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ABSTRACT 
 
Structural studies of membrane proteins represent a significant challenge in the field owing to 
their hydrophobic nature, unstable property and resistance to be crystallized. In Gram-
negative bacteria, membrane proteins contribute to the characteristic membranous 
architecture composed of an asymmetric layer of outer membrane (OM) and a symmetric 
inner cytoplasmic membrane (IM).  
 
Outer membrane proteins (OMPs) play essential roles in nutrient uptake, protein transport, 
outer membrane assembly, and pathogenesis of Gram-negative bacteria. In Escherichia coli, 
nearly all the outer membrane proteins are inserted into the outer membrane by the β-barrel 
assembly machinery (BAM), which contains one conserved membrane protein BamA and 
four lipoproteins BamBCDE. The individual protein structures of the BAM complex have 
been reported, but the mechanism of OMP assembly by the BAM complex is halted by a lack 
of structure of the whole complex. During the course of the collaborative BAM complex 
project, I participated in structural studies of the BAM complex and generated high resolution 
crystallographic diffraction data that contributes to one of the two determined structures of 
the BAM complex, and the structural insights have enlightened understanding of the in vivo 
insertion mechanism.  
Of diverse types of β-barrel OMPs that are inserted into the OM by the BAM complex, an 
outer membrane protein called OmpU from Vibrio cholerae is a potential virulence factor in 
addition to its porin identity with undefined atomic structure. I determined the crystal 
structure of this OMP, in which the long and flexible extracellular loop L4 and a novel N-
terminal coil in the pore lumen provide direct structural evidence underlying its particular 
functions. 
 
The symmetric lipid bilayer of IM accommodates an even more diverse array of IMPs 
composed of the contrasting dominance of α-helices. Three IMPs are responsible for 
conducting post-translational modifications of lipoproteins in Gram-negative bacteria, a class 
of proteins destined to reside on the periplasmic side of either the IM or the OM via acyl 
chains post-translationally linked to the N-terminal cysteine residues, and they are called 
phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt), Prolipoprotein signal 
peptidase (Lsp) and apolipoprotein N-acyltransferase (Lnt). Structural studies were carried 
out on Lnt but unsuccessful in determining the atomic structure. Recent structures of Lnt 
reported during the course of this project are consistent with earlier biochemical studies that 
piloted the understanding of its function and further elucidate the molecular mechanisms of 
its primary acyl-transfer function. 
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All the structures solved in this thesis project were obtained using X-ray crystallography as a 

principal method. As specified by the Protein Data Bank (PDB) Annual Report in 2016, 

89.4% of the deposited biomolecular structures in the data bank were determined by X-ray 

crystallography. 

 

1.1 General principles 
There is a general physical law that the wavelength λ of the light needs to be equal or smaller 

than the object in order for the object to induce diffraction and be visible under magnification 

in most cases. Protein molecules are therefore not able to diffract visible light, which is 

electromagnetic radiation with wavelengths of 400–700 nm (nm = 10−9 m), and generate 

expansion of individual atoms, in which bonded atoms are ~0.15 nm or 1.5 angstroms (Å = 

10−10 m) apart. X-rays, on the other hand, possesses electromagnetic radiation of this 

wavelength and can be diffracted by even the smallest molecules. However, X-ray induced 

structural determination rarely solves the hydrogen atoms in the molecular models, and they 

are usually not required to be present. Nonetheless, based on the expectation that bond 

lengths, bond angles, and conformational angles in proteins are similar to those in small 

organic molecules, the positions of all hydrogen atoms can be confidently interpreted. 

Despite the fact that individual atoms can diffract X-rays, producing a focused image of a 

single molecule as the pattern of a focused image of objects seen in light microscopes are not 

possible due to two main reasons. First is the nature of X-rays not to be focused by lenses. In 

X-ray analysis of protein crystals, this can be circumvented by measuring the directions and 

strengths (intensities) of the diffracted X-rays and then applying a computer to mimic the 

existence of an image-reconstructing lens. This artificial lens then carries out complicated 

computations and finally displays the magnified image of the object on a digital screen. 
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Second, a single molecule is not sufficient to produce detectable X-ray diffracting power and 

subsequent interpretable data. Protein crystals, composed of countless amount of ordered 

array of molecules in identical orientations, amplify the diffraction that results from many 

atoms that diffract identically and produce strong and detectable diffracted X-rays on the 

detector. 

1.2 Geometric principles of diffraction 
A crystal is a well-ordered three-dimensional array of molecules held in place by non-

covalent interactions. Being a repeated object, the smallest repeating unit in the crystal is the 

unit cell, which is representative of the whole crystal [1, 2] (Figure	  1).  The organization of 

points at the vertices of unit cells is the lattice (Figure	  2). Knowing the contents of the unit 

cell is thus crucial for understanding the electron density produced by the molecule within 

and location of every single atom. In the unit cell, the location of an atom is defined by a 

triplet of three–dimensional Cartsian coordinates, x, y, and z, and one of the vertices of the 

unit cell is usually assigned as the origin of the unit cell’s coordinate numbering, which has 

the values x = 0, y = 0, and z = 0 (0, 0, 0) (Figure	  1).  

The dimensions of a unit cell are specified by two sets of triplets of letters: a, b, c for the 

lengths of three edges and α, β, γ for the interaxial angles. There are seven unit cell types, or 

crystal systems, and they give rise to thirteen lattice types.  

In addition to indices of edges and angles of the unit cell, there is one more triplet of letters, 

hkl, which signifies a particular set of equivalent and parallel planes and is called lattice 

index or Miller index. h identifies the number of planes in the set per unit cell in the x 

direction, i.e. the number of sections the set of planes equally divide into at the a edge, k in 

the y axis and l in the z direction. Indices are presented in parentheses such that the planes 

with indices hkl are the (hkl) planes. A particular set of planes has its interplanar spacing d. In 
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one way of perceiving diffraction as reflection of X-ray beam from these sets of planes in the 

crystal, W.L. Bragg proposed the condition that, once met, produce a diffracted beam, in 

which an equation is provided as follow: 

2dhkl sin θ = nλ 

Where n is an integer. The smaller the dhkl in a lattice, the higher the resolution of the 

collected data [3].  

Since the incident X-ray is diffracted by particular set of planes, the intensity of the diffracted 

beam is determined by the amount of electron density the atoms located on this set of planes 

provide. In fact, the electron density distributed across the set of planes (hkl) produces the 

reflection hkl of the diffraction pattern in the reciprocal space. 

 

Figure 1. Representation of one unit cell with two alanine molecules within and spatial 
coodinates x, y, z. 

The origin is specified as (0, 0, 0). (Figure taken from [4]) 



	   16 

 

Figure 2. Illustration of six unit cells packed in a crystalline lattice, which is a building block 
of a larger crystal. 

There are two alanine protein molecules (coloured dots and short connecting silver lines) in 

each unit cell. (Figure taken from [4]) 

1.3 Unit cell symmetry and space groups 
Every unit cell adopts specific three-dimensional structure with defined shape. For example, 

a cell in which a ≠ b ≠ c and α ≠ β ≠ γ is called triclinic, and is the simplest crystal system. A 

cell in which a = b = c and α = β = γ = 90° is called cubic. Figure	  3 lists the 7 possible 

crystal systems.  
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Figure 3. Seven crystal systems. 

They are listed in order of symmetry, from the highest (cubic) to the lowest (triclinic). 

(Figure taken from [5]) 

 

The internal symmetry of a unit cell is not solely reliant on the crystal system it belongs to. If 

the contents in the unit cell are not symmetry-related, the crystal system is then defined as 

possessing no internal symmetry. For instance, a structurally defined cubic unit cell can be 

regarded as not internally symmetric if the contents in the cell are not subject to symmetry.  
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The symmetry of a unit cell is indicated by the space group of the unit cell, which is specified 

by a given symbol. P42212, for example, is a subtype of space group in which the capital 

letter P represents the lattice type (a primitive lattice), and the other numbers imply the 

symmetry operations available in the cell according to its internal symmetry. Space groups 

are symbolized in the form of XYZ, X represents the lattice type, with P for primitive, I for 

body-centered and F for face centered, Y indicates the point-group and Z designates the 

required symmetry operations. Among the simplest symmetry operations are translation, 

rotation and reflection [3, 6]. Translation is equal to movement by a given distance. Rotation 

means rotating the content with respect to a rotation axis, one of the symmetry elements, by a 

certain angle. A fourfold rotation axis, for example, is designated by the number 4. 

Combination of rotation and translation gives rise to the screw axis, represented by the 

symbol nm. Meaning an n-fold screw axis with a translation of m/n of the unit translation, P42 

labels a primitive unit cell with a fourfold screw axis parallel to c, with a translation of half of 

the axis length. Reflection is another type of symmetry operation and entails mirror plane as 

the symmetry element.  

Given the fact that protein molecules are intrinsically asymmetric due to presence of chiral 

amino acids as building blocks, a unit cell containing one protein molecule will have no 

symmetry elements and internal symmetry. In addition, there is no symmetry element as 

mirror plane found in unit cells of proteins and only translations, rotations and screw axes are 

found in protein crystals, reducing the number of available space groups from 230 to 65 for 

chiral molecules. What is more usual, however, is the situation in which a unit cell contains at 

least a few identical protein molecules and arranges them in a way that they are suited for 

producing certain symmetry elements. A protein molecule in this case that owns no 

symmetry elements but can be juxtaposed on adjacent copies by symmetry operations is 

called the asymmetric unit. During data collection, one reflection image cannot determine the 
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structure on its own, which displays only a minute part of the Fourier transform. As the 

crystal rotates, hundreds to thousands of reflection images are produced. Different angle 

ranges of the crystal are required to cover all the unique orientations of the crystal along with 

the corresponding unique reflections, with higher-symmetry crystals requiring smaller ranges. 

A full list of symmetry-related references of the 230 space groups can be found in the 

International Tables for X-ray Crystallography [7]. 

 

1.4 Reflections as three-dimensional waves 
Each recorded reflection on the film is produced by a beam of electromagnetic radiation that 

can be regarded as a three-dimensional wave and can be summarized as the total of the 

diffracting contributions of all atoms in the unit cell, and this sum, termed as a structure-

factor equation, can be used to describe a diffracted X-ray in a mathematical manner. The 

resultant sum for a specific reflection hkl is called the structure factor Fhkl, and the Fourier 

transform of a structure factor gives the electron density function ρ(x, y, z), and the equation 

of ρ(x, y, z) is provided below:  

ρ(x, y, z) = !
"
 ∑ ∑ ∑ Fhkle−2πi(hx+ky+lz), 

Where V is the volume of the unit cell. 

Any three-dimensional wave, along with Fhkl, possesses three inherent constants: the 

amplitude F, the frequency h, and the phase ρ(x, y, z), and the equation of ρ(x, y, z) is 

provided below: summarized as the Ihkl, which is readily available from measured reflection 

intensities when hitting the film. Frequencies of the three-dimensional wave are designated 

by h, k, l on x, y and z direction respectively, the same indices of the set of planes that yield 

diffraction, hence the frequency of a structure factor is 1/dhkl. The phase of Fhkl, on the other 
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hand, is not recorded and cannot be directly determined during data collection, which is 

referred to as the phase problem.  

1.5 Single-crystal X-ray diffraction 
 

Throughout the course of this thesis project, protein crystals were obtained and sent to test 

crystal diffraction by X-ray beams. Single-crystal X-ray diffraction, employed for all the 

crystals obtained, consists of steps in the following order: Obtaining a crystal, analysis under 

X-ray beams, data collection and downstream computational data analysis in order to 

calculate an electron density map and generate an atomic protein model (Figure	  4).  

 

Figure 4. Workflow for protein crystal structure determination by X-ray crystallography. 

	  
When collecting X-ray data, a crystal is positioned and fixed between a detector that detects 

diffracted X-ray and an X-ray source that produces powerful X-ray beams (Figure	  5). Upon 

X-ray emission, the crystal diffracts the beam and produces scattered beams to be received by 

the detector. As the crystal is continuously rotated (0-360 degree) when mounted in place, 

different diffraction images are produced, recording different intensities and angles of 

scattered beams from corresponding orientations of the crystal. Each scattered beam results in 

a particular spot on the film with certain darkness and position, and these spots are called 

reflections. Rotating the crystal will yield distinct reflections with respect to the orientation, 

and each recorded diffraction pattern on the film is the two-dimensional array of reflections 

positioned in a cross section of a larger hypothetical three-dimensional lattice of reflections 
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called reciprocal space [4] (Figure	  5). The spacing of the unit cells in the real crystal lattice, 

called the real lattice, and the spacing of reflections on the film, called the reciprocal lattice, 

are inversely related, thereby allowing relatively straightforward calculation of the 

dimensions of the unit cell from the macroscopic parameters of the reflections. For the 

location of each reflection in the reciprocal lattice, three coordinates h, k, l are used. The 

central reflection (i.e. the centre of the film where undiffracted X-rays pass straight through) 

is referred to as the origin and assigned the coordinates (h, k, l) = (0, 0, 0) or simply hkl = 

000. Designation of other reflections follows similar trend with whole-number coordinates.  
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Figure 5. Single crystal X-ray diffraction by beams emitted from an X-ray tube as an example 

of X-ray source.  

The dark blue circle represents a plane in the three-dimensional reciprocal sphere on which 

the reflections from the specific orientation of the crystal (solid dots) pass through. 

Unrecorded reflections that are available to be produced by other orientations of the crystal 

but not recorded are represented by the hollow dots. Each reflection is assigned by the three-

dimensional coordinates h, k, l. (Figure taken from [4]) 

1.5.1 Data indexing, integration, scaling and merging 
Once the data set is collected, downstream data analysis is feasible with specific 

computational programmes. Data indexing is termed as “identifying the dimensions of the 

unit cell and which image peak corresponds to which position in reciprocal space”. [8] 

During indexing, each reflection is designated by Miller indices h, k, l to specify individual 

position of each reflection within the reciprocal space, and the central reflection is regarded 
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as the origin with the coordinates hkl = 000. Along with the intensity of each reflection, Ihkl, 

these data are used to determine the dimensions of the unit cell and the symmetry of the 

crystal, i.e., its space group.  

Once the space group has been assigned, the data is then integrated, a process in which the 

intensities of these reflections are measured and individually labeled, converting the bundle 

of collected reflection images into a single file that lists the Miller index and the intensity of 

each reflection. Representative indexing and integrating computer programmes include 

iMosflm [9] and HKL-2000 [10].  

In the following scaling and merging process, the reflections with the same indexes from 

more than one data set or more than one frame are compared and set with a common relative 

scale so that identical reflections are assigned identical intensities. In this way the 

discrepancy of intensities between these identical reflections, caused by factors including 

different diffracting ability of crystals, radiation damage of the crystals to varying extent, and 

difference in the distance X-rays travel with respect to different orientations of crystals, can 

be appropriately addressed. In practice, the intensity of each frame of reflections is usually 

multiplied by a scale factor that is determined by a least-squares procedure and the frames are 

merged into a single data set. In the meantime, a merging R-factor is applied to indicate the 

degree of consistency between the averaged and scaled intensities of all observations of one 

reflection and averaged and scaled intensities of individual observations of the identical 

reflection distributed among different frames. A programme called Scala in CCP4 suite, for 

example, processes MTZ file (a file format that stores reflection data) of unmerged intensities 

produced from iMosflm, scales multiple observations of identical reflections and merges the 

observations into an average intensity. POINTLESS, another programme commonly used in 

automatic data processing, is used to predict the space group of the crystal by estimating and 
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choosing the point-group symmetry or Laue group in the lattice with the largest possibility of 

being correct (smallest difference with ideal lattice) [11].  

1.5.2 Obtaining phases 
Each reflection possesses its own phase, and in order to calculate ρ(x, y, z) one has to obtain 

phase estimate of every single reflection involved in the process. For emphasizing the 

importance of phase information, the equation of ρ(x, y, z) can be expressed as the following:  

ρ(x, y, z) = !
"
 ∑ ∑ ∑ Fhkle−2πi(hx+ky+lz-a’hkl), 

where α’
hkl are the unkown phases of each reflection. 

The lost phase information can be retrieved by several popular and efficient methods, 

including the heavy atom method (isomorphous replacement), anomalous scattering or 

dispersion, and molecular replacement. The phases obtained by these methods are initially 

estimates, which need subsequent improvement and extension prior to constructing an 

accurate and reliable electron density map. 

1.5.3 Heavy atom method 
Normal routine single-crystal X-ray diffraction analyzes native protein crystals composed of 

aggregates of amino acids synthesized by endogenous or intracellular sources, and each atom 

and its corresponding diffracting contribution are regularly repeated in the crystal, which 

produces protein-specific reflection pattern on the film. Introduction of an additional atom, 

usually a strong diffractor, to specific and repeating locations in every unit cell in the crystal 

will constantly alter the reflection pattern because of the extra diffracting contribution of the 

added atom. The location of the added atom depends on the interactions with certain amino 

acids in the protein, and typically would not cause interference in protein conformation and 

existing crystal packing. Common choices of heavy atom include Hg and Pt as well as the 

halogens including bromine (Br) and Iodine (I). Iodine has the atomic number 53, it produces 
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significant anomalous signal although its absorption edge is not easily accessible (K 

abosorption edge of 0.3738 Å). Generation of iodide derivatives of the crystals of the BAM 

complex and subsequent anomalous diffraction greatly assisted in structure determination.  

Once the heavy atom is incorporated in the crystal, usually by soaking the crystal in the 

solution of heavy atom, the locations of those heavy atoms in the unit cell can be revealed by 

a Fourier sum called the Patterson function P(u, v, w), the letters in the parentheses being the 

spatial coordinates in the Patterson map. The equation of the Patterson function is provided 

below: 

P(u, v, w) = !
"
 ∑ ∑ ∑ |Fhkl|2 e−2πi(hu+kv+lw) 

It has been shown that in a real unit cell that contains n atoms would result in n(n-1) 

Patterson atoms in a Patterson unit cell. Each Patterson atom is a peak in the map. After 

applying trial and error of choosing specific atoms, the correct Patterson atoms that construct 

the Patterson map matching the calculated map are indicative of the locations of the real 

heavy atoms in the unit cell. 

Despite localization of the heavy atoms, the phases of the reflections can still be ambiguous. 

Using the Harker diagram, the structure factor of the native reflection, FP, the structure factor 

of the heavy atom, FH, and the structure factor of the heavy atom soaked crystal, FPH, can be 

illustrated as vectors in a plane. As the diffracting contributions of all atoms are accumulative 

in a structure factor as well as in amplitude of a structure factor, the following relationship 

holds for the three structure factors: 

FPH = FH + FP 

|FPH| = |FH| + |FP| 
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In case of phase ambiguity, a second heavy atom soaked crystal is adopted and data set is 

collected. The second heavy atom is required to bind and reside in different locations in the 

unit cell from the first heavy atom, otherwise the phases of FH would be identical in both 

derivatives and this overlap cannot solve the issue. A second suitable and non-overlapping 

heavy atom can produce a phase solution that satisfies one of the estimates provided by the 

first heavy atom, thereby narrowing down the favourable choice in the diagram. It is worth 

noting that in some cases application of three or four heavy atom derivatives may be 

necessary for appropriate judgment of phase estimates.  

Another means to obtain phase estimates using heavy atom derivatives is the anomalous 

scattering technique, which deploys the unique characteristic of the heavy atom in terms of 

absorbing X-rays. All chemical elements absorb and discharge X-rays, and, at a wavelength 

near the element-specific emission wavelength, the absorption decreases dramatically, a 

phenomenon called an absorption edge. Light atoms in most native protein crystals do not 

incur anomalous scattering since the wavelengths of X-rays in diffraction analysis are not 

near the absorption edges of them. Heavy atoms, however, do possess absorption edges 

within the range and can be used for proper anomalous diffraction with variable wavelengths 

of X-rays.  

Single-wavelength anomalous diffraction (SAD) is an example of anomalous diffraction 

using a single specific wavelength to maximize anomalous scattering by the heavy atom. 

When anomalous scattering is triggered by the heavy atom, a small part of X-rays is absorbed 

by the heavy atom and released with a different phase. This in turn leads to unevenness of 

intensity of symmetry-related reflections in the reciprocal lattice that would otherwise be 

identical in non-anomalous diffraction. It is this discrepancy of the intensities in the Freidel 

pairs caused by anomalous scattering that provides clues of phase information in the native 
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data set.  

There is another type of anomalous diffraction directed at sorting the phase problem, and it is 

called multi-wavelength anomalous diffraction (MAD). As the name suggests, the technique 

employs the advantage of variable wavelengths of X-rays and the fact that the measured 

intensities of Freidel pairs varies greatly with different wavelengths in the absorption 

spectrum of the heavy atom. Consequently, phase information can be deduced from distinct 

data sets, resembling the effects of each data set collected from distinct heavy atom 

derivatives described previously. Furthermore, recorded reflection intensities of MAD also 

vary to some degree with variable wavelengths, which carries valuable phase information that 

can also be interpreted for phase solution.  

Selenium is a popular choice of anomalous scatterer frequently used to replace sulfur in 

protein residues and produce SAD and/or MAD. It has the chemical symbol Se and atomic 

number 34. It has a K absorption edge maximum at 0.9793 Å and an absorption edge 

inflection point at 0.9794 Å [12]. Incorporation of selenium into the BAM complex via 

selenomethionine (SeMet) labeling during in vivo overexpression was employed to help solve 

the structure of the BamACDE complex.  

1.5.4 Molecular replacement 
In certain cases the protein under study is of similar structure and conformation to a known 

homologue, which can be informed by sequence identity and homology search, and the 

molecular model of it can be used to calculate initial phases of the unknown protein in the 

process of structure determination. This method is called molecular replacement. Where 

applicable, the method is able to solve the structure of the unknown protein with only the 

native data set and without the heavy atom derivatives. Generally, the known protein model 

is required to have a sequence identity of at least 30% with the protein under study [13]. In 
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the simple example of isomorphous phasing, a phasing model of a ligand-free protein can be 

applied to the molecular replacement process of a crystal of the same protein in the ligand-

bound state, thus directly enabling phase calculation and structure determination. The 

equation of ρ(x, y, z) in the case of molecular replacement is defined as the following: 

ρ(x, y, z) = !
"
 ∑ ∑ ∑ |F target

hkl| e−2πi(hx+ky+lz-α’model
hkl

), 

Where |F target
hkl| is the amplitudes of the recorded reflections in the native data set, and α’model 

are the phases of the phasing model.  

Non-isomorphous phasing, on the other hand, is a more common but complex situation in 

which the phasing model is not isomorphous with the unknown structure and hence needs to 

be superimposed on the unknown structure in order for phasing to take into effect. To 

superimpose the unknown protein in the unit cell, the phasing model is required to be in the 

desired location and orientation, which demands separate searches of the two factors. 

Orientation search can be carried out independently and prior to location search using the 

Patterson function. The Patterson map can be rotated with respect to the rotation of the 

phasing model, and the same-oriented unknown and phasing models would result in similar 

Patterson maps. With the efforts of trial and error in comparing the two Patterson maps, a 

best orientation of the phasing model can be defined and subsequently the position of the 

model can be revealed using the structure-factor manner. In practice, structural homology 

databases including DALI [14] and Phyre2 [15] are representatives of comprehensive online 

tools that are contributory in searching and identifying candidates of structural homologues to 

be trialed in molecular replacement.  

1.5.5 Phase refinement, model building and structure refinement 
The initial electron density map may be preliminary and ambiguous due to the limited 

accuracy and estimated nature of the phases obtained. The map can be improved by an 
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iterative process that can be referred to as bootstrapping. In the process, the contents in the 

current map that can be uniquely assigned and interpreted by modifications including solvent 

flattening, partial map fitting are retained and incorporated in the next map, which is 

manipulated in the form of an electron-density function to calculate new structure factors 

using the following equation: 

Fhkl = x 𝑦 𝑧 p(x, y, z)e2πi(hx+ky+lz)dx dy dz 

The calculated new phases are subsequently used in the equation of electron density in 

attempt to produce a clear and more interpretable map. In this way, the rounds of iterative 

improvement will finally produce a high-quality and detailed map in which the molecular 

model of the protein can be built. An automated model building programme called Buccaneer 

is a typical model-building tool in which it uses a chain-tracing procedure to generate a 

partial trace of the polypeptide backbone. In particular, possible locations and orientations Cα 

are identified by a density likelihood target function employed in the programme in a six-

dimensional search against a simulated density map of a known structure. The process can be 

summarized in a number of steps including identifying Cα locations, building Cα backbones 

with reference to Ramachandran bond angle restrictions, connecting discontinuous chain 

fragments into continuous chains, and reducing clashing Cα atoms within the proximity of 2.0 

Å. In essence, the overall degree of interpretation is dependent on the accuracy of the initial 

phasing and phase refinement, and the resolution of the electron density map [16], and 

Buccaneer is normally compatible with a dataset of more than 3.5 Å resolution. But clearly 

automated model building is not a perfect substitute for manual model building and it often 

results in considerable unacceptable errors and misinterpretations. Manual building is needed 

in conjunction with automated building to compensate for these mistakes. Coot is one of the 

graphical interactive programmes for manual model building [17].  
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During refinement process of the phases, monitoring and eliminating biased errors are 

another essential part in order to help with the process. Introduction of the (|n |Fobs| − 

|Fcalc||) maps, in which the calculated indexed intensities are deducted from multiples of the 

observed intensities within each Fourier term, can efficiently minimize the influences and 

sometimes the dominance of the phases of the model. When n = 1, the corresponding map is 

called a Fo – Fc difference map. The calculated positive or negative values, usually 

represented by positive or negative peaks in various colours, indicate wrong positions of the 

model that need to be replaced with and missing portions that need to be fit in. In the final 

stages of structure determination, a 2Fo – Fc map is commonly used to identify minute errors 

and reach a final agreement between the model and the original data set. REFMAC5 is 

frequently used to refine models with every building cycle, and the optimization parameters 

set in the programme include atomic coordinates, atomic displacement, scale factors and twin 

factors in the case of twinning [18]. As an indication of the level of the agreement, an R-

factor is defined as the following equation [19]: 

      R = ||&'()|	  +	  |&,-.,||
|&'()|	  

 

It ranges from 0 to ~0.6, and an initial value of below 0.5 would be promising in further 

improving the model as a starting point. Another similar indicator is called the free R-factor, 

Rfree, which is calculated from a subset (~10%) of randomly chosen reflections that are not 

included in the structure refinement and for cross-validation purposes. It is interpreted as a 

measure of the degree of prediction the current model reflects on a subset of the excluded 

intensities. An indicative rule states that Rfree should be approximately the resolution in 

angstroms divided by 10, and both R-factor and Rfree values should converge to a certain 

extent during the final stages of structure refinement.  
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CHAPTER 2  

General Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   32 

 

2.1 Bacterial membranes 
Bacterial cellular contents are enclosed by a cell envelope that defines the shape and volume 

of the cells, protects them from the hostile and constantly-changing environment, and allows 

them to import nutrients and export waste. Bacteria can be classified as Gram-positive or 

Gram-negative, according to the structure of the cell wall (Figure	  6). 

 

Figure 6. Structures of the cell wall in Gram-negative bacteria (a) and Gram-positive bacteria 
(b). 

The cell wall of Gram-negative bacteria is composed of an outer membrane and an inner 

membrane; between them a thin layer of peptidoglycan is sandwiched. Gram-positive 

bacteria are instead surrounded by a symmetrical single lipid membrane coated by 

extracellular thick layer of peptidoglycan and additional lipoteichoic acid. (Figure adapted 

from [20]) 

Gram-positive bacteria are distinguished from Gram-negative bacteria by the presence of a 

single lipid membrane and a thick layer of peptidoglycan and lipoteichoic acid that is 

anchored in the membrane by diacylglycerol [20] (Figure	  6b). In contrast, Gram-negative 

bacteria contain two membranous structures that constitute their cell envelopes: an inner 

cytoplasmic cell membrane and an outer cell membrane, with the inner membrane (IM) 
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located at the membrane-cytoplasm interface and the outer membrane (OM) faced with the 

extracellular environment. The parallel organization of the two membranes gives rise to an 

additional periplasmic space in between, in which a relatively thin layer of peptidoglycan is 

sandwiched (Figure	  6a).  

Most of the membranes in bacterial cell wall are composed of phospholipids. Listed in order 

of abundance, phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin 

(CL) are the prevalent types [21]. In the IM of Gram-negative bacteria and the single 

cytoplasmic membrane of Gram-positive bacteria, the two leaflets of lipids are of significant 

symmetry compared to the highly asymmetric composition of lipid in the OM of Gram-

negative bacteria, in which another type of lipid called lipopolysaccharides (LPS) dominantly 

occupies the outer leaflet of the OM (Figure	  6a). LPS consists of three structural domains: 

lipid A, a core oligosaccharide, and an O-antigen polysaccharide. Among the three domains 

the lipid A domain is responsible for anchoring LPS to the OM via hydrophobic interactions 

[22].  

Apart from the phospholipids and LPS molecules, there are various types of membrane 

proteins that are either co-translationally or post-translationally transported and inserted into 

the membranes and they constitute integral elements in the bacterial envelope. They can be 

classified based on their positions with respect to the membrane, which leads to the 

categorization of integral membrane proteins, peripheral membrane proteins and lipid-

anchored proteins [23, 24]. Different from Gram-positive bacteria, integral membrane 

proteins in Gram-negative bacteria can be further divided into two types subject to their 

locations in the two membranes. The integral membrane proteins of the IM are the referred to 

as inner membrane proteins (IMPs), they form membrane-spanning α-helices embedded in 

the IM [25, 26]; and the integral membrane proteins of the OM are called outer membrane 
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proteins (OMPs), and they form β-barrel domains consisting of anti-parallel β-strands to 

cross the OM [27, 28].  

2.2 Outer membrane proteins (OMPs) 
The OM is a distinctive cell wall component of Gram-negative bacteria and provides the cell 

with an extra level of structural protection against external detrimental stimuli. The physical 

barrier also serves as a permeability regulator that controls the influx and efflux of solutes 

through the functions of pore-forming integral outer membrane proteins (OMPs). In addition 

to the OM of Gram-negative bacteria, the OM of chloroplasts and mitochondria in eukaryotic 

cells also contain β-barrel OMPs [29-31]. More than a passage for solutes, bacterial OMPs 

are involved in various cellular processes such as nutrient uptake, environmental signal 

transduction and antimicrobial resistance. Taken together, OMPs are essential for the 

structural integrity of the OM and their correct biogenesis is vital for cell viability.  

2.3 OMP structures 
Visual comparison of all the available structures of OMPs in Gram-negative bacteria thus far 

reveals that most OMPs contain a transmembrane β-barrel domain. Selected structures are 

presented in Figure	  7. The number of observed strands in all structures varies from 8-26, and 

nearly all β-barrels contain even number of strands [32]. Even numbers of strands are very 

likely to be the result of divergent evolution, whereby gene duplication of a single β-hairpin 

element produces alike building blocks [33], and it is thought that four such repeating units 

are the prerequisites for ultimate completion of barrel construction through inter-strand 

hydrogen bonding force [32]. 
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Figure 7. Structures of selected β-barrel OMPs.  

Each structure is represented by golden cartoon and with names and number of β-strands, 

except that the mitochondrial voltage-dependent anion channel (VDAC) is coloured in olive. 

Example of 18 stranded OMPs is not shown here. All structures are obtained from the Protein 

Data Bank (PDB) and rendered using PyMOL. (Figure taken from [32]) 

The β-strands in the barrel adopt antiparallel conformation, and the side chains of the barrel-

forming amino acids protrude from both faces of β-sheets. Due to the hydrophobic nature of 

the transmembrane region, the hydrophilic residues are consequently found mostly lining the 

barrel lumen, whereas the hydrophobic residues of the barrel face towards the external 

membrane environment, primarily making contact with the hydrocarbon tails of the lipids in 

the OM via hydrophobic interactions [34]. At the water-bilayer interface, prevalence of 
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aromatic residues in OMPs, especially tyrosine and tryptophan, is found to interact with the 

hydrophilic head of the lipids and likely results in stabilization of the barrel in the lipid 

bilayer of the OM [35].  

The other two notable features in OMP structures are the generally longer loops located on 

the extracellular side and the shorter turns on the periplasmic side, both of which are required 

for connecting antiparallel β-strands. Composed of three or four residues, periplasmic turns 

form a sharp and tight bend at the end of a β-strand and reverse overall direction of the 

polypeptide chain [36]. Extracellular loops, however, are longer bends that extend the barrel 

domain further into the extracellular environment, and can be in flexible and dynamic 

structural conformations compared to the rather rigid and confined structure of turns. 

Depending on the protein type, the extracellular loops carry diverse functional rules as part of 

OMP biological functions.  

2.4 OMP biogenesis 
Biogenesis of all bacterial OMPs takes place in the cytosol, and, due to temporary unfolded 

state, they must be correctly delivered to their destined locations in either the IM or OM 

before folding into mature three-dimensional entities with tertiary or quaternary structures 

and carrying out biological functions. OMPs are firstly synthesized in the cytosol with the co-

translated N-terminal signal sequence that is critical for recognition towards the IM and 

cleavable upon IM translocation [37, 38]. When emerging from the ribosome, the nascent 

polypeptide chains are appropriately recognized and coupled with the ribosome-associated 

trigger factors (TFs) [39, 40]. TF is of broad substrate spectrum and it can stay coupled with 

the unfolded chains after they leave the ribosome [41]. TF subsequently transfers the OMP to 

the soluble complex of SecA/SecB protein that possesses chaperoning function and targets 

precursor proteins to the IM [42]. SecA is identified as a SecYEG-binding ATPase and serves 

as the motor that initiates OMP translocation. Upon binding to SecYEG complex, transfer of 
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OMP substrate from SecB to SecA takes place and SecB is finally released [43], paving the 

way for subsequent translocation with the engagement of SecA that utilizes ATP to power the 

process [44, 45]. An alternative scenario of IM association is the direct contact of the 

translating ribosome with the SecYEG translocase, the core complex in the “Sec pathway” 

[46, 47], inducing co-translational insertion of OMP into the Sec machinery [48, 49] (Figure	  

8). Having passed through the translocon, the translocated OMPs enter the periplasmic space 

and the N-terminal signal sequence is cleaved by a type of membrane-bound endopeptidase 

called signal peptidase I (SPaseI) [50]. Upon cleavage, periplasmic nascent OMPs are further 

accompanied by either SurA or Skp/DegP, the periplasmic chaperones, in order to maintain 

current folding state and facilitate subsequent folding events while directing them to the 

boundary of the OM [51, 52] (Figure	  8). It has been proposed that most OMPs are escorted 

to the OM by SurA, and Skp/DegP provide supportive function to either deliver any 

remaining off-pathway OMPs back to the SurA pathway or bring them directly to the OM 

[51]. It is worth noting that DegP exhibits both protease and chaperone function [53], thus 

also capable of degrading off-pathway OMPs.  

In the final context of biogenesis, OMPs fold and insert themselves into the OM either 

spontaneously or with the help of other OMPs [54]. Spontaneous self-folding occurs mostly 

in vitro, and, in the example of OmpA, the individual transmembrane β-strands are inserted 

with considerable coordination and it was found that the ending phase of secondary structure 

building and closure of the β-barrel are coincidental [55]. However, in vitro spontaneous 

folding is time consuming and not kinetically favourable even though it does not require 

external metabolic energy [56]. In fact, in vivo cellular context has evolved to deploy specific 

proteinaceous machinery to accelerate the folding and insertion, which, together with the 

aforementioned chaperons, dramatically shortens the timescale from up to hours down to 

minutes and even seconds [54, 57]. The core protein complex embedded in the OM 
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recognizes the well-protected and competent OMP substrates, accommodate the substrates 

within the entity, and finally release them into the OM [58]. This multi-subunit complex is 

called the β-barrel assembly machinery (BAM) (Figure	  8). It has been found that the BAM 

complex in E. coli recognizes the substrates via their C-terminal signature sequences with a 

consensus sequence of X-Z-X-Z-X-Z-Tyr-Z-Phe/Trp, where X is hydrophobic amino acid 

and Z is a random residue [59-62], and that the BAM complex displays species-specific 

recognition while excluding OMPs from a different strain [61].  
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Figure 8. OMP biogenesis pathway in Gram-negative bacteria. 

Nascent OMP polypeptides (maroon) are synthesized in the bacterial cytoplasm and directed 

to the Sec translocase (grey) by the SecA/SecB chaperones (purple and magenta) or the 

ribosome (red) for translocation across the IM. Then the OMP, in the periplasmic space, is 

delivered to the BAM complex by the chaperones SurA (slate) or Skp (blue). Incorrectly and 

accidentally misfolded OMPs during the path are targeted and degraded by the protease DegP 

(light blue) to eliminate aggregation. (Figure taken from [63]) 

2.5 Identification of the BAM complex 
Recent years have seen research advancements in the knowledge of OMP assembly during 

bacterial cell growth and membrane biogenesis, and a more comprehensive understanding of 

in vivo folding and insertion of OMPs by the BAM complex is emerging since the discovery 

of this essential assembly factor. The first protein subunit identified is BamA in 2003 [64], 
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and it was initially named YaeT or Omp85. The original species from which BamA was 

identified is Neisseria meningitidis, but it was later realized the homologues of this protein 

are universally spread across Gram-negative bacteria as well as in the double membrane-

bound eukaryotic organelles of mitochondria and chloroplasts [65, 66]. The presence of 

Omp85 in the study was found to be essential for both viability and folding and assembly of 

all the chosen protein substrates examined [67], and intervention of Omp85 expression 

through conditional regulation led to abnormal aggregation of unfolded OMPs stalled in the 

periplasmic space [67, 68]. Later on, Omp85 homologues of E. coli [69, 70] and P. 

aeruginosa [71] were identified and termed BamA and Opr86 respectively, and evidence of 

direct participation of BamA in OMP biogenesis was provided in a study that demonstrated 

BamA binds unfolded OMPs in vitro [72]. Following the characterization of BamA without 

well-known functional roles, co-immunoprecipitation experiments further revealed other four 

interacting proteins named YfgL (BamB), NlpB (BamC), YfiO (BamD), and SmpA (BamE) 

[73, 74]. All of the four components are lipoproteins, have various molecular weights, and 

are assembled to form an intact BAM complex in vivo. In summary, the BAM complex 

consists of five protein components: BamA, an integral OMP itself, and four other 

lipoproteins named BamB, BamC, BamD and BamE, all of which are located primarily in the 

periplasm and anchored to the outer membrane via post-translational lipid modifications [75-

79].  

Each of the five protein components is found to have different distributions across Gram-

negative bacteria species. Distinct from BamA, the homologues of which are found in all 

bacteria with outer membranes, homologues of BamB, BamC, and BamE are not present in 

δ- or ε- proteobacteria. BamC is found in all species of β-and γ-proteobacteria but 

completely absent in α-, δ- and ε-proteobacteria, proving it to be the least conserved subunit 

of the BAM complex [80]. BamD is another well-conserved component across 
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proteobacteria, and it was proposed that the most ancestral BAM complex was made up of 

only BamA and BamD, and the remaining three lipoproteins were subsequently acquired 

during the course of evolution [80]. In line with the conservation profile, only BamA and 

BamD are essential for cell viability, and BamD is crucial for both structural and functional 

integrity of the BAM complex [81, 82]. It was proposed that BamD is implicated in proper 

recognition of OMP substrates by the complex [83], and related studies of BamD homologue 

in mitochondria supported this claim [84]. Further to the involvement in substrate 

recognition, BamD was also thought to mediate BamA conformation via its direct 

interactions with the periplasmic domain of BamA during OMP assembly [85, 86], thus 

allowing coordinated movements of these two essential components. BamA and BamD 

depleted strains are abundant in unfolded and accumulated OMPs in the periplasmic space 

and display severe growth defects [64, 87]. Depletion of yfgL gene encoding BamB leads to 

various cellular deficiencies including significantly reduced levels of major OMPs in E.coli, 

sensitivity to a number of membrane-impermeable agents and a bactericidal permeability-

increasing peptide, which indicates increased membrane permeability profile [87, 88]. Strains 

lacking BamC and BamE exhibit compromised OM function and increased permeability 

albeit with modest degree and no apparent growth defect [74, 87], and, in the absence of 

BamE, BamA exhibits conformational alteration resembling that caused by an activating 

mutation in bamD [74, 89]. There is some evidence suggesting that although BamB, BamC 

and BamE are not essential, they are required for assembly of specific OMP substrates, as 

suggested by single mutations in these lipoproteins [90, 91]. Taken together, it is plausible 

that BamA and BamD are indispensible for OMP biogenesis and essential for maintaining a 

functional BAM complex, and BamB, BamC and BamE are secondary members that further 

preserve the integrity and enhance the efficiency of the BamAD core subcomplex.  
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2.6 Structures of individual components of the BAM complex 
Structures of all five proteins have been solved individually [76, 92-102] (Figure	  9). BamA 

is composed of a large C-terminal β-barrel transmembrane domain and five periplasmic 

polypeptide translocation-associated (POTRA) domains that extend from the barrel and into 

the periplasm [103, 104]. BamB is an eight-bladed β-propeller, and positioned in the two 

loops on one side of the propeller are residues that have been shown to interact and cross-link 

to BamA [105]. BamC possesses three domains: an unstructured domain at the N-terminus, a 

N-terminal domain and a C-terminal domain. BamD contains ten α-helices that arrange into 

five tetratricopeptide repeats (TPRs) [93, 94]. BamE consists of two α-helices and a three-

stranded β-sheet. The exact roles of the four lipoprotein components in the process of OMP 

biogenesis remain to be identified, yet, from structural perspective, it has been proposed that 

the four lipoproteins interact with and assemble onto the POTRA domains to form a stable 

and established copy of the heteropentamer[77].   

 

Figure 9. The structures of the five components of the BAM complex. 

(a) The crystal structure of full-length BamA from Neisseria gonorrhoeae. (b) The crystal 

structure of BamB from E. coli. (c) The crystal structure of the two globular domains of 

BamC from E. coli. The dotted line between N and C domains indicates an ~ 18-residue 

linker. (d) The crystal structure of BamD from E. coli. (e) The NMR structure of BamE from 

E. coli. (Figure taken from [63]) 
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2.7 Proposed mechanisms of OMP assembly by the BAM complex 
Based on both the structural features of BamA revealed from the crystal structures that the 

first β-strand and the last β-strand in the barrel domain are weakly associated by few 

hydrogen bonds and the molecular dynamics simulations that the barrel domain of BamA 

distorts the local membrane environment, two types of insertion mechanism by the BAM 

complex were proposed: the BamA-assisted model and the BamA-budding model (Figure	  

10) [63, 76]. The BamA-assisted scenario derived from the aforementioned capability of 

small and simple nascent OMPs to spontaneously arrange and fold themselves into the OM 

without external assistance, the structural observation that the width of the hydrophobic belt 

of the BamA barrel is much thinner along the C-terminal strand and the reported ability of 

BamA to destabilize the local lipid layer and reduce the thickness of the OM concluded by 

molecular dynamics simulations [76] (Figure	  10a). In this model, nascent OMPs are 

accompanied by chaperones and escorted to the OM boundary, where they are recognized by 

the BAM complex. The machinery distorts the local membrane layer and hence reduces the 

kinetic barrier for protein folding [106-108], allowing folding and insertion to occur. 

Consistent with the model, studies showed that reconstitution of BamA into 

phosphoethanolamine-based liposomes could speed up OMP folding rate and the thickness of 

the phospholipid bilayer was lessened in proteoliposomes that contain BamA [107, 109]. This 

approach was thought to be dependent on the local interactions between the β-barrel and the 

OM but was challenged recently by the structural hint and molecular dynamic simulations of 

the complex that the POTRA domains and the other four lipoproteins may also participate in 

the interactions of the complex with the OM [110, 111].  
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Figure 10. Two proposed mechanistic models of the BAM complex during OMP biogenesis. 

(a) The BamA-assisted model. Nascent OMPs are synthesized in the cytoplasm and then 

transported across the inner membrane and into the periplasm (step 1). SurA or Skp escorts 

the nascent OMPs and direct them to the BAM complex (step 2). The complex distorts the 

local membrane bilayer and directs the OMP substrates to close proximity to the primed 

membrane for insertion into the outer membrane (step 3). (b) The BamA budding model. As 

with the BamA-assisted model, this model shares step 1 and step 2. Nascent OMPs are next 

delivered to the periplasmic subunits of the BAM complex and the interactions initiate 

folding and insertion processes (step 3). Lateral opening of the barrel gate of BamA possibly 

enables binding of a β-hairpin with the exposed N-terminal strand of BamA and the barrel of 

the OMP substrate then fully integrate into the barrel of BamA as the barrel of the substrate 

continues to grow (step 4-6). Eventually the OMP substrate buds away from the barrel 

domain of BamA possibly by unpairing of the last strand of OMP from BamA and 

subsequent paring with its own first strand (step 7). (Figure taken from [112]) 

The BamA-budding model, on the other hand, is thought to be specific for OMPs of more 

complex structures including those possessing larger domains and more strands and therefore 

unable to undergo spontaneous insertion and folding (Figure	  10b). In this scenario, 

chaperone-escorted nascent OMPs are recognized by POTRA domain of BamA and then 
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accommodated by the complex in the barrel lumen, forming a BamA-OMP intermediate. The 

lateral opening of the barrel would serve as both a template for synthesis of new β-strands 

and a path for insertion of the substrate into the OM. As the folding continues, the OMP 

substrates would reach a stage in assembly where they are too large to be rendered in the 

BAM complex and consequently bud from and extend away the BamA lateral opening. This 

completes the budding model and prduces a folded and functional OMP. In line with the 

model, there is a few well and commonly known facts that the barrel of BamA is among the 

ones with lowest thermostability when comparing to other known β-barrels [106] and it has a 

melting temperature of ~ 37°C, implying that it may be unstable in physiological conditions.  

2.8 General porins  
OMPs in Gram-negative bacteria are faced with the extracellular environment and, in the 

interest of the bacteria to survive the harsh and hostile contexts, they serve as the molecular 

sieves in conjunction with the relatively impermeable OM to allow diffusion of small 

hydrophilic molecules (less than 600 Dalton) across the OM through hydrophilic channels 

formed by general porins. In the meantime, these hydrophilic channels prevent entry of large 

molecules and promote selective entry of essential nutrients [34]. This type of diffusion 

driven by porins is subject to the dimensions of the pore in porins and considered as no 

specific substrate preference, although some show cation- or anion- selectivity due to the 

amphipathic properties of the residues lining the boundary of the pore. General porins 

constitute large portion of total OMPs in E. coli and it was estimated that 105 exist per cell 

[113]. The first structural insight into general poins was the crystal structure of a porin from 

R. capsulatus [114]. Later on, the atomic structures of OmpF and PhoE porin were obtained 

[115]. It was predicted that these general porins assemble into stable trimers solely composed 

of β-strands [116], and the high-resolution structures from these porins confirmed the typical 

model in that 16 β-strands constitute a monomer in the homotrimer conformation.  
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2.9 Vibrio cholerae OmpU 
Vibrio cholerae is the causal organism for the disease cholera. Serogroups O1 and O139 are 

responsible for the epidemics. In the small intestine, the major cholera toxin along with other 

virulence factors is synthesized and under the genetic modulation of the toxR regulon. There 

are two other genes, ompU and ompT, encoding two major OMPs, that are also regulated by 

the transcriptional activator ToxR [117, 118].  

OMPs in V. cholerae are involved in host-pathogen recognition as well as pathogenic 

invasion of host cells [119, 120]. They mainly behave as adhesion proteins [120, 121] or 

invasion proteins [122, 123]. Among numerous OMPs in the organism, Outer membrane 

protein U (OmpU) is a major component that constitutes about 30% of the total outer 

membrane proteins when V. cholerae is grown in medium containing 1% NaCl and nearly 

60% when grown in salt-free medium [124]. It is characterized as a porin that forms non-

specific β-barrel channels allowing for diffusion of hydrophilic molecules across the OM. 

Apart from its native function, OmpU has been shown to be implicated in bile resistance and 

resistance of the organism against antibacterial peptides [125, 126]. 

2.10 Implications in host-pathogen interactions 
OmpU has been shown to be associated with the process of bacterial adhesion during V. 

cholerae infection [127], as other OMPs do mentioned previously. In a study, OmpU from 

Vibrio mimicus, a similar species to V. cholerae, has been found to be an immunoprotective 

antigen with six immunodominant linear B-cell epitopes [128]. In addition, it has been further 

proposed to possess adhesion property by using residues 90-101 and 173-192 as potential 

binding motifs during bacterial invasion [120]. Strikingly, OmpU from Vibrio splendidus 

strain LGP32 was also reported to mediate invasion of host hemocyte by serving as both an 

adhesin and invasin [119]. 
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2.11 Structural information of OmpU  
Naturally assembling as trimers, OmpU form triple-barrel channels, and each β-barrel 

surrounds an individual pore. The pore size was determined to be about 1.1 to 1.6 nm, 

according to previous studies of the relative diffusion rate and hydration radii of sugars and 

of partitioning of PEG polymers in the OmpU pore [124, 129]. The protomeric OmpU 

contains 350 residues including a 31 amino acid signal peptide at the N-terminus. The 

molecular size of each monomeric subunit of mature OmpU is 35 kDa, which gives 105 kDa 

for oligomeric trimer form. It was predicted to have 16 transmembrane β-strands, alike in 

conformation with OmpF [129]. However, a detailed structural model of OmpU underlying 

its cellular functions has not been available to date, although this protein could be 

overexpressed and purified to high degree of purity as reported [124, 126, 127, 130, 131]. In 

the trimer, protomers are presumably held together by hydrophobic interactions between the 

subunits [124]. Three to four Ca2+ ions are associated with each trimeric unit, and these ions 

are critical for maintaining active state of the trimer, as removal of them upon treatment with 

EDTA/EGTA was found to irreversibly disrupt the β-sheeted building blocks of the protein 

[124]. 

 

2.12 Inner membrane proteins (IMPs) 
The IM of Gram-negative bacteria is a symmetrical phospholipid bilayer in which numerous 

proteins encoded by about 20% of 4000 open reading frames in E. coli genome are located 

[132]. Fundamentally different in secondary structure elements, IMPs are composed of α-

helical membrane spanning stretches rather than antiparallel β-strands found in OMPs. Due 

to diverse topology of IMPs reflected in number of transmembrane segments and the size and 

characteristics of both cytoplasmic and periplasmic domains, a common structural feature of 

IMPs is less clear to be observed and one cannot systematically categorize IMPs into a simple 
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group of mutual structural similarities. However, the biogenesis of almost all IMPs converges 

in the same path and the process can be divided into three stages. In the first stage, a 

hydrophobic target signal of nascent polypeptide is targeted and associated with the signal 

recognition particle (SRP), a ubiquitous ribonucleoprotein, upon exit from the ribosome [132-

134]. The target signal is referred to as the signal anchor sequence, and it is located in the 

first transmembrane segment. While the N-terminal signal sequences in OMPs are more 

hydrophilic and cleavable, the signal anchor sequences in IMPs are more hydrophobic and 

they are non-cleavable segments integrated in the structures. As the determinants of the 

choice of biogenesis pathway, distinct characteristics of the signal sequences in OMP and 

IMP nascent chains ensure appropriate dispatch of the precursors in the beginning of 

biogenesis. The next step entails interactions of the SRP-ribosome-nascent chain complex 

with its receptor called FtsY and formation of the SRP/FtsY complex that utilizes guanosine 

triphosphate (GTP) hydrolysis to release and transfer IMPs to the Sec translocon, the same 

membrane protein complex responsible for OMP translocation. Third, the accommodated 

hydrophobic segments laterally enters the lipid membrane and fold to become mature and 

functional conformation [132]. It is worth noting that in addition to the Sec machinery, 

another accessory membrane protein named YidC [135] is also capable of recruiting and 

inserting IMPs either on its own or functioning as a chaperone in collaboration with the Sec 

proteins [136, 137].  

2.13 Lipoproteins 
On the periplasmic side of either the IM or the OM another class of proteins are anchored 

through acyl chains post-translationally added to the N-terminal cysteine residues. The added 

acyl chains are the constituents of bacterial phospholipids before transfer; therefore this class 

of lipid-fused protein was given the name lipoprotein. Like the assorted three-dimensional 

conformations of IMPs, lipoproteins are difficult to be structurally sorted in a particular 
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norm. A collective defining structural feature of all lipoproteins, however, is the N-terminal 

acyl chains attached to a conserved cysteine (normally three in number in Gram-negative 

species). In most cases and with the example of BamB-E in the BAM complex, lipoproteins 

are attached to the membranes by the three acyl chains, which implies that the entire protein 

is soluble with the exception of these fused lipid moieties. In contrast to the periplasmic 

space where most lipoproteins are located, recent reports have also provided evidence of 

surface-exposed lipoproteins positioned on the outer surface of the OM and facing the 

extracellular environment [138-140]. 

2.14 General lipoprotein structural domains 
Newly translated lipoproteins, usually termed preprolipoproteins, carry specific information 

with regard to their final location in the membrane boundary which is lied in the most N-

terminal domain of ~20 amino acids in length [141]. This segment forms the signal peptide 

during localization but differs from exported soluble proteins in that the most C-terminal 

region of the signal peptide includes a four-amino acid motif referred to as the “lipobox” 

[142, 143]. It has been much more explicit with the identification of more lipoproteins that 

the first three residues in the lipobox are of greater diversity than the last well-conserved 

cysteine residue[144], the key residue that will be targeted for subsequent modifications and 

ultimately the first residue at the N-termini with the designated position +1 [145, 146]. 

Residues following the +1 cysteine are found to be disordered and not classified as any 

defined secondary structures, indicative of a linker or “tether” domain that connects the lipid 

anchor to the next properly folded domain (third domain) where the soluble structural entity 

of lipoproteins is situated [145]. The length of this amino acid tether varies with each 

lipoprotein and is between 0 and 170 residues observed in the characterized lipoproteins so 

far [147-149]. As illustrated in Figure	  11, the residues immediately following the +1 cysteine 

and upstream of the tether also carry crucial sorting signals for the downstream localization 
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pathway, which is described below in Figure	  11.  

 

 

 

 

Figure 11. Lipoprotein structural domains. 

Translated lipoprotein peptides (preprolipoproteins) are initially in the cytoplasm, with an N-

terminal signal peptide (green) that is recognized by the Sec translocase. Lgt attaches a 

diacylglyceryl group to the +1 cysteine (red) to form a thioether-linked S-diacylglyceryl 

group. Following this, Lsp recognizes the signal peptide that contains the lipobox and cleaves 

it. This liberates the N-terminal amine group of the cysteine for N-acylation by Lnt. The N-

terminal residues following the +1 cysteine contains sorting signals (blue) to be recognized 

by the Lol machinery, a vital ABC transporter in the IM that determines if mature 

lipoproteins are sorted to the OM [150]. Downstream of the sorting signal is the disordered 

tether domain (yellow) and the C-terminal folded domain executing protein-specific 

functions. The structure of B. burgdorferi OspA with PDB accession code 1osp is presented 

in the C-terminal domain for illustration. (Figure taken from [145]) 



	   51 

2.15 Lipoprotein modifications 
As a general and universal export and translocation machinery, the Sec translocon also 

recognizes, accommodates and exports the unfolded preprolipoprotein substrates across the 

IM. Immediately after the translocation in Gram-negative bacteria, these precursors are 

targeted by three IM enzymes determined by the presence of the lipobox and undergo a three-

step sequential reaction for posttranslational modifications. The three IM-embedded enzymes 

are called phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt), 

Prolipoprotein signal peptidase (Lsp) and apolipoprotein N-acyltransferase (Lnt) [151, 152] 

(Figure	  12). Lgt and Lsp are conserved in all bacterial species, whereas Lnt is only present in 

proteobacteria and actinomycetes.  

 

Figure 12. Lipoprotein posttranslational modification in Gram-negative bacteria. 

In the IM Lgt, Lsp and Lnt are responsible for diacylglyceryl group transfer, signal peptide 

cleavage, and N-acylation of the +1 cysteine respectively. Alternative lipoprotein N-acyl 

modifications by “Lnt” have been reported from firmicutes and mollicutes. C=cytoplasm, 

P=periplasm, CM=cytoplasmic membrane, LB=lipobox, PE=phosphatidylethanolamine, 

PG=phosphatidylglycerol, SP=signal peptide. (Figure taken from [153]) 
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2.16 Lgt  
Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is the first enzyme in the 

pathway responsible for transferring the diacylglyceryl group from phosphatidylglycerol 

(PG) to the sulfhydryl group of the +1 cysteine via a thioether bond [151] (Figure	  12). This 

IMP was first biochemically characterized in the 1980s and it was reported to be optimally 

functioning at the pH of 7.8 and temperature of 37°C [154]. Its catalytic activity is specific to 

PG as an acyl donor because it does not catalyze phosphatidylethanolamine (PE) and 

cardiolipin (CL) in vitro, which suggests that the headgroup of phospholipid is crucial for Lgt 

recognition [151]. Lgt in E. coli was proposed to have five transmembrane helices and a 

periplasm-exposed C-terminus [155]. However, the issue of how Lgt interacts with PG and 

lipoproteins remained to be solved until the crystal structure of E. coli Lgt was obtained 

recently [156], in which Lgt possesses a laterally opening central cavity and two PG binding 

sites and contrasts the former prediction with a novel seven-transmembrane topology. The 

structure also confirmed the consistency of the hydrophobic central cavity with the specific 

orientation of PG substrates in which they insert two hydrophobic acyl chains in the central 

part of the double lipid leaflet and project the more hydrophilic head group towards the 

periplasmic space. Furthermore, to better understand the molecular basis of enzyme-substrate 

recognition, it has been suggested that the positively charged residue R143, found in the so-

called signature motif of the protein [157], may efficiently attract the negatively charged PG 

substrate and assist Lgt in specific binding. 

2.17 Lsp 
Lsp, also known as signal peptidase II, is the next enzyme involved in the triacylation 

reaction. As the name suggests, its function is to cleave the N-terminal attached signal 

peptide at the +1 cysteine position [158] (Figure	  12). It was predicted to be a small integral 
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IMP with four TM and both N- and C-termini located in the cytoplasm [159]. Initial 

biochemical experiments on Lsp were carried out in the early 1980s and demonstrated that it 

is functionally optimal with a pH of 7.9 and temperature between 37 and 45°C [160]. In 

proteobacteria, Lsp cannot proceed with signal peptide cleavage without S-diacylglyceryl 

addition, which implies that it specifically recognizes and targets acylated cysteine residues 

produced by Lgt in the previous step [153]. It was predicted with the assistance of gene 

fusions of lsp to phoA and lacZ that Lsp in E. coli possesses four transmembrane helices with 

both the N- and C- terminus facing the cytoplasm [159]. Due to a lack of detailed structural 

information and sequence homology to proteins of known structures, however, the definite 

substrate binding and catalytic mechanism was unclear until the structural characterization of 

the enzyme in 2016 from Pseudomonas aeruginosa [161]. The structure reveals a 

transmembrane domain consisting of four TM helices as expected from the topology model, 

and a second periplasmic domain including a β-cradle subdomain and a periplasmic helix 

subdomain. The structure is also complexed with a globomycin molecule residing on the 

periplasmic side of the membrane and indicating the active site of the enzyme containing two 

catalytic residues, D124 and D143. Consistent with the peptidase activity, the helical signal 

peptide of the prolipoprotein fits perfectly in the transmembrane domain, and, upon binding 

to Lsp, the cysteine residue in the lipobox resides further up in the active site, which positions 

the prolipoprotein in the periplasm and places the scissile bond (between cysteine and the 

third residue in the lipobox) between the carboxyls of the two catalytic residues for cleavage 

[161].  

2.18 Lnt  
In proteobacteria and actinomycetes, diacylated prolipoproteins devoid of signal peptide are 

now ready for the last catalytic reaction to occur before being converted into mature 

triacylated lipoproteins (Figure	  12). The primary enzyme involved in the catalytic process is 
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the apolipoprotein N-acyltransferase (Lnt). The first identification of the lnt gene was in S. 

enterica by screening the candidates causing accumulation of an abundant lipoprotein called 

Lpp [162]. It was first identified in the 1990s and defined to function optimally at pH of 6.5-

7.5 [163]. It carries out a two-step reaction to transfer an sn-1 acyl group from a phospholipid 

to the amino group of the +1 cysteine via an amide linkage, referred to as ping-pong 

mechanism [164, 165]. In the first step, the sn-1 of PE is attacked by a cysteine residue that is 

a member of the E-K-C catalytic triad [166], and this forms a thioesteracyl-enzyme 

intermediate and a lysophospholipid byproduct [165, 167]. In the second step, the produced 

lysophospholipid is released and the acyl chain is transferred to the subsequently engaged α-

amino group of the +1 cysteine of prolipoprotein that was liberated by Lsp previously, 

resulting in the mature triacylated form [165]. As for the lipid substrate, PE is the favourable 

substrate with fatty acid chain length of C16-C18, but other phospholipid types that possess 

smaller head groups can also serve as acyl donors [168]. From a structural perspective, Lnt 

was predicted to contain a periplasmic domain that is a member of the carbon-nitrogen 

hydrolase family, and a transmembrane domain consisting of six transmembrane segments 

[166, 169]. The catalytic triad was proposed to be in the periplasmic domain and, along with 

other essential residues, constitutes a core reaction site in the enzyme.   

2.19 Research aims 
Despite the efforts of understanding the roles the BAM complex plays during OMP 

biogenesis in vivo, related information was limited and a detailed insight of how these 

proteins coordinate recognition, folding and membrane insertion of nascent OMPs has been 

partially hindered by a lack of structure of the entire complex. To gain structural insights into 

the overall architecture of the BAM complex and obtain more detailed information regarding 

the mechanism of OMP assembly, the BAM complex was subject to X-ray crystallographic 

studies and the crystal structures of BamABCDE and BamACDE were solved successfully. 
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This was a collaborative project with my colleagues in the group in which I carried out cell 

culture, purification and crystallization using the different plasmid constructs and obtained 

high resolution crystallographic diffraction data for structural determination of the 

BamABCDE complex.  

For OmpU project, it aimed at yielding high-purity overexpressed OmpU proteins and well-

diffractive crystals for structure determination based on the available structural information in 

order to gain more comprehensive interpretation of the reported biophysical data and 

functional claims on OmpU.  

For Lnt project, given the recent advance in structural studies of Lgt and LspA, it aimed to 

carry out structural studies of Lnt in given Gram-negative species using X-ray 

crystallography in order to establish structural basis for the last step in post-translational 

modifications of prolipoproteins.  
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CHAPTER 3 

Materials and methods used in structural studies of the BAM 

complex, OmpU outer membrane protein and lipoprotein N-acyl 

transferase 
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3.1 Plasmid construction of E. coli BamAB+CDE 
The plasmids used for over-expression of E. coli BamAB+CDE were a gift from Prof. Daniel 

Kahne at Harvard University and listed in Table 1. The plasmids had been transformed into 

E. coli BL21 (DE3) prior to the start of the project.  
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Table 1   Plasmids used in separate expression of BamAB + BamCDE. 

Name Description 
Construction 

pSK38 pETDuet-bamB-

bamA 

PCR with primers: bamB-N: 

ACACCCATGGGACAATTGCGTAAATTACTGCTGC, bamB-C: 

ACACGCGGCCGCTTAACGTGTAATAGAGTACACGGTTC and bamA-

N: GTCCTAGAGCATATGGCGATGAAAAAGTTGC, bamA-C: 

ACACGACGTCTTACCAGGTTTTACCGATGTTAAAC  

pSK86 pETDuet-bamB-

His6 -bamA 

pSK38 with inserted His-tag and thrombin site after bamA signal sequence  

pSK46 
pCDFDuet-bamC-

bamD 

PCR with primers: bamC-N: 

ACACCCATGGGAGCTTACTCTGTTCAAAAGTCG, bamC-C: 

ACACGCGGCCGCTTACTTGCTAAACGCAGC and bamD-N3: 

ACACCATATGACGCGCATGAAATATCTG, bamD-C3: 

ACACGACGTCTTATGTATTGCTGCTGTTTGC  

pBamE-

His 

pET22-42-bamE-

His8 

PCR with primers: bamE-N: 

ATGACATATGCGCTGTAAAACGCTGACTGC and bamE-C: 

ACGTCTCGAGGTTACCACTCAGCGCAGGTTTGTTATCAATATTG 

 

  

Adapted from [77] 

3.2 Expression of E. coli BamAB 
E. coli BL21 (DE3) strain carrying pSK86 was cultured in Terrific Broth (TB) [152] media 

with 100ug/ml ampicillin at 37°C until optical density at 600 nm (OD600) reaches ~0.3. The 

temperature was shifted to 25°C and incubation continued until OD600 reached ~0.6. 

Overexpression of BamA and BamB were induced by addition of IPTG to 0.1 mM final 

concentration followed by overnight shaking at 20°C for 16-22 h.  
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3.3 Expression of E. coli BamCDE 
pSK46 and pBamE-His plasmids were co-transformed into BL21(DE3) strain, which was 

incubated with 100 ug/ml ampicillin and 50ug/ml streptomycin in LB Broth at 37°C. The 

Cells were cultured until OD600 reached ~0.6 and the two proteins were co-expressed by 

addition of IPTG to 0.1 mM final concentration for 3-4 hours at 37°C before harvest. 

3.4 Purification and reconstitution of the BAM complex from E. 
coli BamAB + E. coli BamCDE 
	  
E. coli BamAB was detergent-solubilized using the following method. 
 
Cells were suspended in 1xTBS buffer (20 mM Tris-HCL, pH 8.0, 150 mM NaCl) with 

DNase I (Sigma), lysozyme (Melford) and protease inhibitor tablets (Roche). Cells were 

lysed by a cell disruptor (Constant Systems Ltd.) at 30 kpsi. The lysate was centrifuged at 

5,000 g, 4°C to remove cell debris. The resultant supernatant was ultra-centrifuged at 

120,000 g for 1h to pellet whole membranes. Membrane fractions were then solubilized in 

TBS/1% N-Lauroylsarcosin sodium salt (Sigma) at room temperature for 2h. The sample was 

Ultra-centrifuged at 120,000 g again for 1h, and the pelleted outer membrane was dissolved 

in 20 mM Tris-HCL pH 8.0, 300 mM NaCl, 10 mM imidazole with 2% 3-(N,N-

Dimethylmyristylammonio) propanesulfonate (SB 3-14) (Fluka) at 4°C overnight by gentle 

stirring. 

 

E. coli BamCDE was detergent-solubilized using the following method. 

Cells were lysed and unbroken debris was discarded as previously described. The resultant 

supernatant was ultra-centrifuged at 120,000 g for 1h to pellet whole membranes. The 

membrane fractions were then solubilized in 20mM Tris-HCL pH 8.0, 300 mM NaCl, 10 mM 

imidazole with 2% Triton-X-100 at room temperature for 1h.  
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The solubilized BamAB subcomplex and BamCDE subcomplex were mixed together and left 

for 1h to reconstitute the five-protein BAM complex in vitro. The mixture was then ultra-

centrifuged again for 1h before being loaded onto a nickel-nitrilotriacetate affinity resin (Ni-

NTA, Qiagen) column. Small scale Ni-NTA affinity columns were initially made prior to 

large scale purification to test the amount of BamAB and BamCDE solutions added in the 

mix solution such that equal amounts of BamB and BamC were reflected on SDS-PAGE gel 

before further size exclusion. The BamABCDE complex sample was loaded onto a Ni-NTA 

column pre-equilibrated with loading buffer (20 mM Tris-HCL pH 8.0, 300 mM NaCl, 10 

mM imidazole, 0.5% SB3-14). The column was washed by a wash buffer (20mM Tris-HCL 

pH 8.0, 300 mM NaCl, 30 mM imidazole, 0.5% β-OG, 0.023% LDAO) and the BamABCDE 

complex was eluted with elution buffer (20 mM Tris-HCL, pH 8.0, 300 mM NaCl, 300 mM 

imidazole, 0.5% β-OG, 0.023% LDAO). The eluted proteins were quantified and loaded onto 

a HiLoad 16/600 Superdex 200 prep grade column (GE healthcare) pre-equilibrated with gel 

filtration buffer (20 mM Tris-HCL, pH 8.0, 300 mM NaCl, 0.5% β-OG, 0.023% LDAO) for 

further purification. Resultant peak fractions were pooled and concentrated. Small volumes of 

these fractions were run on SDS-PAGE gel to check the complex compositions and the purity 

of the BamABCDE complex.  

3.5 Protein Crystallization 
The crystallization was performed using the sitting-drop vapour diffusion method. For the 

initial screens, purified protein solution was concentrated to a specific concentration (e.g., 10 

mg/ml, 15 mg/ml, 20 mg/ml, and 50 mg/ml), and mixed with commercial screening buffers 

in 1:1 ratio (e.g., 0.15 μl: 0.15 μl, 0.3 μl: 0.3 μl) as well as dispensed against 65μl of reservoir 

buffer using the Gryphon Crystallization Robot (Art Robbins Instruments). The commercial 

crystallization screening kits included MemStart, MemSys, MemGold, MemGold2, 

Memplus, MembFac, MemMeso, and Proplex. Buffer formula that gave a hit was chosen for 
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subsequent optimizations by varying precipitate concentration and buffer pH. The 

optimization buffers were either prepared manually with ultrapure water or purchased from 

Molecular Dimensions. For optimization, protein and buffer solutions were dispensed and 

mixed in aliquots of 0.5-1μl against 70μl of reservoir buffer either by hand or by the robot. 

3.6 Co-purification and crystallization of E. coli BamAB and E. 
coli BamCDE 
Cells were cultured and harvested as described above. The two batches of harvested cells 

were mixed together and suspended in TBS buffer prior to disruption and lysed as described. 

Whole membrane fractions containing over-expressed BamAB and BamCDE were pelleted 

and dissolved in TBS/1%-N-Lauroylsarcosin as described. The solution was ultra-centrifuged 

and the resultant supernatant was stored at 4°C. Resultant pellets were solubilized in 2% 

SB3-14 and the supernatant from previous ultra-centrifuge was added in the similar manner 

with an amount that produced equal amounts of BamB and BamC reflected on SDS-PAGE 

gel. The mixed solution was gently agitated at 4°C for 2 h. Subsequent metal affinity and 

Size-exclusion chromatography purification were identical to the corresponding methods 

described previously. Crystallization procedure was identical to that described in 1.2.5. All 

the crystallization screening plates were stored at 4°C for incubation.  

3.7 Cloning and construction of pJH114 encoding BamABCDE 
and pYG120 encoding BamABCDE and an extra BamB copy  
A plasmid named pTRC99a was used to be the original template of pJH114 (Appendix 1). 

Specifically, a modified version of pTRC99a that lacks the endogenous NdeI site was re-

inserted with a NdeI site into the polylinker region using the QuickChange Mutagenesis Kit 

with primer 5’-CACACAGGAAACAGCATATGGAATTCGAGCTCGG-3’ and its 

complement. The five genes encoding the BAM complex were all amplified by PCR using 

genomic DNA from E. coli AD202 strain as a template. Then BamA gene was first double 

digested with NdeI and BamHI and ligated into the corresponding plasmid site, BamB gene 
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was double digested with BamHI and BglII and ligated into the now single digested plasmid 

with BamHI, and so forth. In the last step an octahistidine tag was added to the C-terminus of 

BamE.  

For construction of pYG120 (created by colleauges) using the Sequence and Ligation 

Independent Cloning (SLIC) method, pJH114 backbone was amplified by PCR using primers 

PF_pJH114_SLIC (5’-GTTAATCGACCTGCAGGCATGCAAG-3’) and PR_pJH114_SLIC 

(5’-CTCTAGAGGATCTTAGTGGTGATGATGGTG-3’), and bamB gene was amplified 

using PF_EBB_SLIC (5’-TCATCACCACTAAGATCCTCTAGAGAGGGACCCGATGCA

ATTGC-3’) and PR_EBB_SLIC (5’-CTTGCATGCCTGCAGGTCGATTAACGTGTAATA

GAGTACACGGTTCC-3’). Amplified fragments were gel-extracted and digested by T4 

DNA polymerase (Fermentas) at 22°C for 35 min and then 70°C for 10 min, before being 

placed on ice. The digested gene and vector fragments were annealed in 10 mM Tris, pH 8.0, 

100 mM NaCl, 1 mM EDTA for 10 min at 75°C and subsequent temperature drop by 0.1°C 

every 8 s to 20°C. The annealed product was transformed into E. coli DH5α cells for plasmid 

extraction.  

3.8 Expression of BamACDE (pJH114) (performed by colleagues) 
and BamABCDE (pYG120) 
Expression plasmid pJH114 was initially transformed into E. coli HDB150 cells [170] 

(MC4100 ompT::spcΔaraBAD leuD::kan) for overexpression. When OD600 reached ~0.6-0.8, 

IPTG was added to final concentration of 0.1 mM, and the cultures continued overnight at 

20°C. Overexpression of the selenomethionine-labelled BAM complex was performed in M9 

medium with selenomethionine Medium Nutrient Mix (Molecular Dimensions) and 100 

mg/L L-(+)-selenomethionine (Molecular Dimensions) according to the preparatory protocol 

given in Appendix 2. Specifically, O/N culture was washed by PBS solution and distributed 

into each 1L minimal media. When OD600 reached ~0.6, amino acid supplement was added 
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and culture continued for 30 min. L-(+)-selenomethionine was then added and culture was 

grown for another 30 min before IPTG induction. Overnight post-induction culture 

conditions were identical to native protein induction conditions. Overexpression of the BAM 

complex from pYG120 followed the identical protocol. 

3.9 Purification of BamACDE (performed by colleagues) and 
BamABCDE 
For purification of pJH114-generated BamACDE, the cells were pelleted and resuspended in 

TBS buffer and lysed by passing through a cell disruptor (Constant Systems) at 30 kpsi. The 

lysate was centrifuged at 18,000 g to separate cell debris and unbroken cells, and the 

supernatant was ultracentrifuged to pellet the membranes at 100,000 g for 1 h. The cell 

membranes were resuspended in solubilization buffer containing 20 mM Tris-HCl, pH 8.0, 

300 mM NaCl, 10 mM imidazole and 1% DDM and gently agitated for 1h at room 

temperature. The solution was ultracentrifuged again and the supernatant was loaded onto a 

5-ml HisTrap HP column (GE Healthcare) pre-equilibrated with solubilization buffer. The 

column was washed with wash buffer containing 20 mM Tris-HCl, pH 8.0, 300 mM NaCl 

and 45 mM imidazole and eluted with elution buffer containing 300 mM imidazole. The 

eluate was loaded onto a HiLoad 16/600 Superdex 200 prep grade column (GE healthcare) 

pre-equilibrated with gel filtration buffer containing 20 mM Tris-HCl, pH 7.8, 300 mM NaCl 

and 2 CMC N-nonyl-β-D-glucoside (β-NG) and 1 CMC tetraethylene glycol monooctyl ether 

(C8E4). Purification of the intact BAM complex from pYG120 followed the identical protocol 

with the exception that wash, elution and gel filtration buffer were supplemented with 1 CMC 

N-octyl-β-D-glucopyranoside (OG) and 1 CMC N-dodecyl-N,N-dimethylamine-N-oxide 

(LDAO). The eluted peak fractions were pooled and concentrated. 
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3.10 Crystallization, data collection and structure determination 
of BamACDE (performed by colleagues) and BamABCDE 
The purified proteins were concentrated to 8–12 mg/ml for crystallization. For NaI co-

crystallization for the BAM complex from pYG120 (performed by colleagues), NaCl was 

replaced by 0.2 M NaI in the gel filtration buffer. All crystallization trials were performed 

using sitting-drop vapour diffusion method and the screening plates were stored at 22°C. 

Optimization of the crystals were conducted by varying the concentrations of the precipitate 

and buffer pH as well as adding commercial additives (Molecular Dimensions). The best NaI 

co-crystallized BamABCDE crystals appeared from 150 mM HEPES, pH 7.5, 30% PEG6000 

and CYMAL-4 in MemAdvantage additive screen (Molecular Dimensions) as an additive. 

The best BamABCDE native crystals appeared from 150 mM HEPES, pH 7.5 and 27.5% 

PEG6000. The best BamACDE native and selenomethionine-labelled crystals emerged from 

100 mM Tris, pH 8.0, 200 mM MgCl2 . 6H2O, 24% PEG1000 MME and OGNG (Octyl 

Glucose Neopentyl Glycol) in MemAdvantage as an additive. The crystals were harvested, 

cryoprotected by supplementing the crystallization solution with 20% glycerol and stored in 

liquid nitrogen for data collection.  

For BamACDE (performed by colleagues), both native and selenomethionine-substituted 

data sets were collected on the I03 beamline at Diamond Light Source (DLS) at a wavelength 

of 0.9173 Å and 0.9795 Å respectively. The crystals belong to P42212 space group and cell 

dimensions of a = b = c = 254.16 Å, c = 179.22, α = β = γ = 90°. Data sets were indexed, 

integrated and scaled by XDS [171]. Structure determination was carried out using ShelxD 

[19, 172] and a diffraction limit of 3.9 Å was determined. Fifty-six selenium sites were found 

and gave a figure of merit (FOM) of 0.32. BamACDE could be fit into the electron density 

map following density modification using DM [173]. The BamACDE complex was built 

using Coot [174] by skeletonizing the electron density map and docking the BAM subunits in 
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the electron density map with selenomethionine sites used as guides. Rigid body refinement 

was subsequently performed and NCS refinement was used with TLS refinement against 

groups automatically determined using PHENIX [175]. Restrained refinement was performed 

with group B-factors and reference model secondary structure restraints from higher 

resolution models. Weights were automatically optimised by PHENIX [175]. 

For BamABCDE expressed from pYG120, the data sets of the BAM complex were collected 

on the I03 beamline at DLS. I collected and processed data sets of native crystals. Data sets 

of NaI co-crystallized crystals were collected and processed by my colleagues. The crystals 

belong to space group P41212, with the cell dimensions a = b = 116.88 Å, c = 435.73 Å, α = β 

= γ = 90°. There is one complex in the asymmetric unit. Despite molecular replacement 

attempts with individual component structural models, a resolution of 2.92 Å was not 

sufficient for structure determination. BamABCDE complex was crystallized in presence of 

0.2  M sodium iodide, and SAD data sets were collected at a wavelength of 1.8233 Å 

(performed by colleagues). Four 360° data sets were collected on the same crystal and then 

combined. The phases were determined by ShelxD [19, 172] at 4  Å resolution. Eleven iodide 

sites were assigned and gave a FOM of 0.28. The phases were refined to 2.9 Å by DM [173], 

and the molecular model was built using Coot [174] by skeletonizing the electron density 

map and docking the individual high-resolution subunits in the electron density map. Rigid 

body refinement was used to fit this model into the higher resolution native data set while 

retaining and extending the free R set from the iodide data set. The BamABCDE complex 

was then refined using PHENIX [175]. TLS groups were automatically determined using 

PHENIX [175] and restrained refinement was performed with secondary structure restraints 

and individual B-factors. Weights were automatically optimised. Data collection and 

structure refinement statistics for selenomethionine-substituted BamACDE complex, native 
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BamABCDE complex, and sodium iodide co-crystallized BamABCDE complex are listed in 

Table 2. 
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Table 2. Data collection and refinement statistics for BamACDE and BamABCDE complex 
 
 BamACDE Se-Met‡a 

(created by colleagues) 
BamABCDE NaIa 
(created by 
colleagues) 

BamABCDE Native‡a 

Data collection    
Space group P42212 P41212 P41212 

Cell dimensions    

a, b, c (Å) 254.16, 254.16, 
179.22 

116.72, 116.72, 
432.44 

116.88, 116.88, 
435.73 

�������� (°) 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0 
Wavelength (Å) 0.97951 1.82330 0.97623 

Resolution (Å) 29.94–3.90 (4.02–
3.90)* 

29.86–4.00 (4.27–
4.00) 

103.06–2.92 (3.02–
2.92) 

Rpim (%) 3.3 (53.8) 10.5 (69.9) 4.7 (65.4) 

CC1/2 (%) 99.9 (49.4) 100 (99.6) 99.6 (64.8) 
I / sigma 11.0 (0.9) 37.0 (11.8) 11.2 (1.0) 

Completeness (%) 99.8 (100.0) 98.5 (97.8) 100 (100) 
Redundancy 27.1 (27.2) 158.00 (165.1) 12.6 (11.5) 

    
Refinement    

Resolution (Å) 29.92 – 3.90  103.06–2.92 
No. reflections 73745  66804 

Rfactor / Rfree 30.44/31.93  28.13/30.73 
No. atoms    

Protein 19796  22815 
Ligand/ion 0  0 

Water 0  0 
B-factors(Å2)    

Protein 150  118 
Ligand/ion N/A  N/A 

Water N/A  N/A 
R.m.s. deviations    
Bond lengths (Å) 0.010  0.003 
Bond angles (°) 1.868  0.87 

Residues in 

Ramachandran plot 

Favored (%) 

Allowed (%) 

Outliers (%) 

 

PDB code 

 
 

90.5 

8.7 

0.8 

 

5D0Q  

 
 

93 

6.3 

0.7 

 

N/A 
*Values in parentheses are for highest-resolution shell.  



	   68 

‡ Highest resolution shell was taken as point where CC1/2 > 30 along strongest reciprocal lattice 
direction. 
 aData statistics shown for each wavelength are a combination of two datasets (BamACDE 
Se-Met) and four datasets (BamABCDE NaI).  
 bRfactor = Σ||Fo|-|Fc|| ⁄ Σ|Fo|, where Fo and Fc are observed and calculated as structure factors, 
respectively. 
 cRfree is calculated using 5% of total reflections, which is randomly selected as a free group 
and not used in refinement. 
 
 
 
 
 
 

3.11 Plasmid construction of OmpU 
The gene sequence encoding full-length ompU gene (gene ID:2615421) was amplified by 

PCR using genomic DNA from Vibrio cholerae O1 biovar El Tor str. N16961 as a template 

and forward and reverse primers of atcg ccatggacaataaattaggacttaataagatgaa, and 

gctactcgaggaagtcgtaacgtagaccgata, respectively. The PCR product was confirmed on 1% 

agarose gel electrophoresis. The ompU PCR product was recovered from the 1% agarose gel. 

Both pET28 plasmid and the PCR product were digested by restriction enzymes NcoI and 

XhoI, and the products were recovered separately. The ompU gene was ligated into the 

pET28 plasmid, and the inserted ompU gene was confirmed by sequencing. The generated 

plasmid contained a hexahistidine tag at the C terminus of OmpU. It was transformed into E. 

coli C43 (DE3) cells for overexpression.  

3.12 Expression of V. cholerae  OmpU 
Transformed E. coli C43 (DE3) strain was grown in LB Broth media with 50 μg/ml 

kanamycin at 37°C until OD600 reached about 0.6. IPTG (final concentration 0.1 mM) was 

then added to induce overexpression of OmpU for 7-8 hours before harvesting the cells. 
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3.13 Purification of V. cholerae OmpU 
The cells were fully suspended in TBS solution and the cells were disrupted as previously 

described. The cell lysate was centrifuged at 5,000 g at 4°C for 15 min to remove cell debris. 

The resultant supernatant was ultra-centrifuged at 120,000 g for 1 h to pellet whole 

membranes. Membrane fractions were then solubilized in TBS/1%-N-Lauroylsarcosin 

(sodium salt) at 4°C for 1 h. Ultra-centrifugation was performed at 120,000 g again for 1h 

and the outer membrane was pelleted. The outer membrane proteins were dissolved in 20 

mM Tris-HCL pH 8.0, 300 mM NaCl, and 10 mM imidazole with 1% LDAO at 4°C for 1.5 h 

and ultra-centrifuged again for 30 min before being loaded onto a Ni-NTA gravity column 

pre-equilibrated with 20 mM Tris-HCL pH 8.0, 300 mM NaCl, and 10 mM imidazole and 

1% LDAO. The column was washed with 20 mM Tris-HCL, pH 8.0, 300 mM NaCl, 30 mM 

imidazole, 0.5% C8E4, 5 mM CaCl2 and eluted with the same buffer but containing 300 mM 

imidazole. The eluted proteins were quantified and applied to a HiLoad 16/600 Superdex 200 

prep grade column (GE healthcare) pre-equilibrated with gel filtration buffer containing 20 

mM Tris-HCl, pH 7.8, 300 mM NaCl, 0.5% C8E4, 5 mM CaCl2. Resultant peak fractions 

were pooled and concentrated. Small volumes of these fractions were run on SDS-PAGE gel 

to check the purity of the protein.  

3.14 Protein crystallization and data collection 
Purified proteins were concentrated to ~10mg/ml and used to set up crystallization trials 

using the sitting-drop vapour method. The best crystals emerged in a condition of 0.1 M 

lithium sulfate monohydrate, 0.1 M sodium acetate trihydrate pH 4.6, and 1 M ammonium 

phosphate monobasic at 16°C after about one week, and they were protected in a cryo-

protectant (0.1 M lithium sulfate monohydrate, 0.1 M sodium acetate trihydrate pH 4.6, 1 M 

ammonium phosphate monobasic, and 20% glycerol), harvested and flash-cooled in liquid 

nitrogen for data collection. All data sets were collected using a wavelength of 0.9173 Å 
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(probably used in previous data collection and not adjusted to the default wavelength for 

native data collection) at Beamline I04-1 at Diamond light resources. 3600 images were 

recorded for each dataset. The data sets were processed using iMOSFLM[9], and the space 

group was determined by Pointless[11]. The crystals belong to space group P21212 with three 

protomers in the asymmetric unit and cell dimensions a = 129.88 Å, b = 153.47 Å, c = 81.01 

Å, and a = b = g = 90°. The data was further integrated and scaled by SCALA [176]. The 

data collection statistics are listed in Table 3. 

3.15 Structure determination 
The structure was solved by molecular replacement using the structure model of OmpK36 

from K. pneumoniae (PDB code 1OSM) as the search template (Table 4) and the Phaser 

program in CCP4 suite [177]. Both Rfactor and Rfree were above 0.5 after molecular 

replacement, but dropped significantly following iterative rigid body refinement. The model 

was re-built manually in Coot [174]. The refinements were performed using REFMAC 5 

[178]. The water molecules were added in the structure automatically using ARP/wARP 

[179]. The detergent LDAO and C8E4 molecules and glycerol molecules were built in the 

structure manually in Coot. The structure refinement statistics are listed in Table 3. 
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Table 3. Data collection and refinement statistics for OmpU 

 Native OmpU 

Data collection 
 

Space group P21212 
  

Cell dimensions�� 
   

a, b, c (Å) 129.88, 153.47, 81.01 
  

a, b, g (°)  90.0, 90.0, 90.0 
  

Wavelength (Å) 0.91732 
  

Resolution (Å) 64.95–2.22 (2.28 –2.22)a 
  

Rpim (%) 4.9 (55.6)a 
  

CC1/2 (%) 100 (60)a 
  

I / s(I) 14.7 (1.7)a 
  

Completeness (%) 99.8 (98.8)a 
  

Redundancy 8.3 (6.5)a 
  

Refinement 
 

   

Resolution (Å) 62.73 – 2.22 
  

No. reflections 80495 
  

Rfactor / Rfree (%)b 20.78/23.57 
  

No. atoms 
   

    Protein 7344  
  

    Detergent/glycerol 259 
  

    Water 637 
  

Mean B value (Å2) 
   

    Protein 
 
42.5 

  

    Detergent/glycerol 

    Solvent                            
 

R.m.s.deviations 

99.4 

51.7 

  

    Bond lengths (Å) 0.004 
  

    Bond angles (°) 1.000 
  

Ramachandran statistics 
   

    Favoured (%) 93 
  

    Outliers (%) 
 

PDB accession number  

0.84 
 

5ONU  
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a The values in parentheses correspond to the highest resolution shell. 

b Rfactor = Σ|| Fobs|−| Fcal||/Σ|Fobs|, where Fobs and Fcal are observed all reflection measured 

and calculated currently model as structure factors, respectively. Rfree is calculated using 5% 

of total reflections, which is randomly selected not used in refinement. 

Table 4. Choices of phasing models for molecular replacement.  

Templates (Protein Data Bank ID) Alignment coverage (%) Confidence I.D. (%) 

     2fgq 85 100 20 

    1osm 88 100 24 

     2zfg 88 100 23 

     3nsg 87 100 23 

     4d65 88 100 25 

 

Confidence represents the possibility of true-homology relationship between query sequence 

and template (from 0-100). It is not an indicator of the expected accuracy of the model. A 

match with confidence >90% implies that the predicted model adopts the overall fold shown 

and that the core of the protein is modeled at high accuracy (2-4Å rmsd from native, true 

structure) although surface loops are likely to deviate from the native structure. I.D. is the 

percentage of identity between query sequence and the template. An I.D. of above 30-40% 

indicates high accuracy model but low I.D. (<15%) can also be considered acceptable as long 

as the confidence is high. 

3.16 Generation of Lnt expression plasmid 
Full-length lnt gene sequences from various Gram-negative species were amplified by PCR 

with designated NdeI and XhoI restriction sites. For the thermophilic strains, NdeI and SalI 
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were chosen as the restriction sites because XhoI site was found in gene sequences. The 

primers used are listed in Table 5. The amplified sequences were double digested and ligated 

into digested pET22 vectors treated with the same restriction enzymes. The generated 

plasmids contained an octa-histidine tag at the C terminus of Lnt. The plasmids were 

transformed into Top10 chemically competent cells and subsequently extracted before being 

sent for sequencing. Confirmed constructs were transformed into E. coli C43 (DE3) cells for 

overexpression. 
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Table 5. PCR primers used for lnt gene cloning in individual selected species. 

Species name Primer sequences 

E. coli  forward: tatacatatggcttttgcctcattaattgaacgcc 

reverse: tatactcgagttaatgatgatgatgatgatgatgatgtttacgtcgctgacgcagactc 

P. aeruginosa forward: tatacatatgcgttggatttctcgtcccggc 

reverse: tatactcgagtcaatgatgatgatgatgatgatgatggccgaacaggcgtcgctcc 

N. 
gonorrhoeae 

forward: tatacatatgttttccaaactggacaaatactgg 
reverse: tatactcgagtcaatgatgatgatgatgatgatgatggtgttctttgtttcggaagatg 

N. 
meningitidis 

forward: tatacatatgttcagacggtatcttccgaacag 
reverse: tatactcgagtcaatgatgatgatgatgatgatgatggtgttctttgtttcggaagatg 

K. 
pneumoniae 

forward: tatacatatggtatttgcctctcttcttgaacgccagc 

reverse: tatactcgagttaatgatgatgatgatgatgatgatgtcggcgacgctggcgcaggct 

V. cholerae forward: tatacatatgaacagcgtattatctcatcgcctaatgc 

reverse: tatactcgagttaatgatgatgatgatgatgatgatgtctagcccggcgctggcgcca 

C. freundii forward: tatatacatatggcatttgcctcactaattgaacgccagc 
reverse: tatactcgagttaatgatgatgatgatgatgatgatgtttacgacgctggcgcaggctc 

Y. 
enterocolitica 

forward: tatatacatatgcctatcgcttcataccttcaac 

reverse: tatactcgagtcaatgatgatgatgatgatgatgatgagttacggggttatttttatca 

H. influenzae forward: tatatacatatgaataaatattttacttatcttattgcgattatatc 
reverse: tatactcgagttaatgatgatgatgatgatgatgatgtaagatattcatcttacgacga 

T. 
thermophilus 

forward: tatatacatatgaaggtccgagaggaccccaaggcgcatggc 

reverse: 
tatagtcgacctaatgatgatgatgatgatgatgatgccggttccgccaccccggcggacg 

T. 
scotoductus 

forward: tatatacatatgcggcctttcctcctgggcctcctcctggccctt 

reverse: 
tatagtcgacctaatgatgatgatgatgatgatgatgccggttccgccaccccggcgcgcg 

T. maritima forward: tatatacatatgaacagaagacggtggtggagatcc 

reverse: 
tatagtcgactcaatgatgatgatgatgatgatgatgtaatcgaattccgataccttcattcctttcac 
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3.17 Expression of Lnt 
For small-scale expression tests, transformed E. coli C43 (DE3) strains carrying recombinant 

lnt plasmids from different species were grown in 1L LB Broth media with 100 μg/ml 

ampicilin at 37°C until OD600  reached about 0.6. IPTG (final concentration 0.2mM) was then 

added to induce overexpression of Lnt for 5-6 hours before harvesting the cells. For large-

scale expression, 12L LB was used to culture cells. 

3.18 Purification of Lnt 
For expression tests, harvested cells were suspended in TBS solution and the cells were 

disrupted as previously described. The cell lysate was centrifuged at 18,000 g at 4°C to 

remove cell debris. The resultant supernatant was ultra-centrifuged at 120,000 g for 1 h to 

pellet whole membranes. Membrane fractions were then solubilized in 20 mM Tris-HCL pH 

8.0, 300 mM NaCl, and 10 mM imidazole with 1% DDM at room temperature for 1 h. Ultra-

centrifugation was performed at 120,000 g again for 30 min and the supernatant of each 

species was loaded onto a 1 ml HisTrap FF column. 10 ml balance buffer was used to pre-

equilibrate prior to sample loading, then wash buffer (20 mM Tris-HCL pH 8.0, 300 mM 

NaCl, 30 mM Imidazole, 0.05% DDM) and elution buffer (20 mM Tris-HCL, pH 8.0, 300 

mM NaCl, 300 mM Imidazole, 0.05%DDM) were used to wash and elute the column 

respectively. Fractions of eluted proteins from each column were taken to run SDS-PAGE 

gels to check the presence of Lnt.  

For large-scale purification, Lnt was bound onto a 5 ml HisTrap HP column. Eluted protein 

was loaded onto a HiLoad 16/600 Superdex 200 prep grade column (GE healthcare) pre-

equilibrated with gel filtration buffer containing 20 mM Tris-HCl, pH 7.8, 300 mM NaCl and 

detergents. DDM, LMNG, LysoFos Choline 12, Fos Choline 12 were used in purification.  
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3.19 96 detergent screening  
The Analytic Selector Kit from anatrace was purchased, it included a detergent screening 

plate containing 150µl of 94 detergents at 2x working concentration, a blank well and a well 

for the control detergent currently being used to stabilize Lnt (DDM). The 96 conditions in 

the plate are listed in appendix 4. A 0.22µm filter plate with receptacle plate for detergent 

exchange and a receptacle plate for collecting eluted proteins and exchanged detergents were 

also included in the kit. A large-scale purification was performed as described above using 

DDM, the final gel filtration buffer contained 20 mM Tris-HCl, pH 7.8, 150 mM NaCl and 

0.1% DDM. Peak fractions were pooled and protein concentration was determined. 2.4 ml of 

50% Ni-affinity superflow resin (Qiagen) was then added in a 15 ml tube and equilibrated 

with the gel filtration buffer. A total of 500 µg of purified Lnt was then added to the resin and 

the total volume was increased to 6 ml using the gel filtration buffer. The tube was put onto a 

rotator and stored at 4°C overnight. The next day the detergent plates were prepared by 

mixing 94 detergents at 2x working concentration with 2x washing buffer (20 mM Tris-HCL 

pH 8.0, 300 mM NaCl, 50 mM Imidazole) and 2x elution buffer (20 mM Tris-HCL, pH 8.0, 

300 mM NaCl, 500 mM Imidazole) respectively to create the washing plate (220 µl solution 

in each well) and the elution plate (80 µl solution in each well). 50 µl of protein bound resin 

was then added to each well of the 0.2 µm filter plate and pre-washed using the gel filtration 

buffer in each well. The plate was then centrifuged at 2000 g for 2 minutes to discard the 

solution. 30 µl of the washing buffer from the washing plate was then added to each well to 

perform detergent exchange. Following 5 minutes of incubation at room temperature the plate 

was centrifuged at 2000 g for 2 minutes and the flow-through was discarded. Detergent 

exchange was repeated 6 times. Next, 70 µl of the elution buffer from the elution plate was 

added to each well and the plate was centrifuged at 2000 g for 2 minutes. Flow-through was 
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collected using a new elution receptacle. Each of the 96 elution solutions was then subjected 

to SDS-PAGE analysis. 

	  
	  

3.20 Crystallization and data collection of V. cholerae Lnt 
Protein was subjected to crystallization trials using the sitting-drop vapour method. For the 

initial screening, MemStart, MemSys, MemGold, MemGold2, MemMeso crystallization 

screens were used, and the 96-well plates were stored at 16°C. Crystals emerged from a 

condition consisting of 0.02 M sodium citrate tribasic dihydrate, 0.08 M sodium phosphate 

(pH 6.2), 18% w/v PEG2000 within one week. They were flash cooled and stored in liquid 

nitrogen for data collection. The data sets were collected on the I03 beamline at a wavelength 

of 0.9763 Å at DLS. The processing XIA2 3dii program defined the resolution to ~9.2 Å with 

the space group of C2221. The unit cell dimensions are a = 182.71 Å, b = 255.66 Å, c = 72.47 

Å, α= β = γ = 90°. 
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CHAPTER 4 

 

Results chapter: structural studies of the five-protein complex of 

beta-barrel assembly machinery (BAM complex) from 

Escherichia coli 
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4.1 E. coli BamAB+BamCDE separate overexpression and 
subsequent reconstitution 
As expected, in vitro reconstruction of the BAM complex by the solubilized subcomplexes 

BamAB and BamCDE according to the published protocol [77] was confirmed to be 

successful as reported. Following nickel-affinity chromatography, the eluted fractions were 

collected to be further purified by size-exclusion chromatography (Figure	  13). The elution 

profile exhibits three observable peaks and the samples were eluted from around 65ml to 

80ml with the peak value of over 250 mAU in the central and most symmetrical peak and 

significantly lower values in the leading and lagging peaks of irregular shapes. The yield was 

~1.5 mg per litre of cell culture. The contents of the eluted fractions were subject to SDS-

PAGE analysis and it was found that in the leading peak and the central peak the BAM 

complex exists in its intact form, while in the lagging peak mainly BamE and minor amounts 

of BamD exist (Figure	  13, Figure	  14). The void volume of the gel filtration column is ~43 

ml [180], so the molecular weights of the BAM complexes in the leading peak are definitely 

larger than that of a single BAM complex and indicate higher-order oligomers. The 

molecules in the lagging peak may be of various oligomeric states including BamE and 

BamDE subcomplex. Due to the presence of the polyhistidine-tag on BamE, excessive 

amount of BamE may bind to and be eluted from the affinity column along with those in the 

complex or subcomplex. It was therefore decided to pool the fractions in the central peak and 

proceed with subsequent crystallization trials.  
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Figure 13. Chromatogram of E.coli BamAB+CDE on gel filtration. 

The samples were injected onto a HiLoad 16/600 Superdex 200 prep grade column (GE 

healthcare) pre-equilibrated with 20mM Tris-HCL (pH 7.8), 300mM NaCl, 1 CMC β-OG, 

and 1 CMC LDAO. The contents in the leading and lagging peak are individually denoted. 
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Figure 14. SDS-PAGE gel picture of the purified E. coli BamAB+CDE complex. 

Protein samples were taken from peak fractions of the peaks in Figure 13. All the five subunit 

proteins were present in the complex in reasonable stoichiometric amounts. Lane M, protein 

marker with indicated molecular weights in kDa. Lane 1, fraction from the oligomeric peak. 

Lane 2-6, fractions from the central peak. Lane 7-11, fractions from the lagging peak.  
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Figure 15. A picture showing the crystals that appeared from two conditions from separate 
purification of E. coli BamAB and E. coli BamCDE. 
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Upon incubation of the screening plates, various screening conditions produced crystals with 

different types and shapes (Figure 15), and they were cryo-protected before being flash-cooled 

in liquid nitrogen and sent to DLS for X-ray crystallography analysis. During one visit, there 

was one crystal with well-diffractive quality and an estimated 4 Å data set was collected 

(Figure 16).  

 

 

Figure 16. A picture of the well-diffracting crystal of E. coli BamAB+CDE. 

The crystal was mounted in the rounded cryo-protective loop, the bar-shaped pink crystal is 

about 200 µm in length and 50 µm in width. 

Downstream data processing and structure determination were attempted using individual 

structures of each component via molecular replacement, but not successful despite extensive 

and thorough computational analysis using structure-solving programmes. It was later found 

that this crystal formed from an irrelevant membrane protein that was persistent throughout 

purification and stayed in the final purified protein solution, because a similar crystal and 

data set were obtained from another research project aimed at a different outer membrane 
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protein. Indeed, it can be easily seen that there are some additional bands other than the 

expected five bands on the SDS-PAGE gel (Figure 14), indicating impurities in the protein 

solution to be crystallized, therefore it is not surprising that these non-targeted proteins may 

grow to form crystals in certain conditions, even though their expression levels are 

significantly lower than the target complex. There were many other BAM crystals with 

relatively poor diffraction, and also some that did not diffract at all.  

The problem of non-diffracting and poorly diffracting crystals is difficult to solve. Despite 

the formation of crystals from many different conditions indicating that the complexes do 

interact with each other in a crystal-packing fashion, a large amount of disorder in the crystal 

lattice is also present, which can result from degradation or dissociation of the protein 

complex and, not hard to imagine, impurities in the final protein solutions [181].  

4.2 E. coli BamAB+CDE co-purification 
Examining the procedure of the BAM complex reconstitution and purification, a major 

drawback affecting the formation of the complex and the homogeneity as well as quality of 

crystals could be the separate extraction steps of BamAB and BamCDE before mixing the 

two subunits together, allowing only 1h or so for complex formation. The association of the 

subunits and formation of the complex, therefore, could be much less efficient than they are 

in the native states intracellularly. In order to improve this less optimal reconstitution and 

association condition, harvested cells of E. coli BamAB and E. coli BamCDE were mixed 

and suspended prior to cell disruption and were then disrupted together in order to promote 

more prolonged interactions between BamAB and BamCDE by providing more time for 

interactions from as early as the cell lysis step. The final purified complex solution was of 

high purity according to SDS-PAGE analysis (Figure	   18). The size-exclusion 

chromatography pattern was improved in that the leading peak shown in separate purification 
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was eliminated and the magnitude of the lagging peak was reduced, indicative of less 

heterogeneous compositions and oligomeric aggregations (Figure	  17). The yield was ~1.5 

mg per litre of cell culture. The fractions in the main peak were pooled and taken for 

crystallization trials. All the screening plates were stored at 4°C for incubation, and there 

were a number of wells that produced BAM crystals after about two weeks (Figure	  19). 

Upon X-ray analysis, however, these crystals only diffracted weakly and no further 

information could be obtained.  

 

 

Figure 17. Chromatogram of E. coli BamAB+CDE co-purification on gel filtration column. 

The samples were injected onto a HiLoad 16/600 Superdex 200 prep grade column (GE 

healthcare) pre-equilibrated with 20mM Tris-HCL (pH 7.8), 300 mM NaCl, 0.5% C8E4.   
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Figure 18. SDS-PAGE gel picture of the co-purified E. coli BamAB+CDE complex. 

The Bam complex was co-purified from harvested cells of E. coli BamAB and E. coli 

BamCDE. Lane M, protein molecular weight marker with indicated molecular sizes in kDa. 

Lane 1 and 2, fractions from the main peak in Figure	  17. 
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Figure 19. A picture of the crystals produced from co-purification of E. coli BamAB and E. 
coli BamCDE.  

 

4.3 Expression of all five subunits in a single expression plasmid 
(pJH114 and pYG120) 
Mainly because of the difficulty in obtaining well-diffracting crystals from the current gene 

construction, further improvement in cloning and expression was considered. The optimal 

expression could result from a construct in which all five genes are placed together and are 

subsequently expressed to form the entire complex intracellulary upon induction. In light of 

this, pJH114 plasmid was requested from H. D. Bernstein at National Institutes of Health 

USA and pYG120 was subsequently created (performed by colleagues). I used pYG120 to 

overexpress and purify the BAM complex. The yield was ~2mg per litre of cell culture. The 

gel filtration profile shows an almost identical pattern to that of BamAB+CDE co-

purification (Figure 20) and SDS-PAGE analysis of eluted peak fractions reveals that the BAM 
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complex is highly purified and the relative ratios of individual subunits are generally identical 

to that observed for previous separate overexpression (Figure 21b). The purified complexes 

using pJH114 (performed by colleagues) and pYG120 were analyzed by SDS-PAGE and 

compared and it showed a comparable integral ratio of individual subunits after purification 

of the BAM complex with the exception that BamB seems to be of lower amount comparing 

to other components and SDS-PAGE result of BamB from pYG120 (Figure 21a). Strikingly, 

both constructs expressed the BAM complex that was crystallized into high-resolution 

crystals in a relatively straightforward fashion.  

Subsequent crystallization trials for pYG120-overexpressed BAM complex using the sitting 

drop method yielded diverse types of crystals from the screening conditions. They were all 

cryoprotected by supplementing the crystallization solution with 20% glycerol and tested for 

diffraction (Figure 22). The structure of the BamACDE complex was first determined using 

selenomethionine substituted crystals and the structure of the BamABCDE complex was 

determined later on using NaI co-crystallization. 
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Figure 20. Chromatogram of E. coli BAM complex expressed from pYG120 on gel filtration 

column.  

The samples were injected onto a HiLoad 16/600 Superdex 200 prep grade column (GE 

healthcare) pre-equilibrated with 20 mM Tris-HCL (pH 7.8), 300 mM NaCl, 1 CMC β-OG 

and 1 CMC LDAO.  
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Figure 21. (a) SDS-PAGE comparision between the BAM complex proteins purified from 

pYG120 and pJH114 (b) SDS-PAGE result of the BAM complex proteins purified from 

pYG120.  

Lane M in (a), protein marker with indicated molecular sizes in kDa. Lane 1, purified BAM 

complex proteins from pYG120 overexpression. Lane 2, purified BAM complex proteins 

from pJH114 overexpression. The relative stoichiometric molecular ratio of BamB in the 

complex is lower. Lane M in (b), protein marker with indicated molecular sizes in kDa. Lane 

1, fraction of flow through sample during IMAC. Lane 2-8, fractions from the main peak in 

Figure 20. 
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Figure 22. A picture of the well-diffracting native crystals generated from pYG120. 

4.4 BamACDE structure generated from pJH114 (determined by 
colleagues) 
At a resolution of 3.9 Å, the BamACDE structure was first solved by using selenomethionine 

derivatives. It reveals that BamB is absent in the electron density, leaving BamA (Glu22-

Ile806), BamC (Cys25-Lys344), BamD (Glu26-Ser243), BamE (Cys20-Glu110) to form a 

four-protein complex (Figure	  23, Figure	  24, Figure	  25). The four-protein complex measures 

115 Å in length, 84 Å in width and 132 Å in height. For uniformity with reported 

publications, the β-strands of the barrel domain of BamA are named β1C-β16C. BamA 

follows the general structural feature of OMPs that the C-terminal β-barrel domain is 

embedded in the OM, while the five soluble POTRA domains extend from the barrel domain 

and associate with three other subunits. Moreover, the POTRA domains encircle the β-barrel 
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with BamD, forming a ring in the periplasm. BamC is integrated into the complex by 

interactions of the C-terminal globular domain with BamD and POTRA 2. As for BamE, it 

interacts simultaneously with the C-terminal domain of BamD and POTRA 4 and 5 of BamA. 
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Figure 23. Catoon representation of the BamACDE structure (horizontal view from the OM 
plane). 

BamA is coloured in green, BamC in magenta, BamD in yellow and BamE in light pink. The 

β-barrel of BamA is embedded in the OM. The dimensions were measured using the widest 

points of the model in respective axes.  
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Figure 24. BamACDE structure model viewed from the extracellular side. 
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Figure 25. BamACDE structure model viewed from the periplasmic side.  

 

4.5 BamABCDE structure generated from pYG120 
The whole BAM complex was successfully crystallized and the structure was solved using 

single-wavelength anomalous dispersion [20] and molecular replacement phasing methods. 

The structure was determined to a resolution of 2.9 Å and confirmed to contain all five 

subunits (Figure	  26, Figure	  28, Figure	  29). Figure	  30 presents iodide anomalous signal map 

contoured at 4 s in a single unit cell of BamABCDE crystal. The five-protein complex 

measures ~120 Å in length, 98 Å in width and 140 Å in height (Figure	  26). It should be 
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pointed out that BamC is not visible in the model in full length but contains the N-terminal 

loop (Val35-Pro88) attached to BamD. Although SDS-PAGE experiment showed the 

presence of full-length BamC in both the purified complex and the crystals, the remaining 

portion other than the N-terminal loop of BamC is highly flexible. 

The extracellular loops of BamA (L1 to L8) occupy the entry space of the pore in the barrel; 

therefore the opening in the crown of the hat is closed and inaccessible to the extracellular 

environment. The periplasmic side of the pore on the other hand is fully open and the 

periplasmic ring appears stabilized by interactions of BamD and POTRA domains ready for 

incoming unfolded OMPs.  

Compared to the previously reported structure of Neisseria gonorrhoeae BamA, BamA 

structure in the BamABCDE complex shares similar conformations, in which the β16C of the 

barrel domain coils towards the interior of the barrel lumen (Figure	  27). This coiled β-strand 

produces a gap between β1C and β15C, which may be implicated in forming a gate to allow 

OMPs to be inserted into the OM. 
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Figure 26. BamABCDE complex structure model viewed from the horizontal OM plane. 

The colouring of BamA, BamC, BamD and BamE are identical to BamACDE structure 

figures. BamB is additionally labelled in cyan.  
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Figure 27. β16C of the barrel domain of BamA is coiled into the barrel lumen. 
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Figure 28. BamABCDE structure model viewed from the extracellular side. 
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Figure 29. BamABCDE structure model viewed from the periplasmic side. 
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Figure 30. Iodide anomalous signal map in a single unit cell of BamABCDE crystal.  

The dark blue meshes depict locations of iodide ions. The dark blue lines represent axes of 

the unit cell. The contour level is set to 4 s.  

 

4.6 Interactions (defined by proximity within 3.5 Å) between 
BamA and BamB  
Looking at the two structures, the presence of BamB is the signature feature in the 

BamABCDE structure. From this structure, the binding of BamB to POTRA 2 and 3 of 

BamA is clearly seen mainly via salt bridges and van der Waals forces, in which the loops 15, 
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19, 23 and 27 of BamB at the binding site undergo conformational change to suit the 

interactions. BamB also interacts with Lys135 and Tyr147 of POTRA 2 (Figure	  31). 

 

Figure 31. Interactions between BamA and BamB. 

Expanded view at POTRA 2 and POTRA 3 in BamA and loops in BamB where interactions 

take place. 
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4.7 Interactions between BamA and BamC 
Owing to the observation that BamC only exhibits the N-terminal loop in the BamABCDE 

structure, the interactions between BamA and BamC are therefore best visualized in the 

BamACDE structure, in which the complete BamC is present. It is clear that BamC contacts 

with POTRA 1 of BamA through its residues in the N-terminal globular domain, while the C-

terminal globular domain associates with POTRA 2 via salt bridges and van der Waals forces 

with the β-sheets (Figure	  32). 

 

Figure 32. Interactions between BamA and BamC. 

In the BamACDE structure, expanded view is provided at the C-terminal globular domain of 

BamC and POTRA 2 of BamA where salt bridges and van der Waals forces interactions take 

place. 
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4.8 Interactions between BamA and BamD 
Earlier studies have proposed that BamD interacts only with POTRA 5 of BamA [85], but no 

direct structural evidence was provided due to a lack of a BamA-BamD structure. In both 

BAM complex structures, BamD is indeed in contact with POTRA 5 of BamA (Figure	  33). 

Moreover, BamD also interacts with Val480 and Asp481 of the periplasmic turn T2 of BamA 

as well as residues in POTRA 1 and 2.  

 

Figure 33. Interactions of BamD with BamA POTRA 5. 

Expanded view is provided at the C-terminal domain of BamD and BamA POTRA 5 where 

interactions take place involving BamA residues Arg366 and Glu373 and BamD residue 

Arg197.  
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4.9 Interactions between BamA and BamE 
In contrast to a previous report that BamE form contacts only with BamD [89, 182], the 

periplasmic turns T2 and T3 and POTRA 4 and 5 residues of BamA also interact with BamE 

residues (Figure	  34). 

 

Figure 34. Interactions between BamA and BamE. Expanded view is provided at BamA 
POTRA 5 and BamE residues where interactions take place.  
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4.10 Interactions between BamC, BamD, and BamE 
In addition to the interactions with BamA, BamC is also closely associated with BamD 

(Figure	  35). Composed of two general structural domains, BamC curves around BamD via 

the N-terminal loop, inducing substantial interactions, and the loop lies adjacent to BamE, 

which also promotes extensive contacts. The globular domain of BamC also interacts with 

the N-terminal domain of BamD (Figure	  35). BamE, the smallest subunit in the complex, 

also forms multiple contacts with BamC and BamD. Specifically, the residues Pro67 and 

Phe68 in BamE interact with residues Met56 and Ile57 in BamC via van der Waals forces 

(Figure	  36). BamE is in contact with the C-terminal domain residues of BamD (Figure	  37). 
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Figure 35. Interactions between BamC and BamD. 

Expanded view is provided at the N-terminal domain of BamD and BamC residues where salt 

bridges and van der Waals forces interactions take place.  
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Figure 36. Interactions between BamC and BamE. 

Expanded view at BamE residues P67 and F68 and BamC residues M56 and I57 where van 

der Waals forces interactions take place. 
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Figure 37. Interactions between BamD and BamE. 

In the BamACDE complex, expanded view is provided at the C-terminal domain of BamD 

and BamE residues where interactions take place. 

4.11 Conformational changes in BamA 
Unlike the BamABCDE structure, the periplasmic POTRA domain in BamACDE undergoes 

~30° overall rotation with respect to the location in BamABCDE structure, which leads to 

POTRA 5 and turn T1 and T4 occluding the periplasmic vestibule of the barrel and 

preventing entry of OMP substrates (Figure	  38a). Another unique and unprecedented feature 
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observed in the BamACDE structure is that in the β-barrel, the first β-strand, β1C, and the 

last β-strand, β16C are not continuous and instead disrupted by the rotation of the first six β-

strands of the barrel away from the barrel pore to an angle of ~65° and distance of ~15Å, 

resulting in a lateral opening of the barrel facing the interior of the pore to the external OM 

(Figure	  38b).  
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Figure 38. Conformational changes observed in BamA structure. 

(a) Superimposition of the BamA structure in BamABCDE structure (green) onto the BamA 

structure in BamACDE structure (purple) aligned with the barrel domain. The barrel domain 

exhibits dramatic conformational changes in β1C - β6C and between β1C and β16C. 

Moreover, the periplasmic POTRA domain in BamACDE undergoes a ~30° rotation from the 

BamABCDE structure. (b) Expanded view of the conformational changes in the barrel 

domain from the inward-open state to the lateral-open state. Rotation of β1C - β6C of BamA 

of 65° and the distance of ~15 Å leads to lateral opening of the barrel. 
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CHAPTER 5 

 

Results: structural studies of an outer membrane protein OmpU 

from Vibrio cholerae 
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5.1 OmpU purification and crystallization  
	  
Initial cell culture started with 4L Terrific Broth media. Cells were harvested and disrupted as 

described. After being loaded onto gel filtration column, a single peak appeared (Figure	  39) 

and, according to the position of the eluted peak, the sample was estimated to be in a trimeric 

form [180]. The eluted samples were analyzed by SDS-PAGE and the presence of OmpU 

protein was confirmed (Figure	  40). The protein is eluted from around 60 ml to 80 ml, with 

the single peak value reaching 400 mAU (~10 mg yield). The protein was concentrated to 10 

mg/ml for crystallization, and following incubation at 16°C crystals emerged in a number of 

conditions. Figure	  41 shows one of the crystals producing high-resolution diffraction data 

during data collection at DLS.  

 

 

Figure 39. Size-exclusion chromatogram of V. cholerae OmpU on gel filtration column. 

The samples were injected onto a HiLoad 16/600 Superdex 200 prep grade column (GE 

healthcare) pre-equilibrated with 20 mM Tris-HCL (pH 7.8), 300 mM NaCl, 0.5% C8E4.  
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Figure 40. SDS-PAGE gel picture of V. cholerae OmpU. 

OmpU was highly purified. Lane M, protein marker with indicated molecular sizes in kDa. 

Lane 1, fraction from the main peak in Figure	  39. 

 

 

    1      M 
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Figure 41. A picture of the well-diffractive OmpU crystal. 

 

5.2 Overall OmpU fold 
OmpU was successfully crystallized and the structure was determined to a resolution of ~2.2 

Å. OmpU forms a homotrimer (Figure	  42), and each protomer model contains residues G1-

F319 (Figure	  43). In addition to the ordered water molecules, 13 detergent molecules and 6 

glycerol compounds are assigned, electron densities of one LDAO and two glycerol 

molecules in OmpU structure are presented in Figure	  44. Despite moderate sequence identity 

to OmpK36 (~24%) [15], the structure of OmpU shares considerable similarity, with a root-

mean-square deviation (RMSD) of 1.55 over 268 aligned Cα atoms (Figure	  45). The fold of 

the protomer follows general fashion of trimeric porins, in which the 16 antiparallel strands 

of the β-barrel are connected by 8 short turns at the periplasmic side and 8 loops at the 

extracellular side (Figure	  43). Loop L3 deviates from the wall of the barrel and extends into 
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the barrel to serve as a constriction loop in the pore lumen. L1, L5, L6 and L7 are turns 

instead of loops. Protomers are held together to form homotrimers via hydrophobic 

interactions between barrel surfaces (Figure	  42). The protomer-protomer interactions are 

enhanced by the presence of both the latching loop L2 and L4 that protrudes and makes 

contacts with the neighbouring protomer. (Figure	  42b).  
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Figure 42. Cartoon representation of OmpU trimer, viewed from the membrane plane (a), the 
extracellular side (b) and the periplasm (c). 

The extracellular loop L4 is labelled in (a) and both L2 and L4 are labelled in (c).  
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Figure 43. Cartoon representation of OmpU protomer structure, viewed for the horizontal 
membrane plane (a), the extracellular side (b) and the periplasm (c). 

The extracellular loops, the periplasmic turns, the barrel-forming β-strands, detergent and 

glycerol molecules are individually labeled.  
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Figure 44. 2Fo-Fc Electron density map (contoured at 1 s) of an assigned LDAO (a) and two 

glycerol molecules (b) in OmpU structure.  

LDAO molecule is shown in full with carbon atoms in grey, oxygen in red and nitrogen in 

blue. Glycerol molecules are shown in full with carbon atoms in green and oxygen in red. 
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In further agreement with other bacterial trimeric porins, there are a number of extracellular 

loops in each protomer that are differentiated by their more mobile nature. These are L4, L6 

and L8 (Figure	  46). Remarkably, L4 is the longest loop at the extracellular side and, instead 

of being a single long loop, it contains two short antiparallel β-sheets that resemble a β-

hairpin structural motif but are connected by a loop containing more than five residues 

instead of a short turn. Although L4 of OmpU is shorter than L4 of OmpK36 (Figure	  45), L4 

of OmpU protrudes further into the extracellular space and projects over L1 of the adjacent 

subunit to reach proximity to L8. From the side view, L4 has the appearance of a pole that 

connects transmembrane strand 7 and 8 at the extracellular side. Other loops of OmpU (L5-

L8) are all shorter than corresponding loops of OmpK36 to various degrees. The hairpin-like 

motif of L4 is the highest point of the structure in the extracellular environments and exhibits 

a high degree of mobility (Figure	  46). Structural overlay of OmpU onto the two major E. coli 

porins OmpC and OmpF as well as the MR model OmpK36 shows that L4 in OmpU only 

partially overlaps with L4 in OmpC and OmpK36 and is minimally overlaid with L4 in 

OmpF (Figure	  45). The edges exposed by both antiparallel β-sheets of L4 may hence serve 

as an efficient binding target via β-augmentation for foreign receptors at the surface of other 

organisms. 
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Figure 45. Overlay of the structure of OmpU protomer onto three structurally analogous 

porin structures viewed from the extracellular side.  

In all cases OmpU is shown in cyan. N denotes the N-terminal coil of OmpU in the pore 

lumen. (a) OmpU superimposed onto protomeric OmpK36 from K. pneumoniae (magenta; 

PDB code 1osm). The two structures superimpose with an r.m.s.d. of 1.55 Å over 268 aligned 

Cα atoms. (b) OmpU superimposed onto protomeric OmpF from E. coli (orange; PDB code 

2omf). The structures superimpose with an r.m.s.d. of 1.88 Å over 217 aligned Cα atoms. (c) 

OmpU superimposed onto protomeric OmpC from E. coli (red; PDB code 2j1n). The 

structures superimpose with an r.m.s.d. of 1.90 Å over 196 aligned Cα atoms. The 

extracellular loops L2 and L4 and the constriction loop L3 are individually labelled.  
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Figure 46. B factor diagram of protomeric OmpU represented by the B factor putty 
programme in PyMOL. 

(a) Extracellular view showing B factors of the extracellular loops. (b) Periplasmic view 

showing B factors of the periplasmic turns. The values of B factor are illustrated by colours 

and line thickness, ranging from low (blue and thin lines) to high (red and thick lines). The 

external loops (L) and the periplasmic turns (T) are labelled. The overall average B factor is 

42.5 Å2  (data not shown). 

 

5.3 Non-canonical N-terminal coil and an additional constriction 
zone  
As with all other bacterial porins, the β-barrel surrounds an aqueous pore through which 

cargos diffuse. Interestingly, OmpU forms two constriction regions in the pore (Figure	  47). 

The first L3-formed constriction region is consisted of residues R30, R43, R45, R85, R133, 

D132, K127, N122 and Y119 on the same horizontal plane (Figure	  47). Apart from the L3 
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constriction loop, the N-terminal short coil (G1 to S11) of OmpU is also located in the pore, 

which is unprecedented for solved structures of bacterial porins to the best of our knowledge. 

Its periplasmic-side origin in the pore determines its position below the horizontal plane of 

the constriction loop L3. In line with its location, the majority of the residues in the coil are 

hydrophilic. From extracellular top view, the coil is not overshadowed by L3 but instead 

forms a smaller constriction zone than the L3-formed constriction (Figure	  45). The second 

N-terminus-formed constriction region is formed by residues N3, D7, E65, Y86, D104, 

K150, G108 and D112 (Figure	  47). Surprisingly, the lining of the L3-formed constriction 

region of OmpU is of different composition compared to OmpK36. The presence of a large 

cluster of arginine residues (R30, R43, R45, R85, R133) dominates the lining of the 

constriction region (Figure	  48), with additional arginines (R26, R287, R316) buried further 

down the pore towards periplasmic side. Looking from the extracellular side, the five-

arginine cluster takes up about half of the circle lining of the constriction region and are 

positioned on the opposite side of the constriction-lining residues in L3 that constitute the 

other half of the circle. Another lone arginine residue lining the constriction region is R219 

near periplasmic T6. The lining of these 8 of 11 total arginines in OmpU protein sequence 

marks the distinct pore properties and may carry crucial function in ion selectivity and 

channel conductance.  
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Figure 47. The two constriction zones of OmpU. 

The L3-formed constriction is highly positively charged and the N-terminus-formed 

constriction is highly negatively charged. The OmpU protomer is colored in cyan. The 

residues in the constriction zone formed by the arginine cluster and L3 are colored in 

magenta, whereas the residues in the N-terminus-formed constriction are colored in yellow. 

The sphere denotes the N-terminus.  
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Figure 48. 2Fo-Fc Electron density map (contoured at 1 s) of the arginine cluster at the 
constriction lining. 

Residues are shown in full with carbon atoms in grey, oxygen in red and nitrogen in blue. 

Each of the arginine residues is labelled individually. The L3 constriction loop is below the 

horizontal plane of the figure. Two glycerol molecules in the pore are highlighted with 

carbon atoms in green. 
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The exact pore size of OmpU remains controversial, with report defining the effective radius 

to be 0.55 nm compared to 0.43 nm in OmpT [183], while the other stating OmpU may form 

smaller pore than OmpT [184]. The dimension of the pore is comparable to that of OmpK36, 

with ~4.7 Å of minimum radius directly measured in PyMOL. We sought to analyze the 

effect of the N-terminal coil on pore size and to determine more accurate pore dimensions. 

HOLE programme [185] was used to compute the three-dimensional visualization of the pore 

as well as to yield a two-dimensional graph of pore radius versus channel coordinates from 

native OmpU PDB file and N-terminus-deleted OmpU PDB file (Figure	  49). The graph 

indicates that the minimum radius in native OmpU is ~3.1 Å, slightly smaller than 3.2 Å 

found in OmpU with deleted N-terminus. Furthermore, the graph indicates that the pore in 

native OmpU forms a little bulge (increase in diameter) near the centre region of the pore 

along the vertical axis, before further shrinking to the narrowest point. Although we have not 

been able to assign the coordinates in the three-dimensional structure due to the limitation of 

the programme, it is very likely that the N-terminal coil contributes to an additional 

narrowing of the pore and the smaller minimum radius. Moreover, the electrostatic maps 

generated by the two PDB files illustrate that the N-terminal coil indeed reduces the pore size 

(Figure	  50).  
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Figure 49. Pore radii plot against coordinates in the direction of the channel. 

Blue dots represent the data obtained using protomeric OmpU structure with intact N-

terminal coil, while red dots indicate the data from protomeric OmpU with N-terminal coil 

deleted. The two constriction regions of the pore are symbolized by the two narrowest points 

(3.3 Å and 3.1 Å). The coordinate of narrowest point in the structure without N-terminal coil 

(3.2 Å) corresponds well with the 3.1 Å point in the native structure.  
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Figure 50. Electrostatic potential of OmpU model with (a and c) and without (b and d) the N-
terminal coil. 

The model is viewed from top extracellular side (a-b) and from bottom intracellular side (c-d). 

The electronegative zone is presented in red (the most negatively charged), the neutral zone 

in white and the electropositive zone in blue (the most positively charged). All four diagrams 

share the same electrostatic scale. 

 

 

 

 

 

 



	   129 

 

CHAPTER 6  

 

 

 

 

Results: structural studies of lipoprotein N-acyl transferase in 

Gram-negative bacteria 
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6.1 Vibrio cholerae Lnt purification and crystallization  
	  
According to the expression tests, Lnt from the chosen species had various levels of 

overexpression. Furthermore, there was another outstanding issue reflecting on the 

thermostability of the proteins. Heated protein samples exhibited large area of unclear smear 

as well as indistinguishable faint bands above the target protein bands. If unheated, the 

unclear stain would be greatly reduced. It was therefore concluded that Lnt from most of the 

chosen species were not thermostable and not ideal for subsequent crystallization work. 

Among these species, however, Lnt from Vibrio cholerae O1 biovar El Tor str. N16961 

showed least amount of nonspecific stain and was shown to have the highest level of 

expression (~2mg per litre of cell culture). The eluted protein sample produced a strong band 

on SDS-PAGE gel at ~ 45 kDa (Figure	  51). The molecular weight of V. cholerae Lnt is ~ 57 

kDa and the faster migration of IMPs like Lnt (gel shifting) is likely to be the result of partial 

unfolding by SDS [186]. Based on this, Lnt from V. cholerae was selected for large-scale 

purification in an attempt to perform crystallization. 

Lnt showed very strict requirement for stabilizing detergent throughout the purification. 

During the detergent trials using commonly used detergents available in the lab, most were 

not able to render Lnt soluble and monodisperse in solution, either precipitating very quickly 

after detergent exchange from DDM or forming oligomeric aggregates as indicated by the 

early-eluted peaks in gel filtration step. In light of this, DDM was then used as the detergent 

for purification. Surprisingly, a minimal 10 CMC concentration of DDM was needed to 

produce a symmetrical peak in SEC at the expected volume, a lot more than usual for most 

other membrane proteins (Figure	  52a). 
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Figure 51. SDS-PAGE gel picture of V. cholerae Lnt from small-scale expression tests. 

Lnt was highly purified. The lane on the left is the protein molecular weight marker with 

indicated molecular sizes in kDa.  
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Figure 52. Size exclusion chromatograms of V. cholerae Lnt.Samples were injected onto a 

HiLoad 16/600 Superdex 200 prep grade column (GE healthcare).  

(a) Gel filtration chromatogram of V. cholerae Lnt purified with 0.1% DDM. (b) GF 

chromatogram of V. cholerae Lnt purified with 0.15% LysoFos Choline 12. A partial leading 

peak indicating larger aggregates is labelled. 



	   133 

Due to the limited diffraction quality of the crystals, several methds were employed aiming at 

improving resolution of diffraction of the crystal. Dehydration of the crystal by prolonging 

the time crystals stay in the mother liquor before harvesting, adding MemAdvantage 

additives, limited proteolysis, increasing crystallizing drop size of both protein and buffer 

solution were all attempted. In addition, co-crystallization of Lnt with its preferable 

phospholipid substrate phosphatidylethanolamine (PE) was also carried out but none of these 

methods proved to be helpful to further improve crystal diffraction.  

6.2 96 detergent screening 
Under the circumstances, there was very little one could manipulate the plasmid construct to 

optimize the current plasmid construct. Having realized the relatively unusual amount of 

DDM applied to stabilize Lnt led to the speculation that DDM is probably not perfectly 

suitable for solubilizing Lnt even though it was efficient for extracting Lnt from the whole 

membranes. Thus, a new round of search for ideal detergent candidates was performed. To 

facilitate efficient detergent preparation and exchange, the commercially available Analytical 

Selector kit was purchased from Anatrace. 96 detergent exchanges were then performed from 

initial stabilizing 0.1% DDM according to the instructions given in the manufacturer’s 

manual, and the 96 exchanged eluents were analyzed by SDS-PAGE gels to eliminate those 

that are completely incompatible (signified by the absence of a protein band) and others that 

have limited compatibility (signified by a less intense protein band). Based on the results, 

five detergents were shortlisted for detergent exchange during large-scale purification: 

Cyclofos-4, Cyclofos-7, Fos-Choline-Unsat-11-10, Pentaethylene Glycol Monohexyl Ether 

(C6E5), LysoFos Choline 12 (Figure	  53). Each of these detergents was further tested in large-

scale purifications. LysoFos Choline 12 was found to be the best one as its presence produced 

a peak at expected retention volume in SEC procedure with an additional minor leading peak 

(Figure	  52b). The purified proteins were crystallized and a number of hexagonal prism-
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shaped crystals emerged from one condition within one week at 21℃. Upon diffraction test, 

however, these crystals showed very weak diffractions. The project was therefore suspended 

for reconsidering the methods.  
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Figure 53. SDS-PAGE results of the 96-detergent screening for V. cholerae Lnt.  

Gels are labelled with reference to the corresponding rows in the 96-well plate in the kit. 

Lanes of the five promising detergents are marked with *. The lane of protein marker in 

individual gel is labelled with ‘M’. The molecular weights of protein marker are labelled in 

gel A, and the other gels share identical marker.  
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6.3 Published Lnt structures 
While the project was being undertaken, the structures of Lnt from E. coli and P. aeruginosa 

were reported by other groups [187-189]. As predicted, the reported structures reveal two 

domains, one periplasmic nitrilase domain and one transmembrane domain (Figure	  54). The 

nitrilase domain is composed of two six-stranded β-sheets and is of the four-layer αββα 

sandwich fold (Figure	  54, Figure	  55). In the nitrilase domain, the predicted catalytic triad 

E267-K335-C387 of E. coli Lnt resides in a pocket above the membrane plane and their 

overall conformation is strikingly similar to that of those known soluble nitrilases [188]. 

There are a number of loops in the front side of domain that extend away in the horizontal 

direction and form a ring-like structure around the catalytic triad (Figure	  54). These loops are 

part of the scaffolding of the active site pocket and were suggested to be instrumental in 

guiding the entry and exit of both substrates and products [187]. At the interface between the 

two domains, interaction between a conserved residue Gly145 in the transmembrane domain 

and Tyr388 in the nitrilase domain are found to be critical for securing the two domains 

closely in place. It was further proposed that the strong interactions between Arg438 and 

Thr478 and Gly479, and between Thr481 and Glu435 primarily stabilize the catalytic triad in 

the nitrilase domain and, in the meantime, maintain the structural and functional integrity of 

the whole protein [187]. 

 

The transmembrane domain consists of eight transmembrane α-helices and is connected with 

the nitrilase domain at the boundary of the IM (Figure	  54, Figure	  55). The two domains of 

Lnt are connected by long loops L2 and L3, which also connect helix 7 and 8 in the 

transmembrane domain. Helix 3 and 4 stretch out from the membrane plane and extend into 

the periplasm and constitute another part of the active site pocket (Figure	  54). Notably, helix 

4 and 5 are not as closely associated as the other helices and the space between them creates a 
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cleft that point to the active site. It was therefore considered as the path for the molecules 

involved in the reaction [187].  

 

Underscored by the structural information of Lnt, the comprehensive molecular mechanism 

of lipoprotein N-acylation was proposed (Figure	  56). Consistent with the ping-pong 

mechanism, the reaction is carried out in two distinct steps. In the first step, E267, a general 

base, attacks the γS of C387 by abstracting a hydrogen, which results in a thiolate in C387. 

The thiolate attacks the connecting ester bond between the acyl tail in the sn-1 acyl chain and 

the glycerol moiety of the phospholipid to form a thioester acyl-enzyme intermediate, 

accompanied by a net negative charge on the oxygen of the intermediate. The charge is 

neutralized and stabilized by the positively charged side chain of K335, a residue that is 

constantly charged in physiological environment. Elimination reaction disrupts the temporary 

conformation and releases the phospholipid in its lyso-form. This by-product leaves the 

active site while the diacylated prolipoprotein substrate enters to initiate the second step of 

the reaction. The entry of the lipoprotein substrate may be navigated by the S-diacylglyceryl 

group. Approach of the lipoprotein causes the α-amino group in the +1 cysteine of the 

lipoprotein to attack the carbonyl carbon in the thiolester group in C387 and simultaneously 

triggers E267 to abstract a hydrogen from the same amino group of the +1 cysteine. This also 

leads to a negative net charge on the oxygen attached to the intermediate, which is similarly 

stabilized by K335. A second disassembly takes place on the intermediate and results from an 

elimination reaction similar to the previous elimination step, generating matured triacylated 

lipoprotein and reset of the catalytic triad.  
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Figure 54. Cartoon representation of the structure of E. coli Lnt viewed from the horizontal 
membrane plane. 

The N-terminal helix is coloured in blue and the C-terminal helix is coloured in red. One of 

the catalytic triad residues C387 is highlighted in sphere representation, with the carbon 

atoms coloured in magenta and sulfur atom coloured in yellow. The magenta arrow points to 

the suggested substrate entry gateway. (Figure taken from [187]) 
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Figure 55. A diagram of the secondary structure segments in Lnt. 

The same colours were adopted for corresponding segments as in Figure 51. 
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Figure 56. Proposed Lnt N-acylation mechanism dissected into six steps. 

(a) The reactions involved in the first auto-acylation step of the ping-pong mechanism. (b) 

The formation of the thioester acyl-enzyme intermediate and the subsequent elimination 

reactions. (c) The reactions involved in the second step of N-acylation in the ping-pong 

mechanism. (d)The formation of the second tetrahedral intermediate and the subsequent 

elimination reactions. (e) The released triacylated lipoprotein product. (f) The liberated 

catalytic triad that is reset for another reaction cycle. Electron lone pairs are represented by 

dot pairs. Electron transfer is represented by red curved arrows. Oxyanion stabilization is 

illustrated by dashed blue lines. GPE, glyceryl-phosphoethanolamine; LP, apo-lipoprotein; 

DAG, diacylglyceryl; LPE, lyso-PE. (Figure taken from [187]) 
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7.1 BAM complex  
Since the biochemical characterization of BamA more than a decade ago, subsequent studies 

have provided molecular evidence of a coordinated multi-subunit protein complex with 

which BamA is associated in the process of OMP biogenesis. Further structural studies of 

both single protein components and sub-complexes of the BAM machinery further shed light 

on the molecular identity and partial organization of the subunits. Until the last few years the 

atomic structure of a subcomplex containing more than three protein subunits and the entire 

five-protein BAM complex had been unavailable. As a result, the detailed interactions 

between each subunit involved in complex formation and molecular mechanism of OMP 

folding and insertion into the OM was poorly understood. The long-sought crystal structures 

of the BAM complex from E. coli solved in this project, along with the other reported 

structures in the same year [111, 190, 191], promoted a leap towards the complete dissection 

of this essential apparatus.  

In this work, the BAM complex was initially overexpressed separately using BamAB and 

BamCDE, and subsequently reconstituted according to previous established protocol [77], 

but without producing well-diffracting crystals. In light of this, the reconstitution method was 

further improved by overexpressing all five protein components in a single plasmid [170], 

and the resultant purified complex was in stoichiometric quantities of BamA, BamB, BamC, 

BamD and BamE. This in turn generated good-quality crystals for structure determination. 

Although the initial separate plasmid constructions in previous reports was able to reconstruct 

the BAM complex in 1:1:1:1 ratio of BamA:B:C:D in vitro and, in a biochemical study, 

catalyze more than one batch of OMP assembly, indicative of at least partial functional state 

[192], the failure of the identically reconstituted complexes in current work to produce high-

resolution crystals may be attributed to the heterogeneity of the purified complexes. Indeed, 

separate purification of the two subcomplexes is likely to give rise to multiple combinations 
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in the five protein components and different subcomplexes in addition to the desired 

architecture of the whole BAM complex that may be indistinguishable to size-exclusion 

chromatography, as evidenced by the nearly identical size-exclusion chromatography profiles 

between the purified BAM complexes from pJH114 and pYG120. Overexpression of all the 

components in a single construct was demonstrated in this study to eliminate this 

heterogeneity and facilitate formation of BAM complexes in homogeneous forms, i.e., each 

of the purified complexes contains five protein components. But why did stoichiometry of the 

BAM complex from separate purification look identical to that from pYG120? Firstly, visual 

inspection of SDS-PAGE gel results by naked eyes can be inaccurate and the results can 

therefore be misinterpreted. Techniques such as densitometry should be applied to determine 

the optical densities of individual bands on the gels in order to accurately distinguish the 

concentration differences between subunits and analyze the stoichiometry of the complex. 

Secondly, considering mixed compositions of various complexes and subcomplexes, the 

disparities in composition of individual complex/subcomplex is very likely to be concealed 

by the presence of other entities in the purified solution. This could in turn produce an 

averaged pattern of composition upon SDS-PAGE analysis. On account of the structures 

solved and reported elsewhere [111, 190], the common feature of gene cloning and plasmid 

construction is the molecular cloning of all five subunits into a single vector for subsequent 

overexpression. Taken together, the cloning strategy of incorporating all subunit-encoding 

genes into a single expression vector is the key to success and to be recommended for future 

structural studies of protein complexes with multiple subunits. 

In the BamACDE crystal structure, BamB is absent although it is present in the purified 

complex. SDS-PAGE analysis of BamACDE crystals confirmed BamB’s absence (data not 

shown), indicating dissociation or degradation during crystallization. In the BamABCDE 

structure, although BamC is present in both the purified complex and in the crystals via SDS-
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PAGE analysis (data no shown), it is not in full length but only the N-terminal unstructured 

loop (Val35-Pro88). Although the two determined crystal structures provided sound evidence 

of direct participation of BamC in formation of the BAM complex, in vivo native membrane 

environment is fundamentally different to the detergent solubilized conditions in which the 

crystals are grown, and the presence of potential OMP substrates, absent in the two 

structures, may be an additional factor mediating the overall topology of the machinery as 

well as localization of BamC in physiological environments. The remaining portion of BamC 

is therefore considered highly flexible, and one of the possible explanations of its absence 

could be surface exposure of this lipoprotein [193, 194]. Previous protease sensitivity 

experiments revealed that the N-terminal region containing the unstructured loop that remains 

attached to the BAM complex is found to be more vulnerable to protease digestion [195, 

196], and treatment with trypsin on cells overexpressing BamC resulted in two fragments of 

BamC corresponding to the two helix-grip domains, providing evidence of surface exposure 

of these two domains in vivo. It was also demonstrated that one of the three conserved 

segments in the N-terminal loop of BamC is essential for interaction with BamD [193]. It is 

hence conceivable that the two surface-exposed domains of BamC and the periplasmic N-

terminal loop are linked by a portion of BamC that can serve as a putative transmembrane 

segment in the surface exposure scheme. The absence of C-terminal domain of BamC 

observed in BamABCDE structure is likely to support the scheme of BamC surface exposure, 

and future studies such as dynamic protein-protein interactions in the OM, in conjunction 

with structural and functional studies on surface-exposed lipoproteins are needed to provide 

detailed mechanistic insights into BamC secretion and its implications in the structure and 

functions of the BAM complex. 
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Assuming that both of the determined structures are physiological in native environments, 

these structures assist understanding of nascent OMP folding and insertion via the contrasting 

features of the BamACDE structure that the POTRA 5 is positioned directly underneath the 

β-barrel of BamA, rejecting access of substrates, and that β1C and β16C in the barrel are not 

tightly linked by hydrogen bonds, potentially promoting a lateral opening state. 

Consequently, the molecular mechanism of OMP insertion can be deduced. A 30° rotation of 

the periplasmic ring apparatus discovered from the comparison of the two structures gives 

rise to direct interaction with the lipid head groups of the OM and concomitantly generates 

the 65° tilting of β1C-β6C strands and temporary lateral opening of the BamA barrel between 

β1C and β16C. This subsequently exposes the barrel lumen to the external settings of the OM 

and promotes membrane instability that paves the way for OMP insertion. The BamABCDE 

structure resembles an initial substrate-loading state in which the periplasmic mouth is open 

for substrate approaching and the β-barrel is in the closed and inward-open conformation 

awaiting laterally opening upon substrate engagement. On the other hand, resembling a 

substrate-releasing phase in which the nascent OMP has been loaded on the complex and 

already inserted into the OM through the laterally open barrel, the BamACDE structure may 

represent the ending phase of the catalytic cycle and give hint on the exact in vivo mechanism 

of OMP assembly. Of the two possible models of insertion mechanism described previously 

(Figure	  10), these structural features of the BAM complex provide evidence in support of the 

BamA budding model, but with exceptions. In a recent study, LptD/E complex, an essential 

and large OMP machinery responsible for lipopolysaccharide translocation to the cell surface 

[197-199], was chosen to study BAM-mediated OMP assembly in vivo [200]. LptD contains 

a large β-barrel in which LptE is plugged. Specific mutations introduced in lptD gene slowed 

barrel assembly of LptD and a late-stage partially folded LptD/E intermediate was found to 

be trapped on the BAM complex amid folding, with both LptD and LptE interacting with 
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BamA and BamD. Due to the fact that both BamD and LptE are soluble periplasmic proteins 

and the possibility that BamA may not spatially accommodate this partially folded yet 

considerably large substrate for subsequent lateral release into the OM, it was proposed that 

folding of this late-stage unclosed barrel of LptD initiated in the periplasm in agreement with 

the BamA-assisted model in which folding of OMP substrates begins outside the OM, and, 

independent of the β-barrel domain of BamA, the folding would complete when the emerging 

barrel is closed and LptD/E complex is ultimately dissociated from the BAM complex, which 

disagrees with the BamA budding model.  

Despite the two determined structures and their molecular details of the BAM complex, 

exactly how the complex functions in vivo during OMP biogenesis remains unknown. A 

number of representative ones include whether the OMP substrate is fully folded or partially 

folded when escorted to the BAM complex, how the substrate-chaperone complex interacts 

with the BAM complex in detail, whether the BAM complex carries out insertion only or 

promote both substrate folding and insertion, and, if so, whether it performs the two functions 

simultaneously or sequentially. Furthermore, structural studies of the BAM complex in the 

presence of detergents and in the absence of the substrate may not reflect in vivo mechanism 

and, along with the incomplete understanding of the interactions of each component of the 

complex with the substrate and concomitant conformational changes in both the substrate and 

the entire complex, provide rather limited insights into the highly complex assembly process. 

Future studies, however, can be carried out on the basis of current work and should include 

structural studies of the BAM/OMP intermediates in distinct stages during OMP assembly 

and biochemical examinations of these intermediates in whole cells in order to fully dissect 

the mechanism of the BAM complex. 
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7.2 OmpU 
OmpU porins are increasingly recognized as one of the crucial determinants of Vibrio 

pathogen and host interactions [119, 120, 127]. The crystal structure of OmpU trimer was 

successfully determined, and showed two defining features that can differentiate OmpU from 

other structurally related porins. OmpU possesses an additional N-terminal loop consisting of 

G1 – S11 that extends into the pore at the periplasmic side and forms a second constriction 

with the constriction loop L3. In addition, the L4 loop at the extracellular side exhibits a 

signature ‘pole’ standing and protrudes further into the extracellular space.  

 

 

OmpU has long been proposed as a potential virulence factor involved in pathogen-host 

interactions during infection, being capable of attracting physical contact and adhering to host 

cells as well as triggering subsequent invasion by the pathogen. Given its abundance in the 

outer membrane of V. cholerae and implications in adhesion and invasion, experiments that 

produced ΔompU knock-out strains showed reduced ability to express virulence factors and 

colonize the intestine [118]. From a structural perspective, the extracellular loop L4 may well 

be considered as a potent binding promoter that interacts with various external proteins with 

complementary or matching β-sheets, or acting like a hook, attracts binding with receptors on 

the surface of other cells. One binding scenario was previously reported for OmpX, in which 

the protruding single-layer β-sheet and connecting loops expose the edge of the β-sheet at L3 

and this edge may function as a ‘fishing rod’ to attract potential hydrogen bonding partner 

[201]. Likewise, the projected β-hairpin like segment of the pole-shaped L4 in OmpU could 

expose side edges of both strands (b-augmentation) to capture external binding proteins in a 

possibly more efficient way compared to OmpX. Moreover, a recent study confirmed that 

OmpU is the receptor of the predating ICP2 species of V. cholerae-specific and virulent 
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podoviruses by interacting with the extracellular loops, leading to cell death [202]. Mutation 

in residues located in mainly L3, L4 and L8 was reported to neutralize infection and acquire 

phage resistance. This further emphasizes the essential binding capability of L4 and L8 in 

initial phase of contact with foreign organisms.  

 

 

The N-terminus in bacterial porins is normally located in the periplasmic side of the barrel 

wall and in close contact with C-terminus, in some cases forming salt bridge in between. 

Both of the termini are located outside of the pore space. However, the non-canonical N-

terminus coil found in OmpU structure folds inward to constrict the pore lumen. The actual 

functional role of this additional coil is unknown, but from the pore dimension analysis done 

in present study, it is not surprising that the coil may function as a narrowing factor of pore 

size regulation. Specifically, the pore dimension of OmpU was calculated by the HOLE 

programme and, in both cases of WT OmpU and OmpU with no N-terminal coil, the 

minimum radii were comparable to that of other non-specific porins [203]. Nevertheless, the 

result of the smaller constriction region formed with the N-terminal coil calculated by the 

HOLE programme together with the same observed trend from electrostatic potential map 

converges to the conclusion that the N-terminal coil reduces pore size. Moreover, it has been 

reported that OmpU is capable of excluding the entry of bile salt deoxycholate and thus 

crucial for cell survival in the intestine [126, 204]. Consistent with the described function, the 

combination of reported cation selectivity with the observed smaller constriction region of 

OmpU formed by L3 accompanied by the N-terminal coil is very likely to inhibit the 

translocation of the bile acid. 
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Another important function of the coil is its presence in the additional constriction region. 

Reports in the literature have recognized the constriction loop L3 as a vital filter of pore 

permeability due to negative net charge and reduction in pore size, and L3 requires molecules 

to re-orient in order to translocate [205]. Concerning the stable nature (Figure	  46) and the 

residue charges of the coil, it is plausible that it could function as an assistant helper filter in 

addition to the L3 loop in the additional constriction region throughout the diffusion activity 

of hydrophilic solutes across the porin. More functional and biochemical studies are required 

to fully understand the implications of the coil in the function of the trimer and whether it is 

important for virulence.  

 

 

It has been reported that each OmpU protomer associates with 3 to 4 calcium ions in order to 

maintain intact β-sheeted conformation and functional form of the trimer [124]. However, in 

the protomer, no clear density was found that could be unambiguously assigned to calcium 

regardless of constant presence of calcium ions during purification and in the final protein 

solution to be crystallized. Selected potential sites were tested by CheckMyMetal tool [206] 

but none of them were geometrically acceptable. Therefore, the determined structure of 

OmpU without obvious metal ions in the structure is very likely to refute the previous 

statement. 
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7.3 Lnt  
Structural studies were carried out for Lnt from a number of Gram-negative bacterial species 

but were unsuccessful in determining the crystal structure. Examining the recently published 

structures and corresponding methods, it is apparent that Lnt is more easily crystallized using 

the LCP method with DDM or LMNG in final purification as well as the vapour diffusion 

methods with NTM (n-Nonyl-β-D-Thiomaltopyranoside) in final purification and addition of 

n-Heptyl-β-D-thioglucopyranoside and CHAPSO in crystallization. Due to the immature 

development of the LCP method in the lab over the past years and the dominant usage of the 

vapour diffusion method, crystallization of Lnt in LCP was not applicable. Considering the 

vapour diffusion method, very limited detergent combinations were chosen and performed, 

which did not yield crystal formation. Detergent screening of the common detergent choices 

used in IMP structural studies such as DDM, DM, Fos Choline 12, Lauryl Maltose Neopentyl 

Glycol (LMNG) and NG should be prioritized to find the optimal solubilizing conditions for 

other IMPs in future studies. 

The genome of E. coli encodes at least 90 lipoprotein types [207], and the molecular sizes 

range from 50 to more than 900 residues. A large portion of the lipoproteins but not all are 

the substrate of Lnt, suggesting a tolerant and universal recognition mechanism that neglects 

lipoprotein identity and relies significantly on the Lgt-ligated diacylglyceryl group attached 

to the +1 cysteine. The determined structural feature of Lnt that there is a cleft that can 

accommodate lipid molecules and leads to the active site is consistent with the argument. 

FSL-1-Biotin (FSL-1) in a study, for example, was used to test if Lnt can recognize and 

recruit it to be a potential substrate [167]. FSL-1 is a synthetic peptide designed on the basis 

of a bacterial lipoprotein and possesses dipalmitoyl-glyceryl on its N-terminal cysteine. 

Resembling the +1 cysteine of a prolipoprotein, the peptide was processed by Lnt as a 

substrate, which further clarifies the notion that the diacylglyceryl group on the +1 cysteine is 
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a key determinant of substrate recognition of Lnt, regardless of the type of the protein the 

group is linked to. Nevertheless, the reason behind the evasion of N-acylation for some di-

acylated mature lipoproteins is not clear. In the Lnt structures, the proposed opening for 

substrate entry and exit is not spacious enough to accommodate both the diacylglyceryl group 

and portions of the protein substrate, and if the protein substrate is completely folded from 

the +1 cysteine to the protein entity, it would be impossible for Lnt to adjust its conformation 

to provide adequate space. It is therefore plausible to propose that the tether domain in 

prolipoproteins provides a flexible linkage to the N-terminal cysteine and extensive space 

between it and the folded protein domains, promoting easier access of the residue to the 

active site. In addition, the tether domain can serve as an inherent filter for substrate 

engagement and evasion of reaction in that only the substrates that have unfolded and 

reasonably long tethers would be N-acylated by Lnt.  

E. coli is the most widely studied model organism in the phylum of proteobacteria, and the 

crystal structures of Lnt in E. coli represents a typical protein model that aids in the 

understanding of the molecular mechanism of N-acylation in lipoprotein post-translational 

modification pathway in Gram-negative bacteria. It is noteworthy that in other species of 

actinobacteria in which Lnt is also present, the functional profile of Lnt is different mainly as 

a result of different compositions of phospholipids and genomic constructions. While E. coli 

Lnt specifies the sn-1 position of E. coli phospholipids for catalysis, phospholipids of 

mycobacteria are composed of octadecanoic acid and tuberculostearic acid at the sn-1 

position and palmitate at the sn-2 position [208] and earlier studies found that Lnt in 

mycobacteria conducts transfer of palmitate or tuberculostearic acid from phospholipids to 

apolipoprotein [209], suggesting a strikingly different substrate preference of Lnt that can 

transfer fatty acids from both the sn-1 and the sn-2 positions of phospholipids in these 

organisms. Since no high-resolution structural model has been obtained for Lnt in 
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mycobacteria, the molecular basis of this substrate ambiguity is not clear although the 

enzyme was predicted to share similar membrane topology with E. coli Lnt [210]. Moreover, 

in Streptomyces, the largest genus of Actinobacteria, there are two identified genes each 

encoding an individual Lnt protein [211]. Mutagenesis of these two enzymes in S. scabies 

demonstrated that completely switching off lnt1, the gene encoding one of the two Lnt 

enzymes, Lnt1, resulted in diacylated form of lipoproteins, which implied the essential 

requirement of Lnt1 in the pathway. Switching off lnt2, on the other hand, caused partial 

defects in the N-acylation step and produced a mixture of di- and triacylated forms of 

lipoprotein, and it was suggested that Lnt2 serves as a supportive player enhancing the 

efficiency of the N-acylation reactions [211]. Further structural and functional studies are 

required to gain more insights into the last step of lipoprotein modification in these species. 

In low GC content Gram-positive bacteria (Firmicutes), Lnt homologs are not found to 

process apolipoproteins. All the mature lipoproteins had been regarded as diacylated due to a 

lack of lnt orthologue and prevalence of diacylated lipoproteins in former studies [212-215]. 

However, recent biochemical analysis confirmed the existence of triacylated form in S. 

aureus [216, 217]. The structural evidence of these N-acylated lipoproteins suggested the 

existence of an unidentified Lnt-like enzyme. The observation that nearly 50% of the 

triacylated lipoproteins carry the 18 : 0 fatty acids bound to the diacylated conserved cysteine 

in S. aureus led to the indication that the unidentified Lnt candidate favors transfer of the 18 : 

0 fatty acids and that the sn-1 position in phospholipids can be the primary site of reaction for 

the putative Lnt since only the sn-1 position possesses 16 : 0 to 20 : 0 fatty acids in 

phospholipids in S. aureus, whereas the sn-2 position contains a 15 : 0-branched fatty acid 

[218, 219]. The exact gene location in the chromosome encoding this putative candidate 

remains to be identified, and, once revealed, it would be intriguing for follow-on structural 

and functional experiments to fully characterize this functional homolog of E. coli Lnt.  



	   153 

 

 

 

 

 

 

 

 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	    



	   154 

REFERENCES 

 

1. Chayen, N.E. and E. Saridakis, Protein crystallization: from purified protein to 
diffraction-quality crystal. Nature methods, 2008. 5(2): p. 147-153. 

2. Blow, D., Outline of Crystallography for Biologists. 2002: Oxford University Press. 
3. Wlodawer, A., et al., Protein crystallography for non‐crystallographers, or how to 

get the best (but not more) from published macromolecular structures. The FEBS 
journal, 2008. 275(1): p. 1-21. 

4. Rhodes, G., Crystallography Made Crystal Clear: A Guide for Users of 
Macromolecular Models Third Edition ed. 2006: Elsevier Inc. 

5. Rhodes, G., Crystallography Made Crystal Clear: A Guide for Users of 
Macromolecular Models. Third Edition ed. 2006: Elsevier Inc. 

6. Smyth, M. and J. Martin, x Ray crystallography. Molecular Pathology, 2000. 53(1): p. 
8. 

7. Crystallography, I.U.o., International tables for X-ray crystallography. Vol. 2. 1959: 
Kynock Press. 

8. Wikipedia. X-ray crystallography. 2017  [cited 2017 18/10]; Available from: 
https://en.wikipedia.org/wiki/X-‐‑ray_crystallography. 

9. Battye, T.G.G., et al., iMOSFLM: a new graphical interface for diffraction-image 
processing with MOSFLM. Acta Crystallographica Section D: Biological 
Crystallography, 2011. 67(4): p. 271-281. 

10. Otwinowski, Z. and W. Minor, Processing of X-ray diffraction data collected in 
oscillation mode. Macromol Crystallogr Part A 276: 307–326. 1997. 

11. Evans, P.R., An introduction to data reduction: space-group determination, scaling 
and intensity statistics. Acta Crystallographica Section D: Biological Crystallography, 
2011. 67(4): p. 282-292. 

12. Carter, C.W. and R.M. Sweet, Macromolecular crystallography. 1997: Gulf 
Professional Publishing. 

13. Abergel, C., Molecular replacement: tricks and treats. Acta Crystallographica Section 
D: Biological Crystallography, 2013. 69(11): p. 2167-2173. 

14. Holm, L. and P.i. Rosenstrï¿ ½m, Dali server: conservation mapping in 3D. Nucleic 
acids research, 2010. 38(suppl_2): p. W545-W549. 

15. Kelley, L.A., et al., The Phyre2 web portal for protein modeling, prediction and 
analysis. Nature protocols, 2015. 10(6): p. 845-858. 

16. Cowtan, K., The Buccaneer software for automated model building. 1. Tracing 
protein chains. Acta Crystallographica Section D: Biological Crystallography, 2006. 
62(9): p. 1002-1011. 

17. Emsley, P. and K. Cowtan, Coot: model-building tools for molecular graphics. Acta 
Crystallographica Section D: Biological Crystallography, 2004. 60(12): p. 2126-2132. 

18. Murshudov, G.N., et al., REFMAC5 for the refinement of macromolecular crystal 
structures. Acta Crystallographica Section D: Biological Crystallography, 2011. 
67(4): p. 355-367. 

19. Karplus, P.A. and K. Diederichs, Linking crystallographic model and data quality. 
Science, 2012. 336(6084): p. 1030-1033. 

20. Brown, L., et al., Through the wall: extracellular vesicles in Gram-positive bacteria, 
mycobacteria and fungi. Nature Reviews. Microbiology, 2015. 13(10): p. 620. 



	   155 

21. Vance, J.E. and D.E. Vance, Biochemistry of lipids, lipoproteins and membranes. 
2008: Elsevier. 

22. Zähringer, U., B. Lindner, and E.T. Rietschel, Molecular structure of lipid A, the 
endotoxic center of bacterial lipopolysaccharides. Advances in carbohydrate 
chemistry and biochemistry, 1993. 50: p. 211-276. 

23. Alenghat, F.J. and D.E. Golan, Membrane protein dynamics and functional 
implications in mammalian cells. Current topics in membranes, 2013. 72: p. 89. 

24. Salton, M., Bacterial membrane proteins. Microbiological sciences, 1987. 4(4): p. 
100-105. 

25. Granseth, E., et al., Experimentally constrained topology models for 51,208 bacterial 
inner membrane proteins. Journal of molecular biology, 2005. 352(3): p. 489-494. 

26. Rapp, M., et al., Experimentally based topology models for E. coli inner membrane 
proteins. Protein Science, 2004. 13(4): p. 937-945. 

27. Fairman, J.W., N. Noinaj, and S.K. Buchanan, The structural biology of beta-barrel 
membrane proteins: a summary of recent reports. Curr Opin Struct Biol, 2011. 21(4): 
p. 523-31. 

28. Nikaido, H., Molecular basis of bacterial outer membrane permeability revisited. 
Microbiology and molecular biology reviews, 2003. 67(4): p. 593-656. 

29. Chua, N.-H. and G.W. Schmidt, Transport of proteins into mitochondria and 
chloroplasts. The Journal of cell biology, 1979. 81(3): p. 461-483. 

30. Hofmann, N.R. and S.M. Theg, Chloroplast outer membrane protein targeting and 
insertion. Trends in plant science, 2005. 10(9): p. 450-457. 

31. Wiedemann, N., et al., Machinery for protein sorting and assembly in the 
mitochondrial outer membrane. Nature, 2003. 424(6948): p. 565-571. 

32. Chaturvedi, D. and R. Mahalakshmi, Transmembrane β-barrels: Evolution, folding 
and energetics. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2017. 

33. Remmert, M., et al., Evolution of outer membrane β-barrels from an ancestral ββ 
hairpin. Molecular biology and evolution, 2010. 27(6): p. 1348-1358. 

34. Koebnik, R., K.P. Locher, and P. Van Gelder, Structure and function of bacterial 
outer membrane proteins: barrels in a nutshell. Molecular microbiology, 2000. 37(2): 
p. 239-253. 

35. Killian, J.A. and G. von Heijne, How proteins adapt to a membrane–water interface. 
Trends in biochemical sciences, 2000. 25(9): p. 429-434. 

36. Harvey Lodish, D.B., Arnold Berk, S. Lawrence Zipursky, Paul Matsudaira, James 
Darnell, Molecular Cell Biology. Third ed. 1995: Scientific American Books, Inc. 

37. Gierasch, L.M., Signal sequences. Biochemistry, 1989. 28(3): p. 923-930. 
38. Hegde, R.S. and H.D. Bernstein, The surprising complexity of signal sequences. 

Trends in biochemical sciences, 2006. 31(10): p. 563-571. 
39. Hoffmann, A., et al., Concerted action of the ribosome and the associated chaperone 

trigger factor confines nascent polypeptide folding. Molecular cell, 2012. 48(1): p. 
63-74. 

40. Hesterkamp, T., et al., Escherichia coli trigger factor is a prolyl isomerase that 
associates with nascent polypeptide chains. Proceedings of the National Academy of 
Sciences, 1996. 93(9): p. 4437-4441. 

41. Lakshmipathy, S.K., et al., Identification of nascent chain interaction sites on trigger 
factor. Journal of Biological Chemistry, 2007. 282(16): p. 12186-12193. 

42. Economou, A. and W. Wickner, SecA promotes preprotein translocation by 
undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell, 1994. 
78(5): p. 835-843. 



	   156 

43. Fekkes, P., C. van der Does, and A.J. Driessen, The molecular chaperone SecB is 
released from the carboxy‐terminus of SecA during initiation of precursor protein 
translocation. The EMBO Journal, 1997. 16(20): p. 6105-6113. 

44. Schiebel, E., et al., ΔμH+ and ATP function at different steps of the catalytic cycle of 
preprotein translocase. Cell, 1991. 64(5): p. 927-939. 

45. van der Wolk, J.P., J.G. de Wit, and A.J. Driessen, The catalytic cycle of the 
Escherichia coli SecA ATPase comprises two distinct preprotein translocation events. 
The EMBO Journal, 1997. 16(24): p. 7297-7304. 

46. De Keyzer, J., C. Van Der Does, and A. Driessen, The bacterial translocase: a 
dynamic protein channel complex. Cellular and Molecular Life Sciences CMLS, 
2003. 60(10): p. 2034-2052. 

47. Papanikou, E., S. Karamanou, and A. Economou, Bacterial protein secretion through 
the translocase nanomachine. Nature Reviews Microbiology, 2007. 5(11): p. 839-
851. 

48. Veenendaal, A.K., C. van der Does, and A.J. Driessen, The protein-conducting 
channel SecYEG. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 
2004. 1694(1): p. 81-95. 

49. Prinz, A., et al., Evolutionarily conserved binding of ribosomes to the translocation 
channel via the large ribosomal RNA. The EMBO journal, 2000. 19(8): p. 1900-1906. 

50. Paetzel, M., et al., Signal peptidases. Chemical reviews, 2002. 102(12): p. 4549-4580. 
51. Sklar, J.G., et al., Defining the roles of the periplasmic chaperones SurA, Skp, and 

DegP in Escherichia coli. Genes & development, 2007. 21(19): p. 2473-2484. 
52. Krojer, T., et al., Structural basis for the regulated protease and chaperone function 

of DegP. Nature, 2008. 453(7197): p. 885-890. 
53. Spiess, C., A. Beil, and M. Ehrmann, A temperature-dependent switch from 

chaperone to protease in a widely conserved heat shock protein. Cell, 1999. 97(3): p. 
339-347. 

54. Tamm, L.K., H. Hong, and B. Liang, Folding and assembly of β-barrel membrane 
proteins. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2004. 1666(1): p. 
250-263. 

55. Kleinschmidt, J.H. and L.K. Tamm, Secondary and tertiary structure formation of the 
β-barrel membrane protein OmpA is synchronized and depends on membrane 
thickness. Journal of molecular biology, 2002. 324(2): p. 319-330. 

56. Surrey, T. and F. Jähnig, Refolding and oriented insertion of a membrane protein into 
a lipid bilayer. Proceedings of the National Academy of Sciences, 1992. 89(16): p. 
7457-7461. 

57. Jansen, C., et al., The assembly pathway of outer membrane protein PhoE of 
Escherichia coli. The FEBS Journal, 2000. 267(12): p. 3792-3800. 

58. Ricci, D.P. and T.J. Silhavy, The Bam machine: a molecular cooper. Biochimica et 
Biophysica Acta (BBA)-Biomembranes, 2012. 1818(4): p. 1067-1084. 

59. Kim, K.H., S. Aulakh, and M. Paetzel, The bacterial outer membrane β‐barrel 
assembly machinery. Protein Science, 2012. 21(6): p. 751-768. 

60. Struyvé, M., M. Moons, and J. Tommassen, Carboxy-terminal phenylalanine is 
essential for the correct assembly of a bacterial outer membrane protein. Journal of 
molecular biology, 1991. 218(1): p. 141-148. 

61. Robert, V., et al., Assembly factor Omp85 recognizes its outer membrane protein 
substrates by a species-specific C-terminal motif. PLoS biology, 2006. 4(11): p. e377. 

62. de Cock, H., et al., Role of the carboxy-terminal phenylalanine in the biogenesis of 
outer membrane protein PhoE of Escherichia coliK-12. 1997, Elsevier. 



	   157 

63. Rollauer, S.E., et al., Outer membrane protein biogenesis in Gram-negative bacteria. 
Phil. Trans. R. Soc. B, 2015. 370(1679): p. 20150023. 

64. Voulhoux, R., et al., Role of a highly conserved bacterial protein in outer membrane 
protein assembly. Science, 2003. 299(5604): p. 262-265. 

65. Walther, D.M., D. Rapaport, and J. Tommassen, Biogenesis of β-barrel membrane 
proteins in bacteria and eukaryotes: evolutionary conservation and divergence. 
Cellular and Molecular Life Sciences, 2009. 66(17): p. 2789-2804. 

66. Wimley, W.C., The versatile β-barrel membrane protein. Current opinion in 
structural biology, 2003. 13(4): p. 404-411. 

67. Genevrois, S., et al., The Omp85 protein of Neisseria meningitidis is required for lipid 
export to the outer membrane. The EMBO journal, 2003. 22(8): p. 1780-1789. 

68. Voulhoux, R. and J. Tommassen, Omp85, an evolutionarily conserved bacterial 
protein involved in outer-membrane-protein assembly. Research in microbiology, 
2004. 155(3): p. 129-135. 

69. Doerrler, W.T. and C.R. Raetz, Loss of outer membrane proteins without inhibition of 
lipid export in an Escherichia coli YaeT mutant. Journal of Biological Chemistry, 
2005. 280(30): p. 27679-27687. 

70. Werner, J. and R. Misra, YaeT (Omp85) affects the assembly of lipid‐dependent and 
lipid‐independent outer membrane proteins of Escherichia coli. Molecular 
microbiology, 2005. 57(5): p. 1450-1459. 

71. Tashiro, Y., et al., Opr86 is essential for viability and is a potential candidate for a 
protective antigen against biofilm formation by Pseudomonas aeruginosa. Journal of 
bacteriology, 2008. 190(11): p. 3969-3978. 

72. Knowles, T.J., et al., Fold and function of polypeptide transport‐associated domains 
responsible for delivering unfolded proteins to membranes. Molecular microbiology, 
2008. 68(5): p. 1216-1227. 

73. Wu, T., et al., Identification of a multicomponent complex required for outer 
membrane biogenesis in Escherichia coli. Cell, 2005. 121(2): p. 235-245. 

74. Sklar, J.G., et al., Lipoprotein SmpA is a component of the YaeT complex that 
assembles outer membrane proteins in Escherichia coli. Proceedings of the National 
Academy of Sciences, 2007. 104(15): p. 6400-6405. 

75. Webb, C.T., et al., Dynamic association of BAM complex modules includes surface 
exposure of the lipoprotein BamC. J Mol Biol, 2012. 422(4): p. 545-55. 

76. Noinaj, N., et al., Structural insight into the biogenesis of beta-barrel membrane 
proteins. Nature, 2013. 501(7467): p. 385-90. 

77. Hagan, C.L., S. Kim, and D. Kahne, Reconstitution of outer membrane protein 
assembly from purified components. Science, 2010. 328(5980): p. 890-2. 

78. Hagan, C.L., T.J. Silhavy, and D. Kahne, beta-Barrel membrane protein assembly by 
the Bam complex. Annu Rev Biochem, 2011. 80: p. 189-210. 

79. Hagan, C.L., D.B. Westwood, and D. Kahne, bam Lipoproteins Assemble BamA in 
vitro. Biochemistry, 2013. 52(35): p. 6108-13. 

80. Anwari, K., et al., The evolution of new lipoprotein subunits of the bacterial outer 
membrane BAM complex. Molecular microbiology, 2012. 84(5): p. 832-844. 

81. Malinverni, J.C., et al., YfiO stabilizes the YaeT complex and is essential for outer 
membrane protein assembly in Escherichia coli. Molecular microbiology, 2006. 
61(1): p. 151-164. 

82. Sandoval, C.M., et al., Crystal structure of BamD: an essential component of the β-
barrel assembly machinery of gram-negative bacteria. Journal of molecular biology, 
2011. 409(3): p. 348-357. 



	   158 

83. Hagan, C.L., J.S. Wzorek, and D. Kahne, Inhibition of the beta-barrel assembly 
machine by a peptide that binds BamD. Proc Natl Acad Sci U S A, 2015. 112(7): p. 
2011-6. 

84. Kutik, S., et al., Dissecting membrane insertion of mitochondrial beta-barrel proteins. 
Cell, 2008. 132(6): p. 1011-24. 

85. Ricci, D.P., et al., Activation of the Escherichia coli β-barrel assembly machine 
(Bam) is required for essential components to interact properly with substrate. 
Proceedings of the National Academy of Sciences, 2012. 109(9): p. 3487-3491. 

86. Rigel, N.W., D.P. Ricci, and T.J. Silhavy, Conformation-specific labeling of BamA 
and suppressor analysis suggest a cyclic mechanism for β-barrel assembly in 
Escherichia coli. Proceedings of the National Academy of Sciences, 2013. 110(13): p. 
5151-5156. 

87. Onufryk, C., et al., Characterization of six lipoproteins in the σE regulon. Journal of 
bacteriology, 2005. 187(13): p. 4552-4561. 

88. Charlson, E.S., J.N. Werner, and R. Misra, Differential effects of yfgL mutation on 
Escherichia coli outer membrane proteins and lipopolysaccharide. Journal of 
bacteriology, 2006. 188(20): p. 7186-7194. 

89. Rigel, N.W., et al., BamE modulates the Escherichia coli beta-barrel assembly 
machine component BamA. J Bacteriol, 2012. 194(5): p. 1002-8. 

90. Charlson, E.S., J.N. Werner, and R. Misra, Differential effects of yfgL mutation on 
Escherichia coli outer membrane proteins and lipopolysaccharide. J Bacteriol, 2006. 
188(20): p. 7186-94. 

91. Mahoney, T.F., D.P. Ricci, and T.J. Silhavy, Classifying β-barrel assembly substrates 
by manipulating essential Bam complex members. Journal of bacteriology, 2016. 
198(14): p. 1984-1992. 

92. Noinaj, N., J.W. Fairman, and S.K. Buchanan, The crystal structure of BamB suggests 
interactions with BamA and its role within the BAM complex. J Mol Biol, 2011. 
407(2): p. 248-60. 

93. Kim, K.H., S. Aulakh, and M. Paetzel, Crystal structure of beta-barrel assembly 
machinery BamCD protein complex. J Biol Chem, 2011. 286(45): p. 39116-21. 

94. Sandoval, C.M., et al., Crystal structure of BamD: an essential component of the 
beta-Barrel assembly machinery of gram-negative bacteria. J Mol Biol, 2011. 409(3): 
p. 348-57. 

95. Knowles, T.J., et al., Structure and function of BamE within the outer membrane and 
the beta-barrel assembly machine. EMBO Rep, 2011. 12(2): p. 123-8. 

96. Albrecht, R., et al., Structure of BamA, an essential factor in outer membrane protein 
biogenesis. Acta Crystallogr D Biol Crystallogr, 2014. 70(Pt 6): p. 1779-89. 

97. Ni, D., et al., Structural and functional analysis of the beta-barrel domain of BamA 
from Escherichia coli. FASEB J, 2014. 28(6): p. 2677-85. 

98. Gatzeva-Topalova, P.Z., T.A. Walton, and M.C. Sousa, Crystal structure of YaeT: 
conformational flexibility and substrate recognition. Structure, 2008. 16(12): p. 1873-
81. 

99. Heuck, A., A. Schleiffer, and T. Clausen, Augmenting β-augmentation: structural 
basis of how BamB binds BamA and may support folding of outer membrane proteins. 
Journal of molecular biology, 2011. 406(5): p. 659-666. 

100. Kim, K.H. and M. Paetzel, Crystal structure of Escherichia coli BamB, a lipoprotein 
component of the beta-barrel assembly machinery complex. J Mol Biol, 2011. 406(5): 
p. 667-78. 



	   159 

101. Dong, C., et al., Structure of Escherichia coli BamD and its functional implications in 
outer membrane protein assembly. Acta Crystallogr D Biol Crystallogr, 2012. 68(Pt 
2): p. 95-101. 

102. Kim, K.H., et al., Structural characterization of Escherichia coli BamE, a lipoprotein 
component of the beta-barrel assembly machinery complex. Biochemistry, 2011. 
50(6): p. 1081-90. 

103. Gatzeva-Topalova, P.Z., et al., Structure and flexibility of the complete periplasmic 
domain of BamA: the protein insertion machine of the outer membrane. Structure, 
2010. 18(11): p. 1492-501. 

104. Kim, S., et al., Structure and function of an essential component of the outer 
membrane protein assembly machine. Science, 2007. 317(5840): p. 961-4. 

105. Vuong, P., et al., Analysis of YfgL and YaeT interactions through bioinformatics, 
mutagenesis, and biochemistry. J Bacteriol, 2008. 190(5): p. 1507-17. 

106. Burgess, N.K., et al., β-barrel proteins that reside in the Escherichia coli outer 
membrane in vivo demonstrate varied folding behavior in vitro. Journal of Biological 
Chemistry, 2008. 283(39): p. 26748-26758. 

107. Gessmann, D., et al., Outer membrane β-barrel protein folding is physically 
controlled by periplasmic lipid head groups and BamA. Proceedings of the National 
Academy of Sciences, 2014. 111(16): p. 5878-5883. 

108. Stanley, A.M. and K.G. Fleming, The process of folding proteins into membranes: 
challenges and progress. Archives of biochemistry and biophysics, 2008. 469(1): p. 
46-66. 

109. Sinnige, T., et al., Solid-state NMR studies of full-length BamA in lipid bilayers 
suggest limited overall POTRA mobility. Journal of molecular biology, 2014. 426(9): 
p. 2009-2021. 

110. Fleming, P.J., et al., BamA POTRA Domain Interacts with a Native Lipid Membrane 
Surface. Biophys J, 2016. 110(12): p. 2698-2709. 

111. Iadanza, M.G., et al., Lateral opening in the intact [beta]-barrel assembly machinery 
captured by cryo-EM. Nature communications, 2016. 7. 

112. Noinaj, N., J.C. Gumbart, and S.K. Buchanan, The β-barrel assembly machinery in 
motion. Nature Reviews Microbiology, 2017. 15(4): p. 197. 

113. Jeanteur, D., J. Lakey, and F. Pattus, The bacterial porin superfamily: sequence 
alignment and structure prediction. Molecular microbiology, 1991. 5(9): p. 2153-
2164. 

114. Weiss, M., et al., Molecular architecture and electrostatic properties of a bacterial 
porin. Science(Washington), 1991. 254(6038): p. 1627-1630. 

115. Cowan, S., et al., Crystal structures explain functional properties of two E. coli 
porins. Nature, 1992. 358(6389): p. 727-733. 

116. Jap, B.K. and P.J. Walian, Biophysics of the structure and function of porins. 
Quarterly reviews of biophysics, 1990. 23(4): p. 367-403. 

117. Miller, V.L. and J.J. Mekalanos, A novel suicide vector and its use in construction of 
insertion mutations: osmoregulation of outer membrane proteins and virulence 
determinants in Vibrio cholerae requires toxR. Journal of bacteriology, 1988. 170(6): 
p. 2575-2583. 

118. Provenzano, D. and K.E. Klose, Altered expression of the ToxR-regulated porins 
OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor 
expression, and intestinal colonization. Proceedings of the National Academy of 
Sciences, 2000. 97(18): p. 10220-10224. 

119. Marylise Duperthuy, P.S., Edwin Garzón, Audrey Caro, Rafael D. Rosa, Frédérique 
Le Roux, Nicole Lautrédou-Audouy, Patrice Got, Bernard Romestand, Julien de 



	   160 

Lorgeril, Sylvie Kieffer-Jaquinod, Evelyne Bachère, and Delphine Destoumieux-
Garzón, Use of OmpU porins for attachment and invasion of Crassostrea gigas 
immune cells by the oyster pathogen Vibrio splendidus. Proceedings of the National 
Academy of Sciences, 2011. 108: p. 2993-2998. 

120. Liu, X., et al., Outer membrane protein U (OmpU) mediates adhesion of Vibrio 
mimicus to host cells via two novel N-terminal motifs. PLoS One, 2015. 10(3): p. 
e0119026. 

121. Soulas, C., et al., Outer Membrane Protein A (OmpA) Binds to and Activates Human 
Macrophages. The Journal of Immunology, 2000. 165(5): p. 2335-2340. 

122. Virji, M., K. Makepeace, and E.R. Moxon, Distinct mechanisms of interactions of 
Opc‐expressing meningococci at apical and basolateral surfaces of human 
endothelial cells; the role of integrins in apical interactions. Molecular microbiology, 
1994. 14(1): p. 173-184. 

123. Sa, E.C.C., N.J. Griffiths, and M. Virji, Neisseria meningitidis Opc invasin binds to 
the sulphated tyrosines of activated vitronectin to attach to and invade human brain 
endothelial cells. PLoS Pathog, 2010. 6(5): p. e1000911. 

124. Chakrabarti S.R, C.K., Sen K, Das J, Porins of Vibrio cholerae: purification and 
characterization of OmpU. J. Bacteriol., 1996. 178(no.2): p. 524-530. 

125. Mathur, J. and M.K. Waldor, The Vibrio cholerae ToxR-regulated porin OmpU 
confers resistance to antimicrobial peptides. Infect Immun, 2004. 72(6): p. 3577-83. 

126. Wibbenmeyer, J.A., Vibrio cholerae OmpU and OmpT Porins Are Differentially 
Affected by Bile. Infection and Immunity, 2002. 70(1): p. 121-126. 

127. Sperandio V, G.J., Silveira WD, Kaper JB, The OmpU outer membrane protein, a 
potential adherence factor of Vibrio cholerae. Infect Immun, 1995. 63: p. 4433-8. 

128. Wang, P.-P., et al., Localization of immunodominant linear B-cell epitopes of Vibrio 
mimicus outer membrane protein U (OmpU). African Journal of Biotechnology, 2012. 
11(35): p. 8751-8757. 

129. Duret, G. and A.H. Delcour, Size and dynamics of the Vibrio cholerae porins OmpU 
and OmpT probed by polymer exclusion. Biophys J, 2010. 98(9): p. 1820-9. 

130. Cai, S.H., et al., Cloning, expression of Vibrio alginolyticus outer membrane protein-
OmpU gene and its potential application as vaccine in crimson snapper, Lutjanus 
erythropterus Bloch. J Fish Dis, 2013. 36(8): p. 695-702. 

131. Khan, J., et al., Refolding and functional assembly of the Vibrio cholerae porin OmpU 
recombinantly expressed in the cytoplasm of Escherichia coli. Protein Expr Purif, 
2012. 85(2): p. 204-10. 

132. Luirink, J., et al., Biogenesis of inner membrane proteins in Escherichia coli. Annu. 
Rev. Microbiol., 2005. 59: p. 329-355. 

133. Herskovits, A.A., E.S. Bochkareva, and E. Bibi, New prospects in studying the 
bacterial signal recognition particle pathway. Molecular microbiology, 2000. 38(5): 
p. 927-939. 

134. Luirink, J. and I. Sinning, SRP-mediated protein targeting: structure and function 
revisited. Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research, 2004. 
1694(1): p. 17-35. 

135. Samuelson, J.C., et al., YidC mediates membrane protein insertion in bacteria. 
Nature, 2000. 406(6796): p. 637. 

136. Nagamori, S., I.N. Smirnova, and H.R. Kaback, Role of YidC in folding of polytopic 
membrane proteins. J Cell Biol, 2004. 165(1): p. 53-62. 

137. Scotti, P.A., et al., YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a 
component of the Sec translocase. The EMBO journal, 2000. 19(4): p. 542-549. 



	   161 

138. Michel, L.V., et al., Dual orientation of the outer membrane lipoprotein P6 of 
nontypeable Haemophilus influenzae. Journal of bacteriology, 2013. 195(14): p. 
3252-3259. 

139. Cullen, P.A., D.A. Haake, and B. Adler, Outer membrane proteins of pathogenic 
spirochetes. FEMS microbiology reviews, 2004. 28(3): p. 291-318. 

140. Cowles, C.E., et al., The free and bound forms of Lpp occupy distinct subcellular 
locations in Escherichia coli. Molecular microbiology, 2011. 79(5): p. 1168-1181. 

141. von Heijne, G., The structure of signal peptides from bacterial lipoproteins. Protein 
Engineering, Design and Selection, 1989. 2(7): p. 531-534. 

142. Babu, M.M., et al., A database of bacterial lipoproteins (DOLOP) with functional 
assignments to predicted lipoproteins. Journal of bacteriology, 2006. 188(8): p. 2761-
2773. 

143. Hayashi, S. and H.C. Wu, Lipoproteins in bacteria. Journal of bioenergetics and 
biomembranes, 1990. 22(3): p. 451-471. 

144. Setubal, J.C., et al., Lipoprotein computational prediction in spirochaetal genomes. 
Microbiology, 2006. 152(1): p. 113-121. 

145. Zückert, W.R., Secretion of bacterial lipoproteins: through the cytoplasmic 
membrane, the periplasm and beyond. Biochimica et Biophysica Acta (BBA)-
Molecular Cell Research, 2014. 1843(8): p. 1509-1516. 

146. Madan Babu, M. and K. Sankaran, DOLOP—database of bacterial lipoproteins. 
Bioinformatics, 2002. 18(4): p. 641-643. 

147. Shu, W., et al., Core structure of the outer membrane lipoprotein from Escherichia 
coli at 1.9 Å resolution. Journal of molecular biology, 2000. 299(4): p. 1101-1112. 

148. Brangulis, K., et al., Crystal structure of the infectious phenotype-associated outer 
surface protein BBA66 from the Lyme disease agent Borrelia burgdorferi. Ticks and 
tick-borne diseases, 2014. 5(1): p. 63-68. 

149. Schulze, R.J., et al., Translocation of Borrelia burgdorferi surface lipoprotein OspA 
through the outer membrane requires an unfolded conformation and can initiate at 
the C‐terminus. Molecular microbiology, 2010. 76(5): p. 1266-1278. 

150. Fukuda, A., et al., Aminoacylation of the N-terminal cysteine is essential for Lol-
dependent release of lipoproteins from membranes but does not depend on lipoprotein 
sorting signals. Journal of Biological Chemistry, 2002. 277(45): p. 43512-43518. 

151. Sankaran, K. and H.C. Wu, Lipid modification of bacterial prolipoprotein. Transfer of 
diacylglyceryl moiety from phosphatidylglycerol. Journal of Biological Chemistry, 
1994. 269(31): p. 19701-19706. 

152. Kovacs-Simon, A., R. Titball, and S.L. Michell, Lipoproteins of bacterial pathogens. 
Infection and immunity, 2011. 79(2): p. 548-561. 

153. Buddelmeijer, N., The molecular mechanism of bacterial lipoprotein modification—
How, when and why? FEMS microbiology reviews, 2015. 39(2): p. 246-261. 

154. Tokunaga, M., J.M. Loranger, and H.C. Wu, A distinct signal peptidase for 
prolipoprotein in Escherichia coli. Journal of cellular biochemistry, 1984. 24(2): p. 
113-120. 

155. Daley, D.O., et al., Global topology analysis of the Escherichia coli inner membrane 
proteome. Science, 2005. 308(5726): p. 1321-1323. 

156. Mao, G., et al., Crystal structure of E. coli lipoprotein diacylglyceryl transferase. 
Nature communications, 2016. 7: p. 10198. 

157. Pailler, J., et al., Phosphatidylglycerol:: prolipoprotein diacylglyceryl transferase 
(Lgt) of Escherichia coli has seven transmembrane segments, and its essential 
residues are embedded in the membrane. Journal of bacteriology, 2012. 194(9): p. 
2142-2151. 



	   162 

158. Tokunaga, M., H. Tokunaga, and H.C. Wu, Post-translational modification and 
processing of Escherichia coli prolipoprotein in vitro. Proceedings of the National 
Academy of Sciences, 1982. 79(7): p. 2255-2259. 

159. Munoa, F., et al., Membrane topology of Escherichia coli prolipoprotein signal 
peptidase (signal peptidase II). Journal of Biological Chemistry, 1991. 266(26): p. 
17667-17672. 

160. Tokunaga, M., J.M. Loranger, and H. Wu, Prolipoprotein modification and 
processing enzymes in Escherichia coli. Journal of Biological Chemistry, 1984. 
259(6): p. 3825-3830. 

161. Vogeley, L., et al., Structural basis of lipoprotein signal peptidase II action and 
inhibition by the antibiotic globomycin. Science, 2016. 351(6275): p. 876-880. 

162. Gupta, S.D., et al., Characterization of a temperature-sensitive mutant of Salmonella 
typhimurium defective in apolipoprotein N-acyltransferase. Journal of Biological 
Chemistry, 1993. 268(22): p. 16551-16556. 

163. Gupta, S.D. and H.C. Wu, Identification and subcellular localization of 
apolipoprotein N-acyltransferase in Escherichia coli. FEMS microbiology letters, 
1991. 78(1): p. 37-41. 

164. Hillmann, F., M. Argentini, and N. Buddelmeijer, Kinetics and phospholipid 
specificity of apolipoprotein N-acyltransferase. Journal of Biological Chemistry, 
2011: p. jbc. M111. 243519. 

165. Buddelmeijer, N. and R. Young, The essential Escherichia coli apolipoprotein N-
acyltransferase (Lnt) exists as an extracytoplasmic thioester acyl-enzyme 
intermediate. Biochemistry, 2009. 49(2): p. 341-346. 

166. Vidal-Ingigliardi, D., S. Lewenza, and N. Buddelmeijer, Identification of essential 
residues in apolipoprotein N-acyl transferase, a member of the CN hydrolase family. 
Journal of bacteriology, 2007. 189(12): p. 4456-4464. 

167. Hillmann, F., M. Argentini, and N. Buddelmeijer, Kinetics and phospholipid 
specificity of apolipoprotein N-acyltransferase. Journal of Biological Chemistry, 
2011. 286(32): p. 27936-27946. 

168. Gupta, S., W. Dowhan, and H. Wu, Phosphatidylethanolamine is not essential for the 
N-acylation of apolipoprotein in Escherichia coli. Journal of Biological Chemistry, 
1991. 266(15): p. 9983-9986. 

169. Gélis‐Jeanvoine, S., et al., Residues located on membrane‐embedded flexible loops 
are essential for the second step of the apolipoprotein N‐acyltransferase reaction. 
Molecular microbiology, 2015. 95(4): p. 692-705. 

170. Roman-Hernandez, G., J.H. Peterson, and H.D. Bernstein, Reconstitution of bacterial 
autotransporter assembly using purified components. Elife, 2014. 3: p. e04234. 

171. Kabsch, W., Xds. Acta Crystallographica Section D: Biological Crystallography, 
2010. 66(2): p. 125-132. 

172. Sheldrick, G.M., Experimental phasing with SHELXC/D/E: combining chain tracing 
with density modification. Acta Crystallographica Section D: Biological 
Crystallography, 2010. 66(4): p. 479-485. 

173. Cowtan, K., 'DM': An automated procedure for phase improvement by density 
modification. Joint CCP4 and ESF-EACBM Newsletter on Prorein Crystallogr., 1994. 
31: p. 34-38. 

174. Emsley, P., et al., Features and development of Coot. Acta Crystallographica Section 
D: Biological Crystallography, 2010. 66(4): p. 486-501. 

175. Adams, P.D., et al., PHENIX: a comprehensive Python-based system for 
macromolecular structure solution. Acta Crystallographica Section D: Biological 
Crystallography, 2010. 66(2): p. 213-221. 



	   163 

176. Evans, P., Scaling and assessment of data quality. Acta Crystallographica Section D: 
Biological Crystallography, 2006. 62(1): p. 72-82. 

177. Winn, M.D., et al., Overview of the CCP4 suite and current developments. Acta 
Crystallographica Section D: Biological Crystallography, 2011. 67(4): p. 235-242. 

178. Vagin, A.A., et al., REFMAC5 dictionary: organization of prior chemical knowledge 
and guidelines for its use. Acta Crystallographica Section D: Biological 
Crystallography, 2004. 60(12): p. 2184-2195. 

179. Lamzin, V.S. and K.S. Wilson, Automated refinement of protein models. Acta 
Crystallographica Section D: Biological Crystallography, 1993. 49(1): p. 129-147. 

180. GEHealthcare, SuperdexTM prep grade and prepacked HiLoadTM columns. 2013, 
GE Healthcare Life Sciences. 

181. Hagan, C.L., Dissertation: Reconstitution of the E. coli Membrane β-Barrel Assembly 
Machine from Purified Components. 2012. 

182. Tellez, R., Jr. and R. Misra, Substitutions in the BamA beta-barrel domain overcome 
the conditional lethal phenotype of a DeltabamB DeltabamE strain of Escherichia 
coli. J Bacteriol, 2012. 194(2): p. 317-24. 

183. Duret, G. and A.H. Delcour, Size and dynamics of the Vibrio cholerae porins OmpU 
and OmpT probed by polymer exclusion. Biophysical journal, 2010. 98(9): p. 1820-
1829. 

184. Wibbenmeyer, J.A., et al., Vibrio cholerae OmpU and OmpT porins are differentially 
affected by bile. Infection and immunity, 2002. 70(1): p. 121-126. 

185. Smart, O.S., et al., HOLE: a program for the analysis of the pore dimensions of ion 
channel structural models. Journal of molecular graphics, 1996. 14(6): p. 354-360. 

186. Rath, A., et al., Detergent binding explains anomalous SDS-PAGE migration of 
membrane proteins. Proceedings of the National Academy of Sciences, 2009. 106(6): 
p. 1760-1765. 

187. Wiktor, M., et al., Structural insights into the mechanism of the membrane integral N-
acyltransferase step in bacterial lipoprotein synthesis. Nature Communications, 2017. 
8. 

188. Lu, G., et al., Crystal structure of E. coli apolipoprotein N-acyl transferase. Nature 
Communications, 2017. 8. 

189. Noland, C.L., et al., Structural insights into lipoprotein N-acylation by Escherichia 
coli apolipoprotein N-acyltransferase. Proceedings of the National Academy of 
Sciences, 2017. 114(30): p. E6044-E6053. 

190. Han, L., et al., Structure of the BAM complex and its implications for biogenesis of 
outer-membrane proteins. Nature structural & molecular biology, 2016. 23(3): p. 192-
196. 

191. Bakelar, J., S.K. Buchanan, and N. Noinaj, The structure of the β-barrel assembly 
machinery complex. Science, 2016. 351(6269): p. 180-186. 

192. Hagan, C.L. and D. Kahne, Reconstituted Escherichia coli Bam complex catalyzes 
multiple rounds of β-barrel assembly. Biochemistry, 2011. 50(35): p. 7444. 

193. Webb, C.T., et al., Dynamic association of BAM complex modules includes surface 
exposure of the lipoprotein BamC. Journal of molecular biology, 2012. 422(4): p. 
545-555. 

194. Wilson, M.M. and H.D. Bernstein, Surface-exposed lipoproteins: an emerging 
secretion phenomenon in Gram-negative bacteria. Trends in microbiology, 2016. 
24(3): p. 198-208. 

195. Knowles, T.J., et al., Secondary structure and (1)H, (13)C and (15)N backbone 
resonance assignments of BamC, a component of the outer membrane protein 
assembly machinery in Escherichia coli. Biomol NMR Assign, 2009. 3(2): p. 203-6. 



	   164 

196. Warner, L.R., et al., Structure of the BamC two-domain protein obtained by Rosetta 
with a limited NMR data set. Journal of molecular biology, 2011. 411(1): p. 83-95. 

197. Braun, M. and T.J. Silhavy, Imp/OstA is required for cell envelope biogenesis in 
Escherichia coli. Molecular microbiology, 2002. 45(5): p. 1289-1302. 

198. Bos, M.P., et al., Identification of an outer membrane protein required for the 
transport of lipopolysaccharide to the bacterial cell surface. Proceedings of the 
National Academy of Sciences of the United States of America, 2004. 101(25): p. 
9417-9422. 

199. Sampson, B.A., R. Misra, and S.A. Benson, Identification and characterization of a 
new gene of Escherichia coli K-12 involved in outer membrane permeability. 
Genetics, 1989. 122(3): p. 491-501. 

200. Lee, J., et al., Characterization of a stalled complex on the β-barrel assembly 
machine. Proceedings of the National Academy of Sciences, 2016. 113(31): p. 8717-
8722. 

201. Vogt, J. and G.E. Schulz, The structure of the outer membrane protein OmpX from 
Escherichia coli reveals possible mechanisms of virulence. Structure, 1999. 7(10): p. 
1301-1309. 

202. Seed, K.D., et al., Evolutionary consequences of intra-patient phage predation on 
microbial populations. Elife, 2014. 3: p. e03497. 

203. Vollan, H.S., et al., In silico structure and sequence analysis of bacterial porins and 
specific diffusion channels for hydrophilic molecules: conservation, multimericity and 
multifunctionality. International journal of molecular sciences, 2016. 17(4): p. 599. 

204. Provenzano, D., et al., The Virulence Regulatory Protein ToxR Mediates Enhanced 
Bile Resistance in Vibrio cholerae and Other PathogenicVibrio Species. Infection and 
immunity, 2000. 68(3): p. 1491-1497. 

205. Acosta-Gutierrez, S., et al., Filtering with electric field: the case of E. coli porins. The 
journal of physical chemistry letters, 2015. 6(10): p. 1807-1812. 

206. Zheng, H., et al., Validating metal binding sites in macromolecule structures using the 
CheckMyMetal web server. Nature protocols, 2014. 9(1): p. 156. 

207. Tokuda, H. and S.-i. Matsuyama, Sorting of lipoproteins to the outer membrane in E. 
coli. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2004. 1693(1): 
p. 5-13. 

208. Okuyama, H., T. KANKURA, and S. NOJIMA, Positional distribution of fatty acids 
in phospholipids from Mycobacteria. The Journal of Biochemistry, 1967. 61(6): p. 
732-737. 

209. Brülle, J.K., A. Tschumi, and P. Sander, Lipoproteins of slow-growing Mycobacteria 
carry three fatty acids and are N-acylated by apolipoprotein N-acyltransferase 
BCG_2070c. BMC microbiology, 2013. 13(1): p. 223. 

210. Baulard, A.R., et al., In vivo interaction between the polyprenol phosphate mannose 
synthase Ppm1 and the integral membrane protein Ppm2 from Mycobacterium 
smegmatis revealed by a bacterial two-hybrid system. Journal of Biological 
Chemistry, 2003. 278(4): p. 2242-2248. 

211. Widdick, D.A., et al., Dissecting the complete lipoprotein biogenesis pathway in 
Streptomyces scabies. Molecular microbiology, 2011. 80(5): p. 1395-1412. 

212. Hutchings, M.I., et al., Lipoprotein biogenesis in Gram-positive bacteria: knowing 
when to hold ‘em, knowing when to fold ‘em. Trends in microbiology, 2009. 17(1): p. 
13-21. 

213. Tschumi, A., et al., Identification of apolipoprotein N-acyltransferase (Lnt) in 
mycobacteria. Journal of Biological Chemistry, 2009. 284(40): p. 27146-27156. 



	   165 

214. Tawaratsumida, K., et al., Characterization of N-terminal structure of TLR2-
activating lipoprotein in Staphylococcus aureus. Journal of Biological Chemistry, 
2009. 284(14): p. 9147-9152. 

215. Shimizu, T., Y. Kida, and K. Kuwano, A dipalmitoylated lipoprotein from 
Mycoplasma pneumoniae activates NF-κB through TLR1, TLR2, and TLR6. The 
Journal of Immunology, 2005. 175(7): p. 4641-4646. 

216. Kurokawa, K., et al., The triacylated ATP binding cluster transporter substrate-
binding lipoprotein of Staphylococcus aureus functions as a native ligand for Toll-like 
receptor 2. Journal of Biological Chemistry, 2009. 284(13): p. 8406-8411. 

217. Asanuma, M., et al., Structural evidence of α‐aminoacylated lipoproteins of 
Staphylococcus aureus. The FEBS journal, 2011. 278(5): p. 716-728. 

218. Nakayama, H., K. Kurokawa, and B.L. Lee, Lipoproteins in bacteria: structures and 
biosynthetic pathways. The FEBS journal, 2012. 279(23): p. 4247-4268. 

219. Fischer, W., Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus. 
Medical microbiology and immunology, 1994. 183(2): p. 61-76. 

 
 

	    



	   166 

APPENDIX 1 

A.   pTRC99a plasmid map 
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B.   pET28 b plasmid map 
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C.   pET22 b plasmid map 
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APPENDIX 2 

Preparations of Minimal media stock solution for L-selenomethionine labeling of the 

BamACDE complex 

1.   M9 salts solution: 12.8 g Na2HPO4 . 7H2O, 3.0 g KH2PO4 (Fisher Scientific) and 1.0 g 

NH4Cl (Sigma-Aldrich) dissolved in 900 ml of deionized H2O and sent to autoclaving. 

2.   10x essential media stock: 20% w/v glucose (Sigma-Aldrich), 0.3% w/v magnesium 

sulphate, 0.01% w/v iron (III) sulphate (Fisher Scientific) and 0.01% w/v thiamine-

HCL (Duchefa Biochemie), filter sterilized prior to mixing with M9 salts. 

3.   20x Glucose-free selenomethionine nutrient mix (MD12-502-GF, Molecular 

Dimensions), dissolved in deionized water at 0.022% w/v and filter-sterilized prior to 

mixing with M9 salts. 

4.   1x phosphate buffered saline (PBS) solution: 12.8 g/L Na2HPO4 . 7H2O, 3.0 g/L 

KH2PO4, pH7.2, 0.5 g/L NaCl and 1.0 g/L NH4Cl. 

5.   100x amino acid supplement: L-lysine, L-phenylalanine, L-threonine at 1% w/v and 

L-leucine, L-isoleucine and L-valine at 0.5% w/v (Duchefa Biochemie), filter 

sterilized. 

6.   10x Se-Met solution: 10% w/v in filter sterilized deionized H2O. 

7.   5% v/v O/N culture suspension: Overnight culture grown in LB broth was washed 

using PBS solution to remove remaining organic components. O/N culture was 

pelleted in 50 ml aliquots at 2,800 rpm for 10 min, gently resuspended in 20 ml PBS 

and spun down again. Repeated twice and the cells were resuspended in 5 ml of PBS 

solution ready to be allocated in each 1L of minimal media (5% v/v). 
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APPENDIX 3 

Tables of the interactive residues in the two BAM complex structures 

 

Table 1. Interacting residues between BamA and BamB in the BamABCDE structure 

defined by proximity within 3.5 Å.  

BamA BamB  

Q178 N58 

Y255, Q179 F59,R77, L110 

T248, P249, K251 Y60, Y263 

T187,T189 E107 

N181 E127 

T190, V183, I182 K128, A129, G149 

H186, G184 K146 

N259 A148 

T257,N181, N259 E150 

Q244, S242 S167,N168, M189 

V245 S191 

L247, S246, P249, T248 L192, S193, L194, V286 

Y255, T257 R194, R195 

Y142, K135(?) D242 

K216 R243 

D250 L326 
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Table 2. Interacting residues between BamA and BamC in the BamABCDE structure 

defined by proximity within 3.5 Å. 

BamA  BamC  

T359 K32 
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Table 3. Interacting residues between BamA and BamD in the BamABCDE structure 

defined by proximity within 3.5 Å. 

BamA BamD  

V121, R162, A95, R160 N60, R61, Y62 

R36, R162, T93 P63 

Q35, R36, V37, N71, A41, A38,  F64, L98 

R120 P86, L87, A90 

G122, E123, A41, N71,  R94, R97, P100, N99,  

G40 T101 

K361, D362, A363, D162, F354,  D134, Y177 

N357, D358, T359, S360, K361, G356, 

Q355 

R135, D136, H139 

R366, V480, R367, R366, V480,E373, 

I352, M372 

V181, Y184, Y185, A190, A193 

V480, D481 E187, R188 

G374 V192, A193 

K351, R366 R197 
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Table 4. Interacting residues between BamA and BamE in the BamABCDE structure 

defined by proximity within 3.5 Å. 

BamA BamE 

D481 R29 

R370 P30 

M372, W376, A375, E373, G374, Y348, 

V349, R350 

I32, N33, Q34, G35, N36, P62, L63, F77, 

R78, Q79 

G316, Y315, R346, R314, D410 Y37, T39, G60 

Q411, P409, S408 T61 
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Table 5. Interacting residues between BamD and BamE in the BamABCDE structure 

defined by proximity within 3.5 Å. 

DamD BamE 

R188 R29, P30, I32,  

V192, A190, A193, W191, N196, V192 Q34, G35, L63, 

M227, M225, V195, Q230, K233,  M64, D66, F74, V76, Q88, T90 

E199 P67 

I237, L202, M218, Y222, V234,  F68 

K233 T70 

W191, G189 R78 

Q226 L110, S111 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   175 

Table 6. Interacting residues between BamC and BamD in the BamABCDE structure 

defined by proximity within 3.5 Å. 

BamC BamD 

K32 D121, R135, D121, R135 

R33, Q34 L119, L85, A83,  

S36 A118 

G37, D38, E39 K81 

L42 F169, S122, 

Q43 K165 

A44 F169 

A45, P46 V168, Q209, D172,  

L47 D207, K171, T208,  

A48, E49 R212,  

L50, H51, L58, P59 N241, L215, I237, L202, P206,  

P53 
K236, A240,  

M56 K233 

V60, T61, S62,  R203, D204 

D64, Y65, A66 F144, Y205, L174, R141, K171,  

I67 L167, T164,  

P68 V151 

T70 T160, P155 

G72, S73, G74 T161, Q158 

A75, V76, G77 D162, K165 

L80, D81 Y110, Y159,  

I82, R83, P84, P85 Y107, Y77, L114, Y80, M111, L73, D74, 

N104,  
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Table 7. Interacting residues between BamC and BamE in the BamABCDE structure 

defined by proximity within 3.5 Å. 

BamC BamE 

M56, L58, P59 F68, P67 

I57 G69 
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Table 8. Interacting residues between BamA and BamC in the BamACDE structure 

defined by proximity within 3.5 Å. 

BamA BamC 

Q35 G94 

V39, F31 R96 

R127 D236 

P159 F248 

L158 S272 

T98 Q273 

D164, K166 Q306,  

P157, L158 G308, D309 

Q170 H324 
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Table 9. Interactive residues between BamC and BamD in the BamACDE structure 

defined by proximity of within 3.5 Å. 

 

BamC BamD 

R271 D29 

L91 N33, Y67 

L151, D152, K32,  Q44 

C25, Y31 D45 

Q87 Q69, H102 

P84 L73 

L89 Q70 

I82 Y77, Y107 

S36 Y80 

Q34 K81 

Q195 N104 

Y65 R141, F144, Y205 

A66 R152 

L80 Q158 

I67 L167 

S73, G74 T161 

A75, Y41, G77, V76, V35 D162, R166, F169 

T70 T164 

L47, A48 K171, D207 

T61 R203 

L50, E49 R212 

M56 K233, K236 

H51, L50 A240, N241 
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APPENDIX 4 

List of the 96 detergents with individual stock and working concentration in the 

Analytic Selector Kit (Anatrace) 

Part 1 
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           Part 2 

 


