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Abstract 

Small sessile drops of water containing either long or short strands of DNA (“bio-drops”) were 

deposited on silicon substrates and allowed to evaporate. Initially, the triple line (TL) of both 

types of droplet remained pinned but later receded. The TL recession mode continued at 

constant speed until almost the end of drop lifetime for the bio-drops with short DNA strands, 

whereas those containing long DNA strands entered a regime of significantly lower TL recession. 

We propose a tentative explanation of our observations based on free energy barriers to 

unpinning and increases in the viscosity of the base liquid due to the presence of DNA molecules.  

In addition, the structure of DNA deposits after evaporation was investigated by AFM. DNA self-

assembly in a series of perpendicular and parallel orientations was observed near the contact 

line for the long-strand DNA, while with the short-stranded DNA smoother ring-stains with some 

nanostructuring but no striations were evident. At the interior of the deposits, dendritic and 
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faceted crystals were formed from short and long strands respectively; due to diffusion and 

nucleation limited processes respectively. We suggest that the above results related to the bio-

drop drying and nanostructuring are indicative of the importance of DNA length, i.e. longer DNA 

chains consisting of linearly bonded shorter, rod-like DNA strands. 

 

 

Introduction 

The drying of suspension droplets is at the forefront of scientific activity as a deposition 

technique for various applications such as bio-sensing DNA microarrays1 or ink-jet printing for 

microelectronic devices.2 However, an important problem with this process is controlling the 

deposition of the solids on the substrate during evaporation.  

 

In their seminal work, Deegan et al. elucidated the underlying physics of the ubiquitous “coffee-

stain” deposition phenomenon.3, 4, 5 Essentially, evaporation with a pinned three-phase contact 

line (triple line: TL) of a suspension drop containing microparticles induces an outward fluid flow 

to sustain the liquid front, which in turn carries the dispersed particles to the drop periphery 

leading to the formation of ring deposits. These deposits have been reported to consist of mainly 

crystalline structures.6, 7 Nonetheless, the formation of disordered regions has been reported 

and attributed, in the case of microspheres, to the rapidly increasing particle velocity near the 

end of droplet lifetime, allowing little time for Brownian motion;8 while in the case of 

nanospheres, to an interplay between particle velocity (this time as an ordering parameter) and 

wedge constraints (disordering parameter).9, 10 The addition of slightly elongated particles 

(aspect ratio 3.5) suppressed the “coffee-stain” mechanism11 due to the formation of loosely 

packed aggregates at the liquid-air interface, which in turn create strong capillary attractions 
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between the aggregates and the incoming ellipsoids, thus reducing their mobility. Longer 

particles such as carbon nanotubes (CNTs),12 silica rods13 or graphene flakes14 led to “coffee-

stains” with different structuring as the wedge constraints weakened. 

 

On the other hand, polymer drop evaporation, which is very important in ink-jet printing 

technologies,2 may lead to the formation of a variety of structures: ring-stain,15, 16, 17 hat-like16, 17, 

18, 19 and “puddle” and/or ”pillar”.20, 21, 22 The formation of ring-stains was attributed to the 

“coffee-stain” phenomenon.13 Puddles and/or pillars were associated with pinning duration16, 22 

which, when coupled with the formation of a particulate skin at the liquid-vapor interface, led 

to a buckling instability and the formation of hat-like structures.18, 19 

 

The drying of drops of biopolymers, such as DNA, is another interesting area with great promise 

as it may revolutionize genome expression detection, especially in the form of DNA microarrays.1 

DNA is a biological polymer which consists of a number of monomer units, named base pairs 

(bp), of the four nucleotides Adenine, Thymine, Guanine, Cytosine.23 Its shape is regarded to be 

cylindrical, with ca. 2nm diameter and varying in length according to the number of bp, each 

corresponding to ca. 3.4 Å.23 In spite of its importance, the exact mechanism governing the 

evaporation of DNA droplets remains elusive.24 Dugas et al. reported the evaporation kinetics 

and pattern formation of a bio-drop containing oligonucleotides (25 bp DNA strands), which 

evaporated with an initial pinning period, followed by TL retraction at constant speed.25 The 

evaporation of individual bio-drops containing λ- phage DNA (48.5 kbps, ca. 16 µm) of increasing 

concentration showed a transition from constant contact radius (CCR) to constant contact angle 
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(CCA) evaporation modes.26 In addition, it was reported that DNA self-assembled into branched 

structures, whose dimensions were a linear function of DNA concentration.26 

 

DNA is capable of self-assembly into a variety of structures. For example, Heim et al. reported 

that λ- phage DNA (48.5 kbp, ca. 16 µm) formed branched structures when the bio-drop front 

moved away from its original location.27 However, when the droplet front remained pinned, 

similar DNA strands (48.5 kbp, ca. 16 µm) formed zig-zag patterns.28 On the other hand, very 

short (2-7 nm)29 or relatively short (50 nm) DNA strands formed liquid crystals with columnar, 

nematic or dendritic order depending on DNA concentration.30 Nonetheless, little is known 

about the self-assembly process of DNA at the TL of drying drops, especially with numbers of bp 

between 100 and 1000 or with chain lengths between 34 nm and 340 nm. 

 

Drop drying is a complex multiscale and multiphase, physical phenomenon and many of its 

aspects still remain elusive. However, it is easy to implement practically and has considerable 

potential applications, including micro-devices for DNA characterization.27 In this article, we 

attempt to bridge a gap in the understanding of the evaporation kinetics of bio-drops containing 

DNA strands with lengths ranging between 34 - 340 nm and, at the same time, associate the 

influence of DNA length on both bio-drop evaporation kinetics and deposit growth. In addition, 

we investigate DNA self-assembly within these deposits.  

 

Materials and Methods 

DNA with 100 and 1000 base pairs (bp) (NoLimits™ Individual DNA Fragments), corresponding 

to lengths of 34 and 340 nm respectively, were acquired from Thermo Scientific (Waltham, MA) 
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in powder form. The powder was dissolved at 0.01 % w/v concentration with deionized water 

and stirred using a vortex stirrer until complete dispersion. Smooth (Rrms∼ 1 nm) silicon 

substrates with a thin, native silica surface layer (due to oxidation) were used as substrates in 

order to minimize contact angle (CA) hysteresis. Substrates were cleaned in an iso-propanol 

ultrasonic bath for approx. 10 mins, rinsed with deionized water and dried using a jet of 

compressed air, prior to use. A Krüss DSA100 (Krüss GmbH, Hamburgh, Germany) drop shape 

analyzer (DSA) system was employed to deposit 3 µL droplets of each solution. The CCD camera 

(recording at 25 fps) mounted on the DSA allowed acquisition of droplet profile (contact angle, 

radius and volume) evolution over time.  Evaporation experiments were conducted in a room 

with controlled temperature of 21 ± 2 ℃  and relative humidity between 30% and 40%. A 

minimum of 10 repetitions of each experiment were conducted in order to establish 

reproducibility and we provide a representative example of each case. The viscosity of each 

suspension was measured with an automatic microviscometer (AMVn, Anton Paar GmbH ,Graz, 

Austria). 

 

Sample imaging was conducted with a Bruker Multimode/ Nanoscope IIIa AFM (Bruker, Santa 

Barbara, CA). The AFM was equipped with a J-scanner (x-y scan range of approx. 140 microns) 

and operated under tapping mode (tip in intermediate contact with the surface). Bruker RTESP 

cantilevers were used with a nominal (according to manufacturer’s specification) spring 

constant of 40 N/m, resonance frequency of 300 kHz and tip curvature of ca. 8 nm. Images were 

post-processed and analyzed using the Scanning Probe Image Processor (SPIP, Image Metrology, 

Hørsholm, Denmark). 

 

Results and discussion 



6 
 

Representative results of contact angle, ϑ, and radius, R,  vs. time for short, 100 bp, and long, 

1000 bp, strands are presented in Figure 1(a) and (c). The two cases exhibit similar initial 

evaporative behavior, in the CCR mode (Stage I). In this mode the TL remains pinned, inducing 

an outward liquid flow carrying particles to the periphery, which in turn form the rings observed 

in Figure 1 (b) and (d). When the CA reaches a sufficiently small, threshold value,  𝜃 = 𝜃𝑟 , 

following TL pinning, the bio-drops are in a state of sufficient excess free energy, with respect 

to their thermodynamic equilibrium shape, viz. corresponding to an equilibrium value of contact 

angle, in order to overcome the pinning force (or energy barrier) and they enter stage II, where 

they evaporate in the CCA regime.31 After further evaporation, both systems enter stage III, 

although this stage differs for the 100 and 1000 bp cases. In the case of short DNA (Figure 1 (a)), 

evaporation proceeds under a combination of receding TL and decreasing CA, whereas in the 

case of longer DNA strands (Figure 1 (c)), evaporation enters what is virtually a second CCR mode 

prior to complete evaporation, although some slight decrease in contact radius does occur. 

These results are in agreement with what has been reported for drying of bio-drops containing 

much longer DNA chains, length of 48.5 kbp or ca.16μm.26 This behavior for 1000 bp is similar 

to that observed for a suspension of TiO2 particles in ethanol.32 Although the TL barely moves, 

there is a perceptible drift towards lower values of contact radius. 
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Figure 1. (a) Representative contact angle and contact radius vs evaporation time of 3 µl aqueous 

droplets containing 0.01 % w/v (a) 100 bp and (c) 1000 bp DNA chains. (b), (d) Corresponding 

optical micrographs of the ring-stain deposits left behind after the free evaporation each 

solution. 

 

Consideration of the evaporation behavior of these two types of bio-drop reveals two interesting 

points about the effect of particle (strand) length on evaporation kinetics. Firstly, the shorter 

DNA strands lead to stronger, initial TL pinning, as indicated by a longer pinning period (ca. 

460 ± 22 sec, compared to the longer strands, ca. 380 ± 19 sec.) and (slightly) lower contact 

angle at depinning (44° compared to 47°). This is in agreement with results previously reported 

for rigid, rod-like solid particles CNTs14 or silica rods.13 In these bio-drops, this rod-like behavior 

of the short DNA strands may be explained by considering simple polymer physical properties, 

i.e. the persistence length, which is, essentially, a way of classifying the stiffness of polymers. In 
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the case of DNA, the persistence length was reported to be ca. 50 nm or 150 bp.28, 29, 33 Therefore, 

our 100 bp DNA strands may be regarded as essentially rigid and exhibiting rod-like behavior 

similar to CNTs.14 On the other hand, the longer, 1000 bp, DNA strands may be considered as 10 

short rods linked linearly by chemical bonds. This bonding imposes a constraint in the possible 

conformations of each individual short rod. Additionally, this bonding leads to fewer (larger) 

individual solute molecules (for a given mass concentration), leading to weaker TL pinning.  

 

The second interesting point arising from the comparison of the evaporative behavior of the two 

types of bio-drops in Figure 1 is the difference in recession speeds of the TL. Average droplet 

recession speeds during Stage II were calculated from a series of experiments to be: 

7 74.9 10 1.9 10 / secshortv m     and 7 83.7 10 4.5 10 / seclongv m      for the short 

and long DNA, respectively. It is worthwhile noting that even a very small amount of solute 

accumulation at the drop edge is capable of slowing down a moving contact line.34 The 

difference in TL recession rate of the two bio-drops may be attributed to the longer chain length 

leading to higher, local, viscosity at the TL, consistent with polymer34, 35 or biopolymers.36 The 

dynamic viscosities of the two suspensions (at initial concentrations) were measured to be 

𝜂𝑠ℎ𝑜𝑟𝑡 =  0.880 mPa∙s and 𝜂𝑙𝑜𝑛𝑔 =  0.921 mPa∙s, corresponding to relative viscosities of 

𝜂𝑟,𝑠ℎ𝑜𝑟𝑡 = 1.078 and  𝜂𝑟,𝑙𝑜𝑛𝑔 = 1.129 with respect to water (𝜂𝑤𝑎𝑡𝑒𝑟 = 0.816 mPa∙s measured at 

the same conditions). The concentration locally at the TL is expected to increase due to solvent 

evaporation, which results in even higher viscosities.   

 

As a sessile drop evaporates at constant contact radius, its contact angle decreases below the 

Young (or equilibrium) value and the system becomes unequilibrated thermodynamically, 
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leading to an excess of free energy, 𝛿𝐺. With knowledge of both 𝜃 and 𝑅 at any given time, we 

can calculate the evolution of this excess free energy,  G  , over the equilibrium value, 

 0G  , as    0G G G    which leads to Equation 1:9 

  

𝛿𝐺 =
𝛾𝜋𝑅2

(1 + cos 𝜃)
[2 − cos 𝜃0(1 + cos 𝜃) − 

−(1 − cos 𝜃)1 3⁄ (2 + cos 𝜃)2 3⁄ (2 + cos 𝜃0)1 3⁄ (1 − cos 𝜃0)2 3⁄ ]       (1), 

 

where 𝜃0 is the initial CA (assumed to be the Young value: see below) and 𝛾 is the solution 

surface tension, measured in independent experiments by the pendant drop technique to be 

that of pure water, ca. 0.073 N/m. Dividing 𝛿𝐺 by droplet circumference, we calculate the excess 

free energy per unit length of TL, 𝛿�̅� = 𝛿𝐺/2𝜋𝑅. Results of 𝛿�̅� vs normalized time, i.e. time, 

t/drop lifetime, 𝑡𝑚𝑎𝑥, are plotted in Figure 2 for the two types of bio-drop, containing either 

short or long DNA strands. 
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Figure 2. Comparison of the evolution of free energy per unit length, 𝜹�̅�, evolution of short – 

100 bp (squares) and long – 1000 bp (circles) DNA strands. 

 

The variation in 𝛿�̅�  appears generally to follow a similar trend in both systems. Initially, excess 

free energy increases during the CCR mode of evaporation (stage I of Figure 1). Upon 𝛿�̅� 

reaching the threshold depinning energy, at ca. 20 % of drop lifetime, 𝛿𝐺 ̅𝑠ℎ𝑜𝑟𝑡 ≈ 1.1 ×  10−6 𝑁, 

for the 100 bp  DNA (squares) and 𝛿𝐺 ̅𝑙𝑜𝑛𝑔 ≈ 8.6 ×  10−7 𝑁, for the 1000 bp (circles), a jump 

occurs and then 𝛿�̅�  exhibits a plateau, which is indicative of a quasi-equilibrium during TL 

retraction. (The fact that 𝛿�̅� is calculated to be non-zero at this stage sheds doubt on the above 

assumption that the initial CA is the true Young angle, but this is of little importance in the 

argument, relative values of 𝛿�̅� being considered, as also pointed out elsewhere.37) Towards ca. 

70% of drop lifetime, a relatively rapid increase in 𝛿�̅� begins, more marked for the 1000 bp case. 

This corresponds to the onset of significant reduction in CA (see Figure 1). The fact that 𝛿�̅� 

attains (relatively) high values, 𝛿𝐺 ̅𝑠ℎ𝑜𝑟𝑡 ≈ 5.7 ×  10−6 𝑁 and  𝛿𝐺 ̅𝑙𝑜𝑛𝑔 ≈ 7.7 ×  10−6 𝑁 , 

suggests that any potential depinning of the TL to attempt to restore Young equilibrium is 

severely hindered.  

 

 

Figure 3. Schematic representation of TL region, where 𝜀 is a cut-off to local behavior. (a) For 

lower viscosity suspension (100 bp), liquid flux,  𝐼100 , is capable of supplying the needs of 
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evaporation (flux 𝐽 ) to maintain continuity and CA remains relatively large. (b) For higher 

viscosity (1000 bp), liquid flux is inadequate for the needs of evaporation, CA diminishes, drop 

flattens locally and TL drifts due to higher viscosity.   

 

Since in both cases, with DNA strands of 100 and 1000 bp, there is some motion of the TL (Stage 

I of Figure 1), albeit slight for 1000 bp, we cannot consider the effect as being due to an energy 

barrier, per se, but to a kinetic (or dynamic) effect. If some TL drift occurs during the deposition 

process, it has been shown that the evaporation deposit may adopt the form of a wedge of thin 

end facing the exterior of the drop32 (see Figure 3).  The wedge was found to be reasonably 

modelled by the expression: 

 

2
( ) 1

sin

i

s l

f J J x
h x

R R



   

 
  

 
    (2), 

 

where ℎ(𝑥) is wedge height as a function of distance, 𝑥, measured from the TL towards the drop 

centre, 𝑓𝑖 is the initial concentration of suspension particles, 𝐽 ̅the average evaporative flux near 

the TL, taken up to some limiting (small) distance, 𝜀 , �̇�  is TL drift speed, 𝜌𝑠  and 𝜌𝑙  are 

respectively solid (the suspension, in the form found in the deposit) and liquid densities, and 𝜃 

is contact angle. Although unknown with any precision, 𝜀 was found to be of the order of 100 

nm.32 Equation 2 reveals the physical mechanism underlying the deposit build-up and may 

provide a plausible explanation of the differences observed between the two bio-drops shown 

in Figure 1. In the absence of any significant viscosity, this description seems to be adequate 

provided that the liquid replenishment flux, 𝐼 , is sufficient to maintain continuity with the 
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(governing) evaporation flux, 𝐽.̅ Under these conditions, liquid viscosity plays no role in deposit 

build-up (Figure 3(a)) and does not appear in Equation (2), as would appear to be the case for 

the shorter DNA strands with 𝐼 = 𝐼100 . However, if the viscosity of the suspension is higher (as 

in the longer DNA case), the liquid flux may be unable to replenish the depletion caused by local 

evaporation near the TL, leading to stagnation of the process, flattening of the local liquid layer 

and subsequently to a more rapid drop in the CA (Figure 3(b)). The TL will then recede at a lower 

rate, as discussed above.  Thus the discontinuity between available liquid input and evaporation 

loss will lead to both a more rapidly decreasing CA and a slower recession of the TL. Indeed 

Figure 2 quite clearly shows that the energy barrier in Stage III is considerably higher for 1000 

bp than for 100 bp. To support this argument further, we provide in Figure 4 the comparison of 

the average radial light intensity profiles of the deposits presented in Figure 1. Integration of the 

area under the curves reveals an increase in ring area with the DNA length from 13.1 3.1%  

to 31.2 5.0% of the total area. This amounts to a ca. threefold increase in ring width with 

increased viscosity, due to higher DNA length. Potentially, this crude comparison could prove to 

be a quick and inexpensive way to categorize DNA strands according to their length, similar to 

other biomedical applications for drop drying such as blood diagnosis.38, 39 Nonetheless, further 

examination is required in this direction. 
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Figure 4: Average light intensity profiles of ring-stains left behind the evaporation of (a) 100 bp 

and (c) 1000 bp bio-drops. 

 

The effect of DNA length on nanostructuring within the ring-stains was also investigated. We 

imaged the resulting patterns (Figure 1 (b), (d)) with AFM mainly at two areas where nano-
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structuring behaviour has been reported previously: at the outer edge of the ring-stain (TL)7, 9, 11, 

14, 40 and towards the interior of the resulting patterns (towards the drop bulk).8, 10, 41 

 

 

Figure 5. (a) 5 × 5 μm2 topography image of the edge of the deposit (TL) left behind after the 

evaporation of the droplet containing long – 1000 bp DNA, z-scale ranges 0 – 770 nm. (b) Phase 

image of the same area, z-scale ranges -80o – 35o. (c) 3-D representation combining information 

from both (a) and (b). (d) Amplitude image of the same area, z-scale ranges -200 – 200 mV. 

 

Figure 5 depicts the topography (a) and the phase image (b) of the outer edge of the 1000 bp 

ring-stain. The phase image shows tip-sample interactions due to viscoelasticity, adhesion or 
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even different particulate orientation and therefore provides better contrast in DNA 

nanostructuring. Figure 5 (c) shows a 3-D representation of (a) with an overlay of (b). Moreover, 

we provide the amplitude image of the same area in Figure 5 (d), which is essentially the error-

signal of the AFM feedback loop and provides better contrast. Some particulate deposited on 

the substrate can be identified outside the ring (area (i)), attributable to an initial, rapid 

dewetting occurring directly after droplet deposition on the substrate. Noticeably, in the same 

area, the DNA strands seem to have oriented with the flow due to the rapid TL motion stretching 

the molecules.26, 27 Inside the ring-stain and near the TL (area (ii)), a ca. 1.60 µm wide plateau 

was formed. The formation of this plateau may be attributed to insufficient particulate supply 

from the periphery as a result of the viscosity of this droplet which in turn is enhanced at the 

wedge (as discussed above). Moving away from the periphery there is more volume available 

and hence lower viscosity which allows the particulate supply to resume and hence the deposit 

to grow again. Notably, the DNA strands self-assembled within the deposit (area (ii)) mainly 

parallel to the edge of the ring in order to achieve the densest possible packing. However, some 

DNA strands appear to be perpendicular to the edge, potentially due to the TL retraction forcing 

them to align with its motion. Similar undulations of DNA chains were reported to have formed 

during the retraction of the TL of DNA droplets; albeit containing much larger DNA strands (16 

µm compared to 340 nm here, ~ 50 ×  larger), observed with confocal microscopy.28 This 

plateau is followed by area (iii) where a distinctive step can be observed and strands with similar 

nanostructuring, mainly parallel with a few perpendicular to the TL, hinting perhaps at another, 

smaller TL pinning event, not detectable by the CCD camera. Further away from the TL and 

toward the ring interior (top left corner of Figure 5 (b)), DNA strands are free to orient to the 

flow, due to weaker wedge constraints, and the DNA strands exhibit a mixture of parallel and 

perpendicular orientation to the TL. 
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Figure 6. (a) 10.0 × 10.0 µm2 topography image of the central area of the 1000 bp pattern, z-

scale ranges 0 – 90 nm. (b) 5 × 5 μm2 magnification of the area in the white box in (a), z-scale 

ranges 0 – 80 nm. (c) Mean height profile corresponding to line in (b).  

 

At the interior of the deposit, the 1000 bp DNA strands exhibit a different structuring behavior, 

depicted in the topography image in Figure 6 (a). A series of spherical cap particulate islands 

were found to have formed randomly on the substrate. These islands are characteristic of 

pseudo-dewetting structures (as the surface is still covered by liquid/particulate).42, 43, 44 As these 

islands grow they will merge, eventually, giving rise to the network with the sharp edges 

highlighted by the white box in Figure 6 (a) and magnified for better inspection in Figure 6 (b). 
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This crystallization can be attributed to “faceted growth”, which is essentially a nucleation-

limited process.45, 46 From Figure 6 (b), it is readily apparent that the lateral dimensions of the 

facets varied. However, their height is relatively uniform, as shown in the average height profile 

in Figure 6  (b), with a typical average value of 18.6 ± 6.6 nm.  

 

 

Figure 7. (a) 5 × 5 μm2 topography image of the edge of the deposit (TL) left behind after the 

evaporation of the droplet containing short– 100 bp DNA chains, z-scale ranges 0 – 380 nm. (b) 

Phase image of the same area, z-scale ranges -50o – 40o. (c) 3-D representation combining 

information from both (a) and (b). (c) 3-D representation of the same area. (d) Amplitude image 

of the same area, z-scale ranges -200 – 200 mV. 
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Figure 7 (a) depicts the topographical information of the outer edge of the bio-drop containing 

short DNA chains and Figure 7 (b) depicts the phase image of the same area. Combining the 

information of both these images results in the three-dimensional representation of the same 

area presented in Figure 7 (c). Outside the ring, on the right hand side of the images, a number 

of large, spherical cap particulate islands can be identified. These islands could be attributed to 

an initial dewetting event occurring directly after the droplet was deposited on the substrate, 

which was too rapid for the CCD camera to capture and show in Figure 1 (a). This argument is 

further supported by the presence of similar large, particulate aggregates within and near the 

outer edge of the deposit. These aggregates, however, were possibly formed around/ on top of 

surface defects which led to the anchoring of the TL. In addition, some DNA nanostructures were 

found to have formed around these larger aggregates and a larger fibril near the bottom, which 

are clearly identifiable in the amplitude image shown in Figure 7 (d). Overall, we can only surmise 

at this point that the 100 bp DNA strands formed a rather smooth coffee-stain deposit without 

striations. Furthermore, the slope of this ring-stain appears to have grown steadily (without any 

steps) and therefore sharper than in the longer – 1000 bp case. This difference could perhaps 

be attributed to lower viscosity in the 100 bp droplet (as discussed above); short DNA strands 

are not linked linearly via chemical bonds and thus can move more easily and independently 

allowing a steady flow of particles arriving to the wedge and leading to the continuous deposit 

growth.  
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Figure 8. (a) 25.0 × 25.0 µm2 topography image of the central area 100 bp pattern, z-scale ranges 

0 – 370 nm. (b) 10 × 10μm2 magnification of the area in the white box in (a), z-scale ranges 0 – 

330 nm. (c) Mean height profile corresponding to line in (b). 

 

A typical topography image of the area towards the center of the 100 bp deposit shows the 

formation of dendritic structures (Figure 8 (a)). The dendrites propagated from the drop center 

(toward the left hand side of the image). Similar DNA dendrites have been reported in the past, 

albeit for much smaller DNA strands ca. 8 bp.29 The close-up of the dendrites presented in Figure 

8 (b) allows better inspection of the structures and the determination of their average height to 

be ca. 186 ± 25 nm. This average height profile presented in Figure 8 (c) was acquired from a 
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number of height profiles, a representative one being shown in Figure 8 (b). From these results 

we may hypothesize on the crystallization process mechanism. Potentially, some DNA strands 

may be adsorbed at the solid-liquid interface  where they act as nucleation sites, giving rise to 

dendrite crystals, following diffusion-limited crystal growth.45 In addition, comparing the crystals 

in Figure 6 and Figure 8 leads to the conclusion that the crystallization process is highly 

dependable on DNA length and mobility. 

 

Conclusions 

We have studied the evaporation of bio-drops containing DNA strands of 100 and 1000 bp. 

Evaporation behavior, coffee-stain formation and nano-structuring were found to be dependent 

on DNA strand length and are also indicative of a link between DNA viscosity and evaporation 

behavior. Suspensions of DNA of both chain lengths exhibited a three-stage evaporation cycle; 

the major difference occurring at stage III, viz. after initial CCR and subsequent CA behavior. The 

initial CCR period is slightly longer for the short DNA strand suspension, probably due to more 

efficient/denser packing behavior of the short strands and hence stronger pinning. Upon 

depinning, both bio-drops retract with the longer strand version retracting at a slower rate. 

Eventually, evaporation enters a third mode of evaporation, different for each case. The short 

strand suspension follows with a combination of decreasing CA and retracting TL. On the other 

hand, the longer strand DNA suspension enters a second CCR mode. Both the lower retraction 

rate and second CCR evaporation cycle of the longer strand case were attributed to higher local 

viscosity at the TL, modifying the overall local flow/evaporation process.  Essentially, the more 

efficient/denser packing of the short DNA leads to higher energy requirements for the first 

depinning event to occur, whereas the higher viscosity near the end of droplet life leads to 

stronger contact angle hysteresis for the longer DNA and hence to a second CCR event. 
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Nanoscale investigation of the edge of the resulting ring deposits unveiled more information 

about the evaporation process. There appears to be an initial dewetting stage in both cases, 

which was apparently too rapid or too small (AFM images exhibit areas of a few µm) to be 

captured by our CCD camera. Upon the TL meeting a surface defect, the rod-like, short DNA 

strands accumulated there, giving rise to strong pinning of the TL. On the other hand, the longer 

DNA strands exhibit unique nanostructuring behavior. Near the TL, long DNA strands tend to 

pack themselves as densely as possible in the limited wedge space with the occasional stretching 

due to some random anchoring points. Moving towards the interior of the ring, where the 

wedge constraints are weaker, DNA chains exhibit a higher conformation to liquid flow, giving 

rise to a mixture of parallel and perpendicular orientations with respect to the TL. Towards the 

center of the resulting patterns (drop side of TL), a unique, crystallization pattern was observed 

for each DNA strand length. The two DNA strands followed different crystallization paths 

possibly due to their different degrees of flexibility. We believe that these findings may provide 

useful information for further development of biomedical applications such DNA microarrays.1 
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