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Abstract 33 

Background. ESBL-producing Escherichia coli have expanded globally since the 34 

turn of the century and present a major public health issue.  Their in-vitro 35 

susceptibility to penicillin/inhibitor combinations is variable, and clinical use of 36 

these combinations against ESBL producers remains controversial.  We 37 

hypothesised that this variability related to co-production of OXA-1 penicillinase.  38 

Methods.  During a national study we collected 293 ESBL E. coli from 39 

bacteraemias, determined MICs by BSAC agar dilution and undertook genomic 40 

sequencing with Illumina methodology.  Results.  The collection was dominated 41 

by ST131 (n=188 isolates) and blaCTX-M-15 (present in 229 isolates, 78.2%); over 42 

half the isolates (159/293, 54.3%) were ST131 with blaCTX-M-15.  blaOXA-1 was found 43 

in 149 ESBL producers (50.9%) and blaTEM-1/191 in 137 (46.8%).  Irrespective of 44 

whether all isolates were considered, or ST131 alone, there were strong 45 

associations (p <0.001) between co-carriage of blaOXA-1 and reduced susceptibility 46 

to penicillin/inhibitor combinations, whereas there was no significant association 47 

with co-carriage of blaTEM-1/191. For piperacillin/tazobactam the mode MIC rose 48 

from 2 mg/L in the absence of blaOXA-1 to 8-16 mg/L in its presence; for co-49 

amoxiclav the shift was smaller, from 8 to 16 mg/L, but crossed the breakpoint.   50 

blaOXA-1 was strongly associated with co-carriage also of aac(6’)-Ib-cr, which 51 

compromises amikacin and tobramycin.  Conclusion.  Co-carriage of OXA-1, a 52 

penicillinase with weak affinity for inhibitors, is a major arbiter of resistance to 53 

piperacillin/tazobactam and co-amoxiclav in E. coli and is commonly associated 54 

with co-carriage of aac(6’)-Ib-cr, which narrows aminoglycoside options. 55 

56 



Introduction 57 

Penicillin/-lactamase inhibitor combinations account for 20% of in-patient antibiotic 58 

use in UK hospitals,1 and for a greater proportion of parenteral use.  Whilst these 59 

combinations are effective in many infections due to -lactamase producers, debate 60 

persists on their efficacy against those with ESBLs, along with disagreements on 61 

breakpoints.2   62 

Tazobactam and clavulanate inhibit TEM, SHV and CTX-M ESBLs,3-5 in some 63 

cases more efficiently than classical penicillinases.6  Nevertheless, surveys find that 64 

sizeable proportions of ESBL-producing Escherichia coli and Klebsiella pneumoniae 65 

are non-susceptible to piperacillin/tazobactam and amoxicillin/clavulanate, as are 66 

minorities of isolates with classical TEM and SHV penicillinases.7-9 The issue is 67 

complicated by differing breakpoints for piperacillin/tazobactam between EUCAST 68 

(S <8, R >16 mg/L) and CLSI (S <16, R >64 mg/L) and different testing modalities 69 

for amoxicillin/clavulanate, where EUCAST advocates a fixed 2 mg/L clavulanate but 70 

CLSI prefers a 2:1 amoxicillin/clavulanate ratio, giving breakpoints of 8+2 and 8+4 71 

mg/L respectively.    72 

Clinical studies on the efficacy of penicillin/inhibitor combinations against 73 

ESBL producers have given contradictory results.10   Both EUCAST and CLSI take 74 

the view of ‘report as found’,11 and one bacteraemia study (not specifically of ESBL 75 

producers) found good outcomes for piperacillin/tazobactam against 76 

Enterobacteriaceae up to an MIC of 16 mg/L.12 Another study however found good 77 

outcomes up to an MIC of  16 mg/L only if the bacteraemia had a urinary origin 78 

whereas there were high failure rates if the MIC was above 2 mg/L and the 79 

bacteraemia originated elsewhere.13 The recent MERINO trial, investigating 80 

bacteraemia due to ceftriaxone-resistant, piperacillin/tazobactam-,susceptible’, E. 81 



coli and K. pneumoniae found 12.3%  30-day mortality for patients treated with 82 

piperacillin/tazobactam versus 3.7% for meropenem (p = 0.002).14 83 

Reasons for variable resistance to penicillin/inhibitor combinations among 84 

ESBL producers are under-researched.   Factors demonstrated for at least some 85 

isolates include: (i) production of multiple lactamases,15 sometimes including 86 

poorly-inhibited penicillinases such as OXA-1,16,17 (ii) hyper-production of target 87 

lactamases18,19 and (iii) impermeability.20  We explored the role of OXA-1 enzyme 88 

in a national collection of genomically-sequenced ESBL E. coli from bloodstream 89 

infections. 90 

 91 

Materials and Methods 92 

Isolates 93 

Isolates were from human bloodstream infections and were collected in 2013-2014 94 

during a national study comparing ESBL E. coli from human and non-human 95 

sources.  Collecting sites in London (1 hospital), East Anglia (5 hospitals), Northwest 96 

England (2 hospitals), Wales (2 hospitals) and Scotland (2 hospitals) incubated 97 

blood cultures on automated BacT/Alert (bioMérieux, Basingstoke, UK) systems and 98 

performed identification and susceptibility testing according to local protocols. 99 

Consecutive isolates identified by these local methods as ESBL-producing E. coli 100 

were sub-cultured to agar slopes and sent to PHE Colindale. On receipt, their 101 

identity was confirmed by MALDI-ToF (Bruker Daltonics, Bremen, Germany) and 102 

blaCTX-M genes were sought by PCR,21 with isolates found positive accepted as 103 

ESBL producers.   Isolates lacking blaCTX-M were screened for blaTEM and blaSHV by 104 

PCR22 and, if positive, subjected to double disc synergy tests between 105 

amoxicillin/clavulanate (20+10 g; Oxoid, Basingstoke, UK) and each of cefepime, 106 



cefotaxime and ceftazidime (all 30 g), with a positive result for any cephalosporin 107 

being taken to indicate ESBL activity.23 Confirmation of ESBL production came from 108 

comprehensive susceptibility testing and sequencing, as below.  109 

 110 

Antibiotics and susceptibility testing 111 

Except for clavulanate (GlaxoSmithKline, Brentford, UK) and tazobactam (Alfa 112 

Aesar, Heysham, UK), antibiotics were obtained from Sigma, Poole, UK.  MICs were 113 

determined by BSAC agar dilution using IsoSensitest agar (Oxoid).24  Tazobactam 114 

was used at a fixed 4 mg/L and clavulanate at a fixed 2 mg/L, in keeping with current 115 

EUCAST guidance. 116 

 117 

WGS 118 

DNA libraries were prepared using the NexteraXT method and sequenced to >30X 119 

coverage with a standard 2x100 base protocol on a HiSeq 2500 instrument (Illumina, 120 

San Diego, CA, USA). Reads were trimmed using Trimmomatic to remove low-121 

quality data, then assembled into contigs using VelvetOptimiser25 with k-mer values 122 

from 55 to 75. Strains were identified by mapping reads against ST-specific E. coli 123 

sequences using the MOST software.26  124 

 Antibiotic resistance genes were sought in contigs by BLASTn, or by mapping 125 

reads against reference sequences in the Comprehensive Antibiotic Resistance 126 

Database and parsing the variant calling format (VCF) file generated by SAMtools 127 

mpileup.27 This process was automated into the ‘Genefinder’ pipeline created by 128 

PHE Bioinformatics (M. Doumith, PHE, unpublished). The location of resistance 129 

determinants on assembled contigs was checked by Blastn. 130 

 131 



Statistics 132 

We calculated relative risks and assessed potential interactions using the Woolf test 133 

for homogeneity. We used Pearson chi-square tests to assess significance of 134 

associations at p value equal to 0.05. 135 

 136 

Results 137 

ESBL confirmation and STs 138 

Sixty-six ESBL producers were confirmed from bacteraemic patients in East Anglia, 139 

55 from London, 61 from Northwest England, 37 from Scotland and 74 from Wales, 140 

giving a geographically representative collection of 293 isolates.  These isolates 141 

included 39 known STs, one non-typeable organism, and five new STs.  The well-142 

known international ST131 lineage28,29 dominated, with 188 representatives (64.2%); 143 

other STs with >2 representatives were ST38 (n=17) ST648 (n=16), ST405 (n=9), 144 

ST73 (n=6), ST69 (n=4), ST636 (n=4), ST95 (n=3), ST10 (n=3) and ST1193 (n=3).  145 

CTX-M-15 lactamase was the predominant ESBL, with its gene present in 229 146 

(78.2%) isolates, whereas 27 had blaCTX-M-27, 20 had blaCTX-M-14, four had blaCTX-M-1, 147 

three had blaCTX-M-3 and one had blaCTX-M-9.  Three isolates had blaSHV-12 and one had 148 

blaSHV-31 both of which encode recognised SHV-ESBLs; one isolate, with an ESBL 149 

phenotype, solely had blaTEM-117 and eight, all carrying other well-known ESBL 150 

determinants, also had blaTEM-191, encoding a TEM variant with an uncertain status, 151 

which was not counted as an ESBL here.30   Four isolates carried two ESBL genes 152 

in combination; many more also carried genes for classical penicillinases along with 153 

those for ESBLs: in particular blaTEM-1 was present in 129/293 isolates (or 137/293 if 154 

those with TEM-191 were included, 46.8%) and blaOXA-1 (or, in one case, a variant 155 

with a conservative Ile187Leu modification) was found in 149/293 (50.9%). blaTEM-1 156 



accompanied many different ESBL genes but blaOXA-1 was always together with 157 

blaCTX-M-15 along, in one isolate, with blaCTX-M-14.  Two isolates had acquired 158 

blaCMY/ampC genes together with their ESBLs, and two had blaOXA-9.  Among the 159 

ST131 isolates, the great majority (159/188, 84.6%) had blaCTX-M-15, though 24 had 160 

blaCTX-M-27 and 5 had blaCTX-M-14 alone or in combination; 116 had blaOXA-1  whilst 76 161 

had blaTEM-1/191. 162 

The lactamase combinations found in the whole collection and among the 163 

ST131 isolates are detailed in Table 1, which also shows the corresponding MIC 164 

distributions for piperacillin/tazobactam and amoxicillin/clavulanate.   165 

Whenever blaOXA-1 was present, alone or together with blaTEM-1/191, the MIC 166 

distributions of penicillin/inhibitor combinations were raised, with the mode 167 

increasing from 2 mg/L to 8 or (depending on the particular sub-set) 16 mg/L for 168 

piperacillin/tazobactam and from 4 or 8 to 16 mg/L for amoxicillin/clavulanate.  169 

These shifts in modal MIC were apparent for both the whole collection and for 170 

ST131, when this was reviewed separately.  No such shift was seen when ESBLs 171 

were accompanied only by TEM-1/191 enzyme.   172 

Whilst these blaOXA-1-related MIC shifts were small in absolute terms, their 173 

effect was to move the peak of the distribution for piperacillin/tazobactam from within 174 

the susceptible range to around the breakpoint, whilst the mode for 175 

amoxicillin/clavulanate moved across the breakpoint.   Overall, 62/63 (98.4%) 176 

isolates with ESBL genes alone were susceptible to piperacillin/tazobactam at 8 177 

mg/L as were 75/79 (94.9%) that had an ESBL gene together with only blaTEM-1/191 178 

whereas the proportion susceptible fell to 67/91 (73.6%) among those with an ESBL 179 

plus blaOXA-1 and to 33/58 (56.9%) for those with an ESBL plus both blaOXA-1 and 180 

blaTEM-1/191. For amoxicillin/clavulanate, 44/63 (69.8%) were susceptible when the 181 



ESBL gene was present alone and 50/79 (63.3%) when it was accompanied by 182 

blaTEM-1/191 whilst these proportions fell to 21/91 (23.1%) for isolates with blaOXA-1 183 

together with their ESBL gene and to 7/58 (12.1%) when both blaOXA-1 and blaTEM-184 

1/191 were present.  When the ST131 organisms were considered alone, non-185 

susceptibility to piperacillin/tazobactam at 8 mg/L was seen in 39/116 (33.6%) 186 

isolates where blaOXA-1 was present compared with 2/72 (2.8%) where it was absent; 187 

corresponding proportions for amoxicillin/clavulanate were 94/116 (81.0%) 188 

compared with 24/72 (33.3%) respectively. 189 

Both for the whole collection and the ST131 isolates, the relative risks of non-190 

susceptibility to penicillin/-lactamase inhibitor combinations were highly significant 191 

for OXA-1 (p <0.001) but non-significant for TEM-1/191 (Table 2).  Although the 192 

modal MIC was one doubling dilution higher for the isolates that had both OXA-1 193 

and TEM-1/191 than for those with only OXA-1, there was no statistical evidence of 194 

interaction between OXA-1 and TEM-1/191 to further augment resistance. 195 

Occasional non-susceptibility to piperacillin/tazobactam was seen in isolates 196 

lacking both blaOXA-1, as in 1/26 with blaCTX-M-15 alone (MIC 32 mg/L) and 4/65 with 197 

blaCTX-M-14/15 together with blaTEM-1 (MICs 16-32 mg/L), also (unsurprisingly) in both 198 

isolates with acquired blaCMY gene, neither of which had blaOXA-1.  On the other hand 199 

10/58 isolates with blaCTX-M-15 plus both blaTEM-1/191 and blaOXA-1 remained fully 200 

susceptible to piperacillin/tazobactam, with MICs of 2-4 mg/L.  201 

 202 

Linkage of blaOXA-1, aac(6’)-Ib and other resistance determinants 203 

There was a striking association between the carriage of blaOXA-1 and of the 204 

aminoglycoside-acetyl transferase determinant aac(6’)-Ib, which was almost always 205 

(146/148 cases) present as its aac(6’)-Ib-cr variant, encoding an enzyme that 206 



acetylates some fluoroquinolones as well as the normal aminoglycoside substrates. 207 

This association is illustrated both for the whole collection and for the major -208 

lactamase-defined subgroups of ST131 isolates in Table 3.  Overall, 147 of the 149 209 

isolates with blaOXA-1 also had aac(6’)-Ib-cr, compared with 1/144 of those that 210 

lacked blaOXA-1. Other resistance genes associated with blaOXA-1 across the whole 211 

collection were aac(3’)-IIa, aadA5, sul1, dfrA17 and tet(A) (Table 4). catB3, encoding 212 

a chloramphenicol acetyltransferase, also was widely present in association with 213 

blaOXA-1 (not shown) but was truncated and surmised to be non-functional.  214 

Conversely, sul2, strA, strB and aac(3’)-IId were more prevalent among isolates that 215 

lacked blaOXA-1.  The association between blaOXA-1 and aac(6’)-Ib-cr remained clear 216 

when ST131 isolates were considered alone, but aac(3’)-IIa, aadA5, sul1, dfrA17 217 

and tet(A) also were widespread among ST131 isolates with blaCTX-M-27 alone or with 218 

blaCTX-M-15 combined with either or both of blaTEM and/or blaOXA-1.  strA/B and sul2 219 

genes remained negatively associated with blaOXA-1 among the ST131 isolates 220 

(Table 4). 221 

 Resistance tracked with causative genes. Thus, 141/148 isolates with aac(6’)-222 

Ib-cr were resistant to tobramycin and 69 had reduced susceptibility to amikacin, 223 

with MICs >4 mg/L, though non-susceptibility on EUCAST criteria (MIC >8 mg/L) 224 

was seen for only 25/148.  Tobramycin resistance was not, however, exclusive to 225 

isolates with aac(6’)-Ib-cr also being associated with aac(3)-II variants when these 226 

were present independently of aac(6’)-Ib-cr. Overall non-susceptibility rates for 227 

blaOXA-1-positive compared with blaOXA-1–negative isolates were: tobramycin (MIC >2 228 

mg/L) 94.6% versus 31.2%; amikacin (MIC >8 mg/L) 16.8% versus 2.8%; 229 

ciprofloxacin (MIC >0.25 mg/L) 97.2% versus 70.7%; tetracycline (MIC >8 mg/L) 230 

83.4% versus 70.7%; sulphonamides; (MIC >256 mg/L) 85.5% versus 76.4%; 231 



trimethoprim (MIC >2 mg/L) 89.6% versus 77.8% and streptomycin (MIC >8 mg/L) 232 

58.6% versus 71.1%.  Truncated catB3 was not associated with chloramphenicol 233 

resistance confirming its non-functionality. 234 

 235 

Discussion 236 

Although a link between OXA-1 enzyme and reduced susceptibility or resistance to 237 

penicillin/inhibitor combinations has been suggested previously,16,17 both for ESBL-238 

producing and non-producing Enterobacteriaceae, these assertions do not appear to 239 

have been tested with sizeable and geographically diverse collections of bacteria, let 240 

alone using those characterised by WGS.  One study asserting this linkage only 241 

found OXA-1 in 12/59 piperacillin/tazobactam-resistant isolates and, since many of 242 

the remainder were resistant to carbapenems, it is likely that they had other 243 

mechanisms besides OXA-1 enzyme.16  244 

 Here we found that MICs of piperacillin/tazobactam for ESBL E. coli with 245 

OXA-1 penicillinase clustered around or just above the 8+4 mg/L breakpoint, and 246 

that those of amoxicillin/clavulanate were narrowly above its 8+2 mg/L breakpoint.  247 

By contrast, and irrespective of whether they co-produced TEM-1 enzyme, MICs for 248 

ESBL E. coli lacking OXA-1 enzyme were almost all clearly within the susceptible 249 

range for piperacillin/tazobactam, at around 2+4 mg/L, and narrowly within it for 250 

amoxicillin/clavulanate, clustering at 4-8 mg/L.  A few individual isolates lay outside 251 

these generalisations, either (i) lacking OXA-1 enzyme but being resistant to 252 

penicillin/-lactamase inhibitor combinations, or (ii) possessing the gene for this 253 

enzyme and remaining susceptible.  Anomalous resistance perhaps may reflect low 254 

permeability, up-regulated efflux, copious ESBL production or elevated expression of 255 

chromosomal AmpC; anomalous susceptibility may reflect high permeability, weak 256 



efflux or non-expression of blaOXA-1 or other genes. Nevertheless, the general 257 

relationship between raised MICs for the inhibitor combinations and carriage of 258 

blaOXA-1 were clear and individual anomalies were not pursued further.   259 

It should be cautioned that the ESBL accompanying OXA-1 was always CTX-260 

M-15, and we cannot be certain that identical behaviour would be seen with other 261 

ESBLs. However there is no obvious reason why the ESBL type should affect the 262 

poor inhibition of OXA-1, and CTX-M-15 is considerably the commonest ESBL in the 263 

UK and worldwide.29 In the absence of OXA-1, modal MICs of the penicillin/inhibitor 264 

combinations were consistent irrespective of whether CTX-M-15 or another ESBL 265 

was produced. These findings have clear implications for penicillin/inhibitor 266 

combinations but not for newer cephalosporin/inhibitor combinations (e.g. 267 

ceftolozane/tazobactam and ceftazidime/avibactam), as these use cephalosporins 268 

that are stable to OXA-1 enzyme. Cefepime is somewhat labile to OXA-1,31,32 but 269 

prospective cefepime/tazobactam combinations appear to retain near universal 270 

activity against ESBL producers, many of which likely also carried OXA-1.33     271 

 The therapeutic challenges posed by bacteria carrying OXA-1 enzyme 272 

together with CTX-M-15 are exacerbated by frequent co-carriage of aac(6’)-Ib, 273 

(almost always as its aac(6’)-Ib-cr variant, conferring resistance to tobramycin).  274 

AAC(6’)-Ib also acetylates amikacin and, although MICs for producers commonly 275 

remained below the breakpoint, current EUCAST advice remains to avoid the drug 276 

wherever this enzyme is present.11 Resistance rates to ciprofloxacin, 277 

sulphonamides, trimethoprim and tetracycline also were slightly higher among OXA-278 

1-positive than OXA-1-negative ESBL producers though, unlike for tobramycin and 279 

the penicillin/inhibitor combinations, they were high in both groups. 280 



Co-carriage of blaOXA-1 with blaCTX-M-15 has been previously established in UK 281 

variants of E. coli ST131, where it was associated with IncF plasmids pEK499 282 

(117,536 bp) and pEK516 (64,471 bp) 34,35 Plasmid pEK516 had blaOXA-1 and blaCTX-283 

M-15 separated by a 7,457-bp region that encoded catB4, aac(3’)-IIa and tunicamycin 284 

resistance genes; aac(6’)-1b-cr was immediately upstream of blaOXA-1 and a class 1 285 

integron containing dfrA17, aadA5 and sul1 genes was present 1.7-kb upstream of 286 

blaCTX-M-15. Similar organisation is seen in the common Canadian blaCTX-M-15 plasmid 287 

pC15-1a.36   In the case of pEK499, which differed from pEK516 in having an IS26-288 

mediated deletion of aac(3’)-IIa and the tunicamycin resistance genes, blaOXA-1 and 289 

blaCTX-M-15 were only 4037 bp apart. Given their earlier prevalence and the similarity 290 

of the present resistance profiles it seems likely that the same or very similar 291 

plasmids to pEK499 and pEK516 remain prevalent in bloodstream ST131 E. coli 292 

from the UK. This could not be definitively proven here because the presence of 293 

multiple copies of IS26 precluded assembly from short-read sequencing data; 294 

nevertheless we could confirm that blaOXA-1, aac(6’)-1b-cr and the truncated catB3 295 

were demonstrably linked on the same ~2-3 kb contig in at least 139 of the 149 296 

isolates that had both blaOXA-1 and blaCTX-M-15. 297 

 In conclusion, these data suggest that the frequent question: ‘Are 298 

penicillin/inhibitor combinations active against ESBL producers?’ is misplaced.  The 299 

more pertinent query is ‘Does my ESBL-producing isolate also have OXA-1 300 

enzyme?’  The findings have implications for diagnostic development. We have 301 

shown elsewhere that multiplex tandem PCR can be used to seek bacterial 302 

resistance genes in urine from UTI patients, giving accurate results 24-48h before 303 

susceptibility test data become available.37  A panel that targeted E. coli generically, 304 

E. coli ST131 specifically, blaOXA-1, blaCTX-M, aac(6’)-1b, common gentamicin 305 



resistance determinants and the gyrA mutations responsible for fluoroquinolone 306 

resistance has the potential to provide a useful guide for the treatment of patients 307 

being admitted to hospital with upper UTIs and urosepsis.  Detection of ST131 and 308 

the blaOXA-1, blaCTX-M, aac(6’)-Ib-cr trio should give a steer towards early carbapenem 309 

use in the severely ill patient, whilst the absence of blaOXA-1 should increase the 310 

confidence with which penicillin/inhibitor combinations might be used. 311 

 312 
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Table 1. -Lactamase profiles and penicillin/inhibitor MICs among all ESBL E. coli from bloodstream infections (n=293) and ST131 480 

isolates (n=188) 481 

 No isolates with indicated MIC (mg/L) 
Total 

% 
Susceptible 

at 8 mg/L 
 <1 2 4 8 16 32 64 >64 

PIPERACILLIN/TAZOBACTAM            

All isolates with ESBL alone           

CTX-M-15 2 13 7 3  1   26 96.2 

CTX-M-27 3 12 5 2     22 100.0 

CTX-M-1 1 5             6 100.0 

CTX-M-14  3 2      5 100.0 

CTX-M-3  1       1 - 

CTX-M-9  1       1 - 

CTX-M-15; CTX-M-3    1      1 - 

TEM-117-p*a  1       1 - 

Total 6 36 15 5 0 1 0 0 63 98.4 

           

All isolates with ESBL plus TEM-1, no OXA-1           

CTX-M-15;TEM-1/191 6 19 20 3 2 1   51 94.1 

CTX-M-14;TEM-1  6 4 3 1    14 92.9 



CTX-M-27;TEM-1  2 2 1     5 - 

CTX-M-1;TEM-1  2 1      3 - 

SHV-12;TEM-1/191  2 1      3 - 

CTX-M-3;TEM-1    1      1 - 

CTX-M-24;TEM-1  1       1 - 

CTX-M-1;OXA-9;SHV-31;TEM-1    1      1 - 

Total 6 32 30 7 3 1 0 0 79 94.9 

           

All isolates with ESBL plus OXA-1, no TEM-1           

CTX-M-15;OXA-1 b 2 8 24 33 13 5 2 2 89 74.2 

CTX-M-15; CTX-M-3;OXA-1     1     1 - 

CTX-M-15;CTX-M-14;OXA-1    1      1 - 

 Total 0 8 25 34 13 5 2 2 91 73.6 

           

All isolates with ESBL plus TEM-1 and OXA-1           

CTX-M-15;OXA-1;TEM-1/191  3 7 23 19 5   57 57.9 

CTX-M-15;OXA-1;OXA-9;TEM-191-p*      1    1 - 

Total 0 3 7 23 20 5 0 0 58 56.9 

           

All isolates with ESBL plus AmpC           



CTX-M-15;CMY-4-p*         1 1 - 

CTX-M-15;CMY-42         1 1 - 

Total 0 0 0 0 0 0 0 2 2 0.0 

           

Major groups of ST131 isolates           

CTX-M-15 1 5 3 2  1   12 91.7 

CTX-M-27 3 12 5 2     22 100.0 

CTX-M-15;TEM-1/191 2 15 10 2  1   30 96.7 

CTX-M-15;OXA-1 1 7 18 29 11 4 2 2 74 74.3 

CTX-M-15;OXA-1;TEM-1/191  2 6 13 15 4   40 52.5 

           

Minor groups of ST131 isolates           

CTX-M-14   2 1           3 - 

CTX-M-27;TEM-1  1  1     2 - 

CTX-M-14;TEM-1  1       1 - 

CTX-M-15; CTX-M-3    1      1 - 

CTX-M-15;CTX-M-14;OXA-1    1      1 - 

CTX-M-15;OXA-1;OXA-9;TEM-191-p*      1    1 - 

CTX-M-3;TEM-1    1      1 - 

           



           

AMOXICILLIN/CLAVULANATE           

All isolates with ESBL alone           

CTX-M-15  1 5 12 5 2 1  26 69.2 

CTX-M-27    9 5 6 1 1  22 63.6 

CTX-M-1    1 5         6 - 

CTX-M-14     4 1    5 - 

CTX-M-3     1     1 - 

CTX-M-9     1     1 - 

CTX-M-15; CTX-M-3      1    1 - 

TEM-117-p*      1    1 - 

Total 0 1 15 28 14 3 2 0 63 69.8 

           

All isolates with ESBL plus TEM-1, no OXA-1           

CTX-M-15;TEM-1/191    12 27 9 3   51 76.5 

CTX-M-14;TEM-1     3 10 1   14 21.4 

CTX-M-27;TEM-1    1 2 2    5 - 

CTX-M-1;TEM-1     2 1    3 - 

SHV-12;TEM-1/191     2 1    2 - 

CTX-M-3;TEM-1      1    1 - 



CTX-M-24;TEM-1     1     1 - 

CTX-M-1;OXA-9;SHV-31;TEM-1      1    1 - 

Total 0 0 13 37 25 4 0 0 79 63.3 

           

All isolates with ESBL plus OXA-1, no TEM-1           

CTX-M-15;OXA-1b    2 19 55 13   89 23.9 

CTX-M-15; CTX-M-3;OXA-1      1    1 - 

CTX-M-15;CTX-M-14;OXA-1      1    1 - 

Total 0 0 2 19 57 13 0 0 91 23.1 

           

All isolates with ESBL plus TEM-1 and OXA-1           

CTX-M-15;OXA-1;TEM-1/191    1 5 33 18   57 10.5 

CTX-M-15;OXA-1;OXA-9;TEM-191-p*     1     1 - 

Total 0 0 1 6 33 18 0 0 58 12.1 

           

All isolates with ESBL plus AmpC           

CTX-M-15; CMY-42        1 1 - 

CTX-M-15; CMY-4-p        1 1 - 

Total 0 0 0 0 0 0 0 2 12 0 

           



Major groups of ST131 isolates           

CTX-M-15   2 5 2 2 1  12 58.3 

CTX-M-27   9 5 6 1 1  22 63.6 

CTX-M-15;TEM-1/191   5 17 6 2   30 73.3 

CTX-M-15;OXA-1   2 15 46 11   74 23.0 

CTX-M-15;OXA-1;TEM-1/191   1 3 22 14   40 10.0 

Minor groups of ST131 isolates           

CTX-M-14    3         3 - 

CTX-M-27;TEM-1   1  1    2 - 

CTX-M-14;TEM-1    1     1 - 

CTX-M-15; CTX-M-3     1    1 - 

CTX-M-15;CTX-M-14;OXA-1      1    1 - 

CTX-M-15;OXA-1;OXA-9;TEM-191-p*    1     1 - 

CTX-M-3;TEM-1     1    1 - 

 482 
 483 
a p* Enzyme is defined from a partial sequence, preventing confident precise matching. 484 

b  Includes one isolate with an OXA-1 sequence variant, with Ile187Leu.485 



Table 2. Risk of non-susceptibility to penicillin/-lactamase inhibitor combinations in relation to the presence of secondary -486 

lactamases 487 

  Piperacillin/tazobactam  Amoxicillin/clavulanate 

  

Secondary -

lactamase 

Relative risk 

of MIC  

>8 mg/L 

95% LCI 95% UCI p value  

Relative 

risk of MIC  

> 8 mg/L 

95% LCI 95% UCI p value 

All ESBL E. 

coli isolates OXA-1a 6.49 3.03 13.88 <0.001  2.34 1.85 2.96 <0.001 

 TEM-1/191 1.32 0.81 2.14 0.257  1.00 0.82 1.22 0.992 

 OXA-1 + TEM-1/191 3.49 2.22 5.48 <0.001  1.72 1.47 2.02 <0.001 

  (p value for homogeneity = 0.33)    (p value for homogeneity = 0.34)  

ST131 ESBL 

E. coli isolates OXA-1 12.10 3.01 48.61 <0.001  2.43 1.73 3.41 <0.001 

 TEM-1/191 1.58 0.92 2.71 0.094  0.96 0.77 1.21 0.741 

 OXA-1 + TEM-1/191 3.41 2.06 5.66 <0.001  1.57 1.31 1.89 <0.001 

   (p value for homogeneity = 0.47)     (p value for homogeneity = 0.17)   

 488 

LCI = lower confidence interval; UCI = upper confidence interval; p values shown are for chi-square tests except where indicated; p 489 

value for homogeneity indicates significance of interaction between OXA-1 and TEM-1 according to the Woolf test 490 

a Includes one isolate with an OXA-1 sequence variant, with Ile187Leu 491 



Table 3. Aminoglycoside and fluoroquinolone resistance among major ST131 groups 492 
 493 

 No with  

 n 

aac(6’)

-1ba 

aac(3)-

IIa 

aac(3)-

IId 

ant(2”) 

-Ia 

aadA

5 

aadA

1 

aadA

2 strA strBb 

dfrA

17 

dfrA

12 

Other 

dfr tet(A)c sul1 sul2 

catA 

1 

Whole collection (n=293) 

OXA-1 positive 149 147 88 7 6 113 6 9 25 26 113 10 14 121 122 31 19 

OXA-negative 144 1 18 18 1 65 17 13 81 81 68 8 33 85 78 83 10 

                  

Major ST131 groups (n=178 from a total of 188 ST131 isolates, see Table 1) 

CTX-M-15 12 0 1 0 0 6 0 2 4 4 6 2 2 4 9 4 0 

CTX-M-27 22 0 0 0 0 17 0 0 17 17 17 0 0 17 18 17 0 

CTX-M-15; TEM-1 30 0 11 9 0 19 0 4 20 20 19 4 1 20 22 20 2 

CTX-M-15; OXA-1 74 73 34 0 2 67 0 4 4 4 67 4 0 62 70 9 0 

CTX-M-15; OXA-1; TEM-1 40 39 27 6 4 26 0 5 9 9 26 5 2 29 30 10 5 

 494 
a Almost always (146/148 cases) as the aac(6’)-Ibcr variant 495 
b Including aph(6)-Id 496 
c Including tet(A)-1 497 
 498 
 499 
  500 



Table 4. Relative likelihood of OXA-1 being present in relation to the presence of other resistance genes 501 
 502 
 All E. coli isolates  ST131 E. coli isolates 

Resistance 

gene 

Relative risk 

of OXA-1 

presence 

95% 

LCI 

95% 

UCI 

p 

value 
 

Relative risk 

of OXA-1 

presence 

95% 

LCI 

95% 

UCI 

p 

value 

aac(6’)-Ib 72.01 18.18 285.21 <0.001  37.00 9.43 145.18 <0.001 

aac(3’)-IIa 2.55 2.04 3.18 <0.001  1.79 1.44 2.23 <0.001 

aadA5 1.97 1.48 2.62 <0.001  1.32 0.98 1.78 0.047 

sul1 2.13 1.52 2.99 <0.001  1.38 0.94 2.03 0.058 

dfrA17  1.94 1.45 2.60 <0.001  1.43 1.04 1.96 0.013 

sul2 0.41 0.30 0.57 <0.001  0.39 0.26 0.57 <0.001 

strA 0.36 0.25 0.51 <0.001  0.29 0.18 0.47 <0.001 

strB 0.37 0.26 0.52 <0.001  0.29 0.18 0.47 <0.001 

tet(A) 1.83 1.32 2.53 <0.001  1.43 1.04 1.95 0.012 

aac(3’)-IId 0.53 0.28 1.00 0.017  0.63 0.34 1.18 0.071 

 503 
LCI = lower confidence interval; UCI = upper confidence interval; p values shown for chi-square tests except where indicated. 504 
 505 
‘OXA-1’ includes one isolate with an Ile187Leu sequence variant. 506 


