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Abstract

Let Γ be a simple graph on a finite vertex set V and let A be its adjacency

matrix. Then Γ is said to be singular if and only if 0 is an eigenvalue of A.

The nullity (singularity) of Γ, denoted by null(Γ), is the algebraic

multiplicity of the eigenvalue 0 in the spectrum of Γ. In 1957, Collatz and

Sinogowitz [57] posed the problem of characterizing singular graphs.

Singular graphs have important applications in mathematics and science.

In chemistry the importance of singular graphs lies in the fact that a

singular molecular graph, with vertices formed by atoms, edges

corresponding to bonds between the atoms in the molecule, often is

associated to compounds that are more reactive or unstable. By this

reason, the chemists have a great interest in this problem. The general

problem of characterising singular graphs is easy to state but it seems too

difficult at this time. In this work, we investigate this problem for graphs

in general and graphs with a vertex transitive group G of automorphisms.

In some cases we determine the nullity of such graphs. We characterize

singular Cayley graphs over cyclic groups. We show that vertex transitive

graphs where |V | is prime are non-singular. The relationship between the

irreducible representations of G and the eigenspaces of Γ is studied.
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1

Introduction

Let Γ be a graph on the finite vertex set V of size n, and let A be its

adjacency matrix. Then Γ is singular if A is singular. The spectrum of Γ

consists of all eigenvalues λ1, ..., λn of A and so Γ is singular if and only if

0 belongs to the spectrum of Γ. The nullity (singularity) of Γ, denoted by

null(Γ), is the algebraic multiplicity of the eigenvalue 0 in the spectrum of

Γ. Through this thesis all graphs are undirected, simple and finite.

There are applications of graph spectra and singularity in the representation

theory of permutation groups. In physics and chemistry, nullity is important

for the study of a molecular graph stability, see Section 5 of Chapter 3. The

nullity of a graph is also important in mathematics generally since it is

relevant for the rank of the adjacency matrix.

In this thesis, we investigate singular graphs. Collatz and Sinogowitz [57]

posed the problem of characterizing all graphs with zero nullity. These

are the non-singular graphs. In particular, this research could begin with

examining the rich literature on graph spectra. We refer for instance to [11],

[16] and [37]. Graph theorists started to investigate this problem in special

classes of graphs which include trees, cycles, paths, line graphs of a tree,

bipartite graphs, circulant graphs, graphs with cut-points, directed graphs,

graphs with one cycle, graphs with exactly two cycles and others. We give

a short survey on graph singularity at the end of this introduction.
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Our aim is to develop some general theory on graph nullity. We develop

an algebraic language for this problem by representing the graph and the

adjacency relation by a vector space CV and an adjacency map

α : CV → CV.

The nullity of Γ essentially concerns the nullity of α.

Some of our main results are of the general type. For instance, in

Theorem 3.5.9 we show that singular graphs can be characterized by a

Balance Condition on the vertex set. We also have some general comments

on the nullity of α for bipartite graphs. We investigate the nullity of α for

L(Γ) (line graph) and Γ (graph complement), see Corollary 3.5.5 and

Corollary 3.5.7 respectively. We study the nullity of a sub-graph of Γ in

the terms of nullity of Γ, see Proposition 3.5.8.

As before Γ is a graph with finite vertex set V. A permutation g of V is an

automorphism of Γ if the pair of vertices (ug, vg) forms an edge in Γ if and

only if the pair of vertices (u, v) forms an edge in Γ. Here ug is the image of

u under the action of g. The set of all automorphisms of Γ forms a subgroup

of the symmetric group on V, called the automorphism group of the graph

Γ. It is denoted by Aut(Γ), for more details see Section 3 of Chapter 2. A

graph Γ is vertex transitive if Aut(Γ) acts transitively on V.

A particular class of vertex transitive graphs is the so-called Cayley

graphs. These are denoted by Cay(G,H) where G is an arbitrary group

and H is a connecting set in G; see the definition in Section 1 of

Chapter 4. Cayley graphs are vertex transitive by construction. But the

converse is not true, see [8] as a reference. For example, the Petersen

graph is vertex transitive but not a Cayley graph. In fact, the Petersen

graph is the smallest vertex transitive graph which is not a Cayley graph,

see [45] as a reference. The complete graph Kn is an example of a vertex

transitive graph with automorphism group Sym(n), the symmetric group
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of degree n. Another example of a vertex transitive graph is the cycle

graph of order n. Its automorphism group is the dihedral group Dn of

order 2n.

The main body of our work concerns graphs which have a transitive group

G of automorphisms where G is a subgroup of the automorphism group

of a graph. In this situation the singularity question can be discussed in

terms of the representation theory of G. We first concentrate on the Cayley

graphs and the results for Cayley graphs include the fact that Cay(G,H)

is singular if H is a union of right cosets of a subgroup K 6= {1G}, see

Corollary 4.2.6.

The next important case concerns the situation where H is a normal

connecting set, that is Hg = gH for all g ∈ G. Here the singularity

problem can be discussed in terms of the irreducible characters of G. In

fact, we have several eigenvalue formula in terms of characters, see

Theorem 4.1.6. We also have such an eigenvalue formula when Γ is a

vertex transitive graph, see Theorem 4.4.1.

The material in the thesis is organised as follows: In Chapter 2 we give a

brief introduction to the methods and concepts from linear algebra that are

relevant for us. Here we also discuss the basic ideas from group and graph

theory which are used. Indeed these topics are considered as a regular part

of the standard literature on Graph Spectra.

In Chapter 3 we study graphs and their linear maps. We also discuss the

representation theory of finite groups that is related to our problem. We

introduce the projection maps onto the eigenspaces of α and discuss their

properties. We use these properties to study the spectral decomposition

of the elements of CV. We determine conditions for a graph in general to

be singular. The main goal of this Chapter is to go through the ideas and

notations of the graph spectra and we also include some results in this area

to be used later, mostly in Chapter 4.
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In Chapter 4 we investigate the spectrum of Cayley graphs and that of

vertex transitive graphs. Our aims in this Chapter is to extend the results

of Lovász [43], Zieschang [59], M.Ram [47], Diaconis [19] and Babai [6] to

find out sufficient conditions for a vertex transitive graph to be singular.

We list several results on the singularity of such graphs, see Theorem 4.2.2,

Theorem 4.2.3 and Theorem 4.3.1. We also specialize to Cayley graphs on

abelian groups. We investigate the singularity of such graphs. We show

that vertex transitive graphs with |V | is a prime number are non-singular,

see Theorem 4.2.16.

All results from the literature are fully referenced. Where no reference is

given the result is new to the best our knowledge. Occasionally we include

new proofs that are based on our techniques.

We conclude this introduction with survey about the existing literature on

singular graphs. Sookyang, Arworn and Wojtylak [55] characterize non-

singular cycles, paths and trees. They proved that a cycle on n vertices

is non-singular if and only if n is not divided by 4. Similarly, a path on n

vertices is non-singular if and only if n is even and a tree on n vertices is non-

singular if and only if n is even and contains a sesquivalent spanning sub-

graph (a sesquivalent graph is a simple graph whose components are single

edges or cycles). Fiorini, Gutman and Sciriha [21] discuss the maximum

nullity of trees. They proved that the maximum nullity of a tree on n

vertices with maximum degree ∆ is ((n − 2) · dn−1
∆
e) where dxe denote

the smallest integer a ≥ x. Furthermore, they showed how trees with such

maximum nullity can be constructed. Also Li and Chang [42] characterize

trees with maximum nullity. Cvetković, Dragoš and Gutman [17] first found

that the nullity of a tree can be given in explicit form in the terms of the

matching number of the tree. The nullity of the line graph of a tree is

studied in [50] and [44]. In both papers they proved that the multiplicity

of the eigenvalue 0 in such graphs is at most 1 and showed that every tree

whose line graph is singular has an even order (here order means the number
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of the vertices of a graph). Ashraf and Bamdad [3] determine the possible

order for a graph to be non-singular.

Fan and Qian [20] characterize bipartite graphs on n vertices with nullity

n−4 and regular bipartite graphs on n vertices with nullity n−6. Moreover,

they showed that the nullity set of bipartite graphs on n vertices is {n −

2l : l = 0, 1, ..., dn
2
e}. Bapat [7] showed that the nullity of the line graph

of a bipartite graph is at most 1 when the bipartite graph has an odd

number of spanning trees and also proved that the bipartite graph with this

property has an even number of vertices. Leonor [2] determine necessary and

sufficient conditions for two classes of circulant graphs which are Cr
n (rth-

power graph on n vertices) and C(2n, r) (the rth-power graph of the cycle

graph on 2n vertices) to be non-singular. Lal and Reddy [38] give sufficient

conditions for a few classes of known circulant graphs and/or digraphs to

be singular.

Gong and Xu [25] investigate the nullity of a graph with cut-points.

Moreover, they proved that the nullity of the line graph of a connected

graphs is at most l + 1 when the graph has l induced cycles. Cheng and

Liu [14] characterize graphs on n vertices with nullity n − 2 and n − 3.

Sciriha [51] determine necessary and sufficient conditions for a graph to be

singular in terms of admissible induced sub-graphs. Chang, Huang and

Yeh [12] and [13] characterize graphs of order n with nullity n − 4 and

n − 5 respectively. Siemons and Zalesski [54] discuss singular Cayley

graphs over finite simple groups and alternating groups in particular.

They suggested some approaches for constructing singular Cayley graphs

for finite simple groups.

Hu, Xuezhong and Liu [31] give the nullity set of bi-cyclic graphs on n

vertices for n ≥ 6, that is {0, 1, 2, ..., n − 4} and characterise such graphs

with maximum nullity. Li, Chang and Shiu [41] also give the nullity set of

two kinds of bi-cyclic graphs and characterize such graphs with maximum
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nullity. Xuezhong and Liu [58] show that the nullity set {0, 1, 2, ..., n − 4}

for uni-cyclic graphs on n vertices for n ≥ 5. Moreover, they characterize

the uni-cyclic graphs with maximum nullity. Guo, Yan and Yeh [28]

compute the nullity of uni-cyclic graphs in terms the matching number.

Moreover, they determine conditions for uni-cyclic graphs to be

non-singular and characterize uni-cyclic graphs with maximum nullity.

Gong, Fan and Yin [24] express the nullity of graphs with pendant trees in

terms of its sub-graphs. Furthermore, they characterize uni-cyclic graphs

with a given nullity. Nath and Sarma [48] determine sufficient and

necessary conditions for acyclic and uni-cyclic graphs to be singular and

they showed that the characterization of such graphs can be used to

construct a basis of the null space.

Some graph theorists have a great interest in calculating the determinant

of the adjacency matrix of a graph. Clearly, the determinant of this matrix

is 0 if and only if the graph is singular. For instance, Abdollahi [1] discuss

the set of all determinants of the adjacency matrix of a graph on at most 11

vertices. Moreover, he evaluate the determinants of the adjacency matrix of

a graph with exactly two cycles. Shengbiao [53] compute the determinants

of the adjacency matrix of a connected graph with exactly one cycle. Harary

[29] introduce a procedure for computing the determinant of the adjacency

matrix of a graph in terms of spanning sub-graphs.



2

Preliminaries

In this chapter, we introduce the basic notations and definitions that are

needed in this thesis. We deal with vector space, representation theory of

a group and graphs. Note all graphs and groups in this work are finite.

2.1 Vector Space and Linear Maps

In this section we give the basic ideas of linear algebra. All these

definitions have been taken from [5]. Let F be a field of characteristic 0

such as Q,R and C. Let W and U be two finite-dimensional vector spaces

over F with non-degenerate inner products 〈, 〉. The set of all linear maps

from W to U is denoted by Hom(W,U). Suppose ϑ ∈ Hom(W,U). If there

is some ϑ∗ ∈ Hom(U,W ) for which

〈ϑ(w), u〉 = 〈w, ϑ∗(u)〉 (2.1.1)

for all w ∈ W and u ∈ U then ϑ∗ is said to be the unique adjoint of ϑ. A

linear map ϑ is symmetric if and only if W = U and ϑ = ϑ∗.

Let ϕ ∈ Hom(W,W ). Let W be a subset of W . If W is itself a vector

space then W is said to be a subspace of W. We shall say that W is an

invariant subspace of ϕ if and only if ϕ(w) ∈ W for all w ∈ W. In this case

ϕ |W : W −→ W is the restriction of ϕ to the subspace W. The kernel of

ϕ is defined as ker(ϕ) = {w ∈ W |ϕ(w) = 0}. The dimension of ϕ(W ) is
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called the rank of ϕ.

A scalar λ ∈ F is called an eigenvalue of ϕ if there exists a non-zero vector

w ∈ W such that

ϕ(w) = λw.

This is equivalent to (ϕ−λI)w = 0 and the vector w is called an eigenvector

of ϕ corresponding to the eigenvalue λ. The characteristic polynomial of ϕ

is the polynomial

Cϕ(x) = det(Mϕ − xI).

Here I is the identity matrix and Mϕ is the matrix associated to ϕ for

some basis. It is clear that the roots of the characteristic polynomial of ϕ

equal the eigenvalues of ϕ. The algebraic multiplicity of the eigenvalue λ is

the largest positive integer n for which (x − λ)n is a factor of the

characteristic polynomial. The eigenspace of ϕ corresponding to

eigenvalue λ is the vector space Eλ = ker((Mϕ − λI). Hence, the

eigenspace Eλ is the span of all eigenvectors corresponding to the

eigenvalue λ. Thus from the above each eigenspace Eλ is a subspace of W .

The geometric multiplicity of eigenvalue λ is the dimension of its

eigenspace. The spectrum of ϕ is the set of its eigenvalues together with

their algebraic multiplicities. In general, over C the algebraic multiplicity

is bigger or equal to the geometric multiplicity, and they are the same if

and only if the matrix can be diagonalized. Furthermore, this property

hold for all matrices in this thesis, see Lemma 2.1.4.

Lemma 2.1.1. [33] The determinant of a direct sum matrix is the product

of the determinant of the constituent matrices.

Theorem 2.1.2. [30] Let A be an m×n matrix. Let B is a matrix created

by deleting rows and / or columns of A, then rank(B) ≤ rank(A).

Theorem 2.1.3. [30] Let A be an m × n matrix. Let P,Q be invertible

matrices of size m×m and n× n respectively. Then
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(i) rank(AQ) = rank(A)

(ii) rank(PA) = rank(A)

(iii) rank(A) = rank(At).

Lemma 2.1.4. [23] Let M be a real symmetric n× n matrix. Then

(i) All eigenvalues are real.

(ii) The eigenvectors of distinct eigenvalues are orthogonal.

(iii) There are matrices L and D such that LLT = LTL = In and

LMLT = D, where D is the diagonal matrix of eigenvalues of M. In

particular, we have that the algebraic multiplicity and the geometric

multiplicity of an eigenvalue of M are equal.

2.2 Representation Theory

We give some basic definitions and theorems in representation theory and

group theory. All groups considered are finite. Our notations and definitions

of groups and their representation have been taken from [32]. Let G be a

finite group. We use 1G to denote the identity element of G. We use {1G}

to denote the trivial subgroup.

For all x, y ∈ G we say that x is conjugate to y in G if y = g−1xg for some

g ∈ G. The set of all elements conjugate to x in G is Cl(x) = {g−1xg : g ∈

G} and is called the conjugacy class of x in G.

A generating set of G is a subset of G so that every element of the group

can be expressed as the combination (under the group operation) of finitely

many elements of the subset. If S is a subset of G thus the subgroup 〈S〉

generated by S is the smallest subgroup of G containing every element of S;

equivalently 〈S〉 is the subgroup of all elements of G that can be expressed
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as a finite product of the elements of S. If G = 〈S〉 then we say S generates

G and the elements in S are called group generators. Let g ∈ G and r be

the least positive integer such that gr = 1. Then r is the number of the

elements in 〈g〉 , here 〈g〉 = {1, g, g2, · · · , gr−1}. We denote to the order of

the element g by ord(g). If G = 〈g〉 for some g ∈ G then we call G a cyclic

group.

Let X be a finite set. Then the map φ : X × G → X is an action, and

we say G acts on X, if φ(x, g) ∈ X for all g ∈ G, x ∈ X and the following

conditions hold for all x ∈ X :

(1) φ(x, 1G) = x

(2) φ(x, gh) = φ(φ(x, g), h)

for all g, h ∈ G. Sometimes, when it is clear what action we have we write

xg = xg = φ(x, g) for all x ∈ X and g ∈ G. A one-to-one mapping from

a finite set onto itself is called a permutation. A permutation group is a

group whose elements are certain permutations acting on the same finite

set called the object set. Note the group operation is the composition of

mappings. Let X be the object set and G be the permutation group. Then

|G| is the order of the group and |X| is the degree of the group. The set of

all permutations of X is denoted by Sym(X) or Sym(n) if |X| = n. Here

Sym(X) is the symmetric group of degree n where its elements are the set

of all permutations on n symbols. Therefore a permutation group of the

object set X is a subgroup of Sym(X).

The orbit of an element x ∈ X is defined as

xG = {xg | g ∈ G}.

Then Gx = {g ∈ G | xg = x} is called the stabilizer of x. A group action

X×G→ X is transitive if it is possesses only a single orbit. In other words,

for every x, y ∈ X there is g ∈ G such that xg = y. A group G acts semi-

regularly on X if Gx = 1G for all x ∈ X. A group G is regular if it is semi-
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regular and transitive. An automorphism of a group G is a bijective map σ

from G to itself that satisfies the following condition: σ(gh) = σ(g)σ(h) for

all g, h ∈ G. We mean by this σ is a group homomorphism.

Theorem 2.2.1. (Orbit-Stabilizer Theorem)[23, Lemma 2.2.2] Let G be

a permutation group acting on a set V and let u be a point in V . Then

|G| = |uG||Gu|.

Let C be the field of complex numbers. Let G be a finite group and W be

a finite dimensional vector space over C. A representation of G over C is a

group homomorphism ρ from G to GL(W ). Here GL(W ) is the group of all

bijective linear maps β : W → W. The degree of the representation ρ is the

dimension of the vector space W. We also say that ρ is a representation of

degree n over C. So if ρ is a map from G to GL(W ) then ρ is a representation

if and only if

ρ(gh) = ρ(g)ρ(h)

for all g, h ∈ G. A representation ρ of a group G is called faithful if ρ is a

one to one function on G.

We denote the group algebra of G over C by CG. Then CG is the vector

space over C with basis G and multiplication defined by extending the group

multiplication linearly. Thus CG is the set of all formal sums f =
∑

g∈G cgg

where cg ∈ C. Identifying
∑

g∈G cgg with the function g maps to cg we

view CG as the space of all C-valued function on G. If we put g = 1.g

for all g ∈ G so G ⊆ CG. For x, y ∈ G; we define an inner product as

follows: 〈x, y〉 = 1 if x = y and 〈x, y〉 = 0 otherwise, only holds for the

basis elements. Thus G becomes an orthonormal basis of CG. This turns

CG into a C-algebra of dimension |G|.

Let W = CG. The right regular representation is a map (in fact

homomorphism) ρr : G → GL(W ) of G given by ρr(h)(g) = gh for each

h ∈ G and all g ∈ G. The left regular representation ρl : G→ GL(W ) of G

is given by ρl(h)(g) = h−1g for each h ∈ G and all g ∈ G.
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Suppose ρ : G → GL(W1) and σ : G → GL(W2) are two representations

of G over C. Then we say that ρ is equivalent to σ if and only if there is

a linear isomorphism T from W1 to W2 such that Tσ(g) = ρ(g)T for all

g ∈ G.

A CG-module is a vector space W over C if an action (w, g)→ wg ∈ W (w ∈

W, g ∈ G) is defined satisfying the following conditions:

(1) wg ∈ W

(2) (wg)h = wgh

(3) (λw)g = λwg

(4) (u+ w)g = ug + wg

for all u,w ∈ W,λ ∈ C and g, h ∈ G. We use the letters C and G in the

name CG-module to indicate that W is a vector space over the field C and

that G is the group from which we are taking the elements g to form the

products wg(w ∈ W ). A subset W of W is said to be an CG-sub-module

of W if W is a subspace and wg ∈ W for all g ∈ G and for all w ∈ W.

An CG-module W is said to be irreducible if it is non-zero and it has no

CG-sub-modules other than {0} and W. If W is an CG-module and U is an

irreducible CG-module then we say that U is a composition factor of W if W

has an CG-sub-module which is isomorphic to U . Two CG-modules W and

U are said to have a common composition factor if there is an irreducible

CG-module which is a composition factor of both W and U .

A representation ρ : G → GL(W ) is irreducible if the corresponding CG-

module W given by wg = wρ(g) where w ∈ W, g ∈ G is irreducible. If we

restrict ρ to an irreducible sub-module W we will get

ρW : G→ GL(W )

which is a representation of G on W called the restricted representation or
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sub-representation of ρ on W. An CG-module W is said to be completely

reducible if W = W1 ⊕ ... ⊕ Ws where each Wi is an irreducible

CG-sub-module of W. Then the representation ρ : G → GL(W ) is

completely reducible and it is a direct sum of irreducible representations.

Then we write ρ as ρ = ρW1 ⊕ ...⊕ ρWs . If Bi, i = 1, ..., s is an ordered basis

for Wi, i = 1, ..., s then a basis of W is B = B1 ∪ ... ∪ Bs and the relation

between the corresponding matrix representation of ρ and ρWi
, i = 1, ..., s

is as follows:

ρ(g) =



ρW1(g) 0 . . . 0

0 ρW2(g) . . . 0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

0 0 . . . ρWs(g)


.

Theorem 2.2.2. (Maschke’s Theorem)[32, Theorem 8.1] If G is a finite

group and ρ is a representation of G over C then ρ is completely reducible.

The character associated with ρ is the function χρ : G → C denoted by

χρ(g) = tra(ρ(g)) for all g ∈ G. Here tra(ρ(g)) is the trace of the

representation matrix. The degree of the character is the degree of the

representation and it is equal to χρ(1G). It is clear that characters are

class functions (functions of G which are constant on all conjugacy

classes,) see [32, Proposition 13.5] and it is a deep result of representation

theory that the set of all irreducible characters is a basis of the vector

space of all class functions on G; see Theorem 2.2.12. Let θ and ϑ be two

class functions of G. Then the inner product of θ and ϑ is

〈θ, ϑ〉 = 〈ϑ, θ〉 =
1

|G|
∑
g∈G

θ(g)ϑ(g−1).

A character of degree one is called a linear character. We say that the
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character is irreducible if the corresponding representation is irreducible. If

N is a non-trivial normal subgroup of G and χ̃ is a character of G/N, then

the character of G which is given by

χ(g) = χ̃(gN)

for all g ∈ G is called the lift of χ̃ to G. The character table of G is a

square matrix whose rows are indexed by the irreducible characters of G

and whose columns are indexed by the conjugacy classes in G. The entries

of the matrix are the characters evaluated for each conjugacy class.

A character is faithful if Ker(χ) = 1G where

Ker(χ) = {g ∈ G |χ(g) = χ(1G)}.

Let X = {x1, x2, ..., xn} and let G be a subgroup of Sym(X). The CG-

module W with basis {x1, ..., xn} and the G action g : xi 7→ xgi for g ∈ G.

is a permutation module for G over C. The character of the permutation

module is the number of fixed points of X under the action of g. We denote

this by ψ, so ψ(g) is the number of xi such that xgi = xi.

We list some theorems which we will use later.

Theorem 2.2.3. (Sylow’s Theorem)[32, Theorem 30.9] Let p be a prime

number, and let G be a finite group of order pab, where a, b are positive

integers and p does not divide b then

(1) G contains a subgroup of order pa; such a subgroup is called a Sylow

p-subgroup of G.

(2) All Sylow’s p-subgroups are conjugate in G.

(3) The number of Sylow p-subgroups is congruent to 1 modulo p.

Theorem 2.2.4. [22, 49] Every cyclic group G is isomorphic either to the

additive group Z or to the additive group Z/nZ for some positive integer n.
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Theorem 2.2.5. [32, Theorem 22.11] If χ is an irreducible character of G

over C then χ(1G) divides |G|.

Theorem 2.2.6. (Schur’s Lemma in the terms of representations)[32,

Lemma 9.1] Let V and W be irreducible CG-modules.

(1) If ϕ : V −→ W is a CG-homomorphism then either ϕ is a

CG-isomorphism or ϕ(v) = 0 for all v ∈ V .

(2) If ϕ : V −→ V is a CG-isomorphism then ϕ = λidV where λ ∈ C.

Theorem 2.2.7. [32, Proposition 9.5] If G is a finite abelian group then

every irreducible CG-module has dimension 1.

Proposition 2.2.8. [32, Proposition 11.3] Let W and U be CG-modules

and suppose that HomCG(W,U) 6= {0}. Then W and U have a common

composition factor.

Theorem 2.2.9. [32, Corollary 11.6] Let U a CG-module with U = U1 ⊕

...⊕Us, where each Ui is an irreducible CG-module. Let W be any irreducible

CG-module. Then the dimension of HomCG(U,W ) and HomCG(W,U) are

both equal to the number of CG-module Ui such that Ui ∼= W .

Theorem 2.2.10. [32, Theorem 14.24] Let U and W be CG-modules with

character χ and ψ, respectively. Then dim(HomCG(U,W )) = 〈χ, ψ〉.

Theorem 2.2.11. [32, Theorem 11.9] Suppose that

CG = U1 ⊕ ...⊕ Ur

is a direct sum of irreducible CG-modules. If U is any irreducible CG-

module then the number of CG-modules Ui with Ui ∼= U is equal to dim(U).

Theorem 2.2.12. [32, Corollary 15.4] The irreducible characters

χ1, χ2, ..., χs of the group G form a basis for the vector space of all class

functions on G. Indeed, if ϕ is a class function, then

ϕ =
s∑
i=1

aiχi
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where ai = 〈ϕ, χi〉 for 1 ≤ i ≤ s.

2.3 Graph Theory

In this section we give the basic definitions and basic ideas of graph theory.

These can be found in any book or lecture notes on graph theory, see as a

reference [4] and [27]. An undirected graph Γ = (V,E) consists of a set V

of vertices and a set E of unordered pairs of vertices. Two vertices v and

w are said to be adjacent if and only if {v, w} ∈ E. The endpoints of the

edge {v, w} are v and w. We use v ∼ w to say that there is an edge between

v and w. A loop is an edge from a vertex to itself. A graph with no loops

is called simple. Note, in this thesis Γ is a simple graph. The adjacency

matrix of Γ is the integer matrix with rows and columns indexed by the

vertices of Γ, such that the Avw-entry is equal to 1 if and only if v ∼ w

and 0 otherwise and it is denoted by A. The spectrum of Γ consists of all

eigenvalues λ1, ..., λn of A where |V | = n.

The complement graph Γ̄ of Γ is a simple graph with vertex set V in which

two vertices are adjacent if and only if they are not adjacent in Γ. The order

of Γ is the number of vertices of Γ and the size of Γ is the number of its

edges.

Let v ∈ V . The degree of v denoted by d(v) is the number of vertices which

are adjacent to v. A graph Γ is said to be k-regular if and only if every

vertex of Γ has the same degree k. A graph Γ of order n is said to be a

complete graph, and is denoted by Kn, if and only any two distinct vertices

are adjacent. The complement of the complete graph is the null graph. A

graph Γ is said to be bipartite if we can partition the vertex set into two

parts, say V1 and V2, so that each edge has exactly one end point in V1

and one end point in V2. A complete bipartite graph is a bipartite graph in

which each vertex in V1 is joined to each vertex in V2 by just one edge and
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is denoted by Kn,m where |V1| = n and |V2| = m.

A walk in Γ is a finite sequence of edges of the form v0v1, v1v2, ..., vm−1vm

in which any two consecutive edges are adjacent or identical. We call v0 is

the initial vertex and vm is the final vertex of the walk. A path is a walk

in which all vertices and edges are distinct. A cycle is a closed path with

at least three edges such that the initial vertex and the final vertex are the

same. The length of a cycle or path is the number of vertices in this cycle or

path. A connected graph is a graph in which any two vertices are connected

by a path otherwise it is a disconnected graph. The distance between two

vertices is the length of the shortest path between these vertices.

The line graph of Γ denoted by L(Γ), is the graph whose vertex set is the

edge set of Γ. Two vertices are adjacent in L(Γ) if and only if these edges

are incident in Γ (that is, the two edges have a same endpoint). A strongly

regular graph with parameters (n, k, λ, µ) is a graph on n vertices which is

regular with degree k and has the following properties:

(1) any two adjacent vertices have exactly λ common neighbours;

(2) any two non adjacent vertices have exactly µ common neighbours.

Lemma 2.3.1. [23, Lemma 10.2.1] A connected regular graph with exactly

three distinct eigenvalues is a strongly regular.

A graph X is sub-graph of a graph Γ if each of its vertices belong to V (Γ)

and each of its edges belongs to E(Γ). If X is a sub-graph of Γ and we have

V (X) = V (Γ) then we call X spanning subgraph and we say X spans Γ.

In this research we deal with finite connected undirected and simple graphs.

In this work a graph means a finite simple connected undirected graph.

In the remainder of this section we will give the definition and properties

of the automorphism group of a graph. We will show that for each graph

there is an associated group called the automorphism group of the graph.
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This concept established the link between group theory and graph theory.

Given a graph Γ, a permutation g of V is an automorphism if ug ∼ vg if and

only if u ∼ v for all u, v ∈ V. The set of all automorphisms of Γ under the

operation of composition of mappings forms a subgroup of the symmetric

group on V, called the automorphism group of Γ. It is denoted by Aut(Γ).

Thus each automorphism of Γ is a one-to-one and onto relations of the

vertices of Γ which preserve the adjacency and non adjacency. This implies

that an automorphism maps any vertex onto a vertex of the same degree.

The identity of the automorphism group of Γ is denoted by 1Aut(Γ) = 1.

Lemma 2.3.2. [23, Lemma 1.3.3] If Γ is a graph then Aut(Γ) = Aut(Γ).

A graph is rigid if it admits only the trivial automorphism. The

automorphism group of the complete graph Kn on n vertices is Sym(n).

Note, any permutation of its n vertices is in fact an automorphism for

adjacency is never lost. The automorphism group of the complete

bipartite graph Kn,m where n 6= m is Sym(n) × Sym(m) since the n

vertices in the first class can be permuted by n! ways and similarly m! for

the second class. On the other hand, there is no automorphism that can

be obtained from swapping a vertex from the first class and a vertex from

the second class because n 6= m. Therefore the automorphism group of

complete bipartite graph where n 6= m is Sym(n)× Sym(m). However the

automorphism group of the complete bipartite graph Kn,n is

(Sym(n)× Sym(n))o Z2.

We say that Γ is a vertex transitive graph if Aut(Γ) acts transitively on

V . In other words, a graph is a vertex transitive graph if the action of its

automorphism group on the vertex set has only one orbit. This means that

for any two vertices u and v of Γ there is an automorphism g ∈ Aut(Γ)

such that ug = v. We can conclude from the above that a vertex transitive

graph is a regular graph. Examples of a vertex transitive graphs include the

complete graph Kn and its automorphism group Sym(n). Another example
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of a vertex transitive graph is the cycle. Its automorphism group is the

dihedral group Dn of 2n elements when the cycle is of length n. Many other

examples of vertex transitive graphs arise from the Cayley graphs which we

will define in Chapter 4.

Let G be a transitive group of automorphisms of Γ. A non-emptsubset S

of V (Γ) is a block of imprimitivity for G if for any g ∈ G, either Sg = S

or Sg ∩ S = φ. Because G is transitive, it is clear that the translates of S

form a partition of V. This is called the partition associated to S. This set

of distinct translates is called a system of imprimitivity for G. Then the

group G is called imprimitive if there is system of imprimitivity with some

S in the system such that S 6= {v}, S 6= {V } for some v ∈ V. Otherwise, G

is primitive.



3

Graphs and their Maps

Let Γ be a finite graph with vertex set V and letG a group of automorphisms

of Γ. In this chapter we introduce some basic concepts and notations that

allow us to discuss the singularity problem in Γ. In particular we discuss a

vector space CV associated to the vertices of Γ and show how the adjacency

relation gives raise to a linear map

α : CV → CV.

This allows us to apply many techniques from linear algebra. We want to

develop an algebraic language to help us study the relationship between the

eigenspaces of Γ and the irreducible characters of G.

In particular, we are interested in the eigenspaces of α and the projection

maps for CV onto these eigenspaces. We use the projection maps to derive

information about the eigenvalues of the graph and we give an example

for graphs with three distinct eigenvalues. These include strongly regular

graphs. In the last section we discuss conditions for a graph to be singular.
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3.1 Graphs and their Adjacency Map

Let Γ be a finite graph with vertex set V. Two distinct vertices u, v are

adjacent, denoted by u ∼ v if and only if {u, v} is an edge of Γ. It is

convenient to introduce a vector space and an adjacency map that is

represents this graph structure.

Let C be the field of complex numbers. Let CV denote to the vector space

over C with basis V, we call this the vertex space of Γ. Its elements are the

formal sums

f =
∑
v∈V

cvv

where v ∈ V and cv ∈ C. If we have f =
∑

v∈V cvv and h =
∑

v∈V cvv then

f = h if and only if cv = cv for all v. We define

f + h =
∑
v∈V

(cv + cv)v

for all f, h ∈ CV and sf =
∑

v∈V scvv for all s ∈ C. So indeed, with these

operations CV is a vector space over C.

We can describe this vector space in another way as the set of all functions

f : V → C where we think of f =
∑

v∈V cvv as the function f : v → cv.

We define a natural inner product on CV by 〈u, v〉 = 1 if u = v and

〈u, v〉 = 0 if u 6= v, for all u, v ∈ V . In particular, we identify v = 1v so

that V is a subset of CV. Therefore V is an orthonormal basis of CV . We

put ||f ||2 = 〈f, f〉 and call ||f || the length of f.

Proposition 3.1.1. [5, Theorem 6.17] Let Γ be a finite graph with vertex

set V and let f =
∑

v∈V cvv be an element of CV. Then cv = 〈f, v〉 for all

v ∈ V.
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Proof: Let f ∈ CV with

f = cv1v1 + ...+ cvnvn. (3.1.1)

Take the inner product with vj on both sides of Equation 3.1.1. We will get

〈f, vj〉 = cvj since 〈vi, vj〉 = 1 if and only if i = j and 0 otherwise.

We define the adjacency map of Γ as the linear map

α : CV −→ CV

given on the basis V by α(v) =
∑

u∼v u for all v ∈ V . If u, v ∈ V then

〈α(u), v〉 = 〈u, α(v)〉 = 1 if u ∼ v and 〈α(u), v〉 = 〈u, α(v)〉 = 0 otherwise.

Hence, the adjacency map is symmetric for the given inner product. The

matrix of α with respect to the basis V is the adjacency matrix A = A(Γ)

of Γ.

Since A is symmetric all eigenvalues of A are real by Lemma 2.1.4. We

denote the distinct eigenvalue by λ1 > λ2 > ... > λt and let µ1, µ2, ..., µt be

their multiplicity. The spectrum of Γ consists of all eigenvalues of A,

Spec(Γ) = λµ11 , λ
µ2
2 , ..., λ

µt
t

where λµ11 indicates that λ1 has multiplicity µ1, and so on. We denote

by E1, E2, ... Et the corresponding eigenspaces. Throughout we denote the

kernel of Γ by E∗. Thus E∗ = Ei for some i where Ei is the eigenspace

corresponding to the eigenvalue 0 of Γ and E∗ = 0 otherwise.

There are important connections between eigenvalues of α and the structure

of the graph.

Theorem 3.1.2. [37, Proposition 1.48] Let Γ be a k-regular graph with n

vertices then the following hold.
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(i)We have that λ1 = k, and µ1 = 1 if and only if Γ is connected.

(ii) For each eigenvalue λi of Γ we have |λi| ≤ k.

(iii) If Γ is bipartite then the spectrum of Γ is symmetric about 0.

(iv) We have that −k is an eigenvalue of Γ if and only if Γ is bipartite.

In addition we can apply the Spectral Theorem to graphs as in the following

theorem:

Theorem 3.1.3. [23, Theorem 8.4.5](Decomposition Theorem) Let

Γ = (V,E) be a graph. Suppose that λ1 > λ2 > ... > λt are the distinct

eigenvalues of Γ and that E1, ..., Et are the corresponding eigenspaces.

Then

CV = E1 ⊕ ...⊕ Et

is the orthogonal decomposition of the vertex space of Γ. Furthermore,

dim(Ei) is the (algebraic) multiplicity µi of λi.

This means that every vector f ∈ CV can be written as

f = f1 + f2 + ...+ ft (3.1.2)

with uniquely determined fi ∈ Ei. We call the fi the orthonormal

components of f and we call

f = f1 + f2 + ...+ ft

the spectral decomposition of f. Note by Lemma 2.1.4 we have that the

components are vectors with fi perpendicular to fj if i 6= j and

||f ||2 = ||f1||2 + ...+ ||ft||2.
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3.2 The Projection Maps onto Eigenspaces

Results in this section on linear algebra have been taken from the lectures

notes on Linear Algebra by Peter Cameron1. For each i = 1, 2, ..., t we

define the projection maps πi : CV → CV so that πi(f) = fi where fi is as

above in Equation 3.1.2. In particular πi(CV ) ⊆ Ei. It is clear that πi is a

linear map. Formally the projection maps satisfy π2
i = πi, πiπj = 0 if i 6= j

and
∑t

i=1 πi = id.

Note, as the eigenvalues of πi are 0 and 1 it is clear that

tra(πi) = rank(πi) (3.2.1)

for each i. Hence, by Equation 3.2.1 and the definition of the rank we have

dim(Ei) = tra(πi). This is an instance of the following more general result.

Theorem 3.2.1. Let W be a finite dimensional vector space over the field

of complex numbers with inner product and let ϕ : W → W be a symmetric

linear map. Let λ1, ..., λt be the distinct eigenvalues of ϕ and let E1, ..., Et

be the corresponding eigenspaces. Suppose that πi are the projection maps

onto Ei where 1 ≤ i ≤ t. Then tra(πi) = dim(Ei).

The πi are the minimal idempotents associated to α. We now determine

these idempotents in terms of the eigenvalues. The following is well-known,

see for instance 2.

Proposition 3.2.2. Let λ1 > λ2 > ... > λt be the distinct eigenvalues of

the adjacency map α with spectral decomposition CV = E1 ⊕ ... ⊕ Et. Let

1 ≤ i ≤ t and let ψi : CV → CV be the map given by

ψi =
∏
j 6=i

1

(λi − λj)
(α− λj).

1https://cameroncounts.files.wordpress.com/2013/11/linalg.pdf
2http://infohost.nmt.edu/∼ iavramid/notes/mp2-5.pdf
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Then ψi = πi is the projection map πi : CV → CV associated to α.

Proof: Let f ∈ CV . By the Decomposition Theorem 3.1.3 we have f =

f1 + f2 + ...+ ft where fi ∈ Ei. We will compute

ψi(f) = ψi(f1 + f2 + ...+ ft) =
[∏
i 6=j

1

(λi − λj)
(α− λj)

]
(f1 + f2 + ...+ ft).

Note, ∏
i 6=j

1

(λi − λj)
(α− λj)(fk) =

 0 k 6= i

fi k = i.

Hence ψi(f) = fi.

Corollary 3.2.3. Let λ1 > λ2 > ... > λt be the distinct eigenvalues of

the symmetric map α with spectral decomposition CV = E1 ⊕ ... ⊕ Et. Let

1 ≤ i ≤ t and let ψi : CV → CV be the map given by

ψi =
∏
i 6=j

1

(λi − λj)
(α− λj).

Then we have that dim(Ei) = tra(ψi) for each i.

Corollary 3.2.4. Let λ1 > λ2 > ... > λt be the distinct eigenvalues of

the symmetric map α with spectral decomposition CV = E1 ⊕ ... ⊕ Et into

eigenspaces Ei. If πi : CV → CV is the projection onto the eigenspaces Ei

then α = λ1π1 + ...+ λtπt.

Proof: Let f ∈ CV . By the Decomposition Theorem 3.1.3 we have f =

f1 + f2 + ...+ ft where fi ∈ Ei. We will compute α(f) = α(f1) + ...+α(ft).

Thus α(f) = λ1f1 + ...+λtft. Note, πi(f) = fi by the previous Proposition.

Hence, α(f) = λ1π1(f) + ...+ λtπt(f).
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3.3 Eigenvalue Inequalities

As above let πi : CV −→ CV with πi(CV ) ⊆ Ei be the projection maps

onto the eigenspace Ei of Γ for i = 1, 2, ..., t. Given f ∈ CV we have that

f = f1 + ... + ft with πi(f) = fi by the Decomposition Theorem. We can

derive interesting inequalities from this decomposition. Note the Ei are

orthogonal to each other. Hence,

〈f, fi〉 = 〈f1 + ...+ ft, fi〉 = 〈fi, fi〉 ≥ 0

for i = 1, ..., t. We formulate this as a theorem.

Theorem 3.3.1. [Delsarte’s Linear Programming Bound][18] For all i =

1, 2, ..., t we have 〈f, fi〉 ≥ 0.

Delsarte’s Bound appears in the context of association Schemas. Here

however we see that the same principle applies more generally. While the

proof of this theorem is extremely simple this bound has many important

application in the theory of association schemes, see [18] as a reference. In

the rest of this section we will give a method that allows us to derive some

inequalities for the spectrum of graphs with three distinct eigenvalues.

The strengths of this method lies in the fact that we have an explicit

formula for the projective maps.

Example: Let Γ = (V,E) be a k-regular graph with three distinct

eigenvalues k = λ1 > λ2 > λ3. Let A be its adjacency matrix. By the

Decomposition Theorem 3.1.3 we have

CV = E1 ⊕ E2 ⊕ E3

where Ei = πi(CV ). We develop an inequalities for these eigenvalues, using

Delsarte’s Bound above. Let v ∈ V. Since α is a symmetric map so is πi for
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i = 1, 2, 3. Hence

〈π2(v), π2(v)〉 = 〈π2
2(v), v〉

= 〈π2(v), v〉

= R2〈(α− k)(α− λ3)v, v〉

where R2 = (λ2 − k)−1(λ2 − λ3)−1. Note 〈π2(v), π2(v)〉 ≥ 0. Since

k > λ2 > λ3 we have that R2 < 0. Hence
0 ≥ 〈(α− k)(α− λ3)v, v〉 = 〈(α− k)v, (α− λ3)v〉

= k − 0− 0 + kλ3.
Thus 0 ≥ k + kλ3 = k(1 + λ3). So that

λ3 ≤ −1. (3.3.1)
Moreover

〈π3(v), π3(v)〉 = 〈π2
3(v), v〉

= 〈π3(v), v〉

= R3〈(α− k)(α− λ2)v, v〉

where R3 = (λ3 − k)−1(λ3 − λ2)−1. Note 〈π3(v), π3(v)〉 ≥ 0. Since

k > λ2 > λ3 we have that R3 > 0. So that we have

0 ≤ 〈(α− k)(α− λ2)v, v〉 = 〈(α− k)v, (α− λ2)v〉

= k − 0− 0 + kλ2.
Thus 0 ≤ k + kλ2 = k(1 + λ2). Hence we conclude that

λ2 ≥ −1. (3.3.2)
In addition

〈π1(v), π1(v)〉 = 〈π2
1(v), v〉.

Note by the projection map properties we have that

〈π2
1(v), v〉 = 〈π1(v), v〉

= R1〈(α− λ2)(α− λ3)(v), v〉
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where R1 = (k−λ2)−1(k−λ3)−1. Note, 〈π1(v), π1(v)〉 ≥ 0. Since k > λ2 > λ3

we have that R1 > 0. Therefore

0 < R1〈(α− λ2)(α− λ3)(v), v〉 ≤ 〈(α− λ2)(α− λ3)(v), v〉

= 〈(α− λ2)v, (α− λ3)v〉

= k − 0 + λ2λ3.

Note we have that k + λ2 + λ3 = tra(A) = 0 and by Equation 3.3.1 and

Equation 3.3.2 we have that

k > |λ2λ3|. (3.3.3)

Proposition 3.3.2. Let Γ be a k-regular graph with exactly three distinct

eigenvalues k = λ1 > λ2 > λ3. Then we have

(i) k > |λ2λ2|,

(ii) λ2 ≥ −1 and

(ii) λ3 ≤ −1.

These properties can be obtained in many other ways. According to

Lemma 2.3.1 regular graphs with 3 distinct eigenvalues are strongly

regular and the inequalities can be obtained directly from the matrix

equation satisfied for the adjacency matrix of the graph.

Our method here is based on Delsarte’s bound in Theorem 3.3.1 and this

method works more generally for graphs with more than three distinct

eigenvalues. This could be shown by looking at a few examples but we

omit these discussions.
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3.4 Groups of Automorphisms and

Eigenspaces

Throughout this section let Γ be a finite graph with vertex set V. In this

section we study the relationship between the irreducible representations of

a group of automorphisms of Γ and its eigenspaces. As before CV is the

vector space with basis V and α : CV −→ CV is the adjacency map of

Γ. Suppose that E1, ..., Et are the eigenspaces of α corresponding to the

distinct eigenvalues λ1, ..., λt.

Let G be a group of automorphisms of Γ. We denote the image of v under g

by vg or vg for all v ∈ V and g ∈ G. Then every element g ∈ G acts linearly

on CV by g : cvv 7→ cvv
g. In this way CV becomes a CG-module. Note, g

preserves the inner product, in the sense that 〈v, u〉 = 〈vg, ug〉.

Proposition 3.4.1. [16, p. 134] A permutation g of V is an automorphism

of Γ if and only if α(f g) = (α(f))g where α is the adjacency map of Γ for

all f ∈ CV.

Proof: It suffices to show this property when f = v for some v ∈ V.

Assume that α(vg) = (α(v))g. Suppose that u ∼ v where u, v ∈ V. Therefore

we want to prove that g is an automorphism of Γ. So by the definition of

the automorphism this is enough to prove that ug ∼ vg. Since u ∼ v so

〈α(u), v〉 = 1. Then

〈α(ug), vg〉 = 〈(α(u))g, vg〉

= 〈α(u), vgg
−1〉

= 〈α(u), v〉

= 1.
Hence ug ∼ vg which means that g is an automorphism of Γ.

Now suppose that g is an automorphism of Γ and we want to prove that
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α(vg) = (α(v))g for all v ∈ V. Then

α(vg) =
∑
w

〈α(vg), w〉w (3.4.1)

(α(v))g =
∑
w

〈(α(v))g, w〉w. (3.4.2)

Hence 〈α(vg), w〉 = 〈vg, α(w)〉 =

 1 vg ∼ w

0 vg � w

and 〈(α(v))g, w〉 = 〈α(v), wg
−1〉 =

 1 v ∼ wg
−1

0 v � wg
−1
.

Now, by the definition of automorphisms, vg ∼ w if and only if vgg
−1

=

v ∼ wg
−1

. Therefore by Equation 3.4.1 and Equation 3.4.2 we have that

α(f g) = (α(f))g for all f ∈ CV.

Let f ∈ Ei be an eigenvector of α corresponding to the eigenvalue λi. Then

we can show that α(f g) = λif
g since

α(f g) = (α(f))g = λif
g

by Proposition 3.4.1. Therefore we have proved the following important

theorem, see for instance [8] as a reference.

Theorem 3.4.2. Let Γ be a finite graph with adjacency map α and

eigenspaces E1, E2, ..., Et corresponding to the distinct eigenvalues of α.

Let G be a group of automorphisms of Γ. Then each Ei is a CG-module.

According to the general representation theory of finite groups our group G

has irreducible C-modules

U1, U2, ..., Us.

This means that there are representations ρ1, ρ2, ..., ρs which are

homomorphisms ρi : G −→ GL(Ui) such that only the spaces 0 and Ui are
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invariant under ρi(G). The function

χi(g) = tra(ρi(g))

is the character associated to ρi. Here tra(ρi(g)) is the matrix trace. As

we are working over C every G-module decomposes into a direct sum of

irreducible modules. In this case we can write

CV = U1 + U1 + ...+ U1︸ ︷︷ ︸
m1

⊕U2 + U2 + ...+ U2︸ ︷︷ ︸
m2

⊕...⊕ Us + Us + ...+ Us︸ ︷︷ ︸
ms

.

The mi are the multiplicities of Ui in CV .

Using the same principle again each eigenspace Ei of α can also be

decomposed into irreducible modules

Ei = (U1 + U1 + ... + U1)︸ ︷︷ ︸
mi1

⊕ (U2 + U2 + ... + U2)︸ ︷︷ ︸
mi2

⊕...⊕ (Us + Us + ... + Us)︸ ︷︷ ︸
mis

.

Now we can use this theory and the properties of projection maps to

determine the multiplicity of C-modules in each eigenspace of Γ.

Proposition 3.4.3. We have
∑t

i=1mij = mj for each j = 1, 2, ..., s.

Furthermore, if G is transitive on V, then there exist a G-embedding of

CV into CG. In particular, mj ≤ dim(Uj) and mj = dim(Uj) for all j if

and only if G acts regularly on V.

Proof: It is clear from the above that
∑t

i=1 mij = mj for each j = 1, 2, ..., s.

Now let G be transitive on V. It follows that Γ is a regular graph, say of

degree k. Then fix some v ∈ V and let L be the stabilizer group of v. Now

we prove that there is a map

ϕ : CV → CG

which is injective and commutes with G. So, ϕ is an embedding of G-
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modules. We put

ϕ(v) =
∑
l∈L

l ∈ CG.

Then, given any other v′ ∈ V, by the transitivity of G we have that v′ = vg
′

for some g′ ∈ G. Hence we define

ϕ(v′) =
∑
l∈L

lg′

and extended linearly. If g′′ is any other element with vg
′
= vg

′′
then g′′g

′−1

fixes v, so g′′g
′−1 ∈ L. So

ϕ(v) =
∑
l∈L

lg′ =
∑
l∈L

lg′′.

Now suppose that
∑
tiv

gi ∈ CV with ϕ(
∑

i tiv
gi) = 0 for some i. So we

have that 0 =
∑

i tiϕ(vgi) =
∑

i ti
∑

l∈L lgi so that ti = 0 for all i, because

cosets do not intersect. So ϕ is injective.

Now we prove that ϕ is a G-homomorphism. Let ṽ ∈ V where ṽ = vg̃ for

some g̃ ∈ G. Let g ∈ G we have that

ϕ(ṽg) = ϕ(vg̃g)

=
∑
l∈L

l(g̃g)

=
∑
l∈L

(lg̃)g

= ϕ(ṽ)g

= (ϕ(ṽ))g.

Therefore we conclude from the above that ϕ is a G-homomorphism hence

it is an embedding of CG-modules.

Let ρ1 be the trivial representation of G and let U1 be the trivial sub-module

of dimension 1. In general it is not clear how the trivial representation
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is distributed among the E1, ..., Et. But if G is transitive then the trivial

representation appears exactly once in CV and hence in exactly one Ei.

In this case this eigenspace is Ek (the eigenspace of the degree of Γ). This

is clear, the vector v1 + v2 + ... + vn spans the 1-dimensional eigenspace

for the eigenvalue k. Often we do not differentiate between character and

representation, in particular for 1-dimensional representation.

We will try to determine which of the irreducible representations of G are

a part of some given eigenspace of α. This is a difficult problem in general.

Note, for each i we have that πi : CV −→ CV is a projection map onto

the eigenspace Ei of α by Proposition 3.2.2. Note Ei is a G-invariant sub-

module of CV for each i = 1, 2, ..., t the restriction of g to Ei is πig = gπi,

noting that πi is a polynomial of α, and hence commutes with g. In this

way we have a representation of

G→ GL(Ei)

with g 7→ πig = gπi. The character of πig is βi(g) = tra(πig) and it is a

class function on G since for g, h ∈ G we have

βi(h
−1gh) = tra(πih

−1gh)

= tra(h−1πgh)

= tra(πighh
−1)

= tra(πig).

Therefore the multiplicity mij of the irreducible G-module Uj in Ei is

〈tra(πig), χj〉. Therefore by Theorem 2.2.10 we have the following theorem.

Theorem 3.4.4. The multiplicity of the irreducible module Uj in the

eigenspace Ei is mij = 〈χj, βi〉 where βi(g) = tra(πig) for all g ∈ G and

where χj is the irreducible character corresponding to Uj.
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Note, we have explicit formula for πi in terms of α and Spec(Γ).We illustrate

this method in the following example in great details.

Example: Let Γ be the cycle graph of length 4. In this graph vi is adjacent

to vi+1 modulo 4. The full automorphism group of Γ is D4, with transitive

subgroup C4. We illustrate the theorem by taking G = C4 and also by

considering G = D4. The computations differ significantly. The adjacency

map α has matrix

A =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 .

It is easy to see that the spectrum of Γ is 21, 02 and −21. Now the

projection maps are
π1 =

∏
j 6=1

1

λ1 − λj
(A− λj)

=
1

(2− 0)(2− (−2))
(A− 0)(A− (−2))

with matrix

P1 =
1

8


2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

 .

Similarly,

π2 =
∏
j 6=2

1

λ2 − λj
(A− λj)

=
1

(0− 2)(0 + 2)
(A− 2)(A+ 2)

with matrix

P2 =
1

−4


−2 0 2 0

0 −2 0 2

2 0 −2 0

0 2 0 −2


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and

π3 =
∏
j 6=3

1

λ3 − λj
(A− λj)

=
1

(−2− 0)(−2− 2)
(A− 0)(A− 2)

with matrix

P3 =
1

8


2 −2 2 −2

−2 2 −2 2

2 −2 2 −2

−2 2 −2 2

 .

It is clear that

P1 + P2 + P3 = I

where I is the identity matrix of dimension 4× 4.

First we consider the cyclic subgroup G = C4. The character table of this

group is shown in Table 3.1.

1G a a2 a3

χ1 1 1 1 1

χ2 1 −1 1 −1

χ3 1 i −1 −i

χ4 1 −i −1 i

Table 3.1: The character table of C4

We evaluate β1(g), β2(g) and β3(g) for each g ∈ G in Table 3.2.

1G a a2 a3

β1 1 1 1 1

β2 2 0 −2 0

β3 1 −1 1 −1

Table 3.2: βi(g) for i = 1, 2, 3.
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Thus 〈β1, χ1〉 = 1, 〈β1, χ2〉 = 0, 〈β1, χ3〉 = 0 and 〈β1, χ4〉 = 0. Therefore

β1 = χ1. It follows that χ1 is a part of the eigenspace E1, giving that

E1 = 1 · U1 + 0 · U2 + 0 · U3 + 0 · U4.

Thus 〈β2, χ1〉 = 0, 〈β2, χ2〉 = 0, 〈β2, χ3〉 = 1 and 〈β2, χ4〉 = 1. Therefore

β2 = χ3 + χ4. It follows that χ3 and χ4 are part of the the eigenspace E2,

giving that

E2 = 0 · U1 + 0 · U2 + 1 · U3 + 1 · U4.

Thus 〈β3, χ1〉 = 0, 〈β3, χ2〉 = 1, 〈β3, χ3〉 = 0 and 〈β3, χ4〉 = 0. Therefore

β3 = χ2. It follows that χ2 is a part of the eigenspace E3, giving that

E3 = 0 · U1 + 1 · U2 + 0 · U3 + 0 · U4.

Hence we have

CV = 1 · U1 + 1 · U2 + 1 · U3 + 1 · U4.

Observe that here we have the regular (transitive) representation of G = C4

of degree 4.

Next let G = D4 = 〈a, b : a4 = b2 = 1, b−1ab = a−1〉. The character table of

this group is shown in Table 3.3.

1G a2 a b ab

χ1 1 1 1 1 1

χ2 1 1 1 −1 −1

χ3 1 1 −1 1 −1

χ4 1 1 −1 −1 1

χ5 2 −2 0 0 0

Table 3.3: The character table of D4
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Note here one irreducible representation has degree 2, as D4 is not abelian.

We evaluate β1(g), β2(g) and β3(g) for each g ∈ G in Table 3.4.

1G a2 a b ab

β1 1 1 1 1 1

β2 2 −2 0 0 0

β3 1 1 −1 1 −1

Table 3.4: βi(g) for i = 1, 2, 3.

Thus 〈β1, χ1〉 = 1, 〈β1, χ2〉 = 0, 〈β1, χ3〉 = 0, 〈β1, χ4〉 = 0 and 〈β1, χ5〉 = 0.

Therefore β1 = χ1. It follows that χ1 is a part of the eigenspace E1, giving

that

E1 = 1 · U1 + 0 · U2 + 0 · U3 + 0 · U4 + 0 · U5.

Thus 〈β2, χ1〉 = 0, 〈β2, χ2〉 = 0, 〈β2, χ3〉 = 0, 〈β2, χ4〉 = 0 and 〈β2, χ5〉 = 1.

Therefore β2 = χ5. It follows that χ5 is a part of the eigenspace E2, giving

that

E2 = 0 · U1 + 0 · U2 + 0 · U3 + 0 · U4 + 1 · U5.

Thus 〈β3, χ1〉 = 0, 〈β3, χ2〉 = 0, 〈β3, χ3〉 = 1, 〈β3, χ4〉 = 0 and 〈β3, χ5〉 = 0.

Therefore β3 = χ3. It follows that χ3 is a part of the eigenspace E3 giving

that

E3 = 0 · U1 + 0 · U2 + 1 · U3 + 0 · U4 + 0 · U5.

Hence we have

CV = 1 · U1 + 0 · U2 + 1 · U3 + 0 · U4 + 1 · U5.
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3.5 Singular Graphs in General and

Applications

Let Γ = (V,E) be a finite graph with vertex set V. let A be its adjacency

matrix. Then Γ is singular if A is singular. In this section, we discuss

general properties of singular graphs and provide some sufficient conditions

for a graph to be singular. Furthermore, the nullity of Γ is the dimension of

the null space of Γ and we denote this by null(Γ). Note |V | = null(Γ) + r(Γ)

where r(Γ) is the rank of A. Hence singular graphs have a non-trivial null

space.

Therefore we are interested in conditions for a graph to have a non-trivial

null space. Let Spec(Γ) be the set of all eigenvalues of Γ, with their

multiplicities.

Singular graphs have important applications in chemistry. The eigenvalue

problem has the same structure as the time-independent Schrödinger

Equation

Hψ = Eψ.

Its solutions are the eigenvalues and eigenfunctions (eigenspaces) of the

system. Here ψ is the wave function, E is the energy and H is the

Hamiltonian operator of the system considered. When applied to a

particular molecule, the Schrödinger Equation enables us one to describe

the behaviour of the electrons in this molecule and to establish their

energy. The approximation of the π-electron energy in chemistry was

given by, Erich Hückel in 1930, and the name of this method is the Hückel

Molecular Orbital. From this formulation we can write H in terms of the

adjacency matrix A of the molecular graph as

H = aI + bA
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where I is the identity matrix and a, b are constants. From this we conclude

that finding the spectrum of A is equivalent to finding the spectrum of the

Hamiltonian operator H. In chemistry the importance of singular graphs

lies in the fact that a singular molecular graph, with vertices formed by

atoms, edges corresponding to bonds between the atoms in the molecule,

often is associated to compounds that are more reactive or unstable. The

problems that we are discussing therefore relate to the stability of a class

of molecules. Chemists have significant important applications of Spectral

Graph Theory, see [26] and [52] for a reference.

Singular graphs have also important applications for the representation

theory of finite groups. For instance, the famous Foulkes’s conjecture on

the representations of Sym(a) o Sym(b) will hold if certain graphs related

to symmetric groups are non-singular, see [15], [9] and [46] for a reference.

Let X ⊆ V. Then the induced sub-graph Γ′ = Γ[X] is the graph (X,E ′)

where E ′ consists of all {v, v′} ∈ E with both v and v′ in X where E is the

edge set of Γ. The incident matrix M of Γ is the integer matrix with rows

and columns indexed by the vertices and edges of Γ, respectively such that

the Mij-entry of M is equal to 1 if and only if the vertex vi is an end vertex

of the edge ej. Note M has dimension n×m where |V | = n and |E| = m.

Let Γ1 and Γ2 be two simple graphs. We define the union of Γ1 and Γ2

to be a graph with vertex set V (Γ1) ∪ V (Γ2) and edge set E(Γ1) ∪ E(Γ2)

and it is denoted by Γ1 ∪ Γ2. If Γ1 and Γ2 are disjoint we denote their

union by Γ1 + Γ2. The tensor product of Γ1 and Γ2 is a graph has vertex

set V (Γ1)× V (Γ2) and two vertices (u1, v1) and (u2, v2) are adjacent if and

only if u1 ∼ u2 in Γ1 and v1 ∼ v2 in Γ2. It is denoted by Γ1 ⊗ Γ2. Note

Spec(Γ1 ⊗ Γ2) = {λiµj : λi ∈ Spec(Γ1), µj ∈ Spec(Γ2)}, (3.5.1)

see [11] as a reference.
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The following properties are obvious.

Theorem 3.5.1. 1. Γ1 ⊗ Γ2 is singular if and only if at least one of Γ1

and Γ2 is singular.

2. Γ1 + Γ2 (the disjoint union) is singular if and only if at least one of

Γ1 and Γ2 is singular.

Proposition 3.5.2. Suppose that Γ = (V,E) is a bipartite graph with parts

V1 ∪̇V2 = V where |V1| ≥ |V2|. Then null(Γ) ≥ |V1| − |V2|.

Proof: Let A be the adjacency matrix of Γ. Hence A has the following

shape

A =

 0 B

BT 0


where B is an |V1| × |V2| matrix. Note by Theorem 2.1.3 we have that

r(A) = 2r(B) as r(B) = r(BT ). Therefore we have the following null(Γ) =

|V1|+ |V2| − 2r(B) since r(B) ≤ |V2|. So in this case we have that

null(Γ) ≥ |V1|+ |V2| − 2|V2|

≥ |V1| − |V2|.

Lemma 3.5.3. [23, Lemma 8.2.3] Let W and U be vector spaces with linear

maps

ϕ : W → U and ς : U → W.

Then ϕς : U → U and ςϕ : W → W have the same non-zero eigenvalues.

Furthermore, if λ is a non-zero eigenvalue with eigenspace Wλ ⊆ W and

Uλ ⊆ U for ςϕ and ϕς respectively then ϕ and ς restrict to isomorphisms

ϕ : Wλ → Uλ and ς : Uλ → Wλ.

Theorem 3.5.4. [11] Let Γ = (V,E) be a k-regular graph with vertex set

V of size n and edge set E of size m. Let λ1, ..., λn be the eigenvalues of Γ.
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Then the line graph L(Γ) of Γ is a (2k − 2)-regular graph with eigenvalues

λi +k− 2 for 1 ≤ i ≤ n and −2 with multiplicity of |E|− |V |. Furthermore,

if Γ is bipartite, then the multiplicity of −2 in L(Γ) is |E| − |V |+ 1.

Proof: Let M be the incident matrix of Γ. Then we show that

MTM = 2Im + A∗

where A∗ is the adjacency matrix of L(Γ). Note MTM is the m×m matrix

with entries (MTM)ii = 2 as each edge of Γ is incident with two vertices, and

(MTM)ij = 1 if and only if ei, ej have an end vertex in common; with (i 6= j)

and (MTM)ij = 0 otherwise. From this we deduce that MTM = 2Im +A∗.

Now we prove that

MMT = kIn + A

where A is the adjacency matrix of Γ. Note MMT is the n× n matrix with

entries (MMT )ii = k as Γ is k-regular, and (MMT )ij = 1 if and only if

vi ∼ vj, and 0 otherwise. From this we conclude that MMT = kIn + A.

By Lemma 3.5.3 we have that MTM and MMT have the same non-zero

eigenvalues, hence the spectrum of L(Γ) is λi + k − 2 for 1 ≤ i ≤ n where

λi is an eigenvalue of Γ and −2 with multiplicity of |E| − |V |. Note if Γ is

a bipartite graph then by Theorem 3.1.2 we have that −k is an eigenvalue

of Γ, and so the multiplicity of −2 is |E| − |V |+ 1.

Corollary 3.5.5. Let Γ be a k-regular graph. Then Γ is singular if and

only if k − 2 is an eigenvalue of L(Γ).

Proof: Suppose that Γ is singular. So 0 is an eigenvalue of Γ. Hence by

Theorem 3.5.4 we have that k − 2 is an eigenvalue of L(Γ). Conversely,

if k − 2 is an eigenvalue of L(Γ), then by Theorem 3.5.4 we have that

k − 2 = λi + k − 2 where λi is an eigenvalue of Γ for some i. From this we

conclude that λi = 0 so that Γ is singular. Other possibility we have that
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k − 2 = −2 hence k = 0 and this gives us a contradiction.

Proposition 3.5.6. [34] Let Γ be a k-regular graph with n vertices. Then

Γ and Γ have the same eigenvectors and the eigenvalues of Γ are n− k − 1

and −1− λi where k and λi for 1 ≤ i ≤ n− 1 are the eigenvalues of Γ.

Corollary 3.5.7. Let Γ be k-regular graph. Then Γ is singular if and only

if −1 is an eigenvalue of Γ.

Proposition 3.5.8. Let Γ be a graph with nullity null(Γ) = l ≥ 1 and let

0 ≤ i ≤ l. Suppose that V ′ is a subset of V with |V ′| = |V | − i. Then Γ[V ′]

has nullity null(Γ[V ′]) ≥ l − i.

Proof: Let V ′ = V − i and r(Γ) = r(A) where A is the adjacency matrix

of Γ. Note we have that

l = |V | − r(Γ) (3.5.2)

and so
null(Γ[V ′]) = |V ′| − r(Γ[V ′])

= |V | − i− r(Γ[V ′]).

Hence by Equation 3.5.2 we have that

null(Γ[V ′]) = l + r(Γ)− i− r(Γ[V ′])

= l − i− (r(Γ[V ′])− r(Γ)).

Note by Theorem 2.1.2 we have that r(Γ) ≥ r(Γ[V ′]). From the above we

conclude that null(Γ[V ′]) ≥ l − i.

Next we list a further general properties of singular graphs. Our first

criterion for singular graphs is a balance condition.

Theorem 3.5.9 (Balance Condition). Let Γ be a graph with vertex set V.

Then Γ is singular if and only if there are two disjoint non-empty subsets
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X, Y ⊆ V and a function f : X ∪ Y → N with f(u) 6= 0 for all u ∈ X ∪ Y

such that the following holds:

If v is a vertex in V, then

∑
v∼u∈X

f(u) =
∑
v∼u∈Y

f(u).

In particular, if X, Y ⊂ Z, then Γ[Z] is singular.

Proof: Suppose that Γ is singular on n vertices and let h ∈ E∗ with h 6= 0

be an element in the kernel of A. In particular, A is singular over Q as

all entries of A are 0 and 1. So we may assume that hv is rational where

h =
∑

v∈V hvv and after multiplying by the least common multiple of all

denominators, that hv is an integer for all v. Let X be the set of all v such

that hv ≥ 1 and Y the set of all v such that hv ≤ −1. Define fX and fY

in CV by fXv = hv for v ∈ X and fXv = 0 otherwise, while fYv = −hv for

v ∈ Y and fYv = 0 otherwise. Thus

AfX = AfY . (3.5.3)

For any v ∈ V we have that 〈v,AfX〉 = 〈Av, fX〉 =
∑

v∼u∈X fX(u). Here

we use that A is self-adjoint, that is

〈h,Ak〉 = 〈Ah, k〉

for all h, k ∈ CV. Similarly, 〈v, AfY 〉 =
∑

v∼u∈X fY (u). Hence by

Equation 3.5.3 we have that
∑

v∼u∈X f(u) =
∑

v∼u∈Y f(u) for all v ∈ V.

Suppose that the above condition holds. This means that

∑
v∼u∈X

f(u) =
∑
v∼u∈Y

f(u)

for all v ∈ V. Now we prove that Γ is singular. As before A is the adjacency
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matrix of Γ. Note A is non-singular if and only if its rows are linearly

independent. Suppose that Av be the row of A labelled by a vertex v ∈

V (Γ). Note we have that

∑
x∈X

f(x)Ax −
∑
y∈Y

f(y)Ay = 0

where f(v) 6= 0 for all v ∈ X ∪ Y. From this we conclude that the rows of

A are linearly dependent and so A is singular.

Example 1 : Let Γ = (V,E) be a graph. Suppose that w, u ∈ V such that

w � u, and w and u have the same neighbour set. In this case put X =

{w}, Y = {u} and f(u) = f(w) = 1 while f(v) = 0 for u 6= v 6= w. Then

f has the property of the theorem. More directly of course, α(w) = α(u)

implies that 0 6= w − u ∈ E∗.

Example 2 : Let Γ = Cn be an n-cycle on V = {1, 2, ..., n}. Then it is easy

to compute the eigenvalues of Γ. These are the numbers λr = 2 cos(2πr
n

)

where r = 0, 1, 2, ..., n − 1, see [10] as a reference. In particular, Cn is

singular if and only if n is divisible by 4. If 4 does divide n we may take

X = {a ∈ V : a ≡ 0 or 1 (mod 4)}, Y = {b ∈ V : b ≡ 2 or 3 (mod 4)}

and f(v) = 1 for all v ∈ X ∪ Y while f(v) = 0 for all v /∈ X ∪ Y.

Example 3 : Let Γ = P n be a path on n vertices, V = {1, 2, ..., n}. Then it is

easy to compute the eigenvalues of Γ. These are the numbers λr = 2cos( πr
n+1

)

where r = 1, 2, ..., n. In particular, P n is singular if and only if n is odd see

[10] as a reference. If n is odd then we have that X ∪ Y contains the

odd numbers ≤ n, and we choose X = {1, 5, 9, ...}, Y = {3, 7, 11, ...} and

f(v) = 1 for all v ∈ X ∪ Y while f(v) = 0 for all v /∈ X ∪ Y.

This concludes our comments about singular graphs in general. In the next

chapter we turn to singular vertex transitive graphs.
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Vertex Transitive Graphs

A graph Γ is said to be vertex transitive if its automorphism group acts

transitively on its vertex set. In other words, for any two vertices u, v of Γ

there is g ∈ Aut(Γ) such that vg = u. It is clear that vertex transitive graphs

are regular. If the degree of Γ is k then by Theorem 3.1.2 we have that k

is an eigenvalue of Γ with multiplicity of > 1 and all other eigenvalues will

be less than k and greater than or equal to −k. The multiplicity of k in

fact is the number of components of Γ. In this chapter we use a transitive

group of automorphisms to find the spectrum of Γ and determine sufficient

conditions for Γ to have 0 as an eigenvalue.

This chapter is divided into four main sections. In the first section, we study

properties of Cayley graphs and their spectrum. In the second section,

we investigate the singularity of Cayley graphs. In the third section, we

reduce the problem of finding the spectrum of a vertex transitive graph to

finding the spectrum of an associated Cayley graph. This method is due

to Lovász [43]. In the last section, we compute the spectrum of a vertex

transitive graph in terms of irreducible characters of a transitive group of

automorphisms. To our knowledge this method is new. In each section of

this chapter we provide conditions that distinguish singular graphs.
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4.1 Cayley Graphs

We now discuss the definition of Cayley graph associated to a finite group

and a certain set that generates the group. We introduce basic properties

of the automorphism group of a Cayley graph and compute its spectrum in

terms of the irreducible representations and the irreducible characters of the

group. Moreover we investigate the relationship between the representations

of the group and the eigenspaces of the Cayley graph.

Let G be a finite group with identity element 1 = 1G. A subset H of G is

called a connecting set if

(1) H−1 = {h−1 |h ∈ H} = H

(2) 1G 6∈ H

(3) H generates G.

In this case we can define a graph Γ with vertex set V (Γ) = G. Two vertices

v, w are adjacent, v ∼ w, if and only if wv−1 ∈ H if and only if w ∈ Hv

if and only if w = h−1v for some h ∈ H. Note that wv−1 ∈ H implies

(wv−1)−1 = vw−1 ∈ H and therefore w ∼ v. In addition, v 6∼ v since

v−1v = 1G 6∈ H. This means that ∼ defines a simple connected undirected

graph on G.

This graph is called the Cayley graph on G with connecting set H. It is

denoted by Cay(G,H). It follows that the adjacency map α : CG → CG

has the form

α(v) =
∑
h∈H

h−1v (4.1.1)

for all v ∈ G.

An arbitrary graph X is said to be a Cayley graph if there exists a group

G and a connecting set H such that X is isomorphic to Cay(G,H). Note a
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graph Γ can be a Cayley graph for several different groups and connecting

set. For instance, Kn is the Cayley graph for any group G of order n and

connecting set H = G\1G.

Note also that if H is a subset of G which satisfies the first two requirements

above but not the last one then we still have the Cayley graph Cay(G∗, H)

where G∗ is the group generated by H.

We collect a few properties of Cayley graphs. Let G be a group and H

a connecting set. Denote the Cayley graph of G for connecting set H by

Γ = Cay(G,H). Let v be a vertex of Γ. Then the set of all neighbours of

v is Hv. It follows that Γ is k-regular with k = |H|. Applying the same

argument again the set of all neighbours of vertices in Hv is HHv. Hence

the connected component containing v consists of the vertices in HH...Hv.

Since H generates G we have G = HH...H and therefore Γ is connected.

Therefore we have the following well-known standard result.

Theorem 4.1.1. [37, Proposition 1.29] Let G be a group and H a

connecting set for the graph Γ = Cay(G,H). Then Γ is a connected

k-regular graph with k = |H|.

Now we give some examples of Cayley graphs. The Cayley graphs over

cyclic groups have played a special role in the study of Cayley graphs.

These graphs are widely known as circulant graphs. The adjacency matrix

of a circulant graph is a circulant matrix.

The complete bipartite graphs Kn,n = Cay(G,H) where |G| = 2n = 2|H|,

H = G\K and K is a subgroup of G, are Cayley graphs. Similarly, the

k-dimensional cube graph Qk is the Cayley graph defined on the elementary

abelian group (Z2)k where the connecting set is the standard generating set

for (Z2)k.

The graph formed on the finite field Fq (addition group) as vertex set where

q ≡ 1 mod 4 and where the connecting set is H = {x2 : x ∈ Fq, x 6=
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0} is called the Paley graph for q. Note, the condition that q ≡ 1 mod 4

guarantees that H = −H.

Let n be even and G = Z/nZ and let H = {∓1,
n

2
} ⊂ G. Then the Cayley

graph Γ = Cay(G,H) is known as the Mőbius ladder graph of order n.

In the rest of this section we discuss the automorphisms of a Cayley

graph. There are special properties for the automorphism group of

Γ = Cay(G,H) related to the group G and the connecting set H. The

problem of determining the full automorphism group of Γ is difficult in

general. The full automorphism group Aut(Γ) of Γ is the set of all

permutations of the set V = G preserving the edge structure, see Section 3

of Chapter 2. We describe some aspects of the automorphisms of Γ.

The multiplication on the right by the element g in G, that is v 7→ vg for

v ∈ V, induces an automorphism on Γ. To prove this let v, v′ ∈ V. If v ∼ v′

then v′ = h−1v for some h ∈ H and so v′g = h−1(vg) giving that vg ∼ v′g.

Conversely, if v � v′ then vg � v′g. We can understand this automorphism

in terms of the right regular representations ρr : G → GL(CG) of G given

by ρr(g)(v) = vg.

The left regular action v 7→ g−1v however is in general not an automorphism

of Γ. In fact, it is easy to see that v 7→ g−1v for v ∈ V is an automorphism

if and only if gH = Hg. We say that H is normal if gH = Hg for all g ∈ G.

The right regular action is transitive on vertices and only the identity

element fixes any vertex. This is therefore the regular action of G on itself.

This property characterises Cayley graphs.

Theorem 4.1.2. (Sabidussi’s Theorem)[23, Lemma 3.7.1] Let Γ = (V,E)

be a graph. Then Γ is a Cayley graph if and only if Aut(Γ) contains a

subgroup G which is regular on V.

We now describe other automorphisms of Γ. Let φ be a group automorphism
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of G fixing H as a set. Such φ induces an automorphism of Γ. To prove this

let v, v′ ∈ V. If v ∼ v′ then v′ = h−1v for some h ∈ H and so

φ(v′) = φ(h−1v)

= φ(h−1)φ(v)

= h′−1φ(v)

for some h′ ∈ H as φ(H) = H. Hence φ(v) ∼ φ(v′). Conversely, if v � v′

then φ(v) � φ(v′). The following is due to this result.

Theorem 4.1.3. [40] Suppose that φ is an automorphism of the group G

that fixes H set-wise. Then φ is an automorphism of Cay(G,H) fixing the

identity element of G.

4.1.1 Representations and Spectrum

We fix some group G and a connecting set H. Let Γ = Cay(G,H). Now

we study the relationship between the irreducible representations of G and

the eigenspaces of Γ. We know that G acts on V (Γ) regularly by

multiplication on the right and so G is isomorphic to a regular subgroup of

Aut(Γ). We come back to use the general representation theory of finite

groups to study the relationship between the irreducible characters of G

and the eigenspaces of Γ. According to this theory our group G has

irreducible C-modules U1, ..., Us. This means that there are representations

ρ1, ρ2, ..., ρs which are homomorphisms ρi : G −→ GL(Ui) such that only

the trivial spaces 0 and Ui are invariant under ρi(G). The function

χi(g) = tra(ρi(g))

is the character associated to ρi. Note we define χi(H) =
∑

h∈H χi(h).

As we are working over C every G-module decomposes into a direct sum of
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irreducible modules. We apply this in particular to CV, the vertex space of

Γ. In our case we can therefore write

CV = U1 + U1 + ...+ U1︸ ︷︷ ︸
m1

⊕U2 + U2 + ...+ U2︸ ︷︷ ︸
m2

⊕...⊕ Us + Us + ...+ Us︸ ︷︷ ︸
ms

.

In particular, mi = dim(Ui) since G acts regularly on V (Γ).

Recall that each eigenspace Ei for i = 1, ..., t is invariant under the right

multiplication by G, by Theorem 3.4.2. Using the same principle again,

each eigenspace Ei of Γ can also be decomposed into irreducible modules

Ei = (U1 + ... + U1)︸ ︷︷ ︸
mi1

⊕ (U2 + ... + U2)︸ ︷︷ ︸
mi2

⊕...⊕ (Us + ... + Us)︸ ︷︷ ︸
mis

.

It is clear that
t∑
i=1

mi1 = m1,
t∑

j=1

mj2 = m2, ...

and so on. Let πi : CV −→ CV with πi(CV ) = Ei be the projection onto

the eigenspace Ei of Γ. Hence by the discussions in the last chapter we can

apply Theorem 3.4.4 to determine which of the irreducible representations

of G are a part of each eigenspace of Γ.

Next consider the left-regular representation of G : For each h ∈ G we have

the linear map ρl(h) : CV → CV defined on the standard basis of CV by

ρl(h)(v) = h−1v, for v ∈ V.

Recall that α(v) =
∑

h∈H h
−1v for all v ∈ G by Equation 4.1.1 and therefore

α =
∑
h∈H

ρl(h) as a map CV → CV. (4.1.2)

Therefore Equation 4.1.2 establishes the link between graph theory and

representation theory of finite groups. Hence by Theorem 2.2.11 we can
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decompose

ρl = m1ρ1 ⊕ ...⊕msρs

into a direct sum of irreducible representations of G. Thus

α =
∑
h∈H

ρl(h) =
∑
h∈H

(m1ρ1(h)⊕ ...⊕msρs(h))

where ρi(h) : G→ GL(Ui) and mi is the degree of ρi, and at the same time

mi is the dimension of the irreducible G-module Ui of CV for each i. The

following is an important general fact.

Theorem 4.1.4. Let G be a finite group and let ρ1, ..., ρs be the set of

all inequivalent irreducible representations of G. Then λ is an eigenvalue

of Cay(G,H) if and only if there is some ρi such that
∑

h∈H ρi(h) − λ is

singular.

Proof: Let U1, ..., Us be the irreducible G-modules. Let E1, ..., Et be the

eigenspaces of α. By Theorem 3.4.2 E1, ..., Et are G-invariant (under

multiplication on the right) and so each Ej can be decomposed into

Ej = mj1U1 ⊕ ...⊕mjsUs,

as before. Now Ej is the eigenspace of α for the eigenvalue λ if and only

if α − λ is singular on Ej. This in turn implies that
∑

h∈H ρl(h) − λ is

singular on Ej. Let Ui be an irreducible G-module that appears in Ej. Then∑
h∈H ρi(h)− λ is singular.

Conversely, if
∑

h∈H ρi(h) − λ is singular on Ui then Ui appears in the

decomposition of

CG = E1 ⊕ ...⊕ Et

as this the regular G-module, and so α− λ is singular.

Theorem 4.1.5. [6] Let G be a finite group and let H be a connecting set.

Let ρ1, ..., ρs be the complete set of all inequivalent irreducible
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representations of G and let m1, ...,ms be their degrees. Then the spectrum

of Γ = Cay(G,H) is given by

Spec(Γ) = {λm1
1,1 , ..., λ

ms
s,1 , ..., λ

ms
s,ms}

where λmii,j is the jth eigenvalue of
∑

h∈H ρi(h) with the multiplicity mi. More

generally we have that

λri,1+λri,2+...+λri,mi = tra((πiα)r) = tra((
∑
h∈H

ρi(h))r) =
∑

h1,h2,...,hr∈H

χi(h1h2...hr)

for any natural number r ≤ mi. Note, λri,j is the rth power of λi,j (not a

multiplicity) and m2
1 + ...+m2

s = n.

Proof: Note we have that

α =
∑
h∈H

ρl(h) = m1

∑
h∈H

ρ1(h)⊕ ...⊕ms

∑
h∈H

ρs(h).

Here
∑

h∈H ρi(h) is an mi by mi matrix and by Theorem 4.1.4 we have

that each eigenvalue of
∑

h∈H ρi(h) is an eigenvalue of α for i = 1, ..., s.

Hence
∑

h∈H ρi(h) has mi eigenvalues and in the same time these eigenvalues

of α. Note for each i we have that {λi,1, ..., λi,mi} are the eigenvalues of∑
h∈H ρi(h). Hence by the trace properties we have that

λi,1 + λi,2 + ...+ λi,mi = tra(
∑
h∈H

ρi(h))

=
∑
h∈H

tra(ρi(h))

=
∑
h∈H

χi(h).

Similarly, let r ∈ N where r ≤ mi. Then we have that

λri,1 + λri,2 + ...+ λri,mi = tra((
∑
h∈H

ρi(h))r).
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Note ρi is a group homomorphism. Therefore we have that

λri,1 + λri,2 + ...+ λri,mi = tra(
∑

h1,h2,...,hr∈H

ρi(h1h2...hr))

=
∑

h1,h2,...,hr∈H

χi(h1h2...hr).

Note, about the multiplicity we have that

α =
∑
h∈H

ρl(h) = m1

∑
h∈H

ρ1(h)⊕ ...⊕ms

∑
h∈H

ρs(h).

From the above we conclude that each ρi(h) appears mi times in α so that

the multiplicity of λi,j is mi for each j.

Example: Let D4 = 〈a, b : a4 = b2 = 1D4 , bab = a3〉. Let Γ = Cay(D4, H)

where H = {a, a3, b}. So Γ has 8 vertices of degree 3. In this example we

apply Theorem 4.1.5 to compute the spectrum of Γ. Note the character

table of D4 is shown in the Table 4.1.

1D4 a2 a b ab

|gD4
i | 1 1 2 2 2

χ1 1 1 1 1 1

χ2 1 1 1 −1 −1

χ3 1 1 −1 1 −1

χ4 1 1 −1 −1 1

χ5 2 −2 0 0 0

Table 4.1: The character table of D4.

Note χ1, χ2, χ3 and χ4 are of degree 1 so that λi,1 =
∑

h∈H χi(h) for i =

1, 2, 3, 4. In this case we have that

λ1,1 =
∑
h∈H

χ1(h) = 3, λ2,1 =
∑
h∈H

χ2(h) = 1, λ3,1 =
∑
h∈H

χ3(h) = −1

and λ4,1 =
∑

h∈H χ4(h) = −3. However χ5 is of degree 2 in this case we
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have that

λ5,1 + λ5,2 =
∑
h∈H

χ5(h) = 0

λ2
5,1 + λ2

5,2 =
∑

hi,hj∈H

χ5(hihj) = 2.

By solving these equations we have that λ5,1 = 1 and λ5,2 = −1. Hence we

have that Spec(Γ) = {31,−31, 13,−13}.

From the above, we conclude that we can determine the spectrum of the

Cayley graph Cay(G,H) by Theorem 4.1.4 and Theorem 4.1.5 at least in

principle.

In the next results we can compute the spectrum of the Cayley graph

Cay(G,H) in terms of the irreducible characters of G when H is a normal

connecting set.

Theorem 4.1.6. Let Γ be the Cayley graph Γ = Cay(G,H) where H is a

normal connecting set of G. Let U be an irreducible sub-module of CV = CG,

(by right multiplication). Then α(U) = U and furthermore U is contained

in the eigenspace of α for

λ =
1

χ(1G)

∑
h∈H

χ(h)

where χ is the irreducible character corresponding to U.

Proof: Let CV be the vertex G-module of Γ. Let ρ = ρi : G → GL(U).

Then by using Equation 4.1.2 we have that α =
∑

h∈H ρl(h) where ρl(h) is

the left regular representation of G. Let ρ1, ..., ρs be the irreducible

representations of G. Hence we have that

∑
h∈H

ρl(h) = ⊕sj=1

∑
h∈H

mjρj(h)
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where mj is the degree of ρj. Thus we compute

α ◦ ρ(g) =
∑
h∈H

ρl(h) ◦ ρ(g)

= ⊕sj=1

∑
h∈H

mjρj(h) ◦ ρ(g).

Since, ρj(h)ρ(g) = ρi(hg) if j = i and 0 otherwise. We continue

α ◦ ρ(g) =
∑
h∈H

ρi(hg)

=
∑
h∈H

ρi(ghg
−1g)

=
∑
h∈H

ρi(gh).

Since H is a normal connecting set. Continuing, we get

α ◦ ρ(g) = ρi(g)
∑
h∈H

ρi(h)

= ρi(g)⊕sj=1

∑
h∈H

mjρj(h)

= ρ(g) ◦ α

for all g ∈ G.

Therefore by using Theorem 2.2.6 we have that α(u) = λu for some λ ∈ C

and all u ∈ U. So we have that U ⊆ Ei for some i where Ei is the eigenspace

corresponding to the eigenvalue λ. Note we have that

mλ = tra(λu) = tra(α(u)) = tra(
∑
h∈H

ρ(h)(u)) =
∑
h∈H

χ(h)

where m = χ(1G). So we have that

λ =
1

χ(1G)

∑
h∈H

χ(h).

For the multiplicity each irreducible character χ there are χ(1G) copies of
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U in CV and on each copy α acts as λidU . Therefore λ has multiplicity

(χ(1))2.

Comment: There are several papers in which a formula for eigenvalues is

given, for instance [43], [6], [37], [59], [11] and [19]. The precise

characterization of an arbitrary G-invariant irreducible module as an

eigenspace we believe is new.

Note: In the first example we have Γ = Cay(D4, H) where H = {a, a3, b}.

We have that

CD4 = E1 ⊕ E2 ⊕ E3 ⊕ E4

where E1, E2, E3, E4 are the eigenspaces for the eigenvalue 3,−3, 1,−1,

respectively. We noted that U5 appears in both E3 and E4. Note this is

possibly as H is not normal in G.

We note the following special cases of the theorem.

Corollary 4.1.7. Let Γ = Cay(G,H) where H is a normal connecting

set. If U,U∗ are G-isomorphic irreducible sub-modules of CV then U,U∗

are contained in the same eigenspace Ei for some i where Ei is the

eigenspace corresponding to the eigenvalue λ = 1
χ(1G)

∑
h∈H χ(h), where χ

is the irreducible character corresponding to U,U∗. In particular, each

eigenspace Ej of Γ has dimension
∑

i=i1,...,il
(χi(1G))2 where the sum over

all irreducible modules Ui ⊆ Ej.

Corollary 4.1.8. Let Γ = Cay(G,H) where H is a normal connecting set.

If U,U∗ are not G-isomorphic irreducible sub-modules of CV then U,U∗ are

in the same eigenspace of α if and only if

1

χ(1G)

∑
h∈H

χ(h) =
1

χ∗(1G)

∑
h∈H

χ∗(h)

where χ and χ∗ are the irreducible character of U and U∗ respectively.

Theorem 4.1.9. [35] Let G be a group and H a connecting set of G. Let Γ
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be the graph Γ = Cay(G,H) and let χ be any 1-dimensional character of G.

Then f =
∑

v∈G χ(v)v is an eigenvector of Γ with eigenvalue
∑

h∈H χ(h).

The proof was given in [35] for an additive abelian groups. However, the

following is my version of proof for general groups.

Proof : Let α be the adjacency map of Γ and let f ∈ CG where

f =
∑

v∈G χ(v)v. Then
α(f) =

∑
v∈G

χ(v)α(v)

=
∑
v∈G

χ(v)
∑
h∈H

(h−1v)

=
∑
v∈G

χ(v)
∑
h∈H

u

where u = h−1v. Hence
α(f) =

∑
u∈G

∑
h∈H

χ(hu)u

=
∑
u∈G

∑
h∈H

χ(h)χ(u)u

=
∑
h∈H

χ(h)
∑
u∈G

χ(u)u

= (
∑
h∈H

χ(h))f.

This theorem determines the spectrum and eigenspaces of Cayley graphs

over abelian groups. The following is an example for a non-commutative

group.

Example: Let Γ = (Sym(3), H) and

H = {(12), (13), (23)}.

In this example we compute the the spectrum of Γ and we apply

Theorem 3.4.4 to determine which of the irreducible representations of

Sym(3) are part of the kernel (Γ) = E∗ where ∗ denotes the number of the
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zero-eigenspace and β2 is the character of that space. Note, here H is a

normal connecting set.

Figure 4.1.1: Γ = Cay(Sym(3), H) and H = {(12), (13), (23)}

The adjacency map α has the adjacency matrix (on the standard basis)

A =



0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0


.

Then we apply Theorem 4.1.6 to compute the spectrum. The character

table of Sym(3) is shown in Table 4.2.

1Sym(X) (12) (123)

χ1 1 1 1

χ2 1 −1 1

χ3 2 0 −1

Table 4.2: The character table of Sym(3)

Therefore for i = 1, 2, 3 we have that λi = 1
mi

∑
h∈H χi(h). Hence λ1 = 3
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with multiplicity of 1, λ2 = 0 with multiplicity of 4 and λ3 = −3 with

multiplicity 1. Note in this example we have that ∗ = 2. Now the projection

map is

π2 =
∏
26=j

1

λ2 − λj
(A− λj)

=
1

−9
(A+ 3)(A− 3)

and has matrix

P2 =
1

−9



−6 3 3 0 0 0

3 −6 3 0 0 0

3 3 −6 0 0 0

0 0 0 −6 3 3

0 0 0 3 −6 3

0 0 0 3 3 −6


.

We evaluate β2(g) for each g ∈ Sym(3) in the following table

1Sym(X) (12) (123)

β2 4 0 -2

Table 4.3: The class function β∗(g)

Thus we have that 〈β2, χ1〉 = 0, 〈β2, χ2〉 = 0 and 〈β2, χ3〉 = 2. We see that

β2 = 2χ3. Therefore χ3 is part of the kernel E2. In fact, the kernel E2 has

dimension 4 and so E2 = 2U3.

4.2 Singular Cayley Graphs

In this section we determine conditions for the singularity of a Cayley graph.

Let G be a finite group and H a connecting set of G. Let Γ be the graph

Γ = Cay(G,H). In this section we denote by K a subgroup of G.
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Theorem 4.2.1. [35] Let H be a connecting set of a group G and let H

be a union of left cosets of a non-trivial subgroup K in G. Suppose there is

some element k ∈ K and 1-dimensional character χ of G such that χ(k) 6=

1. Then we have that
∑

h∈H χ(h) = 0. In particular, Γ = Cay(G,H) is

singular.

This theorem is mentioned in [35] for a subgroup of an additive abelain

group. However, the following proof is my version for a union of cosets of a

non-trivial subgroup of the group in general.

Proof: Suppose that H = a1K ∪ a2K ∪ ... for a1, a2, ... ∈ G and χ is an

1-dimensional character of G with χ(k) 6= 1 for some k ∈ K. Then we have

that

∑
h∈H

χ(h) =
∑

aiK∩H 6=φ

χ(aiK)

=
∑

aiK∩H 6=φ

χ(aiKk)

=
∑

aiK∩H 6=φ

χ(aiK)χ(k)

=
∑
h∈H

χ(h)χ(k).

Hence we have that
∑

h∈H χ(h)(1 − χ(k)) = 0. Since χ(k) 6= 1 so that∑
h∈H χ(h) = 0.

As a consequence to Theorem 4.1.4 and Theorem 4.1.6 we have the following

results:

Theorem 4.2.2. Let G be a finite group and let H be a connecting set

of G. Let ρ1, .., ρs denote the irreducible representations of G. Then Γ =

Cay(G,H) is singular if and only if there exists some i such that
∑

h∈H ρi(h)

is singular.

Theorem 4.2.3. Let G be a finite group and let H be a connecting set and

normal subset of G. Then Cay(G,H) is singular if and only if there is an
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irreducible character χ of G such that
∑

h∈H χ(h) = 0. In particular, we

have that null(Γ) ≥ (χ(1G))2.

Proof: Suppose that Γ is singular. Then we have that 0 is an eigenvalue of

Γ. Note H is normal subset of G and so by Theorem 4.1.6 each eigenvalue

of Cay(G,H) is given by

λ =
1

χ(1G)

∑
h∈H

χ(h)

where χ is an irreducible character of G. Hence we have that
∑

h∈H χ(h) = 0

for some irreducible character of G.

Suppose that
∑

h∈H χ(h) = 0 for some irreducible character of G. Then by

Theorem 4.1.6 we have that λ = 0 for some eigenvalues of Cay(G,H) so

Cay(G,H) is singular. Furthermore, by Corollary 4.1.7 we have that E∗

contains the module of χ with multiplicity of (χ(1G))2.

Corollary 4.2.4. Suppose G is non-abelian simple group. Suppose H is

any subset of G with 1G 6∈ G,H = H−1 and H is normal. Then nullity of

Γ = Cay(G,H) is either 0 or ≥ m2 where m 6= 1 is the least degree of an

irreducible character of G.

Example: The possible value of m in the following simple groups: m =

m(A6) = 5, m = m(A11) = 10 and m = m(PSL(2, 23)) = 11. So, for

instance, if G = PSL(2, 23) and if H is any normal subset with 1 /∈ H and

H = H−1, then Γ = Cay(G,H) is either non-singular or has nullity ≥ 112,

see Theorem 4.2.3.

Example: Let Γ = Cay(Sym(3), H) where

H = {(12), (23), (123), (132)}.

In this example we apply Theorem 4.2.2 to decide the singularity of Γ.
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Figure 4.2.1: Γ = Cay(Sym(3), H) where H = {(12), (23), (123), (132)}

Let α be the adjacency map of Γ and let A be the matrix represents α on

the basis Sym(3). So we have that A is equivalent to

∑
h∈H

ρl(h) =
∑
h∈H

(m1ρ1(h)⊕ ...⊕msρs(h))

where ρi(h) is an irreducible representation of Sym(3). Let µi =
∑

h∈H ρi(h)

for i = 1, 2, 3. The irreducible representations of Sym(3) for H are shown

in Table 4.4.

H (12) (23) (123) (132) µi

ρ1 1 1 1 1 4

ρ2 −1 −1 1 1 0

ρ3

 0 ω2

ω 0

  0 1

1 0

  ω2 0

0 ω

  ω 0

0 ω2

  −1 −ω

−ω2 −1


Table 4.4: ρi(h) and µi =

∑
h∈H ρi(h) for i = 1, 2, 3.

The adjacency matrix of Γ is equivalent to the following matrix



Chapter 4: Vertex Transitive Graphs 63



4 0 0 0 0 0

0 0 0 0 0 0

0 0 −1 −ω 0 0

0 0 −ω2 −1 0 0

0 0 0 0 −1 −ω

0 0 0 0 −ω2 −1


.

It is clear that µ2 and µ3 are singular matrices and the eigenvalues of µ3 are

{−2, 0}. So Γ is singular by Theorem 4.2.2 and its nullity is in fact 3.

Theorem 4.2.5. Let H be a connecting set in the group G and suppose

that H is a union of right cosets of the subgroup K of G with |K| 6= 1. Then

A(Γ) is of the form A(Γ∗) ⊗ J where Γ = Cay(G,H), Γ∗ is some graph

defined on the right cosets of K in G and J is the |K| × |K| matrix with all

entries equal to 1.

Comments:(1) If H is a union of left cosets of K then it is a union of right

cosets since H = H−1. However, aK ∪Ka−1 may not be a union of left or

right cosets.

(2) Note Γ∗ is a graph with vertex set as the right cosets of K in G and

Kgi ∼ Kgj in Γ∗ if and only there is an element in Kgi adjacent to an

element in Kgj in Γ. In general may not be a Cayley graph and in some

cases Γ∗ is a Cayley graph, for instance if K is normal.

Proof of Theorem 4.2.5: Suppose that H = Ka1 ∪ Ka2 ∪ Ka3 ∪ ... for

some a1, a2, ... ∈ G. We want to prove that any two elements in the same

right coset of K are not adjacent and if an element in Kgi is adjacent to

an element in Kgj then all elements in Kgi are adjacent to all elements in

Kgj.

Let x, x̃ ∈ Kgi. Suppose that x ∼ x̃. Hence by the Cayley graph definition

we have x̃ = h−1x for some h ∈ H. So we have that x̃ = k̃1gi = a′k2k1gi
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for some a′ ∈ G where x = k1gi and h−1 = a′k2 so that k̃1 = a′k3 for some

k̃1, k1, k2, k3 ∈ K. This give us a contradiction as the right cosets of K are

disjoint. From the above we conclude that the elements of the same right

coset are non-adjacent.

Now let x, x̃ ∈ Kgi and y, ỹ ∈ Kgj. Suppose that x ∼ y in Γ and we want

to show that x̃ ∼ ỹ in Γ. Note by the Cayley graph definition we have that

y = h−1x for some h ∈ H. In this case we have that k2gj = a′k3k1gi so

gj = k−1
2 a′k4gi. So we have that

ỹ = k̃2gj

= k̃2k
−1
2 a′k4gi

= k̃3a
′k4gi (4.2.1)

for k1, k2, k3, k4, k̃2, k̃3 ∈ K. Now assume that x̃ = k4gi hence x̃ ∼ ỹ. From

the above we conclude that all elements in Kgi are adjacent to all elements

in Kgj. From the above we deduce

A(Γ) = A(Γ∗)⊗ J.

Corollary 4.2.6. If H is a connecting set in the group G and if H is a union

of right cosets of the subgroup K ⊆ G with |K| 6= 1, then Γ = Cay(G,H)

is singular and null(Γ) ≥ |G|
|K| · (|K| − 1).

Proof: Note J is singular and the eigenvalues of J are |K| with multiplicity

of 1 and 0 with multiplicity of |K| − 1. Hence we have that

Spec(Γ) = Spec(Γ∗)⊗ (|K|, 0, 0, ..., 0)︸ ︷︷ ︸
|K|−1

.

From this we conclude that null(Γ) ≥ |G|
|K| · (|K| − 1).
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Example: Let G = D5 be the dihedral group of order 10 where

D5 = 〈a, b : a5 = b2 = 1G, bab = a−1〉 and let K = {1G, b}. Let

H = aK ∪ a−1K be the connecting set for the graph Γ = Cay(D5, H). So

H = {a, a4, ab, a4b}. Therefore according to Corollary 4.2.6 we have that Γ

is singular with null(Γ) ≥ 5. The spectrum of Γ by using a GAP program

is displayed in Table 4.5.

Eigenvalues of Γ Multiplicities

λ1 4 1

λ2

√
5− 1 2

λ3 −
√

5− 1 2

λ4 0 5

Table 4.5: The eigenvalues of the graph Γ = Cay(D5, H).

The above table verifies that Γ is singular with null(Γ) = 5.

4.2.1 Cayley Graphs over Cyclic Groups

In this section we derive simple conditions which characterise singular

Cayley graphs over a cyclic group. Note that a Cayley graph over a cyclic

group is also called a circulant graph. Let Cn = 〈a〉 be a cyclic group of

order n and let H be a connecting set of Cn. Denote the Cayley graph

Cay(Cn, H) by Γ. It is clear that H is a normal subset of Cn.

Let l be a positive integer and let Ωl be the group of lthroots of unity, that

is Ωl = {z ∈ C\{0} : zl = 1}. Then Ωl is a cyclic group of order l with

generator e
2πi
l . Note this is not the only generator of Ωl, indeed any power

e
2πim
l where gcd(l,m) = 1 is a generator too. A generator of Ωl is called

a primitive lth root of unity. Euler’s totient function of l is defined as the

number of positive integer ≤ l that are relatively prime to l and it is denoted

by φ(l).
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Let n be a positive integer and let Φn(x) denote the nthcyclotomic

polynomial. Then Φn(x) is the unique irreducible integer polynomial with

leading coefficient 1 so that Φn(x) divides xn − 1 but does not divide of

xk − 1 for any k < n. Its roots are all primitive nth roots of unity. So

Φn(x) =
∏

1≤m<n

(x− e
2πim
n )

where gcd(m,n) = 1.

Lemma 4.2.7. [56, Lemma 3.1.1] If n is a prime power, n = pm, if ω is a

primitive nth root of unity and if a(1), ..., a(k) are integers with

ωa(1) + ...+ ωa(k) = 0 (4.2.2)

then k is a multiple of p.

Proof: Assume that 0 ≤ a(i) ≤ pm − 1 for all i. Construct the polynomial

P (x) = xa(1) + ...+ xa(k).

Note P (ω) = 0 and keep in minding that a(1), ..., a(k) are not necessary

distinct numbers. It is clear that degP (x) ≤ pm − 1 and P (x) is not the

zero polynomial, since P (1) = k. Hence degP (x) ≥ 0. The nth cyclotomic

polynomial

Φpm(x) = 1 + xp
m−1

+ x2pm−1

+ ...+ x(p−1)pm−1

is irreducible over the field of rational numbers Q and it consists of p

monomials. Therefore, as ω is a common root of P (x) and Φpm(x), it

follows that Φpm(x) divides P (x). Hence we have that

P (x) = Φpm(x)Q(x),
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for some polynomial Q(x) ∈ Q[x]. In particular,

0 ≤ deg(Q(x))

= degP (x)− degΦpm(x)

≤ (pm − 1)− (p− 1)pm−1

= pm−1 − 1.

Suppose xa+tpm−1
= xb+t

∗pm−1
are two equal terms in P (x) when a > b.

Then
a+ tpm−1 = b+ t∗pm−1

a− b = (t− t∗)pm−1

Note, xa and xb are monomials of Q(x) and so a, b ≤ deg(Q(x). Hence this

gives us a contradiction as a − b = (t − t∗)pm−1 but degQ(x) ≤ pm−1 −

1. Therefore, when multiplying monomials xip
m−1

for i = 0, 1, ..., p − 1 of

Φpm(x) by a monomial xa of Q(x) no two products have the same exponent.

It follows that Q(x)Φpm(x) consists of a multiple of the p monomials of

Φpm(x).

By similar techniques one can prove.

Lemma 4.2.8. [56, Lemma 3.1.3] Let ω be a primitive nth root of unity

and let a(1), ..., a(k) be integers. If n is a product of two prime powers, say

n = peqf , and if

ωa(1) + ...+ ωa(k) = 0,

then

ωa(1) + ...+ ωa(k) = l(1 + δ + ...+ δp−1) + r(1 + ε+ ...+ εq−1),

where l, r are sums of powers of ω, and δ, ε are primitive pth and qth roots

of unity respectively.
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Before stating the theorems and results about the singularity of Cayley

graphs over cyclic groups we give a brief introduction to the irreducible

representations and the irreducible characters of finite cyclic groups.

As before Cn is a finite cyclic group of order n. Note that the conjugacy

class of any element a of Cn consists of that element only. Thus there are

exactly n irreducible representations of Cn. According to Theorem 2.2.7

each irreducible representation of Cn has degree 1. Let ρ : Cn → GL(CCn)

be a representation of the group Cn on CCn. The character associated

with ρ is the function χρ : Cn → C denoted by χρ(a) = tra(ρ(a)) for all

a ∈ Cn. Here tra(ρ(a)) is the trace of the representation matrix. Note that

an irreducible representation of degree one and the associated irreducible

character are the same thing. Thus every irreducible representation or

irreducible character of Cn is uniquely determined by its value on any

generator set of Cn. Then ρi(a) = ωi−1 for i = 1, 2, ..., n are the complete

list of the irreducible representations of Cn and the same time these are

the irreducible characters of Cn. This fact provides an easy construction of

all irreducible representations or irreducible characters of a cyclic group.

They are simply the homomorphisms Cn → C. Two representations of a

finite group are equivalent if and only if their characters are equal. Thus

the two irreducible representations of degree one are inequivalent if and

only if they are unequal.

As a consequence of Theorem 4.1.9 we have the general theorem on abelian

groups:

Theorem 4.2.9. Let Γ = Cay(G,H) be a Cayley graph for the abelian

group G, and denote the irreducible characters of G by χ1, χ2, ..., χn. Then

f1, f2, ..., fn with fi =
∑

v∈G χi(v)v span the eigenspaces of Γ with eigenvalue

λi =
∑

h∈H χi(h). In particular, Γ is singular if and only if there is some

character χ = χi for which
∑

h∈H χ(h) = 0. Furthermore, if the number of

distinct characters with this property is c then null(Γ) = c.
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Therefore by Theorem 4.2.9 we deduce that each eigenvalue of Γ is a certain

sum of nth roots of unity. Note that in this work the irreducible character

χi for 1 ≤ i ≤ n of Cn is generated by ωi−1 where ω is a fixed primitive nth

root of unity and the corresponding eigenvalue of Γ will be λi.

We consider the case where G = Cn1 × Cn2 . Suppose that χ1, ..., χn1 and

ψ1, ..., ψn2 are the irreducible characters of Cn1 and Cn2 respectively. Hence

χj × ψk(a, b) = χj(a).ψk(b)

for (a, b) ∈ G and j = 1, ..., n1, k = 1, ..., n2 are the distinct characters of G.

Now let H ⊂ G be a connecting set and consider the Cayley graph Γ =

Cay(G,H). By Theorem 4.1.6 the eigenvalues of Γ have the shape

λ =
∑

(h1,h2)∈H

χj × ψk(h1, h2). (4.2.3)

In some special cases it is possible to determine these eigenvalues in terms

of eigenvalues of certain graph Γi = Cay(Cni , Hi) for i = 1, 2 depending on

the shape of H. We consider two cases .

We say that H is of the box shape if H = H1×H2 with Hi ⊂ Cni and where

Hi does not contain the identity element of Cni , for i = 1, 2, as is shown in

the Figure 4.2.2.

Here it is easy to verify that Hi is a connecting set for Cni , and so we have

Cayley graphs Γi = Cay(Cni , Hi). Here the formula in Equation 4.2.3

takes the shape
λ =

∑
(h1,h2)∈H

χj × ψk(h1, h2)

=
∑
h1∈H1

χj(h1) ·
∑
h2∈H2

ψk(h2)

= λ′ · λ′′
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Cn2

Cn1

H

h1

h2

hr

h1 h2 hk

Figure 4.2.2: H has Box shape

where λ′, λ′′ are eigenvalues of Γ1,Γ2 respectively. Thus,

Spec(Γ) = Spec(Γ1)⊗ Spec(Γ2)

where Spec(Γ1) ⊗ Spec(Γ2) is the multi-set {λt · λl : λt ∈ Spec(Γ1), λl ∈

Spec(Γ2)} for 1 ≤ t ≤ n1 and 1 ≤ l ≤ n2. In particular, since |Hi| is the

degree of Γi, then |Hi| is the largest eigenvalue of Γi. Thus |H1| ·Spec(Γ2) ⊂

Spec(Γ) and |H2| · Spec(Γ1) ⊂ Spec(Γ). So we have proved the following

result.

Theorem 4.2.10. Let G = Cn1 × Cn2 and let H ⊂ G be a connecting set

of box shape. Let Γ = Cay(G,H) and Γi = Cay(Cni , Hi). Then Spec(Γ) =

Spec(Γ1) ⊗ Spec(Γ2). In particular, |H1| · Spec(Γ2) ⊂ Spec(Γ) and |H2| ·

Spec(Γ1) ⊂ Spec(Γ). Furthermore, Γ is singular if and only if at least one

of Γ1,Γ2 are singular.

We next consider a generalization of this idea. Let G = Cn1×Cn2 as above.

We say that H is of brick shape if there are elements a1, ..., ar ∈ Cn1 with
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ai 6= 1Cn1 , and subsets A1, ..., Ar ⊆ Cn2 with |Ai| = l, for some r, l ∈ N,

so that H = a1A1 ∪ ... ∪ arAr. We call l the brick length, as is shown in

Figure 4.2.3.

Cn2

Cn1

h1

h2

hr

Figure 4.2.3: H has Brick shape of length 3 for H1

Here it is easy to show that H1 = {a1, .., ar} is a connecting set and so we

have Cayley graph Γ1 = Cay(Cn1 , H1). Here we can evaluate the

expression in Equation 4.2.3 to get

λ =
∑

(h1,h2)∈H

χj × ψk(h1, h2)

= χj(a1)(
∑
b∈A1

ψk(b)) + ...+ χj(ar)(
∑
b∈Ar

ψk(b)).

(4.2.4)

We can evaluate this formula where ψk is the trivial character. In this case

Equation 4.2.4 becomes λ = l ·
∑

i=1,...,r χj(ai). Hence we have the following:

Theorem 4.2.11. Suppose that G = Cn1 ×Cn2 and that H is a connecting

set of G has brick shape of length l, as above. Let Γ = Cay(G,H) and let

Γ1 be defines as above. Then l · Spec(Γ1) ⊂ Spec(Γ). In particular, Γ is
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singular if Γ1 is singular.

Example: Let Γ = Cay(G,H) where G = Z6 × Z3 and

H = {(1, 1), (2, 5)}. Let Γ1 = Cay(Z3, H1) where H1 = {1, 2} and let

Γ2 = Cay(Z6, H2) where H2 = {1, 5}. Note H 6= H1 × H2 so we can not

conclude that Spec(Γ) = Spec(Γ1) ⊗ Spec(Γ2). However we have that H

has the brick shape twice, this means that for H1 brick of length 1 and for

H2 brick of length 1. Hence we can apply Theorem 4.2.11 for H1 and H2

so by this we have that Spec(Γ1) ⊂ Spec(Γ) and Spec(Γ2) ⊂ Spec(Γ). By

using a GAP program we find the spectrum of Γ as well as the spectrum

of Γ1 and Γ2 as are shown in the following tables:

Eigenvalues of Γ Multiplicities

λ1 2 3

λ2 −2 3

λ3 1 6

λ4 −1 6

Table 4.6: The eigenvalues of the graph Γ = Cay(Z3 × Z6, H)

Eigenvalues of Γ1 Multiplicity

λ1 2 1

λ2 −1 2

Table 4.7: The eigenvalues of the graph Γ1 = Cay(Z3, H1)

Eigenvalues of Γ2 Multiplicities

λ1 2 1

λ2 −2 1

λ3 1 2

λ4 −1 2

Table 4.8: The eigenvalues of the graph Γ2 = Cay(Z6, H2).

The above tables verify that Spec(Γi) ⊂ Spec(Γ) for i = 1, 2.
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Character sum of this type are a well-established topic. More generally, if

G is a group and H a connecting set of G then we say that H is vanishing

on the irreducible character χ if
∑

h∈H χ(h) = 0.

In the following we are interested in conditions for a subset H to be

vanishing. Our first example comes from subgroups of G.

We conclude from Lemma 4.2.7 and Lemma 4.2.8 that the vanishing of

certain sums of nth roots of unity can occur when the sum is over union

of cosets of some non-trivial subgroup of Ωn, the group of the nth roots of

unity. Therefore we have the following important result:

Theorem 4.2.12. Let Cn = 〈a〉 and H a connecting set of Cn. Let Γ be the

graph Γ = Cay(Cn, H) and let Ωn be the group of nth roots of unity. For

i = 1, 2, 3, ..., n consider the homomorphism

ϕi : Cn → Ωn

given by ϕi(a
m) = ω(i−1)m where ω is a primitive nth root of unity and

0 ≤ m ≤ n− 1. Then Γ is a singular graph if the multi-set

ϕi(H) = {ϕi(h1), ..., ϕi(hk)},

with |H| = k, is a union of cosets of some non-trivial subgroup Υ ⊆ Ωn for

some i.

Proof: It is clear by Lemma 4.2.7 and Lemma 4.2.8.

Example: Let Γ = Cay(C8, H) where H = {a, a3, a5, a7}. It is clear that

H is a coset of K = 〈a2〉 so by Corollary 4.2.6 we have that Γ is singular.

Example: Let Γ = Cay(C8, H) where H = {a, a2, a6, a7}. Clearly

Ω8 = {1, ω, ω2, ω3, ω4, ω5, ω6, ω7}
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and it has two non-trivial subgroups Υ1 = {1, ω4} and Υ2 = {1, ω2, ω4, ω6}.

Note H is not a union of cosets however its image under χi for some i is

a coset of a non-trivial subgroup of Ω8. So to decide the singularity of Γ,

according to Theorem 4.2.12 we need to look at the irreducible characters

of C8 which are generated by the elements of Υ1 and Υ2 are shown in the

following table:

1C8 a a2 a3 a4 a5 a6 a7

χ3 1 ω2 ω4 ω6 1 ω2 ω4 ω6

χ5 1 ω4 1 ω4 1 ω4 1 ω4

χ7 1 ω6 ω4 ω2 1 ω6 ω4 ω2

Table 4.9: The irreducible characters of C8 that are generated by the
elements of Υ1 and Υ2

Now we find the elements of theses characters correspond to the elements

of H as is shown in the following table:

a a2 a6 a7

χ3 ω2 ω4 ω4 ω6

χ5 ω4 1 1 ω4

χ7 ω6 ω4 ω4 ω2

Table 4.10: The χ3, χ5 and χ7 values which are corresponding to elements
of H

Note we have that χ5(H) = 2×Υ1 so Γ is singular and λ5 = 0.

Now we generalise this result for groups, which may not be abelian as shown

in the following:

Proposition 4.2.13. Let G be a group with normal subgroup K and a

homomorphism

ϕ : G→ G/K.

Suppose that H is a subset of G such that:
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(1) ϕ(H) is vanishing in G/K for some character χ of G/K.

(2) There is a constant c such that every coset of K in G meets H in 0 or

c elements.

Then H is vanishing in G.

Proof: Let χ be the irreducible character of G/K on which χ is vanishing.

Then we have that

0 =
∑
h∈H

χ(ϕ(h)) =
∑

giK∩H 6=φ

χ(giK) (4.2.5)

where g1K ·∪ g2K ·∪ ... ·∪ gmK = G. Hence by Equation 4.2.5 we have that

∑
h∈H

χ̃(h) = c
∑

giK∩H 6=φ

χ(giK) = 0

where χ̃ is the lift character corresponding to χ.

Corollary 4.2.14. Let G be a group with normal subgroup K such that

G/K is abelian. Let H be a connecting set of G and let Γ = Cay(G,H).

Suppose that every coset of K in G meets H in exactly c elements for some

c. Then Γ is singular with nullity ≥ |G/K| − 1.

Proof: We need to show that A ∼=
∑

h∈H ρl(h) is singular and of nullity

≥ |G/K|−1, where A is the adjacency matrix of Γ and ρl is the left regular

representation of G. Then we can decompose

∑
h∈H

ρl(h) = m1

∑
h∈H

ρ1(h)⊕ ...⊕ms

∑
h∈H

ρs(h)

where ρ1, ..., ρs are the irreducible representations of G and m1, ...,ms are

their degrees respectively. For this it is sufficient to show that
∑

h∈H ρi(h)

is singular for some i. Now let χ1, ..., χ|G/K| be the irreducible characters

of G/K. Then we have that
∑
χj(gK) = 0 for all non-trivial irreducible
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characters of G/K where the sum over all the cosets of K in G. Hence

we have that
∑

h∈H χ̃j(h) = c
∑
χj(gK) = 0 where χ̃j is the lift character

corresponding to χj. From this we conclude that
∑

h∈H ρj(h) is singular

where ρj is the irreducible representation of G which is corresponding to χ̃j.

So by Theorem 4.1.4 we have that A is singular with nullity ≥ |G/K| − 1

as there are |G/K| − 1 non-trivial character for G/K.

The problem of determining vanishing set of elements in a group is very

difficult. Here we have the following consequence of the Corollary 4.2.6 and

Proposition 4.2.13 for singular graphs so far.

Example: Let Γ = Cay(C9, H) where H = {a, a2, a3, a6, a7, a8}. Let K =

〈a3〉 be a non-trivial subgroup of C9. Note we have that each coset of K

meets H in exactly 2 elements. Hence we have that

ϕ(H) =
∑
h∈H

ϕ(h) = 2
∑

ϕ̃(Kg)

where the sum over all cosets of K, and ϕ is the left character

corresponding to the irreducible character ϕ̃ of C9/K. In this case we have

that ϕ(H) = 0 if and only if ϕ̃ is a non-trivial character of C9/K.

Therefore by Corollary 4.2.14 we have that Γ is singular.

In the next example we consider an instance where |H| divides n = |Cn|.

In this case however H does not satisfy the criteria in Theorem 4.2.12, and

Proposition 4.2.13 and indeed Γ = Cay(Cn, H) is non-singular.

Example: Let Γ = Cay(C20, H) where H = {a, a5, a10, a15, a19}. Note

Ω20 has four non-trivial subgroups which are Υ1,Υ2,Υ3 and Υ4 and these

generate by ω5, ω4, ω2, ω10 respectively. We have |H| = 5 which divides

|C20|. Note λi =
∑

aj∈H ω
(i−1)×j where 1 ≤ i ≤ 20. Therefore we can use a

GAP program to find the spectrum of Γ as is shown in the Table 4.11.

It is clear that Γ is non-singular graph.
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Eigenvalues of Γ Multiplicities

λ1 5 1

λ2 −3 1

λ3 −1 2

λ4 5/2− (1/2)×
√

5 2

λ5 5/2 + (1/2)×
√

5 2

λ6 (1/2)×
√

5− 1/2 2

λ7 −1/2− (1/2)×
√

5 2

λ8 −1− (1/2)×
√

(10− (2×
√

5)) 2

λ9 −1− (1/2)×
√

(10 + (2×
√

5)) 2

λ10 −1 + (1/2)×
√

(10− (2×
√

5)) 2

λ11 −1 + (1/2)×
√

(10 + (2×
√

5)) 2

Table 4.11: The eigenvalues of the graph Γ = Cay(Z20, H)

As before Cn is a cyclic group of order n and H a connecting set of Cn. We

have the problem of understanding vanishing character sums. According to

Lemma 4.2.7 and Lemma 4.2.8 we have that if n is a prime power or the

multiple of two distinct primes power then
∑

h∈H χi(h) = 0 if and only if

the image of H under χi is a union of cosets of some non-trivial subgroup

of Ωn for some irreducible character χi of Cn. However this does not hold

if n is a product of three distinct primes power as shown in the following

example:

Example: Let C30 be a group of order 30 and let

C2 = {1, a}, C3 = {1, b2, b3} and C5 = {1, c2, c3, c4, c5}

be subgroups of order 2, 3 and 5 respectively. Suppose that χ is a

1-dimensional character with χ(a), χ(b2) and χ(c2) all 6= 1. Then by the
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Theorem 4.2.1 we have that

χ(a)(χ(b2) + χ(b3)) + (χ(c2) + χ(c3) + χ(c4) + χ(c5)) = (−1)(−1) + (−1)

= 0.

Therefore H = (C2\{1G}).(C3\{1G}∪(C5\{1G} is a set of 6 elements which

vanishes for χ. It clearly is not a union of cosets of a non-trivial subgroup.

Thus we conclude from the above example that the vanishing of the sums

of roots of unity can also occur when no union of cosets of Ωn is involved,

see [39] as a reference.

This leads us to study the singularity of Cayley graphs over a cyclic group

according to the cyclotomic polynomial. As before Cn = 〈a〉 is a cyclic group

of order n and H a connecting set of Cn. Let Γ be the graph Γ = Cay(Cn, H)

and let H∗ be the set of all 0 < m ≤ n− 1 such that H = {am : m ∈ H∗}.

Now consider the polynomial

ΨΓ(x) =
∑
m∈H∗

xm

associated to Γ. Note that ΨΓ depends on the choice of the generator a. If

a′ is some other generator, then a = (a′)r for some r with gcd(r, n) = 1.

Therefore (H ′)∗ ⊆ {1, 2, ..., n− 1} given by (H ′)∗ ≡ rH∗ mod n and so

Ψ′Γ(x) = xr
∑
m∈H∗

xm ≡ xrΨΓ(x) mod xn.

Examples: Suppose G = 〈a〉 has order 7 and H = {a, a6}. Thus H∗ =

{1, 6} and so

ΨΓ(x) = x+ x6.
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Now a2 is also a generator, a = (a2)4 giving (H ′)∗ = {4, 3} and so

Ψ′Γ(x) = x4 + x3.

Note:

(1) Isomorphic graphs may have different ΨΓ(x) polynomials.

(2) If we change the generator of Cn then ΨΓ(x) will change. If we go back

to the example and we change the generator of Cn as Cn = 〈a2〉 with the

same connecting set H we have ΨΓ(x) = x4 + x3 6= x+ x6.

Theorem 4.2.15. Let Cn be a cyclic group of order n and let

Γ = Cay(Cn, H) be the Cayley graph for the connecting set H ⊂ Cn. Let

ΨΓ(x) be the polynomial associated to Γ for some generator of Cn. Then Γ

is singular if and only if Φd(x) divides ΨΓ(x) for some divisor d of n with

1 < d ≤ n where Φd(x) is the dth cyclotomic polynomial. Furthermore, let

d1, d2, ..., dl be the divisors of n. Then we have that null(Γ) =
∑
φ(dj)

where the sum is over all dj such that Φdj(x) divides ΨΓ(x) and φ(dj) is

Euler’s totient function of dj.

Proof: Let λ = λi be any eigenvalue of Γ. Thus by Theorem 4.1.9 we

have that
λi =

∑
h∈H

χi(h)

=
∑
m∈H∗

χi(a
m)

=
∑
m∈H∗

χi(a)m

=
∑
m∈H∗

(ωi−1)m

= ΨΓ(ωi−1)

where ω is a primitive nth root of unity. Now if λi = 0, then ΨΓ(ωi−1) = 0

and so; if ωi−1 is a primitive nth root of unity then we have that Φn(x)|ΨΓ(x)
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as ΨΓ(x) and Φn(x) have a common root and if ωi−1 is not a primitive nth

root of unity. In this case ωi−1 is a primitive rth root of unity for some

divisor r of n where 1 < r < n. Hence we have that Φr(x)|ΨΓ(x) as ΨΓ(x)

and Φr(x) have a common root. Therefore for both cases we have that

Φd(x) divides ΨΓ(x) for some divisor d of n with 1 < d ≤ n.

Conversely, suppose Φd(x) divides ΨΓ(x) for some divisor d of n. Then we

have that Φd(ω
∗) = 0 where ω∗ is a primitive dth root of unity. So we

have that ΨΓ(ω∗) = 0 then λi = 0 for some i. By this we deduce that Γ is

singular.

By the second part of the proof we have that λi = ΨΓ(ω∗) = 0 if and only

if ω∗ is a primitive dth root of unity for some divisor d of n. In this case

we have that φ(d) of primitives dth root of unity. Hence we deduce that

null(Γ) =
∑
φ(dj) where the sum is over all divisors of n such that Φdj(x)

divides ΨΓ(x).

Example: Let Γ = Cay(C8, H) where H = {a, a3, a5, a7}. Then we have

that ΨΓ(x) = x+ x3 + x5 + x7. We know that Φ8(x) = x4 + 1 and Φ4(x) =

x2 + 1. It is clear that ΨΓ(x) = Φ8(x)(x3 + x) and ΨΓ(x) = Φ4(x)(x5 + x).

Hence by Theorem 4.2.15 we have that null(Γ) = φ(8) +φ(4) = 6. By using

a GAP program the spectrum of Γ is shown in the Table 4.12.

Eigenvalues of Γ Multiplicities

λ1 4 1

λ2 −4 1

λ3 0 6

Table 4.12: The eigenvalues of the graph Γ = Cay(C8, H)

Theorem 4.2.16. Let Γ be a vertex transitive graph on p vertices with at

least one edge where p is a prime number. Then Γ is non-singular.

Proof: Let V be the vertex set of Γ, with |V | = p and p is a prime number.
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Let G be a vertex transitive group on Γ. By Theorem 2.2.1 we have that

|G| = |V | · |Gv|

for some v ∈ V. So by Sylow’s Theorem there exist a subgroup K of G with

|K| = p. Note K is cyclic. Now apply Theorem 2.2.1 again we have that

|K| = |vK |·|Kv| for k ∈ K. Note we have that |Kv| = 1G, so K acts regularly

on V. Hence by Sabidussi’s Theorem 4.1.2 we have that Γ is a Cayley graph

Cay(K,H) for some connecting set H of K. Suppose for contradiction that

Γ is singular. As p is a prime number, according to Theorem 4.2.15 we have

that Φp(x) divides ΨΓ(x). So there is Q(x) ∈ Q[x] such that

ΨΓ(x) = Φp(x)×Q(x).

This gives us a contradiction as Φp(x) has degree p − 1 and Q(x) 6= 0 but

the maximum degree of ΨΓ(x) is less than p.

Recently we have found related results for circulant matrices in [38] and [36]

which are similar to Theorem 4.2.15.

Now we will look at some examples:

Example: Let Γ = Cay(C30, H) where H = {a5, a6, a12, a18, a24, a25}.

Note in this example H is not union of cosets of a non-trivial subgroup of

C30. However, we have that

Φ30 = x8 + x7 − x5 − x4 − x3 + x+ 1

divides

ΨΓ(x) = x25 + x24 + x18 + x12 + x6 + x5

as is shown in the following

x25+x24+x18+x12+x6+x5 = (x17+x14+x12+x10x8+x5)(x8+x7−x5−x4−x3+x+1).
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Hence by Theorem 4.2.15 we have that Γ is singular with nullity 8. Then

by using a GAP program the spectrum of Γ is shown as in the Table 4.13.

Eigenvalues of Γ Multiplicities

λ1 6 1

λ2 2 1

λ3 5 2

λ4 3 2

λ5 1 4

λ6 −3 4

λ7 −2 8

λ8 0 8

Table 4.13: The eigenvalues of the graph Γ = Cay(C30, H)

Example: Let Γ = Cay(C12, H) where H = {a1, a11}. Note ΨΓ(x) =

x+ x11 so we need to check all dth Cyclotomoc polynomials Φd(x) where d

is a divisor of n. Hence we find that Φ4(x) = x2 + 1 divides ΨΓ(x) so by

Theorem 4.2.15 we have that Γ is singular with nullity 2. By using a GAP

program the spectrum of Γ is shown in the Table 4.14.

Eigenvalues of Γ Multiplicities

λ1 2 1

λ2 −2 1

λ3 0 2

λ4 1 2

λ5 −1 2

λ6

√
3 2

λ7 −
√

3 2

Table 4.14: The eigenvalues of the graph Γ = Cay(C12, H)

Final comments: Similar techniques allow us to determine the singularity

of Cayley graphs over dihedral groups by using the character formula of
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Babai.

4.3 The First Method

In this section we determine the spectrum of a vertex transitive graph in

terms of an associated Cayley graph. This method can be found in [43]. We

generalise and introduce new points of view and we determine the condition

for a vertex transitive graph to be singular.

Through out this section Γ is a simple connected graph with vertex set V

and |V | = n. Let G be a group of automorphisms of Γ which acts

transitively on V. Note, if G is regular then Γ is a Cayley graph by

Sabidussi’s Theorem 4.1.2. Therefore we assume it is not regular.

We now determine the spectrum of Γ in terms of some Cayley graphs. Fix

a vertex v ∈ V (Γ). Let H = {g ∈ G : v ∼ vg}. We now prove that

H is a connecting set of G satisfying the three conditions for a Cayley

graphs. Clearly (i) v � v1G as Γ is simple so that H is free-identity (that

means 1G /∈ H), and (ii) for each g ∈ H we have that g−1 ∈ H as g ∈

H if and only if v ∼ vg since Γ is undirected and by the automorphism

definition we have that vg
−1 ∼ v so that H = H−1.

For (iii) let g ∈ G. As Γ is connected there is a path v ∼ v1 ∼ v2 ∼ ... ∼ vl =

vg and by vertex transitivity, there are g1, g2, ... so that vi = vgi with gi ∈ G.

Since vi−1 ∼ vi we have that vgi−1 ∼ vgi . This implies that v ∼ vgig
−1
i−1 so

that hi = gig
−1
i−1 belongs to H for i = 2, ..., l. and h1 = g1 ∈ H. Therefore

we have that

g = gl = hlgl−1

where gl−1 = hl−1gl−2 and so on. By the above we conclude that g = gl =

hlhl−1.....h2h1 where hl, hl−1, ..., h2, h1 ∈ H and so also the third condition

is satisfied.
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Now consider the Cayley graph Γ∗ = Cay(G,H). Let K be the stabilizer

group of v. In particular, |G| = |K| · |V |. Then we have that KH = {g ∈

G : v ∼ vKg = vg} hence from this we conclude that KH = H is a union of

(right) coests. Let Kgi and Kgj be two distinct cosets of K. Let x = k1gi

and y = k2gj be in Kgi and Kgj respectively where k1, k2 ∈ K. Then

x ∼ y in Γ∗ if and only if vk1gi ∼ vk2gj in Γ. Note by the stabilizer group

properties we have that vk1gi = vgi and vk2gj = vgj so that x ∼ y if and only

if vgi ∼ vgj in Γ. From this we conclude that all vertices in Kgi are adjacent

to all vertices in Kgj. While the elements of any coset of K are not adjacent

to each other as Γ is simple.

It follows that the adjacency matrix of Γ∗ is of the form A(Γ)⊗ J where J

is the |K| × |K| matrix with all entries equal to 1. Note J is singular and

the eigenvalues of J are |K| with multiplicity of 1 and 0 with multiplicity

of |K| − 1. In particular, we have that

Spec(Γ∗) = {|K|λ1, |K|λ2, ..., |K|λn, 0, 0, ..., 0}

where λ1, λ2, ..., λn are the eigenvalues of Γ. From the above we conclude

the following result that determines vertex transitive singular graphs:

Theorem 4.3.1. Let Γ = (V,E) be a connected graph which admit a group

G of automorphisms that is transitive on V. Let v be a vertex of Γ and

assume that the stabilizer of v has order c > 1. Let H = { g ∈ G : v ∼ vg }.

Then H is a connecting set and Γ∗ = Cay(G,H) has nullity null(Γ∗) ≥

(|V |)·(c−1). Furthermore, Γ is singular if and only if null(Γ∗) > |V |·(c−1).

Example: We apply this method to find the spectrum of K3 = (V,E)

where V = {1, 2, 3}. It is clear that G = Aut(K3) = Sym(V ). Note we have

that

G = {1Sym(V ), (12), (13), (23), (123), (132)}

without loss of generality. The graph K∗3 = (V ∗, E∗) is defined as V ∗ = G
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and its edge are defined by

(σ, γ) ∈ E∗ if and only if (vσ, vγ) ∈ E

where σ, γ ∈ G and v ∈ V . Therefore we chose the vertex 1 of K3 to

construct K∗3 . Note we have that

1G(1) = 1, (12)(1) = 2, (13)(1) = 3, (23)(1) = 1, (123)(1) = 2

and (132)(1) = 3. From this we have that

H = {(12), (13), (123), (132)}

and

K = {1G, (23)}

the stabilizer of the vertex 1. Thus we can compute the spectrum of K∗3 by

applying Theorem 4.1.4. Therefore we have that

µi =
∑
h∈H

ρi(h)

where ρi is the irreducible representation of sym(V ) for i = 1, 2, 3, see

Table 4.4. Hence we have that µ1(H) = 4 where ρ1(σ) = 1 for all σ ∈ H,

µ2(H) = 0 where ρ2(σ) = sign(σ) for all σ ∈ H and

µ3 =

 −1 −1

−1 −1

 .

Thus the spectrum of K∗3 is {4,−2,−2, 0, 0, 0} and by the first method we

have the spectrum of K3 is {2,−1,−1}, as is well-known.

Example: Let Γ = (V,E) be Petersen graph and let V be the collection

of all 2-sets from Ω = {1, 2, 3, 4, 5}. Then two vertices are adjacent in Γ if

and only if their sets are disjoint sets as shown in the following
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{1, 2}

{3, 4}

{1, 5} {2, 3}

{4, 5}
{3, 5}

{2, 5}

{2, 4} {1, 4}

{1, 3}

Figure 4.3.1: Petersen Graph

We demonstrate the method by computing its spectrum. Let

G = AGL(1, 5) = 〈(12345), (2354)〉.

Note G acts transitively on V. Fix a vertex v = {1, 2} of V (Γ), and put

H = {g ∈ G : v ∼ vg} and K = {g ∈ G : vg = v}. Hence we have that

H = {(13524), (1325), (14)(23), (14253), (1523), (15)(24)}

and

K = {1G, (12)(35)}.

Now consider Γ∗ = Cay(G,H). This is a graph on 20 vertices of degree 6.

In this figure every box consists two vertices and these are adjacent to the

vertices in the adjacent boxes.
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(v6, 1G), (v6, (12)(35))

(v7, 1G), (v7, (12)(35))

(v8, 1G), (v8, (12)(35))

(v9, 1G), (v9, (12)(35))

(v10, 1G), (v10, (12)(35))

(v1, 1G), (v1, (12)(35))

(v2, 1G), (v2, (12)(35))

(v3, 1G), (v3, (12)(35)) (v4, 1G), (v4, (12)(35))

(v5, 1G), (v5, (12)(35))

Figure 4.3.2: Γ∗ = Cay(AGL(1, 5), H)

By a GAP program we have that the spectrum of Γ∗ is {61,−44, 25, 010}.

It is clear that the spectrum of Γ∗ is divided into two sets of size |V | = 10

which are {61,−44, 25} and {010}. According to this method the spectrum

of Γ is {31,−24, 15} by dividing {61,−44, 25} by |K|.

4.4 The Second Method

In this method we compute the spectrum of a vertex transitive graph in

terms of the irreducible characters of a transitive group of automorphisms.

This method is new as far as we know. We apply this method to some

examples.

As before Γ is a simple connected graph with vertex set V. Let G be a vertex
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transitive group of automorphisms of Γ. Let U1, ..., Us be the irreducible

modules of G with corresponding characters χ1, ..., χs. Let E1, ..., Et be the

eigenspaces of α with corresponding eigenvalues λ1, ..., λt. Let mj,i be the

multiplicity of Ui in Ej.

Theorem 4.4.1. Let G be a group of automorphisms of the graph Γ which

acts transitively on V = V (Γ). Consider τ(g) := tra(gα) for g ∈ G where

α is the adjacency map of Γ. Then τ(g) is a class function and 〈τ, χi〉 =∑t
j=1 mj,iλj. If the permutation action of G on V is multiplicity-free then

the following hold

(i) Every eigenvalue of Γ is equal to 〈τ, χi〉 for some i with multiplicity of

χi(1G).

(ii) Γ is singular if and only if
∑

χi(1) < |V | where the sum runs over all

characters χi with 〈τ, χi〉 6= 0.

Comments: 1. It is clear that τ(g) = tra(gα) is the number of times a

vertex v ∈ V is adjacent to its image vg under g. In particular, τ(1G) = 0.

(2) A permutation character ψ of G is multiplicity-free if and only if each

irreducible character of G appears with multiplicity ≤ 1 in ψ. In particular,

if ψ is multiplicity-free then G is transitive.

(3) As before G, is transitive on the vertex set V of Γ. Therefore the

permutation representation of G on V is a sub-representation of the

regular representation. Therefore
∑

j=1...tmj,i ≤ dim(Ui) for all i. For

instance, if G is abelian then all non-zero eigenvalues are of the form

λj = 〈τ, χi〉 for some i.

(4) If Γ = Cay(G,H) where H is a normal connecting set of G then 〈τ, χi〉 =

miλi where λi is an eigenvalue of Γ and mi is the dimension of Ui. Here the

multiplicity of λi is m2
i . Since by Theorem 4.1.6 we have that Ui appears in

CV with multiplicity mi and so on miUi appears in one eigenspace.
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(5) We consider the case where the permutation character ψ of G is not

multiplicity free. Let r be the multiplicity of χi in ψ. Define

τ l(g) = tra(αlg) for some l ∈ N. Then, using the same ideas as in the proof

of the theorem, we have

t∑
j=1

mj,iλj = 〈τ, χi〉

t∑
j=1

mj,iλ
2
j = 〈τ 2, χi〉

...
t∑

j=1

mj,iλ
r
j = 〈τ r, χi〉

(4.4.1)
where r ≤ mi. These are additional equations to determine the spectrum

of Γ. Please see the example of the Petersen graph with the General Affine

Group.

Proof of Theorem 4.4.1 : As before let CV be the vertex module of Γ and

α be the adjacency map of Γ.

First we show that τ(g) is a class function. Note by Proposition 3.4.1 we

have that αh−1gh = h−1αgh for h ∈ G. Since

tra(αh−1gh) = tra(h−1αgh)

= tra(αghh−1)

= tra(αg)

we have that τ(g) = tra(αg) is a class function. So we can write τ in the

following shape

τ(g) = 〈τ(g), χ1(g)〉χ1(g) + ...+ 〈τ(g), χs(g)〉χs(g) (4.4.2)

as χ1, ..., χs is an orthonormal basis of the vector space of all class functions.

Let π1, ..., πt be the projections πj : CV → CV with πj(CV ) ⊆ Ej. Since G
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preserves eigenspaces and commutes with the πj (in both cases as G

commutes with α) we have gαπj = gλjπj = λjgπj. Since π1 + ... + πt = id

we have
〈τ, χi〉 = 〈tra(αg), χi〉

= 〈
∑
j

tra(gαπj), χi(g)〉

=
∑
j

λj〈tra gπj, χi(g)〉

=
∑
j

λjmji.

Note, if the permutation character of G on vertices is multiplicity-free then

0 ≤ mji ≤ 1 for all j, i and for every i there is at most one j with mji = 1.

Hence λj = 〈τ, χi〉 for such a pair. By the same argument, λj = 0 is an

eigenvalue if and only if
∑

χi(1) < |V | where the sum is over all characters

with 〈τ, χi〉 6= 0.

Note, if Γ = Cay(G,H) and H is a normal connecting set of G, then by

Theorem 4.1.6 we have that each irreducible G-module say Ui appears in

exactly one eigenspace of Γ with multiplicity of mi. Hence we conclude that

〈τ, χi〉 = λimi where λi is an eigenvalue of Γ with multiplicity of m2
i .

In the remainder of this section we apply Theorem 4.4.1 to some examples.

Example 1: Once again, let Γ be Petersen graph. We determine the

spectrum of Γ by the second method.

{1, 2}

{3, 4}

{1, 5} {2, 3}

{4, 5}
{3, 5}

{2, 5}

{2, 4} {1, 4}

{1, 3}

Figure 4.4.1: Petersen Graph
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Note, A5 acts transversely on V (Γ). Consider τ = tra(αg) where g ∈ A5.

Therefore the character table of A5 with the function ψ and τ are shown in

the Table 4.15.

1A5 (123) (12)(34) (12345) (13425)

|gA5
i | 1 20 15 12 12

χ1 1 1 1 1 1

χ2 4 1 0 −1 −1

χ3 5 −1 1 0 0

χ4 3 0 −1 ε ε

χ5 3 0 −1 ε ε

ψ 10 1 2 0 0

τ 0 0 4 5 5

Table 4.15: The character table of A5, ψ and τ

where ε = 1
2
(1 +

√
5) and ε = 1

2
(1−

√
5).

Next, represents ψ and τ as a linear combination of the χi. We see ψ =

χ1 + χ2 + χ3 and τ = 3χ1 − 2χ2 + χ3. We note that ψ is multiplicity-free

and so that the spectrum of Γ is 31,−24 and 15.

In this example G = A5 acted multiplicity freely on V. In the next example

we replace G by AGL(1, 5) which is not multiplicity free.

Example 2: We apply Theorem 4.4.1 to compute the spectrum of Γ using

G = AGL(1, 5) = 〈(12345), (2354)〉. As we have seen thatG acts transitively

on V (Γ). The character table of G with the functions ψ, τ and τ 2 are shown

in the Table 4.16.
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1GA(1,5) (1342) (1243) (25)(34) (12345)

|gG| 1 5 5 5 4

χ1 1 1 1 1 1

χ2 1 −1 −1 1 1

χ3 1 A −A −1 1

χ4 1 −A A −1 1

χ5 4 0 0 0 −1

ψ 10 0 0 2 0

τ 0 2 2 4 5

τ 2 30 ∗ ∗ ∗ 5

Table 4.16: The character table of G,ψ, τ and τ 2

where A = −E(4) = −
√
−1 = −i. Note ∗ ∈ N.

Next represents ψ as a linear combination of the χi for i = 1, 2, 3, 4, 5. We

see ψ = χ1 + χ2 + 2χ5. It is clear that ψ is not multiplicity-free. Now we

represent τ as a linear combination of χi. We have that τ = 3χ1 + χ2 − χ5.

Note χ1 and χ2 have multiplicity of 1 in ψ so that the coefficients of these

characters in τ are eigenvalues of Γ. However the multiplicity of χ5 in ψ is

2. In this case Theorem 4.4.1 by itself is not sufficient to solve. However

using Comment 5 above we have the additional equations are shown in the

following:

λ5,1 + λ5,2 = −1

λ2
5,1 + λ2

5,2 = 5.

Thus by solve these equations we have that λ5,1 = −2 and λ5,2 = 1. From

the above we conclude that the Spec(Γ) = {31,−24, 15}.

Example3: Let D6 = 〈a, b : a6 = b2 = 1D6 , bab = a−1〉. Let Γ be the graph

Γ = Cay(D6, H) where H = {a, a5, b, a2b, a4b}.
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1G

a2b

a3b

a

a4b

a2

a5b

a3

b

a4

a5

ab

Figure 4.4.2: Γ = Cay(D6, H) where H = {a, a5, b, a2b, a4b}

In this example we apply Theorem 4.4.1 to compute the spectrum of Γ. The

character table of D6 with function ψ and τ are shown in the Table 4.17.

1D6 a3 a a2 b ab

gD6
i 1 1 2 2 3 3

χ1 1 1 1 1 1 1

χ2 1 1 1 1 −1 −1

χ3 1 −1 −1 1 1 −1

χ4 1 −1 −1 1 −1 1

χ5 2 −2 1 −1 0 0

χ6 2 2 −1 −1 0 0

ψ 12 0 0 0 0 0

τ 0 0 12 0 12 0

Table 4.17: The character table of D6, ψ and τ

Next represents ψ as a linear combination of the χi for i = 1, 2, 3, 4, 5, 6.

We see that ψ = χ1 + χ2 + χ3 + χ4 + 2χ5 + 2χ6. It is clear that ψ is the

regular permutation character and since H is the normal connecting set
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hence according to Theorem 4.4.1 we have that

〈τ, χi〉 = miλi

for i = 1, 2, 3, 4, 5, 6. In this case we have that τ = 5χ1 − χ2 + χ3 − 5χ4 +

2χ5 − 2χ6. Thus we have that Spec(Γ) = {51,−51,−15, 15}.
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A

Thesis Programming

In this appendix, we provide all necessary code regarding Cayley graphs

spectra and spectral decompositions. We apply these code in GAP or Maple.

A.1 Spectrum Computation with GAP

In this section, we introduce a code for computing the spectrum of Cayley

graph over a finite group. Note we apply this code in version 4.8.9 of GAP

and use the package ”grape”. We list the commands to generate a finite

group. For instance, the following steps generate the dihedral group of order

24.

f:=FreeGroup("a","b");

<free group on the generators [ a, b ]>

G:=f/[f.1^12,f.2^2,f.2*f.1*f.2*f.1];

<fp group on the generators [ a, b ]>

a:=g.1;; b:=g.2;;

We use the following function to return a Cayley graph over the group G

and connecting set H.
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C:=CayleyGraph(G,[H]);

Now we apply the following code to compute the spectrum of C.

# Generate empty list

M:=[];

# n is the number of vertices of C

n:=Length(Vertices(C));

i:=1;

while i <= n do

# L generates the vector which represents the set of the vertices of C

L:=Vertices(C);

# L is the column vector representing the set of vertices that are adjacent

to vertex i

for j in L do

if j in Adjacency(C,i) then

L[j]:=1;

else

L[j]:=0;

fi;

od;

# Add this column to the list M

Add(M,L);

i:=i+1;

od;

# M is the adjacency matrix of the graph C

M;

# Computing the spectrum of C over n^{th} Cyclotomic field

Eigenvalues(CyclotomicField(n),M);
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A.2 Spectrum computation with Maple

In this section, we provide a code for Maple to compute the spectrum of a

Cayley graph over a cyclic group Cn. In this code we choose H arbitrary

by the choosing function. For each choice we compute the spectrum of

Cay(G,H). For this code we need to load the packages combinat and linear

algebra.

Loading combinat

Loading LinearAlgebra

# calculate eigenvalue of the adjacency matrix of a cayley graph

CayleyEigenvalue := proc (s, H, p)

local k, t, n1, i;

n1 := Dimension(H);

t := 0;

for i to n1 do

k := H[i];

# t is the eigenvalue Cayley graph

t := t+exp((2*I)*k*s*Pi/p)

end do;

return t

end proc;

n:=|C_n|;

f := j-> j:

# Create a vector with respect to f

w := Vector(n-1, f);

m := Dimension(w);

# ceil((m/2)) is the smallest integer greater than or equal to (m/2)

k := ceil((m/2));

# Creating a vector of dimension k with respect to f

Z := Vector(k, f);
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# create the matrix M where its rows are the combinations of size |H|/2

M := Matrix(choose(k, |H|/2));

l := RowDimension(M);

A := Matrix(n, l);

for i to l do

h := M[i]-~ n/2;

# remove zeros from h

r := remove[flatten](t -> t = 0 , h);

R := r+~n/2;

# H1 is closed under the inverses

H1 := <M[i]|n-~ R>;

H := convert(H1, Vector);

for j from 0 to n-1 do

A(j+1, i) := CayleyEigenvalue(j, H, n):

end do

end do:

# A is a matrix where its columns are the spectrum of Cay(C_n,H_1)

A;
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