 = 𝑥𝑙𝑎𝑏_𝑆1

1 ,

𝑥𝑆2
𝑡 = 𝑥𝑐𝑎𝑝_𝑆2

1

𝑥𝑆3
𝑡 = min( 𝑥𝑐𝑎𝑝_𝑆3

𝑡 , 𝑥𝑙𝑎𝑏_𝑆3
𝑡 )

   (4.36). 

 

Table 4.6. Results of critical constraint factor scenarios. 

Scenario Critical Constraint Factor Recovery 

Period 

Indirect Flood 

footprint 

Total Flood 

Footprint 

Base 3 sectors are constrained by both 

labour and capital  

14 Weeks 6182 10532 

R-1 S1 is labour1 7 Weeks 4559 8909 

R-2 S1 is capital 14 Weeks 6027 10377 

R-3 S1 is labour and S2 is capital 7 Weeks 4559  8909 

1. If there is no other notifications, the sector is constrained by both labour and capital factor. 

 

Scenarios R-1 and R-3, Scenario Base and R-2 have similar indirect flood footprint trends 

according to the estimation (Figure 4.4). Scenarios R-1 and R-3 only need 7 Weeks to recovery, 

while Base and R-2 take almost twice as much time to return to pre-disaster economic levels. 

Meanwhile, R-1 and R-3 resulted in 4559 indirect flood footprints, which is only 75% of that 

in Base and R-2. In spite of both labour and capital influencing the production capacity of the 

industry, there is no evidence to show that labour and capital have an immediate relationship 
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through this research. These two variables have their own recovery paths and affect the 

outcomes in different ways; labour is an exogenous input while capital is an endogenous 

factor. Distinguishing the critical constraint factors that affect the available production or 

production capacity of sectors is the basic requirement for the economic consequence 

estimation and analysis of disasters.  

 

 

Notes: the horizontal axis shows the recovery period and the whole recovery process starts from the first week (the number 

of the horizontal axis is 1) after the disaster.  

Figure 4.4. Indirect flood footprint of three sectors under the four types of critical constraint 

factor scenarios. 

 

4.3.5. Sensitivity to Import and Basic Demand 

Basic demand and imports at each step decide the percentage of production that is allocated 

to industrial capital rebuild demands. Basic demand can be different in each stage for one 

disaster, which will result in a different recovery time and indirect flood footprint. Scenario 
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Base and I-1 illustrate how the basic demand affects the recovery process (Table 4.7). It is 

clear that without a basic demand in each step, the local economic system only takes 11 

weeks to rebuild (Scenario I-1), and the recovery period and indirect economic loss of S1 and 

S2 become shorter and less. There is no change for S3 because the recovery speed of S3 is 

only 1 week. In general, more production used to support basic demands, less goods allocated 

to capital recovery demands, the longer the time required for total recovery. 

 

Table 4.7. Results of import and basic demand scenarios. 

Scenario Recovery Path Recovery Period Indirect 

Flood 

footprint 

Total Flood 

Footprint 

Base Both of basic demand and 

imports are considered 

14 Weeks 6182 10532 

I-1 Without basic demand 11 Weeks 4391 8741 

I-2 Without import 16 Weeks 7753 12103 

I-3 Imports only for capital 

reconstruction 

12 Weeks 6108 10458 

 

Import is a vital supply source for the recovery of an economic system; which part of 

the process introduces imports has become a question. In some reality cases, the local 

economic system will never return to pre-disaster level without imports due to low 

productivity of the local industries. However, in out hypothetical numerical example, the 

production of the local economic system can also be satisfied without import. Three import 

scenarios are compared here: imports in the Base Scenario exist during the whole process; 

Scenario I-2 do not consider import but rely only on own production; in Scenarios I-3, imports 

are only used for industrial capital damage recovery, so  that once the capital productivity of 

the sector returns to pre-disaster level, import will end. As demonstrated in Table 4.7, without 

import scenario (I-2) has the longest recovery period and the largest flood footprint. If imports 

are only allocated to capital reconstruction/recovery demand (I-3), the economic system and 

each sector will need a shorter time to recover and result in a lower indirect flood footprint 

(Figure 4.5), because the reconstruction improves the production capacity. The independence 

of the economic system determines how import affects total recovery. The higher the 

independence from external production before the disaster, the lower the possibility for 
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economic system recovery without import; conversely, the higher the amount of imports, the 

less time required for post-disaster recovery.  

 

 

Notes: the horizontal axis shows the recovery period and the whole recovery process starts from the first week (the number 

of the horizontal axis is 1) after the disaster.  

Figure 4.5. Indirect flood footprint of three sectors under the four scenarios. 

 

4.4. Discussion 

Different assumptions regarding variations in the Flood Footprint Model result in different 

recovery processes of the local economic system. Some of the required parameters in the 

Flood Footprint Model are not easily accessed; the model outcomes are extremely sensitive 

to these factors, and sensitivity analyses should be conducted for better disaster assessment. 

As shown in Section 4.3, two types of sensitivity analysis to the model outputs based on the 

hypothetical numerical example (Table 4.1) are taken into consideration in this research. The 

first type is sensitivity to model related parameters, including alternative labour and capital 

restoration, imports and basic demand. Degraded labour productivity in the aftermath can be 



 
 

129 
 

calculated through real data, but the recovery curve of labour productivity used in the model 

must be selected carefully. Regardless of whether recovery curves are linear or nonlinear, the 

uncertainty of labour restoration should be considered during the modelling process. For the 

capital recovery, according to some real post-disaster recovery plans, most of the investment 

in the first stage is allocated to priority industries, leading to the damaged sectors not 

recovering simultaneously during the recovery process. In addition to the demand of 

household capital loss added in the final demand aftermath, household adaptive 

consumption behaviour also leads to changes in the final demand. Consumption behaviour of 

households is affected by many parameters, such as import capacity, local culture and basic 

consumption capacity. Some products and services are necessary for human life, and how to 

reorganize them in a recovering economic system is also an urgent problem that needs to be 

addressed (Steenge and Bočkarjova, 2007). The second type is sensitivity to quality of post-

disaster governance. Here I only focus on various delayed recovery conditions, which are 

caused by incomplete governance. Regardless of whether the delay factor is labour or capital, 

during the delay period, all the affected sectors remaining damaged and suffering the 

accumulated indirect flood footprint. Such an accumulated effect can increase the flood 

footprint and extend the recovery period of the whole economic system. 

The rationing scheme seeks to reflect the decision of how to prepare for the disaster 

recovery stage from the perspectives of various economic agents, including government 

agencies or households. It is hard to say which rationing scheme is preferred, but by 

comparing the different options for resource allocation, people can select an optimal way to 

reconstruct the linkages of each industry and recover the pre-disaster economic balance. 

Several economic situations in the affected region should be considered in this part, such as 

sector substitutability. If the substitutability of some local sectors is strong, then the 

substitution will reduce the impact on the affected production and sectors in the recovery 

process (Hallegatte, 2008). 

Despite several assumptions being made in the Flood Footprint Model, the approach 

used in this paper is currently the most appropriate way to incorporate productivity with 

capital and labour constraints and adaptive household consumption behaviour. It is suitable 

only for one sudden-onset flood in a single region. However, it will be continually improved 

and applied to single disasters in multiple regions.  



 
 

130 
 

4.5. Summary  

This chapter is the first illustration of the Flood Footprint Model in the case of a single flood 

disaster. A hypothetical example (with the 3×3 IO Table 4.1) was used to verify the 

mathematical equations of the model. Thus, the model improved by this research can 

illustrate how the linkages among sectors are rebuilt by considering the factors that influence 

the local economy after a disaster shock. This model provides a temporal evaluation of total 

production in each period. According to the scales of flood disasters and the final aims of the 

research, the flood footprints of each disaster per week, per month or per year can be 

estimated. In contrast to other disaster models, this Flood Footprint Model is more externally 

oriented and better fits reality. It not only considers the degraded capital or labour production 

in each time period but also contains the basic human needs (basic demand) and imports over 

the entire process. 

For investment in flood risk management options, it is critical to identify the ‘blind spots’ 

in critical infrastructure and vulnerable sectors in the economic supply chains and social 

networks. This approach allows for sufficient adaptation to the immediate and long-term 

damage due to a flood event. Adaption to flood risk is not limited to the area that suffers the 

direct damage. It also extends to the entire socioeconomic networks, and this factor must be 

considered to minimize the magnitude and probability of cascading damage to regions not 

directly affected by the flood.  

At the level of flood risk mitigation responsibility, a flood footprint accounting 

framework would provide an alternative way to allocate financial responsibility for flood risk 

mitigation interventions by incorporating the value of all stakeholders’ economic capacities 

in the local/regional/national supply chains. This approach could potentially reduce the 

financial burden of the government for flood risk management and spread the cost among 

major stakeholders in the supply chain, based on the ‘who benefits, who pays’ principle. In 

other words, if it turns out through a proper flood footprint assessment that organization(s) 

x or y benefit in a large way from flood defences, then alternative flood management payment 

schemes could be considered. At a communication level, the flood footprint could be an 

excellent concept to enhance business and public awareness of the possible damage they may 

suffer and of the total damage a flood can cause. 
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Chapter 5 Flood Footprint Model Illustration II: Beijing 721 Urban 

Flooding Event 

This chapter is an account of the first time the Flood Footprint Model has been applied to a 

real single-flood case. The event of Beijing 721 urban flooding, which occurred in Beijing, 

China on July 21th, 2012, was selected as the case study in this chapter. Apart from indirect 

flood footprint estimated through the Flood Footprint Model, this section offers various types 

of sensitivity analyses to test the feasibility and flexibility of the Flood Footprint Model under 

different recovery scenarios.  

5.1. Introduction 

The study area is Beijing, the capital city of People`s Republic of China and a megacity with 

high global influence from many perspectives, including economical, political and educational. 

It is located in northern China with a land area of 16801 km2 and is surrounded by Hebei and 

Tianjin provinces. This city is the second most populous city proper in the world, with a 

population of 21.7 million in 2017; it is also the second most populous capital city and 

contributes 2.57 trillion CNY (290 billion GBP), about 3.45% of the total GDP in China. On July 

21th, 2012, Beijing suffered the heaviest rainfall in the last 60 years, triggering severe urban 

flooding. During the 16 hours of rain, the average precipitation was recorded as 170 mm, and 

the worst affected area in Beijing--Fangshan District received 460mm of rain. This disaster 

severely affected people and capital in the Beijing area: 79 people died and 1.9 million people 

were affected, either injured or evacuated; over 10 thousand houses were destroyed and 

more than 500 flights were cancelled or delayed. The total economic loss of the Beijing 721 

urban flooding reached 11.64 billion Chinese Yuan. 
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5.2. Data Sources 

This case draws mainly on three kinds of data sources. The first one is the official data source: 

the input-output table of Beijing in the year of 2010 from Beijing government was used as 

basic data in my model; technical coefficient (A), industrial outputs and final consumption of 

42 sectors before disaster have been taken from this table. The code and name of these 42 

sectors are shown in Table A1 in the Appendix. Data on industrial and household capital stock, 

employment and GDP of Beijing in 2011 have been obtained from Beijing’s Statistical 

Yearbooks. The second data source is news. Data regarding the affected population and the 

recovery time of transportation (including flights, railways and highways) due to this flooding 

have been taken from the related news items. The last source is constructed from my own 

assumptions, as this kind of data is not available, such as labour productivity recovery path 

and household consumption behaviour adaptation (basic demand). All the input data and 

results are on a weekly basis and the monetary unit is the Chinese Yuan (1 million Yuan 

=0.11million British Pound), the basic unit of currency of in the People`s Republic of China. 

CNY is the currency sign used to refer to the Chinese Yuan. 

5.2.1.  Capital  

In any real case, information concerning destroyed industrial capital can be obtained from 

insurers or government statistics. According to statistics held by the Beijing government, the 

total economic loss was estimated at 11.64 billion CNY, and is considered the total capital loss 

of the Beijing area. Of the 42 sectors, actual damage data is only available for the agricultural 

sector (S1) and cultural sector (S41); estimated capital loss for water conservation (S37), 

energy supply (S25, S26 and S27), construction (S28) and medical (S40) sectors are based on 

related news, with the remaining capital loss equally divided between the other sectors. 

Details of industrial capital loss is included in Table A2 in the Appendix. Household capital 

damage information is difficult to obtain because of privacy protection, even though insurers 

hold this information. Here, the damaged household capital is assumed as 0.05% of total 

household capital stock, since the damage to houses was concentrated in Beijing’s rural areas. 

Household capital is typically within the sectors of electronics and manufactured products 

(S19, S20 and S25), transportation equipment (S18), construction (S28) and maintenance 
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services (S24). Thus, 50% of the damaged household capital is attributed to S28, and 10% is 

allocated to the other five sectors, respectively. 

5.2.2.  Labour 

The labour production capacity recovery is set exogenously. Reduced labour productivity is 

not accessible in many practical cases. Here, an approach is offered to estimate the changes 

in labour productivity. Variation in labour time is used as an indicator to measure the variation 

of labour productivity, which can be calculated through morbidity counts and transport delay 

times. Figure 5.1 demonstrates the process of measuring labour constraints in terms of labour 

time loss induced by a flooding event. When considering morbidity due to different reasons, 

more attention is paid to delay induced by injury, evacuation and transport disruptions, 

among which I further consider delays due to flight, railway and highway disruption. With 

each element’s share of impact in the total morbidity, the effect of injury, evacuation, flight 

delay, railway delay and highway delay on industry can be calculated. Next, the total labour 

time loss in each case can be estimated by multiplying the average time lost for each person 

affected and added up to obtain the total industrial labour time lost due to the disaster. Finally, 

through comparison of the total industrial labour time loss and original industrial labour time, 

the percentage reduction in industrial labour production capacity can be obtained.  This study 

assumes that all the sectors have the same labour constraints and the same recovery path. 

The labour productivity for each sector decreased by 4% after this urban flooding through my 

calculation. Then it recovered to 98% and 99.5% in the second and third week, respectively, 

and completely recovered in the fourth week according to my assumptions. 
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Figure 5.1. Labour constraint estimation. 

 

5.2.3.  Basic Demand 

We often assume that life necessities, also called the basic demand, in the disaster aftermath 

tend to gain greater significance. This concerns the final demand in the Flood Footprint Model 

and is equal to the minimum amount of food, clothing, energy and medical services. Because 

of lack of data in this area, the basic demands for food (S1 and S6), clothing (S7 and S8), energy 

(S25, S26 and S27) and medical services (S40) are assumed to be half the pre-disaster level, 

while consumption of other products is zero in this case. The basic demand can be different 

in each stage, but for this study, it is assumed as a fixed amount in each week.  

Total Morbidity 

Counts
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5.3. Results  

5.3.1. Flood Footprint Assessment 

In the cases of previous data condition, the total flood footprint of the ‘Beijing 721 urban 

flooding event’ is estimated at 21.19 billion CNY. The direct flood footprint of 11.64 billion 

CNY, obtained from official documents, represents 55% of the total flood footprint; the other 

45% of the flood footprint is indirect part, and estimated as 9.55 billion CNY. The duration of 

this urban rainfall was only 16 hours. Yet, the total economic loss resulting from this event 

equals almost 1.18% of the total GDP in the Beijing area in the year 2012. Meanwhile, it took 

42 weeks for complete industrial recovery back to pre-disaster levels when imports are taken 

into account during the whole recovery period. As shown in Figure 5.2a, most of the recovery 

process is concentrated in the first ten weeks. Compared with capital constraints, labour has 

more influence on the total production capacity, particularly in the first five weeks. The 

recovery of industrial damaged capital is rapid in the beginning and then slows down (Figure 

5.2b). Within 42 sectors, capital recovery in S27 (water production and supply) takes the 

longest, at 42 weeks, followed by S26 (gas production and supply) at 13 weeks. 

Reconstruction in the other sectors is completed within the first five weeks. This scenario is 

an ideal situation and does not consider other effects like the quality of governance.  

  

 

Figure 5.2. Recovering process of the case study. 
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5.3.2. Industrial Flood Footprint 

Three-sector theory (Fisher, 1939, Clark, 1967) divides an economic system into three parts: 

primary industries (as the industry of extraction and collection of natural sources), secondary 

industries (manufacturing industries) and the tertiary/services industries (industries that 

provide goods and services to customers). In this case, the only primary industry is the 

agriculture sector (S1), secondary industries comprise S2-S28, while S29-S42 belong to the 

tertiary industry. According to my estimation, the tertiary industry contributes the largest part, 

nearly 52% (11096 million CNY) of the total flood footprint caused by ‘Beijing 721 urban 

flooding event’, followed by the secondary industry at 40% (8438 million CNY) and the primary 

industry at 8% (1665million CNY). The indirect economic loss is therefore 8%, 65% and 35% 

of the total flood footprint for the primary, secondary and tertiary industries, respectively. 

Among the secondary industries, half of its flood footprint is in construction (S28), electricity 

production and supply (S25), and gas production and supply sectors. Among the tertiary 

industries, the sectors of water conservation (S37), transportation (S30) and finance (S33) 

share half of flood footprint.  

From an individual sector perspective (Table A2 in Appendix), the flood footprints of 

seven sectors are greater than 2000 million CNY. As seen in Figure 5.3, regarding the first ten 

sectors with high flood footprint, seven sectors come from the tertiary industry, two from the 

secondary industries and one from the primary industries. In particular, the construction 

sector (S28) has the largest flood footprint with 2590 million CNY, accounting for over 12% of 

total flood footprint, followed by water conservation (S37) and transportation (S30), sharing 

nearly 10% (2063 million CNY) and 9% (1962 million CNY), respectively. Meanwhile, ten 

sectors from the secondary industries with the lowest flood footprint are less than 100 million 

CNY, and include the sectors of scrap and waste (S23, 23 million CNY), general technical 

services (S24, 36 million CNY) and textiles (S7, 39 million CNY).  

5.3.3. Direct and Indirect Flood Footprint 

In terms of the relationship between industrial direct and indirect flood footprint, it is clear 

that the indirect flood footprint is not determined immediately by the direct impact. Taking 

the first ten sectors with high flood footprints as examples (Figure 5.3), in these ten sectors, 
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only two sectors contain larger indirect flood footprints than the direct footprints. The 

indirect flood footprint in S29 is 29 times higher than its direct footprint, and the ratio in S28 

is 1.6. At the same time, the indirect impact is just 3% of its direct flood footprint in S37. The 

same direct flood footprints do not necessarily result in the same indirect flood footprint, 

such as sectors S28 and S41. Although both direct economic impacts are 1000 million CNY, 

the gap with their indirect flood footprints is 1400 million CNY. In other words, a high direct 

flood footprint does not mean high indirect impact, such as S27 and S29. The direct impact of 

S27 is 500 million CNY while the indirect impact is only 59 million CNY; while in S29 the direct 

footprint is 20 million CNY, its indirect impact is 580 million CNY. Therefore, the indirect flood 

footprint of each sector is not only influenced directly by the capital damage of other sectors, 

but primarily depends on the internal linkages between these sectors.  
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Figure 5.3. Flood footprints of 42 sectors in Beijing and the ratios for direct and indirect flood footprint of the first 10 high flood footprint sectors.
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5.4. Sensitivity Analysis 

The flood footprint of a single disaster event depends to a large extent on the final aim of the 

study and the variation of parameters in the Flood Footprint Model. As a mathematical model, 

there are many uncertainties regarding the input and output in my Flood Footprint Model. 

However, it still lacks actual data to validate the results due to the complexity of economies. 

Sensitivity analysis of the model’s variables is therefore an essential and effective way for 

improving the accuracy of the model’s results. This section offers a series of sensitivity 

analyses of the alternative parameters of the Flood Footprint Model, including the sensitivity 

to critical constraint factors, labour and capital productivity recovery paths, import and basic 

demand, and delay resulting from ineffective governance; and also provides a range of flood 

footprints of the case ‘Beijing 721 urban flooding event’ under different conditions. The input 

data described in Chapter 5.3 is set as the basic data condition of Base Scenario, while the 

results of Base Scenario are shown in Chapter 5.2. 

5.4.1. Labour Productivity Recovery Scenarios 

In this study, the influence of labour constraints on an economic system is quantified as the 

labour impact on industrial productivity. For a particular natural disaster case, by employing 

the special labour recovery scheme, the tendency of the remaining productivity and indirect 

flood footprint of each sector will also reflect special characteristics. However, as previously 

mentioned, the ways in which the industrial labour force of an economy recovers to pre-

disaster level after a shock is still unknown. In order to analyse how the labour constraints 

affect the final results of the case, four scenarios that include four possible labour recovery 

plans are compared here. It should be mentioned that apart from the labour productivity 

recovery plans, other input data remain the same in these scenarios. As listed in Table 5.1, 

the specific data plan is used in the Base Scenario; while recovery paths of labour productivity 

(LP) in scenarios L-1, L-2 and L-3 are linear, polynomial and logarithmic trends, and the 

corresponding equations are LP=0.01t+0.96, LP=0.005t2+0.96 and LP=0.03ln(t)+0.96 (where t 

is the time period and the unit is week, here t ≥1), respectively. According to these LP trends, 

the labour recovery period for Scenario L-1 is four weeks, and for the other three is 3 weeks. 
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Table 5.1. Results of labour productivity recovery scenarios. 

Scenario 

Labour Recovery Path 

Recovery 

Period 

(week) 

Indirect Flood 

footprint 

(million CNY) 

Total Flood 

Footprint 

(million CNY) 

Percentage 

of Indirect 

flood 

footprint 

Equation

  

Recovery 

Period 

(week) 

Base Specific data 3  42  9555 21195 45% 

L-1 LP=0.01t+0.96 4  42 13056 24696 53% 

L-2 LP=0.005t2+0.96 3  43  12560 24200 52% 

L-3 LP=0.03ln(t)+0.96 3  42  9679 21319 45% 

1. t is the time period and the unit is week, here t ≥1. 

 

The flood footprints and recovery periods of these four labour productivity recovery 

scenarios are also shown in Table 5.1, Figure 5.4, which describes how the labour recovery 

scheme affects the available productivity. It is obvious that the labour recovery scheme has a 

significant influence on the recovery process and the final flood footprint of the case. The 

available productivity shows different trends in each scenario and corresponds closely with 

the labour productivity trends. Meanwhile, in all the scenarios, the first five weeks explain the 

majority of their indirect flood footprints. Despite the direct flood footprint of these scenarios 

being the same (11640 million CNY), the Base Scenario has the smallest flood footprint with 

21195 million CNY, while Scenario L-1 has the largest one, nearly 24696 million CNY, and the 

indirect flood footprint of the latter (13056 million CNY) is 1.37 times of the former (9555 

million CNY). The same labour recovery period can result in various flood footprint results, 

such as Scenario Base, L-2 and L-3. Scenario L-2 requires longer (43 weeks) to recover with a 

flood footprint of 24200 million CNY, and others are estimated as 42 weeks. In the case of the 

Beijing 721 urban flooding, the L-1 and L-2 scenarios are supposed to raise higher flood 

footprints than the Scenario Base and L-3. But this does not mean that the linear and 

polynomial recovery trends of labour have a more significant influence for other cases; rather, 

such results mainly depend on the features of the cases. Figure 5.5 shows the characteristics 

of the first ten sectors with the highest flood footprint in each scenario. According to the 

estimation, the entire flood footprint level of Scenario L-1 and L-2 is 700-2900 million CNY,  
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Figure 5.4. Recovering processes of the four labour recovery scenarios. 
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much higher than the flood footprint range of the other two scenarios, 600-2600 million CNY. 

There is no significant difference in the constitutions of these ten sectors in the four scenarios, 

regardless of the type of labour recovery path. S28 is still in the first place with a flood 

footprint larger than 2500 million CNY, but in the tenth sector, the scientific research sector 

(S36) and the transport equipment sector (S18) are ranked as the tenth sector in Scenarios L-

1 and L-2, respectively, while both the Base Scenario and L-3 are still the sectors of wholesale 

(S29). 

 

 

Figure 5.5. The first 10 sectors with the highest flood footprint of the four labour recovery 
scenarios. 

 

5.4.2. Capital Productivity Recovery Scenarios 

In accordance with regulation 5.3.2 of the ‘Emergency Plan for Flood Control in Beijing (2012)’ 

that was designed and issued by the Beijing government, the functions of sectors related to 

water conservation (S37), transportation (S30), information transmission (S32) and energy 
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support that includes electricity (S25), water (S27), gas and oil (S26), need to be restored as a 

priority (Beijing Government, 2014). Hence, these sectors are assumed to be the key sectors 

of the regional economy for the case Beijing 721 urban flooding event. Four types of 

alternative recovery plans of these industrial capitals are employed for analyzing the 

influences on capital recovery, while other input parameters remain unchanged from the data 

condition of the Base Scenario (Table 5.2). The detailed industrial capital recovery plans for 

the four scenarios are: 1) all sectors are recovered from the first week in Base Scenario; 2) key 

sectors are supposed to recover from Week 1, while others, from the fourth and eighth week 

in Scenarios C-1 and C-2, respectively; 3) Scenario C-3 assumes that the reconstruction of key 

sectors is from Week 9 and others from Week 1. Table 5.2 provides the model results of each 

scenario and it is clear that various capital recovery plans lead to different flood footprints for 

a specific case. The average recovery period of these scenarios is 42 weeks, Scenario C-3 has 

the largest flood footprint (32532 million CNY), almost 1.5 times of the smallest, that of the 

Base Scenario; the indirect flood footprint of the former is nearly 2.2 times of the latter. Both 

indirect and total flood footprints are higher in the other two scenarios C-1 and C-2 and are 

also higher than those of the Base Scenario. There is no direct evidence to show the 

relationship between the numbers of affected sectors with longer waiting recovery times and 

the indirect flood footprint. However, from a mathematical perspective, the longer the 

waiting time for the reconstruction of the damaged industrial capital is, the larger the indirect 

flood footprint of the economy. For example, in the Base Scenarios C-1 and C-2, when the 

recovery of other sectors is longer, from the first week to the eighth week, the indirect flood 

footprint also increases from 9555 million CNY in the Base Scenario to 19733 million CNY in 

Scenario C-2.  

 

Table 5.2. Results of capital productivity recovery scenarios. 

Scenario Recovery Path Recovery 

Period 

(week) 

Indirect Flood 

footprint 

(million CNY) 

Total Flood 

Footprint  (million 

CNY) 

Percentage of 

Indirect flood 

footprint 

Base All sectors from Week 1 42  9555 21195 45% 

C-1 Key sectors from Week 

1, others from Week 4  

42  12503 24143 52% 
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C-2 Key sectors from Week 

1, others from Week 8 

42  19733 31373 63% 

C-3 Key sectors from Week 

8, others from Week 1 

43  20892 32532 64% 

 

Figure 5.6 presents the recovery processes for the total available production capacity 

and indirect flood footprints under the four scenarios with different kinds of industrial capital 

recovery paths. The available industrial productivity at each stage is a result of the 

comprehensive effect of labour and capital constraints. That is why the blue line (available 

production capacity) in each scenario does not simply coincide with the green (capital 

production capacity) or the red line (labour production capacity). The distance between the 

blue line and other lines demonstrates the primary influencing factors on the available 

capacity. For example, for C-2, the distance between the blue line and the red line is shorter 

than that between the blue and green lines in the first three weeks. This means that during 

this period, labour has more influence on total capacity; after the third week, the blue line 

approaches and meets the green line, indicating the larger impact of capital constraints on 

total capacity. Regarding the indirect flood footprint, even though the economic system has 

recovered within 42 weeks, more than 90% of the indirect flood footprint occurs in the first 

five weeks in the Base and C-1 scenarios; in the other two scenarios, the largest indirect flood 

footprint comes in the eighth week. When considering specific industries, we can see that the 

capital recovery plans make a significant difference to some sector`s flood footprint, such as 

the construction sector (S28) in this case study. 
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Figure 5.6. Recovering processes of the four capital recovery scenarios. 
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As shown in Figure 5.7, it is evident that the flood footprint of S28 is entirely different 

depending on capital recovery conditions. If S28’s recovery begins in the first week, as it does 

in the Base Scenario and C-3, the indirect flood footprint only accounts for 61% (1590 million 

CNY) of its total flood footprint. However, when the recovery time is delayed to the fourth 

week, as it is in Scenario C-1 and to the eighth week in Scenario C-2, such ratios are 

respectively increased to 85% and 91%, as 5558 and 9726 million CNY. By contrast, the 

recovery plan for capital recovery has less impact on key sectors S25 and S37 because there 

is little difference in the indirect flood footprints for S25 or S37 among these scenarios. 

Consequently, economic impact of a sector has no relevance to the ‘key sectors’, but rather, 

depends upon its original production capacity and the coefficient that connected it with other 

sectors. 

 

 

Figure 5.7. The first 10 sectors with the highest flood footprints of the four capital recovery 
scenarios. 
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5.4.3. Delayed Recovery Scenarios 

Delayed recovery for an economy after a natural hazard event is a universal phenomenon and 

generally is the result of two factors. First is the political factor, for example, a lack of external 

assistance, particularly financial assistance, due to bad or inefficient governance; the other is 

physical causes, for example, imports and rebuilding may be affected by damaged physical 

infrastructures such as blocked roads. Delay of recovery can occur either in labour or capital, 

or both in real cases. For the instance, in the case of the Beijing 721 urban flooding event, the 

primary mission for the transportation system sector after the disaster was to carry out urgent 

repairs and keep the main roads open for its operations. Reconstruction of the 1012 damaged 

roads only began 40 days later, with the aim of complete recovery within 2 years (CNS, 2012, 

AUGUST 21). Thus, the exact timing for recovery of the roads was over one month after the 

flood. Regarding the whole recovery plan, rebuild and reconstruction are generally followed 

by post-disaster rescue and relief work, which always leads to delay in the recovery of both 

the affected labour force and the damaged capital. In order to provide a comprehensive 

picture of flood footprints caused by delayed recovery, I created six scenarios that 

respectively focus on four-week and eight-week delayed recovery of labour (Scenario DL-1 

and DL-2), capital (Scenario DC-1 and DC-2) and both (Scenario D-1 and D-2) on the basis of 

the Base Scenario.  

 

Table 5.3. Results of delayed recovery scenarios. 

Scenario Delay 

factor 

Delay 

period 

(week) 

Recovery 

Period 

(week) 

Indirect Flood 

footprint  

(million CNY) 

Total Flood 

Footprint 

(million CNY) 

Percentage of 

Indirect flood 

footprint 

Base None No delay 42  9555 21195 45% 

DL-1 Labour 4  43  21625 33265 65% 

DL-2 Labour 8  44 37756 49396 76% 

DC-1 Capital 4  45 19887 31527 63% 

DC-2 Capital 8  49 34920 46560 75% 

D-1 Both 4 45 30269 41909 72% 
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D-2 Both 8  49 57887 69527 83% 

 

Flood footprints and the recovery process of each scenario are shown in Table 5.3 and 

Figure 5.8. Compared with the Base Scenario, all the delayed recovery conditions can prolong 

the recovery period and increase the flood footprint of the regional economy. In turn this 

increases the percentage of the total flood footprint attributed to indirect impact as the direct 

flood footprint is fixed. Scenario D-1 and D-2 have the largest flood footprint in the four-week 

(Scenario DL-1, DC-1 and D-1) and eight-week delay groups (Scenario DL-2, DC-2 and D-2), 

with a flood footprint of 41909 million CNY and 69527 million CNY, respectively, indicating 

that the combined impact of labour and capital delayed recovery is much larger than either 

labour delay or capital delay. For the specific delay factors, such as the Scenario DL-1 and DL-

2 that only consider labour recovery delay, indirect flood footprints under the eight-week 

delay conditions (Scenario DL-2, 37756 million CNY) are larger than that of four-week delay 

scenarios (Scenario DL-1, 21625 million CNY), mainly as a consequence of the accumulative 

effect. While awaiting recovery, the industries are still in a damaged condition, producing 

indirect flood footprints, until the point at which they enter into the recovery and 

reconstruction period. From this point, the damaged productivity of each sector can be 

repaired thereby decreasing the indirect flood footprint. Thus, the accumulative indirect flood 

footprint during the delay of recovery explains the increased part of the total flood footprint 

and this accumulative effect illustrates why the longer the delay, the larger the flood footprint. 

In addition, we to the left of Figure 5.8, the lines of available production capacities are closer 

to labour production capacities in Scenario D-1 and D-2, which demonstrates that labour is 

the main constraint factor to total indirect flood footprint under these two scenarios.  

5.4.4. Sensitivity to Import and Basic Demand 

According to the Beijing Input-output table that includes the economic components and 

production distribution in the Beijing area, the independence of the economy in Beijing city 

is extremely weak since the normal economic operation of Beijing is heavily reliant on the 

external production from other regions and countries. As an external source for production, 

import has a crucial economic influence on Beijing city. As there is a lack of information 
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regarding post-disaster imports and production distribution, I compared different imports in 

Beijing’s economic system recovery period, without import (Scenario I-1), with half imports 

(Scenario I-2) and 75% imports (Scenario I-3). However, as a consequence, for the 721 Beijing 

flood, if external assistance was lower than the amount of import capacity in the recovery 

period, the Beijing economy would not have been able to recover back to pre-disaster levels 

because there would not have been sufficient goods and services to satisfy completely the 

demand from inter-industry and other related consumers. The original import capacity then 

becomes one of the recovery thresholds for Beijing’s economic system. 

 

Table 5.4. Results of import and basic demand scenarios. 

Scenario Recovery Path Recovery 

Period 

(week) 

Indirect Flood 

footprint  

(million CNY) 

Total Flood 

Footprint 

(million CNY) 

Percentage of 

Indirect flood 

footprint 

Base Both of basic demand and 

import are considered 

42  9555 21195 45% 

I-1 Without import × - - - 

I-2 Half of Imports × - - - 

I-3 75% of Imports × - - - 

H-1 Without the basic demand 21 9492 21132 45% 

H-2 Half of the basic demand 28 9513 21153 45% 

H-3 Twice of the basic demand × - - - 

Note: ‘×’ means the economic system of Beijing region is not able to recover under such scenarios;  

‘-‘ stands for no available data. 
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Figure 5.8. Recovering processes of six delay scenarios. 
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The basic demand in this case only refers to eight sectors as mentioned in 3.2.3. The 

level of basic demand might significantly affect the post-disaster recovery process due to its 

strong link to the production distribution at all stages. However, there is no available data of 

the basic demand in the Beijing case, and this thesis only provides three other scenarios to 

compare the impact of basic demand (Table 5.4). For the Beijing flood case, basic demand 

does not affect the indirect or total flood footprints, but just has an impact on the recovery 

period. If basic demand is not considered as a single parameter but is included in the final 

demand in the recovery period, then the Beijing economy only takes 21 weeks to fully recover 

(H-1). When the basic demand becomes half of that of the Base Scenario, the recovery period 

increases to 28 weeks (H-2). However, if basic demand were to double, it would be impossible 

for Beijing’s economy to recover to pre-disaster levels (H-3). Therefore, in conclusion, the less 

the basic demand at each stage, the shorter time for industrial transaction recovery. 

5.4.5. Sensitivity to Critical Factor 

In my Flood Footprint Model, the available production that excludes imports at each recovery 

stage is primarily  influenced by two critical factors, labour and capital constraints, and its 

amount equals to the minimal of the industrial production that was limited by damaged 

capital and affected labour, as in the Base Scenario. Nevertheless, some practical disaster 

cases illustrate that industrial recovery is merely constrained by either labour or capital. Here, 

two hypothetical scenarios are presented to analyse the influence of critical factors (Table 

5.5). Scenario K-1 assumes that labour is the only factor that affects all the industrial 

production capacity, and in K-2, the critical factor is capital.  
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Table 5.5. Results of critical factor scenarios. 

Scenario Critical Factor Recovery 

Period 

(week) 

Indirect Flood 

footprint  

(million CNY) 

Total Flood 

Footprint 

(million CNY) 

Percentage of 

Indirect flood 

footprint 

Base Both  42  9555 21195 45% 

K-1 Only labour 38 8243 19883 41% 

K-2 Only capital 42 3910 15550 25% 

Note: ‘×’ means the economic system of Beijing region is not able to recover under such scenarios;  

‘-‘ stands for no available data. 

 

Table 5.5 and Figure 5.9 present the results and recovery process of the two scenarios. 

The indirect flood footprint of K-1 is 8243 million CNY and accounts for 41% of the total flood 

footprint (19883 million CNY), and over 95% percent of indirect flood footprint occurs in the 

first four weeks; K-2’s flood footprint is 15550 million CNY with the indirect footprint 

accounting for only 25% (3910 million CNY), with  the majority of K-2 indirect flood footprint 

generated in the first two weeks. Among the three scenarios, the Base Scenario resulted in 

the largest economic impact with an indirect flood footprint almost 1.6 times larger than that 

of K-1 and 2.4 times larger than that of K-2. Compared with a single constraint factor (either 

labour or capital), the comprehensive effect of both labour and capital has a higher economic 

impact in the Beijing case. Additionally, there is no evidence to show that a shorter recovery 

period would result in a smaller indirect flood footprint. Although K-2 induced the smallest 

flood footprint, it still took the same time (42 weeks) as the Base Scenario to recover. The 

available production capacity in K-1 completely coincides with labour production capacity in 

Figure 5.9 due to labour being its critical limiting factor; it also explains the production 

capacity in K-2.  
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Figure 5.9. Recovering processes of the three critical factor scenarios. 
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5.5. Discussion 

The results show that the tertiary industry accounts for 52% of the total flood footprint of 

11096 million CNY; 40% comes from the secondary industry (8438 million CNY) and the other 

8% is generated by the primary industry (1665million CNY). The sectors of construction (S28), 

water conservation (S37) and transportation (S30) account for the largest flood footprint, as 

much as 2590, 2063 and 1962 million CNY respectively, which represents over 12%, 10% and 

9% of the total flood footprint. Such results seem to correspond closely with the industrial 

output composition of Beijing in 2012. As a post-industrial economy, over 76% of the total 

outcomes in Beijing city are generated in the tertiary industries, in particular, the Finance 

sector. About 23% is generated by secondary industries and only 1% comes from primary 

industries. With regards to the relationship between direct and indirect flood footprint, we 

can conclude that although direct capital damage influences the indirect economic impact, 

the recovery process and indirect flood footprint are not determined by the direct economic 

loss immediately, but depend more on the internal linkages of the sectors. Hence, in a 

regional economy, a higher industrial direct flood footprint does not mean a higher indirect 

flood footprint; we can only say that an increase in the capital damage of a specific sector 

leads to a larger indirect flood footprint.  

The flood footprint of 21.19 billion CNY provided here is an underestimate due to lack 

of actual data for the real case. In order to estimate the sensitivity to alternative parameters, 

I assumed a series of scenarios that are closer to reality and offer more detailed comparisons 

and analyses, including alternative labour and capital recovery paths, delayed recovery 

conditions, different amounts of imports and basic demand, and particular critical factors. No 

matter what types of sensitivity analyses are undertaken, the results demonstrate that the 

flood footprint and recovery process of a specific natural disaster can be changed with 

changes to these parameters in the Flood Footprint Model. The quantity of governance also 

has a significant impact on post-disaster recovery. Delays caused either by weak governance 

or damaged physical infrastructure can increase flood footprint due to the accumulated effect. 

Therefore, sensitivity analysis is an essential part of natural disaster risk analysis and various 

scenarios should be considered according to the reality data and information.  
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The study in this chapter still has several limitations. First, various assumptions are 

made in the modelling process due to some types of data not being  available, such as 

statistical data on labour recovery schemes and basic demand data. Despite the model 

outcomes being sensitive to these assumptions, the data used in my research is the best from 

what is available . Second, it is difficult to verify and validate the results from the Flood 

Footprint Model since there is no statistical data about how sectors and economic systems 

recover after a natural disaster event. Currently, we can only carry out different types of 

sensitivity analyses that closely simulate real conditions to reduce the uncertainty of the 

results. Third, external investment of capital assistance during the recovery period has not 

been taken into account. Investment is an important part of imports, but due to lack of 

investment data after the 721 Beijing flood, this study assumed that no other input capital 

was added after the disaster. Overall, in future research, more detailed information should 

be collected and more effort should be made to carry out more accurate flood footprint 

estimations. At this stage, this research is able to assess the flood footprint of a real case, 

while providing a database and scientific support for single sudden-onset natural disaster risk 

analysis and management.  

5.6. Summary  

Beijing 721 urban flooding is the selected case study in this chapter. The total flood footprint 

of this case is calculated as 21.19 billion CNY, almost 1.18% of the total GDP in the Beijing area 

in the year 2012. In particular, the direct flood footprint based on the Beijing government 

statistics was 11.64 billion CNY, accounting for 55% of the total flood footprint; another 9.55 

billion CNY is accounted forby indirect flood footprint, using the Flood Footprint Model, 

amounting to a 45% share of the Beijing flood footprint. It took 42 weeks for the Beijing 

economy to completely recover to pre-disaster economic level. Wang et al. (2015), adopting 

the CGE model to estimate the total economic loss of Beijing flooding case, estimated and 

over 38.64 billion CNY and an indirect loss of more than 27 billion CNY, both figures nearly 17 

billion more than those estimated in my research. However, the Input-Output model is a more 

appropriate measure than the CGE model for assessing economic changes after such a sudden 

interruption, especially for sudden-onset natural disasters like floods and typhoons due to 

their variable characteristics. The direct damage by sudden-onset natural hazards occurs in 
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the short term; more exogenous and complex parameters included in the CGE models 

increase the uncertainty of the outcomes. Different approaches employed in the case lead to 

a more complete assessment of economic impacts. 

Flood footprint is a concept that refers to the direct and indirect economic impacts on 

the economic system that result from natural disaster events. In this chapter, the Flood 

Footprint Model was first successfully applied to assessing the indirect flood footprint of a 

real disaster. As an approach to natural disaster risk analysis, the Flood Footprint Model is 

able to reveal the comprehensive effects of capital and labour constraints, and display a 

visible yearly, monthly or weekly recovery process through a mathematical and logical 

method. Compared with previous studies that focus on a hypothetical numerical example, 

this study improves the practical application of the Flood Footprint Model in the following 

ways: firstly through developing a way to quantify the labour constraint, namely converting 

the percentage of decreased labour productivity to the percentage of reduced labour time. 

The second improvement is that it integrates the household capital recovery demand into the 

industrial capital reconstruction demand through distributing the damaged household capital 

to the related sectors; thirdly, it offers several sensitivity methods with which to analyse 

various alternative scenarios through the Flood Footprint Model. In addition, this study 

supports the idea that either key sectors or industries that are sensitive to the total flood 

footprint within an economy can be identified through a flood footprint assessment. Thus, in 

the post-flood period, policy-makers and/or relevant stakeholders need to draw up recovery 

plans for both certain sectors and for the entire economy, based on various scenarios and 

then select the most effective recovery plan, according to the lowest flood footprint.  
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Chapter 6 Flood Footprint Model Illustration III: A Hypothetical 

Two-floods Event 

This chapter applies the Flood Footprint Model to a hypothetical two-flood event. It details 

the process of calculating the indirect flood footprint calculation, applying the model to four 

types of flood scenarios, with various occurrence times, direct capital losses of the 

subsequent flood and different external assistance (import) conditions. Moreover, the 

threshold for flood-induced capital damage loss within a given economy is analysed.  

6.1. Introduction 

The regional direct economic impact can be extended in the following natural disasters; 

however, there is lack of evidence regarding the regional indirect economic impact of these 

events. For a more effective response in the future, it is therefore vital to carry out a complete 

risk analysis for multiple natural disasters. This section offers a way to analyse the indirect 

flood footprint of multiple- disasters based on a hypothetical case. In many regions, especially 

coastal, riverine or insular regions, natural disasters are typically multi-hazard. The focus in 

this chapter is two natural disasters occur in a given region during a certain period and only 

sudden-onset natural disasters are analysed (UNISDER, 2015). 

The Flood Footprint Model is applied to a hypothetical numerical example to validate 

the applicability of the model for assessing the footprint of multi-hazard. The basic IO table 

for the hypothetical numerical example (Table 6.1) is retrieved from Schaffer (1999), which in 

turn is aggregated from a detailed economic table for Georgia in 1970. The original table 

shows the transactions among 50 industries, 6 final-payments and 6 final-demand sectors, 

while the new hypothetical table only focuses on five broad industries and three final 

consumers. 
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Table 6.1 Input-output table of the hypothetical numerical example. (Unit: million USD/year) 

             To 

 

From 

Extra

ction 

Constr

uction 

Manufa

cturing 

Trade Service

s 

Household 

expenditur

es 

Other 

final 

demand 

expor

ts 

Total 

demand 

Extraction 183 31 599 6 73 99 88 596 1674 

Construction 14 1 43 14 293 0 1803 353 2520 

Manufacturing 142 414 1390 110 356 1275 1130 9344 14162 

Trade 52 224 520 72 257 2563 161 970 4820 

Services 102 221 862 558 1990 4262 523 2828 11347 

Households 595 665 3696 2385 4603     

Other 

payments 

261 191 1624 1365 2402     

Imports 325 773 5428 311 1372     

Total inputs 1674 2520 14162 4820 11347     

 

Due to the lack of data about this economic system, aside from the information 

provided in Table 6.1, other related data in this case are based on my own assumptions. The 

time unit for this case is weekly (1 year=52 weeks); the monetary value is U.S. dollar and its 

currency sign is USD; the monetary unit for the value data is one million USD. The occurrence 

time of the first event here is assumed to be time 0, and recovery begins the following week, 

namely Week 1. With regards to the subsequent event, the occurrence time is m and from 

the time (m+1), it begins to recover from the combined influences caused by the first and 

second natural disasters. 

This economic system is assumed to be subjected to two floods that lead to the same 

physical influences. In other words, both floods destroy the 20% industrial capital of each 

sector and damage 0.05% of household capital, and nearly 10% of the labour force is affected. 

The subsequent natural disaster occurs one week after the first, which means that the 

subsequent natural disaster attacks the regional economy in the second week (m=2). As the 

recovery path of labour productivity is an exogenous parameter in the Flood Footprint Model, 
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this case assumes that in each week half of the remaining damaged labour productivity from 

previous week is restored. For example, a natural disaster immediately affects 10% of labour 

production, of which 5% (half of 10%) can be restored during the first week and in the second 

week, there is a further 2.5% (half of 5%) recovery. Meanwhile, it is assumed that when the 

damage fraction of labour productivity is under 2%, the labour capacity in following week is 

able to be fully restored. Based on the industrial capital stock distribution of the Beijing 

economy, the industrial capital stock for each sector is assumed as 𝐬𝐜𝐚𝐩
𝟎 =

[
 
 
 
 
150
100
500
2000
4000]

 
 
 
 

 and the 

household capital stock is 3600 million USD. The basic demand for each sector is equal to its 

household expenditures and neither production nor services from the construction sector are 

consumed as a basic demand.  

6.2. Application of Flood Footprint Model 

6.2.1. Data 

The domestic coefficient 𝐀 come from Table 6.1 is 

[
 
 
 
 
0.1093   
0.0084   
0.0848   
0.0311   
0.0609   

0.0123   
0.0004   
0.1643   
0.0889   
0.0877   

0.0423   
0.0030   
0.0981   
0.0367   
0.0609   

0.0012   
0.0029   
0.0228   
0.0149   
0.1158   

0.0064 
0.0258 
0.0314 
0.0226 
0.1754]

 
 
 
 

. Since the data offered in Table 6.1 is annual 

base, at weekly level, total output 𝐱𝟎 =

[
 
 
 
 
32
48
272
93
218]

 
 
 
 

, total final demand 𝐟𝟎 =

[
 
 
 
 
15
41
226
71
146]

 
 
 
 

, maximum 

import capacity 𝐲𝐢𝐦𝐩
𝟎 = [6  15  104  6  26], household expenditures 𝐟𝟎 =

[
 
 
 
 
2
0
25
49
82]
 
 
 
 

 and other 

final demand 𝐟𝐨𝐭𝐡𝐞𝐫𝐬
𝟎 =

[
 
 
 
 
13
41
201
22
64 ]
 
 
 
 

, the basic demand 𝐟𝐜𝐝
𝐭 =

[
 
 
 
 
2
0
25
49
82]
 
 
 
 

. Capital damage fractions 
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caused by the first (α) and second event (α2
0) are same, 𝛂𝟏 = 𝛂𝟐

𝟎 =

[
 
 
 
 
0.2
0.2
0.2
0.2
0.2]
 
 
 
 

, reduced labour 

productivity fractions of the two disasters are also same as 𝛃𝟏 = 𝛃𝟐
𝟎 =

[
 
 
 
 
0.1
0.1
0.1
0.1
0.1]
 
 
 
 

 (β1 is for the 

first disaster, and β2
0 stands for the subsequent disaster). Meantime, 50% of the household 

damaged capital allocates to Construction sector, and 40% goes to Manufacturing that 

refers to energy and products support, the last 10% distributes to Services.  

6.2.2. Recovery from the First Flood 

Before other shocks on the regional economy, the recovery process of the first natural 

disaster is according to the single natural disaster restoration that is presented in Section 3.2.2. 

Due to the disruption of this disaster, recovery demand that contains both industrial and 

household damaged capital is  

 𝐟𝐈𝐃 = 𝛂̂ × 𝐬𝐜𝐚𝐩
𝟎 =

[
 
 
 
 
30
20
100
400
800]

 
 
 
 

 𝐟𝐇𝐃 =

[
 
 
 
 
0
0.90
0.72
0
0.18]

 
 
 
 

}
 
 
 
 

 
 
 
 

 𝐟𝐫𝐞𝐜 =  𝐟𝐈𝐃 +  𝐟𝐇𝐃 = 

[
 
 
 
 
30
21
101
400
800]

 
 
 
 

        (3.70). 

The total final demand after the first event becomes 

𝐟𝐝 =  𝐟
𝟎 + 𝐟𝐫𝐞𝐜 =

[
 
 
 
 
45
62
327
471
947]

 
 
 
 

   (6.1); 

the total required industrial demand is 
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𝐱𝐝 = (𝐈 − 𝐀)
−1𝐟𝐝 =

[
 
 
 
 
83
99
446
536
1272]

 
 
 
 

   (6.2). 

Available production is  

𝐱𝐜𝐚𝐩
𝟏 = (𝐈 − 𝛂𝟏̂

1)𝐱𝟎 =

[
 
 
 
 
26
29
218
74
175]

 
 
 
 

𝐱𝐥𝐚𝐛
𝟏 = (𝐈 − 𝛃𝟏̂

𝟏
) 𝐱𝟎 =

[
 
 
 
 
29
44
245
83
196]

 
 
 
 

}
 
 
 
 

 
 
 
 

 𝐱𝟏 = min( 𝐱𝐜𝐚𝐩
𝟏 , 𝐱𝐥𝐚𝐛

𝟏 ) =

[
 
 
 
 
26
39
218
74
172]

 
 
 
 

     (6.3), 

Imports depend on the damaged condition of transport system that belongs to the Services 

sector, so the imports are 

𝐲𝐢𝐦𝐩
𝟏 = (1 − 𝛼𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠

1 )𝐲𝐢𝐦𝐩
𝟎  = [5  12  84  5  21]   (3.76). 

Because at this moment, 𝐀𝐱𝟎+𝐟𝐜𝐝
𝟏 < 𝑥𝟏 + 𝐲𝐢𝐦𝐩

𝟏 ≤  𝐀𝐱𝟎+𝐟𝐜𝐝
𝟏 + 𝐟𝐫𝐞𝐜   (3.106), come into 

Scenarios 2.1. 

In the first week  

Besides the intermediate demand and basic demand, the remaining production (ft
new) is  

𝐟 𝐞 
𝟏 = min(𝐱𝟏 + 𝐲𝐢𝐦𝐩

𝟏 , 𝐱𝟎 + 𝐲𝐢𝐦𝐩
𝟎 ) −  𝐀𝐱𝟎−𝐟𝐜𝐝

𝟏 =

[
 
 
 
 
12
44
230
8
42 ]
 
 
 
 

   (3.107), 

and recovered capital during this week is  

𝐟𝐫𝐞𝐜
𝟏 = min(𝐟𝐫𝐞𝐜, 𝐟 𝐞 

𝟏   ) =

[
 
 
 
 
12
21
101
8
42 ]
 
 
 
 

   (3.108). 

Remaining recovery demand for next week is 
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𝐟𝐫𝐞𝐜_𝐫𝐞𝐦
𝟐 = 𝐟𝐫𝐞𝐜 − 𝐟𝐫𝐞𝐜

𝟏 =

[
 
 
 
 
18
0
0
392
758]

 
 
 
 

   (6.4), 

and damage fraction of capital for the second week is  

𝛂𝟏
𝟐 = (𝐟𝐫𝐞𝐜 − 𝐟𝐫𝐞𝐜

𝟏 )./𝐬𝐜𝐚𝐩
𝟎 =

[
 
 
 
 
0.12
0
0
0.19
0.19]

 
 
 
 

    (3.110). 

In the second week, the same reconstruction process is modelled as in the first week, 

recovered damaged capital is 

𝐟𝐫𝐞𝐜
𝟐 = min(𝐟𝐫𝐞𝐜, 𝐟 𝐞 

𝟐   ) =

[
 
 
 
 
14
0
0
8
44]
 
 
 
 

   (6.5), 

and remaining recovery demand for the third week is 

𝐟𝐫𝐞𝐜_𝐫𝐞𝐦
𝟑 = 𝐟𝐫𝐞𝐜 − ∑ 𝐟𝐫𝐞𝐜

𝑘𝟐
𝑘=1 =

[
 
 
 
 
0
0
0
384
754]

 
 
 
 

  (6.6), 

The damage fraction of the third week  is 𝛂𝟏
𝟑 =

[
 
 
 
 
0.03
0
0
0.19
0.18]

 
 
 
 

  . 

6.2.3. Recovery from the Subsequent Flood 

The subsequent flooding occurred in the second week (m=2). Hence, influenced of this 

disaster on the economic system is starting from the third week; meantime, the restoration 

of economy is changed from the single disaster rebuild to multiple disasters restored.  

Thus, in the third week, the increased damaged capital caused by the second shock is 

same as the first disaster, 
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𝐟𝐫𝐞𝐜𝟐
𝟎 =

[
 
 
 
 
30
21
101
400
800]

 
 
 
 

. 

New recovery demand for the third week is  

𝐟𝐫𝐞𝐜_𝐫𝐞𝐦
𝐦+𝟏 = (𝐟𝐫𝐞𝐜 − ∑ 𝐟𝐫𝐞𝐜

𝐭𝑘𝑚
𝑘=1 ) + 𝐟𝐫𝐞𝐜𝟐

𝟎 = 𝐟𝐫𝐞𝐜_𝐫𝐞𝐦
𝟑 =

[
 
 
 
 
34
21
101
784
1514]

 
 
 
 

   (m=2)   (3.123), 

Damage fraction for this week increased as 

𝛂𝟐
𝟑 = ((𝐟𝐫𝐞𝐜 + 𝐟𝐫𝐞𝐜𝟐

𝟎 ) − ∑ 𝐟𝐫𝐞𝐜
𝑘𝟐

𝑘=1 ) ./𝐬𝐜𝐚𝐩
𝟎  =

[
 
 
 
 
0.23
0.2
0.2
0.39
0.38]

 
 
 
 

   (6.7), 

and capital production is  

𝐱𝐜𝐚𝐩
𝟑 = (𝐈 − 𝛂𝟐̂

3)𝐱𝟎 =

[
 
 
 
 
25
39
218
56
136]

 
 
 
 

  (6.8). 

 

If we calculate α2
3 through Eq.66, 

 𝟐
3 = 𝛂𝟏

3 + 𝛂𝟐
0 =

[
 
 
 
 
0.03
0
0
0.19
0.18]

 
 
 
 

+

[
 
 
 
 
0.2
0.2
0.2
0.2
0.2]
 
 
 
 

=

[
 
 
 
 
0.23
0.2
0.2
0.39
0.38]

 
 
 
 

      (6.9). 

Either from logical method (Eq.3.128) or mathematical approach (Eq.3.125), the influence 

on capital productivity caused by the subsequent flood is same. 

For labour constraints, labour damage fractions and labour production become 
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𝛃𝟐
𝟑 = 𝛃𝟏

𝟑 + 𝛃𝟐
𝟎 =

[
 
 
 
 
0
0
0
0.16
0.10]

 
 
 
 

+

[
 
 
 
 
0.2
0.2
0.2
0.2
0.2]
 
 
 
 

=

[
 
 
 
 
0.2
0.2
0.2
0.36
0.3 ]

 
 
 
 

   (3.131), 

𝐱𝐥𝐚𝐛
𝐭 = (𝐈 − 𝛃𝟐̂

𝑡
) 𝐱𝟎 =

[
 
 
 
 
28
42
238
81
191]

 
 
 
 

   (3.133). 

While, imports are 

𝐲𝐢𝐦𝐩
𝟑 = (1 − 𝛼2_𝑡𝑟𝑎𝑛

3 )𝐲𝐢𝐦𝐩
𝟎 = 

[
 
 
 
 
4
9
65
4
16]
 
 
 
 

     (3.135). 

At this time, 

𝐀𝐱𝟎+𝐟𝐜𝐝
𝟑 < 𝑥𝟑 + 𝐲𝐢𝐦𝐩

𝟑 ≤  𝐀𝐱𝟎+𝐟𝐜𝐝
𝟑 + (𝐟𝐫𝐞𝐜 + 𝐟𝐫𝐞𝐜𝟐

𝟎 − ∑ 𝐟𝐫𝐞𝐜
𝑘𝟐

𝑘=1 )  (3.136), 

the recovery process come into Scenarios 2.1. 

Until in the 75th week, is industrial productivity full restored and the affected economic 

system completely recovered to pre-disaster level. This means that in this case, at least 74 

weeks are spent on reconstruction of the damaged economic system, and the flood footprint 

is 11838 million USD. 

𝐱𝐝𝐢𝐫𝐞𝐜𝐭 =

[
 
 
 
 
60
42
202
800
1600]

 
 
 
 

𝐱𝐢 𝐝𝐢𝐫𝐞𝐜𝐭 =

[
 
 
 
 
151
324
2238
1532
4888]

 
 
 
 

}
 
 
 
 

 
 
 
 

 𝑥𝑡𝑜𝑡𝑎𝑙 = 𝑥𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑥𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡  =  11838   (3.121) 
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6.3. Results  

As calculated above, the total flood footprint resulted from two floods in the hypothetical 

case is estimated as 11838 million USD through the Flood Footprint Model. The direct flood 

footprint is 2704 million USD, nearly a 23% share of the total flood footprint; while the other 

77% is from the indirect footprint, about 3.38 times higher than the direct one, amounting to 

9134 million USD. Among the five sectors, the services sector accounts for 54% of the total 

flood footprint, with 6488 million USD, followed by the trade and manufacturing sectors, both 

with a 20% share of the flood footprint. Extraction has the smallest percentage, only 1.8%. 

Meanwhile, 74 weeks, almost 1.4 years are needed to restore the economic transaction 

among sectors. 

The direct flood footprint of multiple natural disasters consists of direct economic loss 

from every flood event, and in this case, the direct value of each event is 1350 million USD, 

since the two floods are assumed to result in the same direct impacts on the economic system. 

However, calculating the indirect impact of multiple events involves not simply adding up all 

the indirect cost caused by each shock, due to the indirect combined influence of multiple 

natural hazards. Taking this case as an example, if the subsequent event does not occur, the 

first flooding as an individual shock to the regional economy requires 26 weeks for completely 

recovery and leads to 2336 million USD flood footprint. In particular, direct loss will be 1352 

million USD from while the indirect flood footprint is another 984 million USD. When 

regarding this multiple case as two individual shocks and calculating their respective impact 

separately, the total indirect flood footprint is only 1968 million USD, which is 8150 million 

USD less than the actual amount; thus the total flood footprint decreases to 4672 million USD. 

Figure 6.1 presents the recovery processes for the single and multiple (two) natural 

disasters in the hypothetical numerical example. The restoration for production capacity, 

recovery demand and indirect flood footprint of a single disaster (Figure 6.1a,b,c) show 

continuing trends, while multiple disasters (Figure 6.1d,e,f) present dynamic tendencies. In 

Figure 6.1a and 6.1d, the blue lines that indicate industrial production capacity are closer to 

the green lines (capital production capacity), demonstrating that damaged capital induces 

lower production and has a greater impact on the available production capacity. 
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Figure 6.1. Recovery process of the hypothetical numerical example. Chart a, b ,c shows the conditions of single flooding recovery, and other 

three chart d, e and f present the recovery trends for multiple (two) floods. 
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Due to disruption of the subsequent event that occurs in the second week, the 

rebuilding process enters into a new stage from the third week by incorporating the damage 

caused by the subsequent disaster. Consequently, production capacity (Figure 6.1d), 

integrating both labour and capital limitations, shows an increasing trend during the entire 

restoration process, with the lowest point in the third week. Meanwhile, recovery demand 

(Figure 6.1e) displays a falling tendency with the highest amount in Week 3. When we 

consider the indirect flood footprints of multiple events (Figure 6.1f), it is clear that during 

the first two weeks, the economic system is concentrated on addressing the damage caused 

by the first shock; the following 16 weeks is used to recover the combined impact of the two 

disasters. The highest point in the third week is 200 million USD larger than the second highest 

point in the first week, due to the cumulative effect, because when the subsequent disaster 

hits the economy, the damaged capital and labour resulting from the previous event has not 

recovered yet. It is important to clarify that the estimation approaches towards calculating 

the flood footprint results from the multiple floods are different. Only under the condition 

that the following disaster occurs after full restoration of the first disaster, will the total flood 

footprint equal to the sum of the separate flood footprints. Otherwise, flood footprints 

induced by multi-hazard are more serious than for multiple individual events. 

6.4. Sensitivity Analysis 

Although the outcomes from the Flood Footprint Model in this case are sensitive to the model 

inputs and external assumptions, sensitivity analyses for various scenarios incorporating 

different model parameters, such as the alternative ability of labour recovery and different 

reconstruction plans of damaged capital, are proposed in the previous single-disaster cases 

(Chapter 4.3 and 5.4). However, compared with the single flood, in multiple events, more 

attention needs to be directed towards the adaptive resilience of the regional economy. It 

seems that total economic impact and speed of recovery of the affected economy are likely 

to be significantly influenced by the type and severity of the subsequent disaster. Due to lack 

of focus in previous research on analysing the indirect economic impact of multiple floods, 

this section offers a series of scenario analyses through the Flood Footprint Model that show 

how the multi-hazard disasters influence the total economic impact. The multi-hazard case 
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calculations from Chapter 6.2 and 6.3 is regarded as the Base Scenario, and the input factors 

used are the basic conditions of this scenario. 

6.4.1. Various Occurrence Times for the Subsequent Flood 

As the time unit for flood footprint assessment in this case is weekly, the occurrence time of 

the flood here is not a specific point in time, but rather, indicates the week in which the 

disaster affected the economic system. In the case of Hurricane Katrina (2005), the massive 

flooding due to levee breaches submerged 80% of New Orleans city (United States) after the 

hurricane hit (WIKIPEDIA, 2005). The time gap between these two disasters is less than one 

week and the first week is the occurrence time for the hurricane-induced flooding. In the case 

of the three hurricanes that hit the United States in 2017, on August 24th, September 10th and 

September 20th, respectively (WIKIPEDIA, 2017a, WIKIPEDIA, 2017c, WIKIPEDIA, 2017b), the 

first hurricane, Harvey, is assumed as Week 0, while Irma and Maria occur in Week 2 and 4. 

As it is difficult to predict when the subsequent flood will occur and disrupt the regional 

economy transaction, in order to discuss how this factor impacts the economy, seven 

scenarios are shown in Table 2 with occurrence times of the successive events from the first 

to the seventh week (Scenarios T1-T6). All the scenarios include two independent floods and 

apart from the timing of the subsequent event, other basic conditions and inputs of Scenarios 

T1-T6 are same as for the Base scenario.  

Table 6.2 provides the flood footprints of these scenarios. It is clear that Scenario T-1 

results in the largest flood footprint, 17523 million USD, and is 2.7 times higher than the 

lowest one, 6588 million USD from Scenario T-6; this is followed by the Base Scenario, with 

11838 million USD. The flood footprints for the others are lower than 10000 million USD. 

Regarding the indirect flood footprint, T-1 leads to the largest indirect footprint, over 85% of 

its total flood footprint, 14819 million USD, and this number equals to 3.8 times the indirect 

flood footprint caused by T-6, which is only 3884 million USD. Regardless of scenario, the 

direct economic loss in each situation is the same, 2700 million USD, since both independent 

events lead to the same physical and labour damage. The impact of the two-flood disaster on 

the economy, especially the indirect impact, changes according to the occurrence of the 

subsequent disaster (m). When m increases from week one to week seven, the indirect flood 

footprint decreases from 14819 to 3884 million USD, and the percentages attributable to the 
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indirect footprint also decreases from 85% to 59%. Meanwhile, there is no evidence that m 

has any influence on the recovery period. For example, the m gap between Base and T-4 is 3 

weeks, and the indirect flood footprint of the latter is only 57% of the former scenario, but in 

both scenarios, the economy requires 74 weeks to recover.  

 

Table 6.2 Flood footprints under different scenarios that refers to the various occurrence times 

of the subsequent flood. 

Scenario m 

(week) 

Recovery 

Period 

(week) 

Indirect Flood 

footprint (million 

USD) 

Total Flood 

Footprint  

(million USD) 

Percentage of 

Indirect flood 

footprint 

Base 2 74 9134 11838 77% 

T-1 1 114 14819 17523 85% 

T-2 3 65 6695 9399 71% 

T-3 4 86 6319 9023 70% 

T-4 5 74 5197 7901 66% 

T-5 6 66 4446 7150 62% 

T-6 7 61 3884 6588 59% 

Notes: ‘m’ stands for the occurrences time of the subsequent flood. 

 

Figure 6.2 and 6.3 illustrate how m influences the recovery process in each scenario. 

Base Scenario, T-1 and T-3 are Type 1s as introduced in Chapter 3.2.3:“When the subsequent 

disaster shocks the economic system, both damaged capital and affected labour productivity 

due to the first disaster are in recovery”. The other two scenarios (T-5 and T-6) are Type 2s: 

“industrial capital is in a process of reconstruction and labour has already completely 

recovered”. It seems that in the Type 1 scenarios, either labour (red line) or capital capacity 

lines (green line) contain one lowest point. This point indicates that the constraints caused by 

the subsequent event has already been added into the whole recovery process and from this 

week, the economy starts to recover from the combined effect of the first and second shocks. 

With 
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Figure 6.2. Recovery demand trends of scenarios that contain different occurrence times for the subsequent flood. 
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Figure 6.3. Recovery processes for production and indirect flood footprint under scenarios that contains different occurrence times for the 

subsequent flood (m). 



 
 

172 
 

Type 2, it is clear that the two lowest points same in the red lines are the same, mainly 

because both disasters lead to the same labour constraints, and at the time of the second 

point, affected labour from the first shock has already been restored. As the recovery of 

labour capacity is an exogenous factor, its point in each week is decided by external decisions. 

In terms of capital capacity, it depends significantly on the recovering process as modelled by 

the Flood Footprint Model and for this reason, both capital capacity (Figure 6.3) and recovery 

demand show various trends (Figure 6.2) in each scenario. In addition, since the recovery 

speed of labour productivity is faster than the recovery of capital productivity, total 

production capacity is entirely limited by damaged capital and this is the reason why the blue 

and green lines coincide with each other after labour productivity returns to its pre-disaster 

level. When we look at the indirect flood footprint trends, the peak point in each scenario 

divides the recovery process into two parts: before the peak point is recovery from the first 

disaster and after this point is the reconstruction with the combined constraints of the two 

disasters. Moreover, it is worth noting that under the conditions of Type 1 and 2, if both 

disasters lead to the same degree of direct damage on the same region, the shorter the gap 

between the occurrence times of the two disasters (this gap must be larger than 0) the larger 

the gap between the total and indirect flood footprints . 

6.4.2. Alternative Direct Capital Loss caused by Successive Events 

Direct economic loss of regional capital is an essential component in assessing flood footprint 

as it determines the post-disaster recovery demand and available capital production capacity. 

Generally, the capital damaged by a disaster is primarily related to the capital distributions of 

the affected region and the intensity of the natural disaster itself. Regarding multiple disasters, 

there is no data or evidence to reveal any relevance for capital loss between the first and the 

subsequent disaster. For instance, Typhoon Hato led to direct economic losses of 1.79 billion 

USD (nearly 0.07% of Guandong capital stock) in Guandong province, China on Aug 23rd 2017; 

four days later, Typhoon Pakhar made landfall over southern China and the direct loss in 

Guangdong was only 436 million USD, 1.35 billion USD less than Hato (WIKIPEDIA, 2017d, 

SinaNews, 2017). Another example is Hurricane Katrina, an extremely destructive tropical 

cyclone that hit the United States during August 2005 (WIKIPEDIA, 2005). New Orleans was 

the most damaged cite after this hurricane, with over 150 billion USD direct economic damage. 
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Since it not only faced the attack from this deadly storm, but also suffered a series of disasters 

followed with Hurricane Katrina, especially for the hurricane-induced flooding, which 

accounts for nearly half of the total economic damage of Katrina (Boettke et al., 2007, 

WIKIPEDIA, 2005, BBC, 2014, Amadeo, 2018)  

Therefore, to better understand the impact of direct capital damage on the regional 

economic system, seven scenarios are created for damage caused by the subsequent disaster, 

represented as different capital damage fractions (α2
0) (Table 6.3), while other inputs remain 

the same as those in the Base Scenario. This means that in all scenarios, both disasters lead 

to the same capital damage fraction of the five sectors: for the first disaster the number is 20% 

and for the subsequent, equal to α2
0. 

 

Table 6.3 Indirect flood footprints under different capital damage fractions by the subsequent 

flood. 

Scenario α2
0 

 

Recovery 

Period 

(week) 

Direct Flood 

footprint 

(million USD) 

Indirect Flood 

footprint 

(million USD) 

Total Flood 

Footprint  

(million USD) 

Base 20% 74 2704 9134 11838 

F-1 10% 60 2029 2897 4926 

F-2 30% 128 3379 17378 20757 

F-3 40% 154 4054 22212 26266 

F-4 50% 190 4729 29781 34510 

F-5 60% 146 5404 28380 33784 

F-6 70% - - - - 

Notes: ‘α2
0’ is the industrial capital damage fraction that directly caused by the subsequent flood. 
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Notes: ‘α2
0’is the industrial capital damage fraction that directly caused by the subsequent flood. 

Figure 6.4. Recovery processes for recovery demand and indirect flood footprint under scenarios with different direct capital loss from the 

subsequent flood.



 
 

175 
 

As shown in Table 6.3, when α2
0 is 70%, this economic system will never return to pre-

disaster levels because the capital production capacity is so small that recovery demands for 

the Extraction and Trade sectors will never be fully rebuilt and the regional economic 

transaction is not able to recover to pre-disaster levels. Scenario F-1 with 10% of α2
0 requires 

the shortest recovery time (60 weeks) and leads to the lowest flood footprint with 4926 

million USD, only 14% of the largest one in F-4, of 34510 million USD. F-5 accounts for the 

largest direct flood footprint (5404 million USD), and it is clear that the direct flood footprint 

increases along with an increasing α2
0, because the direct flood footprint is assumed to be the 

same amount of direct capital loss in this study. 

However, the indirect flood footprint does not correspond to the tendency of the direct 

footprint: the highest indirect flood footprint is generated by Scenario F-4, which is also the 

scenario that takes the longest to completely recover (190 weeks). Since in the Flood 

Footprint Model, the modelling process varies according to the different conditions of 

available production and the remaining recovery demand in each week, the indirect flood 

footprint does not simply rely on the direct economic loss but is modelled by considering 

several factors, as mentioned in Chapter 4.3. It also explains the dynamic trends of recovery 

demands and indirect flood footprints in each scenario that are presented in Figure 6.4. The 

left side of the figure shows the recovery demand tendencies; the peak points of the black 

lines indicate the amount that includes the recovery demand resulting from the second event. 

Direct capital loss determines total regional recovery demand, but when considering the 

recovery process in detail, the recovery demand for each week depends on the reconstruction 

in the previous week. Thus, weekly repaired capital is also modelled through the Flood 

Footprint Model and various reallocations of production lead to different abilities to recover 

damaged capital each week. Thanks to internal impact between parameters in the Flood 

Footprint Model, both recovery demand or regional indirect flood footprint has their own 

dynamic features. 

6.4.3. Regional Threshold for Damaged Capital of Floods 

The adaptive resilience of an economy after a flood refers to the regional ability in the 

aftermath of a disruption to build upon new arrangements on production and services 

reallocation for recovering functionality to pre-disaster level (Rose and Krausmann, 2013). In 
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this study, the regional adaptive resilience specifically refers to the ability to make the 

redistribution of remaining production that is constrained by damaged labour and capital. 

Meanwhile, in order to satisfy the given demand that takes basic demand and recovery 

demand into account during the rebuild period, imports are added as an external supplier 

with the maximum pre-disaster capacity.  

However, with some extreme floods, the direct shocks on economic transactions 

damage the region beyond its adaptive resilience; in particular, the physical damage on 

property is too serious for functional recovery. As a result, it is not possible for an economic 

system to recover to its pre-disaster level.  This was the case in Puerto Rico, United States, 

where Hurricane Maria destroyed over 80% energy during September 2017; the recovery 

foundation was estimated at 94.4 billion USD, which far exceeds the regional economic 

resilience. Puerto Rico had debts of more than 70 billion USD before the hurricane (Walsh, 

2017, May 16) and this, added to the severity of the damage and lack of financial assistance 

(Galarza and Lee, 2017, November 19) severely hampered the recovery process. Taking this 

hypothetical two-flooding case as an example, this study proposes a link between damaged 

capital and regional adaptive resilience through the Flood Footprint Model. It should be 

pointed out that damaged capital here includes industrial and household affected capital, and 

only capital damage fractions change when compared with the Base Scenario. 

This study defines the regional threshold for damaged capital as a range of fractions 

regarding capital damaged by floods that are suitable for regional adaptive resilience. In other 

words, a regional economy is able to completely recover under this threshold; conversely, if 

the data is out of the threshold, the damaged capital is so severe that the region is beyond its 

adaptive resilience. Since all five sectors are assumed to suffer the same damage fractions on 

capital as a result of the disaster, regional adaptive resilience is tested through several capital 

damage fractions of the first (α1
0) and the subsequent events (α2

0).  
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Table 6.4 Regional thresholds for the capital damage fraction caused by the floods. 

Scenario Threshold for capital damage fractions  

First (α1
0)1 Second (α2

0) 

Single flood [0%, 65%]2 - 

Two floods [0%, 10%] [0%, 65%] 

 [0%, 20%] [0%, 62%] 

 [0%, 30%] [0%, 43%] 

 [0%, 40%] [0%, 29%] 

 [0%, 50%] [0%, 17%] 

 [0%, 60%] [0%, 5%] 

 [0, 65%] [0, 0.09%] 

Notes:  

1. ‘α1
0’ is the industrial capital damage fraction that directly caused by the first flood, and ‘α2

0’ is from the 

subsequent flood. 

2. Data range of ‘[0%, 65%]’ here indicate 0% ≤ α1
0≤ 65%. 

 

The results of thresholds on damaged capital for the economic system (Table 6.1) are 

displayed in Table 6.4. If a single natural hazard hits the economy, the acceptable range of 

damage fractions on regional capital are 0%-65%, which implies that when α1
0> 65%, the 

economic transaction caused by the first shock will never be restored to pre-disaster levels. 

In the case of two disasters, damaged capital thresholds on the subsequent flooding of seven 

groups with different α1
0 are analysed separately. In the first group with α1

0 is 0%-10%, the 

threshold for α2
0 is 0%-65%, cause when α1

0 = 10%, allowing a maximum α2
0 is 65% and when 

the number exceeds 65%, the region will remain damaged. It is clear that along with the α1
0 

increases from 10% to 65%, the acceptable α2
0 declines from 65% to 0.09%; meanwhile, 

through strengthening α1
0 from range 0%-10% to 0%-65%, the threshold for α2

0 is limited to 

0%-65% to 0%-0.09%. The threshold for regional damaged capital is not only one specific data 

range, but includes several ranges according to different influencing factors, for example, 

damage level caused by the previous disaster and occurrence time for the subsequent event. 
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Furthermore, the critical sector in this regional economy is found to be the extraction sector, 

since the affected capital of this sector is unable to be restored when the data of α2
0 is beyond 

the corresponding threshold, resulting in regional recovery being impossible.  

6.4.4. Sensitivity to External Assistance 

As an external supplier of production and services, imports offer more available production 

to a region. In the aftermath of a flood, there are three kinds of imports: the first is import 

production that is directly used as a substitution for domestic production; the second is the 

delivery of rescue and relief items for basic human demands such as food and water; the last 

is financial assistance utilized to purchase production or damaged equipment. This study 

primarily focuses on the influence of imports under the rationing scheme whereby basic and 

intermediate demands are the priority, followed by reconstruction and other final demands 

(as described in Chapter 4.3), regardless of import type. 

Under the basic conditions that are used in the Base Scenario, the other three scenarios 

with different amounts of imports are compared below. Imports in Scenarios I-1, BASE, I-2 

and I-3 are 0%, 50%, 100% and 200% of pre-disaster level, respectively. Several points should 

be noted here. The first is that the maximum import capacity is assumed to be equal to pre-

disaster imports. Secondly, import is only limited by the damaged capital of the transportation 

system. Thirdly, although imports can raise the accessible production during the recovery 

stage, not all imports can be added to the available production due to the constraints of the 

region’s maximum production capacity. Here the maximum acceptable production in each 

week equals to the total amount from domestic outcomes and imports before the disaster.  

 

Table 6.5. Flood footprints of import scenarios. 

Scenario Import Recovery 

Period 

(week) 

Indirect Flood 

footprint 

(million USD) 

Total Flood 

Footprint  (million 

USD) 

Percentage of 

Indirect flood 

footprint 

Base With imports 74 9134 11838 77% 

I-1 Without import 178 12611 15315 82% 
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I-2 Half of imports 124 12235 14939 82% 

I-3 Double imports 56 5268 7972 66% 

 

Table 6.5 and Figure 6.5 show the results and recovery processes of the four scenarios. 

In this hypothetical case, the independence of the economic system is very strong as even 

without any import (Scenario I-1), this region is able to recover to pre-disaster conditions. 

When the imports increase from 50% (Scenario I-2) to 200% (Scenario I-3), the recovery 

period decreases from 178 weeks to 56 weeks and the indirect flood footprint decreases from 

12611 to 5268 million USD. Through influencing recovery demand pertaining to industrial 

capital, more imports lead to a reduction in the time period within which to satisfy the 

recovery demand and recover capital productivity (Figure 6.5) among the four conditions. 

However, even if under these four scenarios, the relationship between imports and indirect 

flood footprint is clear, when imports plus remaining production exceed the maximum 

capacity of regional production, the percentages of imports that are used for recovery will be 

less and consequently, increased imports are not able to result in decreased flood footprint. 

Hence, only when available production that includes imports is smaller than the maximum 

capacity of regional production, can more imports lead to a shorter recovery period and a  

smaller indirect flood footprint.  
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Figure 6.5. Recovery processes for different import scenarios. 
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6.1. Summary  

Generally, multiple flood events have a greater impact on a regional economy than individual 

natural shocks due to the cumulative effect. However, there is a lack of research that analyzes 

the total economic impact resulting from multi-hazard disasters. To assess the indirect flood 

footprint of multiple floods more effectively, the Flood Footprint Model has been improved 

by building connections on the parameters of labour and capital between the first and 

subsequent flood. This is the first time that the Flood Footprint Model has been applied to 

the assessment of a multi-hazard flood footprint. On the basis of the hypothetical numerical 

example, this study proves that both from a mathematical and logical perspective, this model 

is an efficient and applicable method to analyse different types of multiple flood events and 

to clearly illustrate the range of recovery processes. 

According to flood footprint analysis of the hypothetical example, several conclusions 

can be made. Firstly, the total flood footprint of multiple floods in a given region is larger than 

the sum of the flood footprint of each individual flooding, particular of the indirect flood 

footprint. In the hypothetical case, the flood footprint is 11838 million USD, which is 7076 

million USD larger than the total flood footprint of each single disaster. The direct flood 

footprint of multiple floods is estimated as the total direct amount by each disaster due to it 

belonging to direct physical loss; but with regards to the indirect flood footprint, a multi-

hazard disaster can lead to higher footprint due to the combined effect of these natural 

disasters. There is one condition in which the flood footprint equals to the total amount 

caused by each event. Under this condition, we can treat every event in the multiple disasters 

as individual events due to their independent recovery. Secondly, different occurrence times 

of the subsequent flood lead to various regional flood footprints in the case of multiple floods. 

Although this study focuses on two flood hazards that result in the same damage of physical 

assets and labour force, this conclusion holds for other kinds of multiple disasters. Through 

the sensitivity analysis on the time impact, it is found that if the subsequent flood disrupts 

the recovery of capital damaged by the first event, the shorter time gap between the 

occurrence times of the two disasters will result in a larger indirect flood footprint. 

Furthermore, higher direct damage cost of each disaster will result in a larger direct flood 

footprint of multi-hazard disasters, but a larger direct flood footprint does not mean the 
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indirect flood footprint will be higher. By applying various parameters to the modelling 

process of the Flood Footprint Model, it is clear that the indirect flood footprint is not simply 

dependent on the direct economic impact. In addition, although imports can increase regional 

production and services, the influence of imports during the recovery process differs 

according to the constraint of maximum capacity of regional production. 

Through new applications of the Flood Footprint Model, this chapter makes another 

important contribution, by identifying the regional or industrial thresholds for damaged 

capital in the case of multiple floods. It is easy to understand that if the damage caused by 

the disaster is too serious, the region will go beyond its adaptive resilience and the regional 

economy will not recover. However, what the Flood Footprint Model enables is to calculate 

the maximum acceptable damage level for the affected region, and the regional threshold for 

damaged capital from the first and the subsequent disasters. Furthermore, it also confirms 

which industries are critical to recovery since these specific sectors are sensitive to the capital 

damage fractions. The damage sustained by these critical sectors determines whether the 

economy can recover to its pre-disaster level. 
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Chapter 7 Conclusions 

This thesis has explored a new way of assessing economic risk of flood-related disasters by 

adopting the concept of flood footprint and developing framework of flood footprint 

assessment. The study is largely inspired by previous contributions of natural disasters risk 

assessments and relevant approaches (Chapter 2 and 3). Two particular aspects of flood-

induced economic consequences are the focus: firstly, establishing the indirect flood footprint 

and secondly, carrying out sensitivity analyses of post-flood economic recovery. Taking into 

account exogenous constraints within the affected economy due to single- or multiple (mainly 

two) flood disruptions, a Flood Footprint Model has been built to measure an indirect flood 

footprint (Chapter 3) and is successfully applied to three flood cases (as shown in Chapters 4-

6). This chapter summarises the key findings, contributions and policy implications of this 

thesis. Limitations and suggestions for future research are outlined in the last section. 

7.1. Concluding Remarks 

Based on the work of this thesis, the three sub-questions that raised from Chapter 1.4.1 can 

be answered briefly through following explanations.  

1) Which indicator is appropriate to express flood induced economic impacts? 

From a methodological point of view, the notion of flood footprint is confirmed to be a useful 

indicator to express the total economic consequences of flood disasters within a specific 

economic system, since it explains flood-induced economic consequences in a simple way and 

provides both location and time of each economic influence. Thus, flood footprint provides 

an easily way for people to understand the economic relationship between floods and human, 

and brings benefit to post-flood economic recovery and management. 

2) What is the approach applied for flood footprint accounting with consideration to 

the production supply chains? 

As an alternative approach to the Input-output framework, the Flood Footprint Model is 

proved to possess flexibility and feasibility in indirect flood footprint accounting through the 
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successful application of three flood cases (Chapter 4-6). This model is suitable for calculating 

the indirect flood footprint resulting from both single-flood and two-flood event. By capturing 

the inter-linkages of dependent sectors in a given economy, the Flood Footprint Model is able 

to simulate the likely imbalances in the economy in the aftermath of a flood event and 

illustrate the available productive capacity resulting from scarcity of input, i.e. the impact of 

physical damage and labour scarcity on industrial productivity. Thus, any supply bottleneck 

either among industries or between producers and consumers can be taken into account 

(Chapter 3).  

3) How to assess the relevant factors influencing flood footprint within an economic 

system? 

Because flood footprints are sensitive to model parameters, the total flood footprint of a 

certain flood within a specific economy and the indirect flood footprint in particular, can be 

estimated with varying results. In other words, the same flood event may result in different 

flood footprints according to differences in variables. The Flood Footprint Model can provide 

a clear and detailed model of ‘how the model parameters or external factors influence the 

post-flood economic condition. Based on sensitivity analysis (see Chapters 4-6), the following 

key points are made regarding the modelling process.  

Firstly, during the post-flood period, critical constraints determine the available 

production of each sector. As the model only considers three factors that impact on industrial 

production capacity, which are labour productivity, capital productivity and the maximum 

productivity, the accessible production capacity is significantly constrained by the factor that 

has the largest influence. In other words, if the value of degraded capital productivity that is 

limited by damaged capital is the smallest when compared with the values of maximum 

productivity and degraded labour productivity limited by labour constraints, we can say that 

capital is the critical constraint and that accessible productivity largely relies on the degraded 

capital productivity. This also explains how capital and labour recovery plans affect the 

indirect flood footprint at every stage. 

Secondly, the critical sectors in a certain economy define the required time for 

recovery. The ways in which critical sectors impact on recovery time can be categorized into 

three types: damage degree, recovery ability and recovery plan. For instance, if the economy 
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takes a long time to recover, the reason may be 1) the damaged parts of some sectors are too 

damaged to be restored; 2) the ability of some sectors to recover is too low; 3) the recovery 

plan determines a long recovery of some specific sectors. All these related sectors can be 

defined as critical sectors. Next, import contributes to the reconstruction process by adding 

the available production at each stage. Import can push economic recovery and strengthen 

an economy’s ability to recover. However, there is still a lack of evidence to show whether 

imports can mitigate the indirect flood footprint or reduce recovery time. In addition, another 

exogenous factor, basic demand, influences the recovery by changing the available resources 

and allocation scheme in each period. In a two-flood case, the total and indirect flood 

footprints are also highly constrained by factors like occurrence time, physical damage caused 

by the subsequent flood. 

Moreover, sensitivity analyses of delayed recovery scenarios, in terms of weak 

governance, such as lack of financial assistance or scarcity of imports due to damaged 

transportation, reveals that the  recovery delay for either capital or labour, or both of them, 

the larger the total and indirect flood footprints and the longer the recovery period. The 

accumulated effect produced by long-standing indirect flood footprints within the delay 

period is used to explain this phenomenon. Furthermore, one type of economic resilience, 

the regional threshold for flood-induced damaged capital loss, can be provided through the 

Flood Footprint Model. It shows the threshold within which an economy is able to completely 

recover. If the capital loss is beyond this threshold, the economy will never be able to return 

to pre-disaster levels within the basic assumptions of the model.  

Overall, in respect of the single- and two-flood induced flood footprint, we can conclude 

firstly, that in a specific flood disaster, the higher direct flood footprint does not mean a higher 

indirect flood footprint because the indirect impact values are determined by inter-linkages 

among industries. Likewise, in multi-flood case, larger direct damage cost of each disaster will 

result in a larger direct flood footprint, but does not mean the indirect flood footprint will be 

higher. Secondly, in the case of a two-flood event, the total flood footprint within a given 

region is larger than the sum of the individual flood footprints, particularly of the indirect 

flood footprints.  

Aside from applying the model to two hypothetical cases, the Flood Footprint Model is 

successfully applied to a real single-flood case, the 2012 Beijing 721 urban flooding that 
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affected 1.9 million people and resulted in 11.64 billion CNY direct economic loss (Chapter 5). 

The total flood footprint of this disaster is calculated as 21.19 billion CNY, with a recovery 

period of 42 weeks, almost 1.18% of the total GDP in the Beijing area in the year 2012. In 

particular, the direct flood footprint was 11.64 billion CNY and the indirect flood footprint was 

9.55 billion CNY. About 52% of this came from the tertiary industries, 40% from the secondary 

industries and the other 8% to the primary industries. Regarding the 42 sectors, construction, 

water conservation and transportation were found to account for the largest flood footprint, 

with shares over 12%, 10% and 9% respectively, of total area’s flood footprint. These results 

seem to correspond closely with the industrial output composition of Beijing in 2012.  

7.2. Contribution 

This thesis comprehensively addresses the question of ‘How to measure flood induced 

economic costs cascading throughout production supply chains?’ through a variety of 

calculations. As a new indicator that has been proposed in recent years, flood footprint is 

selected here to express flood footprint resulting from flood-related disasters on the affected 

region and the wider economic system, through both direct and indirect means. An effective 

framework for assessing flood footprint comprised of four steps (see Figure 1.2) is first 

recommended. Based on the idea of the flood footprint, this study offers many new insights 

into flood-induced economic impact assessment. The primary contributions of this research 

are summarised as follows: 

1) It has constructed a quantitative methodology framework of flood footprint analysis 

in accounting either single or multiple flood-induced economic costs cascading throughout 

production supply chains and estimated economic impacts at industrial and regional level 

in a certain time period with a clear modelling progression.  

Thanks to the Input-output theory and ARIO models in particular, the methodology 

framework of the Flood Footprint Model developed by this research is able to quantify the 

indirect economic effect of floods, by taking into consideration the interdependencies of the 

industrial and regional economy. Compared with the original model developed by Li et al. 

(2013) and other relevant Input-output models, certain factors, such as import and basic 

demand, are considered more rationally and accurately in the Flood Footprint Model through 
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mathematical and logical approaches. Within a clear rationing scheme that is described in 

Chapter 3.2, the main achievements of the methodology are summarized as follows. 

First, both industrial and household capital restrictions can be regarded as either 

exogenous or endogenous variables in the aftermath of a flood, according to different 

recovery plans. The existing ARIO models regard capital as an exogenous factor that is 

determined by external decisions. In this approach, if there is no specific recovery plan for 

damaged capital, its recovery is determined by the Flood Footprint Model in which the basic 

rationing scheme defines the recovered capital at each stage.  

Second, the way that the impact of labour is assessed becomes more reliable by linking 

labour constraints with total production capacity. Few studies focus on flood-induced labour 

influence within an economy. Although the Post-disaster Imbalances Model (Steenge and 

Bočkarjova, 2007) suggests a way to take labour into consideration by introducing labour 

coefficients, it is unable to show how the affected labour influences the available production 

capacity. BDI model (Li et al., 2013) provides a means to illustrate the linkages between labour 

and productivity, but the direct labour influence on the economy is based on external 

assumptions. The Flood Footprint Model builds a bridge between labour affected and 

remaining production capacity via a variable named damage fraction of labour productivity. 

Meanwhile, the value of this variable used in the first period, in terms of the direct labour 

influence, can be calculated with practical data by converting labour time loss to degraded 

labour productivity.  

Third, it provides a more effective rationing scheme of available resources in the 

aftermath of floods with consideration of basic human requirements. Current rationing 

schemes employed in the relevant models fall short of discussing basic human demand and 

just show rough directions of allocation without an exhaustive modelling process. The model 

presented in this research   has established a reliable rationing scheme that is able to take 

account of basic human requirements in the post-flood period and present a comprehensive 

distributed process in which the various rationing scenarios are analysed.  

Fourth, in the light of its different research goals and scope, the model is able to 

estimate the indirect flood footprint at industrial, regional or economic level within a specific 

time unit. Fifth, the flexibility of the model allows for various types of sensitivity analyses to 
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model parameters and other external influences such as quality of post-flood governance in 

which recovery process can be clearly simulated. Sixth, this approach is able to quantify the 

indirect economic impact of both single-flood and two-flood disasters. In a multi-hazard 

disaster, the model can provide various thresholds of specific model parameters in order to 

draw up effective recovery plans in the future. As a final point, this methodology framework 

focuses on extending our insights into the role of capital and labour constraints, the 

contribution of imports to the reconstruction process, the behaviour of final consumers, and 

the consideration of ‘basic demand’, i.e. the minimum level of goods needed to satisfy the 

basic needs of the people concerned.  

2) Three illustrations of the approach improved by this research have been provided to 

demonstrate the flexibility and feasibility of the approach and explain the linkages between 

direct, indirect and total economic impact of a particular flood within a given economic 

system. 

Three case studies are used to test whether the Flood Footprint Model can be employed in 

both single and multiple flood cases. The results show that this model is more flexible in 

assessing the industrial and regional indirect flood footprint caused by individual or multiple 

floods. In particular, it is the first time that the Flood Footprint Model has been applied to a 

real case study at the regional level (Chapter 5). In addition, this study has also analysed the 

relationships between the flood footprints in selected cases. The most crucial link both at 

industrial and regional level, is between direct flood footprint and indirect flood footprint via 

inter-linkages among industries. Thus, in an economy, the industry that generates the highest 

direct flood footprint does not automatically generate the highest indirect flood footprint. 

The study has also shown that the total and indirect flood footprints of two-flood case are 

larger than the sum of the individual total and indirect flood footprints. 

3) The sensitivity of flood footprint to model parameters and other external factors has 

been analysed, and several options of post-flood economic recovery conditions outlined 

that are of benefit to policy- makers and stakeholders when making recovery-related  

decisions.  

Since real data for model validation is unavailable, sensitivity analyses on post-flood economic 

recovery makes a significant contribution to recovery design and flood risk management. The 
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complexities real-life disasters require a more efficient approach to flood risk management 

than existing models provide. By using post-disaster economic recovery scenarios, the Flood 

Footprint Model is supports a variety of sensitivity analyses according to various recovery 

schemes. In the light of the flood footprint assessment, more informed decisions about post-

flood economic recovery can be made and more effective plans drawn up by policy makers 

and stakeholders.  

7.3. Policy Implications 

It seems that rational decision-making tools can sometimes improve processes and outcomes 

of governance at the same time, so that risk management becomes central to the business of 

good government. Flood risk management and governance suggests that governance 

resources, including financial aid, regulatory and informational measures, should be rationed 

on the basis of risk calculations. This implies that more reliable economic impact 

measurements are of benefit to the construction of more efficient post-flood economic 

recovery plans (Krieger, 2013, Rothstein et al., 2006). However, it is seldom clear how indirect 

economic loss is distributed among sectors and the economy, and thus far, little has been 

known about post-flood recovery at both sectoral and economic level. The Flood Footprint 

Model established by this research is able to fill the above knowledge gaps by simulating 

dynamic recovery trends for specific sectors, taking into account the different influencing 

factors. Flood footprint assessment is proposed as an effective approach to the analysis of 

flood-induced economic risk and provides data support for post-flood recovery and 

management. This study offers many new insights and identifies key issues that policy makers 

charged with post-flood economic impact management need to consider.  

One issue is mitigation of the flood-related economic risk. Empirical evidence shows that 

disaster management does not only include relief work, but also emergency response and 

mitigating the disaster risk in the first place. Most natural hazard mitigation is focused on the 

safety of employees and prevention of immediate damage more than on the long-term 

business continuity operations (Corey and Deitch, 2011). According to the sensitivity analysis 

based on the Flood Footprint Model, policy-makers can easily decide which scenario will lead 

to the smallest economic impact and which recovery path is more appropriate for the affected 

economic system. For example, in the 2012 Beijing flood discussed in Chapter 5, if the imports 
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or external aids in the aftermath were less than the amount of imports before the flood, the 

regional economy would not have been able to recover due to the loss of production flow 

between industries. In the case of Chapter 4, the total and indirect economic footprint of a 

linear labour recovery was smaller than the other three non-linear trajectories. Thus, linear 

path of labour recovery scheme in the hypothetical single flood case can lead to less flood 

footprint. With the sensitivity analysis offered by the Flood Footprint Model, the economic 

risk a flood disaster carries can be reduced through different effective and efficient post-flood 

recovery plans.  

One can also make recovery decisions through altering the rationing scheme. A Rationing 

Scheme refers to the allocation of available resources, and reflects how the policy-makers or 

relevant stakeholders prepare for post-disaster recovery. As concluded by Webb et al. (2002) 

and Corey and Deitch (2011), there is no significant link between the use of post-disaster aid 

and recovery outcomes in a specific natural disaster. This indicates that direct financial aid 

from related governments, institutions or NGOs is often deployed inefficiently. This thesis 

offers a clear and flexible framework within which to make rationing decisions, with the 

possibility of modifying and controlling the model factors in each recovery phase. Therefore, 

the rationing scheme can be adjusted to various specific requirements and external economic 

conditions.  

Another issue pertains to financial responsibility. Aerts, (2014, p.474) formulate this as a 

policy question: ‘Who should pay to make NYC (or any city) more resilient to future flood 

disasters?’ Within an economic system, the ‘who’ refers to the stakeholders at all levels, 

including small businesses, specific sectors and economies. Existing studies have focused 

more on the household than on industry. The Flood Footprint Model facilitates the 

identification of the critical sectors since it is able to measure the economic impact for each 

sector. On the basis of the industrial flood footprint, stakeholders will have a comprehensive 

picture of when and where the economic losses will come from, as well as which sector should 

be recovered as a priority. Moreover, policy makers or disaster-associated institutions can 

make more efficient resolutions on how to allocate the available production resources and 

how to dominate the accessible financial aids or imports. 
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7.4. Limitations and Future Work 

Although this thesis is relatively comprehensive in its approach to flood-induced risk analysis, 

in terms of flood footprint assessment, many limitations and challenges remain. From the 

data perspective, due to the lack of accessible data and information on flood damage and 

post-flood economies, various assumptions have been made in the modelling process, like 

the statistical data regarding labour recovery time and household adaptive consumption 

behaviour. Nonetheless, though different assumptions will have different influences on the 

results, the data used in this model represent the best options in terms of reflecting real 

disaster situations. 

Regarding the methodology, as mentioned in Chapter 3, the Flood Footprint Model 

established by this research is not able to consider market-based mechanisms. This means 

that pricing was not taking into account research. After a flood disaster, the price of some 

goods may increase due to the demand surge and this can also influence the regional 

economic system (Steenge and Serrano, 2012). However, this factor only plays a relatively 

small economic role and furthermore, with efficient government management, the prices of 

most commodities tend to be kept stable during and post disaster. Next, it is difficult to verify 

or validate the results from the Flood Footprint Model, since there is no statistical data about 

how sectors and economic systems recover after a disaster. Therefore, validation of the 

results can only be found by comparing them to analyses in related studies. 

With respect to case studies, a number of possibilities may occur due to the complexity 

of reality. First of all, external investment is not taken into account during the recovery period. 

Investment is an important part of input data, but due to a lack of investment data for each 

sector after the disaster, this study does not consider external investment for economic 

recovery. Secondly, in the case of multiple floods, double accounting may exist in the 

measurement of labour and capital damage. This means that some specific labour and 

physical capital may sustain damage from both the first and subsequent flood, then resulting 

in double accounting of the damage fractions.  Last but not least, it is difficult to separate 

critical/labour capital and ordinary capital/labour and thus, this thesis does not distinguish 

between them. The different types of capital/labour may affect the rationing scheme and 

indirect economic footprint. In the future, policymakers would need to know the regional 
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economic base, such as types of commerce and types of employment (professional, skilled 

and unskilled) before disasters (Lindell and Prater, 2003). Such information is important as 

vulnerable economic subunits can be identified and recovery plans can then be developed 

before disaster strikes.  

Overall, more specific information should be collected and more effort should be made 

in future research to understand the flood footprint model and improve the accuracy of its 

model results in order to develop better risk analysis assessment tools and management 

strategies. Thus, there is an urgent and obvious need for further development of flood 

footprint assessment; meanwhile, several topics and directions of relevant research can be 

explored in the future.  

Data is fundamental both for flood footprint accounting and model validation. Although 

we know that more accurate and reliable data leads to higher quality of results and more 

efficient assessment of flood footprint, existing databases associated with natural disasters 

merely focus on the affect on the population and total economic loss. Few surveys collate the 

data needed for indirect economic impact accounting. Apart from the regional Input-output 

Table, other data that is used in the Flood Footprint Model can be divided into three types: 

firstly, damage-related data is used that includes industrial labour, amount of industrial and 

household capital loss, based on regional and industrial surveys; the second type is recovery-

related data, such as industrial labour and capital recovery, amounts of available imports and 

adaptive consumption in the aftermath of floods; lastly the model uses data regarding basic 

human demand that comes from external decisions. However, in practical flood cases, only 

information on total population affected and total regional economic cost can be obtained; 

all the other data is unavailable and inaccessible information. Hence, data-related work for 

better flood footprint assessment in the next stage would need to address two issues: firstly, 

what type of data should be collected and secondly, what type of data can be used when 

accurate local data is not available or how to handle the lack of required data. What is more, 

the major challenge of which type of data can be used for the validation of flood-induced 

economic impacts still neds to be addressed.  

Another practical issue is how to identify and separate the critical capital and labour at 

industrial level. In reality, there are mainly three post-economy economic flood situations: 

one is that among the labour affected, particular labour may contribute more to the 
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outcomes in their sectors, and then in these related sectors, the productivities that are 

constrained by labour will be influenced more than the productivity in other sectors; secondly, 

in certain sectors, damaged capital and affected labour may together lead to more economic 

loss than their separate economic impact. For instance, in sector A, 10% economic loss is from 

damaged capital and the other 10% loss comes from affected labour, so the final impacts will 

range from 10% to 20%. However, due to lack of data, this thesis is based on the assumptions 

that 1) all the sectors sustain the same proportion of labour damage; and 2) the total impact 

on industrial productivity depends on the maximum impact of labour and capital limitations. 

This suggests that adaptations at certain junctures and probably the introduction of one or 

more additional parameters are needed that regulate this matching between capital and 

labour. This issue remains as a research gap in the relevant literature and approaches since it 

largely depends on actual information.   

In addition, based on the ARIO model founded by Hallegatte (2008), the Flood Footprint 

Model can be improved by incorporating price parameters, making it  suitable for market-

based mechanisms. Finally, the Flood Footprint Model should be applied to more cases of 

actual individual flooding and multiple flood disasters in particular in the future, in order to 

examine the feasibility and flexibility of this approach. As a consequence, future work should 

focus on developing more detailed and effective guidelines for the assessment of flood 

footprint.  
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Appendices 

Appendix A. Supplementary Tables of Chapter 5 

Table A.1 Code and name of 42 sectors in Beijing.   

Code Sector Name Code Sector Name Code Sector Name 

S1 

Agriculture and forestry, 

animal husbandry and 

fishery 

S15 Metal goods S29 Wholesale and retail trade 

S2 Coal mining and washing S16 General equipment S30 
Transportation and 

warehousing, post 

S3 Oil and gas exploitation S17 Special equipment S31 
Accommodation and 

catering 

S4 Metal minerals mining S18 Transport equipment S32 

Information transmission, 

computer services and 

software  

S5 
Non-metal minerals and 

other mining 
S19 

Electrical machinery and 

equipment manufacturing 
S33 Finance 

S6 Food, drink and tobacco S20 

Communications 

equipment, computers and 

other electronic 

equipment 

S34 Real estate 

S7 Textiles  S21 Instruments and meters S35 
Leasing and business 

services 

S8 
Leather and feather 

products  
S22 

 Other manufacturing 

products 
S36 

Scientific research and 

technical services 

S9 
Wood processing and 

furniture manufacturing 
S23 Scrap and waste S37 

Water conservancy, 

environment and public 

facilities management 

S10 

Printing and paper 

stationery and sporting 

goods manufacturing  

S24 
Metal goods and 

equipment services 
S38 

Resident and other 

services 
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S11 

Petroleum refining, 

coking ,nuclear fuel 

processing 

S25 
Electricity production and 

supply 
S39 Educational services 

S12 Chemical products S26 Gas production and supply S40 
Health, social security and 

social welfare 

S13 
Non-metallic mineral 

products 
S27 

Water production and 

supply 
S41 

Culture, sports and 

entertainment 

S14 
Metal smelting and rolling 

processing 
S28 Construction S42 

Public administration and 

other sectors 

 

Table A.2 Flood footprints of 42 sectors in Beijing. 

Code 

Flood Footprint 

(Million CNY) Code 

Flood Footprint 

(Million CNY) 
Code 

Flood Footprint 

(Million CNY) 

Direct Indirect  Total Direct Indirect  Total  Direct Indirect  Total 

S1 1524 141 1665 S15 20 68 88 S29 20 580 600 

S2 20 198 218 S16 20 119 139 S30 1500 462 1962 

S3 20 255 275 S17 20 96 116 S31 20 167 187 

S4 20 57 77 S18 20 500 520 S32 20 400 420 

S5 20 43 63 S19 20 139 159 S33 1000 505 1505 

S6 20 184 204 S20 20 408 428 S34 1000 267 1267 

S7 20 19 39 S21 20 46 66 S35 20 312 332 

S8 20 50 70 S22 20 21 41 S36 20 475 495 

S9 20 23 43 S23 20 3 23 S37 2000 63 2063 

S10 20 120 140 S24 20 16 36 S38 20 92 112 

S11 20 219 239 S25 500 479 979 S39 20 149 169 

S12 20 310 330 S26 500 81 581 S40 500 135 635 

S13 20 96 116 S27 500 59 559 S41 1000 142 1142 

S14 20 280 300 S28 1000 1590 88 S42 20 187 207 

Here, industrial direct flood footprint equals to the industrial direct flood footprint. 
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Appendix B.  List of Terminology Terms 

Notes: all the terminology terms introduced here are principally referred to natural disasters 

and regional economy. 

Adaptive capacity – the ability of a system to response to a disaster through adapting 

change and mitigating the influences. 

Direct Flood Footprint – Economic impact and/or loss caused by direct consequences of 

flood events, and it refers to the short-term physical impacts on natural resources, people 

and tangible assets. 

Flood – A natural phenomenon that overflows of water submerges dry land. In other words, 

it is a covering by water of land not normally covered by water. 

Flood Footprint – A measure of the total economic impact (relative to the pre-disaster level) 

that is directly and indirectly caused by a flood event in the flooded region and the wider 

economic system. 

Indirect Flood Footprint – Economic impact/loss resulted from flood-induced labour delay, 

capital loss, and disruption of economic activities in the whole production supply chain and 

costs for physical capital reconstruction. 

Multi-hazard – 1) the selection of multiple major hazards that the country faces, and (2) the 

specific contexts where hazardous events may occur simultaneously, cascadingly or 

cumulatively over time, and taking into account the potential interrelated effects. 

Multiple disasters - 1) the selection of multiple natural disasters that the region faces, and 

2) the specific contexts where hazardous events may occur simultaneously, cascadingly or 

cumulatively over time, and taking into account the potential interrelated effects. 

Natural catastrophe - A catastrophe is an extremely severe adverse shock, which causes a 

substantial disruption of the system, with well-specified spatial and temporal dimensions, to 

the extent that it fails to perform its vital functions for a considerable period of time, or 

forever. 
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Natural disaster – A discontinuity that resulted from interaction between a natural 

phenomenon and a human-induced system, where the system becomes adversely affected 

beyond the scale of minor changes, implying loss of connectivity within the established 

system, with wee-specified spatial and temporal dimensions. 

Natural hazard – A natural processes and phenomena that may cause loss of life, injury or 

other health impacts, property damage, social and economic disruption or environmental 

degradation. 

Rapid-onset/sudden-onset natural disaster – A natural events that occur suddenly and 

strike rapidly with little warning. 

Resilience of economy – The ability of an economy survive with the lowest damage and 

impact. 

Slow-onset/persistent natural disaster – A natural hazards that take far longer, may be 

several months or years to develop, include disasters like heat wave, drought, 

desertification, air pollution, erosion, insect infestations, subsidence and disease epidemics 

Vulnerability of economy – A system’s exposure and sensitivity to a disaster-induced harm. 

Regional threshold for damaged capital - The range of fractions on damaged capital 

resulted by floods that are suitable for regional adaptive resilience (only mentioned in 

Chapter 6). 
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