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Females choose specific mates in order to produce fitter offspring. However, several factors interfere with females’ control over

fertilization of their eggs, including sneaker males and phenotypically unpredictable allele segregation during meiosis. Mate

choice at the individual level thus provides only a poor approximation for obtaining the best genetic match. Consequently,

postcopulatory sperm selection by female oocytes has been proposed as a mechanism to achieve complementary combinations

of parental haplotypes. Here, using controlled in vitro fertilization of three-spined stickleback eggs, we find haplotype-specific

fertilization bias toward gametes with complementary major histocompatibility complex (MHC) immunogenes. The resulting

zygote (and thus offspring) genotypes exhibit an intermediate level of individual MHC diversity that was previously shown to

confer highest pathogen resistance. Our finding of haplotype-specific gamete selection thus represents an intriguing mechanism

for fine-tuned optimization of the offspring’s immune gene composition and an evolutionary advantage in the Red Queen dynamics

of host-parasite coevolution.
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sexual selection, three-spined stickleback.

Cryptic female choice describes a suite of postcopulatory

mechanisms allowing a female control over which male’s sperm

ultimately fertilizes her eggs in promiscuous mating systems.

These mechanisms are thought to aim at both inbreeding

avoidance and increasing the female’s fitness through preferential

fertilization by a male with a heritable advantageous trait, that

is the acquisition of good genes (Eberhard 1996; Birkhead and

Pizzari 2002). However, for some traits there is no single good

gene and optimal offspring genotypes result from a complemen-

tary combination of female and male haplotypes (Brown 1997;

Kempenaers 2007; Firman et al. 2017). One of the best-studied

examples for complementary, rather than absolute, genetic quality

is the highly polymorphic major histocompatibility complex

(MHC) (Milinski 2006). As part of the adaptive immune system

of vertebrates, MHC molecules present antigens at the cell surface

and thus play a key role in the recognition of invading pathogens.

Precopulatory mate choice for males with complementary whole

MHC genotypes presumably evolved as a step toward optimizing

the overall immune response in the offspring (Edwards and

Hedrick 1998; Ziegler et al. 2005; Milinski 2006). Yet, if

sexual selection targets a particular locus or genomic region,

precopulatory selection allows only for a poor approximation of

the best match. Ultimately, the combination of a maternal and a

paternal haplotype, resulting from phenotypically unpredictable

meiotic segregation among both oocytes and sperm, determines

the offspring’s genotype. In highly heterozygous systems, such as

the MHC, random fusion of gametes to some extent resembles a

lottery and can easily lead to nonoptimal haplotype combinations.
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Imagine for instance a female with the two homologous haplo-

types A and B, and a male with the two haplotypes B and C.

Now say that A would be most complementary to B, and B most

complementary to C. At the individual level, these mates seem

like a perfect match. After random meiotic segregation though,

half of the resulting zygotes will have either BB or AC genotypes,

both of which are noncomplementary, leaving half of the

offspring with suboptimal genotypes despite costly investment in

precopulatory mate choice. Eggs that distinguish between sperm

haplotypes could provide a solution to this dilemma, allowing for

the combination of the most compatible parental haplotypes. The

ability of eggs to prefer complementary sperm haplotypes would

thus provide a great evolutionary advantage even in nonpromis-

cuous mating systems (Eberhard 1996; Bernasconi et al. 2004;

Otto et al. 2015), irrespective of whether it evolved before or after

precopulatory mechanisms. However, it is interesting to note

that postcopulatory mechanisms of sexual selection are generally

predicted to evolve earlier than precopulatory mechanisms,

suggesting that MHC-based gamete selection might predate

MHC-dependent mate choice and might be operating even in

species where no MHC-dependent mate choice has been observed

thus far.

The MHC has been proposed as one of the prime candidates

for a target of complementary cryptic female choice (Wedekind

1994; Birkhead and Pizzari 2002; Ziegler et al. 2005; Firman et al.

2017). At the individual (diploid genotype) level, sperm selection

could indeed already be detected in several species, interestingly

targeting different extremes of MHC diversity. In Atlantic

salmons, where eggs in vitro were given the choice between

sperm from MHC-identical and from completely MHC-dissimilar

males, sperm from MHC-identical males was more successful

in fertilization (Yeates et al. 2009). Similar observations of a

postcopulatory fertilization advantage for MHC-similar mates

were also made in Chinook salmon (Geßner et al. 2017), guppies

(Gasparini et al. 2015), salamanders (Bos et al. 2009), and kestrels

(Alcaide et al. 2012). Conversely, in red junglefowl, fertilization

of eggs was biased toward sperm from MHC-dissimilar males

(Løvlie et al. 2013). Another hint comes from crossing congenic

laboratory strains of mice that supposedly differed only at the

MHC. These studies suggest nonrandom combinations of parental

MHC haplotypes in the resulting blastocysts. However, the pat-

tern was not consistent and was affected by parental infection

levels with mouse hepatitis virus (Wedekind et al. 1996; Rülicke

et al. 1998). Segregation of MHC haplotypes in mice may also be

distorted by other mechanisms, such as the t-haplotype complex

that induces meiotic drive and happens to overlap with the MHC

locus (Lyon 2003). Furthermore, while a study on Atlantic salmon

showed MHC-dependent cryptic mate selection at the individual

level in matings with multiple males (Yeates et al. 2009),

investigations of cryptic choice at the gamete level in single-male

matings of salmon as well as whitefish revealed only random fer-

tilization with regard to MHC (Wedekind et al. 2004; Promerova

et al. 2017). Thus, decisive experimental evidence for oocyte

selection of specific sperm haplotypes is still elusive (Firman

et al. 2017).

Using the externally fertilizing teleost model species three-

spined stickleback (Gasterosteus aculeatus) (Gibson 2005) we

test here whether fertilization of eggs by sperm is nonrandom

with regard to the MHC IIB haplotype combinations of the two ga-

metes. Such sexual selection at the gamete level could be expected

to evolve as an extension of the well-characterized precopulatory

mate choice for MHC compatibility (Milinski et al. 2005), poten-

tially compensating for uncontrollable factors such as the random

meiotic haplotype segregation during egg and sperm development.

MHC haplotypes are defined as extended chromosomal stretches

with high linkage disequilibrium that contain the MHC genes, but

also a substantial number of other genes in their vicinity, includ-

ing olfactory receptor genes suggested to be involved in sexual

selection (Horton et al. 2008; Ziegler et al. 2010). In order to

investigate MHC-specific fertilization effects at the gamete level,

we therefore focused our main analysis on egg-sperm combina-

tions that differed in their MHC haplotypes. This is particularly

important for the interpretation of any observed MHC effect, as a

mere dichotomous distinction of MHC identical/different haplo-

types, used in previous studies, applies equally to all other non-

MHC genes in the chromosomal vicinity of those haplotypes: Any

observed fertilization advantage (or disadvantage) for egg-sperm

combinations with identical MHC haplotypes could thus not be

reliably attributed to the MHC alone (Ziegler et al. 2010). To quan-

tify the similarity/dissimilarity between different parental MHC

haplotypes, we used the average sequence divergence between

the MHC IIB alleles on those haplotypes. Sequence divergence

between MHC alleles has become a standard proxy for estimating

the functional quantitative difference in antigen-binding between

the respective MHC proteins and is extremely unlikely to corre-

late with similarity at any other gene in the vicinity of the MHC

loci (Forsberg et al. 2007; Lenz 2011; Evans et al. 2012; Geßner

et al. 2017).

MHC IIB loci in three-spined sticklebacks occur in a vari-

able number of tightly linked gene copies and are thus inherited in

stable haplotype blocks with one to three alleles each (Lenz et al.

2009a; Eizaguirre et al. 2012). As a measure of genetic divergence

between the MHC IIB haplotypes of a female’s egg and a male’s

sperm, we therefore used the average pairwise amino acid-based

sequence divergence between all parental MHC IIB alleles on

those two haplotypes and refer to this measure as “egg-to-sperm

MHC divergence” throughout. The eggs of a female stickleback

were exposed, in vitro, to equal volumes of sperm from two males

simultaneously, resulting in the availability of four male MHC IIB

haplotypes for fertilization of each egg-haplotype (Fig. 1), each of
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Figure 1. Design of in vitro fertilization experiment for

haplotype-specific gamete selection.

Experimental design: Female eggs were presented with sperm

from two different males under controlled conditions in vitro. Each

gamete (sperm or egg) carries one of two randomly segregating

parental MHC IIB haplotypes (e.g., H1). Arrows depict specific com-

binations of egg and sperm with a distinct egg-to-sperm MHC di-

vergence (e.g., divergence between H1 and H5). Initial analyses

are based on all observed combinations of parental MHC haplo-

types after in vitro fertilization (black and gray arrows). To exclude

interindividual differences between males, downstream analyses

concentrate on relative fertilization success of the two sperm hap-

lotypes within each male (black arrows only), with one of them

being randomly selected as focal haplotype. Pictured haplotypes

(H1–H6) are only examples and not meant to depict the actual

MHC diversity in the experiment.

them representing a distinct egg-to-sperm MHC divergence. This

scenario with simultaneous fertilization by two males, mimicking

the common situation of a sneaking neighbor male fertilizing the

eggs almost simultaneously, was chosen to guarantee sufficient

variation among the sperm available for each egg’s fertilization

and thus increase the likelihood to observe cryptic gamete selec-

tion, but also to allow replication of previous reports of postcop-

ulatory MHC-based mate selection.

Results
Our initial dataset comprised 11 clutches for which a total of 890

developing eggs could successfully be genotyped for their MHC

IIB haplotype combinations. A median of 83 (±11 SD) eggs per

clutch allowed us to reliably estimate fertilization success of the

different male and female MHC haplotype combinations. First we

investigated whether fertilization was nonrandom with regard to

MHC. For this, a Monte Carlo sampling procedure was employed

to simulate random fertilization of the four sperm MHC haplo-

types (i.e. �25% each), originating from the two males available

to each egg with a given MHC haplotype. Random sampling was

based on the actual observed number of fertilized eggs of each

of the females and their MHC haplotypes, for each egg randomly

picking one of the four specific sperm MHC haplotypes available

to that given egg. This analysis revealed that the observed average

deviation from 25% in a sperm haplotype’s fertilization success

was significantly larger than expected under random fertilization

(P < 0.001; Fig. S1). We then explored whether a directional pref-

erence for the sequence divergence between egg and sperm could

be identified. To test whether fertilization was skewed toward

higher or lower egg-to-sperm MHC divergence, we compared

the observed mean egg-to-sperm divergence to a distribution of

egg-to-sperm divergence obtained from simulating random mat-

ing. However, this analysis revealed no preferential fertilization

by sperm haplotypes yielding low or high egg-to-sperm MHC

divergence (Mean observed: 0.2390, mean expected: 0.2398,

P = 0.91; Fig. 2A), so no trend for minimizing or maximizing

MHC diversity was found. The observed intermediate mean

MHC divergence in the fertilized zygotes could imply either

random gamete fusion or an active preference for intermediate

MHC diversity. To distinguish between these two scenarios, we

compared the variance in egg-to-sperm MHC divergence among

the observed zygotes against the variance resulting from random

fertilization, again using a Monte Carlo sampling procedure. In

contrast to a recent study in Atlantic salmon, we indeed found

that the observed fertilization events led to zygotes with a lower

variance in egg-to-sperm MHC divergence than zygotes formed

by randomly sampled sperm haplotypes (variance observed:

0.00082, variance under random fertilization: 0.00166, P = 0.015;

Fig. 2B). This observed pattern could result from sperm selection

by eggs, focusing on specific male haplotypes that yielded inter-

mediate egg-to-sperm MHC divergence. Indeed, when ranking

the four sperm MHC haplotypes available to a given female egg

according to their fertilization success and comparing the most

successful sperm haplotypes with the least successful ones, we

found that the former were closer to the mean MHC divergence of

the population, possibly approximating the optimal MHC diver-

gence in an individual (Wilcoxon signed-rank test, P = 0.0018;

Fig. 2C).

Encouraged by these results, we then moved forward with

our main analysis. Here, we used generalized linear-mixed models

(GLMMs) to investigate a potential optimal egg-to-sperm MHC

divergence without making assumptions about the exact location

of this optimum. Furthermore, this model-based approach allowed

us to account for differences in sperm concentration among males,

a parameter likely affecting fertilization success. For model-based

analyses, we used only a high-quality subset of the data. The

filtering criteria for this subset aimed to avoid pseudo-replication

through repeated counting of identical haplotypes in homozygous

individuals and excluded gamete combinations with identical

MHC haplotypes for reasons explained above (see also method

section and Fig. S2). The model-based analyses confirmed

the initial results: We found a quadratic association between

egg-to-sperm MHC divergence and the proportion of fertilized

eggs (N = 73; GLMM, X2
1,67 = 12.6, P = 0.0004; Table 1),

suggesting that sperm resulting in a more intermediate egg-to-

sperm MHC divergence were more successful in fertilizing the

respective eggs. This association was independent of a similarly

strong effect of sperm number on fertilization success (GLMM,

X2
1,67 = 12.7, P = 0.0004). We also tested whether the removal of
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Figure 2. Nonrandom fertilization success with regard to MHC immune genes.

(A) Comparison of observed average egg-to-sperm MHC divergence (arrow) to simulated random fertilization by available sperm hap-

lotypes (shaded area, 1000 simulation runs) revealed no preference for maximum or minimum MHC divergence, indicating either truly

random fertilization or preference for intermediate MHC divergence. (B) Observed fertilizations (arrow) exhibited lower variation in

egg-to-sperm MHC divergence than expected under random fertilization (shaded area, 1000 simulation runs), suggesting a preference

for intermediate MHC divergence. Dashed red line indicates 5% quantile of the distribution. (C) The deviation (median absolute distance

± 95% CI) between a sperm’s egg-to-sperm MHC divergence and a hypothetical population optimum (0.2356) is shown here for the

most successful (“Most chosen“), the least successful (”Least chosen“) and the two middling of the four sperm haplotypes available for

fertilizing a given egg haplotype (N = 44, see Fig. 1). ∗∗ = P < 0.01.

gamete combinations with identical MHC haplotype (one of our

quality filtering criteria) affected the results and only found that

their inclusion slightly reduced the significance of the quadratic

association (N = 79; GLMM, X2
1,73 = 11.9, P = 0.0006). This

is in line with our concern that fusion of gametes with identical

haplotypes might follow a different dynamic than the one we are

interested in here (see arguments in introduction and discussion).

However, while mimicking promiscuous mating, this analysis

still included comparisons of sperm from different males, where

the influence of MHC-independent traits other than sperm

number (e.g., sperm velocity or seminal fluid; Perry et al. 2013)

is not controlled for. In principle, such MHC-independent traits

should affect both MHC haplotypes of a given male in the same

way. This would add noise to the data, rendering our results more
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Table 1. Associations between haplotype-specific fertilization success and MHC divergence of egg and sperm haplotypes.

Initial data Combined data

Haplotype-specific fertilization success N Chi-square P-value N Chi-square P-value

A) Among all four competing sperm haplotypes 73 12.6 (1,67) 0.0004 141 21.8 (1,134) 3.1 × 10−6

B) Between a male’s two sperm haplotypes (focal vs.
nonfocal haplotype)

32 8.0 (1,27) 0.0046 44 9.0 (1,38) 0.0027

Chi-square values (with term-specific degrees of freedom and residual degrees of freedom of the model) and P-values are shown for the model term

describing a quadratic association between relative fertilization success of a given combination of egg and sperm MHC haplotypes and their sequence

divergence. Using generalized linear mixed-effects models, fertilization success was compared A) across all four competing sperm haplotypes within a

female egg haplotype, and B) between the two sperm haplotypes of a male. Results are given for the initial data alone as well as for the combined data

from initial and replication experiment.

conservative, but would not bias our fertilization results toward

any given MHC haplotype. In addition, each sperm haplotype

represents two distinct values of egg-to-sperm MHC divergence,

one for each of the two egg MHC haplotypes available. Each

sperm will therefore have a different fertilization success with

regard to the two egg MHC haplotypes under a scenario of

sperm selection for intermediate egg-to-sperm MHC divergence.

Nevertheless, to try to increase our confidence in the observed

nonrandom fertilization, we performed another test that compared

only the two sperm haplotypes within each male, ruling out any

effects of potential MHC-independent intermale differences.

We note here that similarity of egg-to-sperm-MHC divergence

between two sperm haplotypes of different males might generate

competition that affects the ratio of potential success of the two

sperm haplotypes within each male. However, the influence of

this kind of competition would randomly affect in one case the

haplotype that would be preferred by an egg, but with the same

probability the unpreferred sperm haplotype. This interaction is

thus conservative with respect to the predicted result, as it only

increases unspecific variation.

When analyzing fertilization success between a male’s two

sperm haplotypes, randomly defining one of them as the focal

haplotype, we again found the quadratic association between egg-

to-sperm MHC divergence conferred by the focal sperm’s haplo-

type and its fertilization success (GLMM, X2
1,27 = 8.0, P = 0.005;

Table 1, Fig. 3A). This result confirms the pattern found among all

four sperm haplotypes, but here our finding of haplotype-specific

MHC-dependent sperm selection by eggs is not confounded by

potential differences between males.

However, given the novelty of our findings of haplotype-

specific gamete selection, we then decided to replicate the exper-

iment to increase the sample size. The fish handling and in vitro

fertilizations of the replication experiment were performed by a

different experimenter than in the initial experiment, but otherwise

used the same experimental protocol and analysis pipeline. Reas-

suringly, the new data showed the same quadratic association be-

tween the egg-to-sperm MHC divergence conferred by a sperm’s

haplotype and its fertilization success, when tested across all four

sperm haplotypes available to a female’s egg (N = 68; GLMM,

X2
1,62 = 10.8, P = 0.001). Testing the same relation between a

male’s two sperm haplotypes in the replication data alone was not

significant (N = 12; GLMM, X2
1,7 = 0.7, P = 0.41), likely owing

to the small sample size. However, when we combined the data of

the initial and the replication experiment, the significance of our

previous results increased, both when tested among all four avail-

able sperm haplotypes as well as when comparing focal and non-

focal sperm haplotypes within a male (Table 1, Fig. 3A). Removal

of a sperm pair whose focal haplotype exhibited extremely low

fertilization success (data point in bottom left corner of Fig. 3A)

did not eliminate statistical significance (GLMM, X2
1,37 = 4.6,

P = 0.032).

It has been argued that quadratic model terms may per se ex-

plain more variation than linear terms and thus require additional

support to prove an optimal association. To alleviate such con-

cerns, we therefore here present an analysis that is based on the

same logic as has been used for demonstrating the optimal number

of MHC alleles at the individual level (Aeschlimann et al. 2003;

Milinski 2003; Wegner et al. 2003; Kalbe et al. 2009). This anal-

ysis is based on an index that we calculate for each combination

of an egg haplotype with a male’s two sperm haplotypes by sub-

tracting the number of eggs (with the given haplotype) fertilized

by the less divergent haplotype from the number of eggs fertilized

by the more divergent haplotype. Under a scenario with gamete

selection for intermediate egg-to-sperm MHC divergence, this in-

dex is therefore predicted to be positive if the mean egg-to-sperm

MHC divergence of a male’s two sperm haplotypes is below, and

negative, if it is above the optimal divergence (for a schematic see

inset of Fig. 3B). If a regression line through all these pair-wise

differences in egg number has a significant negative slope, there

must be an optimum depicted by the zero intercept of the regres-

sion line (see (Milinski 2003) for a detailed description of this

approach).
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Figure 3. Differential fertilization success of a male’s two sperm haplotypes indicates preference for intermediate MHC divergence

between egg and sperm.

(A) For each triad combination of female egg MHC haplotype and a corresponding male’s two sperm MHC haplotypes (N = 44, black

arrows in Fig. 1), the proportion of these eggs fertilized by the male’s randomly selected focal haplotype over the total number of these

eggs fertilized by that male is shown. This proportion is plotted against the MHC IIB amino acid divergence between the egg’s MHC

haplotype and the focal sperm MHC haplotype (egg-to-sperm MHC divergence). The line and shaded area correspond to a fitted binomial

GLMM with a significant quadratic term for MHC haplotype divergence (GLMM, X2
1,38 = 9.0, P = 0.003) and its 95% confidence interval.

Blue and red dots mark data from the original (N = 32) and the replication experiment (N = 12), respectively. (B) For the same triad

combinations of female egg MHC haplotype and the corresponding male’s two sperm MHC haplotypes (N = 44), the mean egg-to-sperm

MHC divergence of the two sperm haplotypes is plotted against the difference D in number of eggs fertilized by the more divergent

sperm haplotype and the less divergent sperm haplotype. The inset shows the calculation of D and its expected sign if sperm with an

intermediate egg-to-sperm MHC divergence were favored. The observed negative correlation (Kendall’s tau = 0.27, P = 0.013) confirms

that expectation and the zero intercept (dotted line) approximates the optimal MHC divergence between egg and sperm haplotypes.

Coloring as in panel A.

In agreement with this prediction, we found a significant

negative correlation between the mean egg-to-sperm MHC di-

vergence of the two sperm haplotypes within a male and their

difference in number of fertilized eggs, both in the initial data

(N = 33, Kendall’s tau = –0.25, P = 0.045) as well as in the com-

bined data (N = 45, Kendall’s tau = –0.25, P = 0.018; Fig. 3B),

thus confirming the intermediate optimum. This dual-evidence

approach depicted in Figs. 3A, B, here performed at the haplo-

type level, conceptually follows the analysis for whole genotypes

by Wegner et al. (2003). It reveals that eggs were indeed preferen-

tially fertilized by the male’s sperm haplotype that provided the

more intermediate (optimal) MHC divergence.

As the main goal of this study was an investigation of MHC-

specific effects at the haplotype level, we had excluded egg-sperm

combinations with identical MHC haplotypes from our analyses,

as described in the introduction. The concern is that in those cases

the two gametes are likely to also be identical at other genes in the

chromosomal vicinity of the MHC genes so that any differential

fertilization could not be exclusively attributed to the MHC genes.

However, as several previous studies have reported postcopulatory

fertilization advantage for MHC-similar mates at the individual

level, we took advantage of our dataset and also tested for this ef-

fect. Interestingly, when comparing fertilization success of males

that shared an MHC haplotype with the female to males sharing

no haplotype with the female, our data showed a similar fertil-

ization advantage for MHC-similar mates (GLMM, X2
1,43 = 5.4,

P = 0.02). This effect was masked in our main analyses because

of the exclusion of homozygous egg-sperm combinations. When

including these combinations in our analyses, sperm with identi-

cal MHC haplotype to an egg indeed appear to be favored to some

extent (GLMM, X2
1,148 = 5.7, P = 0.017), independent of the

above reported preference for intermediate MHC divergence in

nonidentical gamete combinations (quadratic term remains signif-

icant: GLMM, X2
1,148 = 15.8, P = 7.2 × 10−5). However, as this

homozygous effect cannot be confidently attributed to the MHC

genes alone and furthermore contrasts with the observed diver-

sity at the MHC genes in natural populations, this phenomenon

requires additional research to resolve the involvement of MHC
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and/or other genes in the MHC region (e.g., olfactory receptor

genes; Ziegler et al. 2010).

Discussion
Fertilization success during postcopulatory sexual selection can

contribute substantially to a male’s overall reproductive success

(Pischedda and Rice 2012). Consequently, research on postcopu-

latory fertilization success has spurred the discovery of intriguing

mechanisms of intermale sperm competition (Wedell et al. 2002;

Fisher and Hoekstra 2010; Immler et al. 2011; Yeh et al. 2012;

Crean et al. 2016; Kekäläinen and Evans 2017). Likewise, cryp-

tic female choice for sperm of compatible mates in an intermale

competition scenario has been demonstrated, however, only at

the individual level (Olsson et al. 1996; Clark et al. 1999; Yeates

et al. 2009; Løvlie et al. 2013; Firman and Simmons 2015; Gas-

parini et al. 2015), that is the sperm of more compatible males is

preferred to sperm of less compatible males. Our results extend

these previous findings to a new and more sophisticated level by

providing empirical evidence for the existence of a mechanism

of haplotype-specific cryptic female choice for compatible sperm

not only among sperm from different males but also between

sperm from a single male. During in vitro fertilization, eggs of

three-spined sticklebacks were preferentially fertilized by those

sperm of a male that carry the MHC haplotype with which the

genotype of the resulting zygote is closer to an intermediate indi-

vidual MHC diversity.

This empirical confirmation of the hypothesized mechanism

of haplotype-specific preference for intermediate MHC diver-

gence adds a new dimension to earlier findings of mate selection

for intermediate (i.e., optimal) MHC diversity at the individual

level (Reusch et al. 2001; Aeschlimann et al. 2003; Milinski et al.

2005; Forsberg et al. 2007). An intermediate MHC diversity is

known to provide optimal immunocompetence in resistance to

pathogens due to an optimized trade-off between broad antigen

presentation by MHC molecules and a large repertoire of reac-

tive T cells (which is negatively affected by increasing MHC

diversity; Nowak et al. 1992; Woelfing et al. 2009; Chappell

et al. 2015). The fitness advantage of such optimal MHC diver-

sity has been confirmed empirically in three-spined sticklebacks

(Wegner et al. 2003; Wegner et al. 2008; Kalbe et al. 2009) and

other species (Bonneaud et al. 2004; Madsen and Ujvari 2006;

Kloch et al. 2010; Hawley and Fleischer 2012), rendering sex-

ual selection for optimal offspring MHC diversity highly advan-

tageous (Milinski 2006; Woelfing et al. 2009). This previously

reported evidence, however, so far demonstrated only precopula-

tory female mate choice for specific males, which still suffered

from the phenotypically unpredictable lottery effect of random

Mendelian segregation of MHC haplotypes between gametes. In

contrast, our present results suggest such selection mechanisms at

the haploid level and provide a unique mechanism to counteract

this lottery effect, favoring offspring genotypes with the most op-

timized immunocompetence. Eventually, this mechanism of sex-

ual selection, in combination with additional processes such as

pathogen-mediated negative frequency-dependent selection, con-

tributes to the maintenance of the frequently observed high allelic

diversity at the MHC in natural populations (Milinski 2006; Eiza-

guirre et al. 2012).

The detection of such potentially subtle effects as sperm se-

lection by eggs studied here requires both a thorough experimental

approach and fine-scaled parameter estimates. Due to limitations

in technological development, earlier studies on the evolutionary

significance of MHC genetics often had to rely on counting the

number of distinct alleles to characterize an individual’s MHC

diversity. However, distinct MHC alleles can differ by as little as

one amino acid to as much as 27 amino acids or about 40% of

the so-called antigen-binding groove in which pathogen-derived

antigens are presented to the immune effector cells (Lenz et al.

2009a). Recent computational analyses showed that the extent

to which two MHC alleles differ in their coding sequence is

directly correlated with the extent to which the corresponding

MHC molecules differ in their functional antigen-binding capac-

ity (Lenz 2011; Pierini and Lenz 2018). At the same time, new

advances in genotyping and sequencing technology provide un-

precedented genotype information at the sequence level and thus

allow for more fine-scaled analyses than merely distinguishing

between distinct alleles (Babik et al. 2009; Lenz et al. 2009a).

Consequently, individual MHC diversity is increasingly often be-

ing estimated by quantifying the sequence divergence among an

individual’s MHC alleles. This new measure of individual MHC

diversity, called MHC divergence, is expected to more directly

capture an individual’s MHC-dependent immunocompetence and

has proven successful in recent studies, including selection for and

advantage of intermediate individual MHC divergence in different

species (e.g., Forsberg et al. 2007; Lenz et al. 2009b; Evans et al.

2012; Lenz et al. 2013). Here, we followed this development, us-

ing the average sequence divergence between parental MHC IIB

haplotypes as an estimator for individual MHC diversity of the

resulting offspring, and thus were able to detect patterns of selec-

tion that may have remained elusive without these technological

advancements. We can here only speculate as to why three-spined

sticklebacks exhibit MHC-dependent gamete selection while this

could not be shown in a recent experiment on Atlantic salmons

(Promerova et al. 2017). One possible explanation is that here we

allowed for a larger diversity of sperm haplotypes by using sperm

from two different males, while eggs in Promerova et al. (2017)

were only provided with sperm from one male. Haplotype-specific

gamete selection may be more pronounced when a wider range

of different haplotypes is available. In line with this explanation,

a previous study found MHC-dependent fertilization success in
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Atlantic salmon when eggs were exposed to sperm from two dif-

ferent males, although it is unclear whether that result was driven

by cryptic choice at the gamete level or at the individual level

(Yeates et al. 2009).

While sperm selection for MHC complementarity has been

hypothesized repeatedly (Wedekind 1994; Tregenza and Wedell

2000; Birkhead and Pizzari 2002; Ziegler et al. 2005; Milinski

2006), the exact molecular mechanism for potential MHC-based

gamete interactions is still debated. To allow for sperm selec-

tion with respect to MHC II, the first prerequisite is expression

of these molecules on the sperm surface. While some studies

have found no MHC expression, others reported MHC I and/or

MHC II molecules on mature sperm cells (reviewed in Hutter

and Dohr 1998; Fernandez et al. 1999; Dadoune et al. 2004). It

therefore remains to be investigated whether the described effect

is directly mediated by MHC II molecules or by other loci of

the extended MHC region as suggested by Ziegler et al. (2005,

2010). Either way, a recent study showed that the micropyle of

fish eggs, an opening in the egg coat through which sperm en-

ter the egg for fertilization, appears to carry specific molecules

that are involved in attracting sperm toward the micropyle open-

ing and whose removal significantly reduces fertilization success

(Yanagimachi et al. 2013). Tests showed that this mechanism was

species-specific, suggesting a certain specificity of the molecular

mechanism involved and highlighting a potential way to pref-

erentially guide MHC-complementary sperm to the micropyle

opening. The second prerequisite for haplotype-specific sperm

selection is the haploid expression of MHC genes during sperm

development. While most transcripts are shared among spermatids

via cytoplasmic bridges, there is now increasing evidence that a

significant number of genes are not shared but instead expressed

from the haploid genome of mature sperm (Joseph and Kirkpatrick

2004; Immler 2008). Indeed, a recent study found evidence for

haploid selection in zebrafish, presumably based on genetic dif-

ferences among haploid gametes (Alavioon et al. 2017). The self-

incompatibility mechanisms in some plants and ascidians, which

prevent self-fertilization, also require expression of the haploid

gamete allele (Takayama and Isogai 2005; Harada and Sawada

2008), indicating that such fine-tuned mechanisms have evolved

multiple times.

While here, the exact mechanism is still under investigation,

the selective advantage is intriguing: Eggs selecting compatible

sperm, for which we show evidence here, allows for correcting

both precopulatory “mistakes” arising from phenotypically un-

predictable allele segregation among gametes during meiosis and

noncomplementary sperm from nonchosen sneaker males that

fertilize clutches almost simultaneously with the chosen male.

Oocytes preferring sperm with complementary immunogenes

therefore gain an evolutionary advantage in the highly dynamic

arms race between host and parasites.

Material and Methods
IN VITRO FERTILIZATION EXPERIMENT

For the initial experiment, parental sticklebacks were caught from

the lake Großer Plöner See (Northern Germany) in May 2006. In

the lab, they were gradually brought to summer conditions with

food provision ad libitum. Males were kept individually in 10 l

tanks and provided with artificial nesting material, whereas fe-

males were kept in small groups of 4–5 individuals. Only gravid

females (N = 11) and reproductively active males (N = 22) main-

taining a nest were used and randomly selected for the experiment.

With each female and male carrying two MHC IIB haplotypes,

respectively, this led to 88 combinations of egg and sperm haplo-

types, and each female egg being confronted with four different

sperm MHC IIB haplotypes (Fig. 1). We did not control for relat-

edness among paired individuals. However, given that these were

wild-caught fish from a very large lake population, it is highly

unlikely that the selected individuals were related. Furthermore,

genome-wide relatedness is not expected to correlate with MHC

sequence divergence and relatedness does not appear to have a sig-

nificant influence on fertilization success in sticklebacks (Mehlis

et al. 2015). Eggs were carefully stripped from females by apply-

ing gentle abdominal pressure, while sperm was extracted from

dissected testes of males and collected in 300 µl Hank’s bal-

anced salt solution (HBSS). Eggs were fertilized in vitro under

competition with a sperm mix obtained in equal volumes (30 µl

sperm/HBSS) from two different males. The milt/HBSS volume

was selected as males are assumed to release about 5% of their

sperm store in a single mating (Zbinden et al. 2001). Since testic-

ular sperm were used here, the sample potentially also contained

immature, nonfertilizing sperm so 10% of the total sample volume

was used to approximate the absolute number of mature sperm

from a natural ejaculate. This amounted to an average of approxi-

mately 2,583,135 mature sperm cells from each male. Precautions

were taken to avoid contamination from water or feces in order

to prevent premature activation of the gametes. Tank water was

added to the eggs after provision of sperm and eggs were left for

15 minutes by which time fertilization was complete. During this

time, the total number of sperm cells of both males was deter-

mined from sperm/HBSS subsamples using a modified form of

the standard cell dilution assay (SCDA; Pechhold et al. 1994).

This technique allows for distinguishing cellular debris and dead

cells from viable cells (Scharsack et al. 2004).

After fertilization, eggs were kept in aerated 1 l glass jars

for rearing. Just before hatching (�6 days), the eggs were frozen

individually at –20°C for genetic analyses. All eggs were fertilized

and mortality during egg rearing was negligible (<2% for all

clutches).

For the replication experiments, fish were caught in early

2015 from the same lake population and handled/processed in
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the same way as described above. The same criteria for repro-

ductive maturation as above were employed to produce a total

of 12 new clutches, using 12 females and 22 males (sperm of

one male was used thrice). The fraction of undeveloped eggs

was again low with a median of 2 (±5 SD) percent, compa-

rable to the initial experiment and as expected from in vitro

fertilization.

All animal experiments described were approved by the Min-

istry of Agriculture, the Environment and Rural Areas, Schleswig-

Holstein, Germany.

MHC IIB GENOTYPING AND HAPLOTYPE

SEGREGATION

For the initial dataset, genomic DNA was extracted using the

DNATissueHTS kit (Invitek, Germany). MHC IIB haplotypes in

the three-spined stickleback carry a variable number of tightly

linked loci (carrying 1–3 different alleles; Lenz et al. 2009a).

Here, reference strand-mediated conformation analysis (RSCA)

was employed for genotyping the exon 2 of all MHC IIB loci

per haplotype (Lenz et al. 2009a). Out of a median total clutch

size of 119 ± 21 SD in our experiment, we attempted to geno-

type 96 randomly picked eggs. A total of 890 embryos (median:

83 ± 11 SD, leading to an average genotyping rate of 70% per

clutch) were successfully typed for their MHC IIB genotype,

providing a robust representation of the genotype distribution in

the clutches. The parents were genotyped in the same way to

identify the parental origin of each MHC haplotype. No recom-

bination event was observed in the offspring genotypes. In case

of haplotype identity within or between males, equal fertiliza-

tion success was assigned to each haplotype. Random segrega-

tion of parental MHC IIB haplotypes during meiosis was veri-

fied by running exact binomial tests on the frequency of each

parent’s two haplotypes in their offspring (all FDR-corrected P-

values > 0.05), thus rejecting the possibility of MHC-dependent

skews during gamete production (e.g., through meiotic drive

mechanisms). Importantly, this result does not preclude MHC-

dependent gamete selection. A male’s two sperm haplotypes each

could still preferentially fertilize the more complementary of a

female’s two egg haplotypes, even though they overall fertilize

the same number of eggs. For females, this test was directly

informative about the segregation of MHC haplotypes during

meiosis.

In combination with a library of known alleles, RSCA geno-

typing allows identification of MHC IIB alleles to the sequence

level (Lenz et al. 2009a). The obtained sequence information

was used to calculate the haplotype divergence DivMHC of male

to female MHC IIB haplotypes as the average amino acid P-

distance (proportion of divergent sites over all sites) between

all possible allele pairs of the two parental haplotypes (Fors-

berg et al. 2007; Evans et al. 2012) according to the following

equation:

DivM HC = 2∗ ∑ap−1
i=1

∑ap

j=i+1 dAi A j

ap
∗ (

ap − 1
)

where ap is the number of parental alleles and dAiAj is the

amino acid P-distance between the ith and the jth parental al-

lele. This equation accounts for a variable number of alleles

among the parental haplotypes by averaging the pairwise al-

lele divergence over the number of pairwise allele comparisons.

DivMHC is called “egg-to-sperm MHC divergence” throughout the

manuscript.

In the initial experiment, one of the 11 females turned out

to be homozygous, yielding only one type of egg MHC haplo-

type for analysis of fertilization success. Also, three of the 22

males were homozygous, so that their relative fertilization suc-

cess was determined by only one sperm haplotype. The rational

for this is that counting the two identical haplotypes as two sepa-

rate observations/data points would represent pseudoreplication.

Technically, this step does not actually remove sample informa-

tion, but merges them. However, this does lead to a reduction

in data points. As explained in the main text, we required for

our analyses that egg and sperm haplotypes differ in their MHC,

in order to guarantee that effects could be linked directly to the

MHC genes. This resulted in a total number of 73 egg-sperm

combinations from the initial experiment. For the focal/nonfocal

haplotype analysis within males, we also had to remove all ho-

mozygous males (only one MHC haplotype) and exclude data

from males that shared one or both MHC haplotypes with the

other competing male, as this led to the same embryo geno-

types and male-specific fertilization success could thus not be

unequivocally determined. This would have impeded the main

goal of this “within-male” analysis by introducing various male-

specific and potentially confounding factors. This resulted in a to-

tal number of 32 focal/nonfocal sperm pairs from the initial exper-

iment. See Fig. S2 for a detailed listing of excluded samples and

rationale.

Samples from the replication experiments were processed in

the same way as above, except that genomic DNA was extracted

using the Qiagen DNAeasy Kit (Hilden, Germany). This time

we aimed to genotype all eggs of a given clutch. The 12 clutches

yielded a total of 1397 eggs, with a median clutch size of 122.5

(±23 SD) eggs. A total of 1267 (90%) developing embryos

could be genotyped successfully, yielding a median of 104

(± 19 SD) genotyped eggs per clutch. The randomly selected

fish of this replication cohort carried a slightly less diverse

set of MHC genotypes, resulting in a significant reduction of

egg-sperm combinations that could be used for analyses: Three

of the 12 females turned out to be homozygous for their MHC
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IIB genotype, and four of the 23 males were also homozygous.

This resulted in a total number of 68 egg-sperm combinations

from the replication experiment. For the focal/nonfocal hap-

lotype analysis, further removal of males with shared MHC

haplotypes (see above) resulted in a total number of only 12

focal/nonfocal sperm pairs from the replication experiment.

See Fig. S2 for a detailed listing of excluded samples and

rationale.

STATISTICAL ANALYSES AMONG ALL FOUR

AVAILABLE SPERM HAPLOTYPES

We initially employed a nonparametric approach based on Monte

Carlo sampling (Metropolis and Ulam 1949) to test our observed

data for deviations from random fertilization success. This Monte

Carlo simulation approach allowed us to combine the observed

fertilization patterns across clutches without the pitfalls of mul-

tiple testing. First, we focused on the question whether the four

sperm haplotypes available to each given egg haplotype obtained

fertilization success compatible with random fertilization. For this

we simulated the entire set of experimental fertilization events

(same number of clutches, same females, males, and same num-

ber of eggs per female MHC haplotype), with the key exception

that in the simulations the sperm that fertilizes each egg is picked

randomly (with a probability proportional to the relative sperm

number of its male) from the four sperm MHC haplotypes (two

from each of the two males) that are actually available to the given

egg from the two males of the given one female–two males com-

bination. This creates a simulated dataset of random fertilization

success after accounting for differences in sperm number between

the two males, but all else being equal to the observed data. We

then determined for each sperm haplotype in the simulated data

how many eggs of a given female haplotype it “fertilized” and

calculated the deviation from the fertilization success expected

purely based on differences in sperm number. Eventually we cal-

culated the mean of this deviation across all sperm haplotypes

of the entire simulated dataset. We then repeated this simulation

1000 times to obtain a distribution of average deviation from

fertilization success that could be expected under random fertil-

ization, accounting for possible stochasticity given the observed

number of fertilization events. Comparing the same average de-

viation from the observed dataset to this distribution of simulated

values allowed us to estimate the significance of the observed

nonrandom fertilization.

We then aimed to identify directionality in the nonrandom

fertilization by estimating the likelihood of obtaining the observed

egg-to-sperm MHC divergence distribution (mean and variance)

of the most successfully fertilizing (“preferred”) sperm haplotype

for each given egg haplotype under a random fertilization sce-

nario. The likelihood was obtained using a Monte Carlo sampling

procedure (Metropolis and Ulam 1949) with 1000 simulation runs,

randomly sampling one of the four available sperm MHC haplo-

types for each of the female egg haplotypes and thus mimicking

random fertilization.

To test whether the more successful egg-sperm combina-

tions exhibited an intermediate egg-to-sperm MHC divergence,

we ranked the four sperm haplotypes available to a given egg

according to their fertilization success with this egg haplotype.

In case of equal fertilization success, we picked one randomly.

We then calculated the deviation (absolute difference) of their

egg-to-sperm MHC divergence to a hypothetical optimal level

of individual MHC divergence. This hypothetical optimal MHC

divergence was defined as the mean individual MHC IIB di-

vergence of the parental population (0.2356 ± 0.0490 SD; cal-

culated from the combination of the two MHC haplotypes in

an individual, making it exactly equivalent to the egg-to-sperm

MHC divergence). This value was obtained from an indepen-

dent dataset of randomly wild-caught individuals (N = 90) from

the same cohort (Eizaguirre et al. 2009) and was virtually iden-

tical to the mean individual MHC IIB divergence of the wild-

caught parental fish of the present dataset (0.2353 ± 0.0395 SD;

N = 33).

We then employed a model-based approach to explore the

association between egg-to-sperm MHC divergence and relative

fertilization success in more detail and without making a-priori

assumptions about the exact location of the optimal MHC diver-

gence. Specifically, we used a generalized linear-mixed effects

model (GLMM, lme4 package in R) with binomial error distri-

bution and logit link to test for a quadratic association between

relative fertilization success of a given egg-sperm combination

and its egg-to-sperm MHC divergence. The dependent variable

was the number of eggs of that egg-sperm haplotype combination

over the total number of eggs with that egg haplotype (i.e., fer-

tilized by the other three available sperm haplotypes). Linear and

quadratic terms for the egg-to-sperm MHC divergence were in-

cluded as fixed effects, and female haplotype, nested within clutch

identity, was used as a random effect to account for pseudorepli-

cation of female MHC haplotypes. In this analysis of fertilization

across the four sperm haplotypes from the two males, we also

included males’ sperm number as a fixed effect, as sperm number

has the potential to affect fertilization success in competition sce-

narios. Expectedly, the number of sperm cells provided by a given

male did not correlate significantly with egg-to-sperm MHC diver-

gence of the observed zygotes (Spearman’s rho = 0.12, P = 0.28).

When analyzing the combined data from both experiments, we

also included the year of the experiment as a random effect in

the model to account for variation between the two experiments.

To account for possible differences between males, we then con-

tinued with the analyses by comparing fertilization success only

between the two haplotypes of each male separately, as described

in the next section.
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STATISTICAL ANALYSES FOCUSING ON THE TWO

SPERM HAPLOTYPES WITHIN A MALE

For a direct analysis of the fertilization success of the two sperm

haplotypes within males, we randomly chose one of them as

the focal haplotype (see Gage et al. 2004). Eggs fertilized by

the focal haplotype over eggs fertilized by focal and nonfocal

haplotypes were used as response variable in a GLMM with bi-

nomial error and logit link. Linear and quadratic terms for the

MHC divergence of focal haplotype to the respective egg hap-

lotype (egg-to-sperm MHC divergence) were included as fixed

effects and female haplotype nested within clutch identity was

used as a random effect to account for pseudoreplication. When

analyzing the combined data from both experiments, we also

included the year of the experiment as a random effect in the

model to account for variation between the two experiments.

Terms were individually removed from the model to estimate

their explanatory significance. To test for an association between

mean egg-to-sperm MHC divergence and the difference in fer-

tilization success of a male’s two sperm haplotypes, we used a

nonparametric Kendall correlation that is most suited to account

for ties in the data. We subtracted the number of eggs with a given

female MHC haplotype fertilized by the sperm providing lower

egg-to-sperm MHC divergence from the number of eggs fertil-

ized by the sperm providing higher MHC divergence. Analyses

were performed in R 2.14.2 (R Development Core Team 2012)

and required packages (car (Fox and Weisberg 2010), lme4 (Bates

and Maechler 2010), languageR (Baayen 2010)). All P-values are

two-tailed.
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