Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung

Schinwald, Anja, Murphy, Fiona, Askounis, Alexandros ORCID: https://orcid.org/0000-0003-0813-7856, Koutsos, Vasileios, Sefiane, Khellil, Donaldson, Ken and Campbell, Colin J. (2014) Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung. Nanotoxicology, 8 (8). pp. 824-832. ISSN 1743-5390

Full text not available from this repository.

Abstract

Two-dimensional graphitic carbon, graphene, is a new form of nanomaterial with great potential in a wide variety of applications. It is therefore crucial to investigate the behaviour of graphene in biological systems to assess potential adverse effects that might follow from inhalation exposure. In this study we focussed on medium-term effects of graphene in lung tissue by investigating the pulmonary inflammation 6 weeks after pharyngeal aspiration of unoxidised multilayered graphene platelets (GPs) in mice and assessed their biopersistence in the lung tissue using Raman spectroscopy. Additionally, GP degradation in vitro was examined after horseradish peroxidase (HRP) treatment up to 1 week. Building on our previous report showing acute inflammation in mice lungs at 1 day, pristine GP showed minimal inflammation in mouse lungs after 6 weeks even though no degradation of GP in lung tissue was observed and large deposits of GP were evident in the lungs. Raman analysis of GP in tissue sections showed minimal oxidation, and in vitro examinations of enzymatic oxidation of GP via HRP and H2O2 showed only slight increases in ID/IG ratio and the appearance of the Raman D' band at 1620 cm-1 (surrogates of graphene oxidation). Our results showing non-inflammogenicity at medium time points have important implications in the hazard identification of GPs following inhalation exposure and for their use in biomedical applications. Additionally, the biopersistence of pristine GP in vivo with no associated inflammation could open the way to applications in tissue engineering and drug delivery.

Item Type: Article
Uncontrolled Keywords: biodegradation,horseradish peroxidase,lung inflammogenicity,oxidation,pristine graphene
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 12 Sep 2018 08:30
Last Modified: 24 Oct 2023 01:21
URI: https://ueaeprints.uea.ac.uk/id/eprint/68230
DOI: 10.3109/17435390.2013.831502

Actions (login required)

View Item View Item