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Abstract

Let T" be a simple graph on a finite vertex set V' and let A be its adjacency
matrix. Then T is said to be singular if and only if 0 is an eigenvalue of A.
The nullity (singularity) of I', denoted by null(I'), is the algebraic
multiplicity of the eigenvalue 0 in the spectrum of I'. In 1957, Collatz and
Sinogowitz [57] posed the problem of characterizing singular graphs.
Singular graphs have important applications in mathematics and science.
In chemistry the importance of singular graphs lies in the fact that a
singular molecular graph, with vertices formed by atoms, edges
corresponding to bonds between the atoms in the molecule, often is
associated to compounds that are more reactive or unstable. By this
reason, the chemists have a great interest in this problem. The general
problem of characterising singular graphs is easy to state but it seems too
difficult at this time. In this work, we investigate this problem for graphs
in general and graphs with a vertex transitive group G of automorphisms.
In some cases we determine the nullity of such graphs. We characterize
singular Cayley graphs over cyclic groups. We show that vertex transitive
graphs where |V| is prime are non-singular. The relationship between the

irreducible representations of G' and the eigenspaces of I' is studied.



Acknowledgements

This thesis would not have been possible without the following people.
These people have had a great impact on my studies and I wish to express

my deepest gratitude and thanks to them.

Firstly, I would like to offer my special gratitude to my supervisor Dr
Johannes for his help, guidance, patience and deep knowledge. Also, I
want to thank my second supervisor Dr Robert and the mathematics staff
at UEA for their help. I would also like to thank the mathematics PhD

students for the useful discussions during my studies.

I would like to offer my special thanks to my wife, Noor for being here (in
the UK) with me and for her support and encouragement throughout my
studies. This thesis is dedicated to my lovely children Zulficar, Maysra and
Ghaith who have motivated me to finish my PhD.

I want to thank my lovely mother and brothers for their unconditional love
and encouragement during my study. Also, I want to thank my friends in
Norwich and every one else who has directly or indirectly helped me in my

studies.

Finally, T would like to offer my special thanks to my country Iraq and
HCED (The Higher Committee for Education Development in Iraq) for

providing the financial support to be able to study in the UK.



Contents

[Abstractl

[Acknowledgements|

[List of Figures|

[List of Tables|

o Prefininanics

[2.1  Vector Space and Linear Maps|. .

[2.2  Representation Theory| . . . . . .

2.3  Graph Theoryl . . . . . .. .. ..

[3 Graphs and their Maps|

[3.1 Graphs and their Adjacency Map|

ii

iii

vi

vii

16

20



Contents v
[3.2  The Projection Maps onto Eigenspaces| . . . .. . ... .. 24
[3.3  Eigenvalue Inequalities| . . . . . . . ... ... ... 26
[3.4  Groups of Automorphisms and |

| Figenspaces| . . . . . . . ... 29
[3.5  Singular Graphs in General and |

| Applications| . . . . . . . ... 38
[4  Vertex Transitive Graphs| 45
[4.1  Cayley Graphs| . . . ... ... ... ... ... ... .... 46
[4.1.1 Representations and Spectrum|. . . . . . . ... . .. 49

[4.2  Singular Cayley Graphs| . . . . ... ... ... ... .... 59
[4.2.1  Cayley Graphs over Cyclic Groups| . . . . ... ... 65

4.3  The First Methodl . . . . . . . .. ... oo 83
4.4 The Second Methodl . . . . . .. .. ... oo 87

A ppend 101
[A Thesis Programming| 101
[A.1 Spectrum Computation with GAP| . . ... ... ... ... 101
[A.2 Spectrum computation with Maple] . . . . . . .. ... ... 103




List of Figures

HIIT = Cay(Sym(3), H) and H = {(12), (13,230} . . . . . . . 58

U211 = Cay(Sym(3), H) where H = {(12),(23), (123), (132)}|. . 62

[4.2.2 H has Box shape|. . . . . ... ... ... ... .. ..... 70
[4.2.3 H has Brick shape of length 3 for A, |. . . . ... ... ... 71
[4.3.1 Petersen Graph| . . . . . ... ... ... ... ... ... .. 86
M3201" =Cay(AGL(1,5),H)|. . . . . ... ... .. .. .... 87
[4.4.1 Petersen Graph| . . . . .. .. ... ... ... ... ... .. 90

U.4.2T = Cay(Ds, H) where H = {a,a’,b,a*b,a’b}| . . . . . . .. 93




List of Tables

[3.1 The character table ot Cuf. . . . . . . . . . . .. .. ... .. 35
B2 Bilg) For i = LO3] oo oo 35
[3.3 The character tableot D . . . . . . . . . . ... ... ... 36
B4 Oi(g)fori=1,2,3] ... .. . ... 37
4.1 The character tableot Dy . . . . . . . . . . ... ... ... 53
4.2 The character table of Sym(3)|. . . . . . ... ... ... .. 58
4.3  The class function S,(g) . . . . . . . ... 59
M4 pi(h)and p; =) ,oypilh) fori=1,23.1. ... ... .. .. 62
4.5 The eigenvalues of the graph I' = Cay(Ds, H). | . . . . . .. 65
4.6 The eigenvalues of the graph I' = Clay(Zs x Zg,H)| . . . . . 72
4.7 The eigenvalues of the graph I'y = Cay(Z3, Hy) | . . . . . . . 72
4.8 The eigenvalues of the graph I's = Cay(Zg, Ho). |. . . . . . . 72
[4.9 The irreducible characters ot Cs that are generated by the |

elements of Ty and Yo . . . . . . . . . ... 74




List of Tables viii

[4.10 The 3, x5 and y7 values which are corresponding to elements

oY 2 74
{4.11 The eigenvalues of the graph I' = Clay(Zso, H) | . . . . . . . 7
{4.12 The eigenvalues of the graph I' = Cay(Cs, H) | . . . . . . .. 80
{4.13 The eigenvalues of the graph I' = Cay(Cs, H) | . . . . . . . 82
{4.14 The eigenvalues of the graph I' = Cay(C1o, H) | . . . . . .. 82
[4.15 The character table of A5, and 7| . . . . . ... ... ... 91
{4.16 The character table of G, 4,7 and 72| . . . . . . .. ... .. 92

[4.17 The character table of Dg, v and 7| . . . . . . ... .. ... 93




Introduction

Let I be a graph on the finite vertex set V' of size n, and let A be its
adjacency matrix. Then I' is singular if A is singular. The spectrum of T’
consists of all eigenvalues Ay, ..., \, of A and so I' is singular if and only if
0 belongs to the spectrum of T'. The nullity (singularity) of T', denoted by
null(T"), is the algebraic multiplicity of the eigenvalue 0 in the spectrum of

I'. Through this thesis all graphs are undirected, simple and finite.

There are applications of graph spectra and singularity in the representation
theory of permutation groups. In physics and chemistry, nullity is important
for the study of a molecular graph stability, see Section 5 of Chapter 3. The
nullity of a graph is also important in mathematics generally since it is

relevant for the rank of the adjacency matrix.

In this thesis, we investigate singular graphs. Collatz and Sinogowitz [57]
posed the problem of characterizing all graphs with zero nullity. These
are the non-singular graphs. In particular, this research could begin with
examining the rich literature on graph spectra. We refer for instance to [11],
[16] and [37]. Graph theorists started to investigate this problem in special
classes of graphs which include trees, cycles, paths, line graphs of a tree,
bipartite graphs, circulant graphs, graphs with cut-points, directed graphs,
graphs with one cycle, graphs with exactly two cycles and others. We give

a short survey on graph singularity at the end of this introduction.
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Our aim is to develop some general theory on graph nullity. We develop
an algebraic language for this problem by representing the graph and the

adjacency relation by a vector space CV and an adjacency map

a:CV — CV.

The nullity of I' essentially concerns the nullity of a.

Some of our main results are of the general type. For instance, in

[Theorem 3.5.9] we show that singular graphs can be characterized by a

Balance Condition on the vertex set. We also have some general comments

on the nullity of « for bipartite graphs. We investigate the nullity of « for

L(T') (line graph) and T (graph complement), see [Corollary 3.5.5( and

|Corollary 3.5.7] respectively. We study the nullity of a sub-graph of I' in

the terms of nullity of I'; see [Proposition 3.5.8|

As before T" is a graph with finite vertex set V. A permutation g of V' is an
automorphism of I" if the pair of vertices (u?,v9) forms an edge in I' if and
only if the pair of vertices (u,v) forms an edge in I'. Here w9 is the image of
u under the action of g. The set of all automorphisms of I" forms a subgroup
of the symmetric group on V, called the automorphism group of the graph
I'. It is denoted by Aut(I"), for more details see Section 3 of Chapter 2. A

graph I' is vertex transitive if Aut(I") acts transitively on V.

A particular class of vertex transitive graphs is the so-called Cayley
graphs. These are denoted by Cay(G, H) where G is an arbitrary group
and H is a connecting set in G; see the definition in Section 1 of
Chapter 4. Cayley graphs are vertex transitive by construction. But the
converse is not true, see [§] as a reference. For example, the Petersen
graph is vertex transitive but not a Cayley graph. In fact, the Petersen
graph is the smallest vertex transitive graph which is not a Cayley graph,
see [45] as a reference. The complete graph K, is an example of a vertex

transitive graph with automorphism group Sym(n), the symmetric group
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of degree n. Another example of a vertex transitive graph is the cycle
graph of order n. Its automorphism group is the dihedral group D, of

order 2n.

The main body of our work concerns graphs which have a transitive group
G of automorphisms where G is a subgroup of the automorphism group
of a graph. In this situation the singularity question can be discussed in
terms of the representation theory of G. We first concentrate on the Cayley
graphs and the results for Cayley graphs include the fact that Cay(G, H)
is singular if H is a union of right cosets of a subgroup K # {lg}, see

|Corollary 4.2.6|

The next important case concerns the situation where H is a normal
connecting set, that is Hg = gH for all ¢ € G. Here the singularity
problem can be discussed in terms of the irreducible characters of G. In

fact, we have several eigenvalue formula in terms of characters, see

[Theorem 4.1.6f We also have such an eigenvalue formula when I' is a

vertex transitive graph, see T’heorem 4.4.1{

The material in the thesis is organised as follows: In Chapter 2 we give a
brief introduction to the methods and concepts from linear algebra that are
relevant for us. Here we also discuss the basic ideas from group and graph
theory which are used. Indeed these topics are considered as a regular part

of the standard literature on Graph Spectra.

In Chapter 3 we study graphs and their linear maps. We also discuss the
representation theory of finite groups that is related to our problem. We
introduce the projection maps onto the eigenspaces of o and discuss their
properties. We use these properties to study the spectral decomposition
of the elements of CV. We determine conditions for a graph in general to
be singular. The main goal of this Chapter is to go through the ideas and
notations of the graph spectra and we also include some results in this area

to be used later, mostly in Chapter 4.
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In Chapter 4 we investigate the spectrum of Cayley graphs and that of
vertex transitive graphs. Our aims in this Chapter is to extend the results
of Lovész [43], Zieschang [59], M.Ram [47], Diaconis [19] and Babai [6] to

find out sufficient conditions for a vertex transitive graph to be singular.

We list several results on the singularity of such graphs, see [Theorem 4.2.2]

|Theorem 4.2.3| and [Theorem 4.3.1] We also specialize to Cayley graphs on

abelian groups. We investigate the singularity of such graphs. We show
that vertex transitive graphs with |V] is a prime number are non-singular,

see [I'heorem 4.2.16l

All results from the literature are fully referenced. Where no reference is
given the result is new to the best our knowledge. Occasionally we include

new proofs that are based on our techniques.

We conclude this introduction with survey about the existing literature on
singular graphs. Sookyang, Arworn and Wojtylak [55] characterize non-
singular cycles, paths and trees. They proved that a cycle on n vertices
is non-singular if and only if n is not divided by 4. Similarly, a path on n
vertices is non-singular if and only if n is even and a tree on n vertices is non-
singular if and only if n is even and contains a sesquivalent spanning sub-
graph (a sesquivalent graph is a simple graph whose components are single
edges or cycles). Fiorini, Gutman and Sciriha [21] discuss the maximum
nullity of trees. They proved that the maximum nullity of a tree on n
vertices with maximum degree A is ((n — 2) - [21]) where [z] denote
the smallest integer a > x. Furthermore, they showed how trees with such
maximum nullity can be constructed. Also Li and Chang [42] characterize
trees with maximum nullity. Cvetkovi¢, Dragos and Gutman [17] first found
that the nullity of a tree can be given in explicit form in the terms of the
matching number of the tree. The nullity of the line graph of a tree is
studied in [50] and [44]. In both papers they proved that the multiplicity
of the eigenvalue 0 in such graphs is at most 1 and showed that every tree

whose line graph is singular has an even order (here order means the number
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of the vertices of a graph). Ashraf and Bamdad [3] determine the possible

order for a graph to be non-singular.

Fan and Qian [20] characterize bipartite graphs on n vertices with nullity
n—4 and regular bipartite graphs on n vertices with nullity n—6. Moreover,
they showed that the nullity set of bipartite graphs on n vertices is {n —
20 : 1 =0,1,....[5]}. Bapat [7] showed that the nullity of the line graph
of a bipartite graph is at most 1 when the bipartite graph has an odd
number of spanning trees and also proved that the bipartite graph with this
property has an even number of vertices. Leonor [2] determine necessary and
sufficient conditions for two classes of circulant graphs which are C" (rt"-
power graph on n vertices) and C(2n,r) (the r**-power graph of the cycle
graph on 2n vertices) to be non-singular. Lal and Reddy [38] give sufficient

conditions for a few classes of known circulant graphs and/or digraphs to

be singular.

Gong and Xu [25] investigate the nullity of a graph with cut-points.
Moreover, they proved that the nullity of the line graph of a connected
graphs is at most [ + 1 when the graph has [ induced cycles. Cheng and
Liu [14] characterize graphs on n vertices with nullity n — 2 and n — 3.
Sciriha [51] determine necessary and sufficient conditions for a graph to be
singular in terms of admissible induced sub-graphs. Chang, Huang and
Yeh [12] and [13] characterize graphs of order n with nullity n — 4 and
n — b respectively. Siemons and Zalesski [54] discuss singular Cayley
graphs over finite simple groups and alternating groups in particular.
They suggested some approaches for constructing singular Cayley graphs

for finite simple groups.

Hu, Xuezhong and Liu [31] give the nullity set of bi-cyclic graphs on n
vertices for n > 6, that is {0,1,2,...,n — 4} and characterise such graphs
with maximum nullity. Li, Chang and Shiu [41] also give the nullity set of

two kinds of bi-cyclic graphs and characterize such graphs with maximum
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nullity. Xuezhong and Liu [58] show that the nullity set {0,1,2,...,n — 4}
for uni-cyclic graphs on n vertices for n > 5. Moreover, they characterize
the uni-cyclic graphs with maximum nullity. Guo, Yan and Yeh [2§]
compute the nullity of uni-cyclic graphs in terms the matching number.
Moreover, they determine conditions for uni-cyclic graphs to be
non-singular and characterize uni-cyclic graphs with maximum nullity.
Gong, Fan and Yin [24] express the nullity of graphs with pendant trees in
terms of its sub-graphs. Furthermore, they characterize uni-cyclic graphs
with a given nullity. Nath and Sarma [48] determine sufficient and
necessary conditions for acyclic and uni-cyclic graphs to be singular and
they showed that the characterization of such graphs can be used to

construct a basis of the null space.

Some graph theorists have a great interest in calculating the determinant
of the adjacency matrix of a graph. Clearly, the determinant of this matrix
is 0 if and only if the graph is singular. For instance, Abdollahi [I] discuss
the set of all determinants of the adjacency matrix of a graph on at most 11
vertices. Moreover, he evaluate the determinants of the adjacency matrix of
a graph with exactly two cycles. Shengbiao [53] compute the determinants
of the adjacency matrix of a connected graph with exactly one cycle. Harary
[29] introduce a procedure for computing the determinant of the adjacency

matrix of a graph in terms of spanning sub-graphs.



Preliminaries

In this chapter, we introduce the basic notations and definitions that are
needed in this thesis. We deal with vector space, representation theory of

a group and graphs. Note all graphs and groups in this work are finite.

2.1 Vector Space and Linear Maps

In this section we give the basic ideas of linear algebra. All these
definitions have been taken from [5]. Let F be a field of characteristic 0
such as Q,R and C. Let W and U be two finite-dimensional vector spaces
over F with non-degenerate inner products (,). The set of all linear maps
from W to U is denoted by Hom(W,U). Suppose ¢ € Hom (W, U). If there
is some ¥* € Hom(U, W) for which

(Iw),u) = (w, V" (u)) (2.1.1)

for all w € W and u € U then ¢* is said to be the unique adjoint of 9. A
linear map 9 is symmetric if and only if W = U and ¢ = v*.

Let o € Hom(W,W). Let W be a subset of W. If W is itself a vector
space then W is said to be a subspace of W. We shall say that W is an
invariant subspace of ¢ if and only if ¢(w) € W for all w € W. In this case
¢ |sr W — W is the restriction of ¢ to the subspace W. The kernel of
@ is defined as ker(p) = {w € W|p(w) = 0}. The dimension of ¢(W) is
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called the rank of ¢.

A scalar A € F is called an eigenvalue of ¢ if there exists a non-zero vector
w € W such that

p(w) = Aw.

This is equivalent to (¢ — Al )w = 0 and the vector w is called an eigenvector
of ¢ corresponding to the eigenvalue A. The characteristic polynomual of ¢
is the polynomial

Co(z) = det(M, — zI).

Here I is the identity matrix and M, is the matrix associated to ¢ for
some basis. It is clear that the roots of the characteristic polynomial of ¢
equal the eigenvalues of . The algebraic multiplicity of the eigenvalue A is
the largest positive integer n for which (z — A\)™ is a factor of the
characteristic polynomial. The eigenspace of ¢ corresponding to
eigenvalue A\ is the vector space E) = ker((M, — AI). Hence, the
eigenspace FEy is the span of all eigenvectors corresponding to the
eigenvalue A. Thus from the above each eigenspace F) is a subspace of W.
The geometric multiplicity of eigenvalue A is the dimension of its
eigenspace. The spectrum of ¢ is the set of its eigenvalues together with
their algebraic multiplicities. In general, over C the algebraic multiplicity
is bigger or equal to the geometric multiplicity, and they are the same if

and only if the matrix can be diagonalized. Furthermore, this property

hold for all matrices in this thesis, see [Lemma 2.1.4]

Lemma 2.1.1. [33] The determinant of a direct sum matriz is the product

of the determinant of the constituent matrices.

Theorem 2.1.2. [30] Let A be an m x n matriz. Let B is a matriz created

by deleting rows and | or columns of A, then rank(B) < rank(A).

Theorem 2.1.3. [30] Let A be an m x n matriz. Let P,(Q be invertible

matrices of size m X m and n X n respectively. Then



Chapter 2: Preliminaries 9

(i) rank(AQ) = rank(A)

(i1) rank(PA) = rank(A)

(ii1) rank(A) = rank(A").

Lemma 2.1.4. [23] Let M be a real symmetric n X n matriz. Then
(i) All eigenvalues are real.

(i1) The eigenvectors of distinct eigenvalues are orthogonal.

(iii) There are matrices L and D such that LLT = LTL = I, and
LMLT = D, where D is the diagonal matriz of eigenvalues of M. In
particular, we have that the algebraic multiplicity and the geometric

multiplicity of an eigenvalue of M are equal.

2.2 Representation Theory

We give some basic definitions and theorems in representation theory and
group theory. All groups considered are finite. Our notations and definitions
of groups and their representation have been taken from [32]. Let G be a
finite group. We use 1g to denote the identity element of G. We use {1g}

to denote the trivial subgroup.

Lzg for some

For all z,y € G we say that z is conjugate to y in G if y = g~
g € G. The set of all elements conjugate to z in G is Cl(z) = {g7'zg: g €

G} and is called the conjugacy class of z in G.

A generating set of G is a subset of G so that every element of the group
can be expressed as the combination (under the group operation) of finitely
many elements of the subset. If S is a subset of G thus the subgroup (S)
generated by S is the smallest subgroup of G containing every element of .S;

equivalently (S) is the subgroup of all elements of G that can be expressed
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as a finite product of the elements of S. If G = (S5) then we say S generates
G and the elements in S are called group generators. Let g € G and r be
the least positive integer such that ¢" = 1. Then r is the number of the
elements in (g), here (g) = {1,9,¢% - - ,¢9"'}. We denote to the order of
the element g by ord(g). If G = (g) for some g € G then we call G a cyclic

group.

Let X be a finite set. Then the map ¢ : X x G — X is an action, and
we say G acts on X, if ¢(x,g) € X for all g € G,z € X and the following

conditions hold for all z € X :
(1) p(z,1g) ==

(2) ¢(x,gh) = ¢(é(x, g), h)

for all g, h € G. Sometimes, when it is clear what action we have we write
29 = xg = ¢(z,g) for all z € X and g € G. A one-to-one mapping from
a finite set onto itself is called a permutation. A permutation group is a
group whose elements are certain permutations acting on the same finite
set called the object set. Note the group operation is the composition of
mappings. Let X be the object set and G be the permutation group. Then
|G| is the order of the group and |X| is the degree of the group. The set of
all permutations of X is denoted by Sym(X) or Sym(n) if |X| = n. Here
Sym(X) is the symmetric group of degree n where its elements are the set
of all permutations on n symbols. Therefore a permutation group of the

object set X is a subgroup of Sym(X).

The orbit of an element x € X is defined as
% ={29]g € G}.

Then G, = {g € G | 29 = z} is called the stabilizer of x. A group action
X xG — X is transitive if it is possesses only a single orbit. In other words,
for every x,y € X there is g € G such that 29 = y. A group G acts semi-
reqularly on X if G, = 1¢ for all x € X. A group G is regular if it is semi-
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regular and transitive. An automorphism of a group G is a bijective map o
from G to itself that satisfies the following condition: o(gh) = o(g)o(h) for

all g, h € G. We mean by this ¢ is a group homomorphism.

Theorem 2.2.1. (Orbit-Stabilizer Theorem)[25, Lemma 2.2.2] Let G be
a permutation group acting on a set 'V and let u be a point in V. Then

|G| = [uC]|Gul.

Let C be the field of complex numbers. Let GG be a finite group and W be
a finite dimensional vector space over C. A representation of G over C is a
group homomorphism p from G to GL(W). Here GL(W) is the group of all
bijective linear maps 5 : W — W. The degree of the representation p is the
dimension of the vector space W. We also say that p is a representation of
degree n over C. So if p is a map from G to GL(W) then p is a representation
if and only if

p(gh) = p(g)p(h)

for all g,h € G. A representation p of a group G is called faithful if p is a

one to one function on G.

We denote the group algebra of G over C by CG. Then CG is the vector
space over C with basis G and multiplication defined by extending the group
multiplication linearly. Thus CG is the set of all formal sums f = > gec o9
where ¢, € C. Identifying ) gec Cgg With the function g maps to ¢, we
view CG as the space of all C-valued function on G. If we put g = 1.g
for all g € G so G C CG. For z,y € G; we define an inner product as
follows: (z,y) = 1 if x = y and (z,y) = 0 otherwise, only holds for the
basis elements. Thus G becomes an orthonormal basis of CG. This turns

CG into a C-algebra of dimension |G|.

Let W = CG. The right reqular representation is a map (in fact
homomorphism) p, : G — GL(W) of G given by p,(h)(g) = gh for each
h € G and all g € G. The left reqular representation p, : G — GL(W) of G
is given by p;(h)(g) = h™'g for each h € G and all g € G.
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Suppose p : G — GL(W;) and ¢ : G — GL(W3) are two representations
of G over C. Then we say that p is equivalent to o if and only if there is
a linear isomorphism 7' from W; to Wy such that To(g) = p(g)T for all
ge€@q.

A CG-module is a vector space W over C if an action (w,g) — w9 € W(w €

W, g € G) is defined satisfying the following conditions:
(H)wi e W

(2) (w0)" = w

(3) (Aw)? = Aw?

(4) (u+w)? =ud +w?

for all u,w € W, A\ € C and g,h € GG. We use the letters C and G in the
name CG-module to indicate that W is a vector space over the field C and
that G is the group from which we are taking the elements g to form the
products w9(w € W). A subset W of W is said to be an CG-sub-module
of W if W is a subspace and w9 € W for all ¢ € G and for all w € W.
An CG-module W is said to be irreducible if it is non-zero and it has no
CG-sub-modules other than {0} and W. If W is an CG-module and U is an
irreducible CG-module then we say that U is a composition factor of W it W
has an CG-sub-module which is isomorphic to U. Two CG-modules W and
U are said to have a common composition factor if there is an irreducible

CG-module which is a composition factor of both W and U.

A representation p : G — GL(W) is irreducible if the corresponding CG-
module W given by w9 = w”9) where w € W, g € G is irreducible. If we

restrict p to an irreducible sub-module W we will get
p i G — GL(W)

which is a representation of G' on W called the restricted representation or
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sub-representation of p on W. An CG-module W is said to be completely
reducible if W = W; & ... & W, where each W, is an irreducible
CG-sub-module of W. Then the representation p : G — GL(W) is
completely reducible and it is a direct sum of irreducible representations.
Then we write p as p = pw, ® ... ® pw,. If B;,;1 =1, ..., s is an ordered basis
for W;,2 = 1,...,s then a basis of W is B = B; U ... U By and the relation
between the corresponding matrix representation of p and pw,,2 = 1,...;s

is as follows:

pwl(g) 0 0
0 pmlg) ... 0
plg) =
0 0 .. pw(9)

Theorem 2.2.2. (Maschke’s Theorem)[32, Theorem 8.1] If G is a finite

group and p is a representation of G over C then p is completely reducible.

The character associated with p is the function x, : G — C denoted by
Xo(g) = tra(p(g)) for all ¢ € G. Here tra(p(g)) is the trace of the
representation matrix. The degree of the character is the degree of the
representation and it is equal to x,(lg). It is clear that characters are
class functions (functions of G which are constant on all conjugacy
classes,) see [32, Proposition 13.5] and it is a deep result of representation

theory that the set of all irreducible characters is a basis of the vector

space of all class functions on G; see [Iheorem 2.2.12| Let 6 and 9 be two

class functions of G. Then the inner product of 6 and 1 is

(6.0) = (9,0) = ﬁ S 0(g)0(g).

geG

A character of degree one is called a linear character. We say that the
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character is irreducible if the corresponding representation is irreducible. If
N is a non-trivial normal subgroup of G and x is a character of G/N, then

the character of G which is given by

x(g9) = X(gN)

for all g € G is called the lift of x to G. The character table of G is a
square matrix whose rows are indexed by the irreducible characters of G
and whose columns are indexed by the conjugacy classes in G. The entries

of the matrix are the characters evaluated for each conjugacy class.

A character is faithful if Ker(x) = 1g where

Ker(x) ={g9 € G|x(9) = x(1c)}.

Let X = {x1,29,...,2,} and let G be a subgroup of Sym(X). The CG-
module W with basis {x1,...,z,} and the G action g : x; — a? for g € G.
is a permutation module for G over C. The character of the permutation
module is the number of fixed points of X under the action of g. We denote

this by 1, so ©¥(g) is the number of z; such that z{ = z;.

We list some theorems which we will use later.

Theorem 2.2.3. (Sylow’s Theorem)[32, Theorem 30.9] Let p be a prime
number, and let G be a finite group of order p®b, where a,b are positive

integers and p does not divide b then

(1) G contains a subgroup of order p®; such a subgroup is called a Sylow

p-subgroup of G.
(2) All Sylow’s p-subgroups are conjugate in G.

(3) The number of Sylow p-subgroups is congruent to 1 modulo p.

Theorem 2.2.4. [22, [J9] Every cyclic group G is isomorphic either to the

additive group Z or to the additive group Z/nZ for some positive integer n.
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Theorem 2.2.5. [32, Theorem 22.11] If x is an irreducible character of G
over C then x(1g) divides |G|.

Theorem 2.2.6. (Schur’s Lemma in the terms of representations)[32,

Lemma 9.1] Let V. and W be irreducible CG-modules.

(1) If ¢ : V. — W is a CG-homomorphism then either ¢ is a
CG-isomorphism or p(v) =0 for allv € V.

(2) If ¢ : V — V is a CG-isomorphism then ¢ = Aidy where A € C.

Theorem 2.2.7. [32, Proposition 9.5] If G is a finite abelian group then

every irreducible CG-module has dimension 1.

Proposition 2.2.8. [32, Proposition 11.3] Let W and U be CG-modules
and suppose that Homeg(W,U) # {0}. Then W and U have a common

composition factor.

Theorem 2.2.9. [32, Corollary 11.6] Let U a CG-module with U = U, &
..Uy, where each U; is an irreducible CG-module. Let W be any irreducible
CG-module. Then the dimension of Homea(U, W) and Homea(W,U) are
both equal to the number of CG-module U; such that U; = W.

Theorem 2.2.10. [32, Theorem 14.24] Let U and W be CG-modules with
character x and 1, respectively. Then dim(Homea(U,W)) = (x, ).

Theorem 2.2.11. [32, Theorem 11.9] Suppose that
CG=U,@..aU,

is a direct sum of irreducible CG-modules. If U is any irreducible CG-
module then the number of CG-modules U; with U; = U is equal to dim(U).

Theorem 2.2.12. [32, Corollary 15.4] The irreducible characters
X1; X2 -5 Xs 0f the group G form a basis for the vector space of all class

functions on G. Indeed, if ¢ is a class function, then

¥ = Z aiXi
i=1
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where a; = (@, x;) for 1 <i<s.

2.3 Graph Theory

In this section we give the basic definitions and basic ideas of graph theory.
These can be found in any book or lecture notes on graph theory, see as a
reference [4] and [27]. An undirected graph I' = (V, E) consists of a set V
of vertices and a set I/ of unordered pairs of vertices. Two vertices v and
w are said to be adjacent if and only if {v,w} € E. The endpoints of the
edge {v,w} are v and w. We use v ~ w to say that there is an edge between
v and w. A loop is an edge from a vertex to itself. A graph with no loops
is called simple. Note, in this thesis ' is a simple graph. The adjacency
matriz of T' is the integer matrix with rows and columns indexed by the
vertices of I', such that the A,,-entry is equal to 1 if and only if v ~ w
and 0 otherwise and it is denoted by A. The spectrum of ' consists of all

eigenvalues Ay, ..., A, of A where |V| =n.

The complement graph T of T is a simple graph with vertex set V in which
two vertices are adjacent if and only if they are not adjacent in I'. The order
of I' is the number of vertices of I' and the size of I' is the number of its

edges.

Let v € V. The degree of v denoted by d(v) is the number of vertices which
are adjacent to v. A graph I' is said to be k-regular if and only if every
vertex of I' has the same degree k. A graph I' of order n is said to be a
complete graph, and is denoted by K, if and only any two distinct vertices
are adjacent. The complement of the complete graph is the null graph. A
graph T' is said to be bipartite if we can partition the vertex set into two
parts, say Vi and V5, so that each edge has exactly one end point in V
and one end point in V5. A complete bipartite graph is a bipartite graph in

which each vertex in V] is joined to each vertex in V5 by just one edge and
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is denoted by K, ,, where |Vi| = n and |V3] = m.

A walk in T" is a finite sequence of edges of the form vgvy, v1vs, ..., Up_1Um
in which any two consecutive edges are adjacent or identical. We call vy is
the initial vertex and v, is the final vertex of the walk. A path is a walk
in which all vertices and edges are distinct. A cycle is a closed path with
at least three edges such that the initial vertex and the final vertex are the
same. The length of a cycle or path is the number of vertices in this cycle or
path. A connected graph is a graph in which any two vertices are connected
by a path otherwise it is a disconnected graph. The distance between two

vertices is the length of the shortest path between these vertices.

The line graph of T' denoted by L(T'), is the graph whose vertex set is the
edge set of I'. Two vertices are adjacent in L(I") if and only if these edges
are incident in I" (that is, the two edges have a same endpoint). A strongly
reqular graph with parameters (n, k, A, ) is a graph on n vertices which is

regular with degree k and has the following properties:
(1) any two adjacent vertices have exactly A common neighbours;

(2) any two non adjacent vertices have exactly g common neighbours.

Lemma 2.3.1. [23, Lemma 10.2.1] A connected reqular graph with exactly

three distinct eigenvalues is a strongly reqular.

A graph X is sub-graph of a graph I' if each of its vertices belong to V(I)
and each of its edges belongs to E(I"). If X is a sub-graph of I" and we have
V(X) = V(T') then we call X spanning subgraph and we say X spans I'.

In this research we deal with finite connected undirected and simple graphs.

In this work a graph means a finite simple connected undirected graph.

In the remainder of this section we will give the definition and properties
of the automorphism group of a graph. We will show that for each graph

there is an associated group called the automorphism group of the graph.
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This concept established the link between group theory and graph theory.

Given a graph I', a permutation g of V' is an automorphism if u9 ~ v9 if and
only if u ~ v for all u,v € V. The set of all automorphisms of I' under the
operation of composition of mappings forms a subgroup of the symmetric
group on V, called the automorphism group of I'. It is denoted by Aut(T").
Thus each automorphism of I' is a one-to-one and onto relations of the
vertices of I" which preserve the adjacency and non adjacency. This implies
that an automorphism maps any vertex onto a vertex of the same degree.

The identity of the automorphism group of I' is denoted by 1 4. = 1.

Lemma 2.3.2. [23, Lemma 1.3.3] If T is a graph then Aut(T') = Aut(T).

A graph is rigid if it admits only the trivial automorphism. The
automorphism group of the complete graph K, on n vertices is Sym(n).
Note, any permutation of its n vertices is in fact an automorphism for
adjacency is never lost. The automorphism group of the complete
bipartite graph K, ,, where n # m is Sym(n) x Sym(m) since the n
vertices in the first class can be permuted by n! ways and similarly m! for
the second class. On the other hand, there is no automorphism that can
be obtained from swapping a vertex from the first class and a vertex from
the second class because n # m. Therefore the automorphism group of
complete bipartite graph where n # m is Sym(n) x Sym(m). However the
automorphism group of the complete bipartite graph K,, is
(Sym(n) x Sym(n)) x Zs.

We say that I' is a verter transitive graph if Aut(I") acts transitively on
V. In other words, a graph is a vertex transitive graph if the action of its
automorphism group on the vertex set has only one orbit. This means that
for any two vertices v and v of I' there is an automorphism g € Aut(I")
such that u9 = v. We can conclude from the above that a vertex transitive
graph is a regular graph. Examples of a vertex transitive graphs include the

complete graph K, and its automorphism group Sym(n). Another example
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of a vertex transitive graph is the cycle. Its automorphism group is the
dihedral group D,, of 2n elements when the cycle is of length n. Many other
examples of vertex transitive graphs arise from the Cayley graphs which we

will define in Chapter 4.

Let G be a transitive group of automorphisms of I'. A non-emptsubset S
of V(T') is a block of imprimitivity for G if for any g € G, either S9 = S
or S9N S = ¢. Because G is transitive, it is clear that the translates of S
form a partition of V. This is called the partition associated to S. This set
of distinct translates is called a system of imprimitivity for G. Then the
group G is called imprimitive if there is system of imprimitivity with some
S in the system such that S # {v}, S # {V'} for some v € V. Otherwise, G

is primitive.



Graphs and their Maps

Let I' be a finite graph with vertex set V' and let G a group of automorphisms
of I'. In this chapter we introduce some basic concepts and notations that
allow us to discuss the singularity problem in I'. In particular we discuss a
vector space CV associated to the vertices of I' and show how the adjacency

relation gives raise to a linear map

a:CV = CV.

This allows us to apply many techniques from linear algebra. We want to
develop an algebraic language to help us study the relationship between the

eigenspaces of I'" and the irreducible characters of G.

In particular, we are interested in the eigenspaces of o and the projection
maps for CV onto these eigenspaces. We use the projection maps to derive
information about the eigenvalues of the graph and we give an example
for graphs with three distinct eigenvalues. These include strongly regular

graphs. In the last section we discuss conditions for a graph to be singular.
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3.1 Graphs and their Adjacency Map

Let ' be a finite graph with vertex set V. Two distinct vertices u,v are
adjacent, denoted by u ~ v if and only if {u,v} is an edge of I'. It is
convenient to introduce a vector space and an adjacency map that is

represents this graph structure.

Let C be the field of complex numbers. Let CV denote to the vector space
over C with basis V, we call this the vertex space of I'. Its elements are the

formal sums
f=> cw

where v € V and ¢, € C. If we have f =3 _, c,vand h =) . C,v then
f = hif and only if ¢, = ¢, for all v. We define

fHh=> (c,+T)v
veV
for all f,h € CV and sf =) . sc,v for all s € C. So indeed, with these

operations CV is a vector space over C.

We can describe this vector space in another way as the set of all functions

[V — C where we think of f =3" _, c,v as the function f:v — ¢,.

We define a natural inner product on CV by (u,v) = 1 if v = v and
(u,vy = 0 if u # v, for all u,v € V. In particular, we identify v = 1v so
that V' is a subset of CV. Therefore V' is an orthonormal basis of CV. We
put ||f||? = (f, f) and call || f]| the length of f.

Proposition 3.1.1. [4, Theorem 6.17] Let T be a finite graph with vertex
set V oand let f =), o, cov be an element of CV. Then c, = (f,v) for all

veV.
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Proof: Let f € CV with

f=cuv+ ...+ ¢, v (3.1.1)

Take the inner product with v; on both sides of [Equation 3.1.1 We will get

(f,v;) = ¢y, since (v;,v;) = 1 if and only if 7 = j and 0 otherwise. O

We define the adjacency map of I' as the linear map
a:CV — CV

given on the basis V by a(v) = >  uforallv € V. If u,v € V then
(a(u),v) = (u,a(v)) =1 if u ~ v and (a(u),v) = (u, a(v)) = 0 otherwise.
Hence, the adjacency map is symmetric for the given inner product. The

matrix of a with respect to the basis V' is the adjacency matriz A = A(T)
of I.

Since A is symmetric all eigenvalues of A are real by |Lemma 2.1.4, We
denote the distinct eigenvalue by Ay > Ao > ... > \; and let pq, po, ..., s be

their multiplicity. The spectrum of I' consists of all eigenvalues of A,

Spec(T') = N, A2, A

where A{' indicates that A; has multiplicity p;, and so on. We denote
by Ey, Es, ... E; the corresponding eigenspaces. Throughout we denote the
kernel of I' by E,. Thus F, = F; for some ¢ where F; is the eigenspace

corresponding to the eigenvalue 0 of I' and F, = 0 otherwise.

There are important connections between eigenvalues of a and the structure

of the graph.

Theorem 3.1.2. [37, Proposition 1.48] Let I' be a k-regular graph with n
vertices then the following hold.
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(i) We have that Ay =k, and py = 1 if and only if T is connected.

(i1) For each eigenvalue \; of I we have |\;| < k.

(111) If T is bipartite then the spectrum of T is symmetric about 0.

(iv) We have that —k is an eigenvalue of T if and only if T is bipartite.

In addition we can apply the Spectral Theorem to graphs as in the following

theorem:

Theorem 3.1.3. [253, Theorem 8.4.5](Decomposition Theorem) Let
I' = (V,E) be a graph. Suppose that A\ > Ay > ... > X\, are the distinct
eigenvalues of T' and that Fy,...,E; are the corresponding eigenspaces.
Then

CV=E1®..®F

is the orthogonal decomposition of the wvertexr space of I'. Furthermore,

dim(E;) is the (algebraic) multiplicity p; of A;.

This means that every vector f € CV can be written as

f=h+fot. .+ h (3.1.2)

with uniquely determined f; € FE;. We call the f; the orthonormal

components of f and we call

f=h+fot. ..+ fi

the spectral decomposition of f. Note by we have that the

components are vectors with f; perpendicular to f; if i # j and

IFIE = (LA A+ Al
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3.2 The Projection Maps onto Eigenspaces

Results in this section on linear algebra have been taken from the lectures
notes on Linear Algebra by Peter Cameronﬂ For each i = 1,2,...,t we
define the projection maps m; : CV — CV so that m;(f) = f; where f; is as

above in [Equation 3.1.2| In particular m;(CV') C E;. It is clear that m; is a

linear map. Formally the projection maps satisfy 77 = m;, mm; = 0 if i # j

and ! m; = id.

Note, as the eigenvalues of 7; are 0 and 1 it is clear that

tra(m;) = rank(m;) (3.2.1)

for each i. Hence, by [Equation 3.2.1] and the definition of the rank we have

dim(E;) = tra(m;). This is an instance of the following more general result.

Theorem 3.2.1. Let W be a finite dimensional vector space over the field
of complex numbers with inner product and let ¢ : W — W be a symmetric
linear map. Let A1, ..., Ay be the distinct eigenvalues of ¢ and let Fy, ..., By
be the corresponding eigenspaces. Suppose that m; are the projection maps

onto E; where 1 < i <t. Then tra(m;) = dim(E;).

The m; are the minimal idempotents associated to a. We now determine
these idempotents in terms of the eigenvalues. The following is well-known,

see for instance Pl

Proposition 3.2.2. Let \; > Ay > ... > X\, be the distinct eigenvalues of
the adjacency map o with spectral decomposition CV = E; & ... & Fy;. Let
1<i<tandlet; : CV— CV be the map given by

1
vi=]] m(a —Aj).

JFi

Thttps://cameroncounts.files.wordpress.com/2013/11/linalg.pdf
Zhttp://infohost.nmt.edu/~ iavramid/notes/mp2-5.pdf
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Then 1; = m; is the projection map m; : CV — CV associated to o.

Proof: Let f € CV. By the Decomposition [Theorem 3.1.3| we have f =

fi+ fa+ ...+ fi where f; € E;. We will compute

G = i+ ot ) = [Qﬁ(a— M+ fa b 1)
Note,

gﬁ<a—xj><fk>= ; :f
Hence 4(f) = J: a

Corollary 3.2.3. Let \y > Xy > ... > )\ be the distinct eigenvalues of
the symmetric map o with spectral decomposition CV = E, & ... & E;. Let
1<i<t andlety; : CV — CV be the map given by

1

Then we have that dim(E;) = tra(i;) for each i.

Corollary 3.2.4. Let \y > Xy > ... > A be the distinct eigenvalues of
the symmetric map o with spectral decomposition CV = FEy & ... & E; into
eigenspaces F;. If m; - CV — CV s the projection onto the eigenspaces E;
then o = A\ymy + ... + Ny

Proof: Let f € CV. By the Decomposition [Theorem 3.1.3| we have f =

fi+ fo+ ...+ fi where f; € E;. We will compute a(f) = a(f1)+ ... + a(f;).
Thus a(f) = A\ fi+...+ Ao fi. Note, m;(f) = f; by the previous Proposition.
Hence, a(f) = Mimi(f) + ... + M (f). O
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3.3 Eigenvalue Inequalities

As above let m; : CV — CV with m;(CV) C E; be the projection maps
onto the eigenspace F; of I' for 1 = 1,2, ...,t. Given f € CV we have that
f=fi+ ...+ fi with m(f) = f; by the Decomposition Theorem. We can
derive interesting inequalities from this decomposition. Note the F; are

orthogonal to each other. Hence,

(L fi)=({fr+..+fo, fo) = (fi, fi) =0

for : = 1,...,t. We formulate this as a theorem.

Theorem 3.3.1. [Delsarte’s Linear Programming Bound/[18] For all i =
1,2,...,t we have (f, f;) > 0.

Delsarte’s Bound appears in the context of association Schemas. Here
however we see that the same principle applies more generally. While the
proof of this theorem is extremely simple this bound has many important
application in the theory of association schemes, see [I§] as a reference. In
the rest of this section we will give a method that allows us to derive some
inequalities for the spectrum of graphs with three distinct eigenvalues.
The strengths of this method lies in the fact that we have an explicit

formula for the projective maps.

ExaMPLE: Let I' = (V,E) be a k-regular graph with three distinct

eigenvalues £ = Ay > Ay > A3. Let A be its adjacency matrix. By the

Decomposition [Theorem 3.1.3| we have

CV:El@EQ@Eg

where E; = m;(CV). We develop an inequalities for these eigenvalues, using

Delsarte’s Bound above. Let v € V. Since « is a symmetric map so is m; for
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1 =1,2,3. Hence

(ma(v), my(v)) = (m3(v),v)

= Ro((a—Ek)(a— A3)v,v)

where Ry = (A — k)7'(A\y — A3)7'. Note (ma(v),m(v)) > 0. Since

k > Ao > A3 we have that Ry < 0. Hence
0> ((a—k)(a— X )v,v)y = ((a—k)v, (a—A3)v)

= k—0—-0+kAs.
Thus 0 > k + kA3 = k(1 4+ A3). So that

Az < —1. (3.3.1)
Moreover

(m3(v), ms(v)) = (m5(v),v)
= (m(v),v)
= Ry((a—k)(a— A2)v,v)

where Ry = (A3 — k)"'(A3 — \2)~'. Note (m3(v),m3(v)) > 0. Since
k > Xy > A3 we have that R > 0. So that we have

0< {((a—=k)a—=X )v,v)y = ((a—Fk)v, (a—I)v)

Thus 0 < k + kAg = k(1 4+ \2). Hence we conclude that

Ay > —1. (3.3.2)
In addition

(mi(v),m(v)) = (ri(v),v).

Note by the projection map properties we have that

(m(v),v) = (m(v),v)
= Ri{(a = A2)(a = A3)(v),v)
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where Ry = (k—X2) 7' (k—X3) 7! Note, (m1(v), 71 (v)) > 0. Since k > Ay > A3
we have that Ry > 0. Therefore

0 < Ri((a—A)(a—=A3)(v),v) < ((a—Xa)(a—A3)(v),v)
= {((a = X)v, (a— A3)v)
= k—0+4 Ay)s.

Note we have that k + Ay + A3 = tra(4) = 0 and by [Equation 3.3.1| and

[Equation 3.3.2| we have that

Proposition 3.3.2. Let I' be a k-regular graph with exactly three distinct

ergenvalues k = Ay > Ay > A3. Then we have

(i) k > |AaXs|,

(1i) Ao > —1 and

(11) A3 < —1.

These properties can be obtained in many other ways. According to
emma 2.3.1] regular graphs with 3 distinct eigenvalues are strongly

regular and the inequalities can be obtained directly from the matrix

equation satisfied for the adjacency matrix of the graph.

Our method here is based on Delsarte’s bound in [Theorem 3.3.1] and this
method works more generally for graphs with more than three distinct
eigenvalues. This could be shown by looking at a few examples but we

omit these discussions.
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3.4 Groups of Automorphisms and

Eigenspaces

Throughout this section let I be a finite graph with vertex set V. In this
section we study the relationship between the irreducible representations of
a group of automorphisms of I' and its eigenspaces. As before CV is the
vector space with basis V and a : CV — CV is the adjacency map of
I'. Suppose that FEj, ..., E; are the eigenspaces of a corresponding to the

distinct eigenvalues Aq, ..., A\;.

Let G be a group of automorphisms of I'. We denote the image of v under g
by v? or vg for all v € V and g € G. Then every element g € G acts linearly
on CV by g : c,v — c,v9. In this way CV becomes a CG-module. Note, g

preserves the inner product, in the sense that (v, u) = (v9, u9).

Proposition 3.4.1. [16, p. 134] A permutation g of V is an automorphism
of ' if and only if a(f9) = (a(f))? where « is the adjacency map of T' for
all f € CV.

Proof: 1t suffices to show this property when f = v for some v € V.
Assume that a(v9) = (a(v))?. Suppose that u ~ v where u, v € V. Therefore
we want to prove that g is an automorphism of I'. So by the definition of

the automorphism this is enough to prove that u9 ~ v9. Since u ~ v so

(a(u),v) = 1. Then

{a(u?),v?) =

(a(u))?,v?)

au), v ")

{
{
= (a(u),v)
1.
n automorphism of I'.

Hence w9 ~ v9 which means that ¢ is a

Now suppose that ¢ is an automorphism of I' and we want to prove that
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a(v?) = (a(v))? for all v € V. Then
a(v?) = (a(v?), whw (3.4.1)

(a()? = ((a(v))?, w)w. (3.4.2)

1 v ~w
Hence (a(v?),w) = (v7, a(w)) =
0 v9w

) 1 v~wd
and ((a(v))?,w) = (a(v),w? ) =

-1
0 vowd .

Now, by the definition of automorphisms, v9 ~ w if and only if v99 =

v ~ w9 . Therefore by [Equation 3.4.1] and [Equation 3.4.2 we have that
a(f9) = (a(f))? for all f € CV. O

Let f € E; be an eigenvector of o corresponding to the eigenvalue ;. Then

we can show that a(f9) = \;f9 since

a(f?) = (a(f))? = Xif?

by [Proposition 3.4.1l Therefore we have proved the following important

theorem, see for instance [§] as a reference.

Theorem 3.4.2. Let I' be a finite graph with adjacency map « and
eigenspaces Fy, Es, ..., Ey corresponding to the distinct eigenvalues of «.

Let G be a group of automorphisms of I'. Then each E; is a CG-module.

According to the general representation theory of finite groups our group G
has irreducible C-modules

Ui, Uy, ..., Us.

This means that there are representations pi,ps,...,ps which are

homomorphisms p; : G — GL(U;) such that only the spaces 0 and U; are
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invariant under p;(G). The function

xi(g) = tra(pi(g))

is the character associated to p;. Here tra(p;(g)) is the matrix trace. As
we are working over C every G-module decomposes into a direct sum of

irreducible modules. In this case we can write

CV:yl—|—U1—|—...+U1/EBU2+U2+...—G—UQI@...@US—FUS—F...—{—USI.

mi m2 ms

The m; are the multiplicities of U; in CV'.

Using the same principle again each eigenspace E; of a can also be

decomposed into irreducible modules

Ei=Ui+Ui+.+U0)® U+ U+ ...+ U2)®... & (Us + Us + ... + Uy) .

/

~~
mi1 mi2 Mmis

Now we can use this theory and the properties of projection maps to

determine the multiplicity of C-modules in each eigenspace of I'.

Proposition 3.4.3. We have Zle m;; = m; for each j = 1,2,...s.
Furthermore, if G is transitive on V, then there exist a G-embedding of
CV into CG. In particular, m; < dim(U;) and m; = dim(U;) for all j if

and only if G acts regularly on V.

Proof: 1t is clear from the above that Zle mi; = mj foreach j =1,2,...s.
Now let G be transitive on V. It follows that ' is a regular graph, say of
degree k. Then fix some v € V and let L be the stabilizer group of v. Now

we prove that there is a map
p:CV - CG

which is injective and commutes with G. So, ¢ is an embedding of G-
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modules. We put

p(v)=> 1€CG.

leL
Then, given any other v’ € V, by the transitivity of G we have that v/ = v9'
for some ¢’ € G. Hence we define
o) = S 1y
leL
and extended linearly. If ¢” is any other element with v9" = v9" then ¢”¢

fixes v, so ¢"¢g ~' € L. So
p(v) =Y 19 = 1g".
leL leL

Now suppose that ) t;0% € CV with p(3,t;v%) = 0 for some i. So we
have that 0 = Y, tip(v9) = Y.t > ,cp lgs so that t; = 0 for all 7, because

cosets do not intersect. So ¢ is injective.

Now we prove that ¢ is a G-homomorphism. Let © € V where © = v9 for

some g € GG. Let g € G we have that

(@) = (%)

Therefore we conclude from the above that ¢ is a G-homomorphism hence

it is an embedding of CG-modules. O

Let p; be the trivial representation of G and let U; be the trivial sub-module

of dimension 1. In general it is not clear how the trivial representation
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is distributed among the FEj, ..., E;. But if G is transitive then the trivial
representation appears exactly once in CV and hence in exactly one Ej;.
In this case this eigenspace is Fj (the eigenspace of the degree of I'). This
is clear, the vector vy + vy + ... + v, spans the 1-dimensional eigenspace
for the eigenvalue k. Often we do not differentiate between character and

representation, in particular for 1-dimensional representation.

We will try to determine which of the irreducible representations of G are
a part of some given eigenspace of a. This is a difficult problem in general.

Note, for each ¢ we have that m; : CV — CV is a projection map onto

the eigenspace E; of a by [Proposition 3.2.2] Note F; is a G-invariant sub-

module of CV for each ¢ = 1,2, ...,t the restriction of g to E; is m;g = g,
noting that m; is a polynomial of «, and hence commutes with g. In this

way we have a representation of

with ¢ — m;g = gm;. The character of m;g is 8;(g) = tra(myg) and it is a

class function on G since for g,h € G we have

Bi(h~gh) = tra(mh~'gh)

= tra(h~'7mgh)

= tra(mghh™")
(

= tra(mg).

Therefore the multiplicity m,;; of the irreducible G-module U; in E; is

(tra(m;g), x;)- Therefore by [Theorem 2.2.10{ we have the following theorem.

Theorem 3.4.4. The multiplicity of the irreducible module U; in the
eigenspace E; is m;; = (x;, Bi) where B;(g) = tra(myg) for all g € G and

where x; is the irreducible character corresponding to U;.
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Note, we have explicit formula for 7; in terms of « and Spec(T"). We illustrate

this method in the following example in great details.

ExAMPLE: Let I' be the cycle graph of length 4. In this graph v; is adjacent
to v;41 modulo 4. The full automorphism group of I' is Dy, with transitive
subgroup C}. We illustrate the theorem by taking G = Cj and also by
considering G = D,. The computations differ significantly. The adjacency

map « has matrix

_= o
S =
= o
S =

1 010

It is easy to see that the spectrum of I' is 2!, 0?2 and —2'. Now the

projection maps are

1
T = H)xl—)\j(A_)\j)

j#1
1
= (A—0)(A—(-2))
(2-0)(2-(-2)
with matrix
2 2 2 2
2 2 2 2
Pl
81 2 2 2 2
2 2 2 2

Similarly,

1
Ty = HAQ—AjM_)\j)

with matrix
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and

1
3 = H/\g_/\j<A_>‘j)
J#3

with matrix

It is clear that
P, 1+ P 2 + P. 3 = I
where [ is the identity matrix of dimension 4 x 4.

First we consider the cyclic subgroup G = Cy. The character table of this
group is shown in

x1 | 1 1 1 1
x2| 1 -1 1 -1
xs3 | 1 1 —1 —1
x| 1 —2 =1 1

Table 3.1: The character table of C}

We evaluate 31(g), f2(g) and (3(g) for each g € G in [Table 3.2

Bl 1 1 1 1
B2 0 -2 0
Bl 1 -1 1 -1

Table 3.2: B;(g) for i =1,2,3.
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Thus (81, x1) = 1, (B1,x2) = 0, (B1,x3) = 0 and (B, xa) = 0. Therefore
£1 = x1. It follows that x; is a part of the eigenspace Fy, giving that

Ey=1-U,+0-Uy+0-Us+0-U,.

Thus (B2, x1) = 0, (B2, x2) = 0, (B2, x3) = 1 and (s, x4) = 1. Therefore
B2 = x3 + xa. It follows that x3 and x4 are part of the the eigenspace Fs,
giving that

Ey=0-U+0-Uy+1-Us+1-U,.

Thus <537X1> = 0, <B37X2> =1, <ﬁ37X3> = 0 and <537X4> = 0. Therefore
B3 = x2. It follows that x, is a part of the eigenspace Ej3, giving that

Es=0-Uy+1-Uy+0-Us+0-U,.

Hence we have

CVv=1-U+1-Uy+1-Us+1-U,.

Observe that here we have the regular (transitive) representation of G = C}

of degree 4.

Next let G = Dy = {(a,b:a* =0* = 1,b"'ab = a™'). The character table of
this group is shown in

xi|1 1 1 1 1
Y| 1 1 1 -1 -1
3|1 1 -1 1 -1
xa|1 1 -1 -1 1

s| 2 =2 0 0 0

Table 3.3: The character table of Dy
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Note here one irreducible representation has degree 2, as D, is not abelian.

We evaluate £1(g), 52(g) and B3(g) for each g € G in|Table 3.4

l¢ a*> a b ab
BGl1 1 1 1 1
Bo| 2 =2 0 0 O
Bl 1 1 -1 1 -1

Table 3.4: B;(g) for i = 1,2, 3.

Thus (81, x1) = 1, (B1, x2) =0, (61, x3) = 0, (B1, x4) = 0 and (B, x5) = 0.
Therefore 5, = x;. It follows that x; is a part of the eigenspace Fi, giving

that
Ei=1-U,4+0-Uy+0-Us3+0-Uy+0-Us.

Thus (82, x1) = 0, (B2, x2) = 0, (B2, x3) = 0, (B2, x4) = 0 and (Ba, x5) = 1.
Therefore 8, = x5. It follows that x5 is a part of the eigenspace Fs, giving
that

Ey=0-U,+0-Us+0-Us+0-Us+1-Us.

Thus (83, x1) = 0, (83, x2) = 0, (B3, x3) = 1, (B3, x4) = 0 and (B3, x5) = 0.
Therefore 83 = x3. It follows that y3 is a part of the eigenspace F3 giving

that
Es=0-U;+0-Uy+1-Us3+0-Uy+0-Us.

Hence we have

CV=1-U+0-Uy+1-Us+0-Uy+1-Us.
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3.5 Singular Graphs in General and
Applications

Let I' = (V, F) be a finite graph with vertex set V. let A be its adjacency
matrix. Then I' is singular if A is singular. In this section, we discuss
general properties of singular graphs and provide some sufficient conditions
for a graph to be singular. Furthermore, the nullity of I" is the dimension of
the null space of I' and we denote this by null(I"). Note |V| = null(T") + (")
where r(I") is the rank of A. Hence singular graphs have a non-trivial null

space.

Therefore we are interested in conditions for a graph to have a non-trivial
null space. Let Spec(I') be the set of all eigenvalues of I', with their

multiplicities.

Singular graphs have important applications in chemistry. The eigenvalue
problem has the same structure as the time-independent Schrodinger
Equation

Hy = Ev.

Its solutions are the eigenvalues and eigenfunctions (eigenspaces) of the
system. Here ¢ is the wave function, E is the energy and H is the
Hamiltonian operator of the system considered. ~When applied to a
particular molecule, the Schrodinger Equation enables us one to describe
the behaviour of the electrons in this molecule and to establish their
energy. The approximation of the m-electron energy in chemistry was
given by, Erich Hiickel in 1930, and the name of this method is the Hiickel
Molecular Orbital. From this formulation we can write H in terms of the

adjacency matrix A of the molecular graph as

H =al +bA
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where [ is the identity matrix and a, b are constants. From this we conclude
that finding the spectrum of A is equivalent to finding the spectrum of the
Hamiltonian operator H. In chemistry the importance of singular graphs
lies in the fact that a singular molecular graph, with vertices formed by
atoms, edges corresponding to bonds between the atoms in the molecule,
often is associated to compounds that are more reactive or unstable. The
problems that we are discussing therefore relate to the stability of a class
of molecules. Chemists have significant important applications of Spectral

Graph Theory, see [26] and [52] for a reference.

Singular graphs have also important applications for the representation
theory of finite groups. For instance, the famous Foulkes’s conjecture on
the representations of Sym(a) ! Sym(b) will hold if certain graphs related

to symmetric groups are non-singular, see [I5], [9] and [46] for a reference.

Let X C V. Then the induced sub-graph I = T'[X] is the graph (X, E’)
where E’ consists of all {v,v'} € E with both v and v" in X where E is the
edge set of I'. The incident matriz M of T" is the integer matrix with rows
and columns indexed by the vertices and edges of I', respectively such that
the M;;-entry of M is equal to 1 if and only if the vertex v; is an end vertex

of the edge e;. Note M has dimension n x m where |V| =n and |E| = m.

Let I'y and I'y be two simple graphs. We define the union of I'y and I's
to be a graph with vertex set V(I';) U V(I'2) and edge set E(I'y) U E(I'y)
and it is denoted by I'y U TI's. If 'y and T'y are disjoint we denote their
union by I'y + I's. The tensor product of I'y and I'y is a graph has vertex
set V(I';) x V(I'g) and two vertices (uq,v1) and (ug, v9) are adjacent if and

only if u; ~ us in I'y and vy ~ vy in I'y. It is denoted by I'y ® I's. Note

Spec(I'y @ I'y) = {\ip; = \i € Spec(I'1), pj € Spec(I's)}, (3.5.1)

see [11] as a reference.
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The following properties are obvious.

Theorem 3.5.1. 1. I'y ® I'y is singular if and only if at least one of 'y

and 'y is singular.

2. 'y + Ty (the disjoint union) is singular if and only if at least one of

I'y and 'y s singular.
Proposition 3.5.2. Suppose that T' = (V, E) is a bipartite graph with parts

Vi UVy =V where |Vi| > |Va|. Then null(T') > |V4| — |Va.

Proof: Let A be the adjacency matrix of I'. Hence A has the following
shape

0 B
BT 0

A:

where B is an |Vj| x |V,| matrix. Note by [Theorem 2.1.3| we have that
r(A) = 2r(B) as r(B) = r(B"). Therefore we have the following null(I") =
V1| + |V2| — 2r(B) since r(B) < |V3|. So in this case we have that

null(l) > V| + |Vo] — 2|V4]

V

Vil = [V2]. O

Lemma 3.5.3. |23, Lemma 8.2.3] Let W and U be vector spaces with linear
maps

oW —=Uands:U —W.

Then ¢ : U — U and spp : W — W have the same non-zero eigenvalues.
Furthermore, if A is a non-zero eigenvalue with eigenspace Wy C W and
Uy C U for sp and ¢s respectively then ¢ and ¢ restrict to isomorphisms
p: Wy —= Uy and s : Uy — W,.

Theorem 3.5.4. [11] Let T' = (V, E) be a k-reqular graph with vertex set

V' of size n and edge set E of size m. Let Ay, ..., \, be the eigenvalues of T.
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Then the line graph L(T) of T is a (2k — 2)-regular graph with eigenvalues
Xi+k—2 forl <i<mn and —2 with multiplicity of |E| —|V|. Furthermore,
if T is bipartite, then the multiplicity of —2 in L(T') is |E| —|V]| + 1.

Proof: Let M be the incident matrix of I'. Then we show that
M*M = 2I,, + A*

where A* is the adjacency matrix of L(T"). Note MT M is the m x m matrix
with entries (M7T M);; = 2 as each edge of T is incident with two vertices, and
(MTM);; = 1if and only if e;, e; have an end vertex in common; with (i # )

and (MTM);; = 0 otherwise. From this we deduce that M*M = 21, + A*.

Now we prove that

MMT =kI,+ A

where A is the adjacency matrix of I'. Note M M7 is the n x n matrix with
entries (MM7T);; = k as T’ is k-regular, and (M M7T);; = 1 if and only if
v; ~ v;, and 0 otherwise. From this we conclude that MMT = kI, + A.
By we have that MTM and MM? have the same non-zero
eigenvalues, hence the spectrum of L(I") is \; + k — 2 for 1 < i < n where

Ai is an eigenvalue of I' and —2 with multiplicity of |E| — |V|. Note if I" is

a bipartite graph then by [lheorem 3.1.2| we have that —k is an eigenvalue

of I, and so the multiplicity of —2 is |E| — |V| + 1. O

Corollary 3.5.5. Let I' be a k-reqular graph. Then I is singular if and
only if k — 2 is an eigenvalue of L(T).

Proof: Suppose that I' is singular. So 0 is an eigenvalue of I". Hence by

Theorem 3.5.4] we have that k — 2 is an eigenvalue of L(I'). Conversely,

if & — 2 is an eigenvalue of L(I'), then by [Theorem 3.5.4] we have that

k—2 =\ +k— 2 where )\; is an eigenvalue of I' for some 7. From this we

conclude that A\; = 0 so that I' is singular. Other possibility we have that
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k —2 = —2 hence k = 0 and this gives us a contradiction. O]

Proposition 3.5.6. [3]|] Let T be a k-regular graph with n vertices. Then
I' and T have the same eigenvectors and the eigenvalues of I are n — k — 1

and —1 — \; where k and \; for 1 <i <n —1 are the eigenvalues of T'.

Corollary 3.5.7. Let I' be k-regqular graph. Then I is singular if and only

if —1 is an eigenvalue of T.

Proposition 3.5.8. Let I" be a graph with nullity null(T') =1 > 1 and let
0 <i <. Suppose that V' is a subset of V' with |V'| = |V| —i. Then T'[V’]
has nullity null(T[V']) > 1 — 1.

Proof: Let V! =V —i and r(I') = r(A) where A is the adjacency matrix
of I'. Note we have that
[=|V|—-r() (3.5.2)

and so
nll(T[V']) = V| —r(T[V")

= [VI=i—rTMV]).

Hence by [Equation 3.5.2| we have that

nll(T[V']) = 14 7(T) —i—r(T[V')
= l—i—(r(TV]) = r(I)).

Note by [Theorem 2.1.2| we have that r(I') > r(I'[V’]). From the above we
conclude that null(T'[V']) > 1 — 1. O

Next we list a further general properties of singular graphs. Our first

criterion for singular graphs is a balance condition.

Theorem 3.5.9 (Balance Condition). Let I' be a graph with vertex set V.

Then T" is singular if and only if there are two disjoint non-empty subsets
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X, Y CV and a function f: X UY — N with f(u) #0 forallue X UY
such that the following holds:

If v is a vertex in V, then

Yo fw) =) flw.

v~ueX v~ueyY

In particular, if X,Y C Z, then T'[Z] is singular.

Proof: Suppose that I is singular on n vertices and let h € E, with h # 0
be an element in the kernel of A. In particular, A is singular over Q as
all entries of A are 0 and 1. So we may assume that h, is rational where
h = Y, cv hov and after multiplying by the least common multiple of all
denominators, that h, is an integer for all v. Let X be the set of all v such
that h, > 1 and Y the set of all v such that h, < —1. Define fX and f¥
in CV by fX = h, for v € X and fX = 0 otherwise, while f¥ = —h, for

v e Y and f) = 0 otherwise. Thus
AfX = AfY. (3.5.3)

For any v € V we have that (v, Af*) = (Av, fX) =3, _.cx [¥(u). Here

we use that A is self-adjoint, that is
(h, Ak) = (Ah, k)

for all h,k € CV. Similarly, (v,AfY) = Y _.cx f*(u). Hence by
IEquation 3.5.3| we have that >+ f(u) =23, .oy f(u)foralveV.

Suppose that the above condition holds. This means that

S ofw= > fu

v~ueX v~ueY

for all v € V. Now we prove that I' is singular. As before A is the adjacency
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matrix of I'. Note A is non-singular if and only if its rows are linearly
independent. Suppose that A, be the row of A labelled by a vertex v €
V(I'). Note we have that

Yo @A =Y fy)A, =0
zeX yey
where f(v) # 0 for all v € X UY. From this we conclude that the rows of

A are linearly dependent and so A is singular. O]

Ezample 1: Let I' = (V| E) be a graph. Suppose that w,u € V' such that
w ~ u, and w and uw have the same neighbour set. In this case put X =
{w},Y = {u} and f(u) = f(w) = 1 while f(v) = 0 for u # v # w. Then
f has the property of the theorem. More directly of course, a(w) = a(u)
implies that 0 # w — u € E,.

Ezample 2: Let I' = C™ be an n-cycle on V = {1,2,...,n}. Then it is easy

to compute the eigenvalues of I'. These are the numbers A, = 2008(2%)
where r = 0,1,2,...,n — 1, see [10] as a reference. In particular, C™ is
singular if and only if n is divisible by 4. If 4 does divide n we may take
X={aeV :a=0o0rl(mod4)},Y={beV : b=2or3 (mod4)}

and f(v) =1for all v e X UY while f(v) =0forallvé¢ XUY.

Ezample 3: Let I' = P™ be a path on n vertices, V' = {1,2,...,n}. Then it is

nTZI )

easy to compute the eigenvalues of I'. These are the numbers A\, = 2cos(
where r = 1,2, ...,n. In particular, P" is singular if and only if n is odd see
[10] as a reference. If m is odd then we have that X UY contains the
odd numbers < n, and we choose X = {1,5,9,...}, Y = {3,7,11, ...} and
f(v)=1forallve XUY while f(v) =0foralv¢ XUY.

This concludes our comments about singular graphs in general. In the next

chapter we turn to singular vertex transitive graphs.



Vertex Transitive Graphs

A graph T' is said to be wertex transitive if its automorphism group acts
transitively on its vertex set. In other words, for any two vertices u,v of I'

there is g € Aut(I') such that v9 = w. It is clear that vertex transitive graphs

are regular. If the degree of I' is k then by [Theorem 3.1.2| we have that k

is an eigenvalue of I' with multiplicity of > 1 and all other eigenvalues will
be less than k£ and greater than or equal to —k. The multiplicity of & in
fact is the number of components of I'. In this chapter we use a transitive
group of automorphisms to find the spectrum of I' and determine sufficient

conditions for I' to have 0 as an eigenvalue.

This chapter is divided into four main sections. In the first section, we study
properties of Cayley graphs and their spectrum. In the second section,
we investigate the singularity of Cayley graphs. In the third section, we
reduce the problem of finding the spectrum of a vertex transitive graph to
finding the spectrum of an associated Cayley graph. This method is due
to Lovédsz [43]. In the last section, we compute the spectrum of a vertex
transitive graph in terms of irreducible characters of a transitive group of
automorphisms. To our knowledge this method is new. In each section of

this chapter we provide conditions that distinguish singular graphs.
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4.1 Cayley Graphs

We now discuss the definition of Cayley graph associated to a finite group
and a certain set that generates the group. We introduce basic properties
of the automorphism group of a Cayley graph and compute its spectrum in
terms of the irreducible representations and the irreducible characters of the
group. Moreover we investigate the relationship between the representations

of the group and the eigenspaces of the Cayley graph.

Let G be a finite group with identity element 1 = 15. A subset H of G is

called a connecting set if
()WH'={h'heH}=H
(2) 1c ¢ H

(3) H generates G.

In this case we can define a graph I' with vertex set V(I') = G. Two vertices
v, w are adjacent, v ~ w, if and only if wv~=! € H if and only if w € Hv
if and only if w = h~lv for some h € H. Note that wv™' € H implies
(wo™)™! = vw™' € H and therefore w ~ v. In addition, v % v since
v~ v = 15 € H. This means that ~ defines a simple connected undirected

graph on G.

This graph is called the Cayley graph on G with connecting set H. It is
denoted by Cay(G, H). It follows that the adjacency map « : CG — CG

has the form

a(v) = Z h™v (4.1.1)

heH

for all v € G.

An arbitrary graph X is said to be a Cayley graph if there exists a group
G and a connecting set H such that X is isomorphic to Cay(G, H). Note a
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graph I' can be a Cayley graph for several different groups and connecting
set. For instance, K, is the Cayley graph for any group G of order n and
connecting set H = G\1¢.

Note also that if H is a subset of G which satisfies the first two requirements
above but not the last one then we still have the Cayley graph Cay(G*, H)
where G* is the group generated by H.

We collect a few properties of Cayley graphs. Let G be a group and H
a connecting set. Denote the Cayley graph of G for connecting set H by
I' = Cay(G,H). Let v be a vertex of I'. Then the set of all neighbours of
v is Hov. It follows that T' is k-regular with & = |H|. Applying the same
argument again the set of all neighbours of vertices in Hv is H Hv. Hence
the connected component containing v consists of the vertices in HH...Hwv.
Since H generates G we have G = HH...H and therefore I' is connected.

Therefore we have the following well-known standard result.

Theorem 4.1.1. [37, Proposition 1.29] Let G be a group and H a
connecting set for the graph I' = Cay(G,H). Then T' is a connected
k-regular graph with k = |H|.

Now we give some examples of Cayley graphs. The Cayley graphs over
cyclic groups have played a special role in the study of Cayley graphs.
These graphs are widely known as circulant graphs. The adjacency matrix

of a circulant graph is a circulant matrix.

The complete bipartite graphs K, , = Cay(G, H) where |G| = 2n = 2|H],
H = G\K and K is a subgroup of G, are Cayley graphs. Similarly, the
k-dimensional cube graph Q) is the Cayley graph defined on the elementary

abelian group (Z,)* where the connecting set is the standard generating set

for (Zy)*.

The graph formed on the finite field F, (addition group) as vertex set where

¢ = 1 mod 4 and where the connecting set is H = {2? : © € F,z #
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0} is called the Paley graph for q. Note, the condition that ¢ = 1 mod 4

guarantees that H = —H.

Let n be even and G = Z/nZ and let H = {F1, g} C G. Then the Cayley
graph I' = Cay(G, H) is known as the Mdbius ladder graph of order n.

In the rest of this section we discuss the automorphisms of a Cayley
graph.  There are special properties for the automorphism group of
I' = Cay(G, H) related to the group G and the connecting set H. The
problem of determining the full automorphism group of I' is difficult in
general. The full automorphism group Aut(I') of I' is the set of all
permutations of the set V' = G preserving the edge structure, see Section 3

of Chapter 2. We describe some aspects of the automorphisms of T'.

The multiplication on the right by the element ¢ in G, that is v +— wvg for
v € V, induces an automorphism on I'. To prove this let v,v' € V. If v ~ ¢/
then v' = h™'v for some h € H and so v'g = h™*(vg) giving that vg ~ v'g.
Conversely, if v « v' then vg = v'g. We can understand this automorphism

in terms of the right regular representations p, : G — GL(CG) of G given
by pr(g)(v) = vg.

The left regular action v — ¢g~'v however is in general not an automorphism
of . In fact, it is easy to see that v — g~!v for v € V is an automorphism

if and only if gH = Hg. We say that H is normal if gH = Hg for all g € G.

The right regular action is transitive on vertices and only the identity
element fixes any vertex. This is therefore the regular action of G on itself.

This property characterises Cayley graphs.

Theorem 4.1.2. (Sabidussi’s Theorem)[23, Lemma 3.7.1] Let T' = (V| E)
be a graph. Then T is a Cayley graph if and only if Aut(T') contains a

subgroup G which is reqular on V.

We now describe other automorphisms of I'. Let ¢ be a group automorphism
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of G fixing H as a set. Such ¢ induces an automorphism of I'. To prove this

let v,0" € V. If v ~ v/ then v = h~'v for some h € H and so

o) = o(h7'v)
= $(h7)e(v)
R0

for some b € H as ¢(H) = H. Hence ¢(v) ~ ¢(v'). Conversely, if v » v/
then ¢(v) = ¢(v'). The following is due to this result.

Theorem 4.1.3. [[0] Suppose that ¢ is an automorphism of the group G
that fizes H set-wise. Then ¢ is an automorphism of Cay(G, H) fizing the

identity element of G.

4.1.1 Representations and Spectrum

We fix some group G and a connecting set H. Let I' = Cay(G, H). Now
we study the relationship between the irreducible representations of G' and
the eigenspaces of I'. We know that G acts on V(') regularly by
multiplication on the right and so G is isomorphic to a regular subgroup of
Aut(I'). We come back to use the general representation theory of finite
groups to study the relationship between the irreducible characters of G
and the eigenspaces of I'. According to this theory our group G has
irreducible C-modules Uy, ..., U,. This means that there are representations
P1, P25 ---, Ps Which are homomorphisms p; : G — GL(U;) such that only

the trivial spaces 0 and U; are invariant under p;(G). The function

xi(g) = tra(pi(g))

is the character associated to p;. Note we define x;(H) = >,y xi(h).

As we are working over C every G-module decomposes into a direct sum of
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irreducible modules. We apply this in particular to CV, the vertex space of

I'. In our case we can therefore write

mi mso ms

In particular, m; = dim(Uj;) since G acts regularly on V(I').

Recall that each eigenspace F; for ¢ = 1,...,t is invariant under the right

multiplication by G, by [Theorem 3.4.2] Using the same principle again,

each eigenspace F; of I' can also be decomposed into irreducible modules

E=U+..+00)® U+ ...+ Uz) ... B (Us + ... + Us).
S —

m;

mil my

2 s

It is clear that , .
E m;, = My, E ij = My, ...
i=1 j=1

and so on. Let m; : CV — CV with 7;(CV') = E; be the projection onto

the eigenspace E; of I'. Hence by the discussions in the last chapter we can

apply [I'heorem 3.4.4] to determine which of the irreducible representations

of G are a part of each eigenspace of T

Next consider the left-regular representation of G : For each h € G we have

the linear map p;(h) : CV — CV defined on the standard basis of CV by

pi(R)(v) = h~tv, forveV.

Recall that a(v) = Y, .y b~ 'v for all v € G by [Equation 4.1.1|and therefore

a = Z pi(h) as a map CV — CV. (4.1.2)

heH

Therefore [Equation 4.1.2 establishes the link between graph theory and

representation theory of finite groups. Hence by [[heorem 2.2.11| we can
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decompose

pr=mip1 D ... D Mmsps

into a direct sum of irreducible representations of G. Thus

=3 ph) = Y (mipr () & .. & mops ()

heH heH

where p;(h) : G — GL(U;) and m; is the degree of p;, and at the same time
m; is the dimension of the irreducible G-module U; of CV for each i. The

following is an important general fact.

Theorem 4.1.4. Let G be a finite group and let py,...,ps be the set of
all inequivalent irreducible representations of G. Then X is an eigenvalue
of Cay(G, H) if and only if there is some p; such that Y, . pi(h) — A is

singular.

Proof: Let Uy, ...,U, be the irreducible G-modules. Let Ei, ..., E; be the

eigenspaces of a. By [Theorem 3.4.2] Ej, ..., E; are G-invariant (under

multiplication on the right) and so each E; can be decomposed into

Ej = mlel ®..>5 mst57

as before. Now FE; is the eigenspace of « for the eigenvalue A if and only
if @ — A is singular on £;. This in turn implies that ), pi(h) — A is
singular on £j;. Let U; be an irreducible G-module that appears in E;. Then
> nem Pi(h) — A is singular.

Conversely, if >, pi(h) — A is singular on U; then U; appears in the
decomposition of

CG=E®..0k

as this the regular G-module, and so o — A is singular. O

Theorem 4.1.5. [6] Let G be a finite group and let H be a connecting set.

Let p1,....ps be the complete set of all inequivalent irreducible
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representations of G- and let my, ..., mg be their degrees. Then the spectrum

of ' = Cay(G, H) is given by

Spec(T') = {/\’ffll, o AR A }

,Ms

mi

where A"} is the 3t eigenvalue of > nen Pi(h) with the multiplicity m;. More

generally we have that

N+ A, = tra((ma)”) = tra((Y_pi(h)) = Y Xi(haha..hy)

heH hi,ha,..., hreH

Jor any natural number r < m;. Note, A, is the r" power of \i; (not a

multiplicity) and m? + ... + m? = n.
Proof: Note we have that

o= Zpl(h) =my Zpl(h) D...Dmy Zps(h).

heH heH heH

Here ), .y pi(h) is an m; by m; matrix and by [Theorem 4.1.4f we have

that each eigenvalue of ), _, pi(h) is an eigenvalue of a for i = 1,...,s.
Hence ), pi(h) has m; eigenvalues and in the same time these eigenvalues
of a. Note for each ¢ we have that {\;1,...,\;;m,} are the eigenvalues of

> nen Pi(h). Hence by the trace properties we have that

>\i,1 + )\1’2 4+ ...+ )\Lmi = tra(z pz(h))

heH

= > wa(p(h)

heH

= ZXi(h>'

heH

Similarly, let » € N where » < m;. Then we have that

Ny Ny + o+ A, =tra(() - pi(h)).

heH
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Note p; is a group homomorphism. Therefore we have that

)\;1 + )\;2 + ...+ )\;,mi = tra< Z pi(h1h2...hr))

hl,ha,....,hr€H
hi,ha,..., hreH

Note, about the multiplicity we have that

o= Zpl(h) =my Zpl(h) D...Dmy Zps(h).

heH heH heH

From the above we conclude that each p;(h) appears m; times in « so that

the multiplicity of A; ; is m; for each j. m

ExAMPLE: Let Dy = (a,b: a* =0* = 1p,,bab = a®). Let T’ = Cay(Dy, H)

where H = {a,a3 b}. So T has 8 vertices of degree 3. In this example we

apply [Theorem 4.1.5| to compute the spectrum of I'. Note the character
table of D, is shown in the [Table 4.1]

gPq 1 1 2 2 2

vi |1 1 1 1 1
v» | 1 1 1 -1 -1
vs |1 1 -1 1 -1
va |l 1 1 -1 -1 1

vs | 2 =2 0 0 0

Table 4.1: The character table of Dj.

Note x1, X2, x3 and x4 are of degree 1 so that \;; = >, xi(h) for i =
1,2,3,4. In this case we have that

A= Z)ﬁ(h) =3, X1 = ZXQ(h) =1, A\31 = ZX:%(M =-1

heH heH heH

and A1 = ), o xa(h) = —3. However x5 is of degree 2 in this case we
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have that
Asq+ A5 = Z xs5(h) =0
heH
Nit+Xe = Y xs(hhy) =2
hih;€H
By solving these equations we have that A5 ; = 1 and A5 2 = —1. Hence we

have that Spec(T) = {3', —3',13, —13}.

From the above, we conclude that we can determine the spectrum of the

Cayley graph Cay(G, H) by [Theorem 4.1.4] and [Theorem 4.1.5[ at least in

principle.

In the next results we can compute the spectrum of the Cayley graph
Cay(G, H) in terms of the irreducible characters of G when H is a normal

connecting set.

Theorem 4.1.6. Let T" be the Cayley graph I' = Cay(G, H) where H is a
normal connecting set of G. Let U be an irreducible sub-module of CV = CG,
(by right multiplication). Then a(U) = U and furthermore U is contained

in the eigenspace of a for

1
A= i) 2 X

heH

where x 1s the irreducible character corresponding to U.

Proof: Let CV be the vertex G-module of I'. Let p = p; : G — GL(U).

Then by using [Equation 4.1.2| we have that o =, _; pi(h) where p;(h) is

the left regular representation of G. Let pq,...,ps be the irreducible

representations of G. Hence we have that

> ph) =@ > mypi(h)

heH heH
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where m; is the degree of p;. Thus we compute

aop(g) = Zpl(h)Op(g)

hel
= &, Z mjp;j(h) o p(g).

heH

Since, p;(h)p(g) = pi(hg) if j =i and 0 otherwise. We continue

aoplg) = Y pi(hg)

heH

= > nilghg'g)

= Zpi(gh)'

heH

Since H is a normal connecting set. Continuing, we get

aoplg) = pilg) Y pi(h)

heH
= pilg) By > myp;(h)
heH
= plgoa

for all g € G.

Therefore by using [Theorem 2.2.6| we have that a(u) = Au for some A € C

and all u € U. So we have that U C Ej; for some ¢ where Fj; is the eigenspace

corresponding to the eigenvalue A\. Note we have that

mA = tra(Au) = tra(o(u)) = tra( Y _ p(h)(u)) = Y x(h)

heH heH

where m = x(1¢). So we have that

For the multiplicity each irreducible character x there are y(1g) copies of
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U in CV and on each copy a acts as Aidy. Therefore A has multiplicity
(x(1))%. 0

COMMENT: There are several papers in which a formula for eigenvalues is
given, for instance [43], [6], [37], [59], [1I] and [19]. The precise
characterization of an arbitrary G-invariant irreducible module as an

eigenspace we believe is new.

NOTE: In the first example we have I' = Cay(D,, H) where H = {a, a?,b}.
We have that
CDy,=E, ®E;,® E3s® Ey

where Ei, Ey, 3, E, are the eigenspaces for the eigenvalue 3,—3,1,—1,
respectively. We noted that Us appears in both F3 and FEj4. Note this is

possibly as H is not normal in G.

We note the following special cases of the theorem.

Corollary 4.1.7. Let I' = Cay(G, H) where H is a normal connecting
set. If U, U* are G-isomorphic irreducible sub-modules of CV then U,U*
are contained in the same eigenspace E; for some i where FE; is the
eigenspace corresponding to the eigenvalue A = @ Y nen X(h), where x
s the irreducible character corresponding to U,U*. In particular, each
eigenspace Ej of T' has dimension 3-,_. . (xi(1g))* where the sum over

all irreducible modules U; C Ej.

Corollary 4.1.8. Let I' = Cay(G, H) where H is a normal connecting set.
If U, U* are not G-isomorphic irreducible sub-modules of CV then U, U* are

in the same eigenspace of a if and only if

1 1 .
gy 2 X =y 2 X

heH heH
where x and x* are the irreducible character of U and U* respectively.

Theorem 4.1.9. [35] Let G be a group and H a connecting set of G. Let T
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be the graph T' = Cay(G, H) and let x be any 1-dimensional character of G.
Then f =73, cqax()v is an eigenvector of I' with eigenvalue ), . x(h).

The proof was given in [35] for an additive abelian groups. However, the

following is my version of proof for general groups.

Proof: Let « be the adjacency map of I' and let f € CG where

f = Y req x()v. Then
o) = Y xv)a)

veG

= > x(v)) (h'v)

veG heH

= > x> u

veG heH

where u = h~'v. Hence

alf) = DD x(huu

ueG heH

= > > x(h)x(wu

ueG he H

= ) X)) x(wu

heH ueG

= (Q_x(h)f.

heH

This theorem determines the spectrum and eigenspaces of Cayley graphs

over abelian groups. The following is an example for a non-commutative

group.

ExamMPLE: Let I' = (Sym(3), H) and
H ={(12),(13),(23)}.

In this example we compute the the spectrum of I' and we apply

[Theorem 3.4.4] to determine which of the irreducible representations of

Sym(3) are part of the kernel (I') = E, where * denotes the number of the
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zero-eigenspace and (5 is the character of that space. Note, here H is a

normal connecting set.

12 13 23

123 132 1.4G

Figure 4.1.1: T' = Cay(Sym(3), H) and H = {(12), (13),(23)}

The adjacency map « has the adjacency matrix (on the standard basis)

000111

000111

000111
A —

1 11000

1 11000

1 11000

Then we apply [Theorem 4.1.6] to compute the spectrum. The character

table of Sym(3) is shown in [Table 4.2

Loy (12) (123)
X1 1 1 1
X2 1 -1 1
X3 2 0 -1

Table 4.2: The character table of Sym/(3)

Therefore for ¢ = 1,2,3 we have that \; = = >, _, xi(h). Hence A\, = 3
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with multiplicity of 1, Ay = 0 with multiplicity of 4 and A3 = —3 with
multiplicity 1. Note in this example we have that * = 2. Now the projection

map is

2#]
_ _i9<A+ 3)(A —3)
and has matrix

-6 3 3 0 0 0
3 =6 3 0 0 O
P, — L 3 3 —6 0 0 0
<2l 0o o o -6 3 3
o 0 0 3 6 3
o o o0 3 3 -6

We evaluate f(g) for each g € Sym(3) in the following table

oo (12) (123)
62‘ 4 0 -2

Table 4.3: The class function 5,(g)

Thus we have that (82, x1) = 0, (B2, x2) = 0 and (B2, x3) = 2. We see that
B2 = 2x3. Therefore y3 is part of the kernel F,. In fact, the kernel E, has

dimension 4 and so Ey = 2Us.

4.2 Singular Cayley Graphs

In this section we determine conditions for the singularity of a Cayley graph.
Let G be a finite group and H a connecting set of G. Let I" be the graph
I' = Cay(G, H). In this section we denote by K a subgroup of G.
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Theorem 4.2.1. [35] Let H be a connecting set of a group G and let H
be a union of left cosets of a non-trivial subgroup K in G. Suppose there is
some element k € K and 1-dimensional character x of G such that x(k) #
1. Then we have that ), _, x(h) = 0. In particular, I' = Cay(G, H) is

singular.

This theorem is mentioned in [35] for a subgroup of an additive abelain
group. However, the following proof is my version for a union of cosets of a

non-trivial subgroup of the group in general.

Proof: Suppose that H = a; K U asK U ... for ay,as,... € G and x is an
1-dimensional character of G with x(k) # 1 for some k € K. Then we have
that

ZX(h) = Z x(a; K)

heH aiKNH#¢

= Z x(a; Kk)

a;i KNH#6

= Z x(a: K)x(k)

a; KNH#¢

= > x(h)x(k).

heH

Hence we have that >, _, x(h)(1 — x(k)) = 0. Since x(k) # 1 so that
Y nem X(h) =0. O

As a consequence to[Theorem 4.1.4]and [T'heorem 4.1.6|we have the following

results:

Theorem 4.2.2. Let G be a finite group and let H be a connecting set
of G. Let pq,..,ps denote the irreducible representations of G. Then I' =
Cay(G, H) is singular if and only if there exists some i such that ), pi(h)

s singular.

Theorem 4.2.3. Let G be a finite group and let H be a connecting set and
normal subset of G. Then Cay(G, H) is singular if and only if there is an
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irreducible character x of G such that _,_; x(h) = 0. In particular, we
have that null(T') > (x(1g))%

Proof: Suppose that I is singular. Then we have that 0 is an eigenvalue of

I'. Note H is normal subset of G and so by [Theorem 4.1.6] each eigenvalue
of Cay(G, H) is given by

where  is an irreducible character of G. Hence we have that »°, , x(h) =0

for some irreducible character of G.

Suppose that ), x(h) = 0 for some irreducible character of G. Then by

ITheorem 4.1.6| we have that A = 0 for some eigenvalues of Cay(G, H) so

Cay(G, H) is singular. Furthermore, by [Corollary 4.1.7| we have that E,

contains the module of y with multiplicity of (x(1¢))%. O

Corollary 4.2.4. Suppose G is non-abelian simple group. Suppose H is
any subset of G with 1¢ € G, H = H™' and H is normal. Then nullity of
I' = Cay(G, H) is either 0 or > m? where m # 1 is the least degree of an

irreducible character of G.

ExAMPLE: The possible value of m in the following simple groups: m =
m(Ag) = 5, m = m(A;1) = 10 and m = m(PSL(2,23)) = 11. So, for
instance, if G = PSL(2,23) and if H is any normal subset with 1 ¢ H and
H = H™! then I' = Cay(G, H) is either non-singular or has nullity > 112,
see [I'heorem 4.2.3|

ExampLE: Let I' = Cay(Sym(3), H) where

H = {(12), (23), (123), (132)}.

In this example we apply [[heorem 4.2.2 to decide the singularity of T'.
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Figure 4.2.1: I' = Cay(Sym(3), H) where H = {(12),(23), (123), (132)}

Let a be the adjacency map of I' and let A be the matrix represents a on

the basis Sym(3). So we have that A is equivalent to

S ouh) = 3 (mipn(h) & . ® map, (1)

heH heH
where p;(h) is an irreducible representation of Sym(3). Let ji; = >, oy pi(h)
for i = 1,2,3. The irreducible representations of Sym(3) for H are shown

in [Iable 4.4

H (12) (23) (123) (132) i
p1 1 1 1 1 4
P2 -1 -1 1 1 0
0 w? 01 w? 0 w 0 -1 —w
P3
w 1 0 0 w w? —w? =1

Table 4.4: p;(h) and p; = Y,y pi(h) for i =1,2,3.

The adjacency matrix of I' is equivalent to the following matrix
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4 0 0 0 0 0
00 O 0 0 0
00 -1 —w 0 0
00 —w? -1 0 0
00 O 0 -1 —w
00 O 0 —w? -1

It is clear that us and pg are singular matrices and the eigenvalues of u3 are

{—2,0}. So I' is singular by [Theorem 4.2.2| and its nullity is in fact 3.

Theorem 4.2.5. Let H be a connecting set in the group G and suppose
that H is a union of right cosets of the subgroup K of G with |K| # 1. Then
A(T) is of the form A(T*) ® J where I' = Cay(G, H), T'* is some graph
defined on the right cosets of K in G and J is the |K| x | K| matriz with all

entries equal to 1.

CoMMENTS:(1) If H is a union of left cosets of K then it is a union of right
cosets since H = H~!. However, a/K U Ka~! may not be a union of left or

right cosets.

(2) Note I'* is a graph with vertex set as the right cosets of K in G' and
Kg; ~ Kg; in I'" if and only there is an element in Kg; adjacent to an
element in Kg; in I'. In general may not be a Cayley graph and in some

cases ['* is a Cayley graph, for instance if K is normal.

Proof of [Theorem 4.2.5; Suppose that H = Ka; U Kas U Kaz U ... for

some ai, as, ... € G. We want to prove that any two elements in the same
right coset of K are not adjacent and if an element in Kg; is adjacent to
an element in K g; then all elements in Kg; are adjacent to all elements in

Let x,2 € Kg;. Suppose that © ~ z. Hence by the Cayley graph definition

we have ¥ = h™'z for some h € H. So we have that 7 = k?lgz- = a'kyk19;
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for some @’ € G where x = kig; and h=! = a’k, so that ky = a'ks for some
151, ki, ke, k3 € K. This give us a contradiction as the right cosets of K are
disjoint. From the above we conclude that the elements of the same right

coset are non-adjacent.

Now let z,2 € Kg; and y,y € Kg;. Suppose that z ~ y in I and we want
to show that & ~ ¢ in I'. Note by the Cayley graph definition we have that
y = h™'x for some h € H. In this case we have that kog; = a’ksk1g; so

g; = ki 'a’k4g;. So we have that

k~29j
= k~2k’2_1a/k‘49¢

<)
I

= k}a’k@gi (421)

for ki, ko, k3, ky, 152, ks € K. Now assume that & = k4g; hence T ~ gy. From
the above we conclude that all elements in K g; are adjacent to all elements

in Kg;. From the above we deduce

Corollary 4.2.6. If H is a connecting set in the group G and if H is a union
of right cosets of the subgroup K C G with |K| # 1, then T = Cay(G, H)
is singular and null(T") > % (|K|—=1).

Proof:  Note J is singular and the eigenvalues of J are | K| with multiplicity
of 1 and 0 with multiplicity of |K| — 1. Hence we have that

Spec(I') = Spec(I'™) & (|K|,0,0,...,0).
————

|K[-1

From this we conclude that null(T") > % (JK| - 1). O
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ExaMPLE: Let G = Djs be the dihedral group of order 10 where
Ds = {(a,b : a® = b* = 1g, bab = a™') and let K = {lg,b}. Let
H = aK Ua 'K be the connecting set for the graph I' = Cay(Ds, H). So

H = {a,a*, ab,a*b}. Therefore according to [Corollary 4.2.6| we have that T’

is singular with null(T') > 5. The spectrum of I by using a GAP program
is displayed in [Iable 4.5|

Eigenvalues of I' | Multiplicities
A1 4 1
A2 V5 —1 2
A3 —V5 -1 2
A 0 5

Table 4.5: The eigenvalues of the graph I' = Cay(Ds, H).

The above table verifies that I' is singular with null(I") = 5.

4.2.1 Cayley Graphs over Cyclic Groups

In this section we derive simple conditions which characterise singular
Cayley graphs over a cyclic group. Note that a Cayley graph over a cyclic
group is also called a circulant graph. Let C,, = (a) be a cyclic group of
order n and let H be a connecting set of C),. Denote the Cayley graph
Cay(C,, H) by T'. It is clear that H is a normal subset of C,,.

Let [ be a positive integer and let €; be the group of [**roots of unity, that
is () = {#z € C\{0} : 2! = 1}. Then € is a cyclic group of order [ with
generator ™. Note this is not the only generator of €2, indeed any power
e where gcd(l,m) = 1 is a generator too. A generator of ) is called

a primitive I'" root of unity. Euler’s totient function of [ is defined as the

number of positive integer < [ that are relatively prime to [ and it is denoted

by ¢(1).
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Let n be a positive integer and let ®,(z) denote the n'cyclotomic
polynomial. Then @, () is the unique irreducible integer polynomial with
leading coefficient 1 so that ®,(x) divides ™ — 1 but does not divide of

h

zF — 1 for any k < n. Its roots are all primitive n** roots of unity. So

2mim

where ged(m,n) = 1.

Lemma 4.2.7. [50, Lemma 3.1.1] If n is a prime power, n = p™, if w is a

h

primitive ' root of unity and if a(1), ..., a(k) are integers with

w'® 44 w'® =0 (4.2.2)

then k 1s a multiple of p.

Proof:  Assume that 0 < a(i) < p™ — 1 for all i. Construct the polynomial
P(z) = 270 4+ . 4 o0,

Note P(w) = 0 and keep in minding that a(1),...,a(k) are not necessary
distinct numbers. It is clear that degP(z) < p™ — 1 and P(z) is not the
zero polynomial, since P(1) = k. Hence degP(z) > 0. The n'* cyclotomic

polynomial

m—1

Oy (2) = 1+ 2" 422" 4 IR

is irreducible over the field of rational numbers Q and it consists of p
monomials. Therefore, as w is a common root of P(z) and ®,m(x), it

follows that ®,m(x) divides P(z). Hence we have that
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for some polynomial Q(z) € Q[z]. In particular,

0 < deg(Q(x))

m—1 * m—1
Suppose xot?P"T = gb+t'p

Then

are two equal terms in P(z) when a > b.

a+tpm*1 — b_i_t*pmfl

a—b = (t—t )pmt

Note, 2% and x° are monomials of Q(x) and so a,b < deg(Q(x). Hence this
gives us a contradiction as a — b = (t — t*)p™ ! but degQ(x) < p™ ! —
1. Therefore, when multiplying monomials z?" ' for i = 0,1,....,p — 1 of
®,m () by a monomial 2% of Q)(x) no two products have the same exponent.
It follows that Q(x)®,m(z) consists of a multiple of the p monomials of

Om (). O

By similar techniques one can prove.

Lemma 4.2.8. [50, Lemma 3.1.5] Let w be a primitive n'™ root of unity
and let a(1), ..., a(k) be integers. If n is a product of two prime powers, say
n = p°q’, and if

w'® 4 4w ® =,

then
W ™ =145+ P fr(l e T,

where I, v are sums of powers of w, and 0,¢ are primitive p*"* and ¢'" roots

of unity respectively.
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Before stating the theorems and results about the singularity of Cayley
graphs over cyclic groups we give a brief introduction to the irreducible

representations and the irreducible characters of finite cyclic groups.

As before C), is a finite cyclic group of order n. Note that the conjugacy

class of any element a of (), consists of that element only. Thus there are

exactly n irreducible representations of C,. According to [Theorem 2.2.7|

each irreducible representation of C), has degree 1. Let p : C,, = GL(CC,)
be a representation of the group C,, on CC,. The character associated
with p is the function x, : C;, — C denoted by x,(a) = tra(p(a)) for all
a € C,. Here tra(p(a)) is the trace of the representation matrix. Note that
an irreducible representation of degree one and the associated irreducible
character are the same thing. Thus every irreducible representation or
irreducible character of C), is uniquely determined by its value on any
generator set of C,,. Then p;(a) = w! for i = 1,2,...,n are the complete
list of the irreducible representations of C, and the same time these are
the irreducible characters of C),. This fact provides an easy construction of
all irreducible representations or irreducible characters of a cyclic group.
They are simply the homomorphisms C,, — C. Two representations of a
finite group are equivalent if and only if their characters are equal. Thus
the two irreducible representations of degree one are inequivalent if and

only if they are unequal.

As a consequence of [Theorem 4.1.9 we have the general theorem on abelian

groups:

Theorem 4.2.9. Let I' = Cay(G, H) be a Cayley graph for the abelian
group G, and denote the irreducible characters of G by x1, X2, ---, Xn- Lhen
fi, foy ooy fro with f; = 7 oo Xa(v)v span the eigenspaces of I' with eigenvalue
Ai = Y pen Xi(R). In particular, T' is singular if and only if there is some
character x = x; for which ), x(h) = 0. Furthermore, if the number of

distinct characters with this property is ¢ then null(T') = c.
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Therefore by [['heorem 4.2.9| we deduce that each eigenvalue of I is a certain

sum of n'® roots of unity. Note that in this work the irreducible character

x; for 1 <i < n of C, is generated by w'~! where w is a fixed primitive n'”

root of unity and the corresponding eigenvalue of I" will be ;.

We consider the case where G = C),, x C,,,. Suppose that xi,..., xn, and

Y1, ..., Yn, are the irreducible characters of C),, and C),,, respectively. Hence

Xj X Yr(a,b) = x;(a). g (b)
for (a,b) € G and j =1,...,n1,k = 1,...,ny are the distinct characters of G.

Now let H C G be a connecting set and consider the Cayley graph I' =

Cay(G, H). By [Theorem 4.1.6| the eigenvalues of I" have the shape

A=) x5 X Ui(ha, ho). (4.2.3)

(h1,h2)eH

In some special cases it is possible to determine these eigenvalues in terms
of eigenvalues of certain graph I'; = Cay(C,,, H;) for i = 1,2 depending on

the shape of H. We consider two cases .

We say that H is of the box shape it H = H, x Hy with H; C C,,, and where

H; does not contain the identity element of C,,,, for i = 1,2, as is shown in

the [Figure 4.2.2}

Here it is easy to verify that H; is a connecting set for C,,,, and so we have

Cayley graphs I'; = Cay(C,,, H;). Here the formula in [Equation 4.2.3|

takes the shape
A= ) X x Ukl he)

(h1,h2)EH
= Z X;(h) - Z Vi(he)
h1€H ho€Ha

— )\l . )\l/
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Ch,
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Figure 4.2.2: H has Box shape

where X', \" are eigenvalues of Iy, I'y respectively. Thus,

Spec(I") = Spec(I'y) @ Spec('y)

where Spec(I'y) ® Spec(I'y) is the multi-set {A; - A\, : Ay € Spec(T'1), N €
Spec(I'9)} for 1 <t < ny and 1 <1 < ny. In particular, since |H;| is the
degree of I';, then |H;| is the largest eigenvalue of T';. Thus |H; |- Spec(I's) C
Spec(T') and |Hy| - Spec(T'y) C Spec(I'). So we have proved the following

result.

Theorem 4.2.10. Let G = C,,, x C,,, and let H C G be a connecting set
of box shape. LetI' = Cay(G, H) and I'; = Cay(C,,, H;). Then Spec(l') =
Spec(I'1) ® Spec(I's). In particular, |Hy| - Spec(I'y) C Spec(') and |Hs| -
Spec(I'y) C Spec(T). Furthermore, T is singular if and only if at least one

of I'1, 'y are singular.

We next consider a generalization of this idea. Let G = C),, x C,,, as above.

We say that H is of brick shape if there are elements ay,...,a, € C,, with
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a; # lg,,, and subsets A;,..., A, C C,, with |A;| = [, for some r,l € N,
so that H = a1 A1 U ... U a,A,. We call [ the brick length, as is shown in
Figure 4.2.3)

Ch,

Ch,

Figure 4.2.3: H has Brick shape of length 3 for H;

Here it is easy to show that H; = {ay,..,a,} is a connecting set and so we

have Cayley graph Iy = Cay(C,,,H;). Here we can evaluate the

expression in [Equation 4.2.3| to get

A= Z Xj X Yr(h1, ha)

(h1,h2)eH
= x(a) (D r(d) + o+ x5(ar) (Y r (b))

(4.2.4)

We can evaluate this formula where 1)y is the trivial character. In this case

[Equation 4.2.4/becomes A =1-3,_,

-----

Theorem 4.2.11. Suppose that G = C,,, x C,,, and that H is a connecting
set of G has brick shape of length I, as above. Let I' = Cay(G, H) and let
Iy be defines as above. Then [ - Spec(I'y) C Spec(T'). In particular, T is
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singular if T'y is singular.
ExampLE: Let I' = Cay(G,H) where G = Zs x Zs and

H = {(1,1),(2,5)}. Let I'y = Cay(Zs, H,) where H; = {1,2} and let
'y = Cay(Zg, Hy) where Hy = {1,5}. Note H # H; x Hy so we can not
conclude that Spec(I') = Spec(I'y) ® Spec(I'y). However we have that H
has the brick shape twice, this means that for H; brick of length 1 and for

Hs brick of length 1. Hence we can apply [Theorem 4.2.11| for H; and H,
so by this we have that Spec(I'y) C Spec(I') and Spec(I'y) C Spec(T"). By

using a GAP program we find the spectrum of I' as well as the spectrum

of I'y and T'y as are shown in the following tables:

Eigenvalues of I' | Multiplicities
A1 2 3
A2 -2 3
A3 1 6
A4 -1 6

Table 4.6: The eigenvalues of the graph I' = Cay(Zs x Zg, H)

Eigenvalues of I'; | Multiplicity
A1 2 1
Ao —1 2

Table 4.7: The eigenvalues of the graph I'y = Cay(Zs, Hy)

Eigenvalues of I's | Multiplicities
A1 2 1
A2 —2 1
A3 1 2
A4 —1 2

Table 4.8:

The above tables verify that Spec(I';) C Spec(I") for i =1, 2.

The eigenvalues of the graph T's = Cay(Zg, Hs).
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Character sum of this type are a well-established topic. More generally, if
G is a group and H a connecting set of G then we say that H is vanishing

on the irreducible character x if >, , x(h) = 0.

In the following we are interested in conditions for a subset H to be

vanishing. Our first example comes from subgroups of G.

We conclude from [Lemma 4.2.7| and [Lemma 4.2.8| that the vanishing of

certain sums of n'® roots of unity can occur when the sum is over union
of cosets of some non-trivial subgroup of ,,, the group of the n'* roots of

unity. Therefore we have the following important result:

Theorem 4.2.12. Let C,, = (a) and H a connecting set of C,,. Let " be the
graph T = Cay(C,, H) and let Q,, be the group of n'* roots of unity. For

1=1,2,3,....,n consider the homomorphism

v+ Cp —

(i-1)m h

given by @;(a™) = w where w is a primitive n'™ root of unity and

0<m<n—1. Then I is a singular graph if the multi-set

wi(H) = {pi(h1), ..., pi(he) },

with |H| =k, is a union of cosets of some non-trivial subgroup T C Q,, for

some 1.

Proof: 1t is clear by |Lemma 4.2.7| and [Lemma 4.2.8| O

ExaMPLE: Let I' = Cay(Cs, H) where H = {a, a3, a’,a"}. Tt is clear that

H is a coset of K = (a?) so by [Corollary 4.2.6] we have that I is singular.

ExamMPLE: Let I' = Cay(Cs, H) where H = {a,a?,a’% a"}. Clearly

2 3 4 5 6 7
Qs = {1, w,w",w’,w",w’, w’,w'}



Chapter 4: Vertex Transitive Graphs 74

and it has two non-trivial subgroups T; = {1,w*} and Ty = {1, w? w* w}.
Note H is not a union of cosets however its image under y; for some i is

a coset of a non-trivial subgroup of 5. So to decide the singularity of I,

according to [Theorem 4.2.12| we need to look at the irreducible characters

of Cs which are generated by the elements of T, and Y5 are shown in the

following table:

leg | a | a® | a’ |a” | a’|a |a

xs| 1 |w |ww |1 |w|w |w
xs| 1 w1 w1 w1l |w

xr| 1 [l |wt]w? |1 |wl|w|w

Table 4.9: The irreducible characters of Cg that are generated by the
elements of T and Yo

Now we find the elements of theses characters correspond to the elements

of H as is shown in the following table:

2 6 7

Yo | w? | wt | wt | WS

s |wr| 1 | 1 |w

vr | w8 | wt | wt ] W?

Table 4.10: The x3, x5 and x7 values which are corresponding to elements
of H

Note we have that x5(H) =2 x Ty so I is singular and A5 = 0.

Now we generalise this result for groups, which may not be abelian as shown

in the following:

Proposition 4.2.13. Let G be a group with normal subgroup K and a
homomorphism

v:G—G/K.

Suppose that H is a subset of G such that:
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(1) ¢(H) is vanishing in G/K for some character x of G/K.

(2) There is a constant ¢ such that every coset of K in G meets H in 0 or

¢ elements.

Then H s vanishing in G.

Proof: Let x be the irreducible character of G/K on which y is vanishing.
Then we have that

0=S"vem) = 3 x@K) (4.2.5)

heH g KNH#

where g1 K U go K U ... U g, K = G. Hence by [Equation 4.2.5| we have that

Y =c ¥ x(@K) =0

heH G KNH#£p

where y is the lift character corresponding to x. O]

Corollary 4.2.14. Let G be a group with normal subgroup K such that
G/K is abelian. Let H be a connecting set of G and let I' = Cay(G, H).
Suppose that every coset of K in G meets H in exactly c elements for some

c. Then T is singular with nullity > |G/K| — 1.

Proof:  We need to show that A = ", . pi(h) is singular and of nullity
> |G/K|—1, where A is the adjacency matrix of I and p; is the left regular

representation of GG. Then we can decompose

S ph)y=m Y pi(h)@ .. @mg Y pslh)

heH heH heH

where py, ..., ps are the irreducible representations of G and my, ..., mg are
their degrees respectively. For this it is sufficient to show that ), _, pi(h)
is singular for some 7. Now let x1,..., x|a/k| be the irreducible characters

of G/K. Then we have that ) x;(¢/K) = 0 for all non-trivial irreducible
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characters of G/K where the sum over all the cosets of K in G. Hence
we have that >, , X;(h) = ¢>_ x;(gK) = 0 where x; is the lift character
corresponding to x;. From this we conclude that ), , p;(h) is singular

where p; is the irreducible representation of G' which is corresponding to X;.

So by [Theorem 4.1.4] we have that A is singular with nullity > |G/K| — 1
as there are |G/K| — 1 non-trivial character for G/K. O

The problem of determining vanishing set of elements in a group is very

difficult. Here we have the following consequence of the |Corollary 4.2.6| and

|[Proposition 4.2.13| for singular graphs so far.

ExAMPLE: Let I' = Cay(Cy, H) where H = {a,a?,a% a5 a",a®}. Let K =
(a®) be a non-trivial subgroup of Cy. Note we have that each coset of K

meets H in exactly 2 elements. Hence we have that

p(H) =Y p(h)=2> " @(Kg)
heH
where the sum over all cosets of K, and ¢ is the left character
corresponding to the irreducible character @ of Cy/K. In this case we have

that ¢(H) = 0 if and only if ¢ is a non-trivial character of Cy/K.

Therefore by [Corollary 4.2.14] we have that I' is singular.

In the next example we consider an instance where |H| divides n = |C,,].

In this case however H does not satisfy the criteria in [I'heorem 4.2.12} and

IProposition 4.2.13 and indeed I' = Cay(C,,, H) is non-singular.

ExaMPLE: Let I' = Cay(Cy, H) where H = {a,a’,a', a'® a'®}. Note
Q90 has four non-trivial subgroups which are Y, Y9, T3 and T4 and these
generate by w’ w! w? w!Y respectively. We have |H| = 5 which divides
|Ca0]. Note Xy = 3 icy Wi=D%7 where 1 < 7 < 20. Therefore we can use a

GAP program to find the spectrum of I' as is shown in the [Table 4.11

It is clear that I' is non-singular graph.
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Eigenvalues of T’ Multiplicities
A 5 1
Ao -3 1
A3 —1 2
A\ 5/2—(1/2) x V5 2
As 5/24(1/2) x /5 2
A (1/2) x /5 —1/2 2
A7 —1/2—(1/2) x /5 2
N | —1—(1/2) x /(10 - (2 x V) 2
Mo | —1-(1/2) x /(10 + (2 x V) 2
Ao | =14 (1/2) x \/(10 —(2xV5)) 2
A | —14 (1/2) x /(10 + (2 x V) 2

Table 4.11: The eigenvalues of the graph I' = Cay(Zs, H)

As before C,, is a cyclic group of order n and H a connecting set of C,,. We

have the problem of understanding vanishing character sums. According to

[Lemma 4.2.7| and [Lemma 4.2.8 we have that if n is a prime power or the

multiple of two distinct primes power then ), . x;(h) = 0 if and only if
the image of H under y; is a union of cosets of some non-trivial subgroup
of €,, for some irreducible character y; of C,,. However this does not hold
if n is a product of three distinct primes power as shown in the following

example:

ExXAMPLE: Let C3y be a group of order 30 and let

Cy ={1,a},C5 = {1,b9,b3} and C5 = {1, ¢, ¢3,¢4,¢5}

be subgroups of order 2,3 and 5 respectively. Suppose that y is a
1-dimensional character with x(a), x(b2) and x(cz) all # 1. Then by the
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[Theorem 4.2.1l we have that

x(a)(x(b2) + x(bs3)) + (x(c2) + x(c3) + x(ca) + x(c5)) = (=1)(=1) +(=1)

Therefore H = (Co\{1g}).(C5\{1c}U(C5\ {15} is a set of 6 elements which

vanishes for y. It clearly is not a union of cosets of a non-trivial subgroup.

Thus we conclude from the above example that the vanishing of the sums
of roots of unity can also occur when no union of cosets of €2, is involved,

see [39] as a reference.

This leads us to study the singularity of Cayley graphs over a cyclic group
according to the cyclotomic polynomial. As before C,, = (a) is a cyclic group
of order n and H a connecting set of C,,. Let I' be the graph T = Cay(C,,, H)
and let H* be the set of all 0 < m <n — 1 such that H = {a™ : m € H*}.

Now consider the polynomial

Ur(z) = Z ™

meH*

associated to I'. Note that U depends on the choice of the generator a. If
a’ is some other generator, then a = (a’)" for some r with ged(r,n) = 1.

Therefore (H')* C {1,2,...,n — 1} given by (H')* = rH* mod n and so
Ui(x) =a" Z 2™ =2"VUp(z) mod 2™
EXAMPLES: Suppose G = (a) has order 7 and H = {a,a®}. Thus H* =

{1,6} and so
Ur(z) = + 25
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Now a? is also a generator, a = (a?)* giving (H')* = {4, 3} and so
Up(z) = 2 + 2°.
NOTE:

(1) Isomorphic graphs may have different Wr(z) polynomials.

(2) If we change the generator of C), then Vr(z) will change. If we go back
to the example and we change the generator of C, as C,, = (a?) with the

same connecting set H we have Ur(z) = 2t + 2% # z + 25.

Theorem 4.2.15. Let C,, be a cyclic group of order n and let
' = Cay(C,, H) be the Cayley graph for the connecting set H C C,,. Let
Ur(z) be the polynomial associated to T for some generator of C,. Then T
is singular if and only if ®4(x) divides Yr(x) for some divisor d of n with
1 < d < n where ®4(x) is the d* cyclotomic polynomial. Furthermore, let
di,da,...,d; be the divisors of n. Then we have that null(I') = > ¢(d;)
where the sum is over all d; such that ®q,(x) divides Yp(z) and ¢(d;) is

Euler’s totient function of d;.

Proof: Let A\ = \; be any eigenvalue of I". Thus by [Theorem 4.1.9] we

Ai = Z Xi(h)

heH

= Z xi(a™)

meH*

= D xi@)”

meH*

_ Z (wi—l)m

meH*

= \Ifr ((JJi_l)

have that

where w is a primitive n'" root of unity. Now if \; = 0, then Up(w™!) =0

and so; if w™! is a primitive n'" root of unity then we have that @, (z)|¥r(z)
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i—1 h

as Ur(z) and ®,(x) have a common root and if w'~! is not a primitive n’

1 h

root of unity. In this case w'~! is a primitive r* root of unity for some
divisor r of n where 1 < r < n. Hence we have that ®,(z)|Ur(z) as Ur(zx)
and ®,(x) have a common root. Therefore for both cases we have that

®,(z) divides ¥ (z) for some divisor d of n with 1 < d < n.

Conversely, suppose ®4(z) divides Wr(x) for some divisor d of n. Then we
have that ®4(w*) = 0 where w* is a primitive d'* root of unity. So we
have that Ur(w*) = 0 then A\; = 0 for some i. By this we deduce that I' is

singular.

By the second part of the proof we have that A\; = ¥Up(w*) = 0 if and only
if w* is a primitive d"® root of unity for some divisor d of n. In this case
we have that ¢(d) of primitives d** root of unity. Hence we deduce that
null(I') = > ¢(d;) where the sum is over all divisors of n such that ®4, (z)
divides Wr(z). O

ExaMpPLE: Let I' = Cay(Cy, H) where H = {a,a®, a° a"}. Then we have
that Ur(z) =z + 2% + 2° + 7. We know that ®g(z) = z* + 1 and ®,(z) =
x? + 1. It is clear that Up(z) = ®g(z) (2 + z) and ¥r(z) = O4(z)(2° + ).
Hence by [Theorem 4.2.15( we have that null(I') = ¢(8) 4+ ¢(4) = 6. By using
a GAP program the spectrum of I' is shown in the [Table 4.12

Eigenvalues of I' | Multiplicities
A1 4 1
Ao 4 1
A3 0 6

Table 4.12: The eigenvalues of the graph I' = Cay(Cs, H)

Theorem 4.2.16. Let I' be a vertex transitive graph on p vertices with at

least one edge where p is a prime number. Then I' is non-singular.

Proof:  Let V be the vertex set of I, with |V| = p and p is a prime number.



Chapter 4: Vertex Transitive Graphs 81

Let G be a vertex transitive group on I'. By [[heorem 2.2.1| we have that

|Gl =[V]- ]G

for some v € V. So by Sylow’s Theorem there exist a subgroup K of G with

|K| = p. Note K is cyclic. Now apply [Theorem 2.2.1| again we have that

|K| = [vE]|-|K,| for k € K. Note we have that |K,| = 1¢, so K acts regularly

on V. Hence by Sabidussi’s [T'heorem 4.1.2| we have that I' is a Cayley graph

Cay(K, H) for some connecting set H of K. Suppose for contradiction that

I is singular. As p is a prime number, according to [Theorem 4.2.15| we have

that @,(z) divides Ur(x). So there is Q(z) € Q[x] such that

Up(z) = ®p(z) x Q).

This gives us a contradiction as ®,(x) has degree p — 1 and Q(x) # 0 but

the maximum degree of Wr(x) is less than p. O

Recently we have found related results for circulant matrices in [38] and [36]

which are similar to [Theorem 4.2.15|

Now we will look at some examples:

ExaMPLE: Let ' = Cay(Csy, H) where H = {a®,a% a'? a'®, a*, a*}.
Note in this example H is not union of cosets of a non-trivial subgroup of

Cs9. However, we have that

4

Dyg=aP+a2" - -t -+ +1

divides

Ur(z) =2® + 2 + 2" + 2% + 2% +2°

as is shown in the following

2P B2 408400 = (2 ha 240008 40 (1B T — P — =Bt 1),
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Hence by [Theorem 4.2.15| we have that I' is singular with nullity 8. Then
by using a GAP program the spectrum of I" is shown as in the [Table 4.13

Eigenvalues of I' | Multiplicities
A 6 1
A2 2 1
A3 5 2
A4 3 2
A5 1 4
A6 -3 4
A7 -2 8
As 0 8

Table 4.13: The eigenvalues of the graph I' = Cay(Cso, H)

ExaMPLE: Let I' = Cay(Ciy, H) where H = {a',a''}. Note ¥p(z) =
x + 2 so we need to check all d* Cyclotomoc polynomials ®4(x) where d

is a divisor of n. Hence we find that ®4(x) = 2? + 1 divides ¥r(z) so by

[Theorem 4.2.15 we have that I' is singular with nullity 2. By using a GAP
program the spectrum of I' is shown in the [Table 4.14]

Eigenvalues of I' | Multiplicities
A1 2 1
A2 —2 1
A3 0 2
A4 1 2
A5 -1 2
X6 V3 2
A7 -3 2

Table 4.14: The eigenvalues of the graph I' = Cay(Cis, H)

Final comments: Similar techniques allow us to determine the singularity

of Cayley graphs over dihedral groups by using the character formula of
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Babai.

4.3 The First Method

In this section we determine the spectrum of a vertex transitive graph in
terms of an associated Cayley graph. This method can be found in [43]. We
generalise and introduce new points of view and we determine the condition

for a vertex transitive graph to be singular.

Through out this section I' is a simple connected graph with vertex set V'
and |V| = n. Let G be a group of automorphisms of I' which acts
transitively on V. Note, if G is regular then I' is a Cayley graph by

Sabidussi’s [['heorem 4.1.2l Therefore we assume it is not regular.

We now determine the spectrum of I' in terms of some Cayley graphs. Fix
a vertex v € V(I'). Let H = {g € G : v ~ v}. We now prove that
H is a connecting set of GG satisfying the three conditions for a Cayley
graphs. Clearly (i) v = v'¢ as T is simple so that H is free-identity (that
means 1g ¢ H), and (ii) for each g € H we have that ¢! € H as g €
H if and only if v ~ v9 since T" is undirected and by the automorphism

definition we have that v9 ' ~ v so that H = H~L.

For (iii) let g € G. As T is connected there is a path v ~ v; ~ vy ~ ... ~ vy =
v9 and by vertex transitivity, there are gy, go, ... so that v; = v9 with g; € G.
Since v;_1 ~ v; we have that v%-1 ~ 0%, This implies that v ~ P99t 50
that h; = g;g;_", belongs to H for i = 2,...,1. and h; = g; € H. Therefore

we have that

9=0ag =hg-

where g;_1 = h;_19;_2 and so on. By the above we conclude that g = g; =
hih;_1.....hohq where h;, hy_1,...,ho, hy € H and so also the third condition

is satisfied.
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Now consider the Cayley graph I'* = Cay(G, H). Let K be the stabilizer
group of v. In particular, |G| = |K| - |V|. Then we have that KH = {g €
G : v ~ vE9 =09} hence from this we conclude that K H = H is a union of
(right) coests. Let Kg; and Kg; be two distinct cosets of K. Let x = kg,
and y = kyg; be in Kg; and Kg; respectively where ki,ky € K. Then
x ~ y in I'* if and only if v*19 ~ v*29i in T". Note by the stabilizer group
properties we have that v¥1% = v9 and v*297 = 19 so that x ~ y if and only
if v9 ~ v9% in I'. From this we conclude that all vertices in Kg; are adjacent
to all vertices in K g;. While the elements of any coset of K are not adjacent

to each other as I' is simple.

It follows that the adjacency matrix of I'* is of the form A(I") ® J where J
is the | K| x |K| matrix with all entries equal to 1. Note J is singular and
the eigenvalues of J are |K| with multiplicity of 1 and 0 with multiplicity
of |K| — 1. In particular, we have that

Spec(T*) = {| K|\, |K |y .., | K [An, 0,0, .., 0}

where A\, Ao, ..., A\, are the eigenvalues of I'. From the above we conclude

the following result that determines vertex transitive singular graphs:

Theorem 4.3.1. Let ' = (V, E) be a connected graph which admit a group
G of automorphisms that is transitive on V. Let v be a vertex of I' and
assume that the stabilizer of v has order ¢ > 1. Let H={g € G : v ~v9 }.
Then H is a connecting set and I'* = Cay(G, H) has nullity null(T'*) >
(IV])-(c—=1). Furthermore, I is singular if and only if null(I'*) > |V|-(c—1).

EXAMPLE: We apply this method to find the spectrum of K3 = (V| E)
where V' = {1,2,3}. It is clear that G = Aut(K3) = Sym(V'). Note we have
that

G = {Lsym(v), (12), (13),(23), (123), (132)}

without loss of generality. The graph Kj = (V*, E*) is defined as V* = G
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and its edge are defined by

(0,7v) € E* if and only if (v7,07) € E

where 0,7 € G and v € V. Therefore we chose the vertex 1 of K3 to

construct K3. Note we have that

le(1) =1, (12)(1) =2, (13)(1) =3, (23)(1) =1, (123)(1) =2

and (132)(1) = 3. From this we have that

H =1{(12),(13), (123), (132)}

and

K ={1q,(23)}

the stabilizer of the vertex 1. Thus we can compute the spectrum of K3 by

applying [['heorem 4.1.4. Therefore we have that

=Y pi(h)

heH

where p; is the irreducible representation of sym(V) for i = 1,23, see

Table 4.4 Hence we have that p;(H) = 4 where pi1(0) =1 for all 0 € H,
p2(H) = 0 where po(0) = sign(o) for all ¢ € H and

-1 -1

M3
-1 -1

Thus the spectrum of K3 is {4,—2,—2,0,0,0} and by the first method we

have the spectrum of Kj is {2, —1, —1}, as is well-known.

ExaMpPLE: Let I' = (V, E) be Petersen graph and let V' be the collection
of all 2-sets from 2 = {1,2,3,4,5}. Then two vertices are adjacent in I' if

and only if their sets are disjoint sets as shown in the following
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{1,2}
{3,5}

{3’4}\{2,5 1,3%4’5}
\ (2,45 T1,4) /
/ N\

{1, 5} {2,3}

Figure 4.3.1: Petersen Graph

We demonstrate the method by computing its spectrum. Let

G = AGL(1,5) = ((12345), (2354)).

Note G acts transitively on V. Fix a vertex v = {1,2} of V(I'), and put
H={geG:v~v9} and K = {g € G : v = v}. Hence we have that

H = {(13524), (1325), (14)(23), (14253), (1523), (15)(24)}

and

K ={1¢g,(12)(35)}.
Now consider I'* = Cay(G, H). This is a graph on 20 vertices of degree 6.

In this figure every box consists two vertices and these are adjacent to the

vertices in the adjacent boxes.
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(v1, 1), (v, (12)(35))

(1 16), (vr, (12)(35))

(v2, 1), (va, (12)(35))

(vs, ), (vs, (12)(35))

(ve, 1), (v, (12)(359)

(vs,1c), (vs, (12)(35))

(v10, 1), (v10, (19)(35))

(v, 1a), (w9, (12)(35))

(v3, 1), (vs, (12)(35))

(U47 1G)> (7]47 (12>(35))

Figure 4.3.2: I'* = Cay(AGL(1,5), H)

By a GAP program we have that the spectrum of I'* is {6', —4%, 25 010},

It is clear that the spectrum of I'* is divided into two sets of size |V| = 10

which are {6', —4% 2%} and {0'°}. According to this method the spectrum
of T is {3', —2% 1°} by dividing {6', —4%,2°} by |K].

4.4 The Second Method

In this method we compute the spectrum of a vertex transitive graph in

terms of the irreducible characters of a transitive group of automorphisms.

This method is new as far as we know. We apply this method to some

examples.

As before I' is a simple connected graph with vertex set V. Let G be a vertex
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transitive group of automorphisms of I'. Let Uy, ..., U be the irreducible
modules of G with corresponding characters xi, ..., xs. Let Fy, ..., E; be the
eigenspaces of a with corresponding eigenvalues Aq, ..., A;. Let m;; be the

multiplicity of U; in Fj;.

Theorem 4.4.1. Let G be a group of automorphisms of the graph I' which
acts transitively on V- = V(I'). Consider 7(g) := tra(ga) for g € G where
a is the adjacency map of T'. Then 1(g) is a class function and (T, x;) =
23:1 m;;\;. If the permutation action of G on V' is multiplicity-free then
the following hold

(i) Every eigenvalue of T' is equal to (T,x;) for some i with multiplicity of

xi(la)-

(11) T is singular if and only if > xi(1) < |V| where the sum runs over all
characters x; with (7, x;) # 0.

COMMENTS: 1. It is clear that 7(¢g) = tra(ga) is the number of times a

vertex v € V' is adjacent to its image v9 under g. In particular, 7(15) = 0.

(2) A permutation character v of G is multiplicity-free if and only if each
irreducible character of G appears with multiplicity < 1 in ¢. In particular,

if 1 is multiplicity-free then G is transitive.

(3) As before G, is transitive on the vertex set V of I'. Therefore the
permutation representation of G on V is a sub-representation of the
regular representation. Therefore >, ,m;; < dim(U;) for all i. For
instance, if G is abelian then all non-zero eigenvalues are of the form

A; = (7, x;) for some 1.

(4) IfT' = Cay(G, H) where H is a normal connecting set of G then (7, x;) =

m;\; where ); is an eigenvalue of I" and m; is the dimension of U;. Here the

multiplicity of ); is m?. Since by [Theorem 4.1.6| we have that U; appears in

CV with multiplicity m; and so on m;U; appears in one eigenspace.
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(5) We consider the case where the permutation character ¢ of G is not
multiplicity free. Let r be the multiplicity of x; in . Define
7!(g) = tra(alg) for some [ € N. Then, using the same ideas as in the proof

of the theorem, we have
t
Y omih = (Tx)
j=1

t
ij,i)\? = (7% xa)
=1

t :
> ompN = (7o)
j=1
(4.4.1)
where r < m,;. These are additional equations to determine the spectrum
of I'. Please see the example of the Petersen graph with the General Affine
Group.

Proof of [ITheorem 4.4.1: As before let CV' be the vertex module of I' and

a be the adjacency map of T

First we show that 7(g) is a class function. Note by |[Proposition 3.4.1] we

have that ah~tgh = h™'agh for h € G. Since

tra(ah~'gh) = tra(h 'agh)
= tra(aghh™")

= tra(ag)

we have that 7(g) = tra(ag) is a class function. So we can write 7 in the

following shape
7(9) = (7(9), x1(9))x1(g) + .. + (7(9), xs(9))xs(9) (4.4.2)

as X1, ---, Xs is an orthonormal basis of the vector space of all class functions.

Let 7y, ..., m be the projections m;: CV — CV with 7;(CV) C E;. Since G
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preserves eigenspaces and commutes with the 7; (in both cases as G
commutes with «) we have gam; = g\;m; = \jgm;. Since m + ... + m = id

we have
<7-7 X’L> = <tra(@g)7 X1>

- (Z tra(gam;), xi(g))
- Z Aj(tra gm;, xi(9))
= Z )\j mﬂ.

Note, if the permutation character of G on vertices is multiplicity-free then
0 <mj; <1 for all j,7 and for every 7 there is at most one j with mj; = 1.
Hence \; = (7, x;) for such a pair. By the same argument, \; = 0 is an
eigenvalue if and only if > x;(1) < |V| where the sum is over all characters

with (7, x;) # 0. 0

Note, if I' = Cay(G, H) and H is a normal connecting set of G, then by

[Theorem 4.1.6| we have that each irreducible G-module say U; appears in

exactly one eigenspace of I' with multiplicity of m;. Hence we conclude that

(T, x:) = \im; where \; is an eigenvalue of T' with multiplicity of m?.

In the remainder of this section we apply [['’heorem 4.4.1| to some examples.

EXAMPLE 1: Once again, let I' be Petersen graph. We determine the

spectrum of I' by the second method.

{1,2}

N

{3’4}{2,5 1,3}){4’ 2

{2,4} {1,4}
{1,5/}—{\2,3}

Figure 4.4.1: Petersen Graph
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Note, As acts transversely on V(I'). Consider 7 = tra(ag) where g € As.
Therefore the character table of A5 with the function ¢ and 7 are shown in

the [Table 4.15

la, (123) (12)(34) (12345) (13425)

g | 1 20 15 12 12

xi |1 1 1 1 1

X2 | 4 1 0 —1 —1

xs | 5 —1 1 0 0

X4 3 0 —1 € €

X5 3 0 —1 € €

¢ |10 1 2 0 0

T |0 0 4 5 5

Table 4.15: The character table of As, and 7

where € = 1(1+ /5) and e = 1(1 — V/5).

Next, represents ¢ and 7 as a linear combination of the x;. We see ¢ =
X1+ X2+ x3 and 7 = 3x1 — 2x2 + x3. We note that ¢ is multiplicity-free
and so that the spectrum of I" is 3!, —2* and 1°.

In this example G = Aj acted multiplicity freely on V. In the next example
we replace G by AGL(1,5) which is not multiplicity free.

ExXAMPLE 2: We apply [T'heorem 4.4.1| to compute the spectrum of I" using
G = AGL(1,5) = ((12345), (2354)). As we have seen that G acts transitively
on V(T'). The character table of G with the functions v, 7 and 72 are shown
in the [Table 4.16
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loaas) | (1342) | (1243) | (25)(34) | (12345)

19| 1 b} b} b} 4

X1 1 1 1 1 1

X2 1 -1 -1 1 1

X3 1 A —A -1 1

X4 1 —A A -1 1

X5 4 0 0 0 -1
P 10 0 0 2 0

T 0 2 2 4 )

72 30 * * * 5

Table 4.16: The character table of G, v, 7 and 72

where A = —FE(4) = —v/—1 = —i. Note * € N.

Next represents 1 as a linear combination of the y; for ¢« = 1,2,3,4,5. We
see ¥ = X1 + X2 + 2x5. It is clear that ¢ is not multiplicity-free. Now we
represent 7 as a linear combination of y;. We have that 7 = 3x; + x2 — x5-
Note y; and o have multiplicity of 1 in ¢ so that the coefficients of these

characters in 7 are eigenvalues of I'. However the multiplicity of x5 in v is

2. In this case [I'heorem 4.4.1| by itself is not sufficient to solve. However

using Comment 5 above we have the additional equations are shown in the

following:
Asg+ X5 = —1
Thus by solve these equations we have that A\s; = —2 and A5 2 = 1. From

the above we conclude that the Spec(T') = {3, —2%,1°}.

EXAMPLE3: Let Dg = (a,b: a® =% = 1p,,bab = a™'). Let T be the graph
I' = Cay(Dg, H) where H = {a,a’,b,a?b, a*b}.
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a’b

Figure 4.4.2: T' = Cay(Dg, H) where H = {a, a’, b, a’b, a*b}

In this example we apply [I'heorem 4.4.1|to compute the spectrum of I'. The
character table of Dg with function ¢ and 7 are shown in the [Table 4.17]

Ip, | a® | a | a® | b | ab
gl 1 1| 2] 2|3]3
X1 1 1 1 1 1
X2 1 1 1 | —-1]-1

1
1

xs | 1 | =1|-1]1]1]-1
1

X4
X5 2 211 |-1] 0
X6 2 2 | —-1]-1] 0

v | 12]0l0]0]0
oo |12]0]12

o O | o O

Table 4.17: The character table of D¢, and 7

Next represents 1 as a linear combination of the y; for i = 1,2,3,4,5,6.
We see that ¢ = x1 + x2 + X3 + X4 + 2X5 + 2x6. It is clear that v is the

regular permutation character and since H is the normal connecting set
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hence according to [['heorem 4.4.1| we have that

<7'7 Xi) = m;\;

for e = 1,2,3,4,5,6. In this case we have that 7 = 5y; — x2 + x3 — dx4 +
2x5 — 2X6. Thus we have that Spec(I') = {5, =5, —1° 1°}.
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A

Thesis Programming

In this appendix, we provide all necessary code regarding Cayley graphs

spectra and spectral decompositions. We apply these code in GAP or Maple.

A.1 Spectrum Computation with GAP

In this section, we introduce a code for computing the spectrum of Cayley
graph over a finite group. Note we apply this code in version 4.8.9 of GAP
and use the package "grape”. We list the commands to generate a finite
group. For instance, the following steps generate the dihedral group of order

24.

f:=FreeGroup("a","b");

<free group on the generators [ a, b 1>
G:=f/[f.1712,£.272,f.2%f . 1*f . 2%f .1];
<fp group on the generators [ a, b ]>

a:=g.1l;; b:=g.2;;

We use the following function to return a Cayley graph over the group G

and connecting set H.
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C:=CayleyGraph(G, [H]);

Now we apply the following code to compute the spectrum of C.

# Generate empty list
M:=[];
# n is the number of vertices of C
n:=Length(Vertices(C));
i:=1;
while i <= n do
# L generates the vector which represents the set of the vertices of C
L:=Vertices(C);
# L is the column vector representing the set of vertices that are adjacent
to vertex i
for j in L do

if j in Adjacency(C,i) then

L[j]:=1;
else
L[j]:=0;
fi;

od;

# Add this column to the list M

Add(M,L);

i:=1+1;

od;

# M is the adjacency matrix of the graph C

M;

# Computing the spectrum of C over n"{th} Cyclotomic field

Eigenvalues(CyclotomicField(n) ,M);



Appendix A: Thesis Programming 103

A.2 Spectrum computation with Maple

In this section, we provide a code for Maple to compute the spectrum of a
Cayley graph over a cyclic group C,,. In this code we choose H arbitrary
by the choosing function. For each choice we compute the spectrum of
Cay(G, H). For this code we need to load the packages combinat and linear
algebra.

Loading combinat
Loading LinearAlgebra
# calculate eigenvalue of the adjacency matrix of a cayley graph
CayleyEigenvalue := proc (s, H, p)
local k, t, nl1, i;

Dimension(H) ;

nl

t

0;
for i to nl1 do

k := H[i];

# t is the eigenvalue Cayley graph
t := t+exp((2*I)*k*s*Pi/p)
end do;
return t
end proc;
n:=[C_nl;
f:=3j>j:
# Create a vector with respect to f

Vector(n-1, f);

=
I

Dimension(w) ;

=]
I

ceil((m/2)) is the smallest integer greater than or equal to (m/2)

#

k := ceil((m/2));

# Creating a vector of dimension k with respect to f
Z

:= Vector(k, f);
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# create the matrix M where its rows are the combinations of size |H|/2

M := Matrix(choose(k, |HI|/2));
1 := RowDimension(M);
A := Matrix(n, 1);

for i to 1 do
h := M[i]-" n/2;
# remove zeros from h

remove [flatten] (t -=> t = 0 , h);

r :

R :

r+°n/2;
# H1 is closed under the inverses
H1 := <M[i] In-" R>;
H := convert(Hl, Vector);
for j from 0 to n-1 do
A(j+1, i) := CayleyEigenvalue(j, H, n):
end do
end do:
# A is a matrix where its columns are the spectrum of Cay(C_n,H_1)

A;



	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Vector Space and Linear Maps
	Representation Theory
	Graph Theory

	Graphs and their Maps
	Graphs and their Adjacency Map
	 The Projection Maps onto Eigenspaces 
	Eigenvalue Inequalities
	Groups of Automorphisms and Eigenspaces
	 Singular Graphs in General and Applications

	Vertex Transitive Graphs
	Cayley Graphs 
	Representations and Spectrum

	Singular Cayley Graphs
	Cayley Graphs over Cyclic Groups

	The First Method
	The Second Method

	Appendices
	Thesis Programming
	Spectrum Computation with GAP
	Spectrum computation with Maple


